
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Electronic and Magneto-electronic Properties of Nanopatterned and Multilayered Graphene

Permalink
https://escholarship.org/uc/item/8cg490rt

Author
Ahsan, Sonia

Publication Date
2013
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8cg490rt
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

Electronic and Magneto-Electronic Properties of Nanopatterned and Multilayered
Graphene

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

by

Sonia Ahsan

December 2013

Dissertation Committee:
Dr. Roger K. Lake, Chairperson
Dr. Alexander A. Balandin
Dr. Elaine D. Haberer



Copyright by
Sonia Ahsan

2013



The Dissertation of Sonia Ahsan is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

I would first like to thank my advisor Prof. Roger Lake for his continuous guidance

and encouragement in the course of my research. He has helped me grow profession-

ally and has given me proper exposure to the academic and industrial research work

in my field. He gave me freedom and opportunities to work on challenging research

problems which helped me develop my original research ideas. His interactive guid-

ance, high research standards and work ethics have been invaluable for the project.

The distinguished lessons and experiences he has equipped me with will always stay

with me throughout my future journey.

I would also thank Prof. Elaine D. Haberer and Prof. Alexander Balandin for

taking the time to serve in my dissertation committee. I also thank them for numerous

beneficial discussions that I had with them all along.

This work was supported in part by FAME, one of six centers of STARnet, a

Semiconductor Research Corporation program sponsored by MARCO and DARPA.

I would like to thank Dr. Srinath Krisnan and Dr. Jia Feng for guiding me during

my internship at GlobalFoundries. I greatly benefited from the internship on device

integration.

I would also like to thank all the present and past group members for generating

a research-friendly environment at LATTE. A special thanks to Dr. Masum Habib,

Somaiya Sylvia for making my days at LATTE pleasant and memorable. My times

iv



were also made memorable by all my friends and people at UC Riverside. I wish them

all the best in life.

I would like to thank my parents, sisters, brother and in-laws for their continuous

support. My parents have created the pedestal for me to stand here today. They have

been my inspiration and guiding star. It would be impossible for me to accomplish

this mission without the unconditional support and encouragement of my dearest and

loving husband, Farhan Shahil. My little angel, Farisha S Shahil gave me the strength

to reach the end of this journey. This work would not have been possible without

the steadfast support and encouragement of them. This dissertation is dedicated to

them.

On top of everything, all praise goes to the Almighty Allah; the most Gracious,

the most merciful for blessing me with all good things I have and showing me the

enlightened path.

The text of this dissertation, in part or in full, is a reprint of the material as it

appears in the following journals and/or proceedings:

• Journal of applied Physics [1]. Reprinted with permission from [1]. © [2013]

American Institute of Physics.

• Journal of applied Physics [2]. Reprinted with permission from [2]. © [2013]

American Institute of Physics.

v



To my parents, husband and my daughter

vi



ABSTRACT OF THE DISSERTATION

Electronic and Magneto-Electronic Properties of Nanopatterned and Multilayered
Graphene

by

Sonia Ahsan

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2013

Dr. Roger Lake, Chairperson

Various approaches to induce a band gap in graphene based structures are theo-

retically investigated. The band structure and the electron transport of the proposed

devices are calculated using semi-empirical extended Huckel theory (EHT) coupled

with the nonequilibrium Green’s function (NEGF) formalism. We consider a stacked

structure of two arm-chair nanoribbons and observe negative differential resistance

(NDR) behavior in the simulated current-voltage (I − V ) characteristics. The mag-

nitude of the NDR decreases with an increase of the ribbon width. A 2D nanomesh

structure of graphene patterned with a periodic array of nano holes is also investi-

gated. The results suggest that the bandgap opening is a result of quantum confine-

ment. However obtaining a modest bandgap in graphene often comes at the expense

of strongly degraded electron mobility with lithographic difficulties. Therefore, an

unconventional biasing approach of modulating the I − V characteristics without in-

ducing any bandgap is studied. In such a scheme, NDR is observed in both single

layer and bi-layer graphene field-effect transistors. The NDR is an intrinsic property

of graphene resulting from its symmetric band structure.
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Experimentally, multiple layers of graphene tend to be misoriented with respect to

each other. The effects of magnetic field and interlayer bias on the interlayer electron

transport of large misoriented bilayer graphene nanoribbons is calculated. Edge states

can result in a large peak in the transmission at the charge neutrality point that is

several orders of magnitude larger than the surrounding low-energy transmission.

The transmission is consistently asymmetric around the charge neutrality point for

all structures with the value differing by up to 3 orders of magnitude within 50 meV

on either side of the charge neutrality point. The low-energy states exhibit a high

magnetoconductance ratio, and the magnetoconductance ratio tends to increase as

the width of the ribbons decrease. The maximum value of magnetoconductance ratio

for the 35 nm wide bilayer ribbons at 10T is 15,000%. The effect of the bias on the

transmission gives rise to non-linear I − V characteristics.
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Chapter 1

Introduction

1.1 Background and Motivation

Over the past 50 years, down scaling of the silicon complementary metal-oxide-

semiconductor (CMOS) technology provided increasing performance of computer

chips and enabled progress in information technologies. However, as the electronic

industry is working on the sub 10-nm technology node, it is widely expected that the

downscaling of Si CMOS technology will not last much beyond 2020 [4] (see Fig.1.1 ).

The problem of heat dissipation and the physical limitations of silicon are expected

to end the era of silicon computer chips which enabled progress in information tech-

nologies. This fact motivates a search for alternative materials and computational

paradigms that can, if not replace Si CMOS, then complement it in special-task

information processing [5].

Carbon based electronics is one of the potential alternatives for low-power post

CMOS applications. Carbon based electronics has been under investigation since the

discovery of carbon nanotubes (CNT) [6]. CNTs demonstrated nearly ideal switching

characteristics, increased device speed, and lower power consumption than traditional
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Figure 1.1: Scaling trend showing number of transistors on a chip between the years
1970 and 2011. Data is from publications by AMD and Intel Corporation

CMOS logic by utilizing band-to-band tunneling [7]. However, a manufacturable pro-

cess is problematic due to the difficulty of sorting metallic CNTs from the semicon-

ducting ones.

Another carbon allotrope, graphene [8, 9], has become one of the highly studied

alternative materials for promising future device applications [10–13]. Several inter-

esting properties make this material attractive for device applications. It is flat 2D

system entirely composed of surface atoms and can be obtained with a low defect den-

sity (1 in 108) [14]. Many interesting physical phenomena can be observed in this near

defect free material. The charge carriers, which can be tuned between electrons and

holes, are massless, relativistic-like particles which exhibit the quantum Hall effect

(integer and fractional) in magnetic fields [15–19]. They have very high mobility over

a broad temperature range and one of the highest at room temperature (RT) [20].

Graphene has negligible spin orbit coupling which allows spin polarization to survive
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over micrometer distances. Furthermore, it is also one of the strongest [21] materials

ever measured and also possesses very high thermal conductivity [22]. All these out-

standing properties of graphene can be utilized in a wide range of applications from

computing displays and optoelectronics to composite materials.

Although graphene has these many unique properties beneficial for electronics,

lack of bandgap presents a serious hurdle for its applications in digital logic circuits.

A large number of research groups have attempted to solve this problem via appli-

cation of an electric field [23], quantum confinement of carriers in nanometer-scale

ribbons [24], surface functionalization with various atoms [25], and strain engineer-

ing [26]. A more effective way to modify the band structure of graphene is to stack two

monolayers to form a bilayer which has a zero band-gap electronic structure [27, 28].

One unique property of bilayer graphene is that the bandgap can be tuned from 0

eV to about 0.25 eV by an applied vertical field [29, 30]. The outcome of all these

efforts are a modest band gap opening of few-hundred meV, which often comes at the

expense of a strongly degraded electron mobility. Practical applications of graphene

in digital circuits require a band-gap on the order of 1 eV at room temperature. The

performance of a field effect transistor (FET) using bilayer graphene as the channel

material was studied [31]. It was shown that this FET has a poor Ion/Ioff ratio due

to strong band-to-band tunneling. FET utizing tunneling properties (i.e., TFET)

using bilayer graphene layer showed on/off ratio of 103 [32].

Various garphene based FETs have been proposed utilizing different properties

such as interlayer distance modulation [33], p−n junctions [34], p−n−p junctions [35]

and bilayer exciton condensate [36] etc. Negative differential resistance (NDR) was

predicted to occur in devices based on a single-gated graphene sheet [37], chemical

doping in a GNR [38], and a strained GNR [39]. Do et al. [37] reported that NDR

can be observed in p+ − p junctions of zigzag GNRs created by field-effect doping.
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Recently, a strong NDR behavior was also predicted in a p−n junction of single layer

chemically or electrically doped graphene [40]. However, many of these FET and NDR

type devices have relatively complex architectures [40–42], limited scalability [43], or

low on-off or peak-to-valley current ratios [37, 38].

One remarkable property of graphene is that when graphene layers are stacked

together, as is often the case in chemical vapor deposition (CVD) and multilayer

epitaxial graphene [44, 45], the layers tend to be rotated (i.e., twisted, misoriented)

with respect to each other at certain angles corresponding to allowed growth orienta-

tions with respect to the substrate [45–47]. Bi-layer graphene with a relative rotation

between the layers is known as misoriented or twisted bilayer graphene. The misori-

ented structures [46–50] can be obtained by different experimental methods such as

mechanical exfoliation [51], segregation of graphene on Ni film [52], and unzipping of

a carbon nanotube [53]. The electronic structure of misoriented bilayer graphene is

highly sensitive to the stacking geometry [15,16]. Several theoretical calculations for

such misoriented structures have been carried out using various methodologies such

as density functional theory [46, 48–50], empirical tight binding [54], and continuum

models [55]. Both the theoretical and experimental studies [47] showed that in mis-

oriented bilayer graphene with twist angles greater than ∼ 3◦, the low-energy carriers

behave as massless Dirac Fermions with a reduced Fermi velocity similar to that of

single layer graphene. With a twist angle greater than ∼ 10◦, the layers are effec-

tively decoupled and act as independent layers. In order to investigate the electronic

properties, it is necessary to analyze the interlayer coherent transmission (T (E)) of

these decoupled misoriented layers. Moreover T (E) is a strong function of the twist

angle, and it can be strongly suppressed giving high interlayer contact resistances [56].

This electronic decoupling and high interlayer resistance is a coherent quantum ef-

fect resulting from destructive interference between the electron wavefunctions of the

4



two rotated layers [50]. Bistritzer and MacDonald found coherent interlayer contact

resistances changing by 16 orders of magnitude as the rotation angle is changed by

30◦ [56]. Recent calculations of the phonon-mediated, interlayer conductance indicate

that the phonon-mediated current is a significant interlayer transport mechanism at

room temperature [57]. The phonon-mediated current has a weaker dependence on

rotation angle. At room temperature with a Fermi level 260 meV above the Dirac

point, the interlayer resistance was found to smoothly vary from 50 Ωµm2 at small

rotation angles of a few degrees to 330 Ωµm2 at a rotation angle of 30◦ [57].

