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Abstract

The Quantum Many-Body Problem: Methods and Analysis

by

Michael Lindsey

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Lin Lin, Chair

This dissertation concerns the quantum many-body problem, which is the problem of
predicting the properties of systems of several quantum particles from the first prin-
ciples of quantum mechanics. Included under this umbrella are various problems of
fundamental importance in quantum chemistry, condensed matter physics, and mate-
rials science. Of particular interest is the electronic structure problem, the problem of
determining the state of the electrons in a system with fixed atomic nuclei. Since di-
rect numerical solution of the many-body Schrödinger equation is intractable even for
systems of moderate size, a diverse array of approximate methods has been developed.
The broad goals of this dissertation are to improve the mathematical understanding
of certain widely-used approximations, as well as to propose new methods. Roughly
speaking, we consider three (overlapping) categories of methods: Green’s function
methods, embedding methods, and variational methods.

One can understand Green’s function methods in terms of many-body perturba-
tion theory, which computes series expansions of physical quantities about a non-
interacting reference system. These expansions can be expressed graphically in terms
of Feynman diagrams, which can in turn be reorganized, in some cases, into an expan-
sion in terms of so-called bold diagrams. Green’s function methods can be specified
by choosing a subset of bold diagrams to approximate the sum. At the same time,
such methods can be understood in terms of an object known as the Luttinger-Ward
(LW) functional, which admits a representation in terms of the bold diagrams. Many
aspects of these constructions are purely formal, and indeed the existence of the
fermionic LW functional as a single-valued functional has recently been called into
question. To contribute to the understanding of these issues, we provide rigorous
proofs of the combinatorial construction and analytic interpretation of the bold di-
agrams in the simplified setting of a classical field theory. In this setting we also
provide a rigorous non-perturbative construction of the LW functional via convex
duality and prove several key properties, including continuity up to the boundary of
its domain and asymptotics in the limit of large interaction.
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Quantum embedding methods, meanwhile, view a large system as being composed
of smaller fragments that are treated with high accuracy and embedded in the larger
system in a mutually consistent way. Inspired by a connection between the boundary
analysis of the LW functional and embedding, we perform similar analysis for the
1-RDM theory for fermionic systems, which is also developed via convex duality,
illustrating a relation to fermionic embedding methods such as the density matrix
embedding theory (DMET).

Another embedding method of note is the dynamical mean-field theory (DMFT),
which is at the same time a Green’s function method that can be understood in
terms of the LW functional. DMFT relies on the solution of impurity problems,
which specify the embedding of an interacting system into a non-interacting bath.
Underlying DMFT is a result about the sparsity pattern of the self-energy matrix for
impurity problems, which to our knowledge has not been proved in the literature. We
provide a rigorous proof of this result in various classical and quantum settings. We
go on to investigate the fermionic DMFT in depth, identifying the key mathematical
structures that appear in the algorithmic loop for solving it and using these to prove
the well-posedness of this loop, in a certain sense.

Finally, we introduce a suite of new approaches to the quantum many-body prob-
lem that provide variational lower bounds to the ground-state energy. These meth-
ods, which combine the themes of convexity and embedding, are based on novel
convex relaxations of the variational principles for the ground-state energies of many-
body systems. To begin, we recover a second-quantized version of the formalism of
strictly correlated electrons (SCE), which yields an exact expression for the exchange-
correlation functional in Kohn-Sham density functional theory in the limit of infinite
Coulomb repulsion in terms of the solution of a multi-marginal optimal transport
problem. We introduce a semidefinite relaxation method for approximately solving
this problem and obtaining a lower bound for the ground-state energy. The ideas
underlying this relaxation are generalized considerably, outside the context of SCE,
to yield much tighter lower bounds, which we validate numerically for both quantum
spin systems and fermionic systems. We also describe how these relaxation methods
can be interpreted as embedding methods via convex duality.
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Figure 1: A map of ideas, to be interpeted somewhat loosely. The yellow and blue
regions correspond to the domains of classical and quantum mechanics, respectively,
and arrows indicate correspondences between settings. The purple text and arrows
indicate the formal correspondence between Euclidean field theory and Grassmann
/ complex field theories. The red box for the Grassmann / complex field theories
indicates that they do not enjoy the same variational structure as their Euclidean
counterpart, i.e., there is no suitable Gibbs variational principle in this setting. By
contrast, the other perspectives all enjoy suitable (classical or quantum) Gibbs vari-
ational principles.

Preface
This work concerns statistical mechanics, broadly construed. Of course, the brevity of
the term ‘statistical mechanics’ conceals the startling diversity of ideas falling under
this heading, the vast majority of which shall make no appearance here. Our focus is
necessarily limited to certain facets of statistical mechanics, classical and quantum, as
well as some of the connections between them. Nonetheless the coherence of the ideas
presented in this work is best appreciated in a broad unifying context, summarized
in Figure 1. Part I below will describe the needed background for interpreting this
context. Perhaps unsurprisingly, variational principles and the Legendre transform
will play key unifying roles.

In fact, our guiding interest is to understand and evaluate computational ap-
proaches to the quantum many-body problem. Of special particular interest is a
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fermionic many-body problem, the electronic structure problem, i.e., the problem of
determining the quantum state of electrons in a system with fixed atomic nuclei, which
plays a fundamental role in in quantum chemistry, condensed matter, and materials
science. Since direct numerical solution of the many-body Schrödinger equation is
intractable even for systems of moderate size, there is a diverse hierarchy of approx-
imate methods, trading off to varying degrees between accuracy and computational
efficiency. A major goal of this work is to improve the mathematical understanding
of widely-used approximations from physics and chemistry, as well as to suggest and
validate new approaches.

Now even a single-minded concern for fermions is enough to motivate significant
detours through the classical realm. A variety of techniques known collectively as
path integrals generate correspondences from quantum-mechanical ensembles (even
at zero temperature) to the Gibbs measures of classical statistical mechanics. For
fermions, such a correspondence is, unfortunately, only formal. However, it gives us a
perspective on some of the most widely-used methods in electronic structure, namely
the Green’s function methods, which arise from a machinery called the Luttinger-Ward
(LW) formalism1 [65] (featuring a functional of the same name), or alternatively from
manipulations of the perturbatively defined bold Feynman diagrams [100]. The LW
formalism has been widely used in both physics and chemistry [28, 45, 10, 90]. One
perspective on this formalism is that of many-body perturbation theory (MBPT),
which represents physical quantities of interest via perturbative expansion in the
strength � of the inter-particle interaction (i.e., in the case of electronic structure,
the repulsion between electrons). The terms in this expansion correspond to the so-
called bare Feynman diagrams. These can in turn be reorganized into a series of bold
Feynman diagrams via a procedure known as ‘renormalizing the propagator,’ which
involves infinite summations that are purely formal without further justification. The
selection of some subset of diagrams from the bold diagrammatic series for a physical
quantity known as the self-energy specifies a Green’s function method, which can
be used to compute Green’s functions. Such Green’s function methods can also be
formally justified via a construction known as the Luttinger-Ward (LW) functional.

In Part II, we provide the first rigorous combinatorial construction of the bold
diagrams with methods applicable to rather general field theories. In Part III, by
transposing to a classical statistical-mechanical setting (which we refer to as the
Euclidean lattice field theory), we are able to non-perturbatively construct the LW
functional in terms of the Legendre transform of a convex function, and moreover we
are able provide the first rigorous interpretation for the bold diagrams as an asymp-
totic series for the LW functional. The construction exploits variational structure
and convexity properties that are not available in the fermionic setting, though the
formal perspective of the Legendre transform is still active there. In fact, the math-
ematical status of the LW formalism in the fermionic setting is still an open matter

1The Luttinger-Ward formalism is also known as the Kadanoff-Baym formalism [7] depending on
the context. In this work we always use the former.
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of considerable contemporary interest; see [54, 32, 103, 42].
In Part IV, we explore in the Euclidean setting the LW functional in the limit of

large �. We prove the dominance of the Hartree contribution in this regime and derive
a leading-order correction defined in terms of classical spin systems. The extension
of this analysis to the quantum many-body setting is still an open topic of interest.

Our construction of the Luttinger-Ward functional reveals several interesting struc-
tural properties. Of particular note is the continuity of the LW functional up to the
boundary of its domain, which does not trivially follow from its definition. In fact we
derive a formula that expresses the LW functional on the boundary of its domain in
terms of the LW functional corresponding to a smaller physical system. This observa-
tion relates the LW functional to impurity problems, which will be featured directly in
Part VI, as well as in the context of the dynamical mean-field theory (DMFT)[37, 53]
in Part VII.

The appearance of the impurity problem motivates us to say something now about
embedding, which plays a central role throughout this work. Due to the difficulty of
the quantum many-body problem, it is desirable to reduce computational effort by
dedicating more resources to small ‘difficult’ regions of a system where many-body
effects are significant and fewer resources to ‘easier’ regions where, e.g., a single-
particle picture is appropriate. While this goal seems reasonable from a high level,
the right mathematical framework for accomplishing such an ‘embedding’ of a small
problem into a larger one is a priori unclear. Remarkably, quantum embedding is
useful not only in the scenario of a single small region of special interest, but also
for extended systems in which no such region is privileged. Indeed, one can view an
extended system as being divided into many smaller disjoint fragments. The goal
is then to view each of these fragments as being embedded in a larger system in a
mutually consistent way.

Now DMFT is in particular an embedding method (as well as a Green’s function
method). It relies on the solution of impurity problems, which specify the embedding
of an interacting system into a non-interacting bath. We shall keep the connection
between boundary analysis and embedding in mind.

In Part V, we provide a rigorous development of the 1-RDM theory, which is in
a certain sense an analog of the Euclidean LW formalism in the fermionic setting.
But rather than highlighting the aforementioned field-theoretic and diagrammatic
analogies between the Euclidean and fermionic LW formalisms, the 1-RDM theory
represents the analogy of the convex analysis that underlies the Euclidean LW theory.
Motivated by our boundary analysis for the LW functional, we carry out a similar
analysis for the 1-RDM theory. This analysis naturally leads us to prove what we
term the ‘embedding lemma,’ which underlies the justification of complete active
space methods, as well as the density matrix embedding theory (DMET) [49], in the
quantum chemistry literature.

With that we leave the realm of convex analysis to continue our investigation of
impurity problems. In Part VI, we prove that for various impurity models, in both
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classical and quantum settings, the self-energy matrix is a sparse matrix with a spar-
sity pattern determined by the impurity sites. In the quantum setting, such a sparsity
pattern has been known since Feynman [35]. Indeed, it underlies several numerical
methods for solving impurity problems, as well as many approaches to more general
quantum many-body problems, such as the dynamical mean field theory. The spar-
sity pattern is easily motivated by a formal perturbative expansion using Feynman
diagrams. However, to the extent of our knowledge, a rigorous proof has not appeared
in the literature. In the classical setting, analogous considerations lead to a perhaps
less-known result, i.e., that the precision matrix of a Gibbs measure of a certain kind
differs only by a sparse matrix from the precision matrix of a corresponding Gaussian
measure. Our argument for this result mainly involves elementary algebraic manip-
ulations and is in particular non-perturbative. Nonetheless, the proof is robustly
adapted to various settings of interest in physics, including quantum systems (both
fermionic and bosonic) at zero and finite temperature, non-equilibrium systems, and
superconducting systems.

The sparsity result for impurity problems is at the heart of DMFT, which we in-
vestigate in depth in Part VII. After illustrating the connection to the LW formalism
via the setting of classical field theory, we turn to identifying the key mathematical
structures in the algorithmic loop of DMFT for fermionic systems. In particular, we
provide rigorous proof of the well-posedness of the DMFT loop in a certain sense,
which should be compared with [52]. Moreover, the mathematical framework pre-
sented in this part offers a perspective on hybridization fitting, a preprocessing step
for impurity problems in which the influence of the bath on the fragment is approxi-
mated by a smaller, more computationally tractable bath. This perspective has been
reflected in the recent work [73].

In the final two parts of this dissertation, we discuss a suite of approaches to the
quantum many-body problem that diverge from the previous parts in many formal
respects yet are united to them by the recurring themes of convexity and embedding.
The point of departure is again the convex variational principle for quantum many-
body problems, and here we introduce computationally tractable convex relaxations
of these variational principles which provide lower bounds to the ground state energy.

In Part VIII, the electronic many-body problem is the focus, and the relaxation
under consideration really consists of two successive relaxations. The first of these
relaxations is motivated via its asymptotic tightness in the limit of infinitely strong
Coulomb repulsion, called the limit of strictly correlated electrons (SCE). The idea
of SCE [95, 94, 20, 66, 26] originally arose in first quantization as a limit in which
the exchange-correlation functional in Kohn-Sham density functional theory [44, 50]
admits exact expression in terms of the solution of an (albeit costly) multimarginal
optimal transport (MMOT) [80] problem with pairwise cost. Our relaxation can be
considered as a second-quantized analog of this development and indeed also may
be exactly solved via an MMOT problem with pairwise cost, though this problem is
importantly different from its first-quantized analog. Thinking of second-quantized
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SCE as a model, we then propose a means to approximately solve it via a novel
semidefinite relaxation of the MMOT problem.

In Part IX, we broaden and strengthen the approach of Part VIII, bypassing the
SCE step and directly formulating a framework of new convex relaxations of the
variational principle for fermionic systems, as well as quantum spin systems. We also
describe how these relaxations can be interpreted as embedding methods, suggesting
a pathway for fast algorithms, and unifying, for perhaps the first time, variational
and embedding-based approaches to the quantum many-body problem.

Please note that Part II is based on [61] (joint work with Lin Lin), Part III is
based on [62] (joint work with Lin Lin), Part VI is based on [63] (joint work with
Lin Lin), and Part VIII is based on [47] (joint work with Yuehaw Khoo, Lin Lin, and
Lexing Ying). Also, much of section 7 of Part I is based on the appendices of [63].
Finally, Part VII is based on joint work in preparation with Lin Lin and Reinhold
Schneider, and Part IX is based on joint work in preparation with Lin Lin.
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Part I

Background

This part is dedicated to the presentation of the background material that we will
use to introduce and connect the developments outlined in the Preface. The reader
should beware that the presentation is not necessary standard in all points. Instead it
aims to provide a unified perspective on the themes that tie this work together. More
broadly I hope that it will serve as an invitation to the subjects that are active in
this work and the connections that animate them. Useful resources for further study
include [77, 1, 36].

1 Classical statistical mechanics

1.1 Gibbs measures
We consider statistical-mechanical models with discrete sets of sites, indexed by i =
1, . . . , N . Each site has a local state space Xi, and for simplicity we assume that
Xi = X for all i. Then the global state space is defined by X :=

L
i Xi. For now let

us further assume that the local state space X is finite. Then given a Hamiltonian
H : X ! R and an inverse temperature � 2 (0,1), the primary object of interest is
the Gibbs measure defined by the probability mass function

µ�(x) =
1

Z[�]
e��H(x),

where Z[�] =
P

x2X e��H(x) is the partition function, a normalization constant chosen
to ensure that the right-hand side indeed defines a probability measure. Notice that in
the zero-temperature limit (i.e., as � !1), the Gibbs measure concentrates around
the minimizer(s) of H, hence statistical mechanics at zero temperature recover the
general problem of optimization.

More generally, we can lump � into our definition of H and think of H = HA

itself as being parametrized by some data A. Then our Gibbs measure is likewise
parametrized by A via

µA(x) =
1

Z[A]
e�HA(x),

where Z[A] =
P

x2X e�HA(x).
A standard example is the ferromagnetic Ising model with external magnetic field,

specified by a choice of graph structure for the sites (e.g., a d-dimensional lattice),
local state space X = {�1, 1}, parameters A = (�, µ), and Hamiltonian

H�,µ = �
X
i⇠j

�i�j � µ
X
i

�i,

1



where the summation over i ⇠ j indicates summation over all pairs of indices that our
adjacent in the graph. There are many other related models with local state space
X = {�1, 1}, known as classical spin systems.

These considerations carry over naturally to the continuous setting, e.g., Xi = R,
which may be called ‘Euclidean (alternatively, classical or statistical) lattice field
theory.’ Here the Gibbs measure is defined

dµA(x) =
1

Z[A]
e�HA(x) dx,

where Z[A] =
´
RN e�HA(x) dx.

The major example of interest in this work is specified by taking the parameter
A to be a real-symmetric N ⇥N matrix and

HA(x) =
1

2

xTAx+ U(x), (1.1)

where U(x) is thought of as a fixed ‘interaction,’ representing a deviation from Gaus-
sianity, which on its own is trivial to understand. Of particular interest is the inter-
action form

U(x) =
X
ij

vijx
2
ix

2
j ,

which we call the generalized Coulomb interaction via its formal analogy to the
Coulomb interaction of electronic structure, which is reflected in an analogy at the
level of Feynman diagrams. Note that this class of models includes as a special case
the lattice �4 model, specified by a diagonal kernel vij = ��ij.

1.2 Gibbs variational principle
The partition function, or equivalently the free energy ⌦[A] := � logZ[A], naturally
encodes a great deal of information, as we shall see in our discussion of the Luttinger-
Ward formalism. In the continuous setting, as we shall verify in Part III the free
energy satisfies the Gibbs variational principle

⌦[A] = inf

µ

ˆ
HA(x) dµ(x)� S(µ)

�
,

where the infimum is taken over a suitable class of probability measures on RN and
is in fact attained by the Gibbs measure µ = µA. Here S is the differential entropy,
defined

S(µ) = �
ˆ

log

dµ

d�
dµ

for all µ absolutely continuous with respect to the Lebesgue measure � (and defined
S(µ) = �1 for µ otherwise). Note that dµ

d�
is the Radon-Nikodym derivative, i.e.,

the probability density function for µ.

2



A suitable analogous variational principle is available in the discrete setting:

⌦[A] = inf

µ

"X
x2X

HA(x)µ(x)� S(µ)

#
,

where S is the Shannon entropy, defined

S(µ) = �
X
x2X

µ(x) log µ(x),

with the convention 0 log 0 = 0.

2 Quantum statistical mechanics
What does it mean to ‘quantize’ a classical system? There are two aspects of the
procedure: (1) upgrading the classical state space to a corresponding quantum state
space and (2) choosing a Hamiltonian. The first point is straightforward, though the
second point is more subtle. In elementary quantum mechanics, the procedure known
as canonical quantization [36] produces a quantum Hamiltonian from the symplectic
structure of a classical Hamiltonian dynamical system. However, in general classical
statistical mechanics, the Hamiltonian is merely a function on states and there are no
accompanying dynamics. In the setting of quantum spin systems, for example, there
are many Hamiltonians of interest that are thought of as phenomenological models
for interesting physics and are not derived by ‘quantizing’ classical Hamiltonians.

2.1 Quantum state spaces and Hamiltonians
To illustrate the first point, we describe the relation between classical and quantum
spin systems. For each site i, the local quantum state space is given by Qi = CXi .
Note that with the standard inner product, as a complex Hilbert space Qi ' L2

(Xi).
For example, if Xi = {�1, 1}, then Qi ' C2; this is the important case of spin-1

2
.

As we shall see later, bosonic systems in second quantization can be understood as
spin systems in this sense with classical state space given by the nonnegative integers,
i.e., Xi = N0 := {0, 1, 2, . . .}. Moreover, there is a correspondence between fermionic
systems in second quantization and quantum spin-1

2
systems via the Jordan-Wigner

transformation, but this correspondence is not canonical.
Now the global quantum state space is defined as Q :=

N
i Qi ' CX , i.e., in the

spin-1
2

case, we have Q '
N

i C2 ' C(2N ) ' L2
({�1, 1}N). Thus each state | i 2 Q

can be thought of as a C-valued function  (x) =  (x1, . . . , xN), i.e., a wavefunction.
Here xi 2 {�1, 1}.

In the setting of first quantization, as discussed in section 3 below, we may think
of i as an index for our particles, each with local classical state space Xi = Rd, where

3



d is the physical dimension. With N particles, the global classical state space is
X =

LN
i=1 Rd

= (Rd
)

N , hence (ignoring the spin degree of freedom quantum particles)
the global quantum state space is Q = L2

((Rd
)

N
), whose elements are functions of the

form  (x) =  (x1, . . . , xN), where xi 2 Rd for all i. This is the ‘original’ wavefunction
of elementary quantum mechanics, i.e., the wavefunction appearing in the many-body
Schrödinger equation.

Now a Hamiltonian in the quantum setting is a Hermitian operator ˆH : Q ! Q.
For future reference, we let the space of Hermitian operators on a vector space V be
denoted by H(V ), so ˆH 2 H(Q). Since Q ' CX , H(Q) may alternatively be thought
of as the set of complex Hermitian matrices (H(x, y)) 2 CX⇥X . Note that restriction
to diagonal ˆH recovers the notion of a classical Hamiltonian H : X ! R.

We will discuss Hamiltonians in first quantization in section 3 below; here we
discuss several examples in the quantum spin-1

2
setting. To this end, first recall the

Pauli matrices:

�x
=

✓
0 1

1 0

◆
, �y

=

✓
0 �i
i 0

◆
, �z

=

✓
1 0

0 �1

◆
,

which, together with the identity I2, form a basis for H(C2
). Now let �x/y/z

i 2
H(

N
i C2

) '
N

i H(C2
) be obtained by tensoring a copy of �x/y/z for the i-th site

with the identity I2 on all the other sites, i.e., in matrix form

�x/y/z
(x, y) = �x/y/z

(xi, yi)
Y
j 6=i

�xi,yi .

(Note: the x/y/z notation for the Pauli matrices is unrelated to the notation x, y for
the classical state space elements.)

Given a graph structure on the site indices, we may define two model Hamiltoni-
ans of interest—the transverse-field Ising (TFI) Hamiltonian and anti-ferromagnetic
Heisenberg (AFH) Hamiltonian—as follows:

ˆHTFI = �h
X
i

�x
i �

X
hi,ji

�z
i �

z
j

ˆHAFH =

X
i⇠j

⇥
�x
i �

x
j + �y

i �
y
j + �z

i �
z
j

⇤
.

In the TFI Hamiltonian, h is a scalar parameter. These Hamiltonians may be used
to define quantum statistical-mechanical ensembles as we shall describe presently.

2.2 Quantum Gibbs states
The quantum analog of a probability measure is a density operator, i.e., a positive
semidefinite Hermitian operator ⇢ : Q ! Q of unit trace. Let the space of density
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operators on Q be denoted D(Q), so in fact ⇢ 2 D(Q). Via diagonalization, a den-
sity operator can be thought of as a choice of orthonormal basis, plus a probability
measure over basis elements. Hence quantum ‘probability’ can be thought of in fact
as a generalization of a classical probability on X , which is recovered in the case
of a diagonal density operator. Likewise, Hermitian operators ˆO 2 H(Q) general-
ize random variables X ! R, and the ‘quantum expectation’ is given by the trace
Tr[

ˆO⇢]. Physically, this value is the expected value of a quantum measurement of the
Hermitian operator ˆO on a quantum system in state ⇢.

A quantum Gibbs state is defined in terms of a Hamiltonian, i.e., an operator
ˆH 2 H(Q), possibly parametrized as ˆH[A]. Note that restriction to diagonal ˆH
recovers the notion of a classical Hamiltonian H : X ! R. Now the quantum Gibbs
operator is defined

⇢[A] =
1

Z[A]
exp(� ˆH[A]),

where ‘exp’ denotes the operator exponential and Z[A] := Tr

h
exp(� ˆH[A])

i
. Likewise

we define the free energy ⌦[A] = � logZ[A], which (as we shall verify in Part V)
satisfies the quantum Gibbs variational principle

⌦[A] = inf

⇢2D(Q)

h
Tr

⇣
ˆH[A]⇢

⌘
� S(⇢)

i
,

where the infimum is attained by ⇢ = ⇢[A], and S here denotes (with meaning clear
from context) the von Neumann entropy

S(⇢) = �Tr[⇢ log ⇢].
Here ‘log’ is the operator logarithm. Note that the von Neumann entropy recovers
the Shannon entropy in the case of diagonal ⇢.

Let us explicitly focus on an inverse temperature parameter �, i.e., define

⇢[�] =
1

Z[�]
exp(�� ˆH),

for fixed ˆH 2 H(Q). It can be verified by diagonalization that as � ! 1, if ˆH
has a unique (normalized) ground state (i.e., eigenvector with minimal eigenvalue)
|�0i 2 Q, then ⇢[�] ! |�0ih�0|. Hence quantum statistical mechanics at zero tem-
perature recovers the problem of finding the ground state of a quantum many-body
Hamiltonian, which is the quantum analog of optimization. Incidentally, any density
operator of rank 1 is known as a pure state

3 First quantization and electronic structure
As mentioned earlier in section 2, the quantum state space for an N -particle system
in first quantization is L2

((Rd
)

N
) '

NN
i=1 L

2
(Rd

), where d is the physical dimen-
sion in which the particles live and we have ignored the spin degree of freedom for

5



simplicity. (Note that for, e.g., spin-1
2

particles, the relevant Hilbert space is sim-
ply L2

((Rd
)

N
;C2

), and our discussion can be extrapolated to this setting with minor
modifications.) For notational clarity, here we shall use boldface to indicate elements
x = (x1, . . . , xN) 2 (Rd

)

N , where the xi 2 Rd.
Consider a classical Hamiltonian dynamical system [36] specified by the Hamilto-

nian H = H(x,p) of position-momentum coordinates:

H(x,p) =
1

2

NX
i=1

|pi|2 +
NX
i=1

V (1)
(xi) +

1

2

X
i 6=j

V (2)
(xi � xj).

Such a Hamiltonian specifies the classical dynamics of N particles that experience
the same external potential V (1) and interact via the pairwise potential V (2), as well
as kinetic energy (for which the mass of the particles is scaled to unity).

Then canonical quantization (see, e.g., [36] for a discussion of deeper principles
underlying this procedure) yields the Hamiltonian ˆH

ˆH = �1

2

NX
i=1

�xi +

NX
i=1

V (1)
(xi) +

1

2

X
i 6=j

V (2)
(xi � xj), (3.1)

where �xi =

Pd
j=1

@2

@(xi)2j
is the Laplace operator for the i-th particle slot. (Note

carefully that
P

i�xi is of course not an operator on L2
((Rd

)

N
). Hence it may seem

more appropriate to look for wavefunctions in H1
((Rd

)

N
). But really the L2 inner

product is the inner product we want. This is one motivation for the notion of a
‘rigged Hilbert space’ [27], but we sweep such analytical difficulties under the rug, as
we shall discuss first quantization mostly in passing to second quantization.)

Now a Hamiltonian ˆH of the form (3.1) can model the physics of (relatively light)
particles in the presence of the ionic potential

V (1)
(x) = �

X
I

ZI

|x�RI |

induced by fixed (relatively heavy) atomic nuclei, indexed by I, of charges ZI and
positions RI 2 Rd, as well as a pairwise interaction specified by V (2); hence we
have implicitly assumed the Born-Oppenheimer approximation [16], in which the
positions of the atomic nuclei are fixed for the computation of the quantum state
of the remaindeer of the system. Identifying our quantum particles as electrons and
specifying a repulsive pairwise Coulomb interaction

V (2)
(x1, x2) =

1

|x1 � x2|
,

we arrive at the electronic structure problem, modulo one important caveat, toward
which we now turn.

6



3.1 Identical particles
The caveat is the notion of identical particles, which is active in the case of electrons.
To motivate this requires some further background.

Here we follow Dirac’s notation, i.e., denoting wavefunctions  (x) and their ad-
joints via | i and h |, respctively, we say that a wavefunction | i 2 Q is normalized
if it satisfies

1 = h | i =
ˆ
(Rd)N

| (x)|2 dx.

Hence ⇢ = | ih | defines a density operator in the sense of section 2. For a set S 2
(Rd

)

N , the characteristic function of this set �S(x) also defines a diagonal operator
on Q via pointwise multiplication. Then

Tr[�S ⇢] =

ˆ
S

| (x)|2 dx.

Hence we interpret | (x)|2 as the probability density function for locating our N
particles at positions x1, . . . , xN , respectively.

For the purpose of this work, it can be taken as a fact of nature (though deeper
justification can be made through quantum field theory; see, e.g., [36] that particles
of certain species are identical, or indistinguishable, in the sense that

| (x)|2 = | (� · x)|2,

for all permutations � 2 SN , where � acts via [� · x]i = x�(i).
Let us examine the consequence of such a condition. For such  and fixed x such

that  (x) 6= 0, it must be the case that  (� · x) = u ,x(�) (x) for some unique
u ,x(�) 2 S1, where S1 ⇢ C denotes the unit circle as a subset of the complex plane.
This condition defines a map u ,x : SN ! S1, evidently a group homomorphism. It
can be shown that there are only two such homomorphisms: the trivial homomor-
phism u ,x(�) = 1 and the signature homomorphism u ,x(�) = sgn(�), which returns
±1 for even/odd permutations, respectively.

Under the reasonable assumption that u ,x(�) should depend continuously on
x, we arrive at two possibilities for  : either  (� · x) =  (x) for all x, i.e.,  is
symmetric, or  (� ·x) = sgn(�) (x) for all x, i.e.,  is antisymmetric. The former is
the case of bosons and the latter of fermions. The subspace of symmetric functions is
denoted Sym

N
(L2

(Rd
)) ⇢

NN
i=1 L

2
(Rd

), and the subspace of antisymmetric functions
by ⇤N

(L2
(Rd

)) ⇢
NN

i=1 L
2
(Rd

). These are the quantum state spaces for N -particle
systems of bosons, and fermions, respectively.

