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ABSTRACT

A new satellite-based rainfall monitoring algorithm that integrates the strengths of both low Earth-orbiting

(LEO) and geostationary Earth-orbiting (GEO) satellite information has been developed. The Lagrangian

Model (LMODEL) algorithm combines a 2D cloud-advection tracking system and a GEO data–driven cloud

development and rainfall generation model with procedures to update model parameters and state variables

in near–real time. The details of the LMODEL algorithm were presented in Part I. This paper describes a

comparative validation against ground radar rainfall measurements of 1- and 3-h LMODEL accumulated

rainfall outputs. LMODEL rainfall estimates consistently outperform accumulated 3-h microwave

(MW)-only rainfall estimates, even before the more restricted spatial coverage provided by the latter is taken

into account. In addition, the performance of LMODEL products remains effective and consistent between

MW overpasses. Case studies demonstrate that the LMODEL provides the potential to synergize available

satellite data to generate useful precipitation measurements at an hourly scale.

1. Introduction

Floods caused by extreme precipitation events are

among the most serious natural disasters worldwide. A

recent Intergovernmental Panel on Climate Change re-

port concludes that global warming will have a direct ef-

fect on the frequency of extreme precipitation events

(Solomon et al. 2007). They also suggest that future

tropical cyclones will become more intense, with higher

peak wind speeds and heavier precipitation. The Inter-

national Strategy for Disaster Reduction (ISDR) pro-

gram of the United Nations reports that 8 out of the top 10

most deadly natural disasters in 2007 were flood related

(ISDR 2008). Floods also surpass other types of natural

disaster—such as droughts, earthquakes, and wild fires—

in terms of their scale of impact. In 2007, flood events

triggered by the extreme precipitation adversely affected

the life and property of more than 160 million people. On

2 May 2008, Cyclone Nargis generated heavy rainfall that

led to flooding and landslides, causing catastrophic de-

struction and at least 130 000 reported fatalities. More-

over, Hurricane Katrina’s effect on New Orleans in 2005

shows that the developed countries are not immune from

such disasters (Martine and Marshall 2007). Clearly, ac-

curate monitoring of extreme precipitation is a key ele-

ment for improving operational weather forecasts and for

implementing flood forecasting systems. Unfortunately,

many parts of the world have limited or nonexisting

monitoring systems capable of predicting flooding from

extreme rainfall. Traditional precipitation observations

using synoptic rain gauges are limited to point measure-

ments, and precipitation observations from radar sensors

are limited by considerable blockage over mountainous

watersheds in addition to high capital costs beyond the

reach of many nations. Therefore, continuing improve-

ment of high-resolution satellite-based methodologies to
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provide reliable estimates of the quantity and distribution

of precipitation is critical to a wide range of hydrological

and hydrometeorological applications.

Recent developments in satellite remote sensing tech-

niques provide a unique opportunity for consistent pre-

cipitation observation at a global scale. However, the task

of obtaining precipitation measurements from satellites

still faces significant challenges in terms of reconciling

heterogeneities in sensor capabilities and associated plat-

form orbits. Geostationary Earth-orbiting (GEO) sat-

ellites are capable of providing images every 15–30 min in

multiple spectral bands, but their spectral coverage is

limited to visible and infrared wave bands that resolve

cloud patterns rather than the hydrometeors directly

relevant to surface rainfall rates. Therefore, as reported

in numerous studies, GEO infrared (IR)–based rainfall

algorithms are most effective at identifying tropical con-

vective systems whose cold high tops show prominently

in GEO-IR imagery and perform less well in the pres-

ence of warm low-lying clouds and cold high cirrus

clouds (Arkin and Meisner 1987; Adler and Negri 1988).

Some improvement may be gained by employing cloud

classification approaches using texture measures and

cloud-patch identification and additional improvements

made by combining information from multispectral im-

agery (Ba and Gruber 2001; Bellerby et al. 2000; Bellerby

2004; Capacci and Conway 2005; Hong et al. 2004; Turk

and Miller 2005). However, the most significant im-

provements in precipitation retrieval have been ach-

ieved by locally adjusting GEO-IR retrievals using

near-real-time low Earth-orbiting (LEO) microwave

(MW)-based rainfall estimation or other collateral data

(Ba and Gruber 2001; Bellerby et al. 2000; Bellerby

2004; Hsu et al. 1997; Huffman et al. 2007; Kidd et al.

2003; Marzano et al. 2004; Nicholson et al. 2003a, 2003b;

Sorooshian et al. 2000; Todd et al. 2001; Turk and Miller

2005; Vicente et al. 1998; Xu et al. 1999).

