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ABSTRACT

This paper extends the Stabi-Rubinstein model of bilateral bargaining to incorporate many
players and multidimensional issue spaces. A ceatral feature of our framework is that in each
round of negotiations, a proposer is selected randomly. Our bargaining model consists of a
sequence of finite-horizon games, in which the horizon increases without bound. - A solution to-
our model is a Hmit of equilibrium outcomes for the finite-horizon games. A necessary
condition for existence of a detenministic solution is that the lmit outcome belongs to the core
of the underlying bargaining problem. Solutions, if they exist, are generically unigque. Two
sets of sufficiency conditions for existence are presented. The paper concludes with examples
and applications. Io particular, we consider bipolar negotiations between two factions, and
show that there is a positive relationship between the cohesiveness of one faction relative to
the other and its effectiveness in securing the comunon goals to its members.



This paper proposes a noncooperative model of multilateral bargaining. Our framework can be viewed as an
extension of the classical Stahl-Rubinstein bargaining game in which two players take twrns proposing a division of
a "pie."‘ After one player has proposed a division, the other can accept or reject the proposal. If the proposal is
accepted, the game ends and the division is adopted; if it is rejected, the second player then makes a proposal,
which the first player then accepts or rejects. And so on. In Stahl’s formulation, the game continues for a finite
number of rounds; in Rubinstein’s extension, the number of rounds is infinite. We propose a generalization of this
framework to incorporate multiple players and multidimensional issue spaces. We congider a sequence of games
with finite bargaining horzons, and study the Hmit points of the equilibdum outcomes as the horizon is extended
without bound. Departing from the classical approach, we assume that the proposer s chosen randomly "by nature”
in each round of bargaining, according to a prespecified vector of “access probabilities."?

The paper focuses on collective decision-making problems. In contrast to the related political science
literature, which explicitly models deciston-making in formal institations such as legislatures and committees, our
framework is intended to represent in a very stylized way the informal, unstructured negotiations and debates that
frequently precede and accompany the formal legislative process. Cowosider, for example, the cumrent discussions
among the formerly Soviet Republics over the fate of the Soviet Union, or the recent negotiations in Canada leading
up to the Meech Lake Accord.? Alternatively, consider negotiations between regional interests withio California
over, say, the location of a pew hydroelectric facility, or between members of an agricultural cooperative over the
location of a new processing plant.

Imagine the activity within the White House staff prior to the selection of a nominee for a senior appointment
{such as a Supreme Court judgeship). The following scenario might unfold: a number of different senior staff
members, including, perhaps, the President himself, are concurrently lobbying each other, each attempting to build
support for one particular candidate; somehow, one of the names under consideration is singled out from the others
and, in a plenary meeting of the White House staff, attention is focussed exclusively on this candidate. If sufficient
support bas been geperated, the White House will adopt the candidate as its official nominee. Otherwise, the
fobbying process will begin again, until agreement is finally reached.

The formalism of our framework conforms rather closely to this informal negotiating process. Oné aspect of
it, however, is difficult to describe analytically: how is one staffer’s proposal singled out from the others? In our
framework, this problematic issue is “"black boxed:" we simply assert that nature selects a player to be the
"proposer” in a random way. Presumably, however, there is some relationship between a staffer’s status within the
organization and the likelihood that ber proposal will be singled out for consideration. We operationalize this
refationship by assuming that nature’s random choice is governed by an exogenously specified vector of access
prababilities. Players' access probabilities are interpreted as measures of their relative political “effectiveness:” the
higher a player’s access weight, the more likely it is that she will "seize the initiative" in the pegotiations. A
player’s high access might reflect the extent of her political power within the organization, or, perhaps, a talent for
formulating issues in ways that can fead to workable compromises.

The scenario spelied out above is intended to be suggestive, but should not be taken too literally. There are
several different stories that are consistent, to some degree, with the framework. Alternatively, the framewoik can
be viewed as reduced form of a complicated structural process. In apy case, the ultimate usefulmess of the
framework will be determined by the intuitive “feel” of its predictions and comparative staticy properties rather than
the extent to which it faithfully mirrors the details of some actual negotiating process,

The paper is organized as follows. Section 1 introduces the model. The formal presentation is contained in
sections 2 and 3. Section 4 contains examples and applications. In Appendix A we discuss an important class of
problems to which our theorems do not apply. Proofs are gathered togetber in Appendix B.

U Stald {1972, 19771 and Rubinstein {1982}
I The idea of a random proposer has been explored in several other papers, including Binmore {19871 and Baron-Ferejohn [1939].

¥ In Rausser-Simon [1992], we use the framework developed in this paper as a basis for studying the process of privatization in Eastem
Europe.



SECTION 1.  INTRODUCTION.

Outline of the Framework.

Qur game consists of a finite number of negeriaring rounds. The purpose of negotiations is to select a policy
from some set of possible alternatives. In odd-numbered rounds, each player chooses a proposal, which is a policy,
paired with an admissible coalition. Between the odd- and evep-numbered rounds, one of the players is selected ar
random to be the proposer, according to the prespecified vector of access probabilities. In the even-numbered
rounds, each member of the proposer’s coalition decides whether to accept or reject the proposer’s policy.? The
game ends as soon as all coalition members accept a policy. H one member rejects a proposed policy, the players
proceed to the next round. If the last round of the game is reached and the players still fail to agree, then the game
ends and a prespecified disagreement outcome is implemented.

Ap important parameter of our framework is the set of admissible coalitions. An admissible coalition is
interpreted as a subset of the players that has the authority to impose a policy choice on the whole group. For
example, in a majority rule bargaining game, a coalition is admissible if and oanly if it contains a majority of
players, More generally, the set of admissible coaliions might have a vadety of structures. In particular, we will
sometimes impose the restriction that at least one player belongs to every admissible coalition. Any such player
will be refenred to as essential,

Our equilibrium concept is a refinement of subgame perfection (Selten {1975]). For a bargaining game with 2
fixed number of bargaining rounds, an equilibritan outcome is a probability distribution over the policies that are
implemented when players play equilibrium strategies. A solution to our model is a limit of equilibrium outcomes,
ag the number of negotiating rounds increases without bound. The main results in this paper concern the existence
of a dererministic solution, which is a limit outcome assigning probability one to a single policy. A pecessary
condition for a policy to be a solution is that the policy belongs to the core of the underlying bargaining game, ie.,
there exists no admissible coaliion whose members all prefer some other policy. Weak conditions guarantee that if
--a golution exists; it will be -unique for -geperic - specifications -of players’ preferences. - We -identify two sets of
sufficient conditions for existence. If all players are risk averse, then every majority rule bargaining game with a
one-dimensional space of policies has a detenministic solution. Alternatively, a detemministic solution exists in
general if at least one player is essential. In particular, the latter restriction is satisfied by wnanimity games, in
which the ooly admissible coalition is the grand coalition, so that each player is essential.”

A striking feature of our framework is that even when the bargaining problem is quite complex, the
{generically unique) equilibrium solution can easily be computed numerically. Monte Carlo methods can then be
applicd to investigate the comparative statics properties of the problem. Specifically, our model is solved
recursively, by computing a sequence of solutions to straightforward single-person decision problems, until an
acceptable degree of convergence has been obtained. Because of its computational tractability, our framework
provides a useful analytical approach to examdning a wide variety of collective decision-making problems. '

Modeling Issues.
A major modeling issue relates to the sufficiency condition that some player be essential. In the abstract, this

condition is quite restrictive. For example, it cleary conflicts with the formal institutional procedure of decision-
making by majority mule. However, in a wide variety of collective decision-making contexts, the condition is
satisfied de facto, even when it is explicitly violated de jure. For example, it is difficult to imagine that a candidate
could emerge as the White House nominee for a major political appeintment without at least the tacit approval of
the President. That is, in negotiations with the White House staff, the President would be an essential player.
Similarly, in the current negotiations over the future of the Soviet Union, essential status might be coaferred upon
either Mr Gorbachev, Mr Yeltsin or both, More generally, whenever a group of negotiators has a cleasrly identified
“leader,” it may be appropriate to model this player as essential.® Finally, a player might be deemed essential by

4 We could have formalated the framework more sparscly, allowing the propeser’s coalition to be determined endogenously. Our reasons
for requiring players to specify coalitions explicitly are explained in section 2 below.

5 The framework as presently formulated has been stripped to its barest essentials. It can be extended in numerous of ways without great-
ly effecting our major conclusions. For example, if players have positive time-discount factors, our sufficiency conditions will no longer
guarantee deterministic solutions, though “almost deterministic” solutions will cxist if players are sufficiently patient. Another naturai way to
extead the framework would be to tndogenize the determination of access probabilities, by allowing players to "invest in access” during a
Coumnot-type pregame. This extension would enhance the realism and applicability of the framework, but at the cost of a considerable foss in
computational simplicity.

¢ Conversely, in the absence of feadership, onc might expect certain kinds of negotiations to become bogged down; a formal counterpart of



L3

virtue of ber role in executing the decisions resulting from the negotiations. For example, in faculty meetings of
university departments, the Chairperson will typically bave no special voting privileges. Presumably, however,
there are certain kinds of policy decisions that will rarely be taken in the face of explicit opposition from the Chair,
as the Chair ntust bear the ultimate responsibility for implementing the policy.

Confusion frequently arises over the relationship between "essentiality” and "access.” While essential players
will tend in general to have selatively high access probabilities, there is no necessary correlation between these two
facets of political power. Czechoslovakia’s President Havel provides a stiking iflustration of the distinction.
During his country’s velvet revolution, Havel's access weight was very high. In the post-revolutionary era, he has
acquired essential status, but his "empirical” access probability has undoubtedly declined. Similarly, while President
Reagan was clearly an essential player within the Reagan White House, his "revealed” access probability was quite
low in the sense that he rarely initiated policy proposals. More generally, in almost every political process, there
are many groups that have considerable access but do not participate in the formal decision-making process, In our
framework, these participants would be assigned positive access probabilities but would pot belong o any
admissible coalidon, Famniliar examples from national politics are "intellectual lobby groups” such as the Brookings
Institation, whose access is derived from its members’ individual relationships with policy makers, or, in university
politics, radical student groups, whose access might be measured by their ability to influence the general climate of
opindon. o

A second medeling issue arises from our treatment of the time horizon. Since Rubinstein [1982}, it has
become customary in bargaining theory to assume that the time horizon is infinite. 'We depurt from this custom,
aod assume that the bargaining horizon is finite but arbitrarily long. A pragmatic justification for this assumption is
that the infinite-horizon vession of our model has no predictive power: any ouicome can be supported as an
equilibrium.? More significantly, there are in some circumstances sound modeling grounds for presuming that the
borizon is finite. In collective decision-making contexts, impending deadlines can provide a dramatic impetus to
compromise: witness the frequency of last-minute resolutions of Congressional deadlocks, and of post-midnight
compromises in wage pegotiaions when strikes are threatened for the following moming, Since finite horizon
models are solved by backward induction, attention is inevitably drawn to these “eleventh hour™ effects.®
Conversely, of course, in an infinite horizon model there is no endgame. Our final argument in support of a finite
horizon is again pragmatic. Our model exhibits certain properties that are intuitively appealing and correspond to
well-known stylized facts about actual negotiating situations. (See Rausser-Simon [1991] and section 4 below for a
preview.}) Whatever the "true" explanations are for these facts, the explanations for the properties of our model that
mimic them can be traced to players’ behavior in the final rounds of negotiaions. Thus, our finite horizon
assumption can be justified on the grounds that it captures the spirit of some interesting but not well understcod
phenomena that might otherwise escape attention.

Related Literature. .

Until recently, the topic of multilateral bargaining has received surprisingly little attention by noncooperative
game theorsts. The few papers that bave been wrtien focus almost exclusively om various versions of the
alternating-offer model, Binmore [1985] considers several altemnative extensions of Rubinstein’s analysis to the
problem of “three player and three cakes:" each pair of players exercises control over the division of a different
cake, only one of which can be divided. In unpublished work,® Shaked observed that in any infinite-horizon,
altemating-offer, multilateral pure-division problem, if the consent of three playess is required for agreement, and if
they are not extremely impatient, then any division of the pie can te implemented by subgame perfect equilibrium
strategies. The proof follows easily from the following observation: suppose one player proposes an off-the-
equilibrium-path division that gives her a positive share of the pie. If players are not too impatient, then at least
one of the other two players can be induced to reject this division by the promise of the whole pie in the subgame
that will follow if she does so.

this tendency would be an existence failure in our frameword.

7 The proof of this assertion is sketched in the "Related Litcrature” subscction below.

? In general, the profession is justifiably skoptical of arguments that involve long and intricate inductive chains. In many instances, how-
ever, the problem is mitigated somewhat in our framework because the bosic "shape” of the solutien is more or less detennined after only a
few rounds of induction. (This will become clear when we discuss examples in Section 4 below.} This fact may alse reassure cxperirental-
ists, since there is abundant evidence that experimental subjects secin unable to backward induct much beyond three periods. (See Nechin et
al. {1988] and Spicgel et. al. [1990]. See, however, Harrison-McCabe [1992] for a dissenting opinion, and Harrison [1991] for a survey.)

¥ Shaked's result s discussed in Sutton [1986] and Osborme-Rubinstein [1990].



An interesting variant of the altemating-offer model, called the "Proposal-Making Model,” has been advanced
by Selten [1981]. A player is selected by pature to make the first proposal. She proposes a utility vector, a
coaliion and a “responder.” The responder either accepts or rejects. If she rejects, the responder then proposes a
new utility vector, a new coalition and a pew responder. If she accepts, the responder designates another member
of the coalition as the next responder, and so on until all members of a coalition have agreed to some proposal.
This model has been studied extensively in Chatterjee et. al. [1987] and by Bennett and coauthors. !¢

Baron-Ferejohn {1989] study a symmetric problem in which # players must divide up a pie, using majority
rule. One variant of their model is strikingly similar to ours, yet draws quite different conclusions; players propose
divisions of the pie in odd-numbered rounds; nature chooses one of the proposals at random and voting follows in
even-numbered rounds. In the two-round version of this model, each proposer keeps slightly more than half of the
pie for bemself, and distributes a small portion to enough others to obtain a majority vote. In the infinite-horizon
version of the game, as wsual, virtually any division can be supported as an equilibrium. The two-period outcome,
however, is identified as the unique outcome that can be supported by stationary strategies.!! The most important
difference between our framework and theirs is that we focus on the mit of finite-hotizon outcomes. For generic
specifications of players’ utilities, the problem posed by Baron-Ferejohn has no solution in our model. 12

SECTION 2. THE T-ROUND MULTILATERAL BARGAINING GAME.

In our formal presentation, we distinguish between multilateral bargaining problems, games and models. A
multilateral bargaining problem is, essentially, a game in the sense used by cooperative game theorists. Each
bargaining problem gives rise to a family of noncooperative, finite extensive form mudrlateral bargaining games
that are identical except for the number of negotiating rounds. A multilateral bargaining model consists of a
sequence of Tround bargaining ganes derived from a common bargaining problem,; in which T increases without
bound.

The Underlying Multilateral Bargaining Problem. _
There is a finite set of players, denoted by I = {1, - --,i}. The representative player will be denoted by 7.
The players meet together to select a policy from some set, X, of possible alternatives.

Assumption Al: X is a convex, compact subset of /-dimensional Buclidean space,

If the policy vector x is selected, player i receives the payoff u;(x). Of the assumptions we impose on u;, the only
significant ope is strict concavity (ie., players are globally risk averse). In particular, we assume that payoffs are
independent of time, 13 :

Assumption A2: For each i, u;() is continuous and strictly concave on X* and satisfies the
von-Neumann Morgenstern axioms. 14

To avoid degenerate special cases, we assume that there is a minimal amount of diversity in players’ preferences:

Assumption A3:  Fori # j, the maximizers of u; (') and u;(-) on X are distinct.

dfts

There is in addition to X a distinguished vector, x¥", which is called the disagreement outcome.’> If players

¥ Bennett [1991a, 1991b], Bennett and van Damme [1991] Bennctt and Houba [1991).
' Baron-Kalai [1991} show that it can also be isclated by invoking a computational simplicity criterion.

12 Because of it symmetry, their problem is nongeneric.

B §t is straigltforward but not particularly illuminating to incorporate tinse-discounting into the model.

™ For many applications, the requirement of strict concavity is too strong. For example, if X is the unit simplex, representing players’
shares of # doflar, then we would naturally want to allow player / to be indifferent between any two share vectors whose  'th components are
the same. To aflow for such preferences, we could assume that for cach £, there is some subspace X7 of X such that { is indifferent between
any two vectors that differ only oo X - X7, and globally risk-averse on X°. Al of the results in the paper hold if Assumption A2 is weak-
ened in this way.
dfk

5 I is convenicnt to isolate {x %% | from the sct X, For cxample, we can assign x7" a payoff of negative infinity withaut violating con-



cannot reach an agreement durng the negotiation process then the vector x¥* will be imposed by default. Once

again we avoid degenerate special cases by assumiog that there is some a negotiable settlement which Pareto
dominates the disagreement ouicome:

Assumption Ad: There exists x € X such that for each 7, u;{(x) > w;(x %),

Denote by X* the set X (U (x¥" ). We will refer to the vector-valued function, u = (1;),o; defined on X* as the
payoff function for the problem. (Throughout the paper, vectors will be denoted by boldface letters.) Assuming
that all other parameters bave implicily been specified, we will denote by I'(u) the bargaining problem with payoff
function wu.