By contrast, certain quantum (composite) particle such as atomic nuclei can be
modeled as ‘boltzmannions’ (note: the terminological usage is not universal), which
are distinguishable and retain the full state space

NN
i=1 L

2
(Rd

).
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3.2 Bases for boltzmannionic, fermionic, and bosonic state
spaces

Given an orthonormal basis {�p}p2B for L2
(Rd

), one can construct corresponding
orthogonal bases for

NN
i=1 L

2
(Rd

), ⇤N
(L2

(Rd
)), and Sym

N
(L2

(Rd
)). Of course, tech-

nically one needs a complete orthonormal sequence to exhaust all of L2
(Rd

), but in
practice one may also consider truncated bases and the relevant Galerkin projections
of operators. Many basis sets adapted for electronic structure have been introduced
in the quantum chemisty literature [102]. We will be somewhat casual about this
point in the discussion and maintain notation that is agnostic with respect to it. In
other words the basis index set B can be either {1, 2, 3, . . .} or {1, . . . ,M} for some
finite M . Let H ⇢ L2

(Rd
) be the (completion of the) span of {�p}p2B. This is our

single-particle Hilbert space, after possible truncation, and the corresponding boltz-
mannionic, fermionic, and bosonic strate spaces are denoted

NN
i=1 H, ⇤N

(H), and
Sym

N
(H), respectively.

First, observe or recall that

{�i
1

⌦ · · ·⌦ �iN : ik 2 B 8k = 1, . . . , N}

is the standard induced orthonormal basis for
NN

i=1 H. To construct the other bases,
we must first introduce some new notation.

For f1, . . . , fN 2 L2
(Rd

), define

NK
i=1

fi := f1 � · · ·� fN :=

X
�2SN

f�(1) ⌦ · · ·⌦ f�(N) 2
NK
i=1

H

and
N̂

i=1

fi := f1 ^ · · · ^ fN :=

X
�2SN

sgn(�) f�(1) ⌦ · · ·⌦ f�(N) 2
N̂

i=1

H.

Then it is not hard to see that

{�i
1

� · · ·� �iN : i1  i2  · · ·  iN , ik 2 B 8k = 1, . . . , N}

and
{�i

1

^ · · · ^ �iN : i1 < i2 < · · · < iN , ik 2 B 8k = 1, . . . , N}
form bases for SN

(H) and ⇤N
(H), respectively. (Note that �i

1

^ · · · ^ �iN ⌘ 0 if
ik = il for some k 6= l.)

3.3 Feynman path integral for boltzmannions
We will now describe how the Feynman path integral [34] can be used transpose a
boltzmannionic quantum-statistical ensemble to the setting of classical Gibbs mea-
sures. The discussion of bases in the preceding section 3.2 will not feature here.
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Consider a Hamiltonian of the form

ˆH = �1

2

�+ V (x)

on the boltzmannionic state space Q = L2
((Rd

)

N
) , where � :=

PN
i=1�xi . Hence this

form recovers (3.1) as a special case. Note that by identifying (Rd
)

N ' RK , where
K = Nd, then the boltzmannionic many-particle system appears as nothing but a
single-particle system in higher dimension. We shall accept this simplification going
forward, denoting x = (x1, . . . , xK), where the xk 2 R.

Consider the position operators X = (X1, . . . , XK), which are the diagonal mul-
tipliers specified by Xk(x,x) = xk, and the momentum operators P = (P1, . . . , PK),
defined by Pk := �i@xk

. Note that �� =

PK
k=1 P

2
k , and V = V (X) in the con-

tinuous operator calculus. We shall denote by |xi the state of definite position
x = (x1, . . . , xK) 2 RK , which is the simultaneous eigenstate of the position op-
erators (X1, . . . , XK) with eigenvalues (x1, . . . , xK). Meanwhile, let |pi denote the
state of definite momentum p = (p1, . . . , pK), which is the simultaneous eigenstate
of the position operators (P1, . . . , PK) with eigenvalues (p1, . . . , pK). As (generalized)
functions we have |xi = �

x

and |pi = e�ip·x. Note that |xi, |pi /2 L2
(RK

), and the
right technical notion of ‘eigenfunction’ is a subtle matter. Here the theory of rigged
Hilbert spaces [27] can come to the rescue, but our discussion is purely formal, and
we shall elide such difficulties.

Now, as the sets {|xi} and {|pi} of eigenfunctions can each be formally viewed
as an orthonormal basis, and we have the completeness relations

IdL2(RK) =

ˆ
RK

|xihx| dx, IdL2(RK) =

ˆ
RK

|pihp| dp,

and it follows that

IdL2(RK) =

ˆ
RK⇥RK

dx dp |xihx|pihp| =
ˆ
RK⇥RK

dx dp e�ip·x|xihp|. (3.2)

Now we consider the partition function

Z[�] = Tr

h
e��Ĥ

i
,

which we shall expand into the path integral via insertion of the completeness rela-
tions. To wit

Z[�] =

ˆ
dx(0) hx(0)|e��Ĥ |x(0)i

=

ˆ
dx(0) dp(0) hx(0)|p(0)ihp(0)|e��Ĥ |x(0)i

=

ˆ
dx(0) dp(0) e

�ip
(0)

·x
(0)hp(0)|e��Ĥ |x(0)i

9



=

ˆ
dx(0) dp(0) e

�ip
(0)

·x
(0)hp(0)|e�

1

M �Ĥ · · · e� 1

M �Ĥ |x(0)i

=

ˆ M�1Y
m=0

dx(m) dp(m) e
�

PM�1

m=0

ip
(m)

·x
(m)

hp(0)|e�
1

M �Ĥ |x(M�1)i · · · hp(1)|e�
1

M �Ĥ |x(0)i,

where in the last step we have inserted (3.2) between every pair of e� 1

M �Ĥ operators.
Now for M large, one has formally

e�
1

M �Ĥ
= e

1

M
1

2

P
k P 2

k e
1

M V (X)
⇥
Id +O(M�2

)

⇤
,

hence in the large M limit, one can replace

hp(m)|e�
1

M �Ĥ |x(m�1)i ⇡ hp(m)| e�
�
M

1

2

P
k P 2

k e�
�
M V (X) |x(m�1)i

= e�
�
M (

1

2

|p
(m)

|2+V (x
(m�1)

)
)hp(m)|x(m�1)i

= e�
�
M (

1

2

|p
(m)

|2+V (x
(m�1)

)
)eip(m)

·x
(m�1)

where we interpret m modulo M , so

Z[�] = lim

M!1

ˆ M�1Y
m=0

dx(m) dp(m) e
�

PM�1

m=0

ip
(m)

·(x
(m)

�x

(m�1)

)� �
M

PM�1

m=0

[

1

2

|p
(m)

|2+V (x
(m)

)
]

=

ˆ
Dxper( · )Dp( · ) e�

´ �
0

[

1

2

|p(⌧)|2+ip(⌧)·@⌧x(⌧)+V (x(⌧))
]

d⌧ ,

where the limit is understood (for now) only formally and Dxper( · ) is thought of
as the infinite-dimensional Lebesgue measure

Q
⌧2[0,�) dx(⌧) on periodic paths, i.e.,

paths satisfying x(0) = x(�). Meanwhile, Dp( · ) can be understood as the infinite-
dimensional Lebesgue measure

Q
⌧2[0,�] dp(⌧), and here via the construction the pe-

riodicity requirement is relaxed. We integrate out the p(⌧) path via an the formula
for Gaussian integrals (formally ‘extrapolated’ to our infinite-dimensional setting):ˆ

Dp( · ) e� 1

2

´ �
0

|p(⌧)|2 d⌧�i
´ �
0

p(⌧)·@⌧x(⌧) d⌧
=

h
lim

M!1
(2⇡)M/2

i
e�

1

2

´ �
0

|@⌧x(⌧)|2 d⌧ .

The ‘infinite preconstant’ limM!1(2⇡)M/2 can be ignored as a physically insignificant
contribution to the partition function, or, as one prefers, it can be formally lumped
into the measure Dx( · ), yielding

Z[�] =

ˆ
x(0)=x(�)

Dx( · ) e� 1

2

´ �
0

[

|@⌧x(⌧)|2+V (x(⌧))
]

d⌧ ,

where we introduce the notation
´
Dxper( · ) · · · =

´
x(0)=x(�)

Dx( · ) · · · . Notice from
the expression that this quantity can be viewed as a partition function for a Gibbs
measure on the space of functions [0, �]! R, i.e., as an infinite-dimensional limit of
the setting discussed above in section 1. In fact, this notion can be made precise via
the Wiener measure; see, e.g., [34].
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4 Second quantization

4.1 The Fock space
Second quantization considers an enlargement, called the Fock space, of any individual
fermionic/bosonic N -particle state space. Indeed, the fermionic/bosonic Fock space
can be defined as the (completion of the) direct sum of all fermionic/bosonic N -
particle state spaces:

Ff := ⇤(H), Fb := Sym(H),

where ⇤(H) :=

L1
N=0 ⇤

N
(H) and Sym(H) :=

L1
N=0 Sym

N
(H) are the exterior and

symmetric algebras, respectively. For simplicity we shall further denote F (N)
f :=

⇤

N
(H) and F (N)

b := Sym

N
(H). Note that we have conflated the notions of the exterior

and symmetric algebras (technically defined as quotients of the tensor algebra) with
the equivalent notions, respectively, of the antisymmetric and symmetric subspaces
of the tensor algebra.

Even if one is only interested in a definite particle number, a simplified picture
of fermionic/bosonic quantum mechanics emerges from this transformation. More-
over, the Fock space allows one to consider states of indefinite particle number and to
understand the physics of the system in terms of the creation and annihilation of par-
ticles. This perspective is fundamental to quantum field theory and can in fact ought
to be viewed as more fundamental than the first-quantized perspective; however, as
the names suggest, first quantization preceded second quantization historically.

Now bases for Ff and Fb are given, respectively, by

{�i
1

^ · · · ^ �iN : i1 < i2 < · · · < iN , N = 0, 1, 2, . . .}

and
{�i

1

� · · ·� �iN : i1  i2  · · ·  iN , N = 0, 1, 2, . . .}.
By convention, ⇤0

(H) = Sym

0
(H) = C, and the basis element in the case N = 0

(i.e., the ‘empty’ wedge product) is called the vacuum state, denoted by |�i. Note
carefully the distinction between the vacuum state and the zero vector, denoted 0.

For n = (np)p2B 2 {0, 1, 2, . . .}B = (N0)
B, one defines

|nif :=
^
p

(�p)
^np , |nib :=

K
p

(�p)
�np ,

where, e.g., we denote (�p)
�np

= �p � · · ·� �p| {z }
np times

, and if np = 0 then the factor is

omitted. Then observe that�
|nif : n 2 {0, 1}B

 
,
�
|nib : n 2 (N0)

B 

11



are alternative representations of the same bases for Ff and Fb, respectively. We
refer to these bases as the occupation number bases, because for an element |ni, np

indicates the number of particles occupying the p-th state �p.
Now any element | i 2 Ff/b can be written

P
p2B  (n) |ni, hence can equivalently

be viewed as a function n 7!  (n), with  2 L2
�
{0, 1}B

�
or  2 L2

�
(N0)

B�. Re-
call that in first quantization, | (x)|2 indicates the likelihood of finding particles at
positions (x1, . . . , xN). Second quantization turns this conceit on its head; for second-
quantized wavefunction  , | (n)|2 indicates the probability of finding, for each p 2 B,
np particles in state �p. Hence the the basis functions �p are the ‘sites’ of our model,
as viewed through the lens of statistical mechanics.

Hence Ff ' (C2
)

B and Fb '
�
CN

0

�B via the correspondence(s) |ni $ en
1

⌦
en

2

⌦ · · · , where the ek 2 C2 are the (zero-indexed) standard unit vectors. Hence
fermionic and bosonic ensembles can be viewed as quantum spin systems in the sense
of section 2. In the case of fermions, as we shall see, this isomorphism is not canonical
in that it depends on the numerical ordering of the basis functions �p. We shall
examine further difficulties in section 4.4 below.

4.2 The creation and annihilation operators
All operators on the Fock space can be written in terms of the so-called creation and
annihilation operators, denoted (respsectively) by c†p and cp in the fermionic case and
by b†p and bp in the bosonic case. When the context is clear it is also common to use
a†p and ap for either case.

Now we define the fermionic creation operator c†p via its action on a basis for Ff :

c†p [�i
1

^ · · · ^ �iN ] = �p ^ �i
1

^ · · · ^ �iN .

For the N = 0 case we understand this to mean c†p|�i = �p.
Meanwhile, the annihilation operator cp can be defined as the formal adjoint of

c†p, and it can be shown without difficulty that

cp [�p ^ �i
1

^ · · · ^ �iN ] =

(
�i

1

^ · · · ^ �iN , p 6= ik 8k = 1, . . . , N

0, otherwise.

Moreover cp|�i = 0 for all p.
Meanwhile for i1, . . . , iN 2 B and np := |{k : ik = p}|, we define

b†p [�i
1

� · · ·� �iN ] =

p
np + 1 �p � �i

1

� · · ·� �iN

and extend by linearity. The formal adjoint bp satisfies

bp [�p � �i
1

� · · ·� �iN ] =

p
np + 1 �i

1

� · · ·� �iN ,

where still np = |{k : ik = p}|, and bp|�i = 0 for all p.

12



It is not hard to verify that

{c†p, c†q} = {cp, cq} = 0, {cp, c†q} = �ij,

where { · , · } denotes the anticommutator, and

[b†p, b
†
q] = [bp, bq] = 0, [bp, b

†
q] = �ij,

where [ · , · ] denote the commutator. These are the canonical (anti)commutation
relations, known for short as the CAR/CCR.

More abstractly, the set of operators End(Ff/b) can be viewed as the star-algebra
Af/b generated by the a†p, subject to the CAR/CCR. (A star-algebra is just an algebra
with a star (or adjoint) operation satisfying certain predictable axioms; see, e.g., [18])
Meanwhile, roughly speaking, the Fock space can be thought of abstractly as the
orbit of a vacuum state |�i under an action of Af/b, with equivalences defined via
the CCR/CAR and the relations ap|�i = 0.

Indeed, note that in both the fermionic and bosonic cases, we can write

|ni = (a†1)
n
1

(a†2)
n
2 · · · |�i.

Hence all objects of interest to us (i.e., Hamiltonians and wavefunctions) can be
understood purely in terms of the algebra Af/b, together with the vacuums state,
satisfying certain algebraic relations.

To conclude this section, we define the number operators n̂p = a†pap and the total
number operator ˆN =

P
p n̂p. Observe that |ni is an eigenstate of n̂p with eigenvalue

np for all p. Moreover, the N -particle subspaces F (N)
f/b are precisely the N -eigenspaces

of ˆN .

4.3 Second-quantized operators
Observe that an operator of the form (3.1) has the essential structure

ˆH =

NX
k=1

ˆO(1)
k +

NX
k 6=l

ˆO(2)
kl ,

where ˆO(1)
k is a one-body operator on Q obtained by tensoring a copy of some operator

ˆO(1) on H for site i with copies of the identity for all other tensor factors 1, . . . , N , and
ˆO(2)
kl is a two-body operator on Q obtained by tensoring a copy of some operator ˆO(2)

on H⌦H for sites k, l with copies of the identity for all other tensor factor 1, . . . , N .
We will show how to write such operators (which preserve the (anti)symmetry of

the wavefunction) in terms of the creation and annihilation operators.
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Lemma 1. After restriction to F (N)
f/b , we have

NX
k=1

ˆO(1)
k =

X
p,q2B

Opqa
†
paq,

where Opq = h�p| ˆO(1)|�qi.
Proof. Though the fermionic and bosonic cases are very similar, it is less confusing
to treat them separately. Let us consider the case of fermions first.

We check the claimed operator equality by checking on the basis element �i
1

^
· · ·^�iN , and we begin by applying the first-quantized operator

PN
k=1

ˆO(1)
k as follows,

where for simplicity we write ˆO =

ˆO(1): X
k

ˆO(1)
k

!
[�i

1

^ · · · ^ �iN ]

=

X
k

X
�2SN

sgn(�) ˆO(1)
k

⇥
�i�(1)

⌦ · · ·⌦ �i�(N)

⇤
=

X
�2SN

X
k

sgn(�)
⇥
�i�(1)

⌦ · · ·⌦ (

ˆO�i�(k)
)

k-th slot

⌦ · · ·⌦ �i�(N)

⇤
(?)
=

X
k

X
�2SN

sgn(�)
⇥
�i�(1)

⌦ · · ·⌦ (

ˆO�ik)

[��1(k)]-th slot
⌦ · · ·⌦ �i�(m)

⇤
=

NX
k=1

�i
1

^ · · · ^ (

ˆO�ik) ^ · · · ^ �iN .

In the step (?) we changed the inner summation variable k according to k 7! ��1
(k)

and then exchanged the sums.
Now we will show that we obtain the same expression by applying

P
p,q2B O

(1)
pq a†paq.

First observe that according to the definition of Opq, we have ˆO�q =
P

p Opq�p. Then
compute:X

pq

Opqa
†
paq [�i

1

^ · · · ^ �iN ] =

X
p

NX
k=1

Opika
†
paik [�i

1

^ · · · ^ �iN ]

=

X
p

NX
k=1

(�1)k�1Opika
†
p [�i

1

^ · · · ^ �iN| {z }
factor k omitted

]

=

NX
k=1

(�1)k�1
X
p

Opik [�p ^ �i
1

^ · · · ^ �iN| {z }
factor k omitted

]

=

NX
k=1

(�1)k�1
[(

ˆO�ik) ^ �i
1

^ · · · ^ �iN| {z }
factor k omitted

]
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=

NX
k=1

�i
1

^ · · · ^ (

ˆO�ik) ^ · · · ^ �iN .

This completes the proof for fermions. For bosons, the proof of the identity X
k

ˆO(1)
k

!
[�i

1

� · · ·� �iN ] =

NX
k=1

�i
1

� · · ·� (

ˆO�ik)� · · ·� �iN

is identical to the proof of the first identity above, up to the removal of sgn(�) from
the computation. For the second identity, fix i1, . . . , iN and define nq := |{k : ik = q}|
for all q. Then compute:

X
pq

Opqa
†
paq [�i

1

� · · ·� �iN ] =

X
p

NX
k=1

1

nik

Opika
†
paik [�i

1

� · · ·� �iN ]

=

X
p

NX
l=1

1

p
nik

Opika
†
p [�i

1

� · · ·� �iN| {z }
factor k omitted

]

=

NX
l=1

X
p

Opik [�p � �i
1

� · · ·� �iN| {z }
factor k omitted

]

=

NX
l=1

(

ˆO�ik)� �i
1

� · · ·� �iN| {z }
factor k omitted

=

NX
l=1

�i
1

� · · ·� (

ˆO�ik)� · · ·� �iN .

Lemma 2. After restriction to ⇤N
(H) or SymN

(H) according to the whether the case
is fermionic or bosonic, we have

NX
k 6=l

ˆO(2)
kl =

X
p,q,r,s2B

Opq,rsa
†
pa

†
qasar,

where Opq,rs = h�p�q| ˆO(2)|�r�si. (Here, e.g., |�r�si denotes �r ⌦ �s.)

Proof. We shall only give the proof for fermions; the bosonic proof follows by making
similar changes as those made in Lemma 1 above. First note that we can assume with-
out loss of generality that ˆO(2)

=

ˆA ⌦ ˆB, so Opq,rs = AprBqs, where Apr = h�p| ˆA|�qi
and Bqs = h�q| ˆB|�si. (The general case follows from linear combination of such op-
erators.)
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As in the proof of Lemma 1, fix a basis element �i
1

^ · · · ^ �iN and compute
NX
k 6=l

ˆO(2)
kl [�i

1

^ · · · ^ �iN ]

=

X
k

X
�2SN

sgn(�) ˆO(2)
kl

⇥
�i�(1)

⌦ · · ·⌦ �i�(N)

⇤
=

X
�2SN

X
k 6=l

sgn(�)
⇥
�i�(1)

⌦ · · ·⌦ (

ˆA�i�(k)
)

k-th slot

⌦ · · ·⌦ (

ˆB�i�(l)
)

l-th slot

⌦ · · ·⌦ �i�(N)

⇤
(?)
=

X
k 6=l

X
�2SN

sgn(�)
⇥
�i�(1)

⌦ · · ·⌦ (

ˆA�ik)

��1(k)-th slot
⌦ · · ·⌦ (

ˆB�il)

��1(l)-th slot
⌦ · · ·⌦ �i�(N)

⇤
=

X
k 6=l

�i
1

^ · · · ( ˆA�ik) ^ · · · ^ (

ˆB�il) ^ · · · ^ �iN .

In the step (?) we changed the inner summation variable k 6= l according to (k, l) 7!
(��1

(k), ��1
(l)) then exchanged the sums.

Finally, we apply the second-quantized operator to the fixed basis element �i
1

^
· · · ^ �iN . For visual clarity, we first introduce some auxiliary notation. For k 6= l,
let "kl be the sign of the permutation that permutes ik, il to the first two spots of
(i1, . . . , iN) without changing the rest of the ordering. Hence "kl = (�1)k�1

(�1)l�1 if
k > l and "kl = �(�1)k�1

(�1)l�1 if k < l. Then computeX
pqrs

Opq,rsa
†
pa

†
qasar [�i

1

^ · · · ^ �iN ]

=

X
pqr

NX
k=1

(�1)k�1Opq,iks a
†
pa

†
qas [�i

1

^ · · · ^ �iN ]| {z }
factor k omitted

=

X
pq

X
k 6=l

"kl Opq,ikil a
†
pa

†
q [�i

1

^ · · · ^ �iN| {z }
factors k, l omitted

]

=

X
pq

X
k 6=l

"kl Opq,ikil [�p ^ �q ^ �i
1

^ · · · ^ �iN| {z }
factors k, l omitted

]

=

X
k 6=l

"kl
X
pq

ApikBqil [�p ^ �q ^ �i
1

^ · · · ^ �iN| {z }
factors k, l omitted

]

=

X
k 6=l

"kl [( ˆA�ik) ^ (

ˆB�il) ^ �i
1

^ · · · ^ �iN| {z }
factors k, l omitted

]

=

X
k 6=l

�i
1

^ · · · ( ˆA�ik) ^ · · · ^ (

ˆB�il) ^ · · · ^ �iN

Note that throughout the computation, the sign factor isn’t really doing anything but
hanging out and waiting to help us anticommute things back to the middle of the
wedge product.
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More generally, one may consider m-body operators for m  N with notation
analogous to the above. Then the following general result should be apparent from
the proofs of Lemmas 1 and 2.

Lemma 3. After restriction to ⇤N
(H) or SymN

(H) according to the whether the case
is fermionic or bosonic, we haveX

k
1

,...,km distinct

ˆO(m)
k
1

···km =

X
p
1

,...,pm,q
1

,...,qm

Op
1

···pm,q
1

···qm a†p
1

· · · a†pmaqm · · · aq
1

,

where Op
1

···pm,q
1

···qm = h�p
1

· · ·�pm | ˆO(m)|�q
1

· · ·�qmi.

4.4 The Jordan-Wigner transformation
In this section we will first focus on the fermionic case. We have already seen how
Ff can be put into correspondence with (C2

)

B via the |ni $ en
1

⌦ en
2

⌦ · · · , which
puts the occupation number basis for Ff in correspondence with the standard basis
of (C2

)

B. (Recall that here the ek 2 C2 are the zero-indexed standard unit vectors.)
One verifies that under this isomorphism c†p (abusing notation slightly by over-

loading the notation for c†p) can be written

c†p = �z ⌦ · · ·⌦ �z| {z }
p�1 factors

⌦
✓

0 0

1 0

◆
⌦ I2 ⌦ I2 ⌦ · · · ,

from which the corresponding formula for cp is apparent. This transformation from
fermionic creation and annihilation operators to quantum spin-1

2
operators (or vice

versa) is known as the Jordan-Wigner transformation.
Observe that, due to the that a reordering of the index p does not commute with

the corresponding reording of the tensor factors in c†p. Hence our representation of
fermionic operators in terms of quantum spin operators depends importantly on the
choice of ordering of the basis. Moreover, a one-body Hermitian operator such as
a†paq + a†qap, as might appear in a second-quantized Hamiltonian, acts nontrivially on
all spins between the indices p and q, inclusive. In particular, any physical locality
of the fermionic Hamiltonian may be destroyed by Jordan-Wigner transformation.

By contrast the bosonic creation operator can be written as an operator on (CN
0

)

B

via

b†p = Id⌦ · · ·⌦ Id| {z }
p�1 factors

⌦

0BBBBB@
0 0 0 0 · · ·
1 0 0 0 · · ·
0

p
2 0 0 · · ·

0 0

p
3 0 · · ·

...
...

...
... . . .

1CCCCCA⌦ Id⌦ Id⌦ · · · .

It is evidently more natural to view bosonic operators in this way, which is indepen-
dent of the basis ordering and which preserves physical locality.
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4.5 Canonical transformations and noninteracting problems
We now discuss how a change of the orthonormal basis for H in first quantization
may be understood as a transformation (namely, a canonical transformation) of the
creation and annihilation operators in second quantization. Consider a basis {˜�p} for
H, written in terms of the original basis {�p} via

˜�p =

X
q

Upq�q,

where U = (Upq) is unitary. Consider the fermionic case for concreteness (the bosonic
case is almost identical), and recall that for � 2 Ff = ⇤(H), the action of the creation
operator c†p is given by

c†p� = �p ^ �.

Now let c̃†p denote the set of creation operators induced by the basis {˜�p}. Then

c̃†p� =

˜�p ^ � =

 X
q

Upq�q

!
^ � =

X
q

Upqc
†
p�

for all �, hence c̃†p =
P

q Upqc†p. By similar reasoning for bosons and conjugation, we
obtain the general formulas

ã†p =
X
q

Upqa
†
p, ap =

X
q

Upqaq

for canonical transformation. The canonical transformation can be thought of in
terms of the CCR/CAR alone, without any reference to a first-quantized setting.
(Indeed, this is a more fundamental point of view, physically.)

The canonical transformation allows us to completely solve so-called noninteract-
ing systems, specified by Hamiltonians of the form

ˆH =

X
pq

Apqa
†
paq

because after a suitable canonical transformation, we can assume that A is diagonal,
i.e., we can assume ˆH =

P
p upn̂p, so the states decouple (as the n̂p commute).

Such systems are derived from first-quantized Hamiltonians that lack any many-body
terms. In the context of many-body physics, noninteracting systems may be thought
of as ‘trivial’ and can often be viewed as a building block or point of departure for
methods designed for many-body systems.
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4.6 Second-quantized model Hamiltonians
Second quantization allows us to consider—in addition to Hamiltonians derived from
first quantization via the choice of an orbtial basis—various model problems that may
capture physical phenomenology of interest.

Of particular note is the fermionic Hubbard model, whose states we enumerate
via the orbital-spin index (i, �), where i = 1, . . . ,M , � = ", #.

ˆH = �t
X
ij�

Aija
†
i�aj� + U

X
i

n̂i"n̂i#,

where Aij is the adjacency matrix of a graph with vertex set {1, . . . ,M}, e.g., a square
lattice.

More generally, one can consider a ‘generalized Coulomb model’ of the form

ˆH =

X
ij�

hija
†
i�aj� +

X
ij�⌧

Uijn̂i�n̂j⌧ ,

which includes in particular the Hubbard model and variants with longer-range in-
teractions. In fact, via certain choices of orbital bases such as the recently introduced
Gausslets [105], electronic structure problems in the continuum can be mapped to
second-quantized Hamiltonians of this form.

Recall that in electronic structure, the most general Hamiltonian of interest (aris-
ing from an arbitrary choice of orbital basis) can be written

ˆH =

X
pq

Apqa
†
paq +

X
pqrs

Upq,rsa
†
pa

†
qasar. (4.1)

5 Fermionic and bosonic statistical mechanics
In this section we adopt the notation ⇣ = +1,�1 to indicate the bosonic and fermionic
cases, respectively. Moreover, we consider Fock spaces with finitely many states
d = |B|. We indicate these parameters in the notation via F⇣,d. Moreover, we let
F (N)
⇣,d indicate the N -particle sector of the Fock space, i.e., the N -eigenspace of the

total number operator ˆN .

5.1 The zero-temperature ensemble
At zero temperature, typically one first fixes a particle number N , and attention is
restricted to the N -particle subspace. Let

��
 

(N)
0

↵
2 F (N)

⇣,d be the N-particle ground
state of ˆH, i.e., the minimal normalized eigenvector of ˆH considered as an operator
on the N -particle subspace. The role of the density operator is assumed by the
orthogonal projector

��
 

(N)
0

↵⌦
 

(N)
0

�� onto the ground state
��
 

(N)
0

↵
, i.e., the statistical
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average of a linear operator ˆA (with respect to the N -particle canonical ensemble) is
given by

h ˆAiN =

⌦
 

(N)
0

�� ˆA�� (N)
0

↵
.

5.2 The finite-temperature ensemble
At inverse temperature � 2 (0,1), the partition function is defined by

Z := Tr[e��(Ĥ�µN̂)
].

where ‘Tr’ indicates the Fock space trace. Here µ 2 R is the chemical potential, but
before commenting on its role, some further elaboration on the trace is owed in the
bosonic case, in which the Fock space is infinite-dimensional.

By assumption, ˆH conserves particle number, i.e., it maps F (N)
⇣,d to itself for all

N . Thus e��(Ĥ�µN̂) does as well and can be viewed as a positive-definite operator on
each F (N)

⇣,d . The trace can then be constructed as

Tr[e��(Ĥ�µN̂)
] =

1X
N=0

TrN [e
��(Ĥ�µN̂)

] =

1X
N=0

e�µN TrN [e
��Ĥ

],

where ‘TrN ’ indicates the trace on the N -particle subspace. Since each of the sum-
mands is positive, Tr[e��(Ĥ�µN̂)

] 2 (0,+1] is well-defined.
More generally, the trace is defined for all operators in the trace class of F⇣,d, i.e.,

the set of bounded linear operators ˆO : F⇣,d ! F⇣,d for whichX
n2N d

⇣

hn| ( ˆO†
ˆO)

1/2 |ni < +1,

in which case
Tr[

ˆO] =

X
n2N d

⇣

hn| ˆO|ni.