MW sensors on LEO satellites provide more direct

information on the hydrometeor distribution in rain

clouds than GEO imagery. However, the low sampling

frequency of LEO satellites limits the effectiveness of

MW rainfall retrieval at short time scales. By integrating

multiple LEO satellite information, considerable im-

provement in short-time-scale rainfall retrieval has been

achieved (Huffman et al. 2007). In addition, the Tropical

Rainfall Measurement Mission (TRMM) launched in

1997 carried the first orbital rainfall radar. This may be

used to calibrate passive microwave sensors on other

spacecraft, resulting in significant improvements to rain-

fall retrievals over the tropics (Kummerow et al. 1998,

2000; Simpson et al. 1988). The follow-up mission to

TRMM, the Global Precipitation Measurement (GPM)

mission planned for launch in 2013, will deploy an en-

hanced dual-frequency radar sensor. The GPM program

aims to combine observations from multiple passive mi-

crowave sensors mounted on both preexisting and newly

deployed satellites. The planned GPM satellite constel-

lation will be able to sample more than 90% of the globe

with a return interval of three hours or less (Hou et al.

2008). Such intensive sampling of precipitation will pro-

vide unprecedented information of the global water and

energy distributions at fine time scales.

Although the combined LEO sampling frequency in

the GPM era is planned to reach a near 3-h return in-

terval, instantaneous sampling by MW satellite sensor

overpasses does not provide a complete solution for

monitoring accumulated rainfall at high temporal reso-

lutions. Heavy precipitation generated from convective

cloud systems (CCSs) may develop over a significantly

shorter period than this, resulting in sampling errors in

the corresponding 3-h estimated rainfall totals. Some

CCSs are short-life events, which may not coincide with

MW overpasses; however, other CCSs may generate high

rainfall intensities over a very short duration but not be

sampled by the MW sensors. In both of these cases, ac-

cumulated LEO rainfall retrievals will suffer from a

negative bias. Overestimates are also possible, when

short-duration bursts of high-intensity rainfall coincide

with a MW overpass and are assumed to be typical of an

entire 3-h period. It must also be noted that the combined

temporal sampling frequency provided by LEO satellites

has varied significantly with time, and a study of currently

planned satellite missions suggests that this variation is

likely to continue. Sampling capability is likely to peak

during the GPM era and then fall back to a lower relative

value. This variation poses significant challenges to the

satellite rainfall community: both in terms of providing

reliable operational precipitation measurements and in

generating a consistent long-term database for hydro-

meteorological and hydroclimatological studies. In light

of these difficulties, the continuing development of ef-

fective retrieval algorithms capable of integrating mul-

tiple sensors and platforms with flexible and efficient

modern data assimilation (DA) techniques is essential.

Recent work has demonstrated the effectiveness of

using GEO-derived cloud motion vectors to ‘‘morph’’

MW rainfall estimates between sensor overpasses. The

original Climate Prediction Center (CPC) morphing

(CMORPH) algorithm applied an empirical correction to

compensate for the difference between average cloud

advection and the motion of surface rainfall and then

linearly interpolated MW rainfall estimates along ad-

vection streamlines (Joyce et al. 2004). This approach

alleviates some of the difficulties mentioned earlier, but it

cannot fully compensate for sampling issues associated

with short-lived storms. The CMORPH concept has been
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refined using data assimilation (Kalman filter) approaches

to update the advected rainfall values by comparing them

to simple rainfall estimates derived from GEO imagery

(Okamoto et al. 2005). Data assimilation approaches are

very attractive in this context because they can take into

account the considerable uncertainty in the GEO rainfall

estimates when updating the advected values. They also

fulfill the requirement for near-real-time estimates im-

posed by many operational applications. In a parallel

development, a number of studies have reported sig-

nificant relationships between developing cloud cells in

GEO imagery and evolving rainstorms (Machado et al.

1998; Horsfield 2006). These developments suggest the

possibility of running a simple storm development

model between MW overpasses rather than interpolat-

ing or updating MW rainfall estimates directly. Such an

approach would use the relationship between changes in

cloud patterns and changes in rainfall processes rather

than attempt to determine a static relationship between

GEO cloud imagery and rainfall, and it would use DA

techniques to update model representations of rainfall

processes rather than attempt to adjust the rainfall

values themselves.

A new multiplatform multisensor satellite rainfall al-

gorithm has been developed to evaluate the effectiveness

of the cloud development modeling/model updating ap-

proach. The Lagrangian Model (LMODEL) methodol-

ogy synergizes recent developments in cloud development

modeling, satellite cloud-feature extraction, cloud image

tracking, geostatistics, and sequential filtering theory to

develop a combined IR/microwave algorithm for rainfall

retrieval. Part I of this paper (Bellerby et al. 2009)

describes the algorithm in detail. This paper presents a

validation of LMODEL outputs and evaluates the per-

formance of the new algorithm.

2. Methodology

a. LMODEL algorithm

LMODEL is an integrated rainfall estimation algo-

rithm developed to combine the strengths of LEO and

GEO satellite data from current and future satellite

missions (e.g., GPM) by making optimal use of the

complementary nature of different sensors and their

respective sampling capabilities. The algorithm consists

of 1) a high-resolution 2D cloud tracking system, which

captures cloud advection from successive GEO satellite

images; 2) a cloud development and rainfall-generation

model; and 3) local updating of model fluxes and state

variables against MW rainfall data.