The examples discussed in this paper all belong to a class known as spatial problems, in which the policy
space, X, consists of altemative locations. For example, a location could be a site for a public good. More
abstractly, a location could be a point in characteristics space, representing, perhaps, the attributes of a candidate for
some office. Each player has a most preferred location in X, called her ideal point. The vector of players’ ideal
points will be denoted by & = (04 );¢;. Leting d(x, y) denote the Euclidean distance between x and y, player i s
utility from a policy x will be a declining function of d(x, 0;;).!¢ In all of the computational examples, player i 's
utility function is assumed to be of the form:

W) = (% —d@, o) 7 Gy = e @D

where v, is a positive constant and p; € (0, 1) is player i 's risk aversion coefficient.

The specification of a multilateral bargaining problem includes a list of admissible coalitions, €, with
representative element C. An admissible coalition is interpreted as a subset of the players that can impose a policy
decision on the group as a whole. For example, in majority rule decision-making, a coalition is defined to be
admissible if and oply if it contains a majority of the group. More generally, the set of admissible coalitions may
have a vadety of structures. In particular, we will sometimes impose the restriction that one or more players
belongs to every admissible coalition. In this case, we shall say that the bargaining problem has an essential player.

The core of a multilateral bargaining problem is defined in the usual way. A policy x can be blocked by a
coalition C if there exists an altemnative policy y such that each member of C strictly prefers y to x. The core is
the set of policies that cannot be blocked by any admissible coalition,

The T Round Muiltilateral Bargaining Game.

A bargaining game is derived from a bargaining problem by superimposing upon it a “npegotiation process.”
We will depote by T(u, T) the T-round barpaining game derived from I(u). We distinguish between odd-
numbered rounds of negotiations, called offer rounds, and even-numbered rounds, called response rounds. In offer
rounds, players choose proposals, consisting of policies from X and coalitions from €. In response rounds, they
specify acceprance sets, indicating which vectors they will accept if nvited to join a coalition in that round.

For ¢ € {1, 3,...., T-1}, let (x;,, C;,) denote player {’s proposal in offer round ¢, and A, ., represent her
acceptance set in the following response round. We impose the restriction that acceptance sets must be dlosed. A
strategy for player i is a collection of proposals and acceptance sets, 5; = |[(x;,, C; ), A,x.,+j‘__! g Tet §;

denote the set of strategies available to player /. For expositional purposes, we restrict strategies to be history
independent. 'That is, players’ decisions in round ¢ are independent of the history of moves by nature, and of the
history of proposals rejected in previous rounds. As will become apparent below, for generic specifications of
players’ payoffs this is me more than a notational convenience; for these specifications, all of our results are
unchanged, and their proofs are identical, when strategics are history-dependent!? Of greater consequence is our
requirement that acceptance sets.can be conditioned neither on the identity of the proposer nor on the composition
of the proposed coalition.!®  Both restrictions could be relaxed without affecting the main results, although certain

tinwity.

f
©HX R tend(r, )= 0 3 0u ~w) M
£l
T OFf course, this statemnent would oot be true if information were incomplete, in which case, information could be revealed as histories
unfolded.
® This tast assumption is urlikely to cause serious comcem to cconomists, who tend to insist that the variables in question should not
matter. To other social scientists and the werld at large, however, this assumption might be regarded as too restrictive. In a model of Middle



equilibrium properties would be affected. A strategy profile is a list of strategies, one for each player. Let §
denote the set of strategy profiles. A list of strategies for all but one player will be called a subprofile. Let
S = ]S, denote the set of subprofiles that omit player i, with representative element s_;.

i

i«:ach profile of strategies uniquely identifies an cufcome, which is a random variable defined on
X=Xy {x7"}. The mapping from strategies to outcomes will be referred to as the outcome function for the
game. In our informal outline of the framework, nature moved between each offer and response round, From a
formal standpoint, however, the actual sequencing of nature’s moves is immaterial, since players” strategies are
independent of these moves. Nature simply selects a proposer sequence, which is a list of players, one for each
offer round, denoted by t=(0{I),3),, -, (T-1p e ™2 An heoristic interpretation of  is that for
t € (1,3 .., T-1}, if negotiations have not already been concluded by the time round ¢ is reached, nature declares
that player Uf}'s round ¢ proposal will be voted upon in round ¢+1 by the coalition she specifies. For each ¢, #)
is an iid. random vadable, distributed according to the exogenmously specified vector of access probabilities,
w = (W )iar 2 0. (Recall that the magnitude of w; is interpreted as a measure of player {°s relative “political” or
"bargaining power.") Thus, the proposal sequence t is selected with probability (1) = w(yX WX~ * * XWyr_y.

The outcome function is a map ¥ from strategy profiles and "proposer sequences” to policies. Specifically, fix
a strategy profile s, where 5, = (x;,, Cr s By piadimas, .-y Foreachve [l 72 4 unique policy x(1, 8) is defined as
follows. If the policy xyyy; is an element of A, 5, for every j in C gy, then this vector is accepted and negotiations
do not proceed beyond the second round. Now suppose that for ¢ € {3, 5,..., T~1}, the policies proposed in
previous offer rounds have all been rejected. If xy,,, is an element of 4; 4, for every j in the coalition C\,,,
then this vector is accepted and negotiations do not proceed beyond the r+1’th round. If agreement is pot reached
by round T, then the vector x¥* is selected by default.!®

The procedure just described defines a finite-support random variable on X*. Given a profile s, we denote by
Eu;(s) player i's expected payoff from the random profile geperated by s. That is, Fuy(s) = 3, o(thu (x(1, s)).

w7

Similarly, for ¢ € {3, ..., T+1}, Eu; (sl £} denotes player i's expected payoff if the profile 5 is played out starting

from round t. We will refer to Eu, (sl ) as player i’s reservation utility in round (-1, since this is indeed her
expected utility conditional on failure to reach agreement in round 7-1.

The standard solution concept for these games is subgame perfection. Informally, a strategy profile s is
subgame perfect if starting from each round of the game, the remaining portion of 5; is optimal for player i, given
that players other than { are playing the remaining portions of s.;. In the present context, this concept has no
predictive power: for any game in which at least two players are required for agreement, any policy that is weakly
preferred by all players to the default outcome can be implemented with cenainty as a subgame perfect equilibrium
outcome. For example, the following strategies implement the policy x with certainty. In each offer round, cach
player proposes x and an arbitrary coalition; in each response round, each player accepts x and no other policy. If
x is preferred by all players to x% %, then these strategies are clearly subgame perfect and x is implemented with
probability one.

The equilibria just described violate a npatural rationality criferion and can be eliminated by a number of
equilibrium refincments. Trembling hand perfection is not sufficiently strong, for the familiar reason that this
criterion does not impose sufficient discipline off the equilibtium path. A stronger criterion, such as Myerson's
[1978] propemess, is needed. In infinite games, however, this criterion involves considerable technicalities. 2 To
avoid these, we invoke a simpler refinement, which we will call the SEDS criterion (Sequential Elimination of
Domioated Strategies).?t Variants of this criterion are regularly invoked to deal with essentially the same problem
as the one that faces us.?

East negotiations, for example, it would be unfortunate if Israclis were obliged to respond in the same way to sny given proposal, regardless
of whether it was issued by, say, the U5, or the P.L.O.

¥ As noted above, there is an equivalent, apparently simpler, specification of the model. Rather that require each player to specify a coal-
ition explicitly, we could endogenize the coalition sclection problem by allowing the ottcome function to simply count votes. Either way,
however, the selection of an optimal coalition is an incscapable task for the proposer, as she solves her maximization problem. Thus, the is-
sue is no more tian a notational one and the obvious arguments in favor of cxplicitness scom to us to justify the additional notational burden.

% See Simon and Stinchcombe [1991].

' This criterion naturally extends to sequential games tle criterion known as Dominance Solvability {(Moulin [1979]).

2 See, for example, Baron-Fercjohn [1989], Salant-Goldstein {1990} and Baron-Kalai [1991]. For a rather different application of the
same criterion, see Simon-Stinchcombe [1989].



Informally, the procedure begins by climinating strategies that involve inadmissible (ie., weakly dominated)
play in the final response round. Next, we elimiinate strategies that involve inadmissible play in the penultimate
round, considering only strategies that survive the first round of elimination. And so on. To define the criterion
formally, first declare every strategy for { to be admissible from round T+1. Now fix + < T and assume that for
each 7, there is an identified set of strategics that are admissible from round (-+1. Define 5; to be admissible from
round t if (f) it is admissible from round ¢+1 and if there exists no alternative strategy g; such that: (ii) o; agrees
with 5; before ¢, (ili} ¢; does at least as well as 5, against any subprofile 5_; that is admissible from round ¢+1; and
{iv) o; does strictly better than s5; against some such subprofile. Finally, say that a profile s satisfies the SEDS
criterion if for each i, 5; s admissible from round one. If s satisfies the SEDS criterion for some bargaining game,
we say that s is an equilibrien for that game. We will refer to the outcome generated by 5 as an equilibrium
outcone,

Results for T-Round Bargaining Games.

Proposition I below characterizes the set of strategy profiles that satisfy the SEDS criterion. Indeed, the
characterization theorem provides the basis for our computer algorithm for solving bargaining games numerically.
In each round of the game, after strategies that are inadmissible from later rounds have been eliminated, each player
is left with a straightforward single-person decision problem. In a response round, a player will accept a proposed
policy if and only if it generates at least as much utility as ber reservation utility in that round.?? In an offer round
t, a player is faced with a two-part problem. For each admissible coalition, she maximizes her utility subject to the
constraint that other cealition members must receive at least their reservation wutilities in round ¢4l She then
selects a utility-maximal policy from among these maximizers,

Proposition 1. Let I'(u} be a bargaining problem satisfying Assumptions Al-A4. Thea s is an
equilibrium  for the bargaining game I'(w, 7)) if and only if for each i and each
t e (L 3., T-1}: . L

@) A =[x € X)) = Fu(s) e+D)).

(i) x;, € A;,, for al jeC, ad x, maximizes () on the set

Uy e Xow(x) 2 Eug(sh e42)).

Ce€ jel

The proof of this Proposition depends on two independently useful properties of equilibria, stated in the
Lemma below. First, at least two distinct offers are proposed in every offer round. Second, in every offer round
there is some policy that yields each player strctly more utility than her reservation utility in the following round.

Lemma b Let INu) be a bargaining problem satisfying Assumptions A1-Ad and let 5 be an equili-
brium for the bargaining game I{u, T). Then forr ¢ t=1,3,- -, T,

{a) There are at least two distinct players { and j such that x i E X

{b) There exists x € X such that for all 7, w(x} > Eu, (s! £+2).

An obvious corollary of Proposition 1 (indeed, of Lemma I(b)) is that in every game, agreement is reached
immediately with probability one. We can exploit this fact to obtain a convenient, simplified representation of
equilibrium outcomes. Given an equilibrium strategy profile s, we denote by x(5) = (x:(8));¢s the vector consisting
of the policies proposed by each player in the first round of negotiations. As we have noted, each of these
proposals is necessarily accepted. Therefore, x(8) is a representation of the outcome generated by 5. For this
reason, we will refer to x(s) as an equilibrium oufcome vector. The original outcome can be recovered by
combining x(s) with the access probability vector, w: for each 7, x;(s) is realized with probability 3, e Ao 5)) W -

Another coroHary of Proposition 1 is that we can without loss of generality restrict attention to bargaining
problems in which the set of coalitions is minimal in the following sense. Say that a coalidon C is minfmal with
respect to player i if there exists no strict subset, €7 of C such that the coalition C7 (_J i} is admissible. 2*

3 By assuming that acceptance sots are closed, we fincsse the indeterminacy that arises when a player is indifferent between accepting and

Tejecting a proposal.
M This criterion is strictly more stringent than the simpler criterion of (unqualified) minimality, which would be satisfied by any coalition
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Corollary I below shows that that player {’s opportunity set is unaffected by the restriction that she must choose
only coalitions which are minimal with respect t0 i. In other words, we lose no geperality by assuming that §
atways chooses coalitions that include herself whenever possible, and exclude as many other plavers as possible,
This fact is of considerable practical value, because when we analyze games pumerically, it is obviously important
to minimize the number of coalitions for which calculations must be made.

Corollary to Proposition I: Let I'(u} be a bargaining problem satisfying Assumptions A1-A4 and

let § be an equilibrium for the bargaining game I'(u, '), Then there is an equilibdum profile ¢
for this game which is identical to s with the (possible) exception that in each round, each player 7
specifies a coalition that is minimal with respect to .

An immediate implication of Proposition I is that an equilibrium always exists. The pivotal, and by far the
most difficolt result in the paper is that for generic problems, the equilibrium outcomes for games derived from
these problems are wnique. Specifically, Iet W denote the set of payoff functions on X satisfying Assumptions
A2-A4 and endow T with the sup norm metric.?

Theorem II:  Let I'(u) be a bargaining problem satisfying Assumptions Al-A4, Then for every
even integer T, the derived game I'(u, T) has an equilibrium. Moreover, there is an open, dense
subset, W', of W such that for each w' ¢ W' and every T, the equilibdum outcome for

I'(v', T') is unique.

The arguments we use to prove uniqueness also imply that in all but exceptional games, all of the above resulis
apply whether or not we restrict strategies to be history independent. The argument is transparent. In each round
.. of any game, players’ payoffs and strategic opportunities. are independent. of anything that has happeaed in previous
rounds. Also, because there is no uncertainty about players’ types in the model, there is no payoff-relevant
information to be revealed as history unfolds. Now if a player has a unique optimal choice, and this choice is
independent of history, the player must act in the same way, regardiess of the past history. Finally, in the present
context it is generically the case that players’ optimal choices are unique in every round.

SECTION 3. THE MULTILATERAL BARGAINING MODEL.

A muliilateral bargaining model is a sequence of T-round bargaining games, {X{u, I'}}r.p4 ... in which T
increases without bound. The games in the sequence are all derived from the same underlying bargaining problem.
The ounly difference between them is the number of negotiating rounds.

We define a solution to be a limit of a sequence of equilibrium outcomes for the games in the sequence.
Since these outcomes are random variables, the natural notion of closeness is the weak-star topology. However,
because our sequences of equilibrium outcomes have a special structure, we can simplify matters considerably. It is
sufficient simply to identify the pointwise limits of sequences of equilibrium outcome vectors. Specifically, suppose

that for T= {2, 4, - - - ,], §° is an equilibrium strategy profile for [{u, 7) and that X = (¥, );¢; i3 a pointwise limit of
the sequence (X(8 )4, ..., - We will refer to X as a limir outcome vector. From our eartier discussion (p. 7), the
outcomes generated by (§%)wp4 ... have the following weak-star Hmit: for each 7, X; is realized with probability

Zu:v.:m Wi

}A solution will be called deferministic H the Iimit oufcome has singleton support, or, equivalently, if the
elements of the limit outcome 'vector are all identical. The policy to which a deterministic solution assigns
probability one will be referred to as the solution policy. Solutions that are pot detenministic will be called
stochastic. When a solution exists, it is interpreted as a proxy for the equilibnum outcome of a bargaining game in
which the number of negotiation rounds is foite but arbitrarily large.

rendered inadmissible by the omission of any player. For example, in a majority rule bargaining problem with five players, the cealition
{2, 3, 4] is admissible, but is ror admizsible with respect to player #1, since {1, 3, 4] is admissible.

T in the sup norm metrie, the distance between two functions is the supremums, taken over all points x in the domain, of the absolute
value of the difference between the evaluations of the functions at x.
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An approximate solution is a sequence of ouicome vectors that almost converges. More precisely, the model
derived from I'(u} has an €-solution if there exists a policy vector X and an even integer T such that for each player
i and each even T > T, the distance between X; the policies proposed by { in the first round of Iy, 7) is no greater
than €. Like all approximate equilibrium concepts, the interpretation of approximate solutions in the present context
is somewhat problematic from a theoretical standpoint. (For one thing, what constitates a “"good"” approximation?)
For practical purposes,, however, approximate solutions can be virtually as useful as exact solutions as sources of
testable hypotheses in the analysis of practical applications. In particular, approximate selutions provide rough-
and-ready predictors of the location in policy space of a pegotiated agreement. Moreover, since generically this
prediction will be unique (more or less), sensible comparative statics guestions can be posed. On the other hand, if
a "reasonably exact” solution does not exist, then the predicted outcome of negotiations will depend in a nontivial
way on the number of negotiation rounds. In this event, little positive or prescriptive significance can be atfached
to the model’s predictions. Nonetheless, existence failures are interesting in the negative sense of indicating
inherent iostabilities in the pegotialing enviropment. In Appendix A we investigate the kinds of stochastic and
approximate solutions that arise in a family of two-dimensional spatial problems.

Results for the Bargaining Model,
A pecessary condition for existence of a deterministic solution is that the underlying bargaining problem has a
nopempty core,

Proposition TII:  Let I'(u} be a multilateral bargaining problem satisfying assumptions Al-A4, If
the multilateral bargaining model derived from this problem has a deterministic solution, then the
solution policy belongs to the core of I(u).