See, e.g., [89] for further details on trace class operators.
Now since the partition function can be viewed as a normalization factor, the

scenario Z = +1 is to be avoided. It is now that we turn to the chemical potential.
We can view Z as defined above as a function of µ. Evidently µ 7! Z(µ) is non-
decreasing.

First we want to rule out the case that Z ⌘ +1. Unfortunately, this case cannot
be ruled out without further assumptions! To see why, suppose that d = 1 (so write
a = a1), and let ˆH = �a†a� a†a†aa = �a†aa†a = � ˆN2. Then

Tr[e��(Ĥ�µN̂)
] =

1X
N=0

e�(N
2+µN)

TrN

h
IdF(N)

⇣,d

i
=

1X
N=0

e�(N
2+µN)

✓
N + d� 1

d� 1

◆
= +1,
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for all µ 2 R.
We conclude that such a choice of ˆH is unphysical, and to rule out such pathologies,

we adopt the following:

Assumption 4. We assume, in the case of bosons, that there exist some positive
integer N0 and some µ 2 R such that ˆH � µ ˆN ⌫ 0 as an operator on all N-particle
subspaces for N � N0. (It is equivalent to require that there exist N0, µ such that
ˆU � µ ˆN ⌫ 0 on all N-particle subspaces for N � N0.)

This condition is satisfied in particular if ˆU is a two-body interaction as in (4.1)
such that ˜Uik,jl := Ukj,il, interpreted as a d2 ⇥ d2 matrix, is positive semidefinite.
Indeed, in this case, ˆU is equal to (up to a single-body term)

1

2

X
ijkl

˜Uik,jl

h
a†iak

i† h
a†jal

i
⌫ 0.

If the Uij,kl are derived from a real-space two-body potential v that is a positive
semidefinite function (i.e., has nonnegative Fourier transform), then it follows from
Lemma 2 that the matrix (

˜Uik,jl) is positive definite as desired. Note that it is possible
for v to be positive definite but take negative values at long ranges, i.e., v can act
attractively at long range.

Now that we have argued that Assumption 4 is natural, let us see how it guarantees
that the set domZ := {µ : Z(µ) < +1} is non-empty. Indeed, choose µ0 negative
enough such that ˆH � µ0

ˆN ⌫ 0 as an operator on all N -particle subspaces, and let
µ = µ0 � �, where � > 0. Then

Tr[e��(Ĥ�µN̂)
] 

1X
N=0

TrN [e
���N̂

] =

1X
N=0

e���N
✓
N + d� 1

d� 1

◆
.

Now the binomial coefficient in the last expression is O(Nd�1
) as N ! +1, so the

sum converges.
We will always assume in the finite-temperature setting that µ 2 int domZ. It

can be shown that if ˆU = 0, then domZ = {µ : h � µ Id}. Moreover, if there exist
N0, � > 0 such that ˆU ⌫ � ˆN2 on all N -particle subspaces for N � N0 (which holds
in particular if ˆU is is a two-body interaction as in (4.1) where the d2 ⇥ d2 matrix
˜Uki,jl := Uij,kl is positive definite), then domZ = R.

Notice that if domZ is open, then since Z is increasing we can write domZ =

(�1, µc) for some µc possibly infinite. If µc < +1, then by Fatou’s lemma we have
that lim infµ!µ�

c

Z(µ) � Z(µc) = +1, so Z(µ) ! +1 as µ ! µ�
c . (And in any

case it follows from the definition of Z that Z(µ) ! +1 as µ ! +1, so we can
write more compactly that Z(µ)! +1 as µ! µc, no matter whether µc is finite or
infinite.)

The grand canonical ensemble is defined by the density operator

⇢ := Z�1e��(Ĥ�µN̂),
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and the statistical average of an operator ˆA with respect to the grand canonical
ensemble is denoted

h ˆAi�,µ = Tr[

ˆA⇢]

whenever ˆA⇢ is in the trace class. Note that if ˆA conserves particle number then

Tr[

ˆA⇢] =
1X

N=0

TrN [
ˆA⇢] = Z�1

1X
N=0

e�µN TrN [
ˆAe��Ĥ ]

is defined under the condition that the sum is absolutely convergent, which holds in
particular if the norm of ˆA as an operator on the N -particle subspace grows only
polynomially with N , via the assumption that µ 2 int domZ. When the context is
clear we simply write h · i.

Of particular interest is the expected particle number

h ˆNi =
P1

N=0 Ne�µN TrN [e��Ĥ ]P1
N=0 e

�µN
TrN [e��Ĥ ]

.

Observe that h ˆNi�,µ ! 0 as µ! �1. Also note that if domZ = R, then h ˆNi�,µ !
+1. Defining the free energy ⌦(µ) := ��1

logZ(µ), we see that h ˆNi�,µ = ⌦

0
(µ).

It is not hard to check that ⌦ is (strictly) convex, i.e., h ˆNi�,µ is increasing in µ
for µ 2 int domZ. Recall that if domZ = (0, µc), then Z(µ) ! +1 as µ ! µc,
hence ⌦(µ)! +1 as µ! µc. If µc < +1, it follows that ⌦0

(µ)! +1 as µ! µ�
c .

(Otherwise, since ⌦0 is increasing, it approaches a finite limit µ! µ�
c . But in this case

it would follow from the fundamental theorem of calculus that ⌦ approaches a finite
limit as well: contradiction.) In summary we have established that if domZ is open,
then Z(µ) ! +1 as µ ! µc, no matter whether µc is finite or infinite. It follows
that in this case µ 7! h ˆN�,µi is a bijection from domZ = (�1, µc) to (0,+1). Thus
one can select the chemical potential µ to yield a predetermined expected particle
number.

6 The coherent state path integral
There is a path integral expansion of the partition function in second quantization
that is similar in spirit to the original Feynman path integral of section 3.3. It is
simplest to treat the bosonic case first because the fermionic path integral formalism
requires the introduction of new abstractions.

6.1 The bosonic coherent state path integral
We let b = (bp)p2B denote the vector of annihilation operators and likewise use bold
notation throughout to denote vectors indexed by the state index set B. (Note: we
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also retain some bold notation from section 3.3.) We say that a Hamiltonian ˆH is
written in normal-ordered form if it is a polynomial ˆH = H(b†,b) of the creation
and annihilation operators such that, for each monomial term, all creation operators
appear to the left of all annihilation operators, e.g.,

P
ij Aijb

†
ibj. Without loss of

generality we shall assume that our second-quantized Hamiltonian ˆH is of this form.
For an operator ˆO, viewed symbolically as a polynomial of creation and annihilation
operators, we write : ˆO: for the normal-ordered symbolic operator obtained by formally
commuting creation and annihilation operators, e.g., :bb†: = b†b 6= bb†.

For inspiration we recapitulate the essential points of the derivation of the Feyn-
man path integral. Recall that we considered a Hamiltonian of the form ˆH =

Hkin(P) + V (X), where P and X were the momentum and position operators, re-
spectively. Then for momentum and position eigenstates |pi and |xi we have

hp| ˆH|xi =
⇣
Hkin(p) + V (x)

⌘
hp|xi.

Using this observation, together with resolutions of the identity in terms of the mo-
mentum and position eigenstates, we derived the path integral.

Loosely following such a recipe, we are inspired to consider eigenstates of the
annihilation operators, which will be known as the coherent states. Let |zi be such
an eigenstate for z = (zp)p2B 2 CB, satisfying bp|zi = zp|zi. Then for normal-ordered
ˆH = H(b†,b), we have

hw| ˆH|zi = H(w, z)hw|zi.
Then if we can construct coherent states and determine a resolution of the identity
in terms of them, we will be in good shape.

6.1.1 Bosonic coherent states

Consider the case of a bosonic system of a single state, i.e., |B| = 1. Then we want
to find

|zi =
1X
n=0

�n|ni

such that b|zi = z|zi, i.e.,
1X
n=0

z�n|ni =
1X
n=1

�n
p
n|n� 1i =

1X
n=0

�n+1

p
n+ 1|ni.

By equating corresponding terms we conclude that we must have

�n+1 =
zp
n+ 1

�n,

and choosing �0 = 1, we obtain �n =

znp
n!

. Therefore

|zi =
1X
n=0

znp
n!
|ni =

1X
n=0

zn

n!
(b†)n|�i,
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or, more succinctly,
|zi = ezb

† |�i.
More generally, we may derive

|zi = ez·b
† |�i =

X
n2(N

0

)B

znp
n!
|ni,

where we interpret zn =

Q
p z

np
p and n! =

Q
p np!. This is the general formula for the

bosonic coherent state, indexed by z 2 CB.
Now for w, z 2 C,

hw|zi =
X
n

wnzn

n!
=

Y
p2B

1X
n=0

(wpzp)n

n!
=

Y
p2B

ewpzp
= ew

⇤
z.

In particular, the coherent states are not orthogonal.
Nonetheless, we can write a resolution of the identity in terms of the coherent

states. To wit, we have in the case |B| = 1 that

Id =

ˆ
dz dz

2⇡i
e�|z|2 |zihz|, (6.1)

as we shall confirm below. We write the integration in this particular way to lay some
conceptual groundwork for the fermionic case and to clarify certain analogies. For the
reader unfamiliar with such notation, we shall record presently the relevant details.

6.1.2 Complex coordinates

To interpet the integration we view 1
2i
dz dz =

1
2i
dz^dz as a differential form. Writing

z = x+ iy for x, y 2 R, we see that

1

2i
dz ^ dz =

1

2i
(dx� idy) ^ (dx+ idy) = dx ^ dy,

i.e., the integration measure is the standard Lebesgue measure on R2, identified with
C via the decomposition into real and imaginary parts. Now for a smooth (not
necessarily analytic) function f : C ! C, fz = @zf =

@f
@z

and fz = @zf =

@f
@z

are
defined by the formula

df = fz dz + fz dz.

By substituting the formulas dz = dx + idy and dz = dx � idy, one obtains the
concrete identities

fz =
1

2

(fx � ify), fz =
1

2

(fx + ify),

where fx and fy are the standard partial derivatives. By constructionˆ
fz dz dz = 0,

ˆ
fz dz dz = 0 (6.2)
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for any f (with derivatives of sufficient decay, e.g., of the Schwartz class). Indeed, to
see this, note, e.g., that fz dz dz = �df ^ dz = �d(f dz), hence the claim follows by
Stokes’ theorem.

It is natural to consider f(z) = g(z, z), where g : C2 ! C is analytic. (In fact it is
not hard to check that any real-analytic function R2 ! C can be written this way.) For
example, choosing g(z, w) = zw yields f(z) = |z|2. In this case fz(z) = gz(z, z) and
fz(z) = gw(z, z). Roughly speaking, we can think of z, z algebraically as independent
variables and compute the derivatives fz and fz via the application of the usual
symbolic rules to any given formula for f . In our example f(z) = |z|2, this means
that fz = z and fz = z. To confirm this claim, one observes (by writing difference
quotients) that fx(z) = gz(z, z) + gw(z, z) and fy(z) = i(gz(z, z) � gw(z, z)), hence
fz(z) = gz(z, z) and fz(z) = gw(z, z), as desired.

6.1.3 The resolution of identity

Consider f(z) = e�|z|2 , which can be written f(z) = g(z, z), where g(z, w) = e�zw.
By inductively applying (6.2) to derivatives @iz@

j
zf , one can show that

ˆ
zmzn e�|z|2 dz dz = 0, if m 6= n.

One also has the elementary identity
ˆ

e�|z|2 dz dz

2⇡i
=

1

⇡

ˆ
e�(x2+y2) dx dy = 1.

This identity is the motivation for the normalization of the measure dz dz
2⇡i

and shall be
directly analogized later on in the fermionic setting. Now by using (6.2) and induction
once again, one derives that in turn

ˆ
|z|2me�|z|2 dz dz

2⇡i
= m!

Hence in summary
1

m!

ˆ
zmzn e�|z|2 dz dz

2⇡i
= �mn. (6.3)

Via polynomial approximation, (6.3) tells us how to integrate arbitrary functions
against the measure e�|z|2 dz dz

2⇡i
; hence (6.3) can be thought of as an algebraic spec-

ification of this measure. It is this sense that can be extrapolated to the fermionic
setting.

Now we have the tools needed to verify the resolution of the identity (6.1), for
which it suffices to apply h�|bm from the left, as follows:

h�|bm
ˆ

dz dz

2⇡i
e�|z|2 |zihz| =

ˆ
dz dz

2⇡i
e�|z|2zmh�|zihz|
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=

ˆ
dz dz

2⇡i
e�|z|2zmhz|

=

ˆ
dz dz

2⇡i
e�|z|2zmh�|

1X
n=0

zn

n!
bn

= h�|
1X
n=0

bn
1

m!

ˆ
zmzn e�|z|2 dz dz

2⇡i

= h�|bm

Note the essential features of the derivation: the eigenfunction property of the coher-
ent state |zi, the normalization h�|zi = 1, and the integration identity (6.3). The
reader should keep this features in mind for the fermionic setting.

It is straightforward to likewise verify the more general resolution of identity for
arbitrary |B| � 1:

Id =

ˆ "Y
p2B

dzp dzp
2⇡i

#
e�|z|2 |zihz| =

ˆ
d(z, z) e�|z|2 |zihz|, (6.4)

where we introduce the formal notation d(z, z) :=
Q

p2B
dzp dzp
2⇡i

. The relevant integra-
tion identity is simply the product measure version of (6.3):

1Q
p mp!

ˆ  Y
p2B

zmpznp

!
e�|z|2 d(z, z) =

Y
p2B

�mpnp . (6.5)

6.1.4 Path integral

As suggested above, we expand the partition function (temporarily lumping the chem-
ical potential contribution into the Hamiltonian ˆH) as:

Z = Tr

h
e��Ĥ

i
= Tr

h
e��Ĥ Id

i
=

ˆ
d(z(0), z(0)) e

�|z
(0)

|2hz(0)|e��Ĥ |z(0)i

=

ˆ
d(z(0), z(0)) e

�|z
(0)

|2hz(0)|e�
1

M �Ĥ · · · e� 1

M �Ĥ |z(0)i

=

ˆ "M�1Y
m=0

d(z(m), z(m))

#
e�

PM�1

m=0

|z
(m)

|2hz(0)|e�
1

M �Ĥ |z(M�1)i · · · hz(1)|e�
1

M �Ĥ |z(0)i.

Now for M large, one hopes that e�
1

M �Ĥ
= :e�

1

M �Ĥ
: + O(M�2

), allowing us to sub-
stitute
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hz(m+1)|e�
1

M �Ĥ |z(m)i ⇡ hz(m+1)| :e�
1

M �Ĥ
: |z(m)i

= e�
1

M �H(z
(m+1)

,z
(m)

)hz(m+1)|z(m)i
= e�

1

M �H(z
(m+1)

,z
(m)

)ez
⇤
(m+1)

z

(m) .

Indeed e�
1

M �Ĥ
= 1 � 1

M
� ˆH + O(M�2

), and by assumption :

ˆH: =

ˆH, so indeed our
hope is justified (though a complete justification of the path integral would require
significant further argument). Proceeding, we compute (interpreting the index m
modulo M):

Z = lim

M!1

ˆ "M�1Y
m=0

d(z(m), z(m))

#
e�

PM�1

m=0

[

|z
(m+1)

|2�z

⇤
(m+1)

z

(m)

]

� �
M

PM�1

m=0

H(z
(m+1)

,z
(m)

)

= lim

M!1

ˆ "M�1Y
m=0

d(z(m), z(m))

#
e�

PM�1

m=0

[

z

⇤
(m+1)

(z
(m+1)

�z

(m)

)
]

� �
M

PM�1

m=0

H(z
(m+1)

,z
(m)

)

“ = ”
ˆ

Dper [z( · ), z( · )] e�
´ �
0

[z(⌧)⇤@⌧z(⌧)+H(z(⌧),z(⌧))] d⌧

where Dper [z( · ), z( · )] is formally the infinite-dimensional Lebesgue measure (prop-
erly normalized) on periodic paths z : [0, �) ! C. Here the “ = ” indicates that
the expression in the last line of the display is only formal and ought to be more
rigorously understood as a limit as M ! 1. Nonetheless, the formal perspective
offers significant insight!

Then by replacing ˆH  ˆH � µ ˆN and noting that ˆN(z, z) = |z|2, we obtain the
path integral formulation of the partition function

Z =

ˆ
Dper [z( · ), z( · )] e�S(z,z),

where the action S is defined by

S(z, z) :=

ˆ �

0

[z(⌧)⇤(@⌧ � µ)z(⌧) +H(z(⌧), z(⌧))] d⌧

If we write ˆH as a sum of a noninteracting part ˆH0 and an interaction ˆU =

U(b†,b), i.e.,
ˆH =

ˆH0 +
ˆU =

X
p,q

hpqb
†
pbq + ˆU,

then we can write
S(z, z) = S0(z, z) + Sint(z, z),

where

S0(z, z) :=

ˆ �

0

z(⌧)⇤(@⌧ + h� µ)z(⌧) d⌧, Sint(z, z) =

ˆ �

0

U(z(⌧), z(⌧)).
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In particular, for a general two-body interaction

ˆU =

X
p,q,r,s

Upqrsa
†
pa

†
qasar, (6.6)

we have
Sint(z, z) =

X
pqrs

Upqrs

ˆ �

0

zp(⌧)zq(⌧)zs(⌧)zr(⌧) d⌧,

and for the generalized Coulomb interaction ˆU =

P
pq vpqn̂pn̂q (with vpp = 0), which

corresponds to the choice Upqrs = vpq�pr�qs, we have

Sint(z, z) =
X
pq

vpq

ˆ �

0

|zp(⌧)|2|zq(⌧)|2 d⌧.

Observe, at this point, the formal similarity of the path integral to the Euclidean
field theory presented in section 1. There is, however, a crucial difference. The
contribution of the term

´ �
0
z(⌧)⇤@⌧z(⌧) d⌧ to the action includes an imaginary part,

hence the path integral cannot be interpreted as a Gibbs measure, even in an infinite-
dimensional sense. (This scenario should be contrasted with that of the Feynman
path integral of section 3.3.)

6.1.5 Path integral in frequency space

Since the action in the path integral is time-translation-invariant and our paths are
periodic, it makes sense to consider our paths in the frequency space. To begin we
define frequency representations ˆz(!n) and ˆz(!n) of the periodic complex paths on
the Matsubara frequencies !n = 2n⇡/� (where n 2 Z):

w(!n) =
1p
�

ˆ �

0

z(⌧)ei!n⌧ d⌧,

so
w(!n) =

1p
�

ˆ �

0

z(⌧)e�i!n⌧ d⌧,

and we have

z(⌧) =
1p
�

X
n

w(!n)e
i!n⌧ , z(⌧) =

1p
�

X
n

w(!n)e
�i!n⌧ .

Then we convert our action to the frequency representation by computing
ˆ �

0

z⇤(⌧)@⌧z(⌧) d⌧ =

1

�

X
nm

�i!mw
⇤
(!n)w(!m)

ˆ �

0

ei(!n�!m)⌧ d⌧| {z }
=��nm
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=

X
n

(�i!n)w
⇤
(!n)w(!n),

and ˆ �

0

z⇤(⌧)(h� µ)z(⌧) d⌧ =

X
n

w⇤
(!n)(h� µ)w(!n).

Finally, for the two-body interaction (6.6) we compute

Sint (z, z) :=

ˆ �

0

X
ijkl

Uijklzi(⌧)zj(⌧)⇠l(⌧)⇠k(⌧) d⌧

=

1

�2

X
ijkl

Uijkl

X
mnpq

wi(!m)wj(!n)wl(!q)wk(!p)

ˆ �

0

ei(!m+!n�!p�!q)⌧ d⌧

=

1

�

X
ijkl

X
mnpq

Uijkl �m+n,p+q wi(!m)wj(!n)wl(!q)wk(!p)

=:

ˆSint (w,w) .

Since the transformations z 7! ˆz is a unitary change of variables, we have that

Z =

ˆ
ˆD [w( · ),w( · )] e�Ŝ(w,w)

where ˆD [w( · ),w( · )] is understood as the infinite-dimensional Grassmann Lebesgue
measure

Q
n2Z d(w,w), and

ˆS(w,w) =

ˆS0(w,w) +

ˆSint(w,w)

with
ˆS0(w,w) :=

X
n

w⇤
(!n)(�i!n + h� µ)w(!n).

6.2 The fermionic coherent state path integral
When we try to mimic the derivation of the bosonic coherent states we immediately
run into a difficulty. Indeed, consider the case of a single-state fermionic system, i.e.,
|B| = 1, and suppose that |zi is an eigenstate of the annihilation operators cp with
corresponding eigenvalues zp. Then cpcq|zi = zqzp|zi, but also cpcq|zi = �cqcp|zi =
�zpzq|zi, so zpzq = �zqzp. In particular, it follows that zp = 0 for all p, hence
apparently any coherent state is in the null space of all of the annihilation operators.
But the only state satisfying this property is the vacuum state! Clearly this won’t
do.
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6.2.1 Grassmann numbers

To find our coherent states, we have to expand the space of numbers in which we
look for eigenvalues. In particular, following the above reasoning, we want our eigen-
values ⇠i to satisfy ⇠i⇠j = �⇠j⇠i, i.e., we want them to anticommute. This motivates
the introduction of the algebra G = G(B) of Grassmann numbers (also known as
supernumbers [30]), which can be identified with the exterior algebra ⇤(CB

) via the
isomorphism

ep
1

^ · · · ^ epm 7! ⇠p
1

· · · ⇠pm ,
with the additional stipulation that ⇤0

(CB
) ' C corresponds to the complex part

of a Grassmann number, sometimes referred to as the ‘body.’ More concretely, a
Grassmann number z can be written uniquely as

z = zB + zS =

X
m

X
p
1

<···<pm

cp
1

···pm⇠p
1

· · · ⇠pm ,

where zB is the complex part or body, and zS is the rest, i.e., the ‘soul.’

6.2.2 Fermionic coherent states

In fact, we will always consider an extension G⇤ of this algebra that allows us to
take adjoints, and the extended algebra (itself a Grassmann algebra) will in fact be
a star-algebra. Concretely, the extension is achieved by considering the Grassmann
algebra generated by an enlarged set {⇠p, ⇠p}p2B of anticommuting symbols; hence
our algebra will be isomorphic to ⇤(CBtB

). Moreover, the adjoint ‘⇤’ is defined via
(c ⇠p

1

· · · ⇠pm)⇤ = c ⇠pm · · · ⇠p
1

. (Note that the notation for G and G⇤ is nonstandard.)
Moreover, we can consider Grassmann numbers as multipliers on Fock space op-

erators as in the expression ⇠ic
†
i . Mathematically we are considering ⇠ic†i as an ele-

ment of the extended star-algebra EndG⇤
(F) = G⇤⌦C EndC(F), where multiplication

is defined, for z 2 G⇤ and by (z1 ⌦ ˆO1)(z2 ⌦ ˆO2) = z1z2 ⌦ ˆO1
ˆO2, or, for short,

(z1 ˆO1)(z2 ˆO2) = z1z2 ˆO1
ˆO2. Moreover, the adjoint is defined by (z ˆO)

†
= z⇤ ˆO†. Like-

wise we can extend the Fock space via the Grassmann algebra as G⇤⌦CF to consider
elements such as ⇠p|ni, and we can extend the dual space to consider elements such
as hn|⇠p.

For the most part, such technicalities need not be emphasized. Nonetheless, we
have given some indication of the mathematical structures in order to reassure the
readers that the Grassmann numbers and all accompanying manipulations can in fact
be backed by honest mathematical definition.

Finally, by analogy with the bosonic case, we define the fermionic coherent state

|⇠i = e⇠·c
† |�i.

It is important to note that unlike complex numbers, the Grassmann generators ⇠i
should not be thought of as variables with indeterminate numerical value; rather they

30



are mere symbols constrained to satisfy certain algebraic relations. In the development
of the theory of bosonic coherent states, we attempted to emphasize the role of zi, zi as
mere symbols and of integration as a recipe for assigning numerical values to algebraic
expressions in these symbols. To transfer our developments to the fermionic setting,
we will likewise only need a recipe for ‘integrating’ (or assigning numerical value to)
elements of the Grassmann algebra.

Now observe that the via the anticommutation of both the Grassmann genera-
tors and the fermionic creation operators we have that that ⇠ic†i all commute within
EndG⇤

(F), much like the analogous bosonic operators zib
†
i , where zi 2 C. Hence

e⇠·c
†
= e

P
p ⇠pc

†
p
=

Y
p

e⇠pc
†
p ,

where the order in the product of the latter expression can be arbitrary. Now e⇠pc
†
p
=

1 + ⇠pc†p; note that the Taylor series series terminates abruptly because ⇠2p = 0.
Now let us verify that |⇠i 2 G⇤ ⌦C F are eigenfunctions for the annihilation

operators cp with eigenvalues ⇠p 2 G⇤:

cp|⇠i = cp(1 + ⇠pc
†
p)

Y
q 6=p

e⇠qc
†
q |�i

= (cp + ⇠pcpc
†
p)

Y
q 6=p

e⇠qc
†
q |�i

= (cp + ⇠p(1� c†pcp))
Y
q 6=p

e⇠qc
†
q |�i

= ⇠p
Y
q 6=p

e⇠qc
†
q |�i+ (1� c†p)cp

Y
q 6=p

e⇠qc
†
q |�i.

Now notice that
Q

q 6=p e
⇠qc

†
q |�i is in the zero-eigenspace of n̂p, hence cp

Q
q 6=p e

⇠qc
†
q |�i =

0, and the second term in the last display is zero. Moreover ⇠p = ⇠p(1 + ⇠pc†p), so we
have derived

cp|⇠i = ⇠p|⇠i,
as desired. Note that the adjoint coherent state is given by

h⇠| = |⇠i⇤ = h�|e⇠·cp .

6.2.3 Grassmann integration

Now in order to formulate a resolution of identity, we need an integration formula.2
First let us focus on the case of |B| = 1, i.e., the case of G⇤

= h⇠, ⇠i, where we use angle
2We will only consider integration on algebras with adjoint symbols in order to emphasize the

analogy with the bosonic case, but in fact Grassmann integration can also be defined without
difficulty on any Grassmann algebra. However, the evenness that accompanies the adjoint structure
makes some aspects of the theory more elegant because even elements of the Grassmann algebra are
commute with all elements of the algebra.
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brackets to indicate the Grassmann algebra generated by the anticommuting symbols
therein contained. The motivation here will be to analogize (6.5) from the bosonic
setting. Since ⇠m = ⇠

n
= 0 for m,n � 2, it is sufficient to define an integration

functional I : G⇤ ! C via

�mn = I
h
⇠m⇠

n
e�⇠⇠

i
=:

ˆ
⇠m⇠

n
e�⇠⇠ d(⇠, ⇠)

for m,n 2 {0, 1}. Note that

e�⇠⇠ = 1� ⇠⇠ = 1 + ⇠⇠

⇠e�⇠⇠ = ⇠(1� ⇠⇠) = ⇠

⇠e�⇠⇠ = ⇠(1� ⇠⇠) = ⇠

⇠⇠e�⇠⇠ = ⇠⇠(1� ⇠⇠) = ⇠⇠,

so it follows that one could otherwise define I via

I[1] = I[⇠] = I[⇠] = 0, I[⇠⇠] = 1.

To define an integration on a more general algebra G⇤
(B) = h{⇠p, ⇠p}p2Bi, we seek

to analogize the bosonic integration formula via

ˆ  Y
p2B

⇠mp⇠
np

!
e�⇠⇤⇠ d(⇠, ⇠) := I

" Y
p2B

⇠mp⇠
np

!
e�⇠⇤⇠

#
:=

Y
p2B

�mpnp (6.7)

for mp, np 2 {0, 1}. Sometimes we will alternatively write d(⇠, ⇠) =
Q

p2B d(⇠p, ⇠p) to
denote the multivariate Grassmann integration ‘measure.’ We will sometimes write
d(⇠, ⇠) immediately after the integration sign

´
, as in

´
d(⇠, ⇠) · · · , but the meaning is

unchanged. Note carefullly that the definition makes sense regardless of the ordering
of p 2 B in the product because whenever mp + np is odd for some p, the result of
the integration is defined to be zero; meanwhile, whenever mp + np is even, ⇠mp⇠

np

commutes with all elements of G⇤. One verifies that our definition of I : G⇤
(B)! C

is equivalent to the definition

I
"Y
p2B

⇠p⇠p

#
= 1, I [any other monomial] = 0.

We may also consider partial integration IS : G⇤
(B)! G⇤

(B\S), defined by

IS
⇥
f
�
(⇠p, ⇠p)p2S

�
g
�
(⇠p, ⇠p)p/2S

�⇤
= I

⇥
f
�
(⇠p, ⇠p)p2S

�⇤
g
�
(⇠p, ⇠p)p/2S

�
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for polynomials f, g. The left-hand side may alternatively be denoted by
ˆ

f
�
(⇠p, ⇠p)p2S

�
g
�
(⇠p, ⇠p)p/2S

� "Y
p2S

d(⇠p, ⇠p)

#
.

There is in fact another perspective on the definition of the Grassmann integration;
we may view it as an attempt to analogize (6.2). To pursue such an analogy, we
need to define a suitable notion of Grassmann differentiation, i.e., linear operators
@⇠p , @⇠p : G

⇤ ! G⇤. These operators are determined entirely by the formulas

@⇠p
⇥
⇠pf
�
⇠, {⇠p}p 6=q

�⇤
= f

�
⇠, {⇠p}p 6=q

�
, @⇠p

⇥
f
�
⇠, {⇠p}p 6=q

�⇤
= 0

@⇠p
⇥
⇠pf

�
{⇠p}p 6=q, ⇠

�⇤
= f

�
{⇠p}p 6=q, ⇠

�
, @⇠p

⇥
f
�
{⇠p}p 6=q, ⇠

�⇤
= 0.