The cloud development model is a semi-Lagrangian

cloud precipitable water balance model. Convective and

stratiform precipitable water inputs are estimated from

brightness temperatures and brightness temperature

changes in infrared geostationary satellite imagery. This

imagery is also used to quantify cloud dispersal. These

forcing factors modify the cloud precipitable water as it

is tracked along cloud-advection streamlines using the

very high-resolution cloud tracking algorithm of Bellerby

(2006). The model operates at full geostationary pixel

resolution, but it is designed to provide products at

spatial and temporal resolutions somewhat lower than

this resolution.

Model updating takes place in two stages. The first

stage determines a local scaling parameter by comparing

unmodified model outputs against rainfall estimates

from coincident MW overpasses and kriging the result-

ing anomalies along advection streamlines. The inter-

polated parameter is used to scale precipitable water

fluxes into the model. The second stage uses a Kalman

filter to update model states.

b. Dataset

The study area used for model development and testing

is the conterminous United States (CONUS) covering

208–458N and 708–1308W (see Fig. 1) for two periods: July–

August 2006 and February–March 2007. The LMODEL

algorithm requires several data sources from GEO and

LEO satellites for model development and estimation.

One dataset used is the full-resolution global GEO-IR

data at every half-hour at 0.048 resolution, provided by the

Climate Prediction Center of the National Oceanic and

Atmospheric Administration (NOAA; Janowiak et al.

2001). This dataset is a composite of infrared (;11 mm)

imagery from the multifunctional transport satellite

[MTSAT; formerly the geostationary meteorological sat-

ellite (GMS)], Geostationary Operational Environmental

Satellite (GOES), and Meteosat satellites with zenith an-

gle corrections used to match brightness temperatures

away from the respective subsatellite points. Microwave

rainfall estimates were obtained from the CPC Merged

Microwave Dataset (CPC 2008), which composites esti-

mates from multiple LEO satellites and sensors, including

the Defense Meteorological Satellite Program Special

FIG. 1. Study area and radar coverage.
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Sensor Microwave Imager (DMSP SSM/I), the Polar Or-

biting Environmental Satellite Advanced Microwave

Sounding Unit B (POES AMSU-B), the Aqua Advanced

Microwave Scanning Radiometer for Earth Observing

System (AMSR-E), and the TRMM Microwave Imager

(TMI). Instantaneous rainfall estimates are generated

from the just-mentioned sensors and platforms using

separate algorithms over the land and ocean and inter-

polated to a common 0.088 spatial resolution (Ferraro

et al. 2000; Kummerow et al. 2001; Weng et al. 2003). The

CPC MW rainfall data were further interpolated to a 0.048

spatial resolution by mapping the center of each 0.088 pixel

onto a single 0.048 pixel and then interpolating those

high-resolution pixels with values defined for at least two

immediate neighbors. This preprocessing step helped to

remove some missing data pixels from the middle of

swaths. The interpolated MW data were then collocated to

the GEO clouds using the algorithm described in Bellerby

et al. (2009).

LMODEL algorithm performance was evaluated

against the combined rainfall observations from ground-

based weather radar systems, provided by the NOAA

National Centers for Environmental Prediction (NCEP)

and Environmental Modeling Center (EMC) (Lin and

Mitchell 2005). The NCEP/EMC 4-km gridded radar

rainfall estimates were remapped to a 0.048 latitude–

longitude grid compatible with LMODEL estimates.

The available radar coverage is shown in Fig. 1.

The summer-season rainfall may be expected to be

dominated by convective processes, with the North

American monsoon bringing moisture to the south-

western states (Adams and Comrie 1997) and mesoscale

convective complexes developing across the Great

Plains (Ashley et al. 2003). Winter-season rainfall is

more likely to be characterized by frontal systems as-

sociated with extratropical cyclones, particularly in the

northern states and mountainous regions (Court 1974).

Winter precipitation contains significant snowfall in

many regions, causing problems with MW rainfall re-

trievals, which leads to data voids (Ferraro et al. 2000).

c. Collocation of microwave data to GEO cloud
imagery

An empirical collocation procedure, described in de-

tail in Bellerby et al. (2009), is used to move the MW

rainfall to the IR clouds, compensating for the combined

effects of measurement timing differences, geolocation

error, parallax, and shear. The MW data are initially

interpolated to GEO-IR pixel resolution and then the

collocation algorithm processes each pixel location. Two

TABLE 1. Validation of 3-h LMODEL rainfall products against ground radar at a range of spatial resolutions. Stage 1 products are

outputs from the unadjusted model. Stage 2 products rescale local precipitable water fluxes. Stage 3 products incorporate both local flux

scaling and Kalman filter state adjustment.