In addition to the electronic properties, the unique chiral nature of quasi-particles

in graphene results in a novel quantum Hall effect [17–19] that opens a new possibility

for spintronic applications [58, 59]. The electron motion in misoriented graphene

can be further modulated by the application of an external perpendicular magnetic

field (B-field) with formation of Landau levels (LLs) residing permanently at the

Dirac points even with varying magnetic field. [16, 60] Recently several researchers

[58, 61–66] found that GNRs could have interesting magneto-electronic properties

such as giant magnetoconductance modulation (i.e., a large conductance difference

between two magnetic configurations). For example, two zigzag GNR (ZGNR) based

devices exhibiting a giant magnetoresistance ratio (GMR) have been proposed [58,67]

where in one device [58], the GMR is configured with two ferromagnetic (FM) states

of ZGNR electrodes in parallel vs. antiparallel alignments and a magnetoresistance

ratio (MR) (%) change of 10,000% is reported for a 32-ZGNR; in the other device,

it is configured between a FM and an antiferromagnetic (AFM) state of a ZGNR

controlled by applying an external B-field. [67] Saffarzadeh and Asl [66] also showed

that the planar FM/GNR/FM junction with zig-zag (armchair) interfaces exhibits a

high (low) MR ratio. Hill et al. [62] experimentally observed a 10% MR ratio in a

GNR based spin-valve device, where a 200 nm GNR was connected to NiFe contacts.
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A negative MR of nearly 100% was observed at low temperatures, with over 50%

remaining at room temperature [63]. The negative MR can also be achieved [68] in

intrinsic graphene and a nonmonotonic MR can be obtained in extrinsic graphene

with a parallel magnetic field. All these studies stimulate further investigation of the

transmission between misoriented graphene layers under an applied magnetic field.

Since the transmission is governed by quantum interference of the relative phases of

the wavefunctions of the two layers and a magnetic field modifies the phase of the

electronic wavefunction, one might expect that the transmission could be sensitive

to an applied B-field. Therefore understanding the effect of magnetic field on the

transmisison between misoriented graphene layers is required to fully understand the

design requirements of such structures.

1.2 Overview

In this dissertation, the electronic and magneto-electronic properties of graphene and

bilayer graphene are explored. To explore the electronic properties, in chapter 2,

we describe calculations based on the semi-empirical extended Huckel theory and

the NEGF formalism. Significant bandgap openings are obtained in all of the var-

ious graphene based structures. The external bias has a significant effect on the

bandstructure of bilayer GNRs. Based on this property we consider a device con-

sisting of two stacked monolayer AGNRs designated as a s-AGNR device. Electron

transport through the s-AGNR device shows negative differential resistance (NDR)

behavior that decreases with increasing ribbon width. We also investigate a graphene

nanomesh consisting of a nano-patterned graphene sheet with uniformly distributed

holes in which the band gap can be tuned.

Obtaining a modest bandgap of a few hundred meV in graphene generally comes
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at the expense of strongly degraded electron mobility, and it requires difficult lithogra-

phy. In chapter 3, we propose an unconventional biasing approach of modulating the

current voltage characteristics (I−V ) without a bandgap. An atomistic model based

on the extended Huckel theory (EHT) coupled with the non-equilibrium Green’s func-

tion formalism (NEGF) is used for electronic transport calculations. The calculated

I−V characteristics of a single layer and bilayer GFET show NDR behavior at room

temperature which originates from the symmetric band structure of graphene. The

theoretically calculated NDR in a GFET is also supported by experimental results,

and it allows for construction of non-Boolean computational architectures using gap-

less graphene [1]. Our atomistic modeling shows that the NDR appears not only

in the drift-diffusion regime but also in the ballistic regime at the nanometer-scale

although the physics changes.

Finally in chapter 4 we study the magneto electronic properties of misoriented

stacked graphene layers applying a vertical magnetic field. We consider a simple de-

vice structure with two misoriented bilayer graphene nanoribbons (mBGNR) twisted

at an angle of 30◦. We investigate the interlayer transmission of the mBGNR struc-

ture in the presence of a uniform magnetic field and describe how the interlayer

transmission of the mBGNR structures is modulated by the magnetic field. We also

investigate the magnetoconductance (MC) effect in the mBGNR device and obtain

a very large MC effect tunable by an applied magnetic fielld. The observed MC

property in this work is intrinsic unlike typical MC effects which are related to spin

asymmetric scattering. Finally we investigate the dependence of the MC effect on

temperature. Although the electronic and transport properties in a single GNR under

a magnetic field have been extensively studied, we are not aware of any work address-

ing the effect of magnetic field on the inter-layer transport properties of a misoriented

large graphene structure, and our study represents a first step in this direction.
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Chapter 2

Bandgap Engineering and

Quantum transport in Graphene

Graphene, an allotrope of carbon, attracts considerable attention due to its excellent

electrical and thermal properties. Effective use of graphene in digital applications is

limited due to its lack of an energy gap in its electronic spectra. Several methods have

been proposed to open up a band gap such as pattering graphene into a dot (i.e. 0 D),

ribbons, (i.e. 1D), epitaxial growth etc. However, lateral confinement (0D, 1D) sup-

presses the intrinsic mobility of graphene. Also some of the methods require complex

lithographic processes. An efficient method of opening a band gap preserving the 2D

structure and mobility of graphene is needed. We investigate various approaches to

induce a band gap. We start with a typical armchair graphene nanoribbon (AGNR)

and propose a stacked structure of monolayer graphene (s-AGNR). The stacked struc-

ture shows that a tunable bandgap can be induced in s-AGNR by application of a

potential difference between the two layers. The simplest geometry for creating such

a potential difference consists of two overlapping single layer graphene nanoribbons.

Numerical simulations, based on semi-empirical Extended Huckel theory (EHT) and
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the non-equilibrium Green’s function formalism, show that transmission through such

a structure has a strong dependence on applied bias. The simulated current voltage

characteristics mimic the characteristics of a resonant tunneling diode featuring neg-

ative differential resistance. The bandgap and width of the nanoribbons affect the

current voltage characteristics. In particular, the peak to valley current ratio (i.e.,

Ion/Ioff ) decreases with increasing width of the nanoribbons. Finally, a 2D structure

of graphene patterned with a periodic array of nano holes is investigated. Band struc-

ture calculations of this structure are carried out with EHT as functions of structural

parameters, including the hole size and the hole to hole distances. Our results suggest

that the bandgap opening is a result of quantum confinement at the nanomesh necks.

The effective mass is also calculated as a function of the nanomesh neck widths.

In this chapter, we start begin an AGNR and study the effects of the width of

the AGNR on the bandgap opening. We also study the bandstructure of AB stacked

nanoribbons. We observe that the bandgap increases with applied bias between the

bilayer region. Knowing the electronic strucure of single and bilayer AGNRs, we

consider a stacked AGNR consisting of two single layer AGNRs stacked on top of

the each other. Each GNR is independently contacted such that one GNR is held at

ground while the other has a bias applied to it. Independently contacting the top and

bottom GNR maximizes the voltage drop between them. Assuming that the majority

of the potential drop occurs between the two GNRs, then the potential difference

between the two GNRs is the applied bias. Simualted I−V characteristics using semi-

empirical EHT and the non-equilibrium Green’s function formalism (NEGF) shows an

NDR effect. The width of the AGNR has a significant effect on the electron transport.

In particular, the on/off ratio decreases with increasing width of the ribbons.

Finally we report another concept of inducing a bandgap on a new graphene based

structure. The structure consists of densely patterned array of holes in graphene. The
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patterning of dense arrays of ordered holes still remains a significant challenge. In

experimental work conducted by Bai et al. [69]. the nanomeshes were prepared using

block copolymer lithography and can have variable periodicities and neck widths as

low as 50 Å. We theoretically show that we can have modest bandgap comparable to

that of AGNR and can be tuned by varying various parameters such as periodicity,

neck width and hole diameter.

2.1 Theoretical formalism

Semi-empirical Extended Huckel Theory (EHT) is used for the electronic structure

calculations. The dispersion relation (E − k) is derived using the calculated Hamil-

tonian and overlap matrix from the Huckel code. Finally we calculate current using

Non-equilibrium Green’s functions (NEGF) formalism. We optimize our structures

using ab-initio Density Funtional theory (DFT).

2.1.1 Extended Huckel theory

The basis functions in Extended Huckel theory (EHT) are related to the atomic

orbitals i.e., the Slater-type orbitals (STOs). STOs allow the overlap matrix Sij to

be calculated efficiently [70]. The individual molecular orbital wave functions are

approximated by a linear combination of STO’s as follows

φnlm(r) = σrn−1e−ζrYlm(θ, ϕ)(= STO) (2.1)

where spherical coordinates r, θ, φ have been used. n (= 1, 2, . . .), l (= 0, 1,

. . . , n-1), and m (= -l, -l + 1,. ..., 0, 1, . . . , l-1, l) are the principal,

angular momentum, and magnetic quantum numbers, respectively. The Ylm(θ, ϕ)
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are the real-valued spherical harmonics. ζ is the orbital exponent and is related to

the effective nuclear charge. The nuclear charge is partially shielded by electrons in

the core of an atom. σ is the normalization constant and obtained from

σ2

∫ ∞

0

(r(n−1)e−ζr)2r2dr = 1 =⇒ σ =
(2ζ

n+1

2 )
√

(2n)!
. (2.2)

The Hamiltonian elements are constructed using the Huckle principle. The diago-

nal elements or on-site energies are taken from experimental values of electronic ‘hard

ness’ i.e., the difference between the ionization potential and the electron affinity. The

off-diagonal matrix elements are determined directly from the following equation

Hii = Ei (2.3)

Hij =
1

2
KEHT (Ei + Ej)Sij(i 6= j)

KEHT is an fitting parameter taken as c =2.8 [71]. Ei and Ej are the on-site energies.

One important assumption within EHT is that the hopping matrix elements Hij

depend linearly on the overlap matrix Sij given by

Sij =

∫

ϕ∗
i (r)ϕj(r)d

3r (2.4)

where ϕi(r) and ϕj(r) are the STOs basis functions. Thus, the effect of bond length

variation is included in the overlap matrix. The device Hamiltonian, overlap ma-

trix, and the device-to-lead coupling matrices are extracted and used for the NEGF

algorithm to calculate transmission coefficients.

We use spin-restricted EHT for the electronic structure calculations. For elec-

tronic band-structure, the H and S matrices of the infinite GNR, graphene sheet and
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graphene bilayer are transformed into reciprocal k-space as

H(~k) =
N
∑

n=1

Hmne
i~k(~dm−~dn) (2.5)

S(~k) =

N
∑

n=1

Smne
i~k(~dm−~dn)

where ~k is the reciprocal lattice vector of the Brillouin zone. ~k is one dimensional for

GNRs and two dimensional for for single and bilayer graphene sheets. The index m

represents the center unit cell and n represents the neighboring unit cells, and ~dm− ~dn

is the relative displacement. The energy eigenvalue spectrum at a specific k point is

computed from the generalized eigenvalue equation,

H(k)ψ(k) = E(k)S(k)ψ(k). (2.6)

2.1.2 Non-equilibrium Green’s functions(NEGF)

In this study, we use a non self-consistent EHT/NEGF approach where the NEGF

calculation operates as a post-processor to the EHT calculation as shown in Fig. 2.1.

The transmission calculation is performed in the three steps. In general, the

calculation starts with a semi-empirical EHT calculation of an ideal periodic bulk

material corresponding to the source and drain leads. The contact Hamiltonian and

the overlap matrix elements are stored for calculating the surface self-energies. The

second step is to run the EHT calculation of a contact - device - contact structure.

After the calculation, we store the Hamiltonian and overlap matrix elements of the

device structure and the device to lead coupling matrices. For the third step, the

saved matrix elements are used to calculate the surface self-energies, the Green’s

function of the device, and transmission coefficient.
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Figure 2.1: Flowchart diagram of EHT/NEGF

As an example of this method, consider the stacked AGNR (s-AGNR) geometry

shown in Fig. 2.2. This geometry consists of two single layer GNRs with one placed

on top of the other.

Each GNR is independently contacted such that one GNR is held at ground while

the other has a bias applied to it. For NEGF, we define the atoms that lie between

the two dotted vertical lines in Fig. 2.2 as the ‘device.’

The NEGF calculation of the s-AGNR structure (for example, Fig. 2.2), begins

with a calculation of the GNR contact surface self-energies, ΣL
1,1 and ΣR

N,N . A decima-

tion technique [72,73] is adopted to calculate the surface self-energies from a periodic

infinite GNR, consisting of an eight-atomic-layer unitcell along the growth direction.