Note carefully, e.g., that @⇠
1

(⇠2⇠1) = �@⇠
1

(⇠1⇠2) = �⇠2.
Then we can think of the stipulation that I

h⇣Q
p2B ⇠p⇠p

⌘
e�⇠⇤⇠

i
= 1, or equiva-

lently that I
hQ

p2B ⇠p⇠p

i
= 1, as a kind of arbitrary ‘normalization’ of the Grassmann

measure, just as in the bosonic case. Meanwhile, integration of arbitrary polynomials
can then by defined via the stipulation, analogous to (6.2), that

ˆ
@⇠pf d(⇠, ⇠) =

ˆ
@⇠pf d(⇠, ⇠) = 0

for all polynomials f . Since every monomial in G⇤
(B) besides

Q
p2B ⇠p⇠p can be written

as a derivative, the integration rule introduced above follows.

6.2.4 The resolution of identity

Due to the eigenfunction property of the coherent state |⇠i, the normalization h�|⇠i =
1, and the integration identity (6.7) (analogous to (6.5)), the proof of our resolution of
identity will be analogous to the proof in the bosonic case. The resolution of identity
is written

IdF =

ˆ
d(⇠, ⇠) e�⇠⇤⇠|⇠ih⇠|, (6.8)

and we prove by applying an arbitrary occupation number basis element h�|cpm · · · cp
1

from the left, as

h�|cpm · · · cp
1

ˆ
d(⇠, ⇠) e�⇠⇤⇠|⇠ih⇠| =

ˆ
d(⇠, ⇠) e�⇠⇤⇠⇠p

1

· · · ⇠pmh�|⇠ih⇠|

=

ˆ
d(⇠, ⇠) e�⇠⇤⇠⇠p

1

· · · ⇠pmh�|
Y
p2B

(1 + ⇠pcp)

= h�|
ˆ
⇠p

1

· · · ⇠pm
Y
p2B

(1 + ⇠pcp) e
�⇠⇤⇠ d(⇠, ⇠),

33



where we have used the fact that e�⇠⇤⇠ commutes with all of G⇤. Then note that upon
expanding the product, by (6.7) the only term that survives is ⇠pm · · · ⇠p

1

cpm · · · cp
1

,
hence

h�|cpm · · · cp
1

ˆ
d(⇠, ⇠) e�⇠⇤⇠|⇠ih⇠|

= h�|cpm · · · cp
1

ˆ
⇠p

1

· · · ⇠pm⇠pm · · · ⇠p
1

e�⇠⇤⇠ d(⇠, ⇠)

�
= h�|cpm · · · cp

1

,

as was to be shown. In the last step we used (6.7), together with the fact that

⇠p
1

· · · ⇠pm⇠pm · · · ⇠p
1

= (⇠p
1

⇠p
1

) · · · (⇠pm⇠pm),

which follows from grouping the factor ⇠pm⇠pm , which commutes with the entire alge-
bra, and moving it all the way to the right, then repeating for ⇠pm�1

⇠pm�1

, etc.
In order to use the resolution of identity to compute traces, it is useful to derive

the following identity:

hm|⇠ih⇠|ni = h�⇠|nihm|⇠i, when
X
p

(mp � np) ⌘ 0 mod 2. (6.9)

Here we interpret | � ⇠i = e(�⇠)·c† |�i, and h�⇠| = | � ⇠i⇤ = h�|e(�⇠)·c. Note that
cp|� ⇠i = �⇠p|� ⇠i for all p.

Now to prove the claim, write |mi = c†p
1

· · · c†pM |�i and |ni = c†q
1

· · · c†qN |�i, where
M �N is even, and compute

hm|⇠i = h�|cpM · · · cp
1

|⇠i = ⇠p
1

· · · ⇠pM h�|⇠i = ⇠p
1

· · · ⇠pM
h⇠|ni = h⇠|c†q

1

· · · c†qN |�i = ⇠qN · · · ⇠q
1

h�⇠|ni = h�⇠|c†q
1

· · · c†qN |�i = (�⇠qN ) · · · (�⇠q1) = (�1)N⇠p
1

· · · ⇠pm .

Then

hm|⇠ih⇠|ni = ⇠p
1

· · · ⇠pM ⇠qN · · · ⇠q
1

= (�1)MN⇠qN · · · ⇠q
1

⇠p
1

· · · ⇠pM
= (�1)MN

(�1)Nh�⇠|nihm|⇠i.

But

(�1)MN
= (�1)(N+M�N)N

= (�1)N2

(�1)(M�N)N
= (�1)N ,

where we have used the facts that (�1)N2

= (�1)N and that M � N is even (so
(M �N)N is even as well). The claim (6.9) follows.
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From the identity (6.9), together with our resolution of identity (6.7), we may
derive a formula for Tr( ˆO) for operators ˆO = O(c†, c), where O is an even polynomial
(as is required of physical fermionic operators):

Tr(

ˆO) =

ˆ
d(⇠, ⇠) e�⇠⇤⇠h�⇠| ˆO|⇠i. (6.10)

To derive the identity, we expand as

Tr(

ˆO) = Tr(

ˆO IdF)

=

ˆ
d(⇠, ⇠) e�⇠⇤⇠

Tr

⇣
ˆO|⇠ih⇠|

⌘
=

ˆ
d(⇠, ⇠) e�⇠⇤⇠

X
n

hn| ˆO|⇠ih⇠|ni.

Now write ˆO =

P
m

0,m O
m

0
m

|m0ihm|, where O
m

0
m

= 0 whenever
P

p(m
0
p � mp) is

odd. Then inserting this expression we obtain

Tr(

ˆO) =

ˆ
d(⇠, ⇠) e�⇠⇤⇠

X
n,m

O
nm

hm|⇠ih⇠|ni

=

ˆ
d(⇠, ⇠) e�⇠⇤⇠

X
n,m

O
nm

h�⇠|nihm|⇠i

=

ˆ
d(⇠, ⇠) e�⇠⇤⇠h�⇠| ˆO|⇠i,

as was to be shown. (In the second equality of the last display, we used (6.9), together
with the fact that O

nm

= 0 whenever
P

p(np �mp) is odd.)

6.2.5 Path integral

Expand the partition function (again temporarily lumping the chemical potential
contribution into the Hamiltonian ˆH) via the trace identity (6.10):

Z = Tr

h
e��Ĥ

i
=

ˆ
d(⇠(0), ⇠(0)) e

�⇠⇤
(0)

⇠
(0)h�⇠(0)|e��Ĥ |⇠(0)i

=

ˆ
d(⇠(0), ⇠(0)) e

�⇠⇤
0

⇠
0h�⇠(0)|e�

1

M �Ĥ · · · e� 1

M �Ĥ |⇠(0)i

=

ˆ "M�1Y
m=0

d(⇠(m), ⇠(m))

#
e�

PM�1

m=0

⇠⇤
(m)

⇠
(m)

h�⇠(0)|e�
1

M �Ĥ |⇠(M�1)i · · · h⇠(1)|e�
1

M �Ĥ |⇠(0)i.
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Observe that in the last line, the integration takes place in the enlarged Grassmann
algebra

G⇤
M :=

⌦
{⇠(m),p, ⇠(m),p}p2B,m=0,...,M�1

↵
.

Evidently, in this enlarged Grassmann algebra we shall have to compute the overlaps
h⇠(m)|⇠(m�1)i.

More generally, we compute the overlap h✓|⇠i within
⌦
{⇠,p, ⇠,p, ✓p, ✓p}p2B

↵
:

h✓|⇠i = e✓
⇤⇠, (6.11)

analogously to the bosonic case. To verifty this identity, first rewrite

|⇠i =
Y
p

(1 + ⇠pc
†
p)|�i =

X
S⇢B

Y
p2S

(⇠pc
†
p)|�i.

Note that the ordering of p within the product does not matter. Similarly,

h✓| =
X
S⇢B

h�|
Y
p2S

(✓pcp),

from which it follows that

h✓|⇠i =

X
S⇢B

Y
p2S

(✓p⇠p)

=

Y
p2B

(1 + ✓p⇠p)

=

Y
p2B

e✓p⇠p

= e✓
⇤⇠,

as was to be shown.
Now for M large, we again make use of e� 1

M �Ĥ
= :e�

1

M �Ĥ
: +O(M�2

), allowing us
to substitute

h⇠(m+1)|e�
1

M �Ĥ |⇠(m)i ⇡ h⇠(m+1)| :e�
1

M �Ĥ
: |⇠(m)i

= e�
1

M �H(⇠
(m+1)

,⇠
(m)

)h⇠(m+1)|⇠(m)i
= e�

1

M �H(⇠
(m+1)

,⇠
(m)

)e⇠
⇤
(m+1)

⇠
(m) .

Proceeding, we compute, adopting the convention ⇠(M) = �⇠(0):

Z = lim

M!1

ˆ "M�1Y
m=0

d(⇠(m), ⇠(m))

#
e�

PM�1

m=0

[

⇠⇤
(m+1)

(⇠
(m+1)

�⇠
(m)

)
]

� �
M

PM�1

m=0

H(⇠
(m+1)

,⇠
(m)

)
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=

ˆ
Da-per

⇥
⇠( · ), ⇠( · )

⇤
e�
´ �
0

[

⇠(⌧)⇤@⌧⇠(⌧)+H(⇠(⌧),⇠(⌧))
]

d⌧

where Da-per
⇥
⇠( · ), ⇠( · )

⇤
is formally the infinite-dimensional Lebesgue measure (prop-

erly normalized) on antiperiodic ‘Grassmann paths’ ⇠(⌧). Again “ = ” indicates that
the expression in the last line of the display is only formal and ought to be more
rigorously understood as a limit as M ! 1. The notion even of a Grassmann path
is shakily interpreted at best; by contrast to a complex path, it cannot be interpreted
as an (anti)periodic function on [0, �). Rather, it’s meaning is only symbolic.

Then by replacing ˆH  ˆH � µ ˆN and noting that ˆN(⇠, ⇠) = ⇠⇤⇠, we obtain the
path integral formulation of the partition function

Z =

ˆ
Da-per

⇥
⇠( · ), ⇠( · )

⇤
e�S(⇠,⇠),

where the action S is defined by

S(⇠, ⇠) :=

ˆ �

0

⇥
⇠(⌧)⇤(@⌧ � µ)⇠(⌧) +H(⇠(⌧), ⇠(⌧))

⇤
d⌧

If we write ˆH as a sum of a noninteracting part ˆH0 and an interaction ˆU = U(c†, c),
i.e.,

ˆH =

ˆH0 +
ˆU =

X
p,q

hpqc
†
pcq + ˆU,

then we can write
S(⇠, ⇠) = S0(⇠, ⇠) + Sint(⇠, ⇠),

where

S0(⇠, ⇠) :=

ˆ �

0

⇠(⌧)⇤(@⌧ + h� µ)⇠(⌧) d⌧, Sint(⇠, ⇠) =

ˆ �

0

U(⇠(⌧), ⇠(⌧)).

Again one can observe the formal similarity of the path integral to the Euclidean
field theory presented in section 1. However, the analogy is even more restricted here
for obvious reasons.

This concludes our discussion of the coherent-state path integral. The use of
this construction in this dissertation is limited to section 7.1 below, where we use it
to motivate the connection between Green’s functions in the Euclidean lattice field
theory (which will be key in Parts II, III, IV, and VI) and Green’s functions in
fermionic and bosonic statistical mechanics (which will be key in Parts VI and VII).

7 Green’s functions

7.1 Motivation via functional derivatives
Before we proceed with standard definitions to many-body Green’s functions, we first
offer some motivating discussion from a more general perspective. In this section we
will consider d = |B| <1.
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In the setting of Euclidean field theory, our notion of the ‘Green’s function’ asso-
ciated to a Gibbs meausure dµ(x) = e�H(x) dx is simply the two-point correlator

G =

ˆ
RN

xx>dµ(x).

Note that for the choice HA(x) of (1.1), by defining the free energy

⌦[A] := � logZ[A] =

ˆ
RN

e�
1

2

xTAx�U(x) dx,

we can write G = G[A] as a gradient via G[A] = �rA⌦[A], where we define rA :=⇣
@

@Aij
+

@
@Aji

⌘
. We comment that the self-energy is defined as the difference ⌃ =

A � G�1 so that ⌃ = 0 if U ⌘ 0 (i.e., in the noninteracting case). Further detail
is provided in Part III, which views this relation as the foundation of the so-called
Luttinger-Ward formalism.

For now, let us analogize this construction to the setting of the coherent state path
integral. Note that the discussion will be only informal, with rigorous definitions
to follow later. For concreteness, we will stick to the fermionic case. There, the
‘quadratic part’ of the action (i.e., the analogy of 1

2
xTAx in the Euclidean setting) is

S0(⇠, ⇠) =

ˆ �

0

⇠(⌧)⇤(@⌧ + h� µ)⇠(⌧) d⌧.

We can extend this particular action to the broadest possible parametric class of
quadratic actions as

S0[A](⇠, ⇠) :=

ˆ �

0

⇠(⌧)⇤@⌧⇠(⌧) d⌧ +

ˆ �

0

ˆ �

0

⇠(⌧ 0)⇤A(⌧ 0, ⌧)⇠(⌧) d⌧ d⌧ 0,

so that the action map (⇠, ⇠) 7! S0[A](⇠, ⇠) is itself a functional of the Hermitian-
operator-valued kernel (⌧ 0, ⌧) 7! A(⌧ 0, ⌧).

Then by considering the partition function Z = Z[A] as a functional of the kernel
A and defining ⌦[A] = logZ[A], we may in turn define a Green’s function via

G(⌧, ⌧ 0)[A] : =

�⌦

�A(⌧ 0, ⌧)
[A]

=

�1
Z[A]

ˆ
Da-per

⇥
⇠( · ), ⇠( · )

⇤
⇠(⌧)⇠(⌧ 0)⇤ e�S

0

[A](⇠,⇠)�S
int

(⇠,⇠).

By evaluating at a kernel of the form A(⌧ 0, ⌧) = (h � µ)�(⌧ 0 � ⌧) and reversing the
steps of the derivation of the path integral, we find that

Gij(⌧, ⌧
0
) =

�1
Z

Tr

h
T
n
ai(⌧)a

†
j(⌧

0
)

o
e��(Ĥ�µN̂)

i
,
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where T
n
ai(⌧)a

†
j(⌧

0
)

o
indicates the imaginary-time-ordering operator, formally de-

fined by

T
n
ai(⌧)a

†
j(⌧

0
)

o
=

(
ai(⌧)a

†
j(⌧

0
), ⌧ 0 < ⌧

�a†j(⌧ 0)ai(⌧), ⌧ 0 � ⌧.

In fact this matches the definition of the Matsubara Green’s function to be given
below.

7.2 Green’s functions and the self-energy at zero temperature
For t 2 R, we denote the annihilation and creation operators in the Heisenberg
representation by

ai(t) := eiĤtaie
�iĤt, a†i (t) := eiĤta†ie

�iĤt.

Then for a zero-temperature ensemble with N particles, the time-ordered, single-body,
real-time Green’s function (which we call the Green’s function for short) is a function
G : R⇥ R! Cd⇥d defined by

Gij(t, t
0
) = �i

⌦
 

(N)
0

�� T �ai(t)a†i (t0) �� (N)
0

↵
,

where T is the time-ordering operator, formally defined by

T
�
ai(t)a

†
i (t

0
)

 
=

(
ai(t)a

†
j(t

0
), t0 < t

⇣a†j(t
0
)ai(t), t0 � t.

Note that T is not really an operator and it is interpreted merely via the symbolic
content of its argument.

We can write
G(t, t0) = G+

(t, t0) +G�
(t, t0),

where
iG+

(t, t0) :=
⌦
 

(N)
0

��ai(t)a†j(t0)�� (N)
0

↵
✓(t� t0),

iG�
(t, t0) :=

⌦
 

(N)
0

��a†j(t0)ai(t)�� (N)
0

↵
(1� ✓(t� t0)),

with

✓(s) :=

(
1, s > 0

0, s  0.

It is easy to show that G(t, t0), G+
(t, t0), and G�

(t, t0) depend only on t � t0, so
we can define G(t) := G(t, 0), G+

(t) := G+
(t, 0), and G�

(t) := G�
(t, 0) and consider

these objects without any loss of information. It is then equivalent to consider the
Fourier transforms

G(!) :=

ˆ
R
G(t)ei!t�⌘|t| dt

39



and likewise G+
(!) and G�

(!) defined similarly, so

G(!) = G+
(!) +G�

(!).

Here ⌘ is interpreted as a positive, infinitesimally small quantity needed to ensure
the convergence of the relevant integrals, and G(!), G+

(!), and G�
(!) are not really

functions, but rather distributions on R defined via the limit ⌘ ! 0

+.
One can show that

G+
ij(!) =

⌦
 

(N)
0

��ai 1

! � (

ˆH � E(N)
0 ) + i⌘

a†j
��
 

(N)
0

↵
and

G�
ij(!) = �⇣

⌦
 

(N)
0

��a†j 1

! + (

ˆH � E(N)
0 )� i⌘

ai
��
 

(N)
0

↵
,

where E(N)
0 is the energy of the N -particle ground state, i.e., ˆH

��
 

(N)
0

↵
= E0

��
 

(N)
0

↵
.

Now we can think of G± as the restriction to the real axis of the rational function
G±

: C! Cd⇥d defined by

G+
ij(z) :=

⌦
 

(N)
0

��ai 1

z � (

ˆH � E(N)
0 )

a†j
��
 

(N)
0

↵
G�

ij(z) := � ⇣
⌦
 

(N)
0

��a†j 1

z + (

ˆH � E(N)
0 )

ai
��
 

(N)
0

↵
,

and we can define G(z) := G+
(z) +G�

(z) accordingly to be rational on C.
Note that here we have left out the ±i⌘ in the denominators, which specified

whether poles should be viewed as being infinitesimally above or below the real axis.
This erases the distinction between the time-ordered Green’s function and the ad-
vanced and retarded Green’s functions, which we do not define here, though see [77]
for details. In fact the distinction does not matter for our sparsity results, which
applies equally well in all of these cases.

The self-energy is the rational function ⌃ : C! Cd⇥d defined by

⌃(z) := z � h�G(z)�1.

7.3 Green’s functions and the self-energy at finite temperature
As above, for t 2 R, we denote the annihilation and creation operators in the Heisen-
berg representation by

ai(t) := eiĤtaie
�iĤt, a†i (t) := eiĤta†ie

�iĤt.

Then at finite inverse temperature � 2 (0,1) and chemical potential µ 2 int domZ,
the time-ordered, single-body, real-time Green’s function (which we call the Green’s
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function for short when the context is clear) is a function G : R⇥R! Cd⇥d defined
by

Gij(t, t
0
) = �i

⌦
T
�
ai(t)a

†
i (t

0
)

 ↵
�,µ

.

We can write
G(t, t0) = G+

(t, t0) +G�
(t, t0),

where
iG+

(t, t0) =
1

Z
Tr

h
ai(t)a

†
j(t

0
)e��(Ĥ�µN̂)

i
✓(t� t0),

iG�
(t, t0) =

⇣

Z
Tr

h
a†j(t

0
)ai(t)e

��(Ĥ�µN̂)
i
(1� ✓(t� t0)),

with

✓(s) :=

(
1, s > 0

0, s  0.

as above.
Once again it is easy to show that G(t, t0), G+

(t, t0), and G�
(t, t0) depend only

on t � t0, so we can define G(t) := G(t, 0), G+
(t) := G+

(t, 0), and G�
(t) := G�

(t, 0)
and consider these objects without any loss of information. It is then equivalent to
consider the Fourier transforms

G(!) :=

ˆ
R
G(t)ei!t�⌘|t| dt

and likewise G+
(!) and G�

(!) defined similarly, so

G(z) = G+
(!) +G�

(!).

Now since ˆH preserves particle number, we can safely diagonalize ˆH as an operator
on each of the N -particle subspaces separately. Then the spectrum of ˆH consists of
the union of its spectra on the N -particle subspaces. It follows from Assumption 4
that ˆH � µ ˆN has a ground state, i.e., that its spectrum is bounded from below, for
µ 2 int domZ. Let m = 0, 1, . . . , (terminating at m = 2

d in the case of fermions)
index the spectrum of ˆH, and let | mi denote the m-th eigenstate. Let Nm be the
particle number of | mi (which is an eigenstate of ˆN), and let Em be defined by
ˆH| mi = Em| mi.

One can show that

G+
ij(!) =

1

Z

X
m

e��(Em�µNm)
⌦
 m

��ai 1

! � (

ˆH � Em) + i⌘
a†j
��
 m

↵
and

G�
ij(!) =

�⇣
Z

X
m

e��(Em�µNm)
⌦
 m

��a†j 1

! + (

ˆH � Em)� i⌘
ai
��
 m

↵
.
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Recall that
Z =

X
m

e��(Em�µNm).

Now we can think of G± as the restriction to the real axis of the rational function
G±

: C! Cd⇥d defined by

G+
ij(z) :=

1

Z

X
m

e��(Em�µNm)
⌦
 m

��ai 1

z � (

ˆH � Em)

a†j
��
 m

↵
G�

ij(z) :=
�⇣
Z

X
m

e��(Em�µNm)
⌦
 m

��a†j 1

z + (

ˆH � Em)

ai
��
 m

↵
,

and we can define G(z) := G+
(z) + G�

(z) accordingly to be rational on C. Once
again we have ignored the infinitesimal ⌘ in this definition; the same comments made
in Appendix 5.1 apply here.

The self-energy is the rational function ⌃ : C! Cd⇥d defined by

⌃(z) := z � h�G(z)�1.

7.4 Matsubara Green’s functions and self-energy
For ⌧ 2 R, we define (abusing notation)

ai(⌧) := e(Ĥ�µN̂)⌧aie
�(Ĥ�µN̂)⌧ , a†i (⌧) := e(Ĥ�µN̂)⌧a†ie

�(Ĥ�µN̂)⌧ .

Although we have overloaded the notation, the distinction between, e.g., ai(⌧) and
ai(t) should be clear from context. Note carefully that a†i (⌧) is not the adjoint of
ai(⌧). This is merely a notation. The operators ai(⌧) and a†i (⌧) can be thought
of as the imaginary-time Heisenberg representation of the annihilation and creation
operators. Although the analogy with the real-time Heisenberg representation is
broken by considering ˆH � µ ˆN in place of ˆH, our convention is indeed the more
widely used due to its naturality in the context of the imaginary-time path integral.

Then at finite inverse temperature � 2 (0,1) and chemical potential µ 2 int domZ,
the time-ordered, single-body, imaginary-time Green’s function (which we call the
Matsubara Green’s function for clarity) is a function GM

: [0, �]2 ! Cd⇥d defined by

GM
ij (⌧, ⌧

0
) = �

⌦
T
�
ai(⌧)a

†
i (⌧

0
)

 ↵
�,µ

,

where T here indicates the imaginary-time-ordering operator, formally defined by

T
�
ai(⌧)a

†
i (⌧

0
)

 
=

(
ai(⌧)a

†
j(⌧

0
), ⌧ 0 < ⌧

⇣a†j(⌧
0
)ai(⌧), ⌧ 0 � ⌧.

We can write
GM

(⌧, ⌧ 0) = GM,+
(⌧, ⌧ 0) +GM,�

(⌧, ⌧ 0),
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where

�GM,+
ij (⌧, ⌧ 0) =

1

Z
Tr

h
ai(⌧)a

†
j(⌧

0
)e��(Ĥ�µN̂)

i
✓(⌧ � ⌧ 0),

=

1

Z
Tr

h
aie

�(Ĥ�µN̂)(⌧�⌧ 0)a†je
(⌧�⌧ 0��)(Ĥ�µN̂)

i
✓(⌧ � ⌧ 0),

and

�GM,�
ij (⌧, ⌧ 0) =

⇣

Z
Tr

h
a†j(⌧

0
)ai(⌧)e

��(Ĥ�µN̂)
i
(1� ✓(⌧ � ⌧ 0)).

=

⇣

Z
Tr

h
a†je

�(Ĥ�µN̂)(⌧ 0�⌧)aie
(⌧ 0�⌧��)(Ĥ�µN̂)

i
(1� ✓(⌧ � ⌧ 0)).

Once again it is easy to show that GM
(⌧, ⌧ 0), GM,+

(⌧, ⌧ 0), and GM,�
(⌧, ⌧ 0) depend

only on ⌧ � ⌧ 0. Then the full information of GM
(⌧, ⌧ 0) can be recovered from

GM
(⌧) :=

(
GM,+

(⌧, 0), ⌧ > 0

GM,�
(0,�⌧), ⌧  0,

defined for ⌧ 2 (��, �). Now for ⌧ 2 (0, �), we can compute via the above formulas:

GM
(⌧ � �) = GM,�

(0, � � ⌧) = ⇣GM,+
(0, ⌧) = ⇣GM

(⌧).

Therefore, by considering GM
(⌧) = GM,+

(⌧, 0) only on (0, �), i.e.,

GM
(⌧) =

�1
Z

Tr

h
aie

�⌧(Ĥ�µN̂)a†je
(⌧��)(Ĥ�µN̂)

i
, ⌧ 2 (0, �)

and extending by �-(anti)periodicity, we can recover the full information of the Mat-
subara Green’s function.

It is then equivalent to consider the frequency-space representation of at the Mat-
subara frequencies

!n =

(
2n⇡/�, ⇣ = +1

(2n+ 1)⇡/�, ⇣ = �1
for n 2 Z, defined via

GM
(i!n) :=

ˆ �

0

GM
(⌧)ei!n⌧ d⌧,

so
GM

(⌧) =
1

�

X
n

GM
(i!n)e

�i!n⌧ .

One can show that
GM

(i!n) = G(i!n + µ),

where G is the rational function C! Cd⇥d defined in the preceding subsection.
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The Matsubara self-energy is defined by

⌃

M
(i!n) = i!n � (h� µ)�GM

(i!n)
�1

= ⌃(i!n + µ),

where ⌃ is the rational function C ! Cd⇥d defined in the preceding subsection.
Thus to study the Matsubara Green’s function and self-energy it suffices to study the
rational functions G and ⌃ defined earlier.

Finally, we comment that in the imaginary-time representation, we can write

�@⌧GM
(⌧, ⌧ 0)� (h� µ)GM

(⌧, ⌧ 0)�
ˆ �

0

⌃

M
(⌧, ⌧ 00)GM

(⌧ 00, ⌧ 0) d⌧ 00 = Id�(⌧ � ⌧ 0).
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Part II

Bold Feynman diagrams

1 Introduction
In quantum many-body physics, the computational complexity of obtaining the nu-
merically exact solution to the many-body Schrödinger equation generally scales ex-
ponentially with respect to the number of particles in the system. Hence a direct
approach to the quantum many-body problem is intractable for all but very small
systems. Many-body perturbation theory (MBPT) formally treats the Coulomb in-
teraction between electrons as a small quantity and provides useful approximations
to many quantities of physical interest with significantly reduced computational cost.
MBPT has been demonstrated to be quantitatively useful, and sometimes indispens-
able, in a wide range of scientific applications. These range from the early description
of helium atoms and the uniform electron gas [33] to modern theories of photovoltaics
and the optical excitation of electrons [5, 79, 11]. Even for ‘strongly correlated’ sys-
tems [37, 19] where a perturbation theory is known to be unsuitable, MBPT still
provides the basic building blocks used in many successful approaches [53].

MBPT is usually formulated in the language of second quantization. For many
problems of interest, the Hamiltonian can be split into a single-particle term and
a two-particle term, which are respectively quadratic and quartic in the creation
and annihilation operators [33]. These operators are defined on a Fock space whose
dimension scales exponentially with respect to the system size. Nonetheless, in the
special case of ‘non-interacting’ systems, in which the Hamiltonian contains only
the quadratic term, quantities of interest can be obtained exactly. Hence the non-
interacting system is naturally taken as a reference system. The remaining quartic
interaction, which arises from the Coulomb interaction between electrons and makes
the system ‘interacting,’ is responsible for almost all of the difficulties in quantum
many-body physics. MBPT treats the quartic term as a perturbation to the non-
interacting system.

Feynman diagrams arise naturally in MBPT as a bookkeeping device for the co-
efficients of perturbative series, though they can be further endowed with physical
interpretation [33]. Initially these diagrams involve contributions from the so-called
non-interacting Green’s function (alternatively known as the bare propagator) that
specifies the non-interacting reference problem, as well the quartic interaction. Virtu-
ally all physical quantities of interest can be represented perturbatively via such a bare
Feynman diagrammatic expansion. Remarkably, the bare Feynman diagrammatic
expansions of certain quantities can be simplified into bold Feynman diagrammatic
expansions [100]. Such an expansion is obtained from a bare expansion via a ‘partial
resummation’ procedure, which selects certain pieces of bare diagrams and sums their
contribution to infinite order. In the bold diagrams, the role of the bare propagator
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is assumed by the interacting Green’s function, alternatively known as the bold prop-
agator. This procedure, referred to as ‘dressing’ or ‘renormalizing’ the propagator,
is a priori valid only in a formal sense. Although it may be initially motivated as
an attempt to simplify the diagrammatic expansion, the passage from bare to bold
diagrams has significant implications. In particular, most Green’s function methods
for the theoretical and numerical investigation of quantum many-body physics, such
as the self-consistent Hartree-Fock approximation, the second-order Green’s function
approximation (GF2), the GW approximation [43], the dynamical mean-field theory
(DMFT) [37, 85], the GW+DMFT method [12], the dynamical cluster approxima-
tion [99], and bold diagrammatic Monte Carlo methods [86, 57], can be derived via
summation over some (possibly infinite) subset of the bold diagrams.