Proof of Proposition IH: Assume that x is the solution policy but that there is some policy y and some
admissible coalition C such that each member of C strictly prefers y to x. Then there exists € > 0 such that all
members of C strictly prefer y to any policy in the ball B(x, €). Fort=2,4, - - -, let 5° be an equilibrium profife
for I'(u, 1). For t sufficiently large, each component of the equilibrium outcome vector (5" must be contained in
B(x,€). Thus we have 1;(y} > u;(x;(s%) > Euj{s,-‘l 3), for every j € C. (The second inequality follows from
combining Proposition Kii) and Lemma I(b).) But this is a contradiction, since by Proposition I(ii), x; (s") must a
maxinizer of 1 () oo the set (~y {x € X1 u;(x) ZEuj{s‘l Dl (]

jed

Theorems IV and V below identify two sets of sufficient conditions for existence of a deterministic solution,
The first is that the space of policies for the underlying problem is one-dimensional and that decisions are made by
majority rule.

Theorem IV: Let I'(u} be a multilateral bargaining model satisfying assumptions Al-A4, If {i)

the space of admissible policies, X, is a subset of R! and (ii} a coalition is admissible if and only

if it contains strictly more than half of the players in [, then the multilateral bargaining model
derived from this problem has a deterministic solution.

When the policy space is multidimensional, it is much more difficult to guarantee convergence. At an
abstract fevel, the task is to identify global stability conditions for a relatively complex, nonlinear stochastic
dynamical system. One relatively straightforward way to proceed is to restrict attention to problems in which there
is at least one essential player, i.e., a player who is a member of every admissible coalition, The interpretation of
this assumption is discussed in detail above (pp. 2-3).

Theorem V: Let I'(u} be a multilateral bargaining problem satisfying assumptions Al-A4. 1f the
problem has at least one essential player, then the multilateral bargaining model derived from this

problem has a deterministic solution

Note that Theorem V is applicable to every problem in which unanimity is required for agreement.
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Qur final result follows immediately from Theorem II. Solutions, when they exist, are genercally unigue.
Assume that X satisfies assumption Al and, once again, let W denote the set of payoff functions on X satisfying
Assumptions AZ-Ad.

Corollary to Theorem I There is an open, dense subset, W', of Wl such that for each

u ¢ W', if the model derived from the problem I'(u') has a solution, then this solution is unique.

Proof of the Corollary: Suppose that for some w € W, the model derived from I'(u) has more than one
solution. Then necessarily there exists T (in fact, infinitely many 7 ’5) such that the bargaining game I'(u, T') has at
least two distinct equilibrium outcomes. But from Theorem H, it follows that the set of all such w’s is contained in

the complement of an open, dense subset of W. £l

Multilateral Bargaining and the Nash Program.

Nash [1953] urged that strategic models and axiomatically derived solution concepts should be studied in
conjunction, because “each helps fo justify and clarify the other {p. 129)." This dual approach has become known
as the "Nash Program.” Pursuing this program, Binmore, Rubinstein and Wolinsky [1986] study two strategic
models with alternating offers and in each case establish a close relationship between their perfect equilibria and the
Mash bargaining solution of the comesponding cooperative game.,

More recently, Krishna-Serrano {1991] have extended the Nash Program to the n-player case. Their point of
departure is Lensberg’s [1988] altemative axiomatization of the multilateral Nash bargaining solution, in which
Nash’s Independence of Inelevant Allematives (IIA) axiom is replaced by Multilateral Stability (MS)26
Oversimplifying slightly, the MS axiom can be pataphrased as follows: if in the solution to a multilateral pie-
division problem, player { receives a share of the pie x;, then in the problem constructed by excluding player i and
depleting the total size of the pie by x;, the remaining players should receive exactly the same portions as they
received when { was present. Krishoma-Serrano incorporate this axiom into their model in a rather direct way, by
allowing individual players to exit from the bargaining table, taking with them the shares of the pie that they have
pegotiated for themselves. In this way, they are able to reconcile the strategic and axiomatic approaches to
multilateral bargaining.

While the two strategic models mentioned above lend plausibility to Nash’s axiomatic selution concept, our
model presents a challenge to Mash's approach.  Specifically, owr model violates both the IHA and the MS
axioms.?” To see that IIA is violated, compare the solutions to our model when two risk peutral players with equal
access are bargaining over the two-dimensional policy spaces X = {(xe RX:x;+x,=1} versus

£Xxy +X23213(1'{“€) 1.fx;.<.i!3 . s
=(xe Xy 4a, =1 x> 13 }. Assume that in each case, x* = (0, 0) while 1;(x) = x;,

with &, (x¥*) = 0. By symmetry, the solution in the fiust case is (4, %), for € = 0, the solution in the second is
approximately (7/12, 5/12). The explanation for the difference is transparent. In the last round of offers, player #2
will propese (0, 1), when the set of altematives is X, and (0, 2/3(14¢)) when it is ¥. Thus in the "eleventh hour” of
negotiations, player #2's bargaining position is weaker when bargaining over ¥ than over X, and this relative
weakness is reflected in the comesponding solutions to our model. Thus, in the bargaining environment that we
have formulated, the alternatives contained in X but not in ¥ are by no means strategically irrelevant. It is
important to emphasize that the above example has nothing whatever to do the fact that players are bargaining over
policies rather than utilities: we could, obviously, bave defined the spaves X and Y to consist of utility vectors
rather than two-dimensional policies.

The viglaion of MS is of particular inferest because, in contrast to the vielation of 1A, this axiom is
inherently multilateral in pature., Essentially, the MS axiom declares that there can be no “"bargaining synergies”
between players: the relative bargaining strengths of players j and & must be independent of whether or not player
i is present at the bargaining table. In ouwr model, however, such synergies almost always arise, except when the

26 Consider a n-player bargaining problem in which the set of feasible utility vectors,is U. Assume that all players receive zero utility in
the event of disagrecment. The unique utility vector satmfymg MNash's four axiomw--scale invariance, Parcto optimality, synunciry and in-

dependence of irrclevant alternatives--is &, defined by I_—I iz II w;, forallw g U,
i=t =1

T The UA axiom can be loosely paraphrased as follows: suppese that the solution to the bargaining problem is x when the universe of
bargaining outcomes is X. For any subsct ¥ that docs not contain x, x must be the sofution when players are bargaining over X ~ ¥,
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wniverse of possible bargaining outcomes is symmetric.?® To see this, cousider the t;axee-piayer unanimity
bargaining game in which players are bargaining over the "truncated pie" V = {u € R}: Y u; = L and u, < u,}.
i=1

As before, assume that the disagreement wtility vector is zero and that all three players’ bargaining attributes are
identical. In this asymmetric problem, player #1 appears to have a “patural ally” in player #3 and this is reflected
in the equilibium outcome of the game. Jn the last round of offers, player #3 proposes the vector (14, 0, 14),
favoring #1 at the expense of player #2. Thus, once again, in the "eleventh hour™ player #3's presence at the
bargaining table places #2 af a strategic disadvantage relative to #1, and this weakness is reflected in the solution to
the model.?? On the other hand, if #3 were to leave the bargaining table, along with her equilibrium share of the
pie, then our model predicts that players #1 and #2 would equally divide the remainder of the pie.

In the study of muitilateral bargaining in collective decision-making environments, it is natural to expect
bargaining synergies to arise between different players. What are the sources of bargaining synergies? What
compromises will emerge as alliances are forged between parties whose interests are inferrelated but not coincident?
How effective will these alliances be in furthering the common interests of their members? What is the relationship
between the “intemal” alignment of interests within a given alliance and its "external” effectiveness as it negotiates
with other alliances??0 Since bargaining synergies are axiomatized out of existence by the MS criterion, these
questions can only be addressed in a model that violates MS.

SECTION 4. APPLICATIONS

The main pumpose of this secton is to illustrate certain properties of our framework and to indicate some
problems to which it might be applied. The discussion in this section will be beuristic and informal. For a more
systematic and formal approach to comparative statics issues see Rausser-Simon [1991]. We discuss five classes of
bargaining problems, labeled A through E. Problem E is a pure-exchange economy. Problems A through D are
spatial problems, in which players’ preferences satisfy equation (2.1}, Por expositional purposes, we shall interpret
these problems as political in nawre, and describe the players as members of some political party. Players whose
ideal points lie to the left (resp. right) of the origin will be referred to as the lefi-wing (resp. right-wing) faction of
the party. Locations further along the horzontal axis from the origin denote more exireme political orientations.

Problem A: X < R'; 2n +1 players; majority rule.

In this problem, there is an odd number of players, whose ideal points are located along the real Hne. A
coalition is admissible if it contains at least r+1 players. It is straightforward to verify that the core is a singleton
set consisting of the median player’s ideal point. ¥rom theorems I and IV, there is a unique, deterministic solution
to the derived model; the solution policy is the unique element of the core. There is a stuiking resemblance
between this result and the familiar “median voter theorem” from the political science literature. This theorem
states that in a two-candidate election with a one-dimensional issue space, both candidates will locate at the median
voter's ideal point. Our result states that a comunittee consisting of the voters themselves will select the same point.

Problem B: X < IRY; 2n players; strict majority rule.

This problem is identical to the previous one, except that there is an even number of players, of which strictly
more than half are required for agreement, Once again, theorem IV guarantees the existence of a deterministic
solution. In this case, the core of the underdying problem is the segment of the real line joining the two median
players’ ideal points and the solution policy can lie anywhere along this segment. In contrast to the preceding
problem, the solution policy is sensitive to all of the parameters in the model, so that interesting comparative statics
issues do arise. We will discuss one of the more subtle issues in some detail.

B Asetll R{ is symmetrc ¥ for every v & U, and every v obtained by permuting the order of the elements in v thenv ¢ U,

2% The properties of the model we have been considering in this and the preceding example are clearly driven by the finiteness of the bar-
gaining horizon.

% Seme of these questions will be addressed in section 4 below, when we consider particular examples. They are the primary focus of
Rausser-Simon [1991].
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The effect of a shift to the right in the ideal point of the most right-wing player is investigated. Intuitively,
this shift can be interpreted as an ipcrease in political extremism. To simplify the analysis, we will impose the
following restrictions on the parameter set: (i) all players are equally risk averse; (ii) all members of the same
faction have the same access probabilities; (iif) player’s ideal points are symumetrically distributed about the origin;
(iv) players’ ideal poiots are all distinct. We assign labels to players so that their ideal points are monotone
increasing. Thus restriction (iii) states that for 1 €7 S n, 0y, 4 = —0; > 0.

The increase in oy, has two effects, which we will call the access effect and the risk aversion effect. The
access effect benefits the faction that bas greater access; the risk aversion effect bepefits the faction containing the
extreme player whose ideal point has shifted. For utility functions that satisfy equation (2.1), the latter effect is
always very weak relative to the former. Hence if the left-wing of the party has even slightly more access than the
the right wing, the solution policy will shift to the left. If the distribution of acocess is virtually uniform, bowever,
the policy will shift to the sight.

The reasoning outlined below applies to any problem in the class identified above. For expositional purposes,
however, we will present the arguments in the context of a pair of numerical examples illustrating the two effects.
The examples both have six players. In case (i), access is uniformly distributed; in case (ii), it is skewed in favor
of the left-wing. The parameters for the simulations are displayed below,

Problem B: Shifting Player #6's Ideal Point to the Right (See Tables 4B).
Player #1 Player #2 Player #3 Player #4 Player #5 Player #6
Inidal Location: oy =4 oy e=—3 wy=—2 oy=2 os=3 og=4

Perturbed Location: L Gy =—d tp==3 2 o2 Gs=3 g =44
Access-Case (i) w,=0.166 w,=0.166 wa=0.1606 wy=0.166 ws={.166 we=(L166
Access-Case (i) w,;=0.188 w,=0.188 w,=0.188 w,o=0.144 w144 we=0.144

Risk aversion: p=02 =02 pa=0.2 pa=0.2 ps=02 Pe=02

Constant: ¥ =100 Yo z= 100 7= 100 1= 100 ¥s == 100 Yo == 100

Table 4B-(i) compares the last five rounds of negotiations for Case (). In the last offer round (T'—1), the shift to
the right in player #6's ideal point reduces the other players’ reservation utilities in round T~2. Because players are
all equally risk averse, the effect of this shift is greater for players whose ideal poimts are further away from e
Now consider the penultimate offer round (round T-3). Because admissible coaliions contain at least n+l
members, each left-winger (resp. right-winger) must induce one right-winger (resp. left-winger) to accept ber
proposal. It can be shown that in round T3, the Jefi-wingers all choose player #4 and the right-wingers all choose
#3. But as we have seen, player #3's reservation utility in round T2 is lowered more by the shift in o than is
player #4’s. Therefore, while each left-wing proposal in round T'-3 shifis to the left, the comesponding rightward
shifts in the right-wing proposals are larger. It follows that in round T—4, each lefi-winger’s reservation utility is
reduced relative to its level in the odginal model, while each right-wing’s reservation wtility is either reduced by a
lesser amount or, possibly, is increased. The effects of these changes are apparent in Table 4B-(i): compare
players’ reservation utilities in reund T—4, and their offers in round 75, of the original and perturbed models. The
relative weakness of the lefewing in round T-5 is transmitted via backward induction to the first round of
negotiations, resulting in a shift to the right in the solution policy.

In Case (i), the access probabilities of the left-wingers are slightly greater than those of the right-wingers.
Table 4B-(ii} illustrates the effects of the shift in o in this case. In round T-3, the qualitative effects are the same
a5 in Case (i): the left-wing proposals shift to the left, while the right-wing proposals shift to the right by a greater
amount. However, when the asymmetry in access is sufficienty great, the smaller, but more heavily weighted
leftward shift dominates the larger but less heavily weighted nightward shifts in the computation of players’
expected utilities. Once again, the effects of these changes are apparent in Table 4B-(if): compare players’
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Table 4B-(i): Effect of Shifting Player #6's Ideal Point to the Right in Problem B.
Left and Right Wings Have Equal Access

Rnd Prpr Xy 15() () w3() ug() us() ug()
#1 -4.000 6.310 5.800 5278 3.031 2.408 1.741

#2 -3.000 5.800 6.310 5.800 3.624 3.031 2.408

1 #3 -2.000 5.278 5.800 6.310 4.193 3.624 3.031
o 14 2.000 3.031 3.624 4.193 6.310 5.800 5278
#5 3.000 2.408 3.031 3.624 | 5.800 6.310 5.800

#6 4.000 1.741 2.408 3.031 5.278 5.800 6.310

T2 Eu 4.095 4.495 4.706 4,706 4.495 4.095
#1 -1.069 4.781 5.314 5.835 4.706* |  4.154 3.584

#2 -1.069 4.781 5.314 5.835 4.706% 4.154 3.584

3 #3 -1.069 4.781 5.314 5.835 4.706* 4.154 31.584
#4 1.069 3.584 4.154 4.706* 5.835 5314 4781

#5 1.069 3.584 4.154 4.706* 5.835 5314 4781

#6 1.069 3.584 4.154 4.706% 5.835 5.314 4.78%

T-4 Eu 4.182 4.734 5.270 5.270 4734 4182
#1 -0.019 4.204 4.754 5.288 5.268 4733 4.182%
#2 - 0.019 4204 4754 | . 5.288%. 5.268 4733 | 4.182%
.5 ) 0.019 4.204 4.754 5.28% 5.268 4733 4.182%
. #4 0.019 4, 182* 4.733 5.268 5.288 4.754 4,204
#5 0.019 4.182% 4.733 5.268 5.288 4754 4204

#6 0.019 4.182* 4.733 5.268 5.288 4754 4204

Perturbed Location Configuration.