Correlation (r) RMSE (mm h21) Bias (mm h21) Skill (%)

Resolution 1 2 3 1 2 3 1 2 3 1 2 3

June 2006

0.048 0.461 0.520 0.544 0.887 0.855 0.840 20.062 20.058 20.55 91.9 92.3 92.8

0.248 0.519 0.588 0.618 0.770 0.732 0.714 20.063 20.059 20.55 91.9 92.4 92.9

0.488 0.555 0.628 0.660 0.692 0.653 0.633 20.063 20.059 20.55 91.6 92.3 92.8

1.008 0.613 0.684 0.714 0.567 0.531 0.511 20.063 20.059 20.55 91.4 92.1 92.7

July 2006

0.048 0.441 0.522 0.543 0.863 0.823 0.812 20.058 20.052 20.051 91.3 91.7 92.2

0.248 0.515 0.613 0.643 0.702 0.653 0.637 20.058 20.052 20.051 91.1 91.6 92.2

0.488 0.559 0.665 0.697 0.609 0.557 0.540 20.058 20.052 20.050 91.0 91.5 92.1

1.008 0.607 0.719 0.753 0.502 0.541 0.433 20.058 20.052 20.051 90.7 91.6 92.1

August 2006

0.048 0.479 0.523 0.546 0.837 0.809 0.797 20.062 20.055 20.055 91.2 91.5 92.0

0.248 0.564 0.619 0.649 0.674 0.637 0.622 20.062 20.055 20.055 90.9 91.2 91.7

0.488 0.616 0.673 0.707 0.579 0.539 0.522 20.062 20.055 20.055 90.6 91.1 91.6

1.008 0.679 0.733 0.768 0.463 0.426 0.409 20.061 20.055 20.054 90.3 91.0 91.4

February 2007

0.048 0.379 0.427 0.461 0.439 0.429 0.420 20.010 20.010 20.007 91.2 91.5 97.7

0.248 0.421 0.472 0.511 0.407 0.395 0.386 20.012 20.013 20.010 91.4 91.7 92.0

0.488 0.450 0.503 0.542 0.382 0.370 0.360 20.013 20.014 20.011 91.2 91.6 92.0

1.008 0.496 0.546 0.584 0.338 0.326 0.317 20.014 20.015 20.012 90.9 91.4 91.8

March 2007

0.048 0.478 0.528 0.561 0.510 0.493 0.481 20.014 20.014 20.011 91.4 91.8 92.2

0.248 0.523 0.577 0.645 0.465 0.445 0.431 20.016 20.015 20.013 91.5 91.9 92.5

0.488 0.556 0.611 0.651 0.427 0.407 0.391 20.017 20.016 20.014 91.4 91.9 92.5

1.008 0.608 0.662 0.703 0.365 0.343 0.327 20.017 20.017 20.015 91.3 91.9 92.6
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datasets, containing IR pixel brightness temperatures

and interpolated MW rainfall estimates, are compiled for

a circular neighborhood surrounding the given pixel lo-

cation. The IR data are sorted into descending order and

the MW rainfall data are independently sorted into as-

cending order. The rank of the center IR pixel within the

sorted dataset is then determined and used to select the

rainfall value with the same rank from the independently

sorted MW data. Applying this procedure at every pixel

location creates a rainfall field in which rainfall maxima

have been moved to local IR minima. The collocation

procedure is, of course, imperfect and will introduce a

degree of additional uncertainty into the MW rainfall

estimates over and above the original rainfall measure-

ment error. In addition, the collocated fields display a

spatial variability commensurate with the original MW

sensor resolutions rather than the GEO pixel resolution

at which they are generated. These uncertainties are

taken into account by the updating procedures.

3. Results

The LMODEL algorithm generates three sets of

precipitation products corresponding to three stages of

the technique: stage 1 products are outputs from the

unadjusted model; stage 2 products use the interpolated

process scaling parameter; and stage 3 products incor-

porate both rainfall-process scaling and Kalman filter

state adjustment. The stage 1 products were generated

using two seasonal calibrations—July–August 2006 and

February–March 2007—from MW data (Bellerby et al.

2009). The LMODEL rainfall products were initially

generated at a 0.048 spatial resolution and 30-min tem-

poral resolution and then aggregated to create coarser-

resolution products.

Table 1 details a validation of 3-h LMODEL rainfall

products against ground radar at a range of spatial

resolutions. From stage 1 to stage 3, the table shows a

progressive improvement for all statistics: correlation

coefficient, root-mean-square error (RMSE), bias, and

skill score. The Kalman filter–adjusted (stage 3) products

perform significantly better than the stage 1 and stage 2

products in both summer and winter at all product res-

olutions, demonstrating the effectiveness of the Kalman

filter data-adjustment strategy and suggesting that this

updating stage is relatively robust with respect to the

choice of error model. Table 1 also shows some variations

in algorithm performance with season. Products from all

three stages show higher correlations in the summer

months (June–August), whereas lower RMSE and bias

values were found in the winter period (February and

March). The skill scores are similar for all seasons,

TABLE 2. Same as Table 1 but for 1-h LMODEL rainfall products.