The GNR shown in Fig. 2.3, is divided into eight atomic layered supercells or unit

cells. Non-zero matrix elements of a given atomic layer extend to the left and right 8

atomic layers, or one unit cell of the GNR.
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Figure 2.2: (top) Schematic diagram of s-AGNR device including the contact surface
self energies. The region inside the vertical line is the device region. (bottom)Side
view of the structure

Figure 2.3: Schematic of hydrogen passivated armchair GNR. The region inside the
vertical lines is supercell/unitcell. The GNR is a periodic construction of the supercell.
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The GNR Hamiltonian matrix elements are grouped into inter-cell subblocks tn,n±1

and intra-cell subblocks Dn,n. We define inter-cell matrix element block t̃, for equi-

librium conditions, as

t̃n,m = tn,m − (E + iη)Sn,m (2.7)

where Sn,m is the overlap matrix between non-orthogonal orbitals in cells n and m,

E is the energy, η is a convergence factor that is non-zero only in the contacts. For

nonequilibrium conditions, the matrix elements of the potential from the applied

bias, Un,m, are added to the right hand side of Eq. 2.7 as discussed at the end of this

chapter. For calculations presented below, η = 10 meV is typically used.

The equations that we solve for the surface Green’s function of left lead (unit cell

number 0) are

t̃i = t̃i−1 [(E + iη)S0,0 −Di−1]
−1 t̃i−1 (2.8)

t̃†i = t̃†i−1 [(E + iη)S0,0 −Di−1]
−1 t̃†i−1

Di = Di−1 + t̃i−1 [(E + iη)S0,0 −Di−1]
−1 t̃†i−1

+ t̃†i−1 [(E + iη)S0,0 −Di−1]
−1 t̃i−1

Ds
i = Ds

i−1 + t̃i−1 [(E + iη)S0,0 −Di−1]
−1 t̃†i−1

Equations (2.8) define an iterative Hamiltonian for a chain of principal layers (unit

cells) with lattice constant 2ia, where a is the zero-order lattice constant and i is the

iteration number. t̃ and t̃† are the Hamiltonian matrices coupling 8-atomic-layers or

one unit cell to ether side of the principal unit cell. Ds
i is the surface layer block at

iteration i. For the surface Green’s function of the left lead, the calculation starts

with the initial guess D0 = Ds
0 = D0,0, t̃0 = t̃0,−1, and t̃

†
0 = t̃−1,0. The surface Green’s

function convergence, which typically requires approximately 12 iterations, is met
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when the maximum value of any element of the t̃ matrix is less than 10−10. After

convergence of Eqs. (2.8) at iteration n, the surface Green’s function on the left lead

is

g0,0 = [ES0,0 −Ds
n]

−1 (2.9)

The same procedure as above applies for the surface Green’s function of the right

lead. In non equilibrium, however, a potential matrix, −Un,m is added to the term

inside the square brackets in Eq. (2.8) and (2.9) for a given source/drain bias applied

at the right lead. Once the surface Green’s functions g0,0 and gN+1,N+1 are converged,

the self-energy matrices are calculated from the expressions

Σℓ = t̃1,0g0,0t̃0,1 (2.10)

Σr = t̃N,N+1gN+1,N+1t̃N+1,N

where Σℓ and Σr are the surface self-energies for the left and right GNR contacts

respectively. This method is described in detail in Ref. [74–76].

For the NEGF calculation, we divide the s-AGNR structure into blocks. We

number these blocks such that blocks {−∞, . . . , 0} lie in the left contact, blocks

{(N +1), . . . ,∞} lie in the right contact and blocks {1, . . . , N} lie in the device. The

self-energies are placed on the outer most blocks (1 and N). At each energy E, the

retarded Green’s function [77] is calculated from

GR(E) =
[

ESD −HD − UD − Σℓ − Σr
]−1

(2.11)

where the subscript D indicates the ‘device’ region of structure.
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At each energy E, the transmission is calculated from

T (E) = tr
{

ΓL
1,1G

R
1,NΓ

R
N,NG

R
1,N

}

(2.12)

or

T (E) = tr
{

ΓL
1,1

[

A1,1 − GR
1,1Γ

L
1,1G

A
1,1

]}

(2.13)

where ΓL
1,1 = i

(

Σℓ − Σℓ†
)

, ΓR
N,N = i

(

Σr − Σr†
)

, and GA =
[

GR
]†
. Expression (2.12)

is the more commonly known expression for transmission and corresponds to what

has become known as the Fisher-Lee [78] form of the transmission coefficient although

the expression was written down 10 years earlier by Caroli et al. [79]. Eq. (2.13) is

more numerically efficient since it only requires the calculation of the upper corner

block of GR.

To understand the spatial extent of states at a given energy, we calculate and plot

the covariant spectral function [80]

Ai(E) = −2 Im
[

tri
(

SGR(E)S
)]

(2.14)

where the trace is over the basis states associated with atom i. The large scale

matrix inversions and multiplications, required for calculating the self-energies and

device transmission, are done using MATLAB code.

To calculate current, a non self-consistent approach is used. A bias is applied

across the left and right contact leads. The semi-infinite right contact lead (GNR)

includes one unit cell of GNR in the Hamiltonian and is kept at zero bias. The semi-

infinite left lead includes one unit cell of GNR in the Hamiltonian and is kept at the

applied bias. The matrix elements of the potential energy matrix U are calculated
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using the following equation

〈i, α|U |j, β〉 = −eSαi,βj
[Vb(ri) + Vb(rj)] /2. (2.15)

where, the indices i and j label the atoms and indices α and β label the basis orbitals.

Sαi,βj
is the overlap matrix 〈i, α|j, β〉. The approach captures the Stark effect, but

not nonequilibrium self consistency.

For transmission calculation the energy grid is evenly spaced between µL − eVb −

15kT to µR + 15kT where kT is the thermal energy and µL and µR are the Fermi

levels of the left and right contacts respectively. Once the transmission is calculated,

the coherent current is then calculated from,

I =
2e

~

∫

dE

2π
T (E) [f(E − µR) − f(E − (µL − eVb))] (2.16)

where, f(E) is the Fermi function.

In brief, the NEGF calculation begins by obtaining self-energies of the semi-infinite

leads. The divided ‘device’ supercell is then used to form the Hamiltonian matrix,

HD, which in turn is used to obtain the Green’s function. The transmission coefficient

and current are calculated from this Green’s function.

2.2 Results and Discussion

In this section, we discuss our simulation results carried out on three different graphene

structures.
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Figure 2.4: H-passivated Graphene supercell containing 14x8 atomic layers of carbon
atoms. This figure also illustrates the numbering scheme.

2.2.1 Armchair Graphene Nano Ribbon (AGNR)

Graphene nanoribbons (GNRs) are quasi one-dimensional (1D) structures patterened

from graphene sheet in particular orientations. They are characterized by the align-

ment of the edge atoms, namely zigzag GNR (ZGNR) and armchair GNR (AGNR). It

is predicted that all zigzag GNRs are metallic with localized states on the edges [81,82]

while armchair GNRs are either metallic or semiconducting, depending on their

widths [83]. GNR’s have different electrical properties compared to graphene sheets

due to quantum confinement as well as the abrupt termination at the edges. Through-

out the chapter, we use the naming convention followed in Ref. [3] where a N -carbon-

atomic-layers wide AGNR is referred to as a N-AGNR. Hence, the supercell of a

14-AGNR contains 14 carbon atoms in the y-direction as shown in figure 2.4. For ex-

ample, Fig. 2.3 illustrates a 14-AGNR where the region inside the vertical lines is the
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supercell. These supercells are used along with periodic boundary conditions along

x axis to relax the AGNRs which in turn are used in the band structure calculation.

In all of our calculations, we generated GNRs using a c− c bond length of 1.4617 Å

obtained from a geometry optimization using the DFT FIREBALL code.

The simulated band structure of a 14-AGNR is shown in figure 2.5(a). The struc-

ture shows a typical linear dispersion having a small band gap of 0.084 eV. The

transmission coefficient (T (E)) of passivated armchair nanoribbon under zero bias

is shown in figure 2.5 (b) with several integer steps and narrow jumps. These steps

are consistent with the band structure generated by our model. In such a perfect

1D crystal without any defects, each Bloch state can propagate through the junction

without any classical resistance and contribute a unit of quantum conductance for the

total transmission spectrum. The integer steps in the transmission spectrum indicate

the number of the conducting channels or bands at that energy For any energy value

under consideration, one can accurately predict the transmission coefficient for the

perfect quasi-1D crystal simply by counting the number of bands in the electronic

structure.

The edge of armchair nanoribbons used in our simulation are hydrogenated to

eliminate surface states. Because every atom on the edge has one unsaturated dan-

gling bond, the characteristics of the c − c bonds at the edges can change GNRs’

electronic structure dramatically [84, 85]. To determine the band gaps of GNRs at

nanometer scales, edge effects should be considered carefully. The change of edge

bond length and angle can lead to considerable variations of electronic structure, es-

pecially within the low-energy range. Therefore in this work, all edge carbon atoms of

GNRs are passivated by hydrogen atoms. Figure 2.5 (c) shows the E−k diagram for

an unpassivated GNR for comparison. Our result shows that in case of unpassivated

AGNR, the energy dispersion relation deviates from that of passivated structures.
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Figure 2.5: (a) Electronic structure of passivated 14-AGNR (b) Transmission spec-
trum for 14-AGNR (c) Edge states for unpassivated 14-AGNR, i.e. edges without H
atoms(d) Transmission spectrum for unpassivated 14-AGNR.
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Figure 2.6: Electronic structures of armchair GNRs with various widths (a) Na = 11
(b) Na = 10 (c) Na = 9, respectively.

The calculated T (E) is plotted in figure 2.5 (d), showing extra modes generated due

to dangling bonds. It clearly demonstrates the beneficial effect of H-passivation in

eliminating edge states.

Now we will discuss the effect of varying the width on the bandstructure. An

AGNR with the width of Na = 3n + 2 where n is an integer is generally metallic,

and otherwise it is semiconducting [81]. Figure 2.6(a-c) shows the calculated energy

dispersion for an AGNR having different widths of Na = 11, 10 and 9 respectively.

The E−k relation of an 11-AGNR (i.e., Na = 11), shows inear dispersion around the

Γ point and the lowest conduction band and the upmost valence band almost touch

at the Dirac point leading to the metallic behavior. Our simualtion shows that both

9-AGNR and 10-AGNR have a significant bandgap. The 10-AGNR shows the largest

bandgap of ∼ 1 eV with a parabolic dispersion around Γ as shown in fig. 2.6(b) .

The electronic structures of AGNRs depend strongly on their widths. Due to

the quantum confinement, the spectrum breaks into a set of subbands and the wave

vector along the confined direction becomes discretized. As the width gets larger (Na

= 14, 17 and so on), the quantum confinement becomes less important and the 1D

nanoribbons tend to behave like 2D graphene. The electron effective masses calculated
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from the band structures are listed in table 2.1. The small value of effective mass

is expected for graphene as ideally it consists of massless particle termed as Dirac

fermion. For each type of AGNR, the effective masses are inversely proportional to

the width with a different proportionality constant.

Table 2.1: Effective Mass of Different AGNRs
AGNR Type Atomic layers (Na) Effective mass (m∗)

3n 9 0.132m0

3n 12 0.12m0

3n 15 0.095m0

3n+1 10 0.16m0

3n+1 13 0.121m0

3n+2 11 0.019m0

3n+2 14 0.016m0

In figure 2.7, we plot the variation of bandgap with width of AGNR. The variations

in energy gap of three distinct family 3n, 3n+1 and 3n+2 AGNRs. where n = 1, 2,

3 etc are investigated. We observe that the electronic structure of perfect armchair

GNRs strongly depends on the width of the ribbon. The bandgap opening follows a

inverse relation with ribbon width as expected. A bandgap opening of 1.1 eV can be

achieved for 10-AGNR. Our simulated results are compared with other calculations

using a first-principles approach [3], and our own calculations using the DFT codes

FIREBALL and VASP. All of the results are plotted in the same figure shown in Fig.