All of these methods, as well as the bold diagrammatic expansion itself, can be
viewed as resting on a foundation known as the Luttinger-Ward (LW)3 formalism [65]
that originated in 1960. This formalism has found widespread usage in physics and
chemistry [28, 45, 10, 90]. However, the LW formalism, which is based on a functional
of the same name, is defined only formally. This is a serious issue both in theory and
in practice. Indeed, even the very existence of the LW functional in the context of
fermionic systems is under debate, with numerical evidence to the contrary appearing
in the past few years [54, 32, 103, 42] in the physics community.

1.1 Contributions
Please note that this Part is based on [61] (joint work with Lin Lin). In this Part,
we provide a self-contained explanation of MBPT in the setting of a Gibbs model
(alternatively, following the physics literature, ‘Euclidean lattice field theory’). The
perturbation theory of this model, with a specific form of quartic interaction that
we refer to as the generalized Coulomb interaction, enjoys a correspondence with
the Feynman diagrammatic expansion for the quantum many-body problem with
two-body interaction [77, 2, 1]. The model is also of interest in its own right and
includes, e.g., the (lattice) '4 theory [2, 108], as a special case. In the setting of
the Gibbs model, one is interested in the computation of expectation values with
respect to possibly high-dimensional Gibbs measures. While the exact computation of
such high-dimensional integrals is generally intractable, important exceptions are the
Gaussian integrals, i.e., integrals for the moments of a Gaussian measure, which can be
evaluated exactly. Hence the Gaussian measure plays the role of the reference system.
One can construct perturbation series using Feynman diagrams, which correspond to
moments of Gaussian measures, to evaluate quantities of interest.

The main contribution of this Part is the rigorous justification of the bold dia-
grammatic expansion in the Gibbs measure setting. Although the basic idea of the
passage from bare to bold diagrams can be intuitively perceived, the validity of this

3The Luttinger-Ward formalism is also known as the Kadanoff-Baym formalism [7] depending on
the context. In this work we always use the former.
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procedure actually relies on subtle combinatorial arguments, which to the extent of
our knowledge, have not appeared in the literature. We remark that the arguments
appearing in this Part regarding these manipulations are just as applicable to the
quantum many-body problem as they are to the Gibbs model. Furthermore, these
arguments clarify why certain quantities such as the self-energy admit a bold dia-
grammatic expansion, while other quantities, such as the free energy, do not.

In fact, bosonic and fermionic field theories (which can in particular be derived
from the non-relativistic quantum many-body problem via the coherent state path
integral formalism [1, 77]) can be viewed formally as infinite-dimensional Gibbs mea-
sures over complex and Grassmann fields, respectively, in contrast to the real ‘fields’
considered in this work. The diagrammatic expansions for such theories yield propa-
gator lines with a direction (indicated by an arrow), due to the distinction between
creation and annihilation operators. In the setting of the two-body interaction, this
additional structure significantly reduces the symmetry of the Feynman diagrams,
and in fact the self-energy and single-particle Green’s function diagrams all have a
symmetry factor of one. This greatly simplifies the proof of the bold diagrammatic
expansion in these settings (although a proof of the unique skeleton decomposition as
in Proposition 24 is still necessary). However, we view this simplification as largely ac-
cidental because it does not extend to interactions beyond the two-body interaction,
where more sophisticated arguments are necessary (and indeed, to our knowledge,
bold diagrams have not yet been considered). By contrast the tools introduced here
can be applied with minimal modification to more complicated interaction forms.

As an auxiliary tool for carefully establishing diagrammatic expansions (both bare
and bold), we have also found it necessary to introduce definitions of the various
flavors of Feynman diagrams (as well as associated notions of isomorphism, auto-
morphism, etc.) in a way that is new, as far as we know. Most of this perspective
(which views Feynman diagrams as data structures with half-edges as the funda-
mental building block) is conveyed in section 3.2. We have also aimed to make this
framework durable enough not just for the developments of this Part, but also to al-
low us to pursue further (and more sophisticated) diagrammatic manipulations, such
as the development of the bold screened diagrams, Hedin’s equations [43], and the
Bethe-Salpeter equation [79], in future work.

1.2 Related work
The construction of Feynman diagrams in the setting of the Gibbs measure is well
known, particularly in quantum field theory [83, 1]. To our knowledge, this setting
is mostly discussed as a prelude to the setting of quantum field theory (in particular,
via the coherent state path integral, the quantum many-body setting) [1, 77], or to
more general mathematical settings arising in geometry and topology [29, 84].
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1.3 Perspectives
MBPT is known to be difficult to work with, both analytically and numerically. In
fact, even learning MBPT can be difficult without a considerable amount of back-
ground knowledge in physics. Hence, more broadly, we hope that this Part will serve
as an introduction to bare and bold Feynman diagrams that is self-contained, rigor-
ous, and accessible to a mathematical audience without a background in quantum
physics. The prerequisites for understanding this part of the two-part series are just
multivariable calculus and some elementary combinatorics.

In fact, our perspective is that the Gibbs model can be used as a point of departure
(especially for mathematicians) for the study of the many-body problem in three
senses: (1) theoretically, (2) numerically, and (3) pedagogically. We shall elaborate
on these three points presently.

(1) Virtually all of the important concepts of MBPT for the quantum many-body
problem—such as Green’s functions, the self-energy, the bare and bold diagrams,
and the Luttinger-Ward formalism, to name a few—have analogs in the setting of
the Gibbs model. The same can be said of virtually all Green’s function methods,
including all of the methods cited above. Furthermore, there is an analog of the
impurity problem, which is fundamental in quantum embedding theory [101].

When rigorous theoretical understanding of the quantum many-body problem be-
comes difficult, a lateral move to the more tractable Gibbs model may yield interesting
results. Headway in this direction is reported Part III, in which the Luttinger-Ward
formalism is established rigorously for the first time, and further progress will be
reported in future work. Moreover, studying the extent to which results fail to trans-
late between settings, given the formal correspondence between the two, may yield
interesting insights.

(2) Numerical methods in MBPT are known to be difficult to implement, and
the calculations are often found to be difficult to converge, time-consuming, or both.
Given that virtually all Green’s function methods of interest translate to the Gibbs
model, this setting can serve as a sandbox for the evaluation and comparison of
methods in various regimes. Indeed, one can benchmark these methods by obtaining
essentially exact approximations of the relevant integrals via Monte Carlo techniques.
We hope that the Gibbs model can provide new insights into a number of difficult
issues in MBPT, such as the role of self-consistency in the GW method, the appropri-
ate choice of vertex correction beyond the GW method, and the study of embedding
methods.

(3) For a mathematical reader, the literature of MBPT can be difficult to digest. In
our view the consideration of the Gibbs model offers perhaps the simplest introduction
to the major concepts of MBPT. This Part, together with a familiarity with second
quantization and the basics of many-body Green’s functions, should equip the reader
to follow the development of the various approximations and methods found in the
literature, by distilling these concepts via the Gibbs model. We have attempted to
respect this goal by maintaining a pedagogical style of exposition, with many examples
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provided throughout for concreteness.

1.4 Outline
In section 2 (‘Preliminaries’) we formally introduce the Gibbs model as well as its
associated physical quantities such as the partition function, the free energy, and the
Green’s function. Here we prove the classic formula (Theorem 2) attributed to Isserlis
and Wick for computing the moments of a Gaussian measure, which is the basis for
all Feynman diagrammatic expansions. We also quickly recover the Galitskii-Migdal
formula (Theorem 1) from quantum many-body physics in this setting using a scaling
argument.

In section 3, we introduce various flavors of Feynman diagrams and use them to
compute diagrammatic expansions for the partition function (Theorem 14), the free
energy (Theorem 17), and the Green’s function (Theorem 18). Then, motivated by
the prospect of simplifying the perturbative computation of the Green’s function, we
introduce the self-energy and the Dyson equation, which can be used to recover the
Green’s function once the self-energy is known, and then compute the diagrammatic
expansion of the self-energy (Theorem 20).

In section 4, the main goal is to formulate and prove the bold diagrammatic ex-
pansion of the self-energy (Theorem 32). This result is only a fact about formal power
series, but in Part III, we will show that the bold diagrammatic expansion admits
an analytical interpretation as an asymptotic series, in a sense that we preview in
Remark 33. Theorem 32, which is a combinatorial result, is in fact used in establish-
ing the analytical fact in Part III. In section 4.7 we provide an overview of Green’s
function methods, including a diagrammatic derivation of the GW method and a dis-
cussion of a property known as �-derivability. In section 4.8, we provide a preview of
the Luttinger-Ward formalism from the diagrammatic perspective and explain how
the LW functional relates to the free energy.

Finally, in section 5 we consider a few basic numerical experiments with Green’s
function methods for the Gibbs model.

2 Preliminaries
Before discussing Feynman diagrams in proper, we discuss various preliminaries, in-
cluding the basics of Gaussian integration. For simplicity we restrict our attention
to real matrices, though analogous results can be obtained in the complex Hermitian
case.
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2.1 Notation
First we recall some basic facts from calculus. For a real symmetric positive definite
matrix A 2 RN⇥N , we define

Z0 :=

ˆ
RN

e�
1

2

xTAx
dx = (2⇡)

N
2

(det(A))�
1

2 . (2.1)

The two-point correlation function G0 is an N ⇥N matrix with entries

G0
ij :=

1

Z0

ˆ
RN

xixje
� 1

2

xTAx
dx = (A�1

)ij, (2.2)

i.e., G0
= A�1. (We place the ‘0’ in the superscript merely to accommodate the

use of indices more easily in the notation.) Note that G0 is the covariance matrix
E(XXT

) = A�1 of the N -dimensional Gaussian random variable X ⇠ N (0, A�1
).

Now consider a more general N -dimensional integral, called the partition function,
given by

Z =

ˆ
RN

e�
1

2

xTAx�U(x)
dx, (2.3)

where U(x) is called the interaction term. Throughout this Part, we take U to be the
following quartic polynomial:

U(x) =
1

8

NX
i,j=1

vijx
2
ix

2
j . (2.4)

Without loss of generality we assume that vij = vji, since otherwise we can always
replace vij by (vij + vji)/2 without changing the value of U(x). The factor of 8 comes
from the fact that we do not distinguish between the i and j indices (due to the
symmetry of the v matrix), nor do between the two terms xixi and xjxj. Each will
contribute a symmetry factor of 2 in the developments that follow, and this convention
simplifies the bookkeeping of the constants in the diagrammatic series. Quartics of
the form (1.6) arise from the discretization of the '4 theory [2] and moreover as a
classical analog of the interaction arising in quantum many-body settings, such as
the Coulomb interaction of electronic structure theory and the interaction term in
simplified condensed matter models such as the Hubbard model [68]. With some
abuse of notation, we will refer to the interaction (1.6) as the generalized Coulomb
interaction.

Our results generalize quite straightforwardly to other interactions. We will com-
ment in section 3.4 on diagrammatic developments for other interactions . But for
concreteness of the example expressions and diagrams throughout, it is simpler to
stick to the generalized Coulomb interaction as a reference.

Let SN , SN
+ , and SN

++ denote respectively the sets of symmetric, symmetric pos-
itive semidefinite, and symmetric positive definite N ⇥ N real matrices. We also
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require that
1

2

xTAx+ U(x)! +1, kxk ! +1 (2.5)

for any A 2 SN and moreover that the growth in Eq. (2.6) that the integral (1.4) is
well-defined. Here k·k is the vector 2-norm. Note that Eq. (2.6) does not require A
to be positive definite. For instance, if N = 1, then Eq. (1.4) becomes

Z =

ˆ
R
e�

1

2

ax2� 1

8

vx4

dx, (2.6)

and the expression in (2.6) is well-defined as long as v > 0, regardless of the sign of a.
Nonetheless, we assume that A 2 SN

++, as this assumption is necessary for the con-
struction of a perturbative series in the interaction strength. In PartIII, Eq. (2.6) will
help us understand the behavior of bold diagrammatic methods when A is indefinite.

For general N � 1, there is a natural condition on the matrix v that ensures
that integrals like (2.6) are convergent, namely that the matrix v is positive definite.
Indeed, this assumption ensures in particular that U is a nonnegative polynomial,
strictly positive away from x = 0. Since U is homogeneous quartic, it follows that
U � C�1|x|4 for some constant C sufficiently large, so for any A, the expression
1
2
xTAx + U(x) goes to +1 quartically as kxk ! 1. Another sufficient assumption

is that the entries of v are nonnegative and moreover that the diagonal entries are
strictly positive. We will explore the implication of such conditions in future work.

To simplify the notation, for any function f(x), we define

hfi = 1

Z

ˆ
RN

f(x)e�
1

2

xTAx�U(x)
dx, hfi0 =

1

Z0

ˆ
RN

f(x)e�
1

2

xTAx
dx. (2.7)

Throughout this Part we are mostly interested in computing two quantities. The first
is the free energy, defined as the negative logarithm of the partition function:

⌦ = � logZ. (2.8)

The second is the two-point correlation function (also called the Green’s function by
analogy with the quantum many-body literature), which is the N ⇥N matrix

Gij =
1

Z

ˆ
RN

xixje
� 1

2

xTAx�U(x)
dx =: hxixji . (2.9)

It is important to recognize that
G 2 SN

++. (2.10)

In fact, as we shall see in Part III, this constraint defines the domain of ‘physical’
Green’s functions, in a certain sense. In the discussion below, G is also called the
interacting Green’s function, in contrast to the non-interacting Green’s function G0

=

A�1. The non-interacting and interacting Green’s functions are also often called the
bare and bold propagators, respectively, especially in the context of diagrams.
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2.2 Scaling relation
The homogeneity of the quartic term U(x) allows for the derivation of a scaling
relation for the partition function. Define the �-dependent partition function as

Z� =

ˆ
RN

e�
1

2

xTAx��U(x)
dx. (2.11)

Then by an change of variable y = �
1

4x, we have

Z� = ��
N
4

ˆ
RN

e�
1

2

p
�
yTAy�U(y)

dy. (2.12)

The scaling relation allows us to represent other averaged quantities using the two-
point correlation function. One example is given in Theorem 1, which is analogous to
the computation of a quantity called the (internal) energy using the Galitskii-Migdal
formula in quantum physics [68].

Theorem 1 (Galitskii-Migdal). The internal energy

E :=

⌧
1

2

xTAx+ U(x)

�
=

1

Z

ˆ
RN

✓
1

2

xTAx+ U(x)

◆
e�

1

2

xTAx�U(x)
dx (2.13)

can be computed using the two point correlation function G as

E =

1

4

Tr[AG+ I], (2.14)

where I is the N ⇥N identity matrix.

Proof. By the definition of G, we have⌧
1

2

xTAx

�
=

1

2

Tr

⇥
A
⌦
xxT

↵⇤
=

1

2

Tr[AG]. (2.15)

In order to evaluate hU(x)i, we consider the �-dependent partition function in Eq. (2.11),
and we have

� dZ�
d�

���
�=1

=

ˆ
RN

U(x) e�
1

2

xTAx�U(x)
dx. (2.16)

Using the scaling relation in Eq. (2.12), we have

� dZ�
d�

���
�=1

=

N

4

Z �
ˆ
RN

1

4

yTAy e�
1

2

yTAy�U(y)
dy. (2.17)

Combining Eq. (2.15) to (2.17) we have

E =

⌧
1

2

xTAx+ U(x)

�
=

1

4

⌦
xTAx+N

↵
=

1

4

Tr[AG+ I].
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2.3 Wick theorem
We first introduce the following notation. For an even number m, we denote by Im a
set of integers {1, . . . ,m}. For i 6= j 2 Im, we call (i, j) a pair. A pairing � on Im is
defined to be a partition of Im into k disjoint pairs. For example, the set of all possible
pairings of the set I4 = {1, 2, 3, 4} is {(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}. Note that
a pairing � can be viewed as an element of the permutation group Sym(Im), such
that �2

= 1 and whose action on Im has no fixed points. Under this interpretation �
maps any element i 2 Im to the element �(i) of the pairing containing i. For a given
pairing �, we define the set

Im/� := {i 2 Im | i < �(i)}

to be the collection of indices corresponding to the ‘first element’ of each pair. Denote
by ⇧(Im) the set of all possible pairings. Observe that there are

|⇧(Im)| =
m!

2

m/2
(m/2)!

pairings in total.
Now Wick’s theorem (Theorem 2), also known as Isserlis’ theorem [46] in prob-

ability theory, is the basic tool for deriving the Feynman rules for diagrammatic
expansion. For completeness we give a proof, but since this is a classic result, it is
provided in Appendix A.

Theorem 2 (Isserlis-Wick). For integers 1  ↵1, . . . ,↵m  N ,

hx↵
1

· · · x↵mi0 =
(
0, m is odd,P

�2⇧(Im)

Q
i2Im/� G

0
↵i,↵�(i)

, m is even.
(2.18)

In Theorem 2, the indices ↵i do not need to be distinct from one another. For
example, for N = 4,

hx1x2x3x4i0 = G0
12G

0
34 +G0

13G
0
24 +G0

14G
0
23,

and ⌦
x2
1x3x4

↵
0
= G0

11G
0
34 +G0

13G
0
14 +G0

14G
0
13 = G0

11G
0
34 + 2G0

14G
0
13.

Similarly ⌦
x4
1

↵
0
= G0

11G
0
11 +G0

11G
0
11 +G0

11G
0
11 = 3G0

11G
0
11.

3 Feynman diagrams
Let us now consider the expansion of quantities such as Z, ⌦, and G with respect to
a (small) interaction term. For the case currently under consideration, in which U
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is of the form (1.6), the size of the interaction term is measured by the magnitude
of the coefficients vij. Equivalently, we can consider a �-dependent interaction as
in the definition of the �-dependent partition function Z� and expand in the small
parameter �. This motivates us to expand e�U(x) using a Taylor series, i.e.

Z =

ˆ
RN

1X
n=0

1

n!
(�U(x))ne�

1

2

xTAx
dx ⇠

1X
n=0

1

n!

ˆ
RN

(�U(x))ne�
1

2

xTAx
dx. (3.1)

The ‘⇠’ indicates that interchanging the order of integration of summation leads only
to an asymptotic series expansion with respect to the interaction strength, also called
the coupling constant [68]. This can be readily seen for the example with n = 1 of
Eq. (2.6), where

Z� ⇠
ˆ 1X

n=0

1

n!

✓
�1

8

�x4

◆n

e�
1

2

x2

dx =

1X
n=0

(�1)n�n
n!

2

�n+ 1

2

�

✓
2n+

1

2

◆
. (3.2)

Here �( · ) is the Gamma-function. It is clear that the series has zero convergence
radius, and the series is only an asymptotic series in the sense that the error of the
truncation to n-th order is O(�n+1

) as �! 0

+.
One might have guessed that the radius of convergence must be zero by the fol-

lowing heuristic argument: evidently Z� = +1 for any � < 0, which suggests that
the radius of convergence cannot be positive at � = 0.

In general since U is a quartic polynomial in x, the n-th term in Eq. (1.5) can be
expressed as the linear combination of a number of 4n-point correlation functions for
a Gaussian measure. These can be readily evaluated using the Wick theorem.

To motivate the need for Feynman diagrams, we first compute the first few terms
of the expansion for the partition function ‘by hand’.

The 0-th order term in (1.5) is clearly Z0. Using the Wick theorem, the first-order
contribution to Z0 contains two terms as

�Z0

X
i,j

1

8

vij
⌦
x2
ix

2
j

↵
0
= �Z0

X
i,j

vij

✓
1

8

G0
iiG

0
jj +

1

4

G0
ijG

0
ij

◆
. (3.3)

The second-order contribution, however, can be seen with some effort to contain
8 distinct terms as

Z0
1

2!

X
i
1

,j
1

,i
2

,j
2

1

8

2
vi

1

j
1

vi
2

j
2

⌦
x2
i
1

x2
j
1

x2
i
2

x2
j
2

↵
0

= Z0

X
i
1

,j
1

,i
2

,j
2

vi
1

j
1

vi
2

j
2

✓
1

2! · 82G
0
i
1

i
1

G0
j
1

j
1

G0
i
2

i
2

G0
j
2

j
2

+

1

2! · 42G
0
i
1

j
1

G0
i
1

j
1

G0
i
2

j
2

G0
i
2

j
2

+

1

4 · 8G
0
i
1

i
1

G0
j
1

j
1

G0
i
2

j
2

G0
i
2

j
2

◆
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+

✓
1

2! · 8G
0
i
1

i
1

G0
i
2

i
2

G0
j
1

j
2

G0
j
1

j
2

+

1

2 · 2G
0
i
1

j
1

G0
i
2

j
2

G0
i
1

i
2

G0
j
1

j
2

+

1

4

G0
i
1

j
1

G0
i
1

i
2

G0
j
1

i
2

G0
j
2

j
2

◆
+

✓
1

2! · 8G
0
i
1

i
2

G0
i
1

i
2

G0
j
1

j
2

G0
j
1

j
2

+

1

2! · 4G
0
i
1

i
2

G0
j
1

i
2

G0
i
1

j
2

G0
j
1

j
2

◆�
. (3.4)

The form in which this expression has been written (in particular, the form of the
denominators of the pre-factors) will become clear later on.

Following the same principle, one can derive higher-order contributions to Z.
However, the number of distinct terms in each order grows combinatorially with
respect to n. The number of distinct terms, as well as the associated pre-constants,
are already non-trivial in the second-order expansion. Feynman diagrams provide a
graphical way to systematically organize such terms.

3.1 Motivation
In fact it is helpful to view �vijx2

ix
2
j as the contraction of the fourth-order tensor

�uikjlxixjxkxl, where uikjl = vij�ik�jl. (Notice that uikjl is invariant under the ex-
change of the first two indices with one another, of the last two indices with one
another, and of the first two indices with the last two indices. This yields an eightfold
redundancy that will become relevant later on.) Using this insight we can expand the
n-th term in the series of Eq. (1.5) as

Z0

8

nn!

NX
i
1

,j
1

,k
1

,l
1

,...,in,jn,kn,ln=1

 
nY

m=1

�vimjm�imkm�jmlm

!*
nY

m=1

ximxjmxkmxlm

+
0

. (3.5)

One can then use the Wick theorem to express this quantity as a sum over pairings
of I4n. However, it is easier to represent the pairings graphically in the following way.
For each m = 1, . . . , n, we draw one copy of Fig. 2 (b), i.e., a wiggled line known as
the interaction line, with four dangling half-edges labeled i, j, k, l.

Figure 2: (a) the bare propagator, G0
ij . (b) the interaction, �vij�ik�jl .

We can then number each interaction line as 1, . . . , n and indicate this by adding
an appropriate subscript to thel labels i, j, k, l associated to this vertex. (For the
first-order terms, since there is only one interaction line, we may skip this step.)
The 4n half-edges, each with a unique label, represent the set on which we consider
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pairings. We depict a pairing by linking the paired half-edges with a straight line,
which represents the bare propagator G0. The resulting figure is a (labeled, closed)
Feynman diagram of order n. An example of order 2 is depicted in Fig. 3.

k

i j
l

j

lk

i

2

2 2

2

1

11

1

Figure 3: A labeled closed Feynman diagram of order 2.

The quantity associated via Wick’s theorem with the pairing represented by such
a diagram can then be computed by taking a product over all propagators and inter-
action lines of the associated quantities indicated in Fig. 2 (a) and (b), respectively.
For instance, a line between half-edges i1 and k2 would yield the factor G0

i
1

k
2

. Mean-
while, the contribution of the interaction lines altogether is

Qn
m=1 vimjm�imkm�jmlm .

The resulting product is then summed over the indices i1, j1, k1, l1, . . . , in, jn, kn, ln.
For the example depicted Fig. 3, this procedure yields the sum

X
i
1

,j
1

,k
1

,l
1

,i
2

,j
2

,k
2

,l
2

vi
1

j
1

�i
1

k
1

�j
1

l
1

vi
2

j
2

�i
2

k
2

�j
2

l
2

G0
i
1

k
1

G0
j
1

l
2

G0
l
1

j
2

G0
i
2

k
2

=

X
i
1

,j
1

,i
2

,j
2

vi
1

j
1

vi
2

j
2

G0
i
1

i
1

G0
i
2

i
2

G0
j
1

j
2

G0
j
1

j
2

. (3.6)

In summary, we can graphically represented the sum over pairings furnished by
Wick’s theorem as a sum over such diagrams. It is debatable whether we have re-
ally made any progress at this point; keeping in mind that the diagrams we have
constructed distinguish labels, there are as many diagrams to sum over as there are
pairings of I4n. Nonetheless, we can use our new perspective to group similar dia-
grams and mitigate the proliferation of terms at high order.

Indeed, many diagrams yield the same contribution. In Fig. 4, the labeled first-
order diagrams are depicted. Fig. 4 (b) and (b’) differ only by a relabeling that swaps
j and l and so yield the same contribution after indices are summed over. From
another point of view, after removing labels these diagrams become ‘topologically
equivalent’, or isomorphic in some sense.

Our goal is to remove this redundancy in our summation by summing only over
unlabeled diagrams. One expects that the ‘amount’ of redundancy of each unlabeled
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Figure 4: First order expansion for Z with labeled diagrams. (a) (b) correspond to
the first and second term in Eq. (3.3). (b’) gives an equivalent term to (b) and should
not be counted twice.

diagram is measured by its symmetry in a certain sense. Before making these no-
tions precise, we provide careful definitions of labeled and unlabeled closed Feynman
diagrams.

3.2 Labeled and unlabeled diagrams
We begin with a definition of unlabeled closed Feynman diagrams, and then define
labeled diagrams as unlabeled diagrams equipped with extra structure. Given n
unlabeled interaction lines, each with four dangling half-edges, intuitively speaking
we produce an unlabeled closed Feynman diagram by linking half-edges according to
a pairing on all 4n of them. By linking together the half-edges dangling from a single
interaction line, one can produce only the two ‘topologically distinct’ diagrams shown
in Fig. 5. By applying the linking procedure to two interaction lines, one obtains the
diagrams in Fig. 6.

Figure 5: Unlabeled closed Feynman diagrams of order 1. In many-body perturbation
theory, the left-hand diagram corresponds to the ‘Hartree’ term and is often referred
to as the ‘dumbbell’ diagram. The right-hand diagram corresponds to the ‘Fock
exchange’ term and is often referred to as the ‘oyster’ diagram.

Observe that via this linking procedure, each interaction line can be viewed as a
vertex of degree 4 in an undirected graph with some additional structure, in particular
a partition of the four half-edges that meet at the vertex into two pairs of half-edges
(separated by the wiggled line). Half-edges from the same interaction line may be
linked, so in fact the resulting graph may have self-edges (or loops). (In an undirected
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Figure 6: Unlabeled closed Feynman diagrams of order 2.

graph with self-edges, each self-edge contributes 2 to the degree of the vertex, so that
the degree indicates the number of half-edges emanating from a vertex.)

In fact it is more natural to view closed Feynman diagrams as being specified via
the linking of half-edges than it is to view them as undirected graphs specified by
vertex and edge sets (V,E). We now provide careful definitions.

Definition 3. An unlabeled closed Feynman diagram � of order n consists of a
vertex set V with |V | = n and the following extra structure. To the vertices v 2 V
there are associated disjoint sets H1(v) and H2(v) each of cardinality 2. The union
H(v) := H1(v) [ H2(v) is the ‘half-edge set’ of the vertex (or ‘interaction’) v, and
the partition {H1(v), H2(v)} reflects the separation of the half-edges into two pairs
separated by a wiggled line. The (disjoint) union

S
v2V H(v) is equipped with a

partition ⇧ into 2n pairs of half-edges.4 In total we can view the unlabeled diagram
� as the tuple � = (V,H1, H2,⇧). For any half-edge h 2

S
v2V H(v), let the unique

vertex v associated with this half-edge be denoted by v = v(h).
4Intuitively speaking, these data specify a recipe for linking up half-edges to form a connected

undirected graph of degree 4, but the previously specified data are a more natural representation of
the diagram, especially once labels are introduced.
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Notation 4. As a matter of notation going forward, we stress that we maintain a
careful distinction in the notation between sets or pairs { · , · }, e.g., of half-edges,
in which the order of the terms does not matter, and ordered pairs ( · , · ), e.g., of
half-edges, in which the order matters.

We will often refer to different flavors of Feynman diagrams simply as diagrams
when the context is clear. However, if not otherwise specified, diagrams should be
understood to be unlabeled.

The reader may notice that our depictions of unlabeled diagrams do not distinguish
the sides of each interaction line from one another by the labels ‘1’ and ‘2,’ while
the definition seems to do so. This labeling should indeed not be important when
we decide whether or not two unlabeled diagrams are ‘the same.’ One could have
instead defined an unlabeled diagram to have each vertex equipped merely with a
partition of its four half-edges into two disjoint pairs, but such a definition would be
a bit cumbersome to accommodate notationally without making use of the labels ‘1’
and ‘2’ anyway later on. What is really more important is to define an equivalence
relation (a notion of isomorphism) between unlabeled diagrams that only cares about
the partition of the half-edge set at each vertex, not the labeling of the pairs in the
partition. Of course such a notion must be introduced regardless of our choice of
definition:

Definition 5. Two unlabeled closed Feynman diagrams � = (V,H1, H2,⇧) and �0
=

(V 0, H 0
1, H

0
2,⇧

0
) are isomorphic if there exists a bijection ' : V ! V 0 and bijections

 v : H(v)! H 0
('(v)) for all v 2 V , such that

1.  v(H1(v)) = H 0
1('(v)) or  v(H1(v)) = H 0

2('(v)) for all v 2 V .

2. for every v1, v2 2 V , h1 2 H(v1), h2 2 H(v2), we have {h1, h2} ⇢ ⇧ if and only
if { v

1

(h1), v
2

(h2)} ⇢ ⇧0.

We will often denote by  a bijection between the entire half-edge sets of two
diagrams. Note that the  v can be obtained directly from the map  .

Now we defined the labeled closed Feynman diagrams that were introduced infor-
mally earlier, as well as an appropriate notion of isomorphism for such diagrams.