Correlation (r) RMSE (mm h21) Bias (mm h21) Skill (%)

Resolution 1 2 3 1 2 3 1 2 3 1 2 3

June 2006

0.048 0.389 0.438 0.453 1.070 1.041 1.030 20.062 20.058 20.055 92.8 93.0 93.5

0.248 0.459 0.520 0.542 0.900 0.863 0.847 20.063 20.058 20.055 92.4 92.7 93.2

0.488 0.506 0.573 0.597 0.787 0.747 0.729 20.063 20.058 20.055 92.0 92.4 92.9

1.008 0.577 0.643 0.666 0.625 0.588 0.570 20.063 20.058 20.055 91.4 92.0 92.6

July 2006

0.048 0.370 0.431 0.445 1.066 1.036 1.028 20.055 20.051 20.052 92.1 92.3 93.0

0.248 0.453 0.534 0.558 0.837 0.796 0.783 20.055 20.051 20.052 91.5 91.7 92.5

0.488 0.506 0.597 0.626 0.704 0.660 0.645 20.055 20.051 20.052 91.0 91.4 92.2

1.008 0.569 0.668 0.697 0.554 0.510 0.495 20.055 20.051 20.052 90.5 91.0 91.8

August 2006

0.048 0.400 0.434 0.449 1.042 1.021 1.015 20.059 20.056 20.055 92.0 92.3 92.7

0.248 0.493 0.541 0.564 0.812 0.781 0.770 20.059 20.056 20.055 91.1 91.5 92.0

0.488 0.557 0.610 0.636 0.678 0.642 0.629 20.059 20.056 20.055 90.6 91.1 91.6

1.008 0.637 0.688 0.715 0.519 0.485 0.471 20.059 20.055 20.055 90.0 90.7 91.1

February 2007

0.048 0.324 0.365 0.393 0.509 0.501 0.495 20.009 20.009 20.006 91.8 92.0 92.0

0.248 0.376 0.423 0.455 0.462 0.452 0.443 20.012 20.012 20.009 91.8 92.0 92.3

0.488 0.413 0.461 0.495 0.426 0.414 0.406 20.013 20.013 20.010 92.5 91.8 92.1

1.008 0.466 0.513 0.546 0.368 0.357 0.349 20.014 20.014 20.011 91.0 91.4 91.9

March 2007

0.048 0.410 0.453 0.479 0.606 0.604 0.594 20.013 20.013 20.011 92.1 92.4 92.6

0.248 0.466 0.515 0.548 0.550 0.533 0.520 20.015 20.015 20.013 92.0 92.3 92.7

0.488 0.509 0.560 0.596 0.493 0.475 0.460 20.016 20.016 20.014 91.7 92.0 92.6

1.008 0.575 0.627 0.665 0.405 0.386 0.370 20.017 20.016 20.015 91.4 91.9 92.5
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ranging from 90% to 92%. These results suggest that the

LMODEL performs most effectively in the summer,

when convective storms dominate, resulting in favorable

correlation coefficients. In the winter period, stratiform

rain is more prevalent, with lower rainfall intensities re-

sulting in lower RMSE values; however, difficulties in

identifying stratiform cloud development processes result

in lower correlation coefficients. The lower correlations

in the winter period may also be related to the quality of

MW rainfall, which is much less accurate (or not avail-

able) in the presence of frozen surfaces and snowfall.

Table 2 shows the validation of 1-h LMODEL rainfall

products against ground radar at a range of spatial res-

olutions. The results are consistent with the 3-h product

evaluation described in Table 1, with stage 3 products

consistently yielding the best validation statistics. These

statistics further confirm that the Kalman filter–adjusted

LMODEL is both stable and effective across different

spatial and temporal scales. The very promising error

statistics—particularly at 0.58 and 18 spatial resolutions—

suggest that LMODEL rainfall estimates may be use-

ful at the fine time scales needed for hydrological

applications.

Table 3 compares validation statistics for 3-h LMODEL

stage 3 outputs against ground radar data to equivalent

validation statistics for a MW-only rainfall product. The

latter validation was only performed for grid cells where at

least one MW overpass was available in the 3-h interval

and at least 50% of the measurement cell was covered by

the overlapping areas of all available overpasses. The

improved sampling capability provided by constellation

LEO satellites, culminating in GPM, should guarantee at

least one MW rainfall sample within every 3-h period.

However, as discussed earlier, using 3-h instantaneous

samples may cause both over- and undercatch of 3-h av-

erage rainfall. Although current MW sensor availability

does not guarantee a 3-h return period, the MW test da-

taset provides this for ;90% of the available points (more

if the definition of a valid sample is relaxed). This com-

parison shows that the performance of LMODEL is

consistently better than that of MW estimates for both

summer and winter in terms of both correlation coeffi-

cients and RMSE. This implies that LMODEL, by em-

ploying an effective integration of LEO and GEO satellite

information, provides added value over a 3-h rainfall

product using LEO satellite MW rainfall data alone.