2.7. The EHT results are in good agreement with those from other models.

2.2.2 Stacked Armchair graphene nanoribbon (s-AGNR)

In the previous section, we discussed the bandgap opening in an AGNR by constrain-

ing one of the dimensions of graphene (i.e. the width). In this section, we consider

another way to introduce a band gap by stacking two GNRs. We stack two 14-AGNR
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Figure 2.7: Calculated bandgap as a function of AGNR width (Na) (3n, 3n+1, 3n+2
where n is a positive integer). Comparing EHT results with DFT Fireball, VASP and
first principal calculations [3].
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in AB stacking on top of each other constructing a bilayer GNR. The external bias,

Vb is applied in between the top and bottom GNRs. The effect of bias was taken

into account by shifting the potential energy of all the atoms of the top GNR by

−eVb, where e is the charge of an electron. This is done by changing the Hamiltonian

matrix elements of the top layer. The matrix elements of Vb were calculated using Eq.

2.15. The band structures of the s-AGNR (Na = 14) at both unbiased and biased

conditions are shown in Figs. 2.8 (a) and (b), respectively. Although the single layer

has a band gap of 0.84 meV, the stacked AGNR has significantly smaller band gap of

0.05 eV. The band structure changes significantly with applied bias voltage as shown

in Fig.2.8(b). Under an applied bias of 0.4V, the induced bandgap is 0.187 eV (see

in Fig. 2.8(b)), and the bandstructure shows a non-linear dispersion relation.

Figure 2.8: Band structure of s-AGNR: (a) no bias and (b) at bias, Vb = 0.4V . A

bandgap of 0.187 eV is opened as a result of 0.4 V bias. Fermi level is at 0 eV.

Now we will discuss the bandgap modulation with applied Vb. Figure 2.9 shows

the band gap of a s-AGNR as a function of Vb. The plot shows the possibility of

band gap tunability of 0.05 eV to 0.205 eV over an applied bias ranging from 0 to

0.8V respectively, after that induced bandgap saturates and becomes independent of
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Figure 2.9: Band gap variation of s-AGNR as a function of applied bias.

applied Vb. Since band gap increases with bias, negative differential resistance (NDR)

could occur in bilayer graphene devices.

In order to study the possibility of a NDR effect in a s-AGNR device, we investigate

a two terminal device using a stacked AGNR as the channel material. The schematic

of the device is shown in Fig. 2.10. The device consists of two hydrogen passivated

14-AGNRs overlapped in the central region with a vertical separation of 3.35 Å. The

length and width of the overlap region of the device are 18 Å and 17 Å, respectively,

and the total length of the structure is 67 Å. A positive bias voltage, Vb, is applied

to the left contact (the top AGNR) with respect to the right contact (the bottom

AGNR). The independent contacts to the top and bottom GNRs maximize the voltage

drop between them.

The simulated I − V characteristic for the s-AGNR is shown in Fig. 2.11. The

26



Figure 2.10: Schematic diagram of s-AGNR device. The device region is an AB
stacked bilayer GNR connected to SLG, All GNRs are Hydrogen passivated

current decreases beyond a certain applied bias voltage exhibiting negative differential

resistance (NDR). The peak occurs at 0.4 V and the valley minimum occurs at 0.7

V where the peak (Ion) and valley currents (Ioff ) are 10 µA and 2 µA, respectively.

Transport calculations through the same system were performed with FIREBALL [86]

as shown in the same figure, and they are in good agreement with our calculation.

To explain the NDR effect, we simulate the transmission coefficients (T (E)) (see

Fig. 2.12) as a function of electron energy at no-bias and two different bias voltages

of Vb = 0.38 V and 0.7 V. The coherent current at any bias is proportional to the area

under the transmission curve bounded by the Fermi levels of the contacts. From this

plot, it is clear that a potential difference between the two GNRs strongly suppresses

the overall transmission. At the valley minimum of Vb = 0.7 V, a maximum suppres-

sion occurs over an energy window of 0.7 eV as shown in Fig. 2.12 and the overall
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trend is in good agreement with Ref. [86]. The low transmission near E = 0 eV and

E = -0.38 eV are due to the bandgap of the GNR leads. From the figure we can see

that the transmission for Vb = 0.7 V is smaller compared to that of Vb = 0.38 V. This

implies that the area bounded by the fermi levels and transmission curve is smaller

for Vb = 0.7 V resulting in less current. The current phenomenon could be explained

as resulting from the suppression of the coherent transition due to the mismatch of

modes in the contacts and the bilayer channel region of the device. Multiple reflection

can occur at the edge of the overlap region due to potential discontinuity. When the

bias voltage is increased from 0.39 V to 0.7 V, the possibility of wave vector mismatch
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Figure 2.13: I − V characteristics of s-AGNR devices varying width (Na = 14, 32,
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is increased resulting strong suppression of transmission. Beyond 0.7 V, the current

increases with applied voltage since the transmission increases as a result of excited

subbands of the leads. The simulations of a model structure with AB stacking provide

proof-of-concept that NDR can occur in such structures.

Now we will discuss the effects of GNR width (W) on NDR. We consider three

structures with W = 39.24 Å, 58.23 Å and 77.2 Å. The width of the GNRs of these

structures are chosen to be (3n + 2) to minimize the effects of bandgap resulting

from finite width. The I − V characteristics of the proposed bilayer structure show

a significant dependence on W as indicated in Fig. 2.13. The peak current to valley

current Ion/Ioff ratio decreases with increasing ribbon width. For larger W, T (E)

increases as more channels (excited subbands) are available. The multiple subbands

30



Figure 2.14: Basic structure of GNM showing LGNM , Wn and dh

are close and may provide multiple path to assist the current flow. An electron from

the left contact has a higher probability to transport through the device. As a result

the current through the device increases with the bias voltage, decreasing the current

on/off ratio.

2.2.3 Graphene Nano Mesh (GNM)

All these proposed garphene structures (AGNRs and s-AGNR) require high resolution

lithography which may be difficult experimentally. With that in mind, we model and

simulate a graphene nanomesh (GNM) by patterning ‘nano-holes’ on a graphene

sheet. The advantage of this structure is that we can use large sheets of graphene.

In Fig. 2.14, a representative GNM structure is shown. The structure consists of a

single graphene sheet punched with a high-density array of nanoscale holes. We define

three critical parameters such as periodicity, LGNM (defined as the centre-to-centre

distance between two neighbouring nanoholes), the neck width, Wn, (the smallest

edge-to-edge distance between two neighbouring nanoholes), and the hole diameter,

dh. We investigate bandgap tunability by varyingWn sinceWn represents the smallest

dimension of the GNM and can control the charge transport of the system. We adopt

the following mechanisms to vary Wn. The first mechanism is to keep dh (8 Å) fixed
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Figure 2.15: Electronic structures of GNM with (a) Wn = 2.47Å, (b) Wn = 12.35 Å
and (c) Wn = 14.82 Å.

and vary LGNM resulting in different values forWn. The second mechanism is to vary

dh while keeping LGNM fixed.

In Figure 2.15 (a-c) band structures of GNMs with varying values of LGNM are

presented keeping dh fixed at 8 Å. Three different Wn values of 2.47 Å, 12.35 Å and

14.82 Å are obtained by varying LGNM . For Wn= 2.47 Å, a band gap of 1.06 eV is

achieved as shown in Fig. 2.15(a). The bandgadp decreases with an increase of Wn

as we see in the figure. So smaller Wn and a denser mesh structure are needed to

obtain a larger bandgap. As we decrease Wn (resulting in more holes per unit area)

the effective mass increases. For Wn = 14.82 Å, the calculated bandstructure shows

(Fig. 2.15(c)) the typical Dirac cone of a graphene sheet with a Fermi velocity around

4.5× 105 m/sec.

We extend our analysis by extracting the effective mass (m∗) as shown in Figure

2.16. At Wn=12.35 Å, the obtained band gap is 0.5 eV with a m∗ of 0.052m0. As

we decrease Wn creating a denser mesh structure, both the induced bandgap and m∗

increase as shown in the figure. This observation is consistent with GNR devices where

the bandgap and on-off ratio are inversely proportional to the width of the ribbon.

Similar to GNRs, the opening of the conduction bandgap in our GNM structure can
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Figure 2.16: Effect on induced bandgap varying Wn using first mechanism.

be attributed to a combination of lateral quantum confinement effect [3, 81] and a

localization effect resulting from edge disorder such as variable edge roughness.

Now we will discuss the effect of varying Wn on the bandstructure of a GNM.

In Figure 2.17 (a-c), the calculated band structures of GNMs with different dh are

presented keeping LGNM fixed at 42 Å.

We chose three different dh values of 21.62 Å, 17.81 Å and 8.16 Å as shown in

figure 2.17 (a-c), respectively. With dh = 21.62 Å and Wn = 17.29 Å, a band gap of

0.1 eV is achieved. It is evident from the E − k diagram that smaller value of Wn

is needed to induce a decent bandgap. We can obtain a smaller Wn by increasing dh

while keeping LGNM fixed. Therefore quantum confinement manifests itself in a GNM

by Wn in either of the two approaches. The strength of the quantum confinement

leading to bandgap variation is measured by Wn.
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Figure 2.17: Electronic structures of GNM with different Wn by varying dh, (a) Wn

= 17.29 Å, (b) Wn = 22.23 Å, (c) Wn = 29.64 Å.
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Figure 2.18: Variation of induced bandgap varying Wn using second mechanism.
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Finally in Fig. 2.18, we show the band gaps and effective masses (m∗) that result

from varying Wn. The calculated m∗ and bandgap are also compared with that of

3n+2 AGNR discussed in section 2.2.1. The figure shows that to achieve a band gap

of 0.1 eV, an AGNR of 13 Å is required. The same band gap can be achieved with

a 2D GNM having a neckwidth of 22 Å.

2.3 Conclusion

In summary, we use semi-empirical extended Huckel theory and NEGF to investigate

the dispersion relation of graphene based structures. Significant bandgap opening is

observed in all proposed structures. We found that dangling bonds at the unpassi-

vated edges of an AGNR create extra modes in the channel region, and that they are

removed by H passivation. The magnitude of effective mass is inversely proportional

to the width of the AGNR. External bias has a significant effect on the bandstruc-

ture of bilayer GNRs. Based on this property we considered a device of two stacked

monolayers of AGNR termed a s-AGNR device. The stacked device shows negative

differential resistance (NDR) behavior. The magnitude of the NDR decreases with

increased ribbon width. Finally, we study the method of tuning bandgap in a GNM

consisting of uniformly distributed holes in a 2D graphene sheet. The bandgap is gov-

erned by the spacing between the holes, and a spacing of 22 Å results in a bandgap

of about 0.1 eV.
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Chapter 3

Gate Induced Negative Differential

Resistance in Graphene

Field-Effect Transistors

3.1 Introduction

Graphene field-effect transistors (GFETs) could be useful in analog and radio fre-

quency applications where high ON/OFF current ratios are not required. Graphene

does not have an energy band-gap, a serious hurdle for its applications in digital logic

gates. The efforts to induce a band-gap in graphene via quantum confinement or

surface functionalization have not resulted in a breakthrough. Motivated by recent

studies [86,87] on the use of GFETs for new concepts of electronic devices, we carried

out further investigation of the nonlinear behavior of a GFET. Our theoretical investi-

gations, confirm an unconventional biasing approach that results in negative differen-

tial resistance (NDR) in single layer and bilayer GFETs. An atomistic model based

on the Extended Huckel Theory (EHT) coupled with the non-equilibrium Green’s
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function formalism (NEGF) is used for electronic transport calculations. The cal-

culated current-voltage characteristics of single layer and bilayer GFETs show NDR

behavior at room temperature which originates from the symmetric band structure

of graphene. The theoretically calculated NDR in a GFET of conventional design

is supported by experimental investigations. The atomistic modeling shows that the

negative differential resistance appears not only in the drift-diffusion regime but also

in the ballistic regime at the nanometer-scale although the physics changes.