Definition 6. A labeled closed Feynman diagram � is specified by an unlabeled
closed Feynman diagram (V,H1, H2,⇧), together with a bijection V : V ! {1, . . . , n},
viewed as a ‘labeling’ of the vertices, as well as a bijection Hv : H(v)! {i, j, k, l} for
every v 2 V which sends H1(v) to either {i, k} or {j, l}, where i, j, k, l are understood
as symbols or distinct letters, not numbers. We will denote the collection of these
bijections, viewed as labelings of the half-edges associated to each vertex, by H, so in
total we can view the labeled diagram � as the tuple � = (V,H1, H2,⇧,V ,H). The
data (V ,H) will be called a labeling of the unlabeled diagram (V,H1, H2,⇧).
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Definition 7. Two closed labeled Feynman diagrams � = (V,H1, H2,⇧,V ,H) and
�

0
= (V 0, H 0

1, H
0
2,⇧

0,V 0,H0
) are isomorphic if they are isomorphic as unlabeled Feyn-

man diagrams via maps ' and  v as in Definition 5, which additionally satisfy

1. V(v) = V 0
('(v)) for all v 2 V , and

2. Hv(h) = H0
'(v)( v(h)) for all v 2 V , h 2 H(v).

Remark 8. We can think of two labeled closed Feynman diagrams are isomorphic when
they represent the same pairing on the set {i1, j1, k1, l1, . . . , in, jn, kn, ln} of labels. In
other words, the new perspective on labeled diagrams as unlabeled diagrams with
extra structure is compatible with the old perspective on labeled diagrams as pairings,
represented graphically by drawing n interaction lines as in Fig. 3 (b) on the page and
then linking their dangling half-edges. The definition ensures that the labels {i, k}
and {j, l} appear on opposite sides of the p-th interaction line in order to ensure this
correspondence.
Remark 9. Note that there is only one possible way for two labeled diagrams to be
isomorphic, since an isomorphism must send each vertex in the one to its equivalently
labeled vertex in the other, and it must send all half-edges associated to a given vertex
in one to the equivalently labeled half-edges associated to the corresponding vertex
in the other. This completely determines maps ' and  v, so one need only to check
whether or not these maps define an isomorphism of unlabeled diagrams.

Refer again to Fig. 4 for a depiction of labeled closed diagrams. Recall that one
can assign a numerical value to a labeled diagram by taking a formal product of the
factors for each edge and each vertex indicated by Fig. 2 and then summing over
all half-edge labels. In fact, the value so obtained is independent of the choice of
labeling, hence can be associated with the underlying unlabeled diagram as well.

Definition 10. The numerical value associated with a labeled or unlabeled diagram
� as in the preceding discussion is called the Feynman amplitude of �, denoted F�.

For instance, Fig. 4 (a) should be interpreted asX
i,j,k,l

(�vij)�ik�jlG0
ikG

0
jl = �

X
i,j

vijG
0
iiG

0
jj. (3.7)

Comparing with the first term in Eq. (3.3), we see that we are missing only the
pre-constant 1

8
. In fact the factor 8 in this denominator has a significance that can

be understood in terms of the structure of Feynman diagrams. It is known as the
symmetry factor for the Feynman diagram of Fig. 4 (a).

More generally the symmetry factor of any Feynman diagram, which we shall
define shortly, allows us to likewise compute the pre-constants of the associated term
in our series expansion for the partition function. Roughly speaking, the symmetry
factor counts the number of different labelings of a given labeled Feynman diagram
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that maintain its structure. In particular, after relabeling, two connected half-edges
should remain connected.

To define the symmetry factor more precisely, we first describe more carefully
what is meant by a ‘relabeling.’ Consider the permutation group S4 on the four
letters {i, j, k, l}. Denote by R the subgroup of order 8 generated by (i, k), (j, l),
and (i, j)(k, l). (In fact R is isomorphic to the dihedral group of order 8.) Observe
that the group Rn := Sn ⇥ Rn acts in a natural way on the set of labelings of any
fixed unlabeled diagram. Here Sn acts on the permutation of n vertices, while Rn

permutes the associated half-edges. In other words, g = (�, ⌧1, . . . , ⌧n) 2 Sn⇥Rn acts
on labelings by permuting the vertex labelings according to � and by permuting the
half-edge labelings at the p-th vertex according to ⌧p. We may think of each such g
as a ‘relabeling.’

Definition 11. An automorphism of a labeled closed Feynman diagram � of degree
n is a relabeling g 2 Rn such that g · � is isomorphic to � (as a labeled Feynman
diagram). The set of all automorphisms of � forms a subgroup Aut(�) of Rn, called
the automorphism group of �. The size |Aut(�)| of the automorphism group is called
the symmetry factor of � and denoted S�. (Note that S� is independent of the labeling
of �, i.e., depends only on the structure of � as an unlabeled diagram.)

Remark 12. Any relabeling g 2 Rn of � determines maps ' and  from the vertex and
half-edge sets of �, respectively, to themselves. The map ' is obtained by mapping
the vertices of � to the equivalently labeled vertices of g ·�, and the map  is obtained
by mapping the half-edges associated to each vertex in � to the equivalently labeled
half-edges of the equivalently labeled vertex of �. Conversely, any such maps ' and
 determine a relabeling g 2 Rn of �. For any g 2 Rn, we denote the associated
maps by 'g and  g

Recalling Remark 9, it follows that g ·� and � are isomorphic as labeled diagrams
(i.e., g 2 Aut(�)) if and only if the associated maps 'g and  g define an isomorphism
from � to itself as an unlabeled diagram. In other words, automorphisms, which have
been defined via actions on labelings, are really just equivalent to self-isomorphisms
of unlabeled diagrams. However, the perspective of labeled diagrams is valuable to
retain for the application of Wick’s theorem.

For example, Fig. 7 depicts all of the automorphisms of the diagram in Fig. 4 (b),
so the symmetry factor of this diagram is 4. One may readily verify that S� = 8 for
the diagram in Fig. 4 (a).

These symmetry factors recover the pre-factors from our first-order expansion of
the partition function. This correspondence will be established in general in Theorem
14.

Before moving on, we comment that two non-isomorphic labeled diagrams can be
isomorphic as unlabeled diagrams. In this case, the numerical values associated with
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Figure 7: All automorphisms for Fig. 4 (b).

both are nonetheless the same. For instance, Fig. 4 (b) representsX
i,j,k,l

(�vij)�ik�jlG0
ijG

0
kl = �

X
i,j

vijG
0
ijG

0
ij,

while (b’) represents X
i,j,k,l

(�vij)�ik�jlG0
ilG

0
kj = �

X
i,j

vijG
0
ijG

0
ij,

i.e., the same term. When we ultimately sum over (isomorphism classes of) unlabeled
diagrams in our series expansion for the partition function, (b) and (b’) will not be
counted as distinct diagrams. Therefore we record the following definition:

Definition 13. The set of (isomorphism classes of) unlabeled closed Feynman dia-
grams is denoted F0.

In our new terminology, Fig. 5 and Fig. 6 depict all isomorphism classes of un-
labeled closed diagrams of first and second order, respectively. Summation over the
unlabeled diagrams, as opposed to the labeled diagrams, significantly simplifies the
effort of bookkeeping, at the cost of computing symmetry factors for each diagram.

3.3 Feynman rules for Z

We are now ready to state and prove the so-called ‘Feynman rules’ for the diagram-
matic expansion of the partition function, i.e., the recipe for producing the Taylor
expansion via the enumeration of unlabeled diagrams.

62



Theorem 14. The asymptotic series expansion for Z is given by

Z = Z0

X
�2F

0

F�

S�

, (3.8)

i.e., the n-th term in the series of Eq. (1.5) is given by the sum of Z0
F
�

S
�

over isomor-
phism classes of unlabeled Feynman diagrams � of order n.

Remark 15. We remind the reader that for a diagram � of order n, the Feynman
amplitude F� can be computed as follows:

1. Assign a dummy index to each of the 4n half-edges.

2. Each edge with half-edge indices a, b yields a factor G0
ab.

3. Each interaction line with half-edge indices a, b, c, d yields a factor �vab�ac�bd.

4. Multiply all factors obtained via steps 2 and 3, and sum over all dummy indices
from 1 to N .

Proof. Recall Eq. (3.5), i.e., that we can write the n-th term in the series of Eq. (1.5)
as

Z0

8

nn!

NX
i
1

,j
1

,k
1

,l
1

,...,in,jn,kn,ln=1

 
nY

m=1

�vimjm�imkm�jmlm

!*
nY

m=1

ximxjmxkmxlm

+
0

.

By our preceding discussions (see Remark 8) this quantity can be written as

Z0

8

nn!

X
� labeled, ordern

F�.

We wish to replace the sum over (isomorphism classes of) labeled diagrams with a sum
over unlabeled diagrams. The question is then: to any unlabeled diagram � of order
n, how many distinct labeled diagrams can be obtained by labeling �? To answer this
question first assign an arbitrary labeling to obtain a labeled diagram which we shall
also call �. Then the set of all labelings is the orbit of � under the group Rn. By the
orbit-stabilizer theorem, the size of this orbit is equal to |Rn|/|(Rn)�|, where (Rn)�

is the stabilizer subgroup of Rn with respect to �. But this subgroup is precisely
Aut(�) and |Rn| = 8

nn!, so the number of distinct labeled diagrams associated with
the underlying unlabeled diagram is 8nn!

S
�

. Therefore the n-th term in the series of
Eq. (1.5) is in fact

Z0

X
� unlabeled, ordern

F�

S�

,

as was to be shown.
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We now apply Theorem 14 to compute the second-order part of the expansion for
Z. We can represent the 8 terms in the second-order part via the 8 (isomorphism
classes of) unlabeled closed Feynman diagrams depicted in Fig. 6, applying Theo-
rem 14 to compute the pre-factor of each term. The terms are organized into three
groups according to the three groups of terms in Eq. (3.4). The diagrammatic ap-
proach facilitates the enumeration of these terms and allows us to classify the terms
more intuitively. The first group of diagrams (a1)–(a3) in Fig. 6 are simply the dia-
grams obtained as ‘concatenations’ of two disconnected first-order diagrams. When
computing the symmetry factor, we need to take into account the possible exchange of
the two interaction lines as well as the symmetry factor of each disconnected piece as
a first-order diagram. Unlike diagrams (a1) and (a2), diagram (a3) is not symmetric
with respect to the exchange of the two interaction lines, so the former contribution is
not included. One can readily verify the correspondence between the rest of diagrams
and terms in Eq. (3.4). The distinction between the (b) and (c) diagrams will be
made clear later on in our discussion of the so-called bold diagrams.

3.4 Comments on other interactions
We pause to make some brief comments on the development of Feynman diagrams
for other interactions besides the generalized Coulomb interaction of Eq. (1.6).

First, consider an interaction of the form

U(x) =
1

4!

X
i,j,k,l

uikjl xixjxkxl, (3.9)

where uikjl is a symmetric fourth-order tensor (i.e., invariant under any permutation
of the indices). The inclusion of the factor of 4! owes to the fact that the symmetry
group of the interaction (i.e., the analog of R) is now all of S4, which is of order 4!.
Then the developments will be much the same, but with the role of the interaction
line of Fig. 2 (b) assumed by the device shown in Fig. 8.

i

k

j

l

Figure 8: The interaction uikjl .

Since any fourth-order tensor can be symmetrized without changing the asso-
ciated quartic form, why not just consider symmetric interactions? The reason is
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that symmetrizing, e.g., the generalized Coulomb interaction throws away its lower-
dimensional structure. While there are somewhat fewer diagram topologies to contend
with, each vertex now involves a sum over four indices, not two. Moreover, the two-
body interaction of quantum many-body physics has a natural asymmetry between
creation and annihilation operators that is reflected in the structure of the Feynman
diagrams for the generalized Coulomb interaction.

There is nonetheless a way to generalize the generalized Coulomb interaction with-
out destroying its structure. Indeed, simply consider

U(x) =
1

8

X
i,j,k,l

uikjl xixjxkxl, (3.10)

where uikjl is invariant under (1) the exchange i with k, (2) the exchange of k with
l, and (3) the simultaneous exchange of i with j and k with l. In other words, the
symmetry group of the interaction is R as for the generalized Coulomb interaction.

The developments for interactions of the form (3.10)—with the interaction line of
Fig. 2 (b) now contributing the factor uikjl in the computation of Feynman amplitudes—
are no different than for interactions of the form (1.6), with the exception of the GW
approximation to be discussed in section 4.7.1. For the sake of writing down concrete
expressions that correspond to various diagrams, we simply assume an interaction of
the form (1.6).

3.5 Feynman rules for ⌦
The free energy ⌦ is given by the negative logarithm of Z as in Eq. (2.8), which
appears to be difficult to evaluate in terms of Feynman diagrams. It turns out that the
logarithm in fact simplifies the diagrammatic expansion by removing the disconnected
diagrams as in Fig. 6 (a). This is the content of Theorem 17 below, which is called
the linked cluster expansion in physics literature.

Before stating the theorem, we establish some notation. Recall that a closed
diagram induces an undirected graph of degree four. We say that a closed diagram
is connected if the induced graph is connected.

Definition 16. The set of all connected closed diagrams is denoted Fc
0 ⇢ F0.

Similarly we can talk about connected components of a Feynman diagram in the
obvious way. We can also consider the ‘union’ �1 [ �2 of diagrams, i.e., the diagram
constructed by viewing �1 and �2 as disconnected pieces of the same diagram. We
leave more careful definitions of these notions to the reader. We establish a special
notation for the union of several copies of the same diagram:

�

n
:=

n[
j=1

�
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A general diagram � 2 F0 can be decomposed as

� =

K[
i=1

�

ni
i , (3.11)

where �1, . . . ,�K 2 Fc
0 are distinct.

For any diagram � expressed in the form of (3.11), the Feynman amplitude is

F� = F n
1

�
1

· · ·F nK
�K

, (3.12)

and since �1, . . . ,�K are distinct diagrams, the symmetry factor is

S� = (n1! · · ·nK !)S
n
1

�
1

· · ·SnK
�K

. (3.13)

It is convenient to define F�; = 1 and S�; = 1 for the ‘empty’ Feynman diagram
�; of order zero and moreover to let �0

= �; for any diagram � 2 F0.
Using this notation, we can then think of every diagram � 2 F0 as being uniquely

specified by a function n : Fc
0 ! N mapping � 7! n�, where N indicates the set

of natural numbers including zero. We denote the set of such functions by NFc

0 .
Indeed, any such function specifies a diagram �(n) :=

S
�2Fc

0

�

n
� . Moreover, F�(n) =Q

�2Fc

0

F n
�

� , and S�(n) =
Q

�2Fc

0

n�!S
n
�

� .
Now we are ready to state and prove the diagrammatic expansion for the free

energy.

Theorem 17 (Linked cluster expansion for ⌦). The asymptotic series expansion for
⌦ is

⌦ = ⌦0 �
X
�2Fc

0

F�

S�

, (3.14)

where ⌦0 = � logZ0.

Proof. Exponentiating both sides of Eq. (3.14) motivates the consideration of the
following expression:

exp

0@X
�2Fc

0

F�

S�

1A
=

1X
K=0

1

K!

0@X
�2Fc

0

F�

S�

1AK

. (3.15)

We aim to relate this expansion to our expansion for the partition function from
Theorem 14.

We will apply the multinomial theorem to compute the K-th power of the sum
over � 2 Fc

0 appearing on the right-hand side of Eq. (3.15). This yields a sum over
n 2 NFc

0 such that
P

�2Fc

0

n� = K weighted by the multinomial coefficients K!Q
�2Fc

0

(n
�

)!
,

as in

exp

0@X
�2Fc

0

F�

S�

1A
=

1X
K=0

1

K!

X
n2NFc

0 :
P

�

n
�

=K

K!Q
�2Fc

0

(n�!)

Y
�2Fc

0

✓
F�

S�

◆n
�
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=

1X
K=0

X
n2NFc

0 :
P

�

n
�

=K

F�(n)

S�(n)

=

X
n2NFc

0

F�(n)

S�(n)

,

where in the penultimate step we have used our formulas for the Feynman amplitude
and symmetry factor of the diagram �(n) associated to n 2 NFc

0 . But since NFc

0 is in
bijection with F0 via n 7! �(n), we have proved:

exp

0@X
�2Fc

0

F�

S�

1A
=

X
�2F

0

F�

S�

=

Z

Z0

,

with the last equality following from Theorem 14. Taking logarithms yields the the-
orem.

For example, the second-order contribution to ⌦ isX
i
1

,j
1

,i
2

,j
2

vi
1

j
1

vi
2

j
2

✓
1

2! · 8G
0
i
1

i
1

G0
i
2

i
2

G0
j
1

j
2

G0
j
1

j
2

+

1

2 · 2G
0
i
1

j
1

G0
i
2

j
2

G0
i
1

i
2

G0
j
1

j
2

+

1

4

G0
i
1

j
1

G0
i
1

i
2

G0
j
1

i
2

G0
j
2

j
2

◆
+

✓
1

2! · 8G
0
i
1

i
2

G0
i
1

i
2

G0
j
1

j
2

G0
j
1

j
2

+

1

2! · 4G
0
i
1

i
2

G0
j
1

i
2

G0
i
1

j
2

G0
j
1

j
2

◆�
, (3.16)

and the terms are yielded by Fig. 6 (b), (c).

3.6 Feynman rules for G

Our next goal is to obtain a diagrammatic expansion for the Green’s function G.
First observe that the asymptotic series expansion for ZG can be written, similarly
to that of Z, as

ZGij ⇠
1X
n=0

1

n!

ˆ
RN

xixj(�U(x))ne�
1

2

xTAx
dx. (3.17)

Again the interchange between the summation and integration is only formal. The
right hand side of Eq. (3.17) can be evaluated using the Wick theorem and a new
class of Feynman diagrams.

Similarly to Eq. (3.5), we see that the n-th term in the expansion of Eq. (3.17) is
given by

Z0

8

nn!

NX
i
1

,j
1

,k
1

,l
1

,...,in,jn,kn,ln=1

 
nY

m=1

�vimjm�imkm�jmlm

!*
xixj

nY
m=1

ximxjmxkmxlm

+
0

.

(3.18)
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One can then use the Wick theorem to express this quantity as a sum over pairings
of I4n+2, but once again it is easier to represent the pairings graphically. As before,
for each m = 1, . . . , n, we draw one copy of Fig. 2 (b), i.e., an interaction line with
four dangling half-edges labeled i, j, k, l. We can then number each interaction line
as 1, . . . , n and indicate this by adding an appropriate subscript to the labels i, j, k, l
associated to this vertex. Now we also draw two additional freely floating half-edges
with labels i and j. We can view the half-edges as terminating in a vertex indicated by
a dot (which will distinguish these diagrams from the so-called ‘truncated’ diagrams
that appear later on), while the other end of the half-edge is available for linking.
The 4n+ 2 half-edges {i, j, i1, . . . , ln}, each with a unique label, represent the set on
which we consider pairings. We depict a pairing by linking the paired half-edges with
a bare propagator. The resulting figure is a labeled Feynman diagram of order n. An
example of order 2 is depicted in Fig. 9.

2

2 2

2

1

11

1

k

i j
l

j

lk

i

i

j

Figure 9: A labeled closed Feynman diagram of order 2.

The quantity associated via Wick’s theorem with the pairing represented by such
a diagram can then be computed by taking a formal product over all propagators and
interaction lines of the associated quantities indicated in Fig. 2 (a) and (b), respec-
tively and then summing over the indices i1, j1, k1, l1, . . . , in, jn, kn, ln. Importantly
we do not sum over the indices i, j, as these specify the fixed entry of the Green’s
function Gij that we are computing via expansion. For the example depicted in Fig.
9, this procedure yields the sum

X
i
1

,j
1

,k
1

,l
1

,i
2

,j
2

,k
2

,l
2

vi
1

j
1

�i
1

k
1

�j
1

l
1

vi
2

j
2

�i
2

k
2

�j
2

l
2

G0
i
1

k
1

G0
j
1

l
2

G0
l
1

j
2

G0
ii
2

G0
jk

2

=

X
i
1

,j
1

,i
2

,j
2

vi
1

j
1

vi
2

j
2

G0
ii
2

G0
ji

2

G0
i
1

i
1

G0
j
1

j
2

G0
j
1

j
2

. (3.19)

In summary, we can graphically represented the sum over pairings furnished by
Wick’s theorem as a sum over such diagrams, which we call labeled Feynman diagrams
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of order n with 2 external vertices. (Perhaps calling them diagrams with ‘external
half-edges’ would be more appropriate, but ‘external vertices’ is the conventional
terminology.)

One can similarly imagine the natural appearance of Feynman diagrams with 2m
external vertices in the expansion of the 2m-point propagator hxp

1

· · · xp
2mi.

We can define the (partially labeled) Feynman diagrams of order n with 2m ex-
ternal vertices to be the � = (V,H1, H2, E,⇧, E), where V,H1, H2 are as in the defi-
nition of closed diagrams, E is the set of 2m external half-edges, ⇧ is a partition of
E [

S
v2V H(v) into 2n + m pairs of half-edges, and E is a labeling of the external

half-edges only. More precisely, E is a bijection from the external half-edge set E
to the set of symbols {p1, . . . , p2m}. In the case m = 1 we will instead adopt the
convention E : E ! {i, j}.

Two partially labeled diagrams of order 2 with 2 external vertices are depicted
in Fig. 10. Notice that these diagrams are not isomorphic due to the distinction
of the external half-edges i, j, though they would be isomorphic as ‘fully unlabeled’
diagrams.

i

j

j

i

Figure 10: Non-isomorphic partially labeled diagrams of order 2 with 2 external
vertices.

These diagrams can be additionally equipped with internal labelings (V ,H) to
produce (fully) labeled Feynman diagrams of order n with 2m external vertices. Here
V ,H are defined as before. More careful definitions of these classes of diagrams, as
well as definitions of the notions of isomorphism for each, follow in the spirit of the
analogous definitions for closed diagrams and are left to the reader.

Diagrams with external vertices will be understood to be partially labeled unless
otherwise stated. The set of partially labeled diagrams (of any order) with 2m external
vertices is denoted F2m. In the case m = 1 we often refer to these diagrams as Green’s
function diagrams. Note that an unlabeled closed Feynman diagram can be viewed
equivalently as a Feynman diagram with 0 external vertices.

The group Rn acts naturally as before on internal labelings (V ,H) and induces a
notion of automorphism for fully labeled diagrams with external vertices, as well as
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a symmetry factor S� defined to be the size of the automorphism group Aut(�) of a
fully labeled diagram with external vertices (or, if � is only partially labeled, the size
of the automorphism group of any full labeling of �).

Moreover, each diagram with 2m external vertices yields a Feynman amplitude
which is no longer a scalar, but in fact a (2m)-tensor, F�(p1, . . . , p2m) which can be
computed as follows

1. Assign a dummy index to each of the 4n internal half-edges as well as indices
p1, . . . , p2m to each of the external half-edges according to the labeling E

2. Each edge with half-edge indices a, b yields a factor G0
ab.

3. Each interaction line with half-edge indices a, b, c, d yields a factor �vab�ac�bd.

4. Multiply all factors obtained via steps 2 and 3, and sum over all dummy indices
from 1 to N to obtain a tensor in the indices p1, . . . , p2m.

For � 2 F2, i.e., in the case m = 1, we usually indicate the tensor arguments by i, j
as in F�(i, j).

Following the same discussion in section 3.3, we have

Z hxp
1

· · · xp
2mi = Z0

X
�2F

2m

F�(p1, . . . , p2m)

S�

, (3.20)

so in particular

ZGij = Z0

X
�2F

2

F�(i, j)

S�

.

Denote by Fc
2m ⇢ F2m the set of all diagrams with 2m external vertices for which

each connected component of the diagram contains at least one external half-edge.
It is easy to see that � 2 Fc

2m may have more than one connected component when
m > 1. However, when m = 1, any diagram � 2 Fc

2 has only two external half-edges.
Each internal vertex has 4 half-edges, and each connected component must contain
an even number of half-edges. This implies that � must contain only one connected
component, so Fc

2 is in fact the subset of diagrams in F2 that are connected.
Theorem 18 below shows, perhaps surprisingly, that the expansion for the correla-

tor hxp
1

· · · xp
2mi removes many diagrams, and is therefore simpler than the expansion

of Z hxp
1

· · · xp
2mi. The combinatorial argument is similar in flavor to that of the proof

of Theorem 17.

Theorem 18 (Linked cluster expansion for correlators). The asymptotic series ex-
pansion for hxp

1

· · · xp
2mi, where 1  p1, . . . , p2m  N , is

hxp
1

· · · xp
2mi =

X
�2Fc

2m

F�(p1, . . . , p2m)

S�

. (3.21)
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In particular, the series for G is

Gij =

X
�2Fc

2

F�(i, j)

S�

. (3.22)

Proof. Any diagram � 2 F2m can be decomposed uniquely as � = �

0 [ �00, where
�

0 2 Fc
2m and �00 2 F0, and we allow �

00 to be the empty diagram. Hence according
to Eq. (3.20),

Z hxp
1

· · · xp
2mi = Z0

X
�02Fc

2m

X
�002F

0

F�0[�00
(p1, . . . , p2m)

S�0[�00
.

Now for �0 2 Fc
2m and �00 2 F0,

F�0[�00
(p1, . . . , p2m) = F�0

(p1, . . . , p2m)F�00 .

Also �0 and �00 have different numbers of external vertices, so Aut(�

0[�00
) = Aut(�

0
)⇥

Aut(�

00
), and consequently

S� = S�0S�00 .

Hence

Z hxp
1

· · · xp
2mi = Z0

X
�02Fc

2m

X
�002F

0

F�0
(p1, . . . , p2m)F�00

S�0S�00

= Z0

0@ X
�02Fc

2m

F�0
(p1, . . . , p2m)

S�0

1A X
�002F

0

F�00

S�00

!

= Z
X

�02Fc

2m

F�0
(p1, . . . , p2m)

S�0
,

where the last equality follows from Theorem 14. Dividing by Z completes the proof.

We now discuss the first few terms of the expansion for the Green’s function G.
The zeroth order expansion for Gij is G0

ij. Fig. 11 depicts the Feynman diagrams for
the first-order contribution to Gij, which amounts to the expression

�1

2

X
k,l

�
vklG

0
ikG

0
jkG

0
ll

�
�
X
k,l

�
vklG

0
ikG

0
jlG

0
kl

�
. (3.23)

Note how the symmetry factor of these diagrams is affected by the labeling of the
external half-edges.

Fig. 12 depicts the Feynman diagrams for the second-order contribution to Gij.
These diagrams can be systematically obtained from the free energy diagrams of Fig. 6
(b) and (c) by cutting a propagator line to yield two external half-edges and then
listing the non-isomorphic ways of labeling of these external half-edges. Note that all
terms contain only one connected component due to Theorem 18. For simplicity we
omit the resulting formula for the second-order contribution to Gij.
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Figure 11: First-order expansion for Gij.

3.7 Why we do not use fully unlabeled Green’s function dia-
grams

Why not reduce the redundancy of diagrams by considering a notion of fully unla-
beled Green’s function diagrams? One reason is that the notion of symmetry factor
would be different, yielding an unpleasant extra factor in Theorem 18. Moreover, in
the development of the bold diagrammatic expansion of section 4, we will consider
an operation in which propagator lines are replaced by Green’s function diagrams.
Since different orientations of such an ‘insertion’ might yield different topologies of
the resulting diagram, it is good to keep track of non-isomorphic external labelings
separately.

Finally, by retaining an external labeling, there is a clearer interpretation of each
diagram as a matrix yielded by contracting out internal indices. Note carefully, how-
ever, that the Feynman amplitude of a non-symmetric diagram, i.e., a diagram whose
isomorphism class is changed by a relabeling of the external vertices, is in general
a non-symmetric matrix. By contrast, G is symmetric. Therefore any reasonable
truncation of the expansion of Theorem 18 should not include any non-symmetric
diagram without also including all diagrams obtained by different external labelings.

3.8 Feynman rules for ⌃
The computation of G by diagrammatic methods can be further simplified via the
introduction of the notion of the self-energy. This notion can be motivated diagram-
matically as follows. Observe that diagrams such as (b1’), (b2’), and (b3”) in Fig. 12
are ‘redundant’ in that they can be constructed by ‘stitching’ first-order diagrams
together at external vertices. Such diagrams will be removed in the diagrammatic
expansion for the self-energy matrix ⌃, defined as the difference between the inverse
of G and that of G0 as

⌃ =

�
G0
��1 �G�1. (3.24)

Observe that once ⌃ is known, G can be computed simply via Eq. (3.24).
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(b1) (b1’) (b2) (b2’)

(c1) (c2)

(b3) (b3’) (b3’’) (b3’’’)
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Figure 12: Second-order expansion for Gij. The lettering is obtained from that of the
free energy diagrams in Fig. 6 (b),(c), from which the Green’s function diagrams may
be obtained by cutting lines.

However, Eq. (3.24) does not clarify the diagrammatic motivation for the self-
energy. Note that the definition of the self-energy matrix in Eq. (3.24) is equivalent
to

G = G0
+G0

⌃G, (3.25)
which is called the Dyson equation. By plugging the formula for G specified by the
Dyson equation back into the right-hand side of Eq. (3.25) and then repeating this
procedure ad infinitum, one obtains the formal equation

G = G0
+G0

⌃G0
+G0

⌃G0
⌃G0

+ · · · , (3.26)

which suggests a diagrammatic interpretation for ⌃. To wit, in order to avoid counting
the same Green’s function diagram twice in the right-hand side of Eq. (3.26), ⌃
should only include those diagrams that cannot be separated into two disconnected
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components when removing one bare propagator line. In physics terminology, these
are called the one-particle irreducible (1PI) diagrams.

i

j

i

j

=

k 1

k 1

k 2

k 2

k 3

k 3

k 4

k 4

(a)

(e)

(d)

(c)

(b)

Figure 13: Decomposing a Green’s function diagram into truncated 1PI diagrams and
bare propagators.

