
UC Davis
IDAV Publications

Title
Procedural Generation of Triangulation-Based Visualizations

Permalink
https://escholarship.org/uc/item/8cg1b19v

Authors
Weber, Gunther H.
Heckel, Bjoern
Hamann, Bernd
et al.

Publication Date
1999

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8cg1b19v
https://escholarship.org/uc/item/8cg1b19v#author
https://escholarship.org
http://www.cdlib.org/

Procedural Generation of Triangulation-Based Visualizations

Gunther H. Weber1,2, Bjoern Heckel1, Bernd Hamann1, and Kenneth I. Joy1

1 Center for Image Processing and Integrated Computing (CIPIC), Department of
Computer Science, University of California, Davis, CA 95616-8562, USA

2 AG Graphische Datenverarbeitung und Computergeometrie, Fachbereich Informatik,
Universiẗat Kaiserslautern, D-67653 Kaiserslautern, Germany

Abstract

We present a new visualization approach based on procedural grid
generation for scattered data sets. Instead of pre-computing trian-
gulations for a given set of levels in a data hierarchy, a triangulation
within a specified region of interest (ROI) is computed by consid-
ering scattered data of a pre-computed scattered data hierarchy. By
choosing an appropriate level in the hierarchy the number of sam-
ples representing the data set in the ROI can be kept sufficiently
small to interactively generate a triangulation and a visualization of
the data within the ROI. This allows one to generate the triangula-
tion on-the-fly during the visualization process.

1 Introduction

Visualization of large-scale scientific data sets is a field of increas-
ing importance. Often, data are given as scattered data,i.e., data
samples consisting of a position and a data value without connec-
tivity. A commonly used solution to deal with the visualization of
large-scale data sets is to use ahierarchical representation. A coarse
data representation allows one to get an overview of the data set.
However, it is also necessary to enable a user to view a given region
of interest (ROI) in the data domain at fine detail. This necessi-
tates the availability of different resolution levels. A hierarchical
representation that stores a data set using different levels of detail
is therefore necessary.

Many visualization techniques depend on connectivity informa-
tion, see [6, 7]. If connectivity information is required, it is possible
to generate a set of hierarchical grids representing a data set at dif-
ferent resolutions. However, if the original data set consists only
of unconnected sample points only triangulations for a set of repre-
sentations at given resolutions are computed1.

In order to achieve sufficient accuracy in high-resolution rep-
resentations these have to consist of a relatively large amount of
samples. Thus, the computational cost necessary to generate a tri-
angulation for these levels becomes prohibitively high. This makes
the approach of computing a grid for an entire hierarchy level im-
practical.

At a higher levels of detail it is not necessary to generate a tri-
angulation for the complete set of data associated with this level in
the hierarchy. We note that these levels are only accessed when a
user concentrates on a specific ROI in a data set. Thus, it is only
required to generate a triangulation for the region currently of in-
terest to a viewer. We present an innovative approach to on-the-fly
grid generation enabling efficient localized visualization. Instead
of pre-computing grids for a fixed set of levels of detail, we apply
a procedural triangulation scheme. Depending on the size of an
ROI, an appropriate level of detail of the scattered data hierarchy is

1If the original data set is defined on a grid, one can use methods that
allow access to all intermediate grid levels, see [5].

accessed. This is done in a way such that the number of samples
used to approximate a data set remains constant. This number can
be kept sufficiently small, thereby making it possible to generate a
triangulation procedurally as part of the visualization process.

2 Related work

Related work is described in the grid generation and data set sim-
plification literature. An overview of grid types and grid generation
techniques is given in Chapter 3 of [8].

Related work in data simplification is grid-based simplification,
including,e.g., the work of Hoppeet al. [5]. The authors simplify a
triangular mesh by a series of edge collapses. By storing the simpli-
fied mesh along with the performed collapse operations, it is pos-
sible to access all intermediate levels of detail. In this regard the
method is similar to the use of the scattered data hierarchy we dis-
cuss in this paper. Staadt and Gross [11] have developed a similar
algorithm for tetrahedral meshes.