3.2 Device Structure and Biasing Scheme

A representative schematic diagram of a device is shown in Fig. 3.1. The device

consists of a single layer or bilayer graphene sheet as a conducting channel for the

SLGFET or BLGFET, respectively. For the BLGFET, two single-layer graphene

sheets are stacked in AB alignment with a separation distance of 3.35 Å. The dielectric

material for both the SLGFET and BLGFET on top of the channel is a high K

dielectric. The left and right contacts are single-layer graphene for the SLGFET

and bi-layer graphene for the BLGFET. The total channel length between the two

leads is 30nm for both the SLGFET and the BLGFET. In the conventional biasing

scheme of a GFET [88–90], only one terminal is varied while the rest are fixed. Here,

we use two types of unconventional biasing schemes for both the SLGFET and the

BLGFET. In the first biasing scheme, the gate voltage VTG is varied from negative to

positive voltage while the source-drain voltage VDS is simultaneously increased from

0 to positive voltage. The gate voltage is swept faster than the drain voltage. The

second biasing scheme is a diode-connected configuration in which the gate and drain

are shorted.
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Figure 3.1: Schematic diagram of the single layer graphene device with the contact
surface self-energies. The region inside the vertical lines is the channel region.
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3.3 Results and Discussion

The experimental device shown in Ref. [1] is large and operates in the drift-diffusion

regime. However, for future applications one has to consider electron transport in

scaled devices with feature sizes on the order of a few nanometers. Here, we perform

a theoretical analysis of a nano scaled GFET that operates in the ballistic regime.

In Figure 3.2, the simulated I − V characteristics of a SLGFET with two different

Fermi levels are presented for the first biasing scheme where we sweep top gate voltage

(VTG) from -8 V to 8 V while changing drain to source voltage (VDS) from 0 to 0.1

V simultaneously. The back gate (VBG) voltage values corresponding to the Fermi

levels are taken from the experimental setup [1] and are listed in Figure 3.2. From

the experimentally [1] obtained transfer characteristics (ID − VTG), we extract the

minimum point that corresponds to the charge neutrality point. To calculate the

potential in the channel region we use a capacitance model [91] combined with the

numerically calculated density of states . On top of the channel, an Al2O3 layer

of 23 nm is taken as dielectric material of the SLGFET. The larger the top-gate

capacitance, the smaller the sweep range of VTG is required. For our gate oxide we

use VTG within the range of values that are several times larger than those of VDS. In

the case of the BLGFET, the dielectric layer thickness is taken as 12nm (2nm Al2O3

and 10nm HfO2). The dielectric layer thickness is chosen from experimental study.

The calculated I − V characteristic shows NDR characteristics which qualitatively

follow the experimental trend [1]. The current valley position occurs at a lower bias

region for heavily doped n type devices.

The transport mechanism responsible for the NDR effect can be explained through

E − k relationships and the transmission curves shown in Figure 3.3 and 3.4 respec-

tively. Figure 3.3(i) shows the line-up of the bands in the source, channel, and drain
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regions in equilibrium. Figure 3.3(ii) shows the line-up of the bands in region-I of the

I−V curve (between points a and b) of Fig. 3.2. In this region, the source is grounded.

The drain voltage is positive. The channel potential is negative. The result, going

from source to drain, is an n-p-n junction. The source conduction band (SCB) over-

laps with the channel valence band (CVB). Under a small drain bias the electrons

transition from SCB to CVB. With increasing drain voltage, current increases as long

as the source conduction band and channel valence band overlap within the transport

window between µs and µd. After the peak current at point ‘b’ of the I − V , the

overlap area of the source conduction band and channel valence band starts dimin-

ishing with increasing VTG. It reaches a minimum as shown in Fig. 3.3(iii) at the

valley current at point ‘c’ of the I − V curve. With further increase of VTG, the

channel region becomes n-type as shown in Figure 3.3 (iv). and the transport takes

place through unipolar junctions. As a result, current again starts increasing with

increasing VTG and VDS as seen in region III of figure 3.2 .

In order to further elucidate the origin of the observed NDR effect, we calculated

the transmission coefficient shown in Figure 3.4 as a function of the energy. The

Fermi level of the source contact (µs) remains constant whereas the drain Fermi level

(µd) shifts with VDS. As VTG varies from negative to positive voltage, the Dirac point

shifts from the higher to lower energy. The current at any bias is proportional to the

area under the transmission curve bounded by the Fermi levels (µs-µd). Figure 3.4

shows the drain Fermi level for three different cases marked as µd1, µd2 and µd3. At

bias µd2, the Dirac point is within the energy window (µs- µd2), and the transmission

is suppressed. The density of states (DOS) at the Dirac point is a minimum, and the

probability of electron transmission from left to right lead is also minimum leading to

a valley current. The maximum transmission region is obtained when ectron states

and hole states match in the contact and channel regions resulting in the peak current.

41



Figure 3.3: Schematic illustration of energy spectrum of SLGFET showing source,
drain and channel region (i) no bias condition (ii) n-p-n junction (iii) minimum con-
duction near CNP (iv) unipolar junction
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the Fermi level for drain contact with different drain voltage VDS.

Now we turn to our analysis to the BLGFETs following a similar biasing scheme

where VTG is swept from -3 V to 0 V and VDS from 0 to 0.1 V. The flat band energy

profile in the channel region is shown in Figure 3.5. The top gate oxide for this device

is 12 nm (2 nm Al2O3/10 nm HfO2). For the BLGFET, the back gate oxide (dBG)

is taken as 300 nm thick SiO2. We calculate the voltage drop using a capacitance

model (see inset of fig. 3.11) as shown below:

U2 = U1
C12

(C12 + CTG2)
(3.1)

where U2 and U1 is the potential of the top and bottom layer of bilayer graphene
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Figure 3.5: Schematic diagram of the energy profile in the BLGFET channel region
for VTG < 0, VDS = 0.

sheet respectively, CTG2 and C12 is the back gate oxide capacitance and capacitance

between the bilayer graphene sheet respectively. Since d12 << dBG, CTG2 << C12.

Therefore, U2 = U1. Since both the layers have the same potential, the bandgap of

bilayer graphene channel is zero. The potential in the channel region is calcualted

similar to that of the SLGFET.

The simulated I − V characteristics curve of the BLGFET is shown in Figure

3.6. Here, the Fermi energy is selected from the experimental data. The curves

qualitatively follow the curves of the experimental data. The maximum peak to

valley ratio is about 3-5 depending on Fermi position and bias level. The calculated

NDR ratio also agrees well with that of experimental data [1].

Next we theoretically analyze a highly scaled version of the GFET in a diode

connected configuration (i.e., the second biasing scheme). The device is considered to
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operate in the ballistic, quantum-capacitance limit and we determine whether such a

FET, in the diode-connected configuration, will have a current-voltage response ex-

hibiting NDR. To investigate transport properties in the quantum capacitance regime,

we consider a 3 nm gate oxide with a dielectric constant of 25. The calculated gate

oxide capacitance CG is 7.3 µF/cm2. The device is in the quantum capacitance regime

when CG > CQ where CQ is the quantum capacitance of the channel [91]. In equi-

librium, the source-to-drain potential profile is that of an npn structure in which the

source and drain are n-type and at the same potential, and the channel is p-type. The

built in potential (Vpn) between the source and the channel region as shown in Fig.

3.7 (inset) is Vpn = 2µs where µs is measured from the charge-neutral point of the

source. The current-voltage response shown in Figure 3.7 is calculated for a diode-

connected SLGFET, i.e. the gate is shorted to the drain. The I − V response does

exhibit NDR, and for a higher value of µs, the peak to valley current ratio increases.

The I − V response demonstrates NDR for an effective 22 nm channel operating in

the ballistic limit and the quantum capacitance regime.

This regime is the opposite of the diffusive regime of the experimental device [1].

Although the transport physics is qualitatively different, the physical mechanism

governing the NDR is qualitatively the same. NDR results when the Dirac cone in

the channel can be moved sufficiently fast with respect to the gate voltage in the drain.

In a diode connected GFET in the quantum capacitance regime, this ration is 1:1. The

origin of the NDR behavior of the ballistic device can be described by the transmission

curves shown in figure 3.8 and the corresponding band alignments shown in the insets.

At low bias, the transmission is given by the red curve corresponding to the band-

alignment shown in the left inset. The transmission is limited by the transition

between the source conduction band and the channel valence band. Conservation of

energy and momentum cause the transmission to be proportional to the area of the
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Figure 3.8: Energy spectrum of drain-gate shorted SLGFET for low and high bias
region (inset). Transmission coefficients as a function of energy. The Transmission
plot corresponds to the minimum and maximum current of fig. 3.7 (µs = 0.5 eV )
where µs is the fermi level of the source and µd1 and µd2 are the fermi levels of drain
contact at maximum and minimum current respectively.

overlapping inverted triangles representing the electron and hole dispersions. The

minimums in the red transmission curve correspond to the energies of the charge

neutral points in the source and the channel. The current is proportional to the area

under the transmission curve between the source Fermi level (µs) and the drain Fermi

level (µd1) shown on the transmission plot. As the bias turns on, this area initially

increases and the current increases.

As the bias continues to increase, the charge-neutral point of the channel is pulled

down into the energy window between the source and drain Fermi levels as shown

in the right inset of figure 3.8 resulting in the blue transmission curve. The two
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minimums in the transmission again correspond to the charge neutral points that

have now been brought closer together in energy. The transmission regions labeled D

and C result from unipolar transport between the source and channel, hole-hole and

electron-electron, respectively. The region labeled B lying between the two charge-

neutral points results from interband transport between the source conduction band

and the channel valence band. The minimum in transmission at negative energies

outside of the domain of the graph results from the charge-neutral point of the drain.

At this bias, even though the difference between the source and drain Fermi levels, µs

and µd2, has increased, the area under the transmission curve is a minimum, resulting

in the current minimum and NDR.

In order to extend our analysis further we also simulate I − V characteristics (see

figure 3.9) for other cases such as Vpn > 2µs and Vpn < 2µs and observe that NDR

behavior is less pronounced. This is because the contribution of region ‘A’ at low

bias becomes less dominant than that of other two regions ‘C’ and ‘D’ at high bias

as shown in Figure. Therefore for the second biasing scheme the maximum NDR,

keeping fixed Fermi energy is obtained when built in potential, Vpn = 2µs.

Now we turn to our analysis to the diode connected BLGFET. We follow the

biasing scheme described in the previous section. To calculate the voltage between

the graphene layers we use two different approaches. In the first approach, we consider

no bandgap and in the second approach, a bandgap is induced. In our first approach,

a 3nm dual high-K, top and bottom gate are required to keep the BLGFET in the

quantum capacitance limit. The gates are shorted, so that the two layers of the

bilayer are at equal potential. In this case, the gate bias induces no bandgap in the

bilayer graphene, since no potential difference is created between the layers. The

current-voltage response of the diode-connected bilayer G-FET (BLGFET) is similar

to that of the SLGFET. A comparison of the SLGFET and the BLGFET with the
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Current plotted for µs =0.5eV and a built in potential of 1eV

same Fermi levels and built in potentials is shown in figure 3.10. The peak-to-valley

current ratio of 2.0 for the BLGFET is slightly greater than the PVCR of 1.8 for the

SLGFET. The analysis of the transmission for the BLGFET is similar to that of the

SLGFET. Although the density of states is finite at the charge neutral point, it is

still a minimum, and the transmission curves look qualitatively the same as in figure

3.8.