#1 -4.000 6.310 5.800 5.27% 3.031 2.408 1.456

2 -3.000 5.800 6.310 5.800 3.624 3.031 2.148

T1 #3 2,000 {5278 5.800 6.310 4.193 3.624 2.786
#4 2.000 3.031 3.624 4.193 6.310 5.800 5.066

#5 3.000 2.408 3.031 3.624 5.800 6.310 5.592

#6 4400 | 1.456 7.148 2.786 5.066 5.592 6.310

T-2 Fu 4,047 4.452 4.665 4.671 4.461 3.893
#1 -1.134 4816 5.349 5.868 4.671* 4118 3311

#2 -1.134 4.816 5349 | 53868 £.671* 4.118 3311

- #3 -1.134 4816 5.349 5.868 4.671* 4,118 3.311
) #4 1.144 3.540 4112 4.665% 5.874 5.354 4.604
#5 1.144 3.540 4,112 4 665% 5.874 5.354 4.604

#6 1.144 3.540 4.112 4.665* 5.874 5.354 4.604

T-4 Eu ) 4.178 4.730 5.261 5.272 4736 3.957
#1 0018 4,203 4,753 5,288 5.268% 4733 3.957%

#2 0,018 4.203 4.753 5288 5.268 4,733 3.957*

s #3 0018 47203 4.753% 5238 5.268 4733 3.957*
h #4 0.027 4.178* 4.729 5.264 5.292 4758 3983
#s 0.027 4.178% 4729 5.264 5.297 4.758 3.983

#6 0.027 4.178* 4.729 5.264 5.292 4.758 3.983
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Table 4B-(ii): Effect of Shifting Player #6°s Ideal Point to the Right in Problem B,
Left Wing Has Greater Access

Rnd Prpr Xy ty() 1q() () () s} ()
#1 -4.000 6.310 5.800 5278 3.031 2.408 1741

#2 23,000 5.800 6310 5.800 3.624 3.031 2.408

- #3 -2.000 5278 5.800 6.310 4.193 3.624 3.031
#4 2.000 3.031 3.624 4.193 6310 5.800 5278

#5 3.000 2.408 3.031 3.624 5.800 6.310 5.800

#6 4.000 1.741 2.408 3.031 5278 5.800 6310

T-2 Eu 4317 4.688 4.848 4.564 4303 3.873
#1 -1.330 4921 5.451 5.969 4.564* 4.008 3.432

#© -1.330 4921 5451 5.969 4.564* 4.008 3.432

a #3 -1.330 4921 5.451 5.969 4.564% 4,008 3432
#4 0.806 1.736 4.301 4.848% 5.699 5.175 4.638

#5 0.806 31736 4301 4.348% 5.699 5.175 4638

#6 0.806 3736 4301 4.848* 5.699 5.175 4638

| T4 Eu 4.406 4.951 5.482 5.058 4515 1.956
#1 0.421 4427 4970 5.499 5.055 4514 3.956*

g | 0421 4,427 4970 ) 5.499 5.055 4514 1 3.956%

_ 0 0.421 4.427 4970 5.499 5.055 4514 3.956%
#4 -0.383 4.406* 4.950 5.479 5.075 4.534 3.977

#5 0.383 4.406* 4950 5.479 5075 4534 3.977

#6 -0.383 4.406* 4.950 5.479 5.075 4534 3.977

Perturbed Location Configuration.

#1 -4.000 6310 5.800 5278 3.031 2.408 1.456

#2 -3.000 5.800 6310 5.800 3.624 3.031 2.148

o #3 22,000 5278 5.800 6.310 4.193 3.624 2786
#4 2.000 3.031 3.624 4,193 6310 " 5.800 5.066

85 3.000 2.408 3.031 3.624 5.800 6310 5.592

#6 4.400 1.456 2.148 2.786 5.066 5.592 6.310

T2 Eu 4275 4.650 4813 4533 4273 3,663
#1 -1.386 4.951 5481 5.998 4.533* 3.976 3.161

& -1.386 4951 54381 5.998 4533+ 3976 3,161

Ta " -1.386 4.951 5.481 5.998 4.533% 3976 3,161
#4 0.872 3,698 4264 4.813* 5733 5210 4.455

#5 0.872 3.698 4264 4.813* 5733 5.210 4455

46 0.872 3698 4264 4.813* 5.733 5210 4455

T4 Fu 4.406 4952 5.482 5.055 4513 3723
#1 0.428 4431 4974 5.503 5.051 4510 3.723%

#2 -0.428 4.431 4974 5,503 5.051 4510 31.723%

s #3 0.428 4431 4974 5.503 5.051 4519 3,723
: #4 0.384 4.406* 4950 5.480 5.074 4534 3.749
#5 -0.384 4.406* 4950 5.480 5.074 4534 3749

#6 -0.384 4.406* 4.950 5.480 5.074 4534 3,749
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reservation utilities in round 7'—4, and their offers in round T-5, of the original and perturbed models. In this case,
the right-wingers’ reservation utilities fall, while the left-wingers’ stay virtually the same. This time, the relative
weakness of the right-wing is transmitted to the first round, and the increase in right-wing extremism results in a
shift to the left of the solution policy.

Problem C: X « RY% 2n players; strict majority rule.

A stylized fact about bipolar negotiations between two factions is that either one of the factions will be more
effective in its pursuit of the common objectives of its members, the greater the degree of cohesiveness among its
membership,  As this example demonstrates, the predictions of our model are consistent with this observation. In
spatial problems, a natural measure of the cohesiveness of a faction is the proximity of its members’ ideal points to
each other. We will show that as the distance between the right-wingers' ideal points is increased, the solution
vector shifts to the left.

When the space of policies is two-dimensional, deterministic solutions do not exist in general. However,
Theorem IV can be extended to guaramtee existence provided that agents’ ideal points are confined to an “almost"
one-dimensional set. Once again, we illustrate the discussion by a pair of six-player examples, whose parameters
are specified below.

Problem C: Reducing the Cohesiveness of the Right-Wing Faction (See Table 4C).
Player #1 Player #2 Player #3 Player #4 Player #3 Player #6
. Initial Location: o =(-9,-1) oy =(-9,0) Oy = (=9,41) o =(9.~1) o5 ={9.0) ts=(9,+1)
Pertusbed Location: o =(-9,—1) o ={-9,0) Og ={—9,4+1} o ={9,~1) os=(9,0} oy =(9,4+1)
Access: w,=0.166 w,={L166 w3 =0.166 we=0.166 ws={}166 we=0.166
Risk aversion: py=0.5 Pp=0.5 p3=035 pa=0.5 ps=03 pe=0.2
Constant: ¥y = 100 Yy =100 Y= 100 ¥ 100 s = 100 Yo== 100

Table AC compares the last four rounds of pegotiatiops for the initial and perturbed locatiops. In this case, the
argument is quite straightforward. In round 7-1, each player proposes her ideal point, Whep the ideal points of
the right-wingers are dispersed, theie is a significant loss in utility for each of them. On the other hand, the vertical
shifts in the right-wing proposals are so small relative to the gap between the left- and right-wing locations that the
dispersion barely affects the left-wingers at all. (Intuitively, imagine heated disputes between conservatives about
the fine details of their ideology which radicals perceive as no more than arcane hair-spliting.) As a result, right-
wingers’ reservation utilities in round T-2 fall, while left-winger’s remain almost the same. The effect of this
difference, once again, is to shift the solution policy to the left.

Problem D Three players, X < R?, variable coalition configurations.

In the tuee preceding problems we assumed that decisions wesre made by majority rule. In this problem we
consider alternative coalition structures. In particular, we consider the effects of declaring one or more players to
be essential. The ideal points of the three players are, respectively, o = (~1,0), oy = (+1,0} and ¢4 = (0,1}

First assume that any coalition of twe players is admissible, so that no player is essential. In this case, the
core of the underlying bargaining problem is clearly empty, so that the model cannot have a deterministic solution.
Not surprisingly, the sequence of equilibdum outcomes settles into a cyclic pattern, for reasons very similar to those
discussed on p.  above. Now assume that player #1 is essential. From Theorem V, this model has a deterministic
solution. Since the core of the underlying problem contains exactly one point--player #1's ideal point--it follows
from Theorem 1 that this point is the unique solution policy. Next, consider the unanimity version of this problem,
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Table 4C: Reducing the Cohesiveness of the Right Wing in Problem B.
Initial Location Copfiguration

Rad Prpr Xy Xy i) o) u3() w4} us() ()
{1 -9.000 -1.000 10.000 9.950 9.899 9.055 9.054 9.049
#2 -9.000 (0.000 9.950 10.000 9.950 9.054 9.055 9.054
11 #3 -9.000 1.000 9.899 9.950 13.000 9.049 9.054 9.055
#4 9.000 ~-1.000 9.055 9.054 9.049 10.000 9.950 9.899
#5 2.000 0.000 9.054 9.055 9.054 9.950 10.000 9.950
#6 9.000 1.000 9.049 9.054 9.055 9.899 9,950 10.000
T2 Fu 9.501 9.510 9.501 9.501 9.510 9.501
#1 -0.725 -1.000 9.577 9.574 9.565 9.501* 9.499 9491
#2 0.710 0.461 - 95370 9.576 9.576 9.496 9502 9.501*
T3 #3 -0.725 1.0600 9.565 9.574 9.577 9.491 9.499 9.501*
' #4 0.725 -1.000 9.501* 9.499 9.491 9577 9.574 9.565
#5 0.710 0.461 9.496 9.502 9.501* 9.570 9576 9576
#6 0.725 1.000 9,491 9,499 9.501* 9.565 9.574 9.577
T4 Eu . 9.533 . 9.537 9.535 ... ..9.533 9.537 9535 |t
Perturbed Locaton Configuration.
#1 -9.000 -1.000 10.000 9.950 9.899 9.055 9.054 9,046
#2 -9.000 0.000 9.950 16.000 9.950 9.052 9.055 9.052
o1 #3 -9.000 1.006 9.899 9.950 10.000 9.046 9.054 9.055
) #4 2.000 -1.500 9.055 9.052 9.046 10.000 9.925 9.849
#5 9.000 0.000 9.054 9.055 9.054 9.925 10.000 9.925
#6 9.000 1.5G¢ 9.046 9.052 9.455 9.849 9.925 10,000
T-2 Eu 9.501 9.510 9.501 9.488 9.502 9.488
#1 -0.979 -1.223 9.590 9.586 9.575 9.488* 9.484 9.469
#2 -0.949 0.671 9.580 9588 9.589 9.477 9.438 2.438%
T3 #3 -0.979 1.223 9.575 9.586 9.590 9.469 9484 9.4388*%
) #4 0.733 -1.270 9.501* 9.497 9.487 9.578 9.573 9.554
#5 0.722 0.460 9,496 9.501 9.501* 9.565 9577 9.574
#G 0.733 1.2770 9.487 9.497 9.501* 9.554 9.573 9.578
T-4 Eu 9.538 9,542 9.5460 9.522 9530 9.525
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in which all three players are essential. In this case, the core copsists of the convex hull of the three players' ideal
points. The solution to the modet derived from this problem depends on the entire distribution of bargaining
attributes among the three players. The comparative statics properties are predictable. If one player’s access
probability increased or ber risk aversion coefficient decreases, the solution shifts in the direction of that player’s
ideal point, Finally, suppose that players #1 and #2 are both essential, so that the admissible coalitions are (1, 2)
and (1, 2, 3). In this case, the core of the underlying game is the "contract curve” joining the essential players’
ideal points, ie., the line segment {(B,0)r: B € {1, 1]]. If the two essential players have equal access, the solution
outcome will be the midpoint of this line, ie,, the origin. ’

It is iostructive to investigate the role that player #3 plays in this configuration. Though players #1 and #2
never invite her to join a coalition, player #3’s presence affects the outcome of negotiations, provided her access
probability is positive. (Think of #3 as representing a group that is peripheral to the decision-making process, but
has the capacity to capture the altention of the general public, and thereby influence the pature of the debate
between the major players {cf. our discussion of essentiality and access on pp. 3-3)). To illustrate this, we simulate
the effect of a leftward shift in #3’s ideal point. The parameters for the ilustration are displayed below.

Problem D: Shifting Player #3°s Ideal Point to the Left (See Table 4D). .
Player #1 Player #2 Player #3
Initial Location: oy =(~1,0) o,y =(+1,0) _ oy = (0,1}
Perturbed Location: oy = (~1L0) o= (L0} s ={0,~0.05)
Access: . owy=0.333 o wy=0.333 o w,=0.333
Risk aversion: pi=02 p2=02 p3=02
Constant: ¥ = 100 ¥, =100 Yy= 100

Table 4D compares the last six rounds of negotiations for the initial and perturbed locations. In the fipal offer
round (I'-1), the shifi in player #3’s proposal bepefits player #1 at the expense of #2, In the preceding response
round {T-2), therefore, #1’s reservation utility is higher than initially, while #2’s is lower. In the penultimate offer
round (T-3), there are three changes. Player #1's proposal is closer to o, because #2's reservation utility is lower.
Player #2’s proposal is further from oy, because #1's reservation utility is higher. Finally, player #3°s proposal is
closer to o4 and further from o, both because her own ideal point is now closer to oy and because of the shifts in
the other two players' reservation utilities. All three of these changes benefit #1 at the expense of #2, so that in
round 7' -4, #1's reservation utility is bigher than initially, while #2's is lower. The effects of these changes are
teansmitted via backward induction to the fisst round of negotiations, resulting in a shbift to the left in the solution
policy.

Problem E: A two-good pure exchange economy with four players.

In this final problem we extend our framework to model pegotiations between agents in a pure exchange
economy. While the problem is very simple, it extends the preceding analysis in three respects. First, it
demonstrates that our framework can be applied a wider class of problems than the ones we have considered thus
far, Second, a deterministic solution is obtained even though there is no essential player and the policy space is
high dimensional. Third, it extends ooe of the basic assumptions of the paper, by allowing players’ policy choices
to depend on the coalitions they select.

There are two commuodities and four players. Any subset of these players forms an admissible coalition.
Each player has equal access. Players #1 and #2 are cach endowed with two units of the first commodity while
players #3 and #4 are each endowid with two units of the second. A policy is an allocation x = {x;y, b

satisfying, for £ = 1,2, x; 20 and ¥ x; = 4. If a player proposcs the coalition €', she can propose any allocation
f=1

in which the players excluded from C are all assigned their initial endowments. Player 7 's utility is the Cobb-
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Table 4D>: Effect of Shifting Player #3°s Ideal Point to the Left in Problem D.
Initial Location Configuration

Raod Prpr Xy Xq () tex() ts(°)
#1 -L.000 0.000 66.289 66.056 66.124
T-1 #2 1.000 0.000 66.056 66.289 66.124
#3 0.000 1.000 66.124 6G.124 66.289
T-2 Eu G6.156 66.156 66.179
#1 -0.138 0.000 66.189 66.156* 66.171
T3 #2 0.138 0.000 66.156% 66.189 66.171
#3 0.000 0.543 66.156% 66.156* 66.236
T-4 Eu 66.167 66.167 66.193
#1 -0.046 0.000 66.178 66.167* 66.172
T-5 #2 0.046 (.000 66.167% 66178 66.172
#3 0.000 0.307 66.167* 66.167* 66.208
e T e 66171 T R

Perturbed Location Configuration

#1 -1.000 0.000 66.289 66.056 66.128
T-1 # 1,000 0.000 66.056 66.289 66.120
#3 -0.050 1.000 66.128 66.120 66.289
T2 Eu 66.158 66.155 66.179
#1 -0.150 0.000 66.190 66.155* 66.172
T3 # L 0.126 0.000 66.158* 66.187 66.171
#3 -0.013 0.544 66.158* 66.155% 66.236
T.4 Eu 66.169 66.166 66.193
#1 -0.057 0.000 66.179 66.166* 66.173
T-5 2 0.034 0.000 66.169* 66.177 66.172
#3 0.012 0.307 66.169+ 66.166* 66.208
T-6 Eu ) 66.172 66.169 66.184
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Douglas function u; (x) = {x;1x;2)F, with p < ¥4 ,

The model derived from this problem has a unique deterministic solution. Mot surprisingly, since the model
is completely symmetric, the solution policy is the symmetric allocation in which each player receives one unit of
each commodity, The proof is extremely simple. To reduce notation we set p=0.25. It can be established that in
each response round, each player has the same reservation utility. For cach even integer ¢, let o, denote this
common reservation utility.

In round 7'-1, each player proposes the grand coalition and selects the aliocation in which she receives the
the aggregate endowment vector (4, 4). Thus, oy, = %(16)°* = 4. Now fix an odd integer ¢, and assume that
players’ reservation utilities in round ¢4} are all equal to o, < 1. We will show that in round ¢, each player
selects the grand coalition and, modulo relabeling, the same allocation. Moreover, we will show that the common
reservation utility io reand 71 is o, & (V(1+30,4), 1). Consider the options facing player { in round ¢. Her
opportunities in any two-player coalition are clearly dominated by her opportupities in tbe grand coalition.
Moreover, it is straightforward to verfy that if she selects any three-player coalition, the best uade she can achieve
is (2 — ¥20.2,) units of the scarce commodity and 2(2 ~ ¥2Zo2,) of the other.3! If she selects the grand coalition,
the best trade she can achieve is (4 — 30%,;) of each commodity. Since ¢,y <1, the latter trade yields a higher
utility than the former.32 We have thus verified that in round ¢, each player selects the grand coalition and, modulo
relabeling, the same allocation. When player j # { makes a proposal, player { receives the utility level ., ; when
i herself proposes, her wutility is (4~ 3e3 )" > 1. It follows that oy > %(l+3c,). Finally, players’
reservation utilities obviously cannot alf exceed unity. 'We have established, therefore, that o1 € (Y4(14+30,) 13
This completes our verification of the inductive hypothesis. It follows that for every positive €, if T is sufficiently
Targe then players’ common regervation utility in the second round of the T-round game must exceed (1 — €}, But
in this case, the policies proposed by each player in the first round must be arbitrarily close to the allocation in
which each player receives one unit of cach commodity.

3 Without loss of generality, consider player #1's opportunities if she sclects the coaliion € = {1, 2, 3}. The aggregate endowment is
(4, 2). A necessary condition for an optimal affocation is that for i € C, % = 2x;y. For f = 2, 3, (263 P = g, 50 that X, = V202,
Player #1 takes what remains of the sccond commedity, fe. %~ Z\IEC(,ZM. and twice as much of the first commodity.

32 Since A2 - Y202 )F < (152 — V2ZaZ )Y it is sufficient to cheek that (3 — YA 5aZ ) < (4 - 3o k), ie., that 3 - VS0 }, < 1. This
inequality clearly holds whesever o < 1.
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APPENDIX A: TWO-DIMENSIONAL SPATIAL PROBLEMS.