3 Generating the hierarchy

Our procedural triangulation scheme relies on the availability of a
hierarchical data representation. This hierarchy can be derived from
a clustering scheme. Clustering, see [1], is a classical data analysis
technique commonly used in statistics. It has been applied tosur-
face reconstruction by Heckelet al. [3], and this approach has been
further generalized by Heckelet al. [4] for vector field simplifica-
tion. In the context of vector field visualization, the basic idea is
to partition a vector field into clusters corresponding to coherent re-
gions characterized by vectors of similar direction and length. Each
cluster has arepresentant. It is computed as average of all positions
and vectors,i.e., each component of the representant is the arith-
metic mean of this component of all samples in that cluster. Thus,
a representant is placed in the center of the cluster; its vector is the
average of all vectors within the cluster.

This hierarchical cluster representation is computed using a top-
down strategy. First, all vectors are assigned to a single cluster
representing an entire field. Subsequently, the following steps are
performed:

1. The cluster with the largest error — according to a given error
metric — is determined.

2. This cluster is split into two clusters.

This process is iterated until the error of all clusters is below a
given threshold and a simplified representation of a field has been
obtained. A detailed description of the clustering process can be
found in [4]. Instead of using the original data set, it is possible to
use the representants of the clusters resulting from performing the
split steps. By storing all intermediate clusters one has access to a
hierarchical representation.

4 The clustering tree

The clustering process yields a hierarchical representation of a field
without sample connectivity. This representation is a binary tree
which we call theclustering tree.

DEFINITION 1 (CLUSTERING TREE)
The clustering tree is a binary tree corresponding to the evolution
of the clustering process. Each node in this tree has the following
properties:

• It corresponds to a cluster created during the clustering pro-
cess.

• It describes the region of the field containing the samples as-
sociated to its corresponding cluster.

• If a finer representation of this region is available it has two
descendants; otherwise, it has no descendants.

Each node contains the following information:

1. the samplesnode = (xnode,vnode), which is the represen-
tant of the cluster corresponding to this node;

2. the error describing the deviation of the vector field from the
representant in the region described by this node; and

3. a “split number” that indicates when the cluster corresponding
to this node was split.

Using the split number, the exact progression of the clustering
process can be reproduced, and any desired level of detail within
the limits of the given cluster hierarchy can be accessed. Figure 1

11),x v(2),x v

2

1

,(x v

3
4

)

e

4

3
e

33

2

Split list:
1 432

-1

2e

(

e

-1

7e

77 v

8

88),(x)

0 0),(x v

e

,(x v

1

0

e
6e

66),

-1

44),(x v

(),(x v

-1
5 x v

-1

5e

5

Figure 1: Clustering tree and array mapping split numbers to nodes.

shows a simple example of a clustering tree. The nodes contain the
representant (first row), the split number (second row), and the error
for this node (last row). In this representation, any level of detail
constructed from the hierarchy is represented by a thread connect-
ing the nodes belonging to that level of detail. Starting with a thread
containing only the root node, each thread can be constructed from
the previous one by replacing the node with the lowest split number
along the thread with its two descendants. Thesplit list, depicted
in Figure 1, provides a simple mapping between the split number
and nodes in the clustering tree and allows constant-time access to
the node describing the next split process. This is shown in Fig-
ure 2. The thread corresponding to the current hierarchy level is

drawn using solid arrows starting at “currentThread” and ending at
“NULL.” The thread representing the next level can be constructed
by replacing the grey-colored node in the clustering tree by its two
descendants. The dashed arrows indicate the difference between
the original and the resulting thread. It is also possible to reverse
the refinement of vector field. This can be done by successively
replacing the two children of the last split node by their parent.

v

4

3
e

3

x

2e

(22),

3

4e

44),),(x v

3

2

NULL

currentThread

,x v

1e

-1
)(11

(

7e

77)

-1
8),(x v,

0),(x v0

(x v

1

0e

8 6),(x v6

x v

-1

6e
-1

x v

-1
e
8

(

5e

55),

Figure 2: Refining a thread in the clustering tree.