In our second approach, we consider 3 nm high-k symmetric top and back gate

oxides with VBG =0. Such a configuration is required to create a potential difference

between the two graphene sheets. The schematic capacitor model used for calculating

the potential difference between the layers of the bilayer graphene device is shown in

Fig. 3.11 (inset).
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Figure 3.11: Comparison of I−V characteristics of bilayer drain gate shorted device.
Current plotted for µs = 0.5eV and a built in potential of 1 eV, (inset: Schematic dia-
gram shows the gate oxides capacitance (CTG1, CTG2) and capacitance C12 in between
the bilayer graphene sheet).
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The thickness of both the top and the bottom gate oxide is taken as 3 nm high-k

which results in CTG1 = CTG2 ≈ C12. Considering an interlayer distance between the

top and bottom layer d12 = 3.35Å, C12 = 2.643µF/cm2. Therefore we get

U2 = VTG

C−1
TG1

(

C−1
12 + C−1

TG2 + C−1
TG1

) (3.2)

U1 = VTG

C−1
TG1 + C−1

12
(

C−1
12 + C−1

TG2 + C−1
TG1

) (3.3)

As CTG1 = CTG2 ≈ C12 , we get U2 = 1
3
VTG and U1 = 2

3
VTG. Therefore the voltage

drop in between the layers is 1
3
VTG, and the average voltage drop of the layers is

VTG/2. This is simply the average of the symmetric top and back gates with one at

VTG and one at ground. To create the maximum potential difference between the two

graphene sheets, one must sacrifice half of the potential control of the channel.

We calculate the I − V characteristics of the BLGFET device for both of these

approaches and show the comparison in Fig. 3.11 for µF = 0.5eV and Vpn=1eV. We

can see that in case of bilayer graphene with symmetric gates, even though a bandgap

is induced, the NDR is lost. The loss of NDR results from the loss of gate control of

the average channel potential.

3.4 Conclusions

Using the EHT and NEGF technique, we have investigated the transport character-

istics of nano-scaled SLGFETs and BLGFETs at room temperature. NDR appears

in both of the devices. To create a maximum potential difference between the two

graphene sheets of a BLGFET, one must sacrifice half of the potential control of the

channel. The benefit of inducing a bandgap with gate voltage is outweighed by the
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cost of losing half of the potential control of the channel. The net result is a reduction

in the magnitude of the NDR. The peak-to-valley difference increases for increasing

doping concentration of graphene sheets.
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Chapter 4

Interlayer magnetoconductance of

misoriented bilayer graphene

ribbons

The coherent, interlayer conductance of misoriented bilayer graphene ribbons is a

strong function of the Fermi energy,magnetic field and temperature. Edge states can

result in a large peak in the interlayer transmission at the charge neutrality point that

is several orders of magnitude larger than the surrounding low-energy transmission.

The coherent interlayer conductance is consistently asymmetric around the charge

neutrality point for all structures with the value differing by up to 3 orders of mag-

nitude at Ef = ±0.05 eV. The low-energy states exhibit a high magnetoconductance

ratio, and the magnetoconductance ratio tends to increase as the width of the ribbons

decrease. The maximum value for the 35 nm wide bilayer ribbons at 10T is 15,000%.

Non-equilibrium Green’s function calculations of the interlayer transport properties

are also supported by semi-analytical calculations based on Fermi’s Golden Rule.

This intrinsic magnetoconductance effect is realized without the use of any ferromag-
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netic leads and can be promising for future spintronics applications. We also study

interlayer bias dependency on simulated interlayer conductance. The nature of the

bias modulated conductance gives rise to non-linear current-voltage characteristics.

4.1 Introduction

The electronic structure of bilayer graphene is highly sensitive to the stacking geom-

etry [15, 16]. Experimentally, the layers of bilayer or multilayer graphene tend to be

rotated (i.e., twisted or misoriented) with respect to each other. [45–47] The need to

understand the electronic properties of twisted graphene layers stimulated a number

of theoretical and experimental investigations. [11,46–53,92–95] The low energy states

in each layer of misoriented bilayer graphene are effectively decoupled and maintain

a linear dispersion for twist angles greater than a few degrees. Turbostratic graphitic

structures maintain the high mobility of graphene. [96] The electronic decoupling

and high interlayer resistance is a coherent quantum effect resulting from destructive

interference between the electron wavefunctions of the two rotated layers. [50]

The coherent interlayer transmission is a strong function of the twist angle, and it

can be strongly suppressed giving high interlayer contact resistances. [56] Bistritzer

and MacDonald found coherent interlayer contact resistances changing by 16 orders

of magnitude as the rotation angle is changed by 30◦. [56] Resistances values varied

from 1015 Ωµm2 to 0.1 Ωµm2. Recent calculations of the phonon-mediated, interlayer

conductance indicate that the phonon-mediated current is a significant interlayer

transport mechanism at room temperature. [57] The phonon-mediated current has a

weaker dependence on rotation angle. At room temperature with a Fermi level 260

meV above the Dirac point, the interlayer resistance was found to smoothly vary from

50 Ωµm2 at small rotation angles of a few degrees to 330 Ωµm2 at a rotation angle
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of 30◦ [57]. Experimental measurements found similar trends but a higher resistance

that varied from 750 Ωµm2 to 3400 Ωµm2 [97].

The coherent electronic decoupling between two dimensional rotated graphene

sheets is still present when the overlap region is scaled to a few nanometers [11]. Two

armchair nanoribbons overlapping at an angle of 90◦ result in a misoriented overlap

region with a crystallographic rotation angle of 30◦. Even with an overlap region of

1.8 nm × 1.8 nm, the coherent interlayer transmission is reduced by approximately

5 orders of magnitude. In such structures, an interlayer voltage can result in a large

modulation (∼ 103) of the coherent interlayer current [11]. The vibrational modes and

their effect on the current of the crossed GNR system have not yet been investigated.

In addition to electronic properties, the unique chiral nature of quasi-particles in

graphene results in a novel quantum Hall effect [17–19] that opens a new possibil-

ity for spintronic applications [58, 59]. The integer quantum Hall effect in bilayer

graphene indicates the presence of massive chiral quasiparticles [98] with a parabolic

dispersion at low energy. The electron motion in twisted graphene is modulated by

the application of an external perpendicular magnetic field (B-field). The B-field

introduces the Peierls phase in the Bloch functions and thus modifies the energy-

momentum dispersion, the subband spacings, the energy width, and the local density

of states [82, 99, 100]. At sufficiently large magnetic field, the cyclotron diameter of

the electron motion becomes smaller than the GNR width, resulting in the formation

of Landau levels [60, 82].

GNRs can have interesting magneto-electronic properties with high magnetoresis-

tance. [58, 63, 65, 66] GNRs with zigzag edges (ZGNRs) have shown magnetism both

theoretically [58, 101, 102] and experimentally [103]. A spin-valve device based on a

graphene nanoribbon has been reported where the magnetoresistance is configured

with two ferromagnetic (FM) states of ZGNR electrodes (parallel vs. antiparallel
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alignments) and the results of first-principles simulations exhibit high magnetoresis-

tance values [58]. Saffarzadeh and Asl [66] investigated spin polarized transport of

the planar FM/Grahene flake/FM junction with zigzag interfaces and showed that

the junction exhibits a spin valve effect with magnetoresistance ratios as high as 95%.

Experimentally a 10% magnetoresistance ratio in a GNR based spin valve device has

been observed, where a 200 nm GNR was connected to NiFe contacts [62]. Another

experimental study reported a negative magnetoresistance of nearly 100% at low tem-

peratures, and over 50% at room temperature [63]. Hwang and Sarma [68] predicted

a negative magnetoresistance for intrinsic graphene and a nonmonotonic magnetore-

sistance for extrinsic graphene with a parallel magnetic field. In most of the previous

studies, a magnetoresistance effect was induced by a change in the relative magnetic

orientations of FM contacts.

In addition to the above intrinsic properties, novel van der waals (vdW) het-

erostacks of graphene and non-graphene layers (MoS2, hBN, Bi2Te3, TiO2 etc.) have

been demonstrated. [41, 104–114] Several types of heterostructures consisting vdW

materials have been proposed for various applications such as high mobility electronic

devices [104], molecular scale electronic devices [105], nonvolatile memory cells [108]

and magnetic field effect transistors [109]. The fabrication approach often consists of

creating various individual materials by exfoliation and/or growth followed by me-

chanical stacking [111]. Such a procedure naturally leads to misoriented interfaces.

The coherent interplane transport between misoriented graphene layers is gov-

erned by quantum interference and the relative phases of the wavefunctions of the

two layers. Since magnetic fields modify the phase of the electronic wavefunction, one

might expect that the interlayer transport could be sensitive to an applied magnetic

field. Any real structure is finite in size. It has edges where localized edge states

can exist. If the scaling laws for heterostructure bipolar transistors serve as a guide,
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the horizontal dimensions of devices proposed to attain THz cutoff frequencies must

be on the order of tens of nanometers [115]. For these reasons, we investigate the

interlayer transport between two stacked graphene ribbons with a crystallographic

misorientation of 30◦. Such a geometry results from an armchair ribbon on a zigzag

ribbon. The widths of the nanoribbons considered range from 35 nm to 70 nm. The

interlayer magnetoconductance is calculated as a function of Fermi level and perpen-

dicular magnetic field. The magnetic field variation of the interlayer conductance can

be large, changing by several orders of magnitude.

4.2 Method

A numerical approach and a semi-analytical approach are used to give insight into

the interlayer coupling. The band structure calculations are performed using a tight

binding π-bond model. The electron transmission and conductance are calculated

using the non-equilibrium Green’s function (NEGF) formalism. The interlayer trans-

mission is also calculated semi-analytically using Fermi’s golden rule and compared

with NEGF results. The calculation methods and the device structure are discussed

below.

4.2.1 Misoriented bilayer structures

Figure 4.1(a,b) shows the schematic structure of the four-terminal misoriented bilayer

graphene nanoribbon (mBGNR). It consists of two graphene nanoribbons (GNRs),

an armchair nanoribbon (AGNR) placed on top of a zigzag nanoribbon (ZGNR) with

a vertical separation of 3.35Å . The alignment of the two GNRs corresponds to a

crystallographic misorientation angle of 30◦. A 30◦ rotation is an incommensurate ro-

tation angle, [50] so that there is no periodicity in the bilayer structure. The top view
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Figure 4.1: Schematic diagram of mBGNR, highlighted region shows the Moire pat-
tern within the overlapped channel region.

of a section of the bilayer shown in Fig. 4.1(c) displays the Moire pattern resulting

from the two misoriented graphene layers. Two types of mBGNRs are considered,

symmetric structures in which both GNRs have the same width as shown in Fig.

4.1(a) and asymmetric structures in which the AGNR is narrower than the ZGNR as

shown in Fig. 4.1(b). The asymmetric structures serve to move the overlap region

away from the zigzag edges which dominate the low-energy interlayer transmission.

The contact regions denoted by the gold termination at the ends of the nanorib-

bons are treated as semi-infinite continuations of the the individual armchair or zigzag

ribbon with no interlayer coupling. Physically, such a system would be implemented

using a thin insulator such as BN with a window etched out. In the area of the

window, the graphene layers would be in intimate contact. The contacts would be
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made outside of the window to the individual layers separated by the insulator.

4.2.2 Numerical model

The interlayer transport of the mBGNR is calculated using a tight-binding (TB)

Hamiltonian with the NEGF formalism [116, 117] in the presence of an external

perpendicular magnetic field. The intralayer nearest-neighbor hopping parameter

is γ0 = 3.16 eV. The interlayer hopping between atom i on the top layer and atom

j on the bottom layer is calculated using γij = γ1e
−3(dij−d0) where dij is the distance

between atom i and atom j, γ1 = 0.39 eV is the interlayer nearest neighbor hopping

and d0 = 3.35Å is the inter-GNR distance. [118] The inplane cutoff distance is 3acc,

where acc is the C-C bond length. The applied perpendicular B-field of B = (0, 0, Bz)

induces a vector potential A = (−Bzy, 0, 0). In the presence of an external per-

pendicular magnetic field, the coupling energy between neighboring atoms acquires a

Peierls phase factor. [119] The coupling γ0(1) is modified to γ0(1) exp(iq
∫ ln

lm
A · dl/~),

where ln(m) is the coordinate of atom n(m). The magnetic field is included in both

the channel and the contact regions.