Figure 2 plots correlations against radar for 3-h

LMODEL stage 3 and MW data. Within each 3-h pe-

riod, an average rainfall within each 0.248 grid box was

calculated from the available samples from each data

TABLE 3. Validation of 3-h LMODEL stage 3 outputs against ground radar data compared to a validation of 3-h MW data against

ground radar data. The latter validation was only performed for grid cells where at least one MW overpass was available in the 3-h interval

and at least 50% of the measurement cell was covered by all available overpasses.

Correlation (r) RMSE (mm h21) Bias (mm h21) Skill (%)

Resolution LMODEL MW LMODEL MW LMODEL MW LMODEL MW

June 2006 (MW 97% coverage)

0.048 0.544 0.473 0.840 0.983 20.55 20.034 92.8 94.0

0.248 0.618 0.552 0.714 0.813 20.55 20.034 92.9 93.5

0.488 0.660 0.605 0.633 0.697 20.55 20.034 92.8 93.1

1.008 0.714 0.666 0.511 0.541 20.55 20.034 92.7 92.6

July 2006 (MW 94% coverage)

0.048 0.543 0.494 0.812 1.011 20.051 20.019 92.2 93.9

0.248 0.643 0.595 0.637 0.792 20.051 20.018 92.2 93.3

0.488 0.697 0.657 0.540 0.655 20.050 20.018 92.1 92.9

1.008 0.753 0.723 0.433 0.495 20.051 20.018 92.1 92.5

August 2006 (MW 93% coverage)

0.048 0.546 0.503 0.797 1.002 20.055 20.023 92.0 93.2

0.248 0.649 0.607 0.622 0.788 20.055 20.023 91.7 92.4

0.488 0.707 0.667 0.522 0.655 20.055 20.023 91.6 92.1

1.008 0.768 0.734 0.409 0.492 20.054 20.022 91.4 91.7

February 2007 (MW 75% coverage)

0.048 0.461 0.410 0.420 0.509 20.007 20.012 92.7 93.9

0.248 0.511 0.477 0.386 0.446 20.010 20.013 92.0 93.5

0.488 0.542 0.525 0.360 0.399 20.011 20.014 92.0 93.3

1.008 0.584 0.587 0.317 0.330 20.012 20.015 91.8 93.4

March 2007 (MW 92% coverage)

0.048 0.561 0.488 0.481 0.720 20.011 20.012 92.2 94.2

0.248 0.645 0.545 0.431 0.635 20.013 20.012 92.5 93.9

0.488 0.651 0.558 0.391 0.560 20.014 20.013 92.5 93.7

1.008 0.703 0.663 0.327 0.441 20.015 20.013 92.6 93.7
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source (radar, LMODEL, or MW), and the resulting

coincident 3-h rainfall data were used to calculate the

corresponding correlation coefficients. This contrasts

with Table 3, where more stringent data-availability

criteria were applied. Correlation coefficients range

from 0.13 to 0.76 for the radar–MW comparison and

from 0.20 to 0.85 for radar–LMODEL stage 3 compar-

ison. Although the range of correlations is similar for

both sets of 3-h products, the LMODEL rainfall yields

much higher correlations than MW rainfall when the

correlations for the latter fall below 0.6. In addition, the

correlations for MW rainfall vary abruptly between low

and high values, indicating that these estimates perform

less consistently throughout the evaluation period. Over-

all, LMODEL outperforms MW with mean 3-h correla-

tions of 0.634 and 0.588, respectively. This result is

consistent with the overall dataset correlations presented

in Table 3. Figure 3 replicates Fig. 2 for August 2006.

Again, correlation coefficients range from 0.10 to 0.76 for

the radar–MW comparison and from 0.16 to 0.79 for the

radar–LMODEL stage 3 comparison. Overall, LMODEL

outperforms the MW-only product with mean 3-h cor-

relations of 0.644 and 0.597, respectively.

Figure 4 shows scatterplots of 3-h LMODEL stage 3

and MW rainfall against radar and additionally com-

pares LMODEL–radar correlations to the fractional

coverage of MW samples. Data points for both plots

were computed for each 3-h time step in August 2006.

The percentage of MW samples was based on the ratio

of available 30-min 0.048 MW rainfall samples to the

maximum number of 30-min 0.048 samples that could

occur under the radar coverage. Figure 4a shows a

strong correlation between LMODEL–radar and MW–

radar correlations. LMODEL outputs consistently out-

perform the MW-only product, with the majority of

samples laying above the 1:1 line, and significant im-

provements are apparent for samples with low MW–

radar correlations. Figure 4b shows LMODEL–radar

correlations varying across a broad range for samples

with low MW availability and adopting consistently high

values for samples benefiting from significant MW

availability—although this relationship between corre-

lations and coverage is extremely weak.