5 Procedural Triangulation

In order to generate triangulations procedurally during the visual-
ization process, one has to explicitly choose an ROI (shaded region
in Figure 3(a)) in a data set (a vector field). One does not have to be
aware of the hierarchy to choose this region. Our approach is com-
pletely transparent in regard to the underlying hierarchy. Once a
user has chosen her/his ROI, the samples within that region are tri-
angulated using a Delaunay triangulation, see [10, 9]. This is shown
in Figure 3(b). We note that the triangulation does not completely
“fill” the ROI. This can be remedied by taking additional samples
outside the ROI into account, but this is not a trivial task. If the
ROI is not completely contained within boundaries of the vector
field, it is not possible to fill the ROI completely, even when sam-
ples outside this region are used. Additionally, it is computationally
expensive to check whether the ROI is completely inside the vector
field. It is possible to avoid these costly computations and special
cases: By interpolating the values at the vertices of the ROI with
a scattered data interpolant,e.g., Hardy interpolation, see [2], and
adding these to the triangulation, it is possible to generate a trian-
gulation filling the complete ROI, see Figure 3(c). Adding these
vertices to the triangulation causes the boundaries of the triangula-
tion (now containing the added vertices) and the ROI to coincide.

Once an ROI has been triangulated it is possible to use this tri-
angulation in conjunction with a mesh-based interpolation scheme
to estimate values inside that region. Furthermore, it is possible to
use this triangulation for other algorithms that require a tetrahedral
mesh,e.g., stream line generation, see [7].

So far, we have not addressed the role of the hierarchy for the
procedural generation of a simplical mesh. The basic idea is to
represent the vector field within an ROI using a fixed number of
samples. Thus, the effort necessary for the visualization is indepen-
dent of the size of the ROI. Furthermore, choosing a smaller ROI
automatically increases the accuracy of the representation, since the
same number of samples is used to approximate the smaller region.

(a) Choosing an ROI. (b) Triangulation of points within
ROI.

(c) Adding vertices of ROI to trian-
gulation.

Figure 3: Steps for computing a procedural triangulation.

Keeping the number of samples in an ROI constant is achieved by
using the clustering tree and the thread representing a particular hi-
erarchy level. Initially, the complete vector field is chosen as ROI
and approximated by a user-specified number of samples. When-
ever the ROI is changed, the number of samples in the ROI are
counted. Depending on whether there are too many or too few sam-
ples in the region, the split steps are reversed or further split steps
are reproduced. The result is an ROI that contains, if possible, a
constant number of samples regardless of its size and position. In
order to keep track of the number of samples currently within the
ROI, it is necessary to determine how each performed split opera-
tion affects this number.

We note that this approach refines the complete vector field until
the desired number of samples is generated for the ROI, despite the
fact that only the samples inside the ROI are used afterwards.

6 Results

Figures 4 and 5 show triangulations of ROIs in the “Blunt Fin”
data set. Figure 4 shows the triangulation for a large ROI. We note
that the triangulation is fine in regions of high variation. Figure 5
illustrates that a smaller ROI is approximated with a finer grid and
thus yields a more accurate representation of the data set.

7 Future work

Our procedural triangulation scheme can be improved in many dif-
ferent ways. It may be advantageous to replace the Delaunay tri-
angulation with a computationally less expensive triangulation pro-
cedure. This would allow one to use a larger number of samples
to approximate the data set in an ROI and obtain a more accurate
representation at the same speed.

One drawback of our current scheme is the fact that the hierarchy
is used to refine an entire vector field and not just the part of it that
is within the ROI. This could be avoided by only performing split
operations that yield new samples within an ROI. Furthermore, this
would eliminate the need to add interpolated values for the vertices
to the triangulation. By starting with a coarse approximation of
a data set and only refining the ROI it may be possible to fill the
complete ROI without additional samples.

8 Acknowledgments

This work was supported by the National Science Foundation un-
der contract ACI 9624034 (CAREER Award), the Office of Naval
Research under contract N00014-97-1-0222, the Army Research
Office under contract ARO 36598-MA-RIP, the NASA Ames Re-
search Center through an NRA award under contract NAG2-1216,
the Lawrence Livermore National Laboratory through an ASCI
ASAP Level-2 contract under W-7405-ENG-48 (and B335358,
B347878), and the North Atlantic Treaty Organization (NATO) un-
der contract CRG.971628 awarded to the University of California,
Davis. We also acknowledge the support of Silicon Graphics, Inc.,
and thank the members of the Visualization Thrust at the Center for
Image Processing and Integrated Computing (CIPIC) at the Univer-
sity of California, Davis.

References

[1] A. D. Gordon. Hierarchical classification. In R. Arabie, L.J.
Hubert, and G. DeSoete, editors,Clustering and Classifica-
tion, pages 65–105. World Scientific Publishers, River Edge,
NJ, 1996.

[2] R. L. Hardy. Theory and applications of the multiquadric-
biharmonic method: 20 years of discovery 1968–1988.
Computers and Mathematics with Applications, 19:163–208,
1990.

[3] B. Heckel, Antonio E. Uva, and B. Hamann. Clustering-
based generation of hierarchical surface models. In C.M. Wit-
tenbrink and A. Varshney, editors,Proceedings of Visualiza-
tion 1998 (Hot Topics), pages 50–55. IEEE Computer Society
Press, Los Alamitos, CA, October 1998.

[4] B. Heckel, G. H. Weber, B. Hamann, and Kenneth I. Joy. Con-
struction of vector field hierarchies. To appear in Proceedings
IEEE Visualization ’99, IEEE Computer Society Press, Los
Alamitos, October 1999.

[5] H. Hoppe. Progressive meshes. In Holly Rushmeier, editor,
SIGGRAPH ’96 Conference Proceedings, Annual Conference
Series, pages 99–108. ACM SIGGRAPH, Addison Wesley,
August 1996.

Figure 4: Triangulation of a large ROI in “Blunt Fin” data set (courtesy of NASA Ames Research Center).

Figure 5: Triangulation of a small ROI in “Blunt Fin” data set (courtesy of NASA Ames Research Center).

[6] D. N. Kenwright. Dual stream function methods for generat-
ing three-dimensional stream lines. PhD thesis, Department
of Mechanical Engineering, University of Auckland, August
1993.

[7] D. Knight and G. Mallinson. Visualizing unstructured flow
data using dual stream functions.IEEE Transactions on Visu-
alization and Computer Graphics, 2(4):355–363, December
1996.

[8] G. M. Nielson, H. Hagen, and H. M̈uller, editors. Scientific
Visualization: Overviews, Methodologies, Techniques. IEEE
Computer Society, Los Alamitos, California, 1997.

[9] Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara.Spa-
tial Tessellations: Concepts and Applications of Voronoi Di-
agrams. Probability and Mathematical Statistics. John Wiley
& Sons, Chichester, England, September 1992. Foreword by
D. G. Kendall.

[10] F. P. Preparata and M. I. Shamos.Computational Geometry:
An Introduction. Springer-Verlag, New York, 1985.

[11] Oliver G. Staadt and Markus H. Gross. Progressive tetrahe-
dralizations. In David S. Ebert, Hans Hagen, and Holly Rush-
meier, editors,Proceedings of Visualization 98, pages 397–
402. IEEE Computer Society Press, Los Alamitos, California,
October 1998.