There are, of course, bargaining problems for which neither Theorem 1V nor Theorem V applies, either
because the policy space is muitidimensional or because there is no essential plaver. This is true of a class of
problems that has played an extremely important role in political science theory.3? These are spatial problems in
which the policy space is two-dimensional. The informal discussion below summarizes what can be inferred about
this class of problems by applying pumerical simulation techniques.

First, for every problem that has a nopemipty core, we bave been able to compute a deterministic solution for
the model derived from that problem. For example, the core is nonempty for every four-person two-dimensional
problem with strict majority rule and we have computed solutions to hundreds of comresponding models. Second,
the closer a problem is to one with a nonempty core, the more likely it is that the model derived from it will bave
an exact solution.’* Moreover, if a solution is not exact, it is more likely to be almost exact. Finally, the
outcomes implemented by these exact or approximate solutions are more likely to be close to the core of the
neighboring problem.

To demonstrate the relationship between the structural characteristics of bargaining problems and the
frequency of different solution types for the comresponding models, we report on three Monte Carlo experiments,
referred to as experiments A, B and C. In each experiment we sample one hundred bargaining problems. The
sample spaces are three increagingly general, parameterized families of five-person spatial problems, ranging from a
family in which the core is always "almeost ponempty” to one in which only minimal restrictions are imposed. In
all three experiments, access probabilities are sampled from the four-dimensional vnit simplex, and players’ risk
aversion coefficients lie on the unit interval. The sample spaces for players’ ideal points are displayed in the table
below, with o; = (04, 0;4) depoting player i's ideal point. In experiments A and B, only o4 is selected randomly
while in experment C, all five ¢;’s are randomly chosen.

Sample Spaces for Players’ Ideal Points in Experiments A-C.

Player #1 Player #2 Player #3 Player #4 Player #5
A: oy =(~1,0) 0y =(+10) (—05,-.05) S 03 2(.05,.05) g =(0~1) o5 =(0,+1)
B: o = (—1,0) o= (+1,0) (-0.5,0.5) S0 <(0.50.5) o ={0,~1) 05 ={0+1)
C: (-1~ =o;<(1,1) (~1,~D 2o (11 ~-1-D=o:s(1,1) (~L-1)sa, <(1,1} (~1~-D<os<(L1)

It is well known that in experiments A and B, the core is nonempty if and ouly if player #3's ideal point is located
at the origin.3% _

The results of the three experiments are summarized in the three histograms presented in Table 5.1. In each
case, the leftmost column reports the frequency of exact stochastic equilibria. The other columns indicate the
frequency of approximate equilibria with different degrees of inexactness: specifically, the height of the bar Iabelled
"from ¢ to b" represents the fiequency with which we computed an e-equilibdum with € € (¢, b} The
experimental results are consistent with the qualitative remads offered above. In particular, in experiment A the
likelihood of an exact equilibrium is very high, while virtually all of the approximate equilibria are almost exact.
As the class of problems is expanded, the likelihood of an exact equilibrium declines, and the likelihood of a quite
inexact solution increases. Of course, because of the methodology used here, these statistics are necessarily subject
1o certain caveats. In particular, while we have observed stable cycles over thousands of rounds, and inferred from
these cycles the existence of approximate solutions, the existence of infinite stable cycles canoot, obviously, be
guaranteed by numetical methods. Equally obviously, numerical methods cannot guarantee the existence of exact

33 The seminal papers in this fiterature are Davis and Hinich [1966} and Plott {1967]. For swrveys of the literature, see Enelow and Hin-
icl { 1984] and Ordeshook (1986}

M Pecause our sample spaces arc all finkte-dimensional, the notion of "close” here is the standard one.  Also, the sample spaces in the fol-
lowing discussien are alf endowed with Lebesgue measure, and terms such 25 "more likely” have precise meanings in terms of this measure,

' See section 4.7 of Ordeshook [1986], and Fiorina-Plotwt [1978].
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Table 5.1: Histograms for Experiments A-C
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stochastic solutions. 36

Our third observation is that in virtually all of the bargaining problems for which an exact solufion was not
obtained, the sequence of outcomes settled into a cyclic pattern. It is instructive to investigate the nature of these
cycles. Essentially, they arise because as ope player aliemates between different coalitions, selecting those
members whose participation can be obtained most “cheaply,” other players’' pasticipation "prices” change in
response, generating a stable oscillatory pattern of optitnal coalition choices. To illastrate this cyclic phenomenon,
consider a problem drawn at random in experiment B with the following parameters:

Parameters for the Simulation Displayed in Table 5.2
Player #1 Player #2 Player #3 Player #4 Player #5
Location: oy =10 o={+1, Oy = (-6, 193,0.202) Oq=(0,~1) s ={0+1)
Access: w=0.152 wy=0.222 w3=0.216 wy=0.183 ws=0.227
| Risk aversion: p1=0.860 po=0.706 p3=0.200 p,=0.892 ps=0.746
Constant: ¥ =60 Yo =60 1, =60 Y4=60 ¥s =60

In Table 5.2, the relevant computations for selected rounds of the 2000 round game are displayed in reverse
order.37  Clearly, the sequence of offer vectors settles into a two-period limit cycle?® For the odd-numbered
{offer) rounds, column 2 Hsts the proposer and column 3 Hsts the members (in addition to hesself) that the proposer
invites to form a coalition. Columns 4 and 5 list the policies proposed by each player and 6 through 10 display the
utilities that each player derives from each of the proposed policies. - An asterisk in a column. indicates that the
player’s participation constraint is binding for the proposer. For the even-numbered (response} rounds, columns 6
through 10 display players’ reservation utilities, which are, identically, their expected wutilities conditional on
reaching the foltowing offer round. Entries that are central to the following discussion are emboldened.

Cbserve that except for the frst component of player #5°s proposal, the offers remain relatively similar from
round to round. In the fifth round, player #5 proposes the policy (—0.20, 0.52) and the coalition {5, I, 3}. Player
#1’s participation. constraint is binding, while player #2’s utility from this proposal falls short of her reservation
utility in the sixth round. Consequently, #2°s reservation wtility is lower in the fourth yound than in the sixth, while
for #1 the ordering is revemed. Thus in the third and fifth rounds, the configuration of "participation prices"
confronting player #5 is slightly different: in the third, the price of securing #2's agreement is slightly lower
relative to the price of securing #I’s agreement. The difference is enough to tilt the balance in favor of player #2,
and so in the third round, player #5 proposes the policy (—0.05, 0.48) and the coalition {5, 2, 3]. Player #2's
participation constraint is now binding, while player #1’s utility from ¥5°s proposal falls short of her reservation
atility in the fourth round. Consequently #2°s reservation wtility is higher in the second round than in the fourth,
while for #1 the ordering is again reversed. In the first round, the relative prices facing #5 are virtually the same ag
in the fifth round, ¥  and she chooses player #1 in preference to #2.

In parameterized families of problems with empty cores, we should not expect to identify conditions that can
distinguish models with exact stochastic solutions from those with only approximate solutions. Cyclic patterns arise
because the negotiating problem facing playess is inherently discontinuous: each player must choose from a finite
set of coaliions and as ope player switches coalitions, other players’ payoffs change discontinwously. Our
simulations indicate that exact solutions result whenever players’ optimal coalition choices are unchanged from
round to round. Conversely, a cyclic pattern emerges whenever at least one player’s optimal coalition choice
regularly changes. Clearly, it will be extremely difficult to ensure that players’ optimal coalition choices remain

¥ The exact stochastic solutions that we report are indeed exact to the the Fimits of machine precision, but te tolerances of our computa-
tionad algerithun are relatively coarse (approximately 1075,

37 Because the sequence of offers is uniquely determined, the offers made in cound #3 of the T -round game are, identically, the initial
offers in the T—2-round game, etc.

 fn fact, the cychic pattern is not quite exact, There are slight differences botween the offers in rounds ¢ and 44 that arc obscured by

rounding.
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Table 5.2: A Two-petiod Limit Cycle,

Rnd | Prpr | Coal Xy Xz 1) uy(} ua(} 14() 5()

1000 i Eu L7707 331871 26.29755 1.55071 2.82409

#1 [3.4) ¥ 0479479 0.078169 || 1.77245 3.31335 2629755% | L.55071% | 282227
#2 [4,5} 0.263466 | 0.150188 || 1.76932 332546 26.24555 1.55071* | 2.82409+*

999 #3 {15} § -0.193165 0.201892 § 177117 3.31787 26.40391 1.53060 2.82492 |
#4 (1,2} || -0.120128 | -0.300296 || L77076% | 3.31871* | 2622866 1.55204 2.81902
#5 {2.3) | -0.054990 | 0.481519 § 177021 A31871% | 2629755% | 1.54985 2.82856

998 Euo 1.77066 331921 2629644 1.55073 2.82408

#1 {34} || 0478789 | 0.068909 | 177245 331337 26.29644* | 1.55073* | 2.82218
#2 {4,5} 0248006 | 0.144683 3 1.76939 3.32523 26.25072 1.55073* | 2.82408*
997 #3 {1,5} || -0.193165 0.201892 || L77117 331787 26.40391 £.55060 2.82492
#4 fL,2) || -0.091347 | -0.289190 | L77006* | 331921% | 2623077 1.55202 281918
#3 11,31 || -0.198921 0.516905 i| 1.77066* | 3.31628 20.29044% | 1.54971 2.82855

6 Eu 1.77066 3.31921 26.29644 1.55073 2.82408

#1 [3,4) || -0.478789 | 0.068909 | 177245 331337 26.29644* 1 1.55073* | 2.82218
#2 {45} 0.248000 0.144683 || 1.76939 3.32523 26.25072 1.55073% | 2.82408*
5 #3 {1,5} § -0.193165 0.201892 || L.77117 331787 | 26.40391 1.55060 2.82492
o {12} || -0.091547 | -0.289190 || 1.77066% | 3.31921% | 26.23077 1.55202 281918
#3 {13} [ -0.198921 0.516905 || 1.77066* | 3.31628 | 26.29644* | 1.54971 2.82855

4 Eu 177076 331871 § 26.29755 1.55071 282409

#1 {34} || -0.479479 | 0.078169 }| 1.77245 331335 2629755% |+ 1.55071% | 2.82227
#2 {4.5] 0.263466 | 0150188 || 1.76932 332546 - 26.24555 L55071% | 2.82409*
3 #3 {L5} | -0.193165 0.201892 il 177117 331787 26.40391 1.55060 2.82492
#4 {12} 3 -0.120128 | -0.300296 § L77076* | 331871*% | 26.22866 1.55204 2.81902
#5 {2.3] | -0.054990 0481519 [I 1.77021 3.31871% | 26.29755% | 1.54985 2.82856

2 Eu L77666 331921 26.29644 1.55073 2.82408

#1 {3.4) -0.478789 06.068909 177245 3.31337 26,29644% 1.55073* 282218
8 | (45) || 0248006 | 0144683 || 176939 | 332523 | 2625072 | 1.55073* | 2.82408*
i #3 [1.5% -0.193165 0.201892 L7187 331737 26.40391 1.55060 282492
#4 {1,2) -0.091547 | -0.289190 L77066% | 331921% | 2023077 1.55202 2.81918
#5 (1.3} -0.198921 0.516905 L77066% ¢ 3.31628 26.29644% 1.54971 2.82855
! L
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constant, and hence to guarantee existence of an exact stochastic solution. On the other hand, our Monte Cado
experiments do suggest that there is a predictable relationship between the structure of a given family of problems
and the relative lkelibood of exact, almost exact and inexact solutions for the corresponding models,

The preceding discussion raises a wide variety of questions such as: What is the precise relationship between
the dynamical system we have been investigating and static comcepts such as the core? Is there an necessary
relationship between the likelihood of a nonempty approximate core and the frequency of an exact or almost exact
solution; conversely, are there families of problems for which even approximate cores are usually empty, yet exact
or approximate solutions to the corresponding models arise as frequently, say, as in experiment A? Why are the
cyclic patterns we have observed so prevalent, rather than, say, some kind of chaotic bebavior? To what extent are
the various observations reported above robust with respect to alternative functional forms?




_95.
REFERENCES.
Baron, B, and J. Fercjohn (1989), "Bargaining in Legislatiwes," American Political Science Review, 84, pp. 1181-
1206.
Baron, D. and E. Kalai (1991), "Dividing a Cake by Majority: The Simplest Equilibria,” Unpublisbed manuscript.

Bennett E. (1991a), "Three Approaches to Bargaining in NTU Games,” in Strategic Bargaining, R. Selten (ed.),
Berlin: Springer Verlag.

Bepnett E. (1991b), "Multilateral Bargaining Problems," Unpublished manuscript.
Bensett E. and Houba, H. (1991}, "Bargaining Among Three Players,” Unpublished manuscript.

Bengett E. and Van Damme, E. (1991}, "Demand, Commitment, Bargaining: the Case of Apex Games," in Straregic
Bargaining, R. Selien {ed.), Berlin: Springer Verlag.

Binmore, K (1985), "Bargaining and Coalitions,” in Game Theoretic Models of Bargaining, A. E. Roth (ed.),
Cambridge: Cambridge University Press.

Binmore, K. (1987), "Nash Bargaining Theory " in The Economics of Bargaining, K. Biomore, and P. Dasgupta
{ed.), Oxford: Blackwell.

Binmore, K., A. Rubinstein and A. Wolinsky (1986), “The Nash Bargaining Solution in Economic Modelling,”
Rand Journal of Feonomics, 17, 176-188.

Binmore, K. and M. Osbome (1990), "Sequential Elimination of Domipated Strategies in the Bargaining Game of
Alternating Offers,” Unpublished manuscript.

Chatterjee, K., B. Dutta, . Ray and D. Sengupta (1987), "A Noncooperative Theory of Coalidonal Bargaining,"
Unpublished manuscript.

Davis, O.A. and M.J. Hinich (1966), "A Mathematical Model of Policy Formation in a Democratic Society,” in
Mathematical Applications in Political Science, II, J1.. Bemd (ed.), Dallas: Southem Methodist University
Press.

Enelow, J. M. and M. J Hinich (1984), A Spatial Theory of Elections New York: Cambridge University Press.

Fiorina, M. and C. Plont (1978), "Committee Decisions under Majority Rule: An Experimental Study," American
Political Science Review, T2, pp. 575-598.

Hardson, G. (1991), "Multilateral Bargaining in Economics Experiments: A Survey,” Unpublished manuscript,
Universsity of Scuth Caroling, Department of Econormics.

Harrison, G. and K. McCabe (1992), "Testing Bargaining Theory in Experiments,” in Research in Experimental
Economics {volume 53, B. M. Isaac (ed.} Greenwich: JAI Press, forthcoming.

Krishna, V. and R. Serranc (1991}, "Multilateral Bargaining,” Harvard Business School Working Paper #91-026.
Lensberg, T. (1938), "Stability and the Nash Sclation,” Journal of Economic Theory, 45, pp. 330-341.

Moulin, H. (1979}, "Dominance Solvable Voting Schemes," Economefrica, 41, pp. 1337-1351.



226 -

Myerson, R, (1987), "Refinements of the Nash Equilibrinm Concept,” Tnternational Journal of Game Theory, 7, pp.
73-80.

Nash, LF. (1953}, "Two-Person Cooperative Games,” Econometrica, 21, 128-140.

Neelin, J., H. Sonnenschein and M. Spiegel (1988), “A Funther Test of Noncooperative Bargaining Theory,”
American Economic Review, 78, pp. 824-836.

Ordeshook, P.C. (1986}, Game Theory and Political Theory: an Introduction, New York: Cambridge University
Press.

Osbome, MLI. and A. Rubinstein (1990), Bargaining and Markets, San Diego: Academic Press.

Plott, C. (1967), “A Notion of Equilibrium and its Possibility under Majority Rule," American Economic Review,
51, pp. 787-806.

Rausser, G. and L. Simon (1991), "Burden Sharing and Public Good Investments in Policy Reform," Unpublished
manuscript, University of California at Berkeley.

Rausser, G. and L. Simon (1992}, "The Political Economy of Transition in Eastern Busepe: Packaging Enterprises
for Privatization,” in The Emergence of Market Economies in Eastern Euwrope, C. Clague and G. Rausser
(eds.), forthcoming.

Rubinstein, A. (1982}, "Perfect Equilibrium in a Bargaining Mudel," Econometrica, 50, 97-109.

Salant, S. and E. Goldstein (1990), "Predicting Committee Behavior in Majority Rule Voting Experiments," Rand
Journal of Economics, 20, 293-313.

Selten, R. (1975), "Reexamination of the Perfectness Concept for Equilibrium Points in Extensive Form Games,”
International Journal of Game Theory, 4, pp. 25-55.

Selten, R. (1981), "A Noncooperative Model of Characteristic Function Bargaining,” in Essays in Game Theory and
Mathematical Economics in Honor of Oskar Morgenstern, V. Boehm and H. Nachtkamp (eds.),
Wissenschafisverlag Bibliographisches Institut Maonheitn, Wein - Zarich, pp. 131-151.

Simon, L. and M. Stinchcombe (1989), "Extepsive Form Games in Continuous Time: Pure Strategies,”
Econometrica, 87, ‘

Simon, L. and M. Stinchcombe (1991), "Equilibrium Refinements in Infinite Games: The Compact and Continuous
Cage,” University of California San Diego Working Paper #91-22.