We must be careful about what exactly is meant by such a diagram. We want
to be able to produce Green’s function diagrams by stitching together 1PI diagrams
via a bare propagator line G0, as depicted in Fig. 13. In order to avoid double-
counting the propagators at each ‘stitch,’ our self-energy diagrams should not include
a contribution from the propagator where the stitch is made. In the example shown
in Fig. 13, we write the matrix represented by the diagram on the left-hand side as
a product (a)(b)(c)(d)(e) of matrices represented by the diagrams on the right-hand
side. Here (a), (c), and (e) simply represent the propagator G0. Diagrams (b) and
(d) are the self-energy diagrams representing the matrices with (k1, k2) entry given
by vk

1

k
2

G0
k
1

k
2

and (k3, k4) entry given by �k
3

k
4

vk
3

k
3

G0
k
3

k
3

, respectively. Since these
diagrams are like Green’s function diagrams, except missing the external propagator
contributions, we refer to them as truncated Green’s function diagrams.

Definition 19. A truncated Green’s function diagram � is obtained from a Green’s
function diagram �

0. The internal half-edges of �0 paired with the external half-edges
of �0 labeled i and j are referred to as the external half-edges of � and are labeled i
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and j, respectively. The 1PI diagrams are the truncated Green’s function diagrams
that cannot be disconnected by the removal of a single bare propagator line. The set
of all truncated Green’s function diagrams is denoted by Fc,t

2 , and the set of all 1PI
diagrams is denoted by F1PI

2 . The diagrams in F1PI
2 are alternatively referred to as

self-energy diagrams.

Analogously one can define Fc,t
2m and F1PI

2m for m > 1, but we will not make use of
such notions.

As a data structure, a truncated Green’s function diagram is really equivalent
to its ‘parent’ Green’s function diagram, but the interpretation is different, and we
visually distinguish the truncated diagrams from their counterparts by removing the
dot at the external vertex. In addition, a truncated Green’s function diagram has a
different notion of (matrix-valued) Feynman amplitude F�(i, j), computed as follows:

1. Assign a dummy index to each of the 4n � 2 internal half-edges as well as
indices i, j to each of the external half-edges according to the labeling furnished
by Definition 19.

2. Each internal edge with half-edge indices a, b yields a factor G0
ab.

3. Each interaction line with half-edge indices a, b, c, d yields a factor �vab�ac�bd.

4. Multiply all factors obtained via steps 2 and 3, and sum over all dummy indices
from 1 to N to obtain a matrix in the indices i, j.

However, the symmetry factor S� of a truncated Green’s function diagram is un-
changed from that of the underlying Green’s function diagram.

We may further introduce the concept of two-particle irreducible (2PI) Green’s
function diagrams as the subset of diagrams in F1PI

2 that cannot be disconnected by
the removal of any two edges. The set of all such diagrams is denoted by F2PI

2 . The
2PI diagrams will be used to define the bold diagrams in section 4.

The first-order self-energy diagrams are depicted in Fig. 14. The only difference
from Fig. 11 is that the external vertices are removed to produce truncated dia-
grams. The second-order self-energy diagrams are shown in Fig. 14. Note that the
Green’s function diagrams (b1

0
), (b20), (b300), and (b3

000
) in Fig. 12—after removing

the external vertices to yield self-energy diagrams—are not 1PI, hence not self-energy
diagrams.

Theorem 20. The asymptotic series expansion for ⌃ij, where 1  i, j  N , is

⌃ij =

X
�2F1PI

2

F�(i, j)

S�

. (3.27)

Proof. One can think of the Dyson equation (3.25) as an equation of formal power
series, where G and ⌃ indicate the asymptotic series expansions of G and ⌃. (Recall
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Figure 14: First-order diagrams for ⌃ij.

that we may think of our diagrammatic expansions as power series in a parameter �
that scales the interaction strength. It is not hard to see directly from the definition
of ⌃, as for all other quantities we consider, that an asymptotic series in � exists
in the first place.) Now the series for G is known from Theorem 18, and we claim
that the series for ⌃ is the unique formal power series satisfying Eq. (3.25) as an
equation of formal power series. Indeed, if some power series ⌃ satisfies Eq. (3.25),
then ⌃ satisfies Eq. (3.24) as well (as an equation of formal power series), but inverses
are unique in the ring of formal power series, so ⌃ satisfying Eq. (3.24) is uniquely
determined.

Thus all we need to show is that Eq. (3.25) holds when we plug in the series for
⌃ from Eq. (3.27). To this end, write, via Theorem 18,

G =

X
�2Fc

2

F�

S�

, (3.28)

where F� appearing in the summand is a matrix. Now every � 2 Fc
2 that is of order

greater than 1 can be decomposed uniquely into a bare propagator line at the external
half-edge labeled i, a self-energy diagram �

0 connected to this propagator line at one
external half-edge, and another Green’s function diagram �

00 connected to �0 at its
other external half-edge. (This fact should be clear graphically, though a more careful
proof is left to the reader.) For example, in Fig. 13, �0 corresponds to (b) and �00

corresponds to (c)(d)(e).
Moreover, we have the equality (of matrices)

F� = G0F�0F�00 .

Also, due to the fact that � distinguishes the labels i, j, we have that S� = S�0S�00 .
Indeed, any automorphism of (a fully labeled version of) � must fix the label i and
j of the external half-edges, as well as the labels of the internal half-edges connected
directly to them. Then such an automorphism can only permute labels within the
component �0; otherwise, the automorphism would induce a graph automorphism of
�

0 with another subgraph of � containing the external half-edge labeled by i as well
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Figure 15: Second-order diagrams for ⌃ij. The labels correspond to those of the
‘parent’ Green’s function diagrams in Fig. 12.

as some half-edge in �00, which would consequently fail to be one-particle irreducible,
contradicting the one-particle irreducibility of �0.

Thus from Eq. (3.28) we obtain the equality of power series

G = G0
+G0

X
�02F1PI

2

X
�002Fc

2

F�0

S�0

F�00

S�00
= G0

+G0

24 X
�02F1PI

2

F�0

S�0

35G,

as was to be shown.

4 Bold diagrams
It turns out further redundancy can be removed from the diagrammatic series for the
self-energy by consideration of the so-called bold diagrams. Note that so far all dia-
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grammatic series are defined using the non-interacting Green’s function G0 (alterna-
tively the bare propagator), which can be viewed as the non-interacting counterpart
to the interacting Green’s function G (alternatively the ‘dressed’ or ‘renormalized’
propagator). What if we replace all of the G0 in our self-energy expansion by G?
Accordingly let us introduce the convention of a doubled line (also called a bold line)
to denote G. After replacing all thin lines by bold lines in a diagram, the resulting
diagram is called a bold diagram. (Topologically the diagram is not altered by this
procedure, but the interpretation and Feynman amplitude, as well as our visual rep-
resentation of the diagram, are changed.) A bold diagram can be understood as a
shorthand for an infinite sum of bare diagrams by swapping each bold line out for the
bare diagrammatic expansion of G. An example of a bold diagram and its represen-
tation as a sum of bare diagrams is provided in Fig. 16. Note that this representation
is considered as an equality only at the level of formal power series.

Figure 16: A bold self-energy diagram (the dumbbell, or Hartree, diagram), together
with its expansion as a series of bare diagrams. Here we omit the labels i, j in the
self-energy diagram, leaving a dangling half-edge (without a dot) to indicate their
existence.

If one were to replace all self-energy diagrams by their bold counterparts, the
resulting bold diagram expansion would overcount many of the original bare self-
energy diagrams. Indeed, notice that the second and third terms on the right-hand
side of Fig. 16 account for the bare self-energy diagrams (b1) and (b3) of Fig. 15.
The bold versions of (b1) and (b3) would also count these terms, so as a result these
contributions would be double-counted. Therefore if we can concoct a successful bold
diagrammatic expansion for the self-energy, it should involve ‘fewer’ diagrams than
the bare expansion. From a certain perspective, passage to the bold diagrams can
then be thought of as a means to further economize on diagrammatic bookkeeping.

Which self-energy diagrams should be left out of the bold expansion? Notice that
the disqualifying feature of diagrams (b1) and (b3) of Fig. 15 is that they contain
Green’s function diagram insertions—for short, simply Green’s function insertions or
even insertions when the context is clear. In other words, we can disconnect each
of these diagrams into two separate diagrams by cutting two propagator lines. The
resulting component not containing the external half-edges of the original diagram
is itself a Green’s function diagram with external half-edges at the cut locations.
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(For now we are being a bit casual about the distinction between truncated and
non-truncated diagrams because there is essentially no topological difference.) In the
component that does contain the external half-edges of the original diagram, the two
half-edges that have been left dangling due to the cuts can be sewn together with a
bold line to yield the ‘parent’ bold diagram. The insertion procedure yielding diagram
(b3) Fig. 15 is depicted in Fig. 17.

In general a bare self-energy diagram may contain many such Green’s function
insertions, possibly viewed as being nested within one another. However, it will
soon pay to introduce a notion of a maximal Green’s function insertion, or maximal
insertion for short. This is a Green’s function insertion that is not contained within
any other insertion. Then we will find that any bare self-energy diagram can be
represented uniquely via its set of maximal insertions.

Figure 17: Green’s function insertion yielding diagram (b3) of Fig. 15.

Note that a diagram admits a Green’s function insertion if and only if it can be
disconnected by removing two propagator lines. Then the candidates for the bold
self-energy diagrams are the self-energy diagrams with Green’s function insertions;
namely, the 2PI self-energy diagrams introduced earlier, though now considered with
bold lines. This set will be denoted F2PI

2 as before. We distinguish diagrams a bold via
the notation for the Feynman amplitude as F�, as opposed to F�. We call diagrams in
F2PI
2 skeleton diagrams and diagrams in F1PI

2 \F2PI
2 non-skeleton self-energy diagrams,

or simply non-skeleton diagrams for short.
The idea of the bold diagrammatic expansion is to write

⌃ij =

X
�
s

2F2PI

2

F�
s

(i, j)

S�
s

. (4.1)

This equation must be interpreted rather carefully to yield a rigorous statement.
However, formally speaking for now, note that in order for the bold diagram expan-
sion (4.1) to match the bare diagram expansion (3.27) for the self-energy, S�1

�s
should
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be the right guess of the pre-factor for the diagram �s in (4.1). Indeed, if we formally
substitute the bare expansion for the Green’s function in for each bold propagator
line of a bold diagram �s, then the first term in the resulting expansion for the bold
Feynman amplitude of �s will be the Feynman amplitude of �s interpreted as a bare
diagram, which should indeed be counted with the pre-factor S�1

�s
as in the bare ex-

pansion for the self-energy. But then we have to establish that the rest of the bare
self-energy diagrams (i.e., those with non-skeleton topology) are counted with the
appropriate pre-factors. This turns out to be non-trivial and constitutes the major
task of this section. Our efforts culminate in Theorem 32 of section 4.6 below, in
which we give precise meaning to and prove Eq. (4.1). We recommend readers to skip
to section 4.6 for the applications of the bold diagrammatic expansion first and then
to return to the intervening details later.

4.1 Skeleton decomposition
Our first goal is to show that every self-energy diagram can be decomposed (uniquely,
in some sense) as a skeleton diagram with Green’s function insertions. We now turn
to defining the notion of insertion more carefully.

Definition 21. Given a truncated Green’s function diagram �, together with a half-
edge pair {h1, h2} in �5 and another truncated Green’s function diagram �

0, the
insertion of �0 into � at (h1, h2), denoted � �(h

1

,h
2

) �
0 is defined to be the truncated

Green’s function diagram constructed by taking the collection of all vertices and
half-edges (along with their pairings) from � and �0, then defining a new half-edge
pairing by removing {h1, h2} and adding {h1, e1} and {h2, e2}, where e1 and e2 are
the external half-edges of �0 labeled i and j, respectively.

Notice that the ordering of (h1, h2) in � �(h
1

,h
2

) �
0 matters in this definition be-

cause it determines the orientation of the inserted diagram. Here the definition has
also made use of the fact that truncated Green’s function diagrams distinguish their
external half-edges via the labels i and j.

We can define a simultaneous insertion of truncated Green’s function diagrams
�

(1), . . . ,�(K) along several edges of a diagram, as follows:

Definition 22. Let � be a truncated Green’s function diagram, and consider a col-
lection of distinct half-edge pairs

n
h(k)
1 , h(k)

2

o
for k = 1, . . . , K. Let �0 = � and

recursively define �k+1 := �k �(h
(k+1)

1

,h
(k+1)

2

)
�

(k+1) for k = 0, . . . , K � 1. Then the

resulting �K is the insertion of �(1), . . . ,�(K) into � along (h(1)
1 , h(1)

2 , . . . , h(K)
1 , h(K)

2 ),
denoted

��
(h

(1)

1

,h
(1)

2

,...,h
(K)

1

,h
(K)

2

)

⇥
�

(1), . . . ,�(K)
⇤
.

5So {h1, h2} is contained in the pairing ⇧� of half-edges associated with �.
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Notice that the simultaneous insertion does not depend on the ordering of the k
half-edge pairs, though it does depend in general on the ordering of the half-edges
within each pair.

Definition 23. We say that a truncated Green’s function diagram � admits an
insertion �00 at (h1, h2) if it can be written as �0�(h

1

,h
2

) �
00, where {h1, h2} is a pair in

�

0 and �00 is a nonempty truncated Green’s function diagram. (Note that � admits
such an insertion if and only if � can be disconnected by removing the half-edges
h1 and h2.) We say that this insertion is maximal if �0 does not in turn admit an
insertion containing either of the half-edges h1, h2.

For example, consider in self-energy diagram of Fig. 18, which admits two maximal
insertions, shown in blue and red, respectively. (Note that each of the maximal
insertions admits insertions itself, i.e., the overall diagram admits several insertions
that are not maximal.) The remaining half-edges and interaction lines in the diagram
(shown in black) form the ‘skeleton’ of the diagram.

j

i

Figure 18: A self-energy diagram with two maximal insertions, depicted in blue and
red, respectively.

The following result characterizes every self-energy diagram uniquely in terms of
its maximal insertions and an underlying skeleton diagram (hence the name ‘skeleton’)
obtained by collapsing each of these insertions into a single propagator line. The proof
is given in Appendix B. It somewhat technical and may be skipped on first reading
to avoid interrupting the flow of the developments that follow.

Proposition 24 (Skeleton decomposition). Any diagram � 2 F1PI
2 can be written as

� = �s �(h
(1)

1

,h
(1)

2

,...,h
(K)

1

,h
(K)

2

)

⇥
�

(1), . . . ,�(K)
⇤
, (4.2)

where �s 2 F2PI
2 and �(k) 2 Fc,t

2 for k = 1, . . . , K. Moreover such a decomposition is
unique up to the external labeling of the �(k) and the ordering of the pair (h(k)

1 , h(k)
2 ) for
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each fixed k, and the �(k) are precisely the maximal insertions admitted by � (ignoring
distinction of insertions based on external labelings).

Remark 25. Here we record some comments on the meaning of the uniqueness result
of Proposition 24. It is purely an artifact of our ‘�’ notation for insertions, which
privileges an ordering of each pair {h(k)

1 , h(k)
2 } of half-edges as in (4.2), that one could

just as well write � in the form of (4.2) by exchanging the roles of h(k)
1 and h(k)

2 and
permuting the external labels of the insertion �(k). The statement is then that the
decomposition in Proposition 24 is unique up to this redundancy, which is resolved
by fixing an external labeling for each of the maximal insertions admitted by �.

This sort of non-uniqueness (which is really just a notational artifact and reflects
no interesting topological properties of a diagram), should be contrasted with a notion
appearing later on, which is to be motivated in section 4.2 and fully sharpened in
section 4.3. Indeed, we will be interested in the number of ‘ways’ (in a sense to
be clarified) of producing a diagram isomorphic to � 2 F1PI

2 from its skeleton �s 2
F2PI
2 via Green’s function insertions. By contrast, Proposition 24 above concerns the

number of ways of producing the actual diagram � from its skeleton �s, stating that
that there is in fact only one (up to the notational ambiguity we have discussed).

Now we return to the task of developing a bold diagrammatic expansion for the
self-energy. Proposition 24 tells us that each bare self-energy diagram can be con-
structed from a unique skeleton diagram via Green’s function insertions. It is not
hard to see that, conversely, the result of making insertions into a skeleton diagram
is a 1PI diagram, i.e., a self-energy diagram. If we view skeleton diagrams as bold
diagrams, this implies that by summing over all (bold) skeleton diagrams (and then
formally replacing each bold line with a sum over Green’s function diagrams), we
recover all of the bare self-energy diagrams. However, there remains the question of
whether these diagrams are counted appropriately. To answer this question we need
to understand three items: (1) how many ways a given (isomorphism class of) self-
energy diagram can be obtained via insertions from its underlying skeleton, (2) how
to represent the automorphism groups (hence also symmetry factors) of self-energy
diagrams in terms of the decomposition of Proposition 24, and (3) the relation be-
tween items (1) and (2). These items will be addressed in Sections 4.3, 4.4, and 4.5,
respectively. First, however, to gain familiarity with what we are trying to prove, we
discuss some motivating examples in section 4.2.

4.2 Motivating examples
Consider the non-skeleton diagram � in Fig. 19 (a), for which we have S� = 2. It
can be uniquely decomposed into a skeleton diagram �s in Fig. 19 (b) and the single
maximal insertion in S�

g

shown in (c). Evidently S�
s

= 2 and S�
g

= 1. Roughly
speaking (for now), there is only one ‘way’ in which (c) can be inserted into (b) to
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produce a diagram isomorphic to (a), so we say that the redundancy factor of � is
1 and write r� = 1. This notion will be defined more carefully below. For now we
mention that we do not count separately the oppositely ‘oriented’ insertions of S�

g

into S�
s

because �g is symmetric, i.e., its isomorphism class is unchanged by the
exchange of its two external labels. Note, e.g., that all all diagrams in Fig. 12 are
symmetric except (b300) and (b3

000
).

j

i i

j

(a) (b) (c)

’

j

i

’

Figure 19: Decomposition of a non-skeleton diagram � in (a) into a skeleton diagram
�s in (b) and a truncated Green’s function diagram �g in (c).

In our proposed bold diagram expansion Eq. (4.1) for the self-energy, when we
substitute the bare diagrammatic expansion for the Green’s function in for each bold
line, every bare self-energy diagram will be accounted for once for each of the r� ‘ways’
that it can be produced from its skeleton via insertions, each time with a pre-factor
equal to the reciprocal of the product of the symmetry factors of its skeleton and of
all of its insertions. In other words, if � 2 F1PI

2 is decomposed as in Eq. (4.2), then �
will be accounted for with a pre-factor of

r�

S�
s

·
QK

k=1 S�(k)

.

Then our hope is that

S� =

S�
s

·
QK

k=1 S�(k)

r�
. (4.3)

This is a key reason for justifying bold diagrams, and is the content of Corollary 31
below. We can see from the above discussion that it holds in the case of Fig. 19.

For now we check Eq. (4.3) in a few more cases as we further develop the notion
of the redundancy factor.

Consider Fig. 20. Here the insertion �g is not symmetric, so we count r� = 2

different ways of inserting it into the skeleton �s to make a diagram isomorphic to �.
Moreover, S�

g

= 2, S�
s

= 2, and S� = 2, so Eq. (4.3) holds.
Next consider Fig. 21. The diagram �g in (c) can be inserted into the skeleton �s

in (d) into two different locations, yielding the isomorphic diagrams in (a) and (b).
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Figure 20: Decomposition of a non-skeleton diagram � in (a) into a skeleton diagram
�s in (b) and a truncated Green’s function diagram �g in (c).

Hence r� = 2. Moreover, observe that S�
g

= 1, S�
s

= 4, and S� = 2, so Eq. (4.3)
holds.

By contrast the diagram � in Fig. 22, which has the same skeleton �s but admits
two maximal insertions, has a redundancy factor of only r� = 1. The left-right
symmetry of the diamond does not yield additional redundancy because the maximal
insertions exchanged by this symmetry are isomorphic to each other—and in fact to
the insertion of Fig. 21 (c). Thus in the bold diagram expansion Eq. (4.1), � is only
accounted for once. Meanwhile, S� = 4, S�

s

= 4, and the symmetry factors of the
insertions are both one, so Eq. (4.3) holds.

In Fig. 23 (a), we show a non-skeleton diagram � which has the same skeleton
�s as in the last two examples. � admits two (non-symmetric) maximal insertions,
each isomorphic to the diagram of Fig. 20 (c). There are two nonequivalent ways
of inserting these diagrams into �s to yield a diagram isomorphic to �, depicted
separately in Fig. 23 (a), (b). We have S� = 8 (with a factor of 4 coming from the
two half-dumbbells) and S�

s

= 4, and the symmetry factor of each insertion is 2 (due
to the half-dumbbell), so Eq. (4.3) holds.

Finally, in Fig. 23, we show a diagram � which once again has the same skeleton
�s as in the last several examples. � admits one (non-symmetric) maximal insertion
isomorphic to the diagram of Fig. 20 (c). This can be inserted into either propagator
line of the ‘bubble’ in the center of �s and with either orientation to yield � up to
isomorphism, so r� = 4. We have S� = 2 (due to the half-dumbbell) and S�

s

= 4,
and the symmetry factor of the insertion is 2 (due to the half-dumbbell), so Eq. (4.3)
holds.

We will refer back to these examples for concreteness in the developments that
follow.

84



i

j

j

i

(a)

j

i

(b)

j

i

(d)

’

’

(c)

Figure 21: Decomposition of a more complex non-skeleton diagram � in (a) into a
skeleton diagram �s in (d) and a truncated Green’s function diagram �g in (c). The
non-skeleton diagram in (b) is isomorphic to (a), but is obtained by the insertion of
�s into �g at a different location.

4.3 Ways of producing a self-energy diagram from its skeleton
As promised we provide a rigorous definition of the redundancy factor, as well as
the set of ways of producing a self-energy diagram from its skeleton. Consider a
self-energy diagram �, and write

� = �s �(h
(1)

1

,h
(1)

2

,...,h
(K)

1

,h
(K)

2

)

⇥
�

(1), . . . ,�(K)
⇤

(4.4)

via Proposition 24.
Remark 26. We assume that the ordering within each pair (h(k)

1 , h(k)
2 ) is chosen so

that if �(j), �(k) are non-isomorphic for some j, k, then in fact �(j) and �(k) are
non-isomorphic after any external relabeling. In other words, the insertions �(k) are
externally labeled such that if any two of them are isomorphic up to external labeling,
then they are actually isomorphic (with external labeling taken into account). We
follow this convention for all decompositions of the form of Eq. (4.4) in the sequel.

Implicitly �s is a ‘subdiagram’ of � in that its vertex and half-edge sets are subsets
of those of �. Roughly speaking, there is only one way to construct � from �s via

85



j

i

Figure 22: A non-skeleton diagram � with redundancy factor r� = 1 and the same
skeleton �s as in Fig. 21 (d).

Green’s function insertions (namely, via the procedure represented in Eq. (4.4)), but
there may be many ways to construct diagrams isomorphic to � from �s via Green’s
function insertions. The uniqueness result of Proposition 24 guarantees that any such
way must involve (up to isomorphism) the insertion of the same set {�(1), . . . ,�(K)}
of truncated Green’s function diagrams. Then let I(�,�s) be the set of ways of
replacing K propagator lines in �s with �(1), . . . ,�(K) such that the resulting diagram
is isomorphic to � as a truncated Green’s function diagram. (There is some abuse of
notation here because I(�,�s) additionally depends on the decomposition of Eq. (4.4),
but the meaning will be clear from context.)

More precisely, each such ‘way’ consists of the following data: a set of ordered
pairs of half-edges (h0(1)

1 , h0(1)
2 ), . . . , (h0(K)

1 , h0(K)
2 ) in �s such that

�

0
:= �s �(h

0(1)
1

,h
0(1)
2

,...,h
0(K)

1

,h
0(K)

2

)

⇥
�

(1), . . . ,�(K)
⇤

is isomorphic to �, subject to an equivalence relation. Specifically, ways are not dis-
tinguished if they differ only by reordering the K half-edge pairs by a permutation
⌧ 2 SK such that �(⌧(k)) is isomorphic to �(k) for all k. Moreover, ways are not distin-
guished if they differ only by the ordering within the k-th half-edge pair for k such that
�

(k) is symmetric. We refer to the equivalence class of (h0(1)
1 , h0(1)

2 ), . . . , (h0(K)
1 , h0(K)

2 )

as the element of I(�,�s) specified by these half-edge pairs.
Observe that if we sum over the skeleton diagrams and then formally replace each

bold line with a sum over Green’s function diagrams, then in the resulting formal
sum over self-energy diagrams, each self-energy diagram � will be counted precisely
|I(�,�s)| times, where �s is the skeleton of �. This number r� := |I(�,�s)| depends
only on � 2 F1PI

2 , and as suggested earlier we call it the redundancy factor of �.
It is worthwhile to treat the distinction between symmetric and non-symmetric

insertions a bit more elegantly (and, moreover, in a way that does not so clearly
privilege the fact that our insertions have two external half-edges). For a truncated
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Figure 23: A non-skeleton diagram � in (a) with redundancy factor r� = 2 and the
same skeleton �s as in Fig. 21 (d). The diagram in (b) is a diagram isomorphic to �
obtained from �s by a nonequivalent set of insertions.

Green’s function diagram, the external half-edges have labels ‘i’ and ‘j.’ Let the
external symmetry group, denoted S(�g), of a truncated Green’s function diagram �g

be the subgroup of Sym{i, j} ' S2 consisting of permutations of the labels ‘i’ and
‘j’ that fix the isomorphism class of the diagram. Therefore for symmetric diagrams
the external symmetry group is S2, and for non-symmetric diagrams it is the trivial
group. For future convenience, let the action of � 2 S2 on a truncated Green’s
function diagram �g defined via permutation of the external labels be denoted � ?�g.
(The ‘ ? ’ notation is meant to distinguish from the group action ‘ · ’ defined earlier.)

Then using this language we can say that ways that for any � 2 S(�(k)
) the

modification of (h0(k)
1 , h0(k)

2 ) to (h0(k)
�(1), h

0(k)
�(2)) does not yield a distinct element of I(�,�s).

4.4 Understanding automorphisms in terms of the skeleton
Now we turn to item (2), i.e., characterizing the structure of automorphisms of � in
terms of its decomposition furnished by Proposition 24.

With notation as in the section 4.3, let n be the order of �, and let p be the order
of �s. Then q = n� p is the order of �g :=

SK
k=1 �

(k).
We can view the skeleton diagram �s as well as the insertions �(k) as labeled

truncated Green’s function diagrams via the labeling of interaction lines and half-
edges inherited from �. Let Aut(�,�s) be the set of automorphisms of �s that can be
extended to automorphisms of � by relabeling the rest of the diagram, i.e., permuting
the vertex and half-edge labels of �g.

For example, the automorphism of �s of Fig. 21 (d) corresponding to the left-right
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Figure 24: A non-skeleton diagram � with redundancy factor r� = 4 and the same
skeleton �s as in Fig. 21 (d).

reflection of the ‘diamond’ can be extended to an automorphism of the diagram in
Fig. 22, but it cannot be extended to an automorphism of any of the diagrams of
Fig. 21 (a), (b), nor of any of the diagrams of Figs. 23 and 24. Next, consider the
automorphism of �s obtained by composing a left-right reflection of the diamond with
a swap of the two propagator lines in the ‘bubble’ at the center of the diamond. This
extends to an automorphism of each of the diagrams of Fig. 21 (a), (b).

More precisely, viewing Rq as acting on labelings of �g, an element g 2 Aut(�s)

is defined to be in Aut(�,�s) if there exists h 2 Rq such that gh 2 Aut(�). (Since
�s and �g are disjoint, elements g and h as in the preceding commute.) Note that
Aut(�,�s) is a subgroup of Aut(�s): indeed, if g1, g2 2 Aut(�,�s), then there exist
h1, h2 2 Rq such that g1h1, g2h2 2 Aut(�), but then (g1g2)(h1h2) = (g1h1)(g2h2) is in
Aut(�), so g1g2 2 Aut(�,�s).

We have the following characterization of Aut(�,�s):

Lemma 27. Let � 2 F1PI
2 , and write

� = �s �(h
(1)

1

,h
(1)

2

,...,h
(K)

1

,h
(K)

2

)

⇥
�

(1), . . . ,�(K)
⇤

via Proposition 24. An element g 2 Aut(�s) lies in Aut(�,�s) if and only if for every
k, there is some k0 and some � 2 S2 such that �(k) is isomorphic to � ? �(k0) and  g

sends (h(k)
1 , h(k)

2 ) to (h(k0)
�(1), h

(k0)
�(2)).

Proof. First we prove the forward direction, so let g 2 Aut(�,�s). Then g extends
to an automorphism of �, which we shall also call g. Let e(k)1 , e(k)2 be the exter-
nal half-edges of the truncated Green’s function diagram �

(k) paired with h(k)
1 , h(k)

2 ,
respectively, in the overall diagram � (equivalently, the external half-edges labeled
‘i’ and ‘j,’ respectively). Then the maximal insertion �(k) is disconnected from the
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rest of � by unpairing {e(k)1 , h(k)
1 } and {e(k)2 , h(k)

2 } in �. Since g is an automorphism,
removing the links { g(e

(k)
1 ), g(h

(k)
1 )} and { g(e

(k)
2 ), g(h

(k)
2 )} from � must also a dis-

connect a maximal insertion (isomorphic to �(k)) at ( g(h
(k)
1 ), g(h

(k)
2 )) with external

half-edges  g(e
(k)
1 ), g(e

(k)
2 ) labeled ‘i’ and ‘j,’ respectively. Since this diagram is a

maximal insertion, by Proposition 24 it must be � ? �(k0) for some k0, where � 2 S2,
and moreover  g(h

(k)
1 ) = h(k0)

�(1) and  g(h
(k)
2 ) = h(k0)

�(2). This concludes the proof of the
forward direction.