To compute the interlayer transmission T (E) of such large aperiodic structures,

the channel region is divided into 4acc wide blocks. Each block consists of a different

number of atoms due to the non periodicity. The Hamiltonian matrix elements of

these nonuniform blocks are used in a non-uniform recursive Green’s function (RGF)

algorithm to calculate the Green’s function of the channel as described in Ref. [ [120]].

In the contact region, γ1 is set to zero so that the 4 contacts are isolated from each

other. The self energies of the four contacts are calculated with the decimation

method [121] using a 1 meV convergence factor. The transmission between a left

contact on the top GNR and a right contact on the bottom GNR, T (E), is calculated
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from the standard Green’s function expression,

T (E) = tr{Γa
1,1G

R
1,NΓ

z
N,N(G

R
1,N)

†} (4.1)

where the indices 1 and N indicate the first and last block-layers of the mBGNR

channel, respectively. Denoting the armchair contact self-energy on the left as Σa
1,1

and the zigzag contact self-energy on the right as Σz
N,N , then the injection matrices

Γ in Eq. (4.1) are given by Γa
1,1 = i(Σa

1,1 − Σa†
1,1) and Γz

N,N = i(Σz
N,N − Σz†

N,N ). The

zero-temperature conductance G is given by,

G =
e2

~
T (EF ). (4.2)

where EF is the Fermi level. The magnetoconductance (MC) ratio is,

MC ≡
G(B)−G0

G0
(4.3)

where G(B) and G0 are the conductance at a specific Fermi energy calculated at

finite magnetic field and zero magnetic field, respectively. The diagonal elements of

the spectral function, Ai,i(E) = −2ImGR
i,i(E), where i is the atom index, will be

plotted to give insight into the spatial overlap of the wavefunctions on the two GNRs.

4.2.3 Analytical Model

The analytical expression for T (E) obtained from Fermi’s golden rule is [11],

T (E) = 4π2
∑

m,n

|Mm,n|
2Nn

a (E)N
m
z (E). (4.4)
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The matrix element Mm,n is calculated between a ka state of mode n on the AGNR

and a kz state of mode m on the ZGNR. Nn
a (E) and Nm

z (E) are the 1D density of

states of the armchair and zigzag nanoribbon, respectively. T (E) depends on both

the magnitude of the matrix element squared between the electron wavefunctions of

the top and the bottom layer and the joint density of states of the two GNRs. The

matrix element Mm,n is calculated using the electronic wave functions of the isolated

GNRs and expressed as,

Mm,n ≡ 〈ψm,kz |Hint|ψn,ka〉 (4.5)

where |ψm,ka〉 and |ψn,kz〉 are the Bloch wavefunctions for the armchair and the zigzag

nanoribbons, respectively, and Hint is the interlayer component of the tight-binding

Hamiltonian. The Bloch wavefunctions for the isolated armchair and zigzag nanorib-

bons are the eigenvectors of the tight-binding Hamiltonian Hk for each nanoribbon.

The wavefunctions are extended over multiple unit cells of the nanoribbons using

Bloch’s theorem, ψm,k(na) = eiknaψm,k(n = 0), where a is the unit cell length along

the nanoribbon, and n is the integer index of the unit cell.

4.3 Results and discussions

4.3.1 Magnetic field effect on interlayer transport

In this section, we will discuss the effect of magnetic field (B-field) on interlayer trans-

mission, T (E) of the mBGNRs. Since the interlayer transmission can be calculated

from the wavefunctions and density-of-states of the individual nanoribbons, it is use-

ful to understand the effect of a magnetic field on the individual nanoribbons. First,

consider the energy-momentum (E− k) dispersion relations resulting from the eigen-

values of Hk as a function of magnetic field. The band structures of the individual
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Figure 4.2: Energy band structure of 35nm individual single layer (a-d) AGNR and
(e-f) ZGNR at B = 0T, 1T, 2T and 10T, respectively.

35nm wide AGNR and ZGNR are plotted at 4 values of perpendicular magnetic field

as shown in Figs. 4.2 (a-d) and 4.2 (e-h), respectively. For AGNR, at low magnetic

field (0-2T), the 2nd subband appears at ± 0.06 eV as shown in Fig. 4.2(a-c). At

higher magnetic fields (10T), the subbands shift to higher energies as Landau lev-

els (LLs) begin to form. [82, 122, 123] Also, as the magnetic field increases (see Fig.

4.2(d)), the edge of the conduction band and the edge of the valence band flatten at

the Dirac point.

For ZGNR, the electronic band structure exhibits a flat band at the charge neutral-
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ity point even at B=0T due to the localized edge states [82,83]. At low magnetic field

(0-2T), the 2nd subband appears at ± 0.09 eV. Like the AGNR, at higher magnetic

fields, the subbands of ZGNR move further away.

Tables

(i) Calculated dc(nm) and EL(eV )

B 0.5T 1T 2T 5T 10T

dc(nm) 200 100 50 20 10

EL(eV ) - - 0.05, 0.13 0.08, 0.11 0.11, 0.16

(ii) Origin of steps (eV) observed in simulated T (E)

mBGNR subband(AGNR) subband(ZGNR) Landue Levels

35nm ±0.06 ±0.09 0.08, 0.11 0.11, 0.16

50nm ±0.04,±0.08 ±0.65,±0.1 0.05, 0.13 0.08, 0.11 0.11, 0.16

Table 4.1: i) Calculated cyclotron diameters dc(nm) and the Landau level energies

EL(eV ) at different magnetic fields (ii) Origin of the steps (eV) observed in simulated

transmission of the 35 nm and 50 nm mBGNR as shown in Figs. 4.5.

The LL formation can be further explained by the cyclotron diameter, dc [124].

As dc becomes smaller than the ribbon width (W), the cyclotron motion dominates

and the LLs become well developed (see table 4.1 (i)). In the case of B<2T, the LLs

are not perfectly formed and the band structure remains almost unchanged, because

the edges interrupt the cyclotron motion of the electron. [82] For B>2T, where the

ribbon width is sufficiently wide compared with the cyclotron diameter (dc ≤ W ),

the LLs are nearly developed result in flat band. From Figs. 4.2 (a-h), it is clearly

understood that the applied B-field drastically modifies the energy bands by shifting
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(a) (b)

Figure 4.3: LDOS plot in color scale to demonstrate LLs bahaviour along the width
direction for 35 nm (a) AGNR and (b) ZGNR at B = 10T.

the subbands, altering the band feature and creating discrete and well-separated LLs.

This is also clearly understood from Table 4.1.

Now we will analyze the calculated spatial distribution of the local density of

states (LDOS) of the mBGNRs. In Fig. 4.3 (a,b), we show the color scale plot of

the LDOS along the width direction at B = 10 T for AGNR and ZGNR respectively.

LLs are identified as the high intensity region of the color scale plot.

The density of states of the individual nanoribbons that appear in Eq. (4.4)

are proportional to the inverse velocity ∼ (∂E/∂k)−1. When the slope is flat, the

density of states is large, and Eq. (4.4) indicates that this could result in peaks

in the transmission. This is what will be observed in the NEGF calculations of

transmission. As the density of states of the armchair ribbon near the Dirac point

increases with magnetic field, so also does the spatial overlap of the armchair and

zigzag wavefunctions. Both wavefunctions become more localized near the edges of

the nanoribbons. The spectral function Ai,i(E) which is proportional to the squared

magnitude of the wavefunction on each atom in the unit cell consisting of 4 atomic

layers is plotted as a function of its x-coordinate across the width of the nanoribbon

66



Figure 4.4: Spectral function of (a) the top AGNR and (b) the bottom ZGNR for the
symmetric 35 nm mBGNR structure at two different magnetic fields of 0T and 10T
at Ef = 0.05 eV.

in Fig. 4.4.

Figs. 4.4 (a) and (b) show the spatial distribution of the wavefunctions of the

top (AGNR) and the bottom (ZGNR) layer of the 35 nm mBGNR respectively at

magnetic fields of 0T and 10T near the charge neutrality point (E = 0.05 eV). At

zero magnetic field, |ψ|2 of the AGNR is distributed evenly across its width as shown

in Fig. 4.4(a), whereas for the ZGNR, |ψ|2 is more localized away from the center.

This explains the observed flat bands in figure 4.2(e) are due to the edge states of the

ZGNR. At a magnetic field of 10T, the magnitude of |ψ|2 is maximum at the edges

for both the AGNR and the ZGNR. The redistribution of the wavefunctions towards

the edges of the GNRs and the flattening of the dispersion in Fig. 4.2(d) indicate

that Landau levels and edge states are beginning to form. Therefore, electrons are

transported mostly along the edges of the ribbon and that eliminates spatial overlap

of the forward and backward transport states. As a result ballistic transport occurs
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without scattering between the counter propagating edge states. For wider GNR

structures (W = 50 nm, 70 nm) the Landau levels form at lower magnetic fields since

the Landau levels begin to form when the cyclotron diameter becomes smaller than

the ribbon width. [82, 124].

Now we will discuss the inter layer-transmission, T (E), which describes the tun-

neling probability of an electron from the top layer (AGNR) to the bottom layer

(ZGNR) of mBGNR (between contact 1 to 4 as shown in schematic 4.1). The ex-

pression for the transmission in Eq. (4.4) depends on both the joint density of states

and the matrix element squared. As the magnetic field increases, the wavefunctions

of both the AGNR and the ZGNR have a higher weight at the edges of the nanorib-

bon increasing their spatial overlap. Also, as discussed above, the joint density of

states near the Dirac point increases. Thus, both the wavefunction and the density

of state dependence on the magnetic field suggest that the interlayer transmission

should increase near the Dirac point as the magnetic field increases.

The interlayer transmissions, T (E) calculated from NEGF for the symmetric 35

nm, 50 nm, and 70 nm mBGNRs between contact 1 on the top AGNR and contact

4 on the bottom ZGNR (as shown in Fig. 4.1 (a)) are plotted in Fig.4.5 (a,b,c) for

increasing values of magnetic field respectively. At B = 0T, the magnitude of T (E) is

low throughout the energy window except near the charge neutrality point (E = 0).

Near the charge neutrality point, the transmission peaks result from the edge states

localized at the ZGNR edges. The low magnitude of T (E) is consistent with the

electronic decoupling found in recent experimental [47] and theoretical studies [50] of

twisted bilayer graphene.

The coherent, interlayer conductance at zero magnetic field and temperature of the

50 nm mBGNR at Fermi energies of 0.05 eV and 0.225 eV are ∼ 1.9 S/cm2 and ∼ 100

S/cm2, respectively. At higher Fermi energies, the coherent conductance increases
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Figure 4.5: Transmission spectrum for different magnetic fields of the symmetric (a)
35nm (b) 50 nm and (c) 70 nm mBGNR structures.

due to the presence of excited subbands. Bistritzer and MacDonald [56] calculated an

interlayer conductance between two infinite graphene sheets with a 30◦ misorientation

angle and a Fermi energy of 0.26 eV of ∼ 0.4 S/cm2. Their result depends sensitively

on their value of the finite lifetime broadening which was 75 meV, so that a direct

comparison of quantitative values is, perhaps, not too meaningful. It is, however,

possible that the finite size increases the interlayer conductance due to the presence

of the zigzag edge states at low energy and multiple modes at higher energies. An

increase in the coherent interlayer conductance per unit area with decreasing width is

consistent with other calculations of crossed armchair nanoribbons a few nanometers

wide. [11]

The room-temperature, interlayer conductance between infinite graphene sheets

with a 30◦ misorientation angle is mediated by a 30 meV beating-mode, interface

phonon resulting in a phonon-mediated conductance of ∼ 3×105 S/cm2 at EF = 0.26

eV. [125] This is 3 to 5 orders of magnitude larger than the coherent component

of the conductance. Thus, low temperature and low bias are required to observe

the coherent component of the conductance [125]. At low bias such that only the

phonon adsorption channel is available, the phonon-mediated current is proportional
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to the Bose-Einstein factor. Reducing the temperature from 300 K to 18 K reduces

this factor by 108 which would allow the coherent component of the conductance to

dominate throughout the energy spectrum.