Spiegel, M., 1. Neelin, H. Sonnenschein and A. Sen (1990), "Fairness and Strategic Behavior in Two-Person,
Altemating Offer Games: Results from Bargaining FHxperiments," Usnpublished manuscript, University of
California, Los Angeles.

Sutton, T (1986, “N011~C00peratfve Bargaining Theory: An Introduction,” Review of Econontic Studies, 53, 709-
724,

Stahl, 1. (1972), "Bargaining Theory," Stockholm: Stockholm School of Econonics.
Stabl, 1. (1977), “An N-Person Bargaining Game in the Extensive Fomn," in Mathematical Economics and Game

Theory, ed. by R. Henn and O. Moeschlin, Lecture Notes in Economics and Mathematical Systems No. 141
Berlim: Springer-Verlag.



APPENDIX A: TWO-DIMENSIONAL SPATIAL PROBLEMS,

There are, of courss, bargaining problems for which neither Thecrem IV nor Theorem Vo oapplies, either
because the policy space is multidimensional or because there is no essential player. This is true of a class of
problems that has played an extrernely important role in political science theory.?*  These are spatial problems in
which the policy space is two-dimensional. The informal discussion below summarizes what can be inferred about
this class of probloms by applying numerical simulation techniques.

First, for every problem that has a nonempty core, we have been able to compute a deterministic solution for
the model derived from that problem. For example, the core is nonempty for every four-person two-dimensional
problem with strict majority rule and we have computed solutions 0 hundreds of corresponding models, Second,
the closer a problem is to one with a nonempty core, the more likely it is that the model derived from it will have
an exact solution?? Moreover, if a solution is not exact, it is more likely to be almost exact Finally, the
outcomes implemented by these exact or approximate solutions are more likely to be close to the core of the
neighboring problem.

To demonstrate the relationship between the structural characteristics of bargaining problems and the
frequency of different solution types for the corresponding models, we report on three Monte Carlo experiments,
referred 1o as experiments A, B and C. In each experiment we sample one hundred bargaining problems. The
sample spaces are three increasingly general, parameterized families of five-person spatial problems, ranging from a
family in which the core is always "almost nonempty” to one in which only minimal restrictions are imposed. In
all three experiments, access probabilities are sampled from the four-dimensional unit simplex, and players’ risk
aversion coefficients lic on the unit interval. The sample spaces for players’ ideal points are displayed in the table
below, with o; == {0y, 0;2) denoting player i's ideal point. In experiments A and B, only a5 is selected randomly
while in experment C, all five ¢, s are randomly chosen.

Sample Spaces for Players” Ideal Points in Experiments A-C.

Player #1 Player #2 Player #3 Player #4 Player #5
A: oy =(-1,0) o= (+1,0) (.05 ~.05) < ¢13 £ (.05,.05) g =(0,-1) os=(0,41)
B: o= (-1L,0 = (+1,0) (~0.5-0.5) 50 <{0.5,0.5) oy ={0,~1) o= (0,+1)
C: (~-1-D<eo; (1) 1 ~-1)<a;<(1,1) (-1~ <oy s(L.D) —1-ge (.1 -1-Dsas=(1.1)

It is well known that in experimemts A and B, the core is nonempty if and only if player #3's ideal point is located
at the origin.3%

The results of the three experiments are summarized in the threc histograms presented in Table 5.1. In each
case, the lefunost column reports the frequency of exact stochastic equilibria. The other columns indicate the
frequency of approximate equilibria with different degrees of inexactness: specifically, the height of the bar labelled
“from a to b" represents the frequency with which we computed an ecquilibdum with £ e (g, b]. The
experimental results are consistent with the qualitative remarks offered above. In particular, in experiment A the
likelihood of an exact equilibrium is very high, while virtually ail of the approximate equilibria are almost exact,
As the class of problems is expanded, the likelihood of an exact equilibrium declines, and the likelihood of a quite
inexact solution increases. Of course, because of the methodology used here, these statistics are necessarily subject
to centain caveats. In particular, while we have observed stable cycles over thousands of rounds, and inferred from

33 The seminal papers in this literature are Davis and Hinich {1966] and Plow {1967]. For surveys of the litersture, sec
Enclow and Hinich [1984] and Ordeshook [1986].

34 Because our sample spaces are all finite-dimensional, the notion of “close™ here is the standard one.  Also, the sample
spaces in the following discussion are all endowed with Lebesgue measure, and terms such as “more likely” have precise
meanings in terms of this measure,

33 See section 4.7 of Ordeshook {1986]. and Fiorina-Plou {1978].
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Table 5.2: A Two-peniod Limit Cycle.
Rrd | Prpr | Coal X Xy (") u(') 3(1) us() i)

1000 | Eu 1.77076 331871 26.29755 1.55071 2.82409
#1 {34} ¥ 0479479 | 0078169 § 1.77245 331335 26.29755% 1 1.55071% | 282227

#2 {4,5} 0.263466 | 0.150188 || 1.76932 3.32546 2624555 L.55071% | 282400+
999 #3 {15} || -0.193165 0201892 | 1.77117 331787 26.40391 1.55060 2.82492
#4 {1,2} || -0.120128 | -0.30029¢6 || 1.77076% | 3.31871* | 2622866 1.55204 281902
#5 {2,3} || -0.054990 | 0481519 || 1.77021 33I871*% | 26.29755% | 1.54985 2.82856
| 998 Eu L77066 | 331921 26250644 1.55073 2.82408
#1 {34) || 0478789 | 0.068909 || 1.77245 | 3.31337 26.20644% | 1.55073% 2.8_2218

#2 {4,5] 0248006 | 0.144683 || 1.76939 3.32523 26.25072 1.55073% | 2.82408+%
997 #3 {15} | -0.193165 | 0201892 )| 177117 331787 | 2640391 1.55060 282492
#4 {12} | -0091547 | -0.289190 || 1.77066% | 3.31921*% | 26.23077 1.55202 2.81918
#5 (1.3} | -0.198921 0.516905 || L.77066% | 3.31628 26.29644% 1 1.54971 2.82855
6 Eu 1.77066 331921 26.29644 1.55073 2.82408
#1 {34} || 0478789 0.068909 I 1.77245 331337 26.29644* | 1.55073* | 2.82218

#2 {4,5} 0248006 | (.144683 | 1.76939 332523 2625072 1.55073* | 2.82408%*
5 #3 {5} i -0.193165 0.201892 | 1.77117 331787 26.40391 1.55060 282492
#4 f1,2) || -0.091547 | -0.289190 § 1.77066% | 3.31921% | 26.23077 1.55202 281918
#5 {13} | -0.198921 0.516905 || L77066*% | 331628 26.20644% | 1.54971 282855
4 Eu 1.77076 331871 2629753 1.55071 2.82409
#1 {34} || -0479479 | 0.078169 || 1.77245 331335 | 2629755% | 1.55071% | 282227

#2 {4,5] 0.263466 | 0150188 | 1.76932 332546 26.24555 1.55071* | 2.82406*
3 #3 {15} || -0.193165 | 0201892 | 177117 331787 | 26.40391 1.55060 2.82492
#4 {1,2} | -0.120128 | -0.300296 § 1:77076* | 3.3187i% | 26.22866 1.55204 2.81902
&5 {23} | -0.054990 0481519 | 1.77021 33T | 26.29755% | 1.54985 2.82856
2 Eu 1.77066 3.31921 26.29644 1.55073 | 2.82408
#1 {34]) § 0478789 | 0.068909 || 1.77245 331337 2629644+ | 1.55073* | 282218

#2 {4,5} 0.248006 | (.144683 | 1.76939 3.32523 2625072 E.55073% | 2.82408*
i #3 {1,5) § -0.193165 | 0201892 i 1.77117 331787 2640391 £.55060 2.82492
#4 (1.2} § -0091547 | -0.28%190 § 1.77066% | 331921% | 26.23077 1.55202 281918
&5 {13} I -0.198921 0.586905 I 1.77066% | 3.31628 26.29044% | 1.54971 282855
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round to round. Conversely, a cyclic pattern emerges whenever at least one player’s optimal couliion choice
regularly changes. Clearly, it will be extremely difficult o ensure that players’ optimal coalition chowces remain
constant, and hence to guarantee cxistence of an exact stochastic solation. On the other hand, our Monie Carlo
experiments do suggest that there is a predictable relationship between the structure of a given family of problems
and the relative likelihood of exact, almost exact and inexact solutions for the corresponding models.

The preceding discussion raises a wide variety of questions such as: What is the precise relatienship between
the dynamical system we have been investigating and static concepts such as the core? Is there an necessary
relationship between the likelihood of a nonempty approximate core and the frequency of an exact or almost exact
solution; converscly, are there families of problems for which even approximate cores are usually empty, yet exact
or approximate solutions to the corresponding models arise as frequently, say, as in experiment A? Why are the
cyclic patterns we have observed so prevalent, rather thans, say, some kind of chaotic behavior? To what extent are
the various obscrvations reported above robust with respect to alternative functional forms?
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APPENDIX B: PROOFS.

Proof of Propositon 1 and Lemma |1 The proofs of Proposition | and Lemma 1 are interwoven, We firse

establish part (i) of the proposition for ¢ = 7. Consider a policy vector ¥ € X such that 1,(¥) < u; (x¥*). Clearly,
if (1) round T—1 is reached, (2) some player proposes X and (3) { has the deciding vote, then ¢ does strictly worse
if she accepts X than if she rejects it. Similarly, for x such that i (x) > 1, (x¥¥), i does stricly worse if she rejects
x than if she accepls it Moreover, in cither case, conditions (1)-(3) arc indeed satisfied if cach j #i plays as
follows: A; 7 =X; x; 7.y =X; and for ecach ¢ € (2,4,..,T-2}, A;, = ). This establishes that if 5; € §; , then

i's acceptance sct in the last perod must contain the set {x e X: u(x) > i (x¥¥

)] and exclude the set
{x € X:u(x) < ;(x¥*)). To complete the proof of part (i), observe that acceptance sets are required to be
closed.

We now prove parts (a) and (b) of the Lemma, for t =T—1. LetJ = {j & 1 Zipq € 04;7}.% If J is

empty, then Xy € interior( A}:wi) and part (a} follows immediately from Assumption A3, Assume
jeliry
therefore, that J is nonemply. We will show that for all j e J, %7y # Xy, It follows from part (i) of
Proposition I that for all j € J, w;(¥%r.) = 4;(x¥"). From assumption A4, however, there exists ¥ such that
1y (¥) > uy (x¥™), for all j & I. Since any coalition of players must accept X if it is proposed, it follows that for
Cany player j € J, u;(%; 7.4} 2 #;(X) > 1; (X p-1), verifying that as claimed, X; g # 51 |

For t = T-1, part (b} of the Lemma is an immediate implication of Assumption A4, As noted above, for
every player ¢, the vecior ¥ identified by Assumption A4 will be accepted by all players and yields [ a suiatly
higher payoff than Eu, 5l T).

We now refurn {0 the proposition, to prove part (i) for r = T'-1. After elimination of weakly dominated
strategies in round T, player j is left with a unique admissible choice in round T: the acceptance set
(x € X:uy(x) 2 u;(x¥™)). Part (ii) now follows immediately from this fact and part (b) of the Lemma with
{ =T~1,

Now fix ¢ = {2,4,---,T-2} and asswme that part (i) of the Proposition has been proved for round 142
while part {if) of the Proposition and paris (2} and (b) of the Lemma have been proved for round ¢(+1. Part (i} of
the Proposition can now be proved for ¢, using exactly the same argument as we used for ¢ = 7. Now consider
parts {(a} and {b) of 1115 Lemma, for round (1. If round 41 of the game is reachéd, then the vector of offers

(% 141)icr will be proposed and accepted. Let Exgy = 3 w;% ;. Because the offers in this round are not ail
ief

identical, it follows from the strict concavily payoffs that uy (Ex ) > Eu, Gl t+2), for every j € /. Now repeat

the argument proving parts (a) and (b) for ¢ = T~I, but replace ¥ with with Ex,,,. Finally, part (i) of the

proposition for round 7—1 can be proved by exactly the same argument that was used to prove part (i) for round

r-1. 1

4% Given a set X, the symbol "aX ™ denotes the boundary of X.



Proof of the Corollary to Theorem It let §=(3;),.; be an equilibrium profile for the game ', ‘I‘};

where §; = (&0, Ciyy A paidizta - 7—1. Suppose that for some § and ¢ € {1, 3, - -, T~1}, Cip is not minimal
with respect to 7. Then there exists " < ¢, € #C;,, such that C" <« {f) is admissible. Thus,
M /{j‘,ﬂ < My ﬁj‘”; while by Proposition I, max{n, () x € M Ej.ul} zmax{u () x e M Aj-,,ﬂ}. Since
jedl, jel !c(:. jeC

E g iz
u; () 1s stricty concave, the maximizers on the two constraint sets must coincide. Moreover, from Lemma I(h) and

Proposition 1, 15(%,) € imerior@,—_,ﬂ), so that &, is also a maximizer on ™ A je+i- Thus the profile § remains
jeC Ui}

an equilibrium after substituting the coalition C* for C; . ]

Proof of Theorem IL While the existence result is immediate, the proof of uniquenecss is extremely intricate.

Accordingly, we precede it with an heuwristic guide. Recall that in each offer round, player i solves a two-part
maximization problem. She first considers each admissible coalition in turn and maximizes her utility subject to the
condition that all members of that coalition must accept her choice. For each coalition, our strict concavity
conditions guarantee a unigue optimal choice. She then chooses a utility-maximal policy from among these
maximizers. To guarantee that a game has a unique equilibrium, it is sufficient to ensure that for each player in
each round, there is a unique solution to the second stage of her maximization problem. As usual, we strt from the
end of the game and work backwards. In round 71, we accomplish this for generic games simply by increasing

slightly cach player’s utility on a small neighborhood of one of her optimal choices. In round -1, ‘fo‘r t.<.11-",. .
however, the problem is much more delicate; to obtain uniquencss in this round, we must locally perturh plaver’s
utilities without interfering with any of the adjustments we have already made. Qur approach is to arrange things,
whenever possible, in round ¢+1 so that the offers players make in round (1 are distinct from all of the offers they
make in later rounds. When things can be aranged in this way, we can simply perturb players” utilities on
neighborhoods of their (-1 round offers, without affecting any of our previous perturbations. It is nof always
possble, however, to enswe that offers in different rounds are always distinct: there is an open set of utility
functions for which at least one player repeatedly proposes her ideal point. This fact dramatically com;;ﬁcams the
proof. Fortunately, however, there are only finitely many exceptional cases that must be dealt with; because we
have a continbum of depgrees of freedom, we can take care of these cases through an intrcate process of

“anticipatory planning.”

Definitions: Fix a twice continuously differentiable function ve T . Let a(v) = {og(9)};or denote the vector of
players’ ideal points; that is, for each I, o {¥) globally maximizes v,{) on X. When confusion will not result, we
will use boldface Iowercase letters fo denote bath vectors and the sets corresponding 1o these vectors.¥! Fori e [
and x € X, let Hv,{(x) denote the Hessian matrix of v; evaluated at x. Since X is comipact, and v is strictly
concave, there exists (v} > O such that for alf {1 and all unit length vectors § € R, PHv (X} < -n{¥). Now, for
cach pair of vectors y € X fande e R_:- and scalar § > 0, define

4l For cxample, afv) will sometimes denote the set o (v), and sometimes the ordered (~tuple {o,(v)]
1

iefr
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Wy, £ 8= (W X RE: y(x ¥y = 0 and for all i,
for ali x € X and all unit length vectors B € R, PHwyx)p < nivy ;
ifg; =0 then y; () = &
ifg >0 then y; (y;) =& >y (y"), forally #y
v, =000 X ~ By 8.

Observe that for all y e ¥, -, -}, v+ y e W. For the remainder of the proof, we will assume without {urther

commment that the symbols ¢, T and 1 denole even integers, Foreach + £ T, define the set V(T') as follows.
Vih={ve W:VNte {t,T),
each player has a unique optimal policy choice in round 1+1 of T'(v, T}

In the definitions that {ollow, we always presume that v e V(). Let z{v, T+1) = ¥, -+ x¥*) and for
Telt, T), let z(v, 141} denote the wvector of optimal choices for players in round +1 of I'(v, 7). Let

Z(v, 1) = U "y, 1+1). {Observe that for all v, Z{v, T = ). Let (v, ) = ijv(zj(v, t+1)) denote the vector
e, T} ‘ 7

of players’ reservation utilities in round 1. Foreach i and 1€ [, T), let Li{v, 1) = {¥ € X:v;(3) = m; (v, )}
denote the "lower™ boundary of player i's acceptance set in round T of I'(v, T'). Let A(v, O =~y () colL; (v, 1))
denote the set of policies that will be accepted by some coalition in round 42 For each i, lat
Mi(v, 1=y = {y € X:y maxdimizes v;{-) on A(v, 1)]. Observe that for v & V{(1), M;{v, t~1)} is necessarily a finite

set, but in peneral may contain more than one element. Also, observe that
for ally € M;(v, (-1}, either y = 0;(v) or there exists j # [ such that y e L;(v, ¢). (B.ILY)

To see that (B.I1.1) is truc, recall that as an immediate implication of Lemma I(b), each player’s optimal offer must
yield her more utility than her reservation utility in the following round., Thus, M (v, 11} m L;{v, t} must be

empty. Therefore, if y € M;{v, =1} but y & {_JL;(v, 1), then y must be an interior point of A (v, r) and hence a

fwe
global maximizer of w () on X. For £ 2, v € V() and v' € V('), we will say that v* and v* are strategically
equivalent from ¢ if the following three conditions are satisfied: (@) «(v')=a(v'); and for all T2 ¢, (b)
(v, t+1) = z(v", T+1); and (©) v (z(v*, T+1)) = v¥ (2(v*, T+1)). Observe that strategic equivalence is transitive in

" and v© are strategically equivalent from ¢ while v/ and v are

the following sense: if for ¢ < ¢ <7, v
strategically equivalent from ¢, then v* and v* are strategically equivalent from (.

