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Introduction 
The chemical investigation of the transactinide elements (TAN, Z ≥ 104) is a topic of great 
interest in recent nuclear chemistry research. The highly charged nucleus accelerates the 
innermost electrons to relativistic velocities thus causing contraction of spherical (s, p1/2) 
orbitals and expansion of the others (p3/2, d, and f), which directly affects the chemical 
behavior of these elements. Deviations from trends established in the periodic table may 
therefore occur due to these so-called relativistic effects [1,2]. In gas phase experiments, 
mostly volatile inorganic compounds (e.g., halides or oxides) of TAN were investigated. We 
refer to [3] for a recent review. For reasons such as low production cross-sections or short 
half-lives, but also technical challenges, more sophisticated chemical studies have not yet 
been possible. One restriction in present TAN research is the plasma behind the target caused 
by the intense heavy ion beam. "Weak" molecules (e.g., organic ligands) are immediately 
destroyed, thus limiting the possibilities of synthesizing chemical compounds directly behind 
the target to "simple" and robust inorganic compounds. It is highly desirable to expand the 
knowledge on the chemical behavior of the TAN to other compound classes, e.g., volatile 
metal complexes. The use of the Berkeley Gas-filled Separator (BGS) [4] as a physical pre-
separator makes such studies possible by separating the beam from the desired TAN isotopes.  

Volatile β-diketonate metal complexes 
A compound class that appears suitable for such studies are the β-diketonates, i.e., 
coordination compounds of a metal with ligands of the structural type shown in Figure 1. The 
β-diketone anions are well known to act as bidentate ligands forming neutral complexes, some 
of which can be transferred to the gas phase without decomposition. It has been observed that 

the introduction of fluorine atoms leads to more volatile species [5]. 
In studies of Hf β-diketonates using long-lived (T1/2 ~ h) carrier-free 
isotopes, Fedoseev et al. demonstrated that single molecules of Hf-
hfa complexes deposited at temperatures below 100°C in a 
temperature gradient tube [6]. Therefore, we used the hfa system for 
first studies of a volatile metal complex. As a first system, 
rutherfordium (Rf, Z=104) was chosen since 257Rf (T½=4.7 s) can be 
produced at a relatively high rate of 1-2 atoms/min at the BGS. Here, 
we report on experiments with the lighter homologs of Rf, zirconium 
(Zr) and hafnium (Hf). 
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Experimental and Results 
Production of short-lived Zr and Hf isotopes using a heavy ion cocktail 

To rule out the role of differing experimental conditions in the measurement of chemical 
properties, it is desirable to investigate isotopes of all homologs simultaneously. Due to their 
different magnetic rigidities, BGS can not forward them to the chemistry setup 
simultaneously. The next best approach is to switch quickly between short-lived isotopes of 
these elements without having to open the chemistry setup. Short-lived Zr and Hf isotopes 
have therefore been produced in the nuclear reactions natGe(18O,xn)85Zr, 74Se(18O, α3n)85Zr 
and 112,116,120,124Sn(50Ti,xn)158,161,165,169Hf. Using a heavy-ion cocktail [7] of 18O4+ and 50Ti11+ 
and a target ladder holding up to 5 targets, which can be remotely introduced into the path of 
the beam, allowed for a quick switching between Zr and Hf. Magnetic rigidities for all 
produced isotopes were measured as well as the residual range of 169Hf and 85Zr in Mylar, 
which is used as the BGS exit window. 

Formation of volatile hfa compounds of Hf 

A schematic of the experimental setup is shown in Figure 2.  
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Figure 2: Setup used to chemically investigate volatile metal complexes at the BGS. 

 
The beam, delivered by the 88-inch cyclotron, induced nuclear reactions in the target at the 
irradiation position. The beam was deflected using the BGS and did not reach the focal plane 
of the separator. The evaporation residues (EVR) entered the recoil transfer chamber (RTC) 
[8] through a 3.6-µm thick Mylar window. The RTC was flushed with 1.3 l/min He that was 
enriched in hfa by passing part of the gas through a bubbler containing hfa. Hfa is a liquid at 
room temperature. The thermalized recoils were transported to a nearby oven where the 
volatile complexes were formed. These were forwarded through a PFA Teflon transfer 
capillary to a thermochromatography (TC) setup located at a distance of 5 m. The gas-flow 
rate, temperature of the RTC-oven and hfa concentration in the He carrier gas were optimized 
to produce maximum yields. The following partial yields were measured for 169Hf: Formation 
of volatile complexes: >95% of the Hf present in the RTC; transport to the chemistry setup: 
>95%; giving an overall yield of more than 90% for this 3.24-min isotope.  

Thermochromatography experiments 

The adsorption behavior of the formed compounds was investigated in on-line TC 
experiments by introducing them into an open quartz column with a negative longitudinal 
temperature gradient from +75 to -50°C. It is not possible to use a lower minimum 



temperature because macroamounts 
of hfa present in the carrier gas 
deposit at about -65°C. Deposition 
of Hf and Zr isotopes along the 
temperature gradient was 
determined by scanning the column 
with a HPGe γ-detector using a lead 
collimator with a window of 2-cm 
width. Each section was counted for 
2 min.  A considerable fraction of 
the transported 169Hf passed through 
the chromatography column and 
reached an activated charcoal 
(ACC) trap that was installed after 
the exit of the column. Such traps 
absorb 100% of the formed species. 
The reminder of the 169Hf deposited 
at temperatures between 0 and 
-20°C. This is in contradiction to a 
deposition temperature of 40°C as 
reported in [9].   

 

These first results are very encouragi
possible to form fragile compounds co
ion induced fusion reactions when the 
and the results will be presented at the 
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Figure 3. Thermochromatogram of 169Hf. Two 
experiments conducted under identical conditions 
are shown. The temperature gradient is indicated 

(right-hand scale). An activated char coal trap 
(ACC) was mounted after the exit of the TC column

to retain 169Hf that was passing the column. 
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