The transmission for all structures in Fig. 4.5 is asymmetric around the charge

neutrality point. Since the density of states of the individual GNRs are symmetric

around the charge neutrality point, the matrix element in Eq. (4.4) must be asymmet-

ric. The asymmetry indicates that the coupling of the conduction bands is stronger

than that of valence bands. Further analysis of the asymmetry using Fermi’s golden

rule will be discussed later.

As the magnetic field is swept from 0 to 10 T, there can be several orders of

magnitude change in the interlayer transmission (see inset of Fig. 4.5 (a)). The

abrupt steps in transmission such as those of the 35 nm mBGNR at ± 0.06 eV and

± 0.09 eV result from the subbands in AGNR and ZGNR as previously discussed in

Fig. 4.2. At the highest magnetic field of 10T, the increasing energy of the Landau

levels pushes the first step to higher energies outside the domain of the graphs. The

qualitative trends in the transmission spectrum remain the same for the wider 50

nm and 70 nm structures shown in Figs. 4.5 (b) and (c), respectively. The primary

difference is that the transmission steps are more closely spaced since the subbands

are closer in energy.

In the symmetric mBGNRs, the edge states of the ZGNR dominate the coherent

transmission spectrum with peaks several orders of magnitude above the rest of the

low-energy spectrum. To minimize the effect of the ZGNR edges, two different asym-

metric mBGNR structures are considered where the ZGNR is wider than the AGNR.

The two different structures consist of a 25 nm wide AGNR on a 50 nm wide ZGNR

(50/25 mBGNR) and a 35 nm wide AGNR on a 70 nm wide ZGNR (70/35 mBGNR).

Two qualitative trends in the transmission as a function of energy and magnetic field
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Figure 4.6: Transmission spectrum for different magnetic fields of the asymmetric (a)
50/25 nm mBGNR and (b) 70/35 nm mBGNR structures.

shown in Fig. 4.6 are similar to those of the symmetric mBNGRs. There is still large

asymmetry between the electron and hole transmission. The change in the low-energy

transmission with magnetic field is still large.

There are also qualitative differences. The peak in transmission becomes narrower

as the zigzag edges are moved away from the overlap region. This is expected since the

edge states decay exponentially into the body of the ribbon. In the largest structure,

the asymmetry around the charge neutrality point switches such that the low-energy

hole transmission is larger than the low-energy electron transmission. The line-shape

of the transmission resembles that of a Fano resonance [126]. Such a resonance results

from a localized state weakly coupled to the continuum. In this case, there is the

localized zigzag edge state weakly coupled to the continuum state of the armchair

nanoribbon.

To demonstrate that the Fermi’s golden rule expression of Eq. (4.4) captures the

essential physics of the interlayer transmission, the transmssions of the 50/25 nm
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Figure 4.7: Comparison between analytical and simulated T (E) of 50/25 nmmBGNR.

mBGNR structure calculated from Eqs. (4.4) and (4.1) are plotted in Fig. 4.7.

The semi-analytical transmission from Eq. (4.4) captures the qualitative trends of

the transmission including the large asymmetry between the electron and hole trans-

mission and the peak near the charge neutrality point. The asymmetry results from

the matrix element. This is demonstrated by the plot of the matrix element squared

shown in Fig. 4.8. This asymmetric nature results from the interlayer interaction

and stacking geometry. Lu et al [100] studied the magneto-electronic properties of

AA and ABC stacked graphite and found that the interlayer interactions destroy the

symmetry about the Fermi level.

The coherent, interlayer magnetoconductance ratio as defined in Eq. (4.3) can be

large. The zero-temperature, coherent magnetoconductance for 3 different structures

with a Fermi energy of 0.05 eV is plotted versus magnetic field in Fig. 4.9 (a).
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Figure 4.8: Matrix element square of 50/25 nm mBGNR.

The narrowest 35 nm structure has the largest magnetoconductance ratio, and the

magnetoconductance ratio tends to decrease with increasing width. For the 35 nm

mBGNR, the magnetoconductance ratio increased from 90% at 2T to 15,000% at

10T. The maximum magnetoconductance ratio at 10 T of the 50 nm structure is

1,300% and that of the 50/25 nm structure is 450%.

We also investigate the temperature dependence on MC ratio of the 50/25 nm

mBGNR at Ef = 0.035 eV as shown in figure 4.9 (b). The MC ratio decreases as

temperature increases from T = 4.2 K to 300 K. At room temperature, the MC

ratio of the mBGNR is around 80% and 12% at 10T and 1T respectively. As the

temperature increases, the Fermi level broadening causes the low-energy conductance

to be dominated by the large peak at the charge-neutrality point. To the extent that

this peak can be suppressed by moving the zizag edges farther away from the the
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Figure 4.9: (a) Calculated MC ratio of different mBGNRs at Ef = 0.05eV and (b)
Temperature dependence of MC ratio of 50/25 nm mBGNR at Ef = 0.035eV .

overlap region, the larger the coherent magneto-conductance ratio can be.

4.3.2 Effect of interlayer potential difference

In this section, we will discuss the effect of the interlayer potential difference (Vb) on

interlayer transmission, T (E). To include Vb, we apply a finite voltage symmetrically

between the top and the bottom layers of mBGNR. The site energies of the carbon

atom of the top and bottom GNRs are rigidly shifted by −eVb/2 and eVb/2 respec-

tively. Figure 4.10 shows the simulated transmission at different bias voltages of Vb

= 0 V, 0.1 V and -0.1 V for an asymmetric 50/25 nm mBGNR.
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Figure 4.10: Effect of interlayer bias voltage (Vb) on simulated T (E) of 50/25 nm
mBGNR.

At Vb = 0V, the simulated transmission is asymmetric, and the peak is centered

around the charge neutrality point (E = 0). With applied voltage (Vb), transmission

peak is shifted by −eVb/2. Under positive bias (Vb = 0.1V), the transmission peak is

shifted to -0.05 V. The magnitude of the transmission increases by several order of

magnitude within the energy transport window lying between the left and right Fermi

levels, µL and µR, and the system becomes conductive. Under negative bias (Vb =

-0.1V), the transmission peak is shifted to +0.05 V, and due to the asymmetry, the

transmission is strongly suppressed withing the energy transport window. Therefore,

a positive bias enhances the transmission whereas a negative bias suppresses the

transmission within the energy window.
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Figure 4.11: Calculated I − V characteristics 50/25 nm mBGNR showing non-linear

diode characteristics

The I − V characteristic resulting from varying the bias voltage Vb from -0.25

V to 0.25 V is shown in Fig. 4.11. The calculated I-V characteristic shows some

non-linear diode-like behavior at low bias and room temperature. This behavior is

more pronounced at low temperature when the 50 meV energy window shown in Fig.

4.10 is much greater than kBT .

4.4 Conclusions

We investigated the interlayer transport properties of both symmetric and asymmet-

ric mBGNR structures under applied perpendicular magnetic field and interlayer bias.

The coherent, interlayer conductance of misoriented graphene nanoribbons is a strong
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function of energy and magnetic field. Experimental observation will require low tem-

perature (< 20 K) and low bias (< 30 mV) to remove the phonon-mediated channel.

When edge states are present in or near the overlap region, they result in a large

peak in the coherent interlayer transmission at the charge neutrality point. The peak

is several orders of magnitude larger than the surrounding low-energy transmission

spectrum. The width of the peak is reduced as the edge states are moved away from

the overlap region, since the edge states decay exponentially into the nanoribbon. The

coherent interlayer conductance is consistently asymmetric around the charge neu-

trality point for all structures with the value differing by up to 3 orders of magnitude

at EF = ±0.05 eV. Since the density of states of the individual GNRs is symmetric,

the asymmetry results from the matrix element of the wavefunctions. In the 70/35

nm mBGNR structure in which the zigzag edge states have been moved the furthest

from the overlap region, the asymmetry appears as a Fano resonance. This is consis-

tent with the localized edge states being weakly coupled to the continuum states in

the overlap region. The low-energy states exhibit a high magnetoconductance ratio at

low temperature, and the magnetoconductance ratio tends to increase as the width of

the nanoribbons decrease. The maximum value at 10 T is 15,000%. The transmission

can be modulated by the interlayer bias. The calculated I − V characteristics of the

mBGNR are asymmetric with rectifying behavior.

77



Chapter 5

Conclusion

In summary, we study the electronic and magnetic properties of nano patterned

graphene based structures using extended Huckel and empirical tight-binding mod-

els. Three different structures were investigated for creating a bandgap. Significant

bandgap opening is observed in all proposed structures. Dangling bonds at the unpas-

sivated edges of an AGNR create extra modes in the channel region, and that they are

removed by H passivation. The magnitude of effective mass is inversely proportional

to the width of the AGNR. External bias has a significant effect on the bandstruc-

ture of bilayer GNRs. Based on this property we considered a device of two stacked

monolayers of AGNR termed a s-AGNR device. The stacked device shows negative

differential resistance (NDR) behavior. The magnitude of the NDR decreases with

increased ribbon width. Finally, we study method of tuning the bandgap in a 2D

graphene nanomesh. consisting of uniformly distributed holes in a graphene sheet.

The bandgap is governed by the spacing between the holes, and a spacing of 22 Å

results in a bandgap of about 0.1 eV.

In the second part of the dissertation, we describe an unconventional approach of

modulating current voltage characteristics without inducing a bandgap. Both single-
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layer and bilayer graphene FETs are considered, and NDR is observed on both devices

in a diode-connected biasing scheme in the quantum capacitance limit. The largest

peak-to-valley current ratio occurs in the BLGFET when the two layers are at the

same potential. To create a bandgap in the BLG using the gate voltage, one must

sacrifice some fraction of the potential control of the channel. To create a maximum

potential difference between the two graphene sheets of a BLGFET, one must sacrifice

half of the potential control of the channel. The benefit of inducing a bandgap with

gate voltage is outweighed by the cost of losing potential control of the channel. The

net result is a reduction in the magnitude of the NDR. The peak-to-valley difference

increases for increasing doping concentration of graphene sheets.

Finally we investigated the interlayer transport properties of both symmetric and

asymmetric misoriented bilayer graphene nanoribbons under applied perpendicular

magnetic field and interlayer bias. The coherent, interlayer conductance of misori-

ented graphene nanoribbons is a strong function of energy and magnetic field. Exper-

imental observation will require low temperature (< 20 K) and low bias (< 30 mV)

to remove the phonon-mediated channel. When edge states are present in or near the

overlap region, they result in a large peak in the coherent interlayer transmission at

the charge neutrality point. The peak is several orders of magnitude larger than the

surrounding low-energy transmission spectrum. The width of the peak is reduced as

the edge states are moved away from the overlap region, since the edge states decay

exponentially into the nanoribbon. The coherent interlayer conductance is consis-

tently asymmetric around the charge neutrality point for all structures with the value

differing by up to 3 orders of magnitude at EF = ±0.05 eV. Since the density of

states of the individual GNRs is symmetric, the asymmetry results from the matrix

element of the wavefunctions. In the structure in which the zigzag edge states have

been moved the furthest from the overlap region, the asymmetry appears as a Fano
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resonance. This is consistent with the localized edge states being weakly coupled to

the continuum states in the overlap region. The low-energy states exhibit a high mag-

netoconductance ratio at low temperature, and the magnetoconductance ratio tends

to increase as the width of the nanoribbons decrease. The maximum value at 10T is

15,000%. The transmission can be modulated by the interlayer bias. The calculated

I-V characteristics of the mBGNR are asymmetric with rectifying behavior.
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