The construction that {oliows relates to the “intricate process of anticipatory planning” referred 10 above. Let
I denote the set 7 ~ (i ). For each w € R and nonempty setJ € 1, define the affine function 0;(x, J) by

0,(, J) = (w‘-v,-«x,-(v)n b m(a.(v»] + Y wa

wluli} wed

Now, for cach scalar m>0, define P°(v, m)={r} and for each cven integer £ >0, define

42 “eolY)" denotes the convex hull of Y.
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Py, m = L 867 Ty Obviously,
el Hmy @wlcl

for any finite set £2 < B, the set of ©'s for which PRy, ©) » 1, {(Q) # I is finiwe; (B.I1.22)

Also, since Y w e (0, 1), for all @ = J < I, it follows that for all even k, i’ ¢ P} (v, n) /~ PHv, ) only if n’
w’t

is a fixed point one of some member of a fixed finite set of affine functions, cach of which has at most one fixed

point. Hence,
for all even x> k 2 0, the sct of ®'s for which P¥(v, 1) N PX(v, %) # & is finite, (B.IL2L)

Now for each even integer k & [0, t], let TIX(v, ¢) = PHv, m;(v, 1)). TIX(v, 1) has the following interpretation. For
each v € (¢—k, 1], suppose that in round 1, player [ proposes her ideal point, at least one player j # { proposes a
policy that yields { her reservation utility in round 1, and the remaining players propose their ideal points. In this
event, player i s reservation utility in round f—% must belong to the finite set ITf(v, r). The relevance of this
arcane fact will eventually become apparent, For now, we will simply assert that the following fact plays a critical

role in the proof.
For all ve V(¢-2), either for each k ¢ [0, (2], [IXv, (=2) <« TTF*?(v, t). (B.IL3)
cor. v, f=1) = alv) .
or there exists ' € J and @ #i stz (v, (=) @ L o{v, 1) ~ L (v, 1)

To see that (B.I1.3) is true, observe first that from (B.IL1), if neither the second nor third conditions are satisfied,
then, necessarily, z{v, -1} = o {v), while for some @ «J < T, z{v,t-1) e L (v, 1), for L € J, and otherwise,
z(v, 1) = og{v). In this €ase, player i's reservation utility in round -2,
(v, -2y = 0,0 (v, t), ) € 110y, t=2) < YIA(v, t). Moreover, by construction, if ITF (v, 1-2) < [1Xv, 1), for
some k & (0, r~2], then T&(y, ¢~2) < ITF 2y, 1).

Finally, let £ < R be an arbitrary finite set and define the set U (¢; ) as follows:

U@; N =(ve W: foralli and alt k € {0, ¢], TTHv, £) oy v, () = @;43
for all even x € (k, (), TIKv, ) A TIF(v, 0) = &)
Observe that Q' o Q implies U{r; Q) < U{t; ). Also observe thzﬁ that
Qe implies Ul: Q) cl; Q). : {B.11.4a)
for allve U{; Z(v.tYand alli e I, L{v, 1) Z{v, 1) = &. (B.IL4L)

(B.ILda) is immediate. (B.IL4b) isequivalent to the statement that II2(v, 1) N v;(Z(v, 1)) = . An immediate
consequence of (B.ILT) and (B.I14) is that for any [inite set ) that contains Z(v, f),

forallve U, 8), ily € M{v,t—1) and y = o (v), theny ¢ Z{v, 1) (B.IL5)

43 For a real-valued function f, "f(¥')" denotes the image of the set ¥ under the map f, i, {f(¥)e Ry & ¥},
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We now present three lemmas, from which the proof of the Theorem will {oHlow (relatively) casily.

Lemma IL]: Fixr<7,xe X' and v € V() U L), for some finite set €2 that contains Z(v, 1) w afv).
There exists & > 0 and v > 0 such that for all 8 € (0, 8) if £ € B (0, ¥) with €; = 0 whenever x; € Q, then for all

we Y{x, g, &), vand v + ¥ are strategically equivalent from ¢.

Proof of Lemma IL.1:  Pick & > O sufficiently small that for all i: (5-) for all i such that x; & Z(vye),
B, ) nB(Z(vy), & = and (&) forall T2 ¢, x; € A(v, 1) implies B(x;, 8) mA(v, 1) = . Pick y> 0 such
that: (y-i) for all > ¢ and all i such that x; € Z(v, ), x; € A(v, 1) implies that v, (B (x;, 8)) < v, (z; (v, -1} — v
and (yii) for all £e B0, v, ¥, & 8 is nonempty.%® Now pick 8¢ (0,8) and £ ¢ B0, v) with g >0

whenever x; & Z{v, ) and pick ve Y e 8 Observe that by definition
z(v, T+1) = z(viy, T+1) = @Y%, - - - x¥") and, by assumption, y(x¥") = y(a(v)) = 0. Hence v and v + y arc
strategically equivalent from I'. Now fix T €(t, '] and assume that v and v + y arc strategically equivalent from
1. We will show that they are sirategically equivalent from 7-2, _

Fix i € I. Together with our assumption that x; € Z{v,} whenever g; > 0 cendition (5-ii} implies that

there exists a nbd N; of z(v, ©-1) such that for each Fow;()=0 on N;. Moreover, since strategic equivalence

- from T implies - that y(z(v, T+1)) = 0, we have wt(viy, 1) = =(v, 7). Thus, for cach j and .y & Ny, v;(y) 2 m;(v,1) . .

if and only if (+y)y)zw(viy, 1. It follows that A(v#y, )N, =AF D NN; and so
(v, -1} ¢ A(v+y, ©). Moreover, since y(-) is nomnegative it follows that for all /| and al y € A(v, T),
ity XY 2wy, 1) = m vy, 1), Thus A(vey, 1) < Ay, 7). We now have two cases to consider. First,
suppose that x; € A{v, 7). In this case, condition {(§-it) implies that B{x;, 8} mn A{v, 1) = so that yw; () =0 on
A(v, 7). Sccond, suppose that x; ¢ A(v, 1), In this case, Ww; (-} =0 on the set A(vty, 1)~ B{x;, §), while
condition (y-i} and the definition of y; imply that for all ¥ € B(x;, 8. v;(5; (v, T-1)) ~ v;(y) > v> yw.{y). This
establishes that for all z{v, -1} #y € A{vty, 1), )z, =10 > (p+y)y) and  proves  that
z{(viy, =10} = z;(v, T-1)). It now follows immediately from the definition of & that w(z(v, t-2)) = 0. 1

lemma I12: Fix £ =T and ve V) U, ), for some finite set Q that contains Z(v, 1) u afv). Fix
x e X7 such that for each i, x; € M:(v, 1-1). There exists >0 and §>0 such that for all & ©, 8) il
€ e B0, ) with €, = 0 whenever x; = (v}, then for all y € ¥{(x, g, 8), v and v + y are straegically equivalent
from ¢ and viy € V{i-2).

Proof of Lemma IL2: Pick >0 and & > O sufficiently small that the conclusion of Lemma IL1 holds for

(¢, v, X,v.5). We can assume wlo.g. that & is sufficiently small that the following conditions are satisfied in
addition:  (&-iii) for all x; #x, B, 8 nB(x, 8= and Giv) il x e inllco(l;(v, 1)), UWen
B(x;, 8 ccoll;(v,1)). Pick 5e (0,8 and £e B,y with g =0 whenever X =o{v) and pick

44 Ay satisfying (y-) exists because by assumption, (v, 7-1) # % is the unigue maximizer of v, () on A(y, 1).}



y e Y(x, £, &), We first esblish that the hypothesis in Lemma IL1 is sausfied. From (BILD, i & >0 [h({‘-ﬂ
there  exists f =#i such that x € Ly{v, 1), ie, vi{x)=m;(vt)e I'TJ,O(V, £y Since ve U Z{v, 1)),
E?f(\?, ) nvEv, 3 =, Therefore, x; & Z{v,t). It aow follows from Lemma 1L} that for each
y & ¥x, €, 8) v and v + y are strategically equivalent from ¢.

We next establish that for each i € [, x; € A(v+y, ). Since x; € M;(v, r~1). there exists a cealition

C €@ such that x; € (yecoll;(v,1)). Suppose that for j € C, x; = x;. I follows from Lemma I(b) that
jeC '

x; € int{co(l;(v, 1))); condition (b-iv) now implies that y;(L;(v, 1)) =0. Thus, L;(v, 1} = L;(viy, (), and so
x; € colL;(vty)). Now suppose that for j € C, x; # x;. In this case, condition (8-iii) implies that y;(-)=0on a
nbd N; of x;. Therefore, L;(vty, 1) O N; z'L‘,-(v, tyN;. Wec¢ have cstablished, therefore, that

X € (yeoll; vy, 1)) © Alvy, 1), We now show that x; is the unique element of M;(v+y, ¢~1). Since () is
feC

nonnegative, (v;+y; )} y) 2 1;(v, 1) = m;(v+y, ¢), for all j and all y € A(v, 1). Thus A(viy, 1) < A(v, 1). First
suppose that x; # oy (v). In this case ;(*) attains a unique maximom at x;. Moreover, x; maximizes v;(-) on
A v, t). Therefore, {vi+y () attaing a unique maximum on A (v+y, 1) at x;. I x; = o (v), then x; is the unique

global maximizer of v () and y;(-) = 0. Once again, therefore, (v+y;){) attains a unique maximam on A (v, 1)

at x;. This completes the proof that vy e V{-2) O

Lemma I13; Fix t <T and ve V(-2 ( U; Q), for some finite set O that contains Z(v, 1) U a(v). If
2(v, {1} = a(v), then for all ¥ > 0, there exists x € X‘i ye (O, V),e€ B(,v),8>0and & € ¥'(x, €, 8) such that
v and v+ ¢ are strategically equivalent from t, (v, t—1} = z{v+d, -1} and
vibe V-2 U2 Quale, 1-1) ¢ U2, Z{vid, (-0 ol(vtd)).

Proof of Lemma IL3:  Define [ as follows:

I'={iel:there existst! € [ and ¥ #i s z,(v, 1=1) € L (v, 1) ~ Li(¥, 1)).

For each { e T, pick 1}(/) and (i) such that Zay 11 € Lg(v 1) ~ Li(v, 1), (Note that, possibly, )y =i
Define x € X7 as follows: for i ¢ I, x; = le(i)(V, r—1); otherwise, pick x; arbitrarily. Pick § > O sufficiently small
that: (8-iii) for all i and all x; # z(v, (-1), B(x;, &) "\ B{z (v, 1~1), &) = &; and (&-iv} if x; € int{co(L;(v, (N},
then B(x;, &) < co(l;{v, 1)). Pick ve (0, 7 sufficiently small that (yii) ¥(x, e, 8) is nonempty, for ail
€€ B0, v) and (viiiy if x; # z;(v, 1), then vi(B(x;, §)) <v;(z;{v, 11} - 7. (Such a v> 0 exists because, by
assumption, x; = z‘z{‘.)(v,twl) € A(v, 1), while z;(v, -1} # x; 15 the unique maximizer of v;(*) on A(v,(}.)

Finally, pick € € B(0, y) as follows: fori € I, setg; = 0; Fori € [, define q,(g;) = m;(v, t)+¢; ¥ w, and pick
. {ux{:x;]

g € (0,7 such that for all even k € [0, 12}, PHY, ¢ (€)) v vi(Zv, t-Duav)) = &, while for all even

ke (k, (-2} PHv, gi(e)) 0 Py, qi(€;)) = . Statements (B.11.2a) and (B.I1.2b) imply that these conditions are

satisfied  for all  but  finitely many g;'s Since wve U@;€)) and Q contains Z(v,!),

v@(‘.)(x;) = n;‘z(‘_)(v, iy é vl%.}(Z (v, 1)), so that x; € Z{v, 1), for cach { such that g; > (. It foellows from Lemma 111

that when ¥y and 3 are sufficiently small, then for cach ¢ € Y¥{x, €, 8}, v and v + ¢ are strategically cquivalent from



Y

(. We will assume that v and & are indeed sufficiendy small and pick & ¢ ¥, g, 8).
We first establish that v+ ¢ V{1-2}, with z(v+d, 1-1) = z(v, 1-1). The argument replicates almost exactly
the corresponding argument in the proof of Lemma L2, We begin by showing that for each e 7,

zi{v, t-1) e A{v+d, ). Pick C ¢ € such that z; (v, =1} ¢ (ycollylv, 1)) and consider £ = j € C. If j ¢ f,
' jeC

then ¢; () = 0, so that, wivially, z;(v, ~1) € colL;{v+d, 1)). Assume, therefore, that § € I.if x; = z; (v, 1-1), then
by construction x; = Z{Q(j}(v, -1y & L;{v, (~1). Therefore, z(v, (~1} € int{co(L;{v, 1))} and condition (B-iv)
implies that ¢;{L;(v, 1)) = 0. Therelore, Li(v, 1} = L;(v+$, 1), so that z; (v, (-1} € coll;(v+)). If x; # z,(v, 1-1),
then condition (3-iil) implies that ¢;() = 0 on a nbd N; of z (v, t-1). Therefore, L;(vt, £) N N; = L;(v, 1) " N;,
S0 that once again z(v, 11} € co(L;(v+¢)). We have established, therefore, that
x; € ool (v, 1)) < A(vid, o).

jeC
We now show that z; {v, 1—1) is the unique element of M; (v+¢, t-1). Replicate the reasoning in the proof of
Lemma IL2 to establish that A (v+é, £} < Ay, ). If z;(v, r-1) = x;, then x; is the unique maximizer of both v, ()
and &;() A(ved, ). If x; = z;(v, 1), then §; (-} =0 on the set A(v+d, () ~ B (x, 8), while condition (y-iii) and
the definition of ¢; imply that for all y € B(x, 8). v;(z; (v, £-1)) — v;{y) > v > ¢;(y). This establishes that for all
(v, 1-1)) ¢y € A(vid, £), (0 0:)(z (v, £-1)) > (vi+4;)(y) and proves that z; (v, (—1)) = z (v, 1-1)).
To establish that v + ¢ € U{¢-2; Z(v+d, (-2) U alv+d)), we must show that for each { and all k e [(, 1-2],
TH (v, (=2 v (U E=2; Z (749, 1= U a(vid)) = ; T (BAL6a)
and for all even x € (k, t-2], ITf v+, £-2) N I1](v+d, 1~2) = @, (B.IL6D)

First, note that as a consequence of (8-iii), ¢, (x;) =0, for all j such that x; # x; = z‘;(‘.){v, t—1). Therefore, for

cachi:

7w (vid, ~2))

i

o (vl Wz (v, 1)) = Y ow (it Yz (v, -1))

3

Swwiln (v, =1 e 3 ow = Ry, 120 3wy

{vx =x;} {rx =x; )

1

q:(g;).

Thus for all i, ITKv+d, -2) = PHq:(e:)). Fori ¢ I, conditions (B.ILGa) and (B.IL6b) hold by construction of ;.
For i ¢ 7, e, =0 so that (v, (=23 = g (;) = m(v, 1=2). Applying statement (B.UL3) and the fact that
z(v, (—1) # afv), T1F2(v+¢, 1-2) = T} (v, 1-2) < 115(v, t). for each k ¢ [2,¢). Because ve U(@: Q) and
contains Z(v, 1)U a(v)), it follows that for all even k& and x € (k, 1~2), [IAv+d, 1-2) A T (vid, 1-2) = & and
IAvd, (-2) N v (Zlv, Do) =&, To establish that vid € U2 Z{vid, (~2)uU al(v+d)), the oanly

remaining condition to check is thay
for all £ € {0, 2], ﬁf(v%{:, -2y v alv, -1 = O (BILT)

Observe that for all i & [, z(v, (~1)=o,(v), while for j =i, either (v, t~1) € L;{v, ¢}, in which casc
vilz;(v. i-1)) = m;(v. 1) € %v, ¢}, or z;(v, t=1) = o (v). In the first instance, (B.IL7) foliows from the fact that
for k € {2, 1], I} v+, (=) " N2v, 1) © v, ) NXv,t) = . In the second instance, (B.IL7)



follows from the fact that for & € [2, ¢}, 1157 2ved, 1=2) v vi{a(v)y < 1My, O mov o)y = @ il

We can now prove Thearem I, Define the set £° as follows

-

U ={u=04)i;; € W: there exists T, an equilibrium s for T(u, 7}, 1 € Jand x # x"such that

for some 1 < ¢ < T, both x and x” maximize 1"() on (U (M {y € X: uf(y) = Euf(s| t+2)).
Cel jeC

To prove Theorem T, it is sufficient to show that the closure of U/" has an empty interior. Pick u* € /(") and a
sequence (u") in U" such that for every n, u" € B(u*, n”Y). We will construct a sequence of continuous
functions, (v"), such that for every n, v* € B(u", n™}), so that (v*) coaverges to u'. We will show that for
sufficiently large n, the v"’s satisfy assumptions A2-A4 and so belong to W, but do not belong to U°. The
existence of such a sequence will establish that the closure of I/™ has an empty interior. We now fix n, drop the n

superscript, and replace it with a T, so that u" becomes u’. There are two cases to consider

Case I afu’) e AT, T). In this case, clearly, z(u”, T—1) = a(u’), so that u ¢ V(T'-2). For each i € I,

define g;(g;) = Ywal (o, () + g ¥, w, and pick g; € (0, (nTY) such that for all even &k ¢ [0, T-2],
N {ro w20, (D))

PEUT, ¢:() 0 uT(ou”)) = @, while for all even xe (&, =21, PHUT, g:(e))  PXUT, () = @. Now
‘define ¢ ()=¢  and  uTP=uT447.  Since  Z@TELT2) = «u™H, i follows T that
u e V(I-2) M UT-2; Z™ 2, T-2)uo™). Now fix 1 <T and assume that u' has been defined such
that #* and u**? are strategically equivalent from 42, while u' € V(1) ( U@; ZQ', 1 )oo(u")) (This condition is
certainly satisfied for ¢t = T-2)) We will construct u*? e B (u, 2(nT)?) such that u'™ and u° are strategically

equivalent from ¢ while v & V{e-2) U2 Z(u’”“z, z—Z)U(x(u‘"z))‘ There are two cases o consider.,

Case I(a): For some f, ou{u) € A(u,1). Pick xe X¥ such that for each i, x € M;(u', t—-1). Applying
Lemma IL2, there exists 8 > 0, € € B0, (7)) with &; = 0 whenever x; = o (') and ' & ¥¥'(x, €, &) such that
u' and u'+y’ arc suategically equivalent from ¢ and u'+y' € V(—2). From Lemma IL3, there exists x € X',
ve (0, nT™), e€ BO,Y), §>0 and ¢ ¢ P e, 8) such that u'+y' and u'+y'+¢' are strategically
equivalent from ¢ and u + ¢' + ¢’ € V(t-2) \ U@-2: Z(u', 1-2yoa(u?)). Set w2 =u' + y' + ¢' and observe

that indeed v € B (W*?, 2(nTy™Y), while u*? and u’ are strategically equivalent from .

Case Kb): o(u') c AQu’, ¢). In this case, set w2 = u', Because strategic equivalence is transitive in the
sense defined above, z(u"%, 1-1) = ofu’) = «(@’ 2 = 2%, T-1) and n(u'?, -2) = w(u’ 2, T-2). Cleary, in
this case, we can set u*™* = u*, for each k € [4, (], and observe that z(u"™, 1—k+1) = z(u™ ™, T—k+1).

In either case (8) or (b), we can now define v* = u’. Observe that v* € B(u, n™") (~ V(0), so that v* & U". Let

Q= Z{", 0).

Case I: o(u’) ¢ A(u", 7). In this case, set v =u’. We first pick € € B (0, («T)") such that for even
cach ke (0. T}, PHTY)e) nvQuaoay™) =@, while for all even xe (&, T-2],
PR (x ¥ yee) o P (0 yre) = . Now define 7 by ¢7(X) = 0, while ¢7(x¥") = . Define vV 2 = uT + ¢7

and proceed cxactly as in case I, with the [ollowing exceptions: everywhere replace u's with v's; replace



Ut Z(u', Doe(u’)) with U DUz (v, Ooa(vh)); if case (b applies for some ¢, then define v/ = and
observe that z(v™2, 1=1) = av'™) = ala’ ) = 2(u" 2, T—1) and w(u' %, 1-2) = n{v' 2, T--2). Once again, in this
case, we can set v % = v for cach k e [4, 1], and observe that (v, t—k+1) = 2u™*, Toka1y []
Proof of Theorem IV: We begin by introducing some further notation. Define the mappings G, {) and
U“(‘) on R by’ {Gr Cach X == (xj)jEf' Gi(x) = {y © R: M[(y) = iﬂin u;(xj)} and
i

Uixy=fy € R:y;(y) = zwju;(xf)}. Given a closed set ¥ < R, let I(Y) and h(Y) denote, respectively, the
minimal and maximal clcn‘:cnts of Y. (Treating x as a set, we will sometimes refer to [(x) and A(x).) Finally, for
cach i and proposal profile x, let §;(x) = I{G;(x}) and Bi(x) = £(G;(x)). The proof relies on the following Lemma.
Lemma IV.1: For each € > 0, there exists 8§ > O such that forevery { € [ and x = {x;)jey < X:
if B(xy-1(x) >¢e and cither (g} o, =x or (b)) o € {(x), k(x)), then
U0y < [HG:)+5, h(Gi(x)) -3l

Proof of Lemma IV.I:  If the Lemma were false, we could find £ > 0, and for every n, a vector x™ in X

and ielf such that either condition (a) or (b)) above is satisfied for § while
U (™) G ") +n7, R(G:(x")) — r7). Pick a convergent subsequence of the x™'s, again indexed by n,
such that for some fixed player §; eithizr condition (4} 1§ satsfied for evéry n or condition (b) is satisfied for every
n. Let X be the limit of the subsequence. Clearly A{(G;(X)) — I{G;(X)) = € while there exists ¥ ¢ U;(X) such that
either ¥ < G @) or ¥ 2 I(G; (X)), Since i, is strictly concave, it follows that ¥ (¥) < m}n 1w (X;).

First assume that for the idenified player £, condition (b) holds for every n., We can assume without loss of
generality that for every n, o Th(x") so that e 2 A{X), Because 1 is stricdy concave,
w (h(X) > Y wu(E;) > 1, (1 (X)). But by assumption, 1;(¥) < «;({(X)), contradicting the fact that ¥ ¢ U;(X). Next,

7

assume that for this {, condition {a) holds for every n, so that o =X, If 5u(A(X) = w; (1 (X)) then the preceding
argument can be applied again. Assume therefore that u; (A (D)) = 1, ({ (X)). By strict concavity, w{I{Z)) < ; (y), for
cach y e (I(X), A(X)). Morecover, by assumpton o; =X ¢ (({(X),h(X)). Thercfore, once again,

w{F)s w{®@) < ij u; (x;}, contradicting the fact that y € U;(X). O
i

We can now proceed with the proof of the theorem. The concavity of i; implies that u(Ex) > Y w;ui(x;),
i

for every i, 5o that for every policy vector x, (M U;{x) is nonempty. It follows immediately that {_j MY Ui(x) isa
icl Ceg ieC

convex set.

Fix a particular equilibrium profile s, and for ¢ ¢ {1, 3, --- . T-1}, let x, denote the profile of policy vectors
proposed in round ¢. Note that from Theorem Ii, player i 's acceptance set in round 1 ¢ {2, 4, - - - ,7=2} must be
Ui (xr41). Thus, inround ¢ € {1, 3, -, 73}, the set of policy vectors that will be acceptable to some coalition in

round ¢ is given by (s ¢ Ui (x.42). Since this set is convex, it follows that if «; € (I (x,,2), A{x o)), for some §,
Ce€ i C

then if ¢ proposes o, it will be accepted by some coalition, We have established, then, that for cach 1,



o, & (Hlxph Bix oY) then  xg.p oy.

so that the hypothesis of Lemma IV.1 is satisfied.

Let W7, 'y and Tr, ) be alternative enumerations of [ such that for 1 £k < FH &_{t‘k)(x,) <« &(f‘iﬂ)(x‘}’
while Eq,_k}{x,}z gm‘“”(x,). Next, define 7 1o be the smallest integer strictly larger than i72 and define
L=, 1)y, -, W, D)) and I = (TWe, 1)), -+, Tt, 1)), Observe that for cach ¢, [, n 1, + @ and for each
tat, Ll 20 Set P, = B, n(x) and B, = Em,ﬁ{"")' Thus, a policy vector y is contained in [f,, B,] if and
only if for a strict majority of the players in [, y is weakly preferred w0 the least preferred clement of X, .
Specifically, every ¥ € [, ££x/], is weakdy preferred o h(x,) by every [ € [, while every y € [Ex,, B, is
weakly preferred 1o I(x,) by every [ € I.. )

We are now ready to proceed with the proof of the theorem. Fort e {1, 3, - - -, T-3}, it is clearly true that
X < (Ui , BIV.1
Cef icC

Now, fix £ > 0 and choose & > O for which the conclusion of Lemma IV.1 applies. We will show that if T is
sufficiently large, then for T > T, the solution for the T-round game will be contained in an interval of length no
greater than e. Specifically, we have shown (B.IV.1) that for each r, x, < [P0, 5—3‘”2}. We will show that when
h(Xeu) — 1(X,,9) exceeds g, the interval [f3,, B, will be contained in [B4a, Brual, but its length will be shorter by at
- least &. This fact will establish the theorem. o e U e o

It follows from the first inclusion of B.UIV.1 that for all i, there are at least { players j such that
Xip € Uj(x). I h{xg) ~ 1(X4) > €, then, Lemma IV.1 implies that x, > By + 8 while x, <P - 8.

Summarizing, we have established that for each ¢ ¢ {1, 3, --- . T-3}
if h(x) — 1(X0) > €, then X, < [Beag + 8, Brez — 81 (B.IV.2)
The next step in the proof is to show that foreach ¢ € {1, 3,-- - ,T-1},
cither B, = 1(x) or B, = h{x,). C(BIV.3Y

To see this, observe that for each i, B;(x) & I(x{)'wisile B} (x.) = h{x,). Moreover, because payolfs are concave, at
most one of these inegualities can be strict for any i. Thus if B;(x,) <P, <l{x), for each { € /,, thea
Bitx) =B, = hix)), for i € I, nI;. Since I, n I, is nonempty, this establishes that (B.1V.3) is true. We will now
assume (withoat loss of generality) that [, = k(x,), and rewrite B.IV.2 as

B < B+ 8, Bra— 81 (B.IV2)

To complete the proof of the theorem, we need to show that i, = Bi4a. To see this, observe first that for each
iel,

Bz ix)) 2 w ) > w B (B.IV.4}

The second inequality holds because P, = fi(x,); the third because Pu2 > ;. We now have two cases (o consider.

First assume that §,+2 = h(x). In this case, B.IV.4 implies that B, € Gi(x.2), for i € [, so that, immediately,

43 Recalf that the sct of players 7 has 7 elements.
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fic = Biya Sccond assume that Bo € [(xp). In this case, 1w, (Braa) 2 (P (x2)) 2 6 (Bryp) for i € [, But from

BIVA, «,(B.) » w; (B, forcach i € [, Since I, « {;,5 is noncmpty, there exists £ such that
ui(ﬁt) > U (gv-u?) 2 iy (ﬁt+ﬂ~

Since i; is concave and [, > B4s, it now follows that B, > (4. L

Proof of Theorem V:  The proof uses the following lemma repeatedly.

Lemma V.1: Fix € > 0, an integer k, and a stictly positive probability vector p € A*™1. There exists & > 0
such that for each { and y = (y)&; < X, diam(y) = ¢ implies w;(py) — Spuau(yd = &.
®

Proof of Lemma V.1:  If the Lemma were false, then we could find e > 0, 7 € I and a sequence of vectors,

{y*} in X, such that for each n, diam(y") 2 ¢ and w;(py") — P pa(y%) < nl. Since X is compact the
x

sequence [¥"} has a coavergent subsequence. Let ¥ be the limit of this subsequence. Since y; is continuous,

w(pyY) € Ypag). Moreover, the diameter of ¥ is at least €. However, since the vector p is strictly positive,
X

PV is contained ia the relative interior of the convex hull of ¥. But this contradicts the assumption that u; is

strictly concave. )

We now proceed with the proof of the theorem. Let (x7) denote the sequenice of outcomes corresponding to
a nested sequence of equilibrium strategy profiles for the T-round games., Assume that player #1 is an essential

player. For each T, let 67 = Eu,(x7).

Step #1: The sequence (87) is a strictly increasing, Cauchy sequence.
Proof of Step #1: Fix an even integer T. Since player #1 is essential, each player’s policy proposal in

round #1 of the T+2-round game must yield player £1 a payoff of at least 67. Morcover, from Lemma 1(a) player
#1’s own proposal yields a payoff strictly exceeding 67, This establishes that the sequence is strictly increasing.

Because ; is confinuous and X is compact, ;(-) is bounded on X . Hence the sequence is Cauchy.

Step §2: For all positive g, there exists g T such that foreach T > T, diam(x"} < .
Proof of Step #2: Suppose to the contrary that there exists a subsequence, (x"), of (x’) such that for each

n, diam(x*)ze. From Lemma V.1, there exists 5>8 such that for each n, and each ¢

w(wx"y ~ Fowin(xfy 2 8. It follows that for each n, player #1°s own proposal in round #1 of the n+2-round
jel

game must yield a payofl that exceeds 8" by at least §. Thus, for each n, 0% 2 0" + wid, But this contradicts
Step #1.

Step #3: The limit of any convergent subsequence of (x') is a singleton profife (7} such that

u (¥) = 0 = 1im 8" . Morcover, a convergent subsequence exists.
T



Proof of Step #3: The first statement follows immediately from Steps #1 and £2. The second follows from

the fact that X is compact.

Step #4: If {y} is the limit of a convergent subsequence of (x7), then y belongs to the core of the
underlying game. Moreover, there are al most { distinct limits of convergent subsequences.

Proof of Step #4: The first sentence follows from an argument identical to the proof of Theorem 11,

Assume that there are £ distinet limits of convergent subsequences, {y', - - - ,y“— ). From Step #3, u;(y") = 8, for
each x, so that for any & # x, ¥ay™ + Yay* yields player #1 a strictly higher payoff than either. Moreover, for each
K, since y* belongs to the core, it cannol be Pareto dominated; thus, there must exist (k) > 1 such that
Ui 0 U(y®) has an empty interior. Suppose that i(k) =i(k) =i, for k # k. Since u; and u; are both
sr.r-ictiy concave, then YAy ® + Yay® must yield player i a higher payoff than either ¥¥ or y*. But this means that
either Uy (y®) n Uy or U (y*) U {y*) has a nonempty interior. We have established, then, that x » & implies
i(x) # i (k) and hence that £ < 7.

T+2

Step #5: Forevery € > 0 there exists T such that for 7 > T, diam(x"*? u x7) < &.

Proof of Step #5: Supposc to the contrary that there exists £ > 0 and a subsequence (x7 )%y, such that for
442

each n, diam(x wx’"} > 3e. From Step #2, we can pick # sufficiently large that for T > T%, the diameter of

x7 is less than €. Clearly, for such T, the distance between any point in the convex hull of x¥ and any point in the
742 must be at feast €. Pick §> 0 such that the conclusion of Lemma V.1 holds for this &, with

k=2 p= (A, 1) and § = 3§; Thus, for T > T7, we have for each player 7,

- convex holl of x

u; aw-(xT + xT)) — szwj(u; (x}r" + 1 (x}r“&)) > 38, B.V.1)
/

Next, using Step 1 and, once again, Step 2, pick n > ¥ sufficiently large that for each § 672 — 67" < delta 2 and
for each T 2 7™, diam(y; (x")) < 8. Let X = Viw-(xT" + xT%). Now, in the first round of the (T"*+2)-round game,

player #1 proposes x1 *? (o some coalition C. We claim that ¥ will be accepted by each player in € and is

strictly preferred by player #1 to x1 %, This conwradicts the hypothesis that xT™*? is player #1°s best alternative at

this point of the game, and hence establishes Step #5. For i € C, we have

ij u,-(xf“*"z} > (I -8 2 iju,~(xf“) -& {B.V.2)
i i

The first inequality follows from our choice of 7; the second uses the condition for acceptance by i of x] 2.

Combining (B.V.1) and (B.V.2) vields 1(%) >3 w1, (x]") + 28, for each i € €. On the other hand for player #1,
J
we have

wGE) € Twinld T 48 = 0748 £ 07 428 = T (x]") + 28 (B.V.3)
! f

Both inequalities follow from our choice of T". Combining (B.V.1) and (B.V.3) yields w{(x) > u;(x] )+ 8

which establishes the claim above.



Step #6:  The sequence (x') has a (unique) limit point.

Proof of Step #6: Let ¥ denote the intersection of «{' (8) and the core. From Step £4, Y is a finite set. If

Y is a singleton sct, then Step #6 follows immediately. Assume, therelore, that ¥ ocontains two distinet elements
and choose £ > 0 such that any two clements of Y are separated by at least 3¢, From Step, #4, we can pick T such
that for every T =T, x* & B(Y, €. Thus, there is a unique poficy ¥ € ¥ such that X7 & B (¥, £). Moteover,
from Step £5, there exists T > 7T such that for every T > T, x™? ¢ B(x7,e). It now follows from the two
previous sentences that for every T > ]“F, x! e B (¥, £). This establishes Step #6 and completes the proof of the
Theorem, D