Now assume that g 2 Aut(�s) and that for every k, there is some k0
= k0

(k) and
some � = �(k) 2 S2 such that �(k0) is isomorphic to � ? �(k) via some isomorphism
('(k), (k)

) and  g sends (h(k)
1 , h(k)

2 ) to (h(k0)
�(1), h

(k0)
�(2)). Then we aim to extend g to

an automorphism of �, i.e., we aim to extend ('g, g) to an isomorphism from � to
itself. This can be done simply by mapping vertices and half-edges lying in the �(k) via
('(k), (k)

). It is straightforward to check that this indeed defines an automorphism.

We also have the following result characterizing the structure of automorphisms
of � in terms of Aut(�,�s):
Lemma 28. Let � 2 F1PI

2 be decomposed as in Eq. (4.2). Then any g 2 Aut(�)

restricts to an automorphism of �s (in particular, only permutes vertex labels within
the subdiagram �s). By definition, this induced automorphism of �s then lies in
Aut(�,�s). Moreover, if � admits a maximal insertion �0 at (h0

1, h
0
2), then � also

admits a maximal insertion �00 isomorphic to �0 at ( g(h0
1), g(h0

2)). Furthermore, g
sends all vertex labels from �

0 to �00, i.e., 'g sends each vertex of �0 to a vertex of �00.
Proof. Let g 2 Aut(�). First we prove that g only permutes vertex labels within �s.
Indeed, suppose not. Then 'g sends a vertex that is not contained in any insertion to
a vertex that is contained in some insertion. The property of whether or not a vertex
is contained in an insertion is preserved under diagram isomorphism, so we have a
contradiction.

Furthermore, an isomorphism of unlabeled diagrams sends maximal insertions to
maximal insertions; i.e., if � admits a maximal insertion �0 at (h0

1, h
0
2), then � also

admits a maximal insertion �00 isomorphic to �0 at ( g(h0
1), g(h0

2)) via ('g, g). (In
particular 'g sends each vertex of �0 to a vertex of �00.)

Then it can be readily checked, by collapsing maximal insertions, that g descends
to an automorphism of the skeleton �s. Then by definition we can view g 2 Aut(�,�s).

The preceding two lemmas can be used to compute the symmetry factor of � 2
F1PI
2 via its skeleton decomposition:

Lemma 29. Let � 2 F1PI
2 , decomposed as in Eq. (4.2). Then

S� = |Aut(�,�s)| ·
KY
k=1

S�(k) (4.5)
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Proof. Lemma 28 says that every g 2 Aut(�) descends to g 2 Aut(�,�s) and moreover
defines an isomorphism from each insertion �(k) to its image under g.

Conversely, by Lemma 27, for any g 2 Aut(�,�s) and any k,  g sends (h(k)
1 , h(k)

2 ) to
(h(k0)

�(1), h
(k0)
�(2)) for some � = �(k) 2 S2, where k0

= k0
(k) is such that �(k) is isomorphic

to � ? �(k0). Any choice of isomorphisms from the �(k) to the � ? �(k0) defines an
extension of g to an automorphism of �.

Thus any automorphism of � can be yielded constructively by starting with g 2
Aut(�,�s) and then choosing, for each k, an isomorphism from �

(k) to � ? �(k0). The
number of such isomorphisms is the same as the number of automorphisms of �(k),
so Eq. (4.5) follows.

4.5 The action of Aut(�s) on I(�,�s)

Finally, we turn to item (3). Again decompose � 2 F1PI
2 as in Eq. (4.2). Notice that

Eq. (4.2) itself defines an element of I(�,�s). Call this element ◆⇤.
The key observation here is that Aut(�s) acts transitively on I(�,�s) and that

the stabilizer of any ◆ 2 I(�,�s) is Aut(�,�s). We define the action as follows. Let
g 2 Aut(�s), and consider an element ◆ of I(�,�s) specified by a set of ordered pairs of
half-edges (h0(1)

1 , h0(1)
2 ), . . . , (h0(K)

1 , h0(K)
2 ) in �s, Then g · ◆ is defined to be the element of

I(�,�s) specified by the ordered pairs ( g(h
0(1)
1 ), g(h

0(1)
2 )), . . . , ( g(h

0(K)
1 ), g(h

0(K)
2 )).

For example, recall the automorphism of �s of Fig. 21 (d) corresponding to the
left-right reflection of the ‘diamond.’ The action of this automorphism fixes the only
element in I(�,�s) represented by Fig. 22. Meanwhile, it swaps the elements of
I(�,�s) represented in Fig. 21 (a) and (b). In a slightly more indirect way, it also
swaps the elements of I(�,�s) represented in Figs. 23 (a) and (b). Next, consider the
automorphism of �s obtained by a swap of the two propagator lines in the ‘bubble’ at
the center of the diamond. The action of this automorphism also swaps the elements
of I(�,�s) represented in Figs. 23 (a) and (b).

Lemma 30. With notation as in the preceding, the action of Aut(�s) on I(�,�s) is
transitive, and the stabilizer of ◆⇤ is Aut(�,�s).

Proof. First we establish that the action is transitive. To this end, consider arbitrary
elements ◆1, ◆2 2 I(�,�s), i.e., two different ways of making insertions in �s to yield
diagrams �1,�2, respectively, that are each isomorphic to �. Our isomorphism from
�1 to �2 descends (by collapsing the maximal insertions) to an isomorphism from
�s to itself, i.e., an automorphism g 2 Aut(�s), and evidently this automorphism
satisfies g · ◆1 = ◆2. This establishes transitivity.

Now we turn to the claim about the stabilizer. Let g 2 Aut(�,�s). We want to
show that g · ◆⇤ = ◆⇤. By Lemma 27, there exists ⌧ 2 SK and �k 2 S2 for k = 1, . . . , K
such that �(k) is isomorphic to �k ? �(⌧(k)) and  g sends (h(k)

1 , h(k)
2 ) to (h(⌧(k))

�k(1)
, h(⌧(k))

�k(2)
).

Hence g · ◆⇤ is specified by the ordered pairs (h(⌧(k))
�k(1)

, h(⌧(k))
�k(2)

), k = 1, . . . , K.
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By Remark 26, since �(k) and �(⌧(k)) are isomorphic up to external labeling, they
are in fact isomorphic. But since �(k) and �k ?�(⌧(k)) are isomorphic, this means that
in turn �k ? �(⌧(k)) is isomorphic to �(⌧(k)), i.e., �k 2 S(�(k)

) for all k.
Then recalling the equivalence relation used to define I(�,�s), we see that g · ◆⇤

is equivalently specified by the ordered pairs (h(k)
1 , h(k)

2 ), k = 1, . . . , K, i.e., g · ◆⇤ = ◆⇤.
Conversely, suppose that g ·◆⇤ = ◆⇤ for some g 2 Aut(�s). Then there exist ⌧ 2 SK

and �k 2 S(�(k)
) for k = 1, . . . , K such that  g sends (h(k)

1 , h(k)
2 ) to (h(⌧(k))

�k(1)
, h(⌧(k))

�k(2)
) for

k = 1, . . . , K, and moreover �(k) is isomorphic to �(⌧(k)) for all k. Since �k 2 S(�(k)
),

this means that �(k) is isomorphic to �k ? �(⌧(k)) for all k. But then by Lemma 27 we
have that g 2 Aut(�,�s).

Then the orbit-stabilizer theorem, together with Lemmas 29 and 30, yields the
following corollary:

Corollary 31. For � 2 F1PI
2 , the redundancy factor of � is given by

r� =

S�
s

·
QK

k=1 S�(k)

S�

.

Proof. Applying the orbit-stabilizer theorem via Lemma 30 we obtain

r� = |I(�,�s)| =
|Aut(�s)|

|Aut(�,�s)|
=

S�
s

|Aut(�,�s)|
.

The result then follows from Lemma 29.

4.6 Bold diagrammatic expansion for the self-energy
At last we can prove the bold diagrammatic expansion for the self-energy, stated as
follows:

Theorem 32. For 1  i, j  N , we have the equality of formal power series (in the
coupling constant)

⌃ij =

X
�
s

2F2PI

2

F�
s

(i, j)

S�
s

, (4.6)

where ⌃ij is interpreted as a power series via Theorem 20 and where, for every �s 2
F2PI
2 , the expression F�s(i, j) is interpreted as the power series obtained by applying

the Feynman rules for �s with propagator G, where G is in turn interpreted as a
formal power series via Theorem 18.

Remark 33. The interpretation of the bold diagrammatic expansion of the self-energy
is at this point somewhat cryptic. For the moment it can only be interpreted as a
reorganization of the terms in the asymptotic series for the self-energy. However,
since the terms on the right-hand side of Eq. (4.6) depend only on G and v (and not
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on G0), one might conjecture based on the expansion that the self-energy depends
only on G, v. This is indeed a major goal of Part III, where we will indeed construct
the self-energy (non-perturbatively) as a (matrix-valued) functional ⌃[G, v] of G and
v only, and interpret the bold diagrammatic expansion as an asymptotic series in the
coupling constant for the self-energy at fixed G, with terms given by the ⌃(k)

[G, v] to
be specified below. The non-perturbative perspective will guarantee the existence of
such an asymptotic series, but Theorem 32 will be used to show that this series is in
fact given by Eq. (4.6).

Proof. In the following all expressions should be suitably interpreted as in the state-
ment of the theorem. For �s 2 F2PI

2 , the series F�
s

(i, j) counts r� times every self-
energy diagram � 2 F1PI

2 with skeleton isomorphic to �s, each with factor

F�(i, j)/
KY
k=1

S�(k) ,

where the �(k) are the maximal insertions of �. Then by Corollary 31, F�
s

(i, j)/S�
s

equals the sum of F�(i, j)/S� over self-energy diagrams � with skeleton isomorphic
to �s. Therefore the right-hand side of Eq. (4.6) is the sum of F�(i, j)/S� over all
self-energy diagrams �.

Following Remark 33, each term in the bold diagrammatic expansion can be
thought of as a functional of G and v. We indicate by ⌃(k)

[G, v] the k-th order bold
contribution to the self-energy, i.e., the contribution of the terms in the diagrammatic
expansion that are of order k in the interaction v. In particular, the ‘first-order’ bold
contribution to the self-energy is given by

�
⌃

(1)
[G, v]

�
ij
= �1

2

 X
k

vikGkk

!
�ij � vijGij. (4.7)

These two terms are represented in Fig. 25 (a), (b), and we denote them by
⌃H[G, v] and ⌃F[G, v] for ‘Hartree’ and ‘Fock,’ respectively. The associated diagrams
happen to be the same as the first-order bare self-energy diagrams, but with thin
lines replaced by bold lines.

The approximation ⌃[G, v] ⇡ ⌃

(1)
[G, v] is known as the Hartree-Fock approxi-

mation. One can likewise approximate ⌃[G, v] ⇡ ⌃

(1)
[G, v] + ⌃(2)

[G, v], where the
second-order contribution can be written�

⌃

(2)
[G]

�
ij
=

1

2

Gij

X
k,l

vikG
2
klvlj +

X
k,l

vikGkjGklGlivjl, (4.8)

and the second-order bold diagrams are shown in Fig. 25 (c), (d). The latter is known
as the ‘second-order exchange,’ while the former is an example of what is called a ‘ring
diagram,’ for reasons to be made clear later.
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(c) (d)

(a) (b)

Figure 25: Bold diagrammatic expansion of the self-energy up to second order (ex-
ternal labelings omitted).

4.7 Green’s function methods
A Green’s function method using bold diagram expansion is a method for computing
the Green’s function via an ansatz for the self-energy ⌃ans[G, v] ⇡ ⌃[G, v]. This
ansatz should be viewed as some sort of approximation of the full self-energy, usually
consisting of diagrammatic contributions meant to incorporate certain physical effects.

After choosing an ansatz, one substitutes ⌃  ⌃ans[G, v] in the Dyson equation
(3.24) and attempts to solve it self-consistently for G. In other words, one solves

G = (A� ⌃ans[G, v])�1

for G, where A and v are specified in advance.
The most immediate technique for solving this system is a fixed-point iteration

that we refer to as the Dyson iteration, which is defined by the update

G(k+1)
= (A� ⌃ans[G

(k), v])�1.

This iteration can be combined with damping techniques to yield better convergence
in practice, but in general the convergence behavior of the Dyson iteration (even with
damping) may depend strongly on the ansatz for the self-energy.

The Green’s function method obtained by the ansatz ⌃ans[G, v] = ⌃

(1)
[G, v] is

known as the Hartree-Fock method. One is likewise free to consider higher-order ap-
proximations for the self-energy. However it should be emphasized that it is not
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obvious a priori which order of approximation is optimal for a given problem specifi-
cation. Some numerical comparison of methods will be undertaken in Section 5, but
further comparisons are a subject of detailed study to be left for future work.

It should be noted that once the Green’s function is computed, it can be used
to compute the internal energy of the system via the Galitskii-Migdal formula of
Theorem 1. It can also be used to compute the Gibbs free energy via the Luttinger-
Ward formalism in a way to be explained below. More remarkably, the framework of
Green’s function methods can even be used, as in the dynamical mean field theory
(DMFT) [37], to compute effective Hamiltonians on smaller subsystems (‘fragments’)
that self-consistently account for their interaction with their environments. This will
be studied in future work.

4.7.1 The GW approximation

In order to provide a broader perspective on both Green’s function methods and
diagrammatic manipulations, we include here a diagrammatic derivation of the GW
approximation [43] for the self-energy, which corresponds to an ansatz for the self-
energy yielded by a further summation over an infinite subset of the bold diagrams.
The GW method is the corresponding Green’s function method.

This summation, which is represented graphically in Fig. 26, includes the Hartree
diagram, together with all of the so-called ring diagrams.

=
H

+ + + +
GW

+ . . .

Figure 26: Diagrammatic depiction of the GW self-energy.

The Fock exchange diagram of Fig. 25 (b) can be thought of as the ‘zeroth’ ring
diagram, and Fig. 25 (c) is the first ring diagram. Notice that the k-th ring diagram
�k has a symmetry factor of S�k

= 2

k, with a factor of 2 deriving from the each
symmetry that exchanges the two propagators in one of the k ‘bubbles.’

Furthermore, the k-the ring diagram has Feynman amplitude given by

F�k
(i, j) = �

�
[�v(G�G)]

kv
�
ij
Gij,

or equivalently,
F�k

= �G�
�
[�v(G�G)]

kv
�
,

where ‘�’ indicates the entrywise matrix product.
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Then formally summing the geometric series we obtain

1X
k=0

F�k
(i, j)

S�k

= �G�
 

I +
1

2

v(G�G)

��1

v

!
,

where the factor 1
2

arises from the symmetry factor. Incorporating the Hartree term,
we arrive at the GW ansatz for the self-energy:

⌃GW[G, v] = ⌃H[G, v]�G�W [G, v],

where

W [G, v] :=

 
I +

1

2

v(G�G)

��1

v

!
=


v�1

+

1

2

(G�G)

��1

,

is known as the screened Coulomb interaction. Thus the GW self-energy (whose name
derives from the G�W term appearing therein) looks very much like the Hartree-Fock
self energy, but with the Fock exchange replaced by a screened exchange, in which W
assumes the role of v.

4.8 A preview of the Luttinger-Ward formalism
There is in fact a more fundamental formalism underlying the self-energy ansatzes
and Green’s function methods outlined above, which can be recovered from ansatzes
for the so-called Luttinger-Ward (LW) functional.

It will turn out (as will be demonstrated in Part III) that the exact self-energy
⌃[G, v], viewed as a matrix-valued functional of G for fixed v, can be written as the
matrix derivative of a scalar-valued functional of G, as in

⌃[G, v] =
@�

@G
[G, v]. (4.9)

Here �[G, v] is the LW functional, which additionally satisfies �[0, v] = 0.
We must include some technical commentary to make precise sense of Eq. (4.9).

In fact, �[ · , v] should be thought of as a function Sn
++ ! R, where Sn

++ is the
set of symmetric positive definite N ⇥ N matrices. Then the derivative @

@G
should

be defined in terms of variations within Sn
++. Letting E(ij) 2 SN be defined by

E(ij)
kl = �ik�jl+�il�jk, we then define @

@G
:=

⇣
@

@Gij

⌘
:=

1
2
(DE(ij)), where DE(ij) indicates

the directional derivative in the direction E(ij). If f : Sn
++ ! R is obtained by

the restriction of a function f : RN⇥N ! R that is specified by a formula X 7!
f(X) in which the roles of Xkl and Xlk are the same for all l, k, then @

@G
simply

coincides with the usual matrix derivative. This is the basic scenario underlying
various computations below.
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The LW functional relates to the free energy in the following manner. Consider
the free energy as a functional of A and v via ⌦ = ⌦[A, v]. Then for A and v that
yield Green’s function G, we will derive in Part III the relation

⌦[A, v] =
1

2

Tr[AG]� 1

2

Tr logG� 1

2

(�[G, v] + �0) , (4.10)

where �0 = N log(2⇡e) is a constant.
Moreover, much like ⌃[G, v], for fixed G the LW functional �[G, v] will admit

an asymptotic series in the coupling constant with terms denoted �(k)
[G, v]. It will

follow, on the basis of Eq. (4.9), that

�

(k)
[G, v] =

1

2k
Tr

�
G⌃(k)

[G, v]
�
. (4.11)

Therefore � admits a bold diagrammatic expansion obtained by linking the ex-
ternal half-edges of every skeleton diagram with a bold propagator to obtain a closed
diagram, as in Fig. 25.

 (c)  (d)

 (a)  (b)

Figure 27: Bold diagrammatic expansion of the LW functional up to second order.

It is important to realize that the pre-factors for these diagrams are obtained
rather differently than the diagrams we have already seen (though the Feynman am-
plitudes are computed as usual). Indeed, for each LW diagram, one must sum over
the prefactors of all skeleton diagrams from which it can be produced, then divide by
2k, where k is the number of interaction lines.

For example, we obtain

�

(1)
[G, v] = �1

4

X
i,j

vijGiiGjj �
1

2

X
i,j

vijGijGij (4.12)
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and
�

(2)
[G] =

1

8

X
i,j,k,l

G2
ijvikG

2
klvlj +

1

4

X
i,j,k,l

vikvjlGijGkjGklGli, (4.13)

for the first- and second-order contributions from Eqs. (4.7) and (4.8), together with
Eq. (4.11). Moreover we denote by �H[G, v] and �F[G, v] the first and second terms
of Eq. (4.12), for ‘Hartree’ and ‘Fock,’ respectively.

4.8.1 �-derivability

An ansatz ⌃ans[G, v] for ⌃[G, v] specifies a Green’s function method. Among these
ansatzes, some can be written as matrix derivatives, i.e., can be viewed as being
obtained from an ansatz �ans[G, v] for the Luttinger-Ward functional via

⌃ans[G, v] :=
@�ans

@G
[G, v].

These approximations are known as �-derivable or conserving approximations. In the
context of quantum many-body physics, the resulting �-derivable Green’s function
methods are physically motivated in that they respect certain conservation laws [100].

Notice that for fixed A and v, once an estimate Gans for the Green’s function has
been computed via such a method, Eq. (4.10) suggests a way to approximate the free
energy, i.e.,

⌦ ⇡ 1

2

Tr[AGans]�
1

2

Tr log(Gans)�
1

2

(�ans[G, v] + �0) . (4.14)

In fact all of the self-energy approximations considered thus far, namely the first-
order (Hartree-Fock) and second-order approximations and the GW approximation,
are �-derivable.

In fact the first- and second-order self-energy approximations of Eqs. (4.7) and
Eqs. (4.8) can be obtained from the first- and second-order LW approximations of
Eqs. (4.12) and Eqs. (4.13).

Meanwhile, the GW approximation can be obtained from

�GW[G, v] = �H[G, v]� Tr log


I +

1

2

v(G�G)

�
.

Here the matrix derivative of the first term yields the Hartree contribution ⌃H[G, v],
and the matrix derivative of the second term yields G�W [G, v].

In fact, �GW can be viewed as being obtained from an infinite summation of the
(closed) ring diagrams from the bold diagrammatic expansion of the LW functional,
together with the closed Hartree diagram. These are the obtained by closing up the
diagrams of Fig. 26 and are themselves depicted in Fig. 28.
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+ + + + + . . .
GW

=
H

Figure 28: Diagrammatic depiction of the GW Luttinger-Ward functional.

What kind of (reasonable) self-energy approximation would fail to be �-derivable?
Roughly speaking, by the usual product rule for derivatives, taking the matrix deriva-
tive in G of a LW diagram yields a sum over all skeleton diagrams that can be ob-
tained from the LW diagram by cutting a single propagator. This means that if one
includes some skeleton diagram in the approximate self-energy but does not include
another skeleton diagram that closes up to the same LW diagram as the first, then
the approximation should not be �-derivable.

Notice that for each of the diagrams in Fig. 27, any choice of the propagator line
to be removed yields the same skeleton diagram, so the above scenario cannot apply
to these terms. This is one way of seeing why each of the bold skeleton diagrams up
to second order is individually �-derivable. (The same is true for each of the ring
diagrams.)

To find a non-�-derivable bold skeleton diagram, we have to go to the third order.
In Fig. 29 (a), we depict a LW diagram that can be cut in different ways to obtain
the distinct skeleton diagrams of Fig. 29 (b) and (c).

(a)

(b)

(c)

Figure 29: A LW diagram (a) that yields distinct classes of skeleton diagram (b), (c).
(External labelings of the skeleton diagrams are ignored.)
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Although some skeleton diagrams such as Fig. 29 (b) and (c) are not individually
�-derivable, the sum over all skeleton diagrams of a given order is �-derivable.

4.9 Quantities that do not admit a bold diagrammatic expan-
sion

We stress that here the bold diagrammatic expansion has only been established for
the self-energy (and, by extension, the Luttinger-Ward functional). The same concept
cannot be generalized to other quantities without verification.

For example, let us consider what goes wrong in the case of the free energy.
Theorem 17 expresses the free energy as a sum over bare connected closed diagrams.
Why can’t we just replace the thin lines with bold lines and then remove redundant
diagrams (i.e., the diagrams with Green’s function insertions)?

First let us see what happens if we try this. Later we will discuss where the proof
of the bold diagrammatic expansion of the self-energy breaks down when we attempt
to adapt it to the free energy.

Recall that the first-order free energy diagrams are simply the Hartree and Fock
diagrams (i.e. the dumbbell and the oyster). Neither of these admit Green’s function
insertions, so converting them bold diagrams and retain them.

Now recall that the second-order bare free energy diagrams are depicted in Fig. 6
(b), (c). In particular, consider diagram (b2), reproduced below in Fig. 30 (a). This
diagram admits Green’s function insertions, hence will not be retained as a bold
diagram.

It can be obtained by inserting Green’s function diagrams into the bold oyster
diagram, shown in Fig. 30 (b), in two different ways; indeed, either of the bold
propagators in diagram (b) can be replaced with the insertion depicted in Fig. 30 (c).

Since diagram (b) has a symmetry factor of 4 and (c) has a symmetry factor of 1,
our attempted bold diagrammatic expansion for the free energy then counts diagram
(a) with a pre-factor of 1

2
. However, diagram (a) has a symmetry factor of 4, hence

has a pre-factor of 1
4

in the bare diagrammatic expansion for the free energy!
What went wrong? The problem is that there is no analog of the unique skeleton

decomposition (Proposition 24) for closed diagrams.6 Indeed, the diagram of Fig. 30
(a) can be built up from two different ‘skeleton’ subdiagrams, one containing the
upper interaction line and the other containing the lower one.

6The proof of Proposition 24 fails for closed diagrams in that the case |E(j,k)| = 0 cannot be
ruled out. (In the original proof, this case could be ruled out because it implied the existence of a
closed subdiagram of a connected self-energy diagram, which is impossible.)
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(a) (b) (c)

i j

Figure 30: Decomposition of a closed diagram � in (a) into a closed diagram �s in
(b), and a truncated Green’s function diagram �g in (c).

5 Numerical experiments
For the Gibbs model, in contrast to the quantum many-body problem, Green’s func-
tion methods as in section 4.7 can be implemented within a few lines of MATLAB
code. In this section we provide a small snapshot of the application of the Gibbs
model to the investigation of the numerical performance of MBPT.

In particular, we demonstrate that the use of the LW functional to compute the
free energy via Eq. (4.14) can yield more accurate results than the use of the bare
diagrammatic expansion of Theorem 17.

For simplicity we consider dimension N = 4, where all integrals can be evaluated
directly via a quadrature scheme, such as Gauss-Hermite quadrature. The quadratic
and the quartic terms of the Hamiltonian are specified by

A =

0BB@
2 �1 0 0

�1 2 �1 0

0 �1 2 �1
0 0 �1 2

1CCA , v = �

0BB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCA , (5.1)

respectively.
Once the self-consistent Green’s function G is obtained from some �-derivable

Green’s function method, we evaluate the free energy using the LW functional via
Eq. (4.14). Since the non-interacting free energy ⌦0 is not physically meaningful (as it
corresponds to an additive constant in the Hamiltonian), we measure the relative error
of ⌦�⌦0, i.e., we compute |⌦ans�⌦exact|/|⌦exact�⌦0|, where ⌦ans is the free energy
obtained via our approximation and ⌦exact is the exact free energy. We carry out this
procedure for the first-order (Hartree-Fock) and second-order approximations (GF2)
of the LW functional, denoted ‘Bold 1st’ and ‘Bold 2nd,’ respectively, in Fig. 31,
which plots the relative error against the coupling constant �.

For comparison, we also consider the approximations of the free energy obtained
directly from the first-order and second-order truncations of the bare diagrammatic
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expansion for the free energy of Theorem 17, denoted ‘Bare 1st’ and ‘Bare 2nd,’
respectively, in Fig. 31.

Figure 31: Comparison of different approximation schemes for the free energy.

Observe that the relative errors of the first- and second-order expansions scale as
� and �2, respectively, as �! 0. This makes sense because the ‘truncation’ error of
these expansions should be of order �2 and �3, respectively, but to obtain the relative
error we are dividing by ⌦exact � ⌦0, which is of order � as �! 0.

Note, however, that the pre-constant of the scaling is more favorable for the bold
method in both cases. Furthermore, the bold methods scale more gracefully than
their bare counterparts when � is relatively large.

To demonstrate the simplicity of the implementation, we provide below a MAT-
LAB code for computing the self-consistent Green’s function and the free energy
using the first- and second-order bold diagrammatic expansions. The exact solution
is evaluated directly using a quadrature code which is omitted here.

% luttingerward.m
d = 4;
Phi0 = d*(log(2*pi)+1);
A = [ 2 -1 0 0

-1 2 -1 0;
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0 -1 2 -1;
0 0 -1 2];

Umat = 0.1 * eye(d);

% First order bold diagram
maxiter = 100;
G = inv(A);
for iter = 1 : maxiter

rho = diag(G);
Sigma = -1/2*diag(Umat * rho) - (Umat.*G);
GNew = inv(A-Sigma);
err = norm(G-GNew)/norm(G);
if( norm(G-GNew)/norm(G) < 1e-10 ) break; end
G = GNew;

end
Phi = 1/2*trace(Sigma*G);
Omega = 0.5*(trace(A*G) - log(det(G)) - (Phi + Phi0));
fprintf(’Free energy 1st order = %g\n’, Omega);

% Second order bold diagram
G = inv(A);
for iter = 1 : maxiter

rho = diag(G);
% First order term
Sigma1 = -1/2*diag(Umat * rho) - (Umat.*G);
% Ring diagram
Sigma2 = 1/2 * G.*(Umat * (G.*G) * Umat);
% Second order exchange diagram
for i = 1 : d

for j = 1 : d
Sigma2(i,j) = Sigma2(i,j) + ...

(Umat(:,i).*G(:,j))’*G*(Umat(:,j).*G(:,i));
end

end
Sigma = Sigma1 + Sigma2;
GNew = inv(A-Sigma);
nrmerr = norm(G-GNew)/norm(G);
if( norm(G-GNew)/norm(G) < 1e-10 ) break; end
G = GNew;

end
Phi = 1/2*trace(Sigma1*G) + 1/4*trace(Sigma2*G);
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Omega = 0.5*(trace(A*G) - log(det(G)) - (Phi + Phi0));
fprintf(’Free energy 2nd order = %g\n’, Omega);

OmegaExact = -2.7510737;
fprintf(’Free energy exact = %g\n’, OmegaExact);

>> luttingerward
Free energy 1st order = -2.74745
Free energy 2nd order = -2.75209
Free energy exact = -2.75107
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Part III

The Luttinger-Ward formalism

1 Introduction
The bold Feynman diagrammatic expansion of many-body perturbation theory (ab-
breviated MBPT), along with the many practically used methods in quantum chem-
istry and condensed matter physics that derive from it, can be formally derived from
the Luttinger-Ward (LW)7 formalism [65]. Since its original proposal in 1960, the
LW formalism has found widespread applicability [28, 45, 10, 90]. However, the LW
formalism and the LW functional are defined only formally, and this shortcoming
poses serious questions both in theory and in practice. Indeed, the very existence of
the LW functional in the setting of fermionic systems is under debate, with numeri-
cal evidence to the contrary appearing in the past few years [54, 32, 103, 42] in the
physics community.

In the preceding Part of this dissertation, we provided a self-contained explanation
of MBPT in the setting of the Gibbs model (alternatively known as the ‘Euclidean
lattice field theory’ in the physics literature). In this setting one is interested in the
evaluation of the moments of certain Gibbs measures. While the exact computa-
tion of such possibly high-dimensional integrals is intractable in general, important
exceptions are the Gaussian integrals, i.e., integrals for the moments of a Gaussian
measure, which can be evaluated exactly. Perturbing about a reference system given
by a Gaussian measure, one can evaluate quