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SUMMARY
Multi-omics datasets are becoming more common, necessitating better integration methods to realize their
revolutionary potential. Here, we introducemulti-set correlation and factor analysis (MCFA), an unsupervised
integration method tailored to the unique challenges of high-dimensional genomics data that enables fast
inference of shared and private factors.We usedMCFA to integratemethylationmarkers, protein expression,
RNA expression, and metabolite levels in 614 diverse samples from the Trans-Omics for Precision Medicine/
Multi-Ethnic Study of Atherosclerosis multi-omics pilot. Samples cluster strongly by ancestry in the shared
space, even in the absence of genetic information, while private spaces frequently capture dataset-specific
technical variation. Finally, we integrated genetic data by conducting a genome-wide association study
(GWAS) of our inferred factors, observing that several factors are enriched for GWAS hits and trans-expres-
sion quantitative trait loci. Two of these factors appear to be related tometabolic disease. Our study provides
a foundation and framework for further integrative analysis of ever larger multi-modal genomic datasets.
INTRODUCTION

Recent years have seen an explosion in multi-omics data, with

studies simultaneously profiling RNA expression, protein levels,

chromatin accessibility, and more.1 By providing complemen-

tary views into the underlying biology, these datasets promise

to illuminatemolecular processes and disease states that cannot
This is an open access article under the CC BY-N
be gleaned from any lone modality.2 However, joint inference

methods are lacking in either the number or type of modes that

can be used or in flexibility and efficiency.1 Multi-omics data

bring substantial challenges: distributions differ betweenmodes,

the sample size is typically small relative to features, efficient al-

gorithms are needed, and each mode has contributions from

factors that are shared between modes and unique to itself.3,4
Cell Genomics 3, 100359, August 9, 2023 ª 2023 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Canonical correlation analysis (CCA) is a statistical technique

that infers shared factors between two data modes by finding

correlated linear combinations of the features in each.5 CCA

has enjoyed substantial attention in genomics6–9; however, ex-

tending CCA to additional modes is fraught: at least 10 different

formulations are equivalent in the two-mode case,10 and many

are challenging to fit.11 Equivalently, CCA can be conceptualized

as a probabilistic model (pCCA), revealing a connection to factor

analysis.12

We have developed multi-set correlation and factor analysis

(MCFA; Figures 1A and S1), an unsupervised integration method

that generalizes pCCA and factor analysis, enabling fast infer-

ence of shared and private factors in multi-modal data. MCFA

is designed to overcome challenges that are commonwith geno-

mics data such as the large number of features relative to the

sample size, the disparate data types, and the unknown contri-

butions of dataset-specific technical factors. MCFA is based

on two insights: (1) unlike traditional CCA, pCCA has only one

natural extension to multi-modal data, which is both conceptu-

ally elegant and efficient to fit, and (2) after fitting pCCA, the re-

sidual in a mode represents private structure, which is well

modeled by factor analysis. Ourmethod combines these insights

to fit factors that are shared across modalities and are private to

each simultaneously. For efficiency and regularization, MCFA

uses the top principal components (PCs) of each mode.6,7 It al-

lows the use of random matrix techniques13 to choose the

shared dimensionality and number of PCs, eliminating tuning pa-

rameters. Finally, MCFA is a natural approach to integration: as

detailed in Methods S1, there is a theoretical connection be-

tween our model and multi-set CCA.

We have applied MCFA to 614 ancestry-diverse individuals

from the Multi-Ethnic Study of Atherosclerosis (MESA).14 The

Trans-Omics for Precision Medicine (TOPMed)15 program insti-

tuted a multi-omics pilot study to evaluate the utility of long-

term stored samples for discovery related to heart, lung, blood,

and sleep disorders. MESA provided samples for five omics

types: (1) whole-genome sequencing (WGS), (2) RNA

sequencing of peripheral blood mononuclear cells (PBMCs), (3)

DNA methylation array profiling from whole blood, (4) protein

mass spectrometry of blood plasma, and (5) metabolite mass

spectrometry of blood plasma. In addition, MESA has collected

comprehensive phenotypic metadata. These data include de-

mographic markers such as self-reported ancestry (SRA), sex,

age, and education level; morphological features including

height, weight, and hip circumference; clinical measures

including those related to atherosclerosis, lipid levels, kidney

function, and inflammatory biomarkers; and behavioral features

regarding smoking, drinking, and exercise frequency.

RESULTS

We integrated RNA sequencing, methylation, protein, and

metabolite data using MCFA, which inferred a 14-dimensional

shared space. We found that shared structure explained a large

proportion of the variance in each mode (Figure 1B, right). Pro-

tein levels had the highest sharing with 29.2%of the variance ex-

plained (VE) by the shared space, followed by RNA and metab-

olite levels (16.6% and 17.1%, respectively). Methylation
2 Cell Genomics 3, 100359, August 9, 2023
showed the least sharing, with only 8.1% VE by the shared

space. Due to the high dimensionality of the data and the limited

sample size, about half of the variance in each dataset is unmod-

eled to reduce overfitting. Using MCFA, it is possible to further

infer the variance in each modality explained by the individual

factors, thus determining which modalities contribute to each

(Figure 1B, left). Our top factor has contributions from all modal-

ities, but their respective contributions to the other factors vary

substantially.

We used uniform manifold approximation and projection

(UMAP)16 to construct a 2D embedding of the shared and pri-

vate spaces (Figure 1C). We noticed a striking clustering of

the individuals by SRA and sex in the shared space, even

though the top PCs of individual modes do not cluster by

these factors (Figure S2), and the shared space was inferred

without genetic or sex chromosome features. Shared factor 1

separates Black and White individuals, with Hispanic individ-

uals in between, while factor 3 separates Chinese individuals,

and factor 2 differentiates by sex (Figures S2 and S3). We

validated this structure via leave-one-out cross-validation,

indicating our PC selection strategy mitigated over-fitting

(Figure S4).

Next, we evaluated the total phenotypic VE by each of our in-

ferred spaces (Figures 1D and S2; Tables S1, S2, and S3). The

shared space captured 95.3% of the variation in sex, 83.3% in

site, 80.0% in SRA, and 60.2% in age. The shared space also

captured anthropomorphic differences such as BMI (51.0%

VE) and clinical measures including those related to kidney func-

tion (creatine, 64.8% VE) and inflammation (tumor necrosis fac-

tor (TNF)-alpha receptor-1 69.1% VE). We used CIBERSORT17

and the Houseman method18 to estimate the cell-type composi-

tion of our RNA (PBMC) and methylation (whole blood) samples,

respectively. Both shared and privates spaces contributed to the

relative proportions of PBMC-abundant cell types (e.g., T cells

and natural killer (NK) cells) estimated from both data modalities,

while the proportion of PBMC-depleted types (e.g., neutrophils)

estimated from the methylation data was only captured by the

methylation private space. Modality-private spaces frequently

captured technical factors: 100% of the variance in sequencing

center and 71.6% of the variance in 30 bias are captured by the

RNA private space, while 76.8% of the methylation array batch

is captured by its private space.Many phenotypes that are them-

selves measurements of metabolites were captured by the

metabolite private space; however, the strongest association

was with the month of sample collection (85.8% VE). We noticed

no large associations between the protein private space and any

of our metadata, despite several of our phenotypes being clinical

protein markers; however, several of these factors are partially

captured by the shared space.

We compared the results obtained on MESA using MCFA with

other multi-modal analysis approaches. We focused on two

alternative methods: (1) MOFA24 and (2) a multi-modal auto-

encoder (MMAE, see STAR Methods and Figure S5). In the

MOFA2 analysis, the methylation batch and cell-type propor-

tions dominated the inferred shared space, likely owing to the

very large number of features in that modality compared with

the other modalities (Figure 2). The MMAE mitigated this over-

focus on methylation somewhat and additionally captured RNA



Figure 1. Overview of MCFA integration results

(A) The MCFA model. Each observed data mode (Ym) has contributions from two latent factors, one private to it (Xm) and one shared with other modes (Z).

(B) Breakdown of the variance in four omics types captured by the inferred space, as well as the per-mode contribution to each shared factor.

(C) UMAP embedding of the shared and private spaces, annotated with the most relevant feature set. Broadly, the top shared factors capture demographics,

while the top private factors capture technical variation.

(D) Variance in sample metadata explained by each learned space. This shows that the shared space also captures inferred cell-type composition estimates as

well as clinical biomarkers.
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sequencing center and RNA cell-type proportions (Figure 2).

Thus, neither MOFA2 nor the MMAE were able to infer shared

variation while discarding dataset-specific technical artifacts.

Moreover, using up to 8 cores of an Intel Xeon E5-2697v3 CPU
on our cluster, MOFA2 took approximately 56 min to run when

set to ‘‘medium’’ tolerance, while our MMAE took approximately

109 min to converge. In contrast, MCFA is able to process the

same dataset in around 2 min.
Cell Genomics 3, 100359, August 9, 2023 3



Figure 2. Comparison of MCFA with other methods

(A) UMAP embeddings of MOFA (left) and MMAE (right) shared space show that these methods fail to separate meaningful information from technical variation.

(B) Variance in sample metadata explained by the MOFA2 (top) and MMAE (bottom) shared spaces. MOFA2 primarily learns factors related to the methylation

dataset, while the MMAE additionally incorporates some factors related to RNA sequencing.

(C) Correlation of each inferred factor with each metadata sample for MOFA (top) and the MMAE (bottom).
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Finally, we integrated WGS data by conducting a genome-

wide association study (GWAS) of the inferred factors while con-

trolling for site, age, sex, and 11 genotype PCs.We hypothesized

that genetic associations with our inferred factors, which repre-

sent major axes of molecular variation, may be enriched for

known GWAS hits or trans-expression quantitative trait loci

(eQTLs). We obtained a list of 10,174 such associations from

the eQTLgen consortium,19 of which 3,854 are trans-eQTLs,

and further defined a more limited set of 1,107 ‘‘influential’’

trans-eQTLs that affect at least 10 genes. We tested the
4 Cell Genomics 3, 100359, August 9, 2023
GWAS of each factor for enrichment of these three categories

and found 9 significant enrichments (mean c2
cat > 1, false discov-

ery rate [FDR] 5%; Figures 3A and S6).

Factor 7 showed the strongest enrichment for reported GWAS

hits and trans-eQTLs. The top SNPs associated with factor 7 are

from blood lipid studies and are located primarily around the

FADS1 and FADS2 genes, which are known to regulate lipid

metabolism.20 These include rs174541 (p = 4:3310� 5 for factor

7 association), which is also reported in GWASs of type 2 dia-

betes21; rs174549 (p = 5:63 10� 5), which is also reported in



Figure 3. Factor interpretation and integration with GWAS data

(A) QQ-plot of a GWAS for factors 1, 2, 6, and 7. Genetic associations with these factors are enriched for known GWAS loci (1, 6, and 7), trans-eQTLs (1 and 7), or

highly influential trans-eQTLs (2 and 7).

(B andC) Correlation of factors 6 (B) and 7 (C) with morphological, immune-composition, and clinical metadata reveals that factor 6 is related to body composition

and lipid profile, while factor 7 is related to body composition, inferred blood cell-type composition, and inflammatory biomarkers.

(D) Z-transformed correlation of individual protein and metabolite data with factor 6 reveals genes and metabolites related to insulin resistance and metabolic

syndrome.

(E) Z-transformed correlation of individual methylation values with factor 7. Many genes colocated to these CpGs are involved in lipid metabolism.
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GWASs of white blood cell count22; and rs1535 (p = 8:33

10� 5), which is also reported in a GWAS of inflammatory bowel

disease23 (Table S4). Factor 7 explains 6.7% of the modeled

variation in methylation, the largest of any factor, and is anti-

correlated with sample proportion of CD8+ T cells and NK cells

estimated from methylation data (r = � 0:41 and � 0:25), and

correlated with BMI (r = 0:25) and measures of inflammation

including TNF-R1 (r = 0:33) and interleukin-6 (r = 0:20)

(Figure 3B).

To assess the contribution of individual CpGs, we calculated

the Z-transformed correlation of individual CpG values with fac-

tor 7 (Figure 3C). As epigenome-wide association studies remain

small, generally little is known about the effects of individual

CpGs and their associations with traits. Instead, we linked

each gene to the CpGs falling in a window from 1.5 kb upstream
of the transcription start site to the transcription termination site.

Many of the genes colocated to CpGs with high weights for fac-

tor 7 have been implicated in lipid metabolism GWASs including

IQCG and TMEM178A (cg01328500 and cg02571055; phospha-

tidylcholine levels24), DSCAML1 (cg02571055; triglyceride

levels25), PTK2 (cg02153245; ApoB and low-density lipoprotein

[LDL] levels26); TULP4 (cg02571055; lipoprotein A levels27),

and C7orf50 (cg20054412; LDL, high-density lipoprotein [HDL],

and total cholesterol levels28). Interestingly, our second stron-

gest hit, cg00697440, is colocated with CD86. Recent work

has suggested that B7 molecules including CD86 play an impor-

tant role in regulating CD8+ T cell population dynamics.29 While

further research is needed to establish causal relationships of

these genetic effects and methylation patterns in cis and trans

on gene regulation and diverse traits, DNA methylation patterns
Cell Genomics 3, 100359, August 9, 2023 5
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have been previously associated with lipid metabolism and

metabolic disease.30,31 Further research is required to determine

whether the immune-cell component of this factor is related to

the lipid metabolism component or whether these are simply in-

dependent biological functions captured by the same factor.

We used the same strategy to interpret factor 6. Factor 6 is

correlated with fasting glucose, waist circumference, and triglyc-

erides (r = 0:36;0:34, and 0:32, respectively) and anti-correlated

with HDL cholesterol (r = � 0:25; Figure 3D). Factor 6 explains

6% of the variance in protein levels and 4.1% of the variance in

metabolite levels. Many of the top-weighted metabolites are un-

characterized products from untargeted metabolomics, but the

two topcharacterized targets are 2-hydroxybutyric acid, a known

marker of insulin resistance and glucose intolerance,32,33 and

glucose itself (Figure 3E). Several of the top-weighted proteins

in this factor have known roles in growth and development

including BMP1, GHR, IGFBP2, and FGFR1. GWASs have impli-

catedBMP1 in coronary artery disease,34,35 IGFBP2 in type 2dia-

betes andBMI,36 andFGFR1 in triglyceride levels28 andwaist-hip

ratio.37 Other notable highly weighted proteins include TFPI,

which is involved in blood coagulation and is associated with

BMI-adjusted waist-hip ratio,38 and ADIPOQ, which is involved

in regulating glucose levels39 (Figure 3E). Many of the top

GWAS hits associated with this factor corroborate these obser-

vations, including rs4805885,which is associatedwith adiponec-

tin (ADIPOQ) levels40; rs9787485, which is associated with insu-

lin-carbohydrate interaction41; and rs7679, which is associated

with HDL, LDL, and triglyceride levels42 (Table S5).

Interestingly, the strongest genetic association with this factor

comes from GWASs of schizophrenia (rs112973353; p = 1:63

10� 4 for factor 6 association), and we find 5 independent schizo-

phrenia risk loci with factor 6 association p values below 0.01

(Table S5). Insulin resistance and schizophrenia have been

consistently associated for nearly 100 years,43 and while the as-

sociation signal of each locus with factor 6 is relatively weak, the

probability of finding 5 independent loci with these p values un-

der the null is approximately 43 10� 13. While further research is

needed, our results suggest that these particular loci may confer

schizophrenia risk via insulin resistance. Another notable signal

in our GWAS associations is related to erythrocyte and platelet

traits. These hits include rs12451471 (p = 83 10� 4; mean

corpuscular hemoglobin concentration44; platelet count45) and

rs13224082 (p = 93 10� 4; platelet distribution width, platelet

count, plateletcrit44), among others (Table S5). Again, further

research is required to establish causality and direction of effect

between genetics, metabolite and protein levels, and traits, but

we note that there is an established link between insulin resis-

tance and platelet dysfunction.46
DISCUSSION

MCFA has several advantages compared with other multi-omics

integration approaches. Compared with group factor analysis

methods,4 MCFA separates modality-specific from dataset-

shared factors. Compared with non-negative matrix factoriza-

tion-based methods that share a feature weight set across mo-

dalities,3 MCFA is able to use all data types. As we have shown,
6 Cell Genomics 3, 100359, August 9, 2023
MCFA is also substantially faster and is able to handle datasets

with unbalanced numbers of features across the modes.

While our top factors captured ancestry and sex, these factors

are usually observed and considered confounding in clinical ap-

plications. In that context, one could fit the model conditional on

known confounding factors. Since we see exploratory data anal-

ysis as a primary application of MCFA, our goal instead was to

map the primary axes of biological variation contained within

these population-scale multi-omics data. It is important that

these factors are a primary driver of variation within such data,

as it implies that sampling across race and sex is critical for equi-

table discovery in medical genomics. Still, because these factors

are captured by the top components, and the components

themselves are orthogonal, further components can still capture

disease-relevant information.

Integration with GWAS is biased toward well-powered studies

that will typically have more hits, some of which may be acting

indirectly through another phenotype.47 Interpretability of factors

is also biased toward the metadata collected in the study. In

MESA, the goal was evaluation of risk factors for heart disease,

and thus MESA focused metadata collection on lipid pheno-

types, inflammatory biomarkers, and body morphology. It is

therefore unsurprising that we are most easily able to interpret

factors related tometabolic syndrome, lipid metabolism, and im-

mune function in this study. Still, the ability of MCFA to produce

results that are correlated with these factors demonstrates the

utility of broad-scale sample metadata when interpreting results

from multi-omics studies.

Careful consideration is required when analyzing multi-omics

datasets that include WGS or genotype data. There are two pri-

mary ways that one can think about integrating these data: (1)

include genetic information as a mode in the fit model, interpret-

able as inferring a latent state that affects genotype as well as

molecular factors, or (2) look for genetic associations with in-

ferred molecular factors, interpretable as mapping QTLs for in-

ferred molecular phenotypes. In this study, we chose the latter

due to the improved causal interpretation and to demonstrate

the utility of surrogate molecular phenotypes. In other cases,

for example the analysis of genetic copy-number variation data

in tumor samples, the former analysis approach may be

preferred. Future work with larger sample sizes may allow for

network inference and Mendelian randomization methods to

generate directed hypotheses.47,48 Genetic associations are

particularly valuable in this, with the inferred axes of molecular

variation providing promising future traits for GWAS and phe-

nome-wide association studies. TOPMed is among the most

ambitious current efforts to collect multi-omics population-level

data; thus, given the results of this pilot analysis, we expect

future integration studies in this cohort to be fruitful.

Limitations of the study
Due to the use of observational data and unsupervised methods,

all analyses should be considered exploratory; they can find

structure in the data while generating hypotheses but cannot

be used to make causal claims andmay reflect technical proper-

ties of the underlying data. For example, in MESA, the sample

collection site is strongly correlated with SRA. We repeated our

analysis of the VE by the learned space while additionally
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controlling for site (Table S3) and noticed a small decrease in the

proportion of VE in SRA (from 80.0% to 71.6%).

We observed that estimated cell-type composition had a

strong association with both shared and private spaces. Since

cell-type composition was inferred from the data, there may be

circularity in composition estimation itself. In addition, complex

interactions exist between cell-type composition in tissue sam-

ples and clinical, environmental factors as well as technical fac-

tors related to biospecimen collection. Thus, caution is neces-

sary for biological interpretation in this aspect of the analysis.
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Beyersdorf, N., Ehl, S., Gerard, A., Lämmermann, T., et al. (2020). Quorum
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

MESA TOPMed multi-omics pilot data dbGaP dbGaP: phs001416.v3.p1

Software and algorithms

Multiset Correlation and Factor Analysis Zenodo https://doi.org/10.5281/zenodo.7951370

MOFA2 github https://github.com/bioFAM/MOFA2

eQTLgen trans-eQTL summary statistics eQTLgen https://www.eqtlgen.org/trans-eqtls.html
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Dr. Brielin Brown

(bbrown@nygenome.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The MESA TOPMed multi-omics pilot data have been deposited on dbGap and are publicly available as of the date of publication.

The accession number is listed in the key resources table. All original code has been deposited on zenodo and is publicly available as

of the date of publication. The DOI is listed in the key resources table. The code is also available on github at https://github.com/

collinwa/MCFA. Any additional information required to reanalyze the data reported in this paper is available from the lead contact

upon request.

METHOD DETAILS

Multiset correlation and factor analysis
Let Y = fYmgMm = 1 be a set of N3pm observed data matrices: N individuals measured inM data modalities consisting of pm features

each. We model each observed mode as having contributions from two low-dimensional hidden factors (Figures 1A and S8)

zn � Nð0; IdÞ
xmn � Nð0; Ikm Þ
ymn � N
�
Wmzn + Lmx

m
n ;Jm

�
where d is the shared hidden dimensionality, km are the dataset-private hidden dimensionalities,Wm are pm3d shared space loading

matrices, Lm are pm3km private space loading matrices and Jm = diagðj1
m;.;jpm

m Þ are the diagonal residual covariance matrices.

Given Y, d and km, our goal is to infer the hidden factors Z and Xm and loadingmatricesWm and Lm. This can be accomplished using a

straightforward application of expectation maximization (EM).49 For a derivation of the EM update equations, as well as a more

detailed exposition including the relationship to pCCA, factor analysis and other multiset CCA (MCCA) methods, see Methods S1.

In practice, we center and scale all data variables. This is not strictly required, however it enables simple estimation of the number

of PCs to include and simplifies explained variance calculations, see below.

Model initialization
An important aspect of EMoptimization is choosing a good initialization.We benchmarked three approaches to initializingW: random

initialization and two versions of MCCA that correspond tomaximizing the sumof pairwise correlations with the average variance and

average norm constraints. These MCCA formulations can be solved via simple eigendecompositions. We found that the sum of
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pairwise correlations with average variance constraint produced the best initial estimates (Figure S7). This can be solved with a sim-

ple two step procedure: 1) whiten each data matrix using the singular value decomposition (SVD), 2) perform a second SVD on the

concatenated whitened data matrices50:

Input: Y1;.;YM;d

Result: cW = ½Wu
1 : . : Wu

M �u
Uall) concatenate(SVD(Y1). U;.; SVD(YM). U);cW) SVD(Uall). V ½:;0 : d�;br) SVD(Uall). l½0 : d�;
return cW ; br
We initialize L and J using probabilistic PCA on the residual data matrices after fitting MCCA. Specifically:

Input: Yi;Wi;N;ki

Result: bLi;cJi

St
i )Yu

i Y i=N � WiW
u
i ;bLi) eigh(St

i ). V ½:;0 : ki�;
s2) mean(eigh(St

i ). l½ki:�);bJ i)s21ki ;

return bLi; bJ i

High dimensionality and selection of hyperparameters
There are two primary approaches to control for over-fitting in applications of CCA-type methods to high-dimensional (N � p) prob-

lems. The first is to use penalized optimization techniques, where the objective function additionally contains an l1 constraint on the

weight matrices.51 The second is to project each dataset onto its informative principal components.6,7,11 In this application, we

choose the latter approach in order to find components with broad effects on the structure of the data, rather than specific effects

on small numbers of molecular features.11 We choose the number of principal components of each dataset using the Marchenko-

Pasteur law,13 which states that for mean 0, variance 1 data, principal components with corresponding eigenvalues above lm =

1+
ffiffiffiffiffiffiffiffiffiffiffiffi
pm=N

p
should be considered non-noise. We are not aware of a corresponding law for the cross-covariance matrices used in

CCA, however, the empirical spectral distribution of the cross-covariance of matrices of random noise can be easily estimated in

practice:

Input: N;k = fkmgMm = 1;nit
Result: r

̱
for it)0 to nit do

for km ˛ k do

½Ym�N;kmi = 1;j = 1 � Nð0;1Þ;
end

r½it�) max(InitializeMCFA(Y1;.;YM). r

end

return mean(r)

Then we keep all components where rinit > r
̱
.

Calculating the variance explained
The linear-Gaussian nature of the model simplifies estimation of the variance explained. That is, if the features of each mode Y

ð:;jÞ
m are

normalized to variance 1, the model Y
ð:;jÞ
m =

P
d

W
ðj;dÞ
m Zð:;dÞ +

P
km

L
ðj;kmÞ
m X

ð:;kmÞ
m + e implies that the variance in feature j of modem explained

by shared factor d is W
ðj;dÞ2
m . Likewise, the variance explained by the km-th private factor of mode m is L

ðj;kmÞ2
m . The total variance in

mode m explained by a given shared factor d (respectively, private factor km) is thus given by
P
j

W
ðj;dÞ2
m (respectively,

P
j

L
ðj;kmÞ2
m ), and

the total variance in themode explained by the factors are
P
j;d

W
ðj;dÞ2
m and

P
j;km

L
ðj;kmÞ2
m , respectively. Note that when working in PC-space,

the raw W and L features correspond to variance in PCs explained, rather than modality features. Thus, we calculate the variance

explained after projecting back into the original feature space Wm)VmWm;Lm)VmLm where Vm are the right singular vectors of

mode m.

To calculate the variance in a metadata feature explained by a particular space, we regressed the trait value T on the shared or

private space, T � Z or T � Xm. For continuous-valued traits we used linear regression as implemented in SciKitLearn v1.0

linear_model.LinearRegression and report the coefficient of determination.52 For discrete-valued traits, we usedmultinomial

logistic regression as implemented in SciKitLearn v1.0 linear_model.LogisticRegression.52 We fit two models: a null model

including only intercept or intercept and site, and one including the factor variables. We report the variance explained as the McFad-

den pseudo-R2, 1 � llalt
llnull

, with llnull and llalt being the model negative log likelihood for the null and alternative model respectively.53
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Calculating relative feature importance
Feature importance in traditional CCA is defined by the correlation of the variables in the reduced space r = corðY1f1;Y2f2Þ. Unfor-
tunately this notion breaks down in higher dimensions. Aswe discuss further inMethods S1, the degree of sharing inMCCA is defined

by functions of the cross-correlation matrix in the reduced space,

S = corðY1f1;.;YmfmÞ˛Rm3m:

We seek to define an analogous quantity for our graphical model. In MCFA, the data in the reduced (shared) space is given by the

posterior mean of Z, bZ = E½ZjW;J;L;Y � = YðWWu+LLuJÞ� 1W. We can also calculate the posterior mean of Z conditional on

observing a singlemode, bZm = E½ZjWm;Jm;Lm;Ym� = YmðWmW
u
m +LmL

u
mJmÞ� 1

Wm. This latter quantity is analogous to the reduced

variables Ymfm in MCCA. Thus we can summarize the importance of each dimension of the shared space by calculating functions of

the cross-correlation of columns of bZm,

Sd = cor
� bZ ð:;dÞ

1 ;.; bZ ð:;dÞ
m

�
:

The relevant function in our model is the generalized variance jSj, see Methods S1. The determinant of a correlation matrix is

bounded between 0 and 1, with lower values indicatingmore correlation, and higher values less. Thus to aid interpretability, we report

rd = � logjSdj and reorder columns of Z and W with decreasing rd.

SNP set enrichment analysis
For SNP set enrichment analysis, we broadly follow the approach of CAMERA.54 In brief, enrichment statistics can be inflated due to

correlations in the sample - in this case, linkage disequilibrium between two GWAS SNPs. This results in an under-estimate of the

standard error of the enrichment test statistic and an increase in false positives. We calculate the variance inflation factor by using

plink v 1:955 to estimate linkage disequilibrium between annotation SNPs in 337;781 unrelated individuals from the UK Biobank.56

The variance inflation factor is n = 1+ ðpA � 1ÞrA, with rA the average person correlation between features in set A. We test the

known GWAS mean c2 statistic h0 : c2
A = 1 against the alternative h1 : c2

A > 1. The standard error of the test statistic is st =

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
pA

� 1
pm

q
with s the pooled empirical standard deviation of the test statistics.

The MESA multi-omics pilot
The Multi-Ethnic Study of Atherosclerosis (MESA) is a prospective cohort study with the goal to identify progression of subclinical

atherosclerosis.14 MESA recruited 6,814 participants, ages 45–84 years and free of clinical cardiovascular disease, during 2000–

2002. The participants are 53% female, 38% non-Hispanic white, 28% Black, 22% Hispanic and 12% Asian-American. The

Multi-Omics pilot dataset includes 30x whole genome sequencing (WGS) through the Trans-Omics for Precision Medicine

(TOPMed) Project.15

Blood samples for multi-omic analysis of participants were collected at two time points (exam 1 and exam 5). RNA expression was

profiled using poly-A RNA sequencing of PBMCs, andmethylation was quantified by the Illumina 750KEPIC array inwhole blood. The

levels of 1,305 proteins were measured from plasma samples using the standard SOMAscan DNA aptamer–based platform, and

metabolite levels were determined from targeted and untargeted mass spectrometry of blood plasma. The MESA Multi-Omics pilot

biospecimen collection, molecular phenotype data production and quality control (QC) are described in detail in Kasela et al.57

Cross-validation
We used leave-one-out cross-validation (CV) to evaluate ourmodel. The primary reasonwe chose leave-one-out CV over k-fold CV is

that our hyperparameter selectionmethod depends on the sample size. With n � 1 individuals, the same parameters used for the full

inference procedure are likely to be valid. For small k, fitting with k� 1
k n individuals while using the same number of PCs may result in

over-fitting in the training set, and using a smaller number of PCs may not capture the same variation as the full model.

To perform cross-validation we hold out a set of individuals, fit the MCFA model, then project the held out individuals into the

learned space. If Wtr ;Ltr and Ftr are the model parameters learned from the training set, the projections of the test data into the

learned spaces are given by

bZte = Yte

�
WtrW

u
tr +LtrL

u
tr Jtr

�� 1
Wtr

bXte = Yte

�
WtrW

u
tr +LtrL

u
tr Jtr

�� 1
Ltr

The full data reconstruction is

bY te = bZteW
u
tr + bXteL

u
tr

We evaluate model fit by calculating the normalized root mean squared error (NRMSE). In order to provide a fair evaluation across

modes with a highly variable number of features, we calculate NRMSE on a per mode basis
e3 Cell Genomics 3, 100359, August 9, 2023
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NRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

pm

Xpm
i = 1

�
Y ð:;iÞ

m � bY ð:;iÞ
m

�2

varY ð:;iÞ
m

vuuut

and potential over-fitting can be assessed by comparing the median training set NRMSE against the median test set NRMSE over

many cross-validation iterations.

Comparison to MOFA2 and MMAE
We installed MOFA2 version 0.6.7 using pip install mofapy2. We used the options scale_groups = False, scale_views =

False, ard_weights = True and spikeslab_weights = True. We set the convergence tolerance to convergence_mode =

’medium’. For comparisonpurposesweset thenumberof factors equal to the hiddendimensionality inferredbyMCFA(factors=14).

Our multi-modal auto-encoder architecture is visualized in Figure S4. We used two hidden layes per dataset, with the first layer

having dimensionality equal to 8 times that modalities MCFA-inferred number of PCs, and the second layer having dimensionality

equal to that modalities MCFA-inferred number of PCs. These layers are then concatenated, and sent through an additional hidden

layer with 8 times the MCFA-inferred number of shared dimensions to the final 14-dimensional encoded representation. All layers

except the final encoder layer consist of a linear transform followed by ReLU activation, while the final encoder layer omits the

ReLU activation. The decoder had identical architecture to the encoder only reversed. The network was implemented in pytorch

v1.11.0 and optimized with Adagrad using 10 batches per epoch until the NRMSE change relative to the total loss was less

than 10� 6.

QUANTIFICATION AND STATISTICAL ANALYSIS

We analyzed individuals from Exam 1 where all five data types were collected and passed QC. All data modalities were inverse rank

normalized prior to sample filtering based on the availability of other data types. There were 614 individuals with observations of

WGS, RNA-seq, methylation, metabolomics and proteomics that all pass QC. We further removed all features (CpGs, genes, pro-

teins) located on sex-chromosomes, 0-variance features, CpGs with missing data, and CpGs where the probe was within 5 bases

of an SNP, leaving us with 6; 042 metabolites, 1;222 proteins, 19;034 genes, and 724;210 CpGs. We analyzed 28 PCs of RNA

expression, 39 PCs of methylation, 27 PCs of protein expression and 63 PCs of metabolite, as determined using the aforementioned

method. For sample metadata, we leveraged the rich phenotype data available in MESA that were harmonized by the TOPMed Data

Coordinating Center.58 For details on the estimation of sample cell-type proportions frommethylation and RNA-seq data, see Kasela

et al.57 Genetic association analyses were conducted using plink v 1.955 while controlling for site, age, sex and 11 genotype PCs;

reported p-values are uncorrected and tested against a null of 0 effect. SNP set enrichment significance was defined as having an

FDR q-value below 0:05 when corrected for 3 tested sets across 14 factors tested against the null hypothesis that the mean c2 test

statistic is 1.
Cell Genomics 3, 100359, August 9, 2023 e4
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