Figures 5 and 6 show example 3-h LMODEL stage 2

rainfall maps for two different times. In the summer ex-

ample shown in Fig. 5, both MW and LMODEL stage 3

FIG. 2. Correlations for 0.258 3-h LMODEL stage 3 rainfall against ground radar data plotted

against time for July 2006 and compared with corresponding correlations for MW rainfall

against ground radar. The percentage coverage of MW rainfall data over total radar coverage is

also shown.

FIG. 3. Same as Fig. 2 but for August 2006.
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capture heavy rainfall over southeastern Arizona,

northeastern Texas, and southern Kansas and Missouri

while underestimating rain areas over Indiana com-

pared to the radar. In addition, MW overestimates

rainfall over southern Arizona and Kansas. In the winter

example shown in Fig. 6, both MW and LMODEL stage 3

capture heavy rainfall over western Oklahoma, whereas

the 3-h MW rainfall seems to overestimate rainfall in

southern Arizona but miss rainfall over Illinois and

Iowa. The MW data do not cover New York and New

England, most likely because of problems with a snow-

covered surface. However, the LMODEL stage 3 esti-

mates effectively capture the rainfall over the MW data

void but overestimate the rain area in southern Arizona

FIG. 4. (a) Scatterplot for August 2006 of correlation of 3-h LMODEL stage 3 rainfall to radar rainfall vs the

correlation of 3-h MW rainfall to radar rainfall. (b) Same as for (a) but versus fractional (%) MW coverage (com-

puted at full GEO pixel resolution).

FIG. 5. Maps for 3-h 0.248 resolution, radar, MW, and LMODEL (stage 3) rainfall for 0900–1200 UTC 27 Jul 2006, together with

corresponding scatterplots of LMODEL and MW rainfall against ground radar.
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and west Texas. The scatterplots for both examples

show LMODEL stage 3 performing better than MW

estimates, as characterized by the validation statistics

tabulated over the plots.

Figure 7a plots product–observation correlations

against time from the nearest MW overpass for three

rainfall products: 1) unadjusted 0.048 LMODEL outputs

(stage 1); 2) LMODEL outputs adjusted using local

calibration and the Kalman filter (stage 3); and 3) a

simple linear interpolation of collocated MW rainfall

along advection streamlines. The validation dataset for

this comparison was formed by removing every 10th

MW overpass from the calibration dataset and rerun-

ning the LMODEL and rainfall-advection products for

July–August 2006 with these overpasses removed. Val-

idation was then performed against the collocated MW

data that had been held back. The LMODEL stage 1

products show a correlation of ;0.6 to the MW refer-

ence data, which is, of course, independent of time from

the nearest MW overpass. The dashed line shows the

decay in correlation for the MW advection product with

time from the nearest overpass. Correlations drop sig-

nificantly from 1.0 to 0.6 after 30 min and further decay

to ;0.4 only an hour from the nearest MW measure-

ment. This implies that there is a limitation to the direct

use of high-resolution advection vectors to morph MW

rainfall between overpasses, with an effective ‘‘window’’

of less than one hour beyond which the accuracy of

advected rainfall fields diminishes significantly. Notice

that the standard CMORPH algorithm operates at a

very different spatial resolution to the MW advection

product assessed here, so this result is not transferable to

that algorithm. The LMODEL stage 3 products, on the

other hand, behave very differently, displaying an im-

pressively high correlation near 0.9 that remains stable

up to three hours from the nearest overpass. However, it

must be noted that this comparison is made against the

collocated MW product, which by its nature introduces

aspects of the IR cloud geometry into its corrected

rainfall field.

Figure 7b shows the fractional occurrence of time

from the nearest MW overpass computed for 0.048 GEO

pixels in the test dataset for July–August 2006. About

80% of the samples are in the range of within one hour

from the nearest MW overpass, whereas nearly 15% of

the samples are 1–2 h from a MW overpass. Around 5%

of the samples lie in the range of 2–3 h from the nearest

MW overpass.

Table 4 compares validation statistics against inde-

pendent MW for the linearly interpolated morphing

product and LMODEL stages 1 and 3. These statistics

were computed only for points for which a MW mea-

surement was not available. The high-resolution morph-

ing technique demonstrates the poorest performance,

followed by LMODEL stage 1 and LMODEL stage 2.

Again, this indicates the strength of LMODEL at

FIG. 6. Same as Fig. 5 but for 0000–0300 UTC 23 Mar 2006.
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reproducing microwave rainfall fields at high resolution.

The result does not, however, constitute a cross validation

against the standard CMORPH algorithm, which uses a

lower resolution and empirically corrected representation

of cloud advection (Joyce et al. 2004).

Figure 8 compares rainfall propagation speeds found

in LMODEL stage 1 outputs and ground radar data

using time–longitude diagrams. As discussed earlier,

Joyce et al. (2004) notice a significant systematic dif-

ference (ratio of ;2–4) between cloud advection speeds

and rainfall advection, attributable to cirriform clouds

shearing off from precipitating systems. However, it is

clear that some GEO satellite features such as over-

shooting tops will move with surface rainfall, even if they

are spatially displaced from corresponding features at

ground level (Adler and Mack 1986; Adler and Negri

1988). GEO satellite forcing in LMODEL concentrates

on growing clouds, whereas the cloud advection is de-

termined at near-pixel resolutions. These two factors

should combine to make the model relatively robust

with respect to the decoupling of cloud and rainfall

motion; however, being based on single-band IR imag-

ery, LMODEL is not immune to problems associated

with cirrus contamination. Although some differences in

feature delineation are apparent in Fig. 8, observed and

modeled propagation speeds match each other reason-

ably well, and there is no apparent need for a significant

systematic correction of advection velocities, as is ap-

plied in CMORPH.

4. Conclusions

This paper presents a 5-month case study covering the

continental United States to validate the new LMODEL

satellite rainfall algorithm. The algorithm proceeds in

three stages, and the validation statistics presented show

a consistent improvement in LMODEL performance,

from employing fixed seasonal parameter sets (stage 1)

through the addition of time-interpolated precipitation-

process scaling parameters (stage 2) to the implementa-

tion of model state updating using a Kalman filter (stage

3). A comparison of 3-h stage 3 LMODEL and MW

rainfall estimates against ground radar rainfall shows

that the LMODEL outputs outperform collocated 3-h

MW rainfall in terms of evaluation statistics such as cor-

relation and root-mean-square error. The performance of

LMODEL stage 3 outputs remains quite stable between

MW overpasses (see Fig. 7). The correlation coefficient

for 0.048 LMODEL outputs against cloud-corrected MW

data stays relatively constant at around 0.9 more than 3-h

from the nearest MW overpass. By comparison, equiva-

lent correlations for a high-resolution morphing product

(in which rainfall rates are linearly interpolated along

advection streamlines) drop from 1.0 to around 0.4 as

time from the nearest overpass increases from zero to

three hours. Validation statistics comparing LMODEL to

FIG. 7. (a) Product correlation against independent collocated

MW data plotted against time from the nearest incorporated MW

overpass for three 0.048 30-min rainfall products covering July–

August 2006: LMODEL stage 1, LMODEL stage 3, and a simple

linear interpolation of collocated MW rainfall along advection

streamlines. (b) Fractional occurrence of time from nearest MW

overpass computed for 0.048 GEO pixels in the test dataset for

July–August 2006.

TABLE 4. Validation against independent MW data of 30-min 0.048 LMODEL stage 1 and stage 3 outputs and a simple linear interpolation

of collocated MW rainfall along advection streamlines (morph).

Correlation (r) RMSE (mm h21)

Morph LMODEL stage 1 LMODEL stage 3 Morph LMODEL stage 1 LMODEL stage 3

0.431 0.579 0.906 0.930 0.723 0.441

Bias (mm h21) Skill (%)

Morph LMODEL stage 1 LMODEL stage 3 Morph LMODEL stage 1 LMODEL stage 3

0.017 20.078 20.081 66.6% 74.4% 75.5%
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the high-resolution morphing product confirm the supe-

rior performance of LMODEL at representing rainfall

variability between MW overpasses. Moreover, an anal-

ysis of rainfall motion suggests that LMODEL is capable

of relating rainfall advection to cloud advection without

the need for an empirical correction to advection veloc-

ities. High-temporal-resolution validation statistics for

LMODEL stage 3 products are very encouraging and

suggest that LMODEL has the potential to generate ef-

fective rainfall measurements at an hourly scale. It should

FIG. 8. Time–longitude diagrams for (a) hourly 0.248 LMODEL stage 1 rainfall outputs and (b) hourly ground radar

rainfall measurements aggregated to the same spatial resolution.
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be noted, however, that LMODEL has not yet been cross

validated against operational rainfall products such as

CMORPH. Such an intercomparison is a priority for

further research.

The LMODEL algorithm is not fully real time; that is,

a full stage 2 correction can only take place up to the last

available microwave overpass. However, the algorithm

is able to generate estimates right up to the present.

These estimates must use a constant value for the pre-

cipitable water scaling parameter determined in stage 2

rather than interpolated values. However, in all other

respects they will be identical to other LMODEL stage 3

outputs and thus the algorithm has some potential for

real-time applications, such as flash-flood forecasting.

This study has demonstrated the potential for gener-

ating improved rainfall estimates using a combined cloud

tracking/cloud modeling/model updating scheme. The

individual components of this scheme have been delib-

erately kept as simple as possible and all are amenable to

improvement. Currently, cloud growth processes are

characterized using only one GEO channel (thermal IR)

with local cloud-top brightness temperatures and their

temporal gradient the sole determinants of precipitable

water input to storm systems. Future work will explore

using multispectral GEO imagery to better characterize

rainfall processes. In addition, improved model param-

eterizations will be investigated, with a view toward de-

veloping regional and global parameterizations for

operational LMODEL implementation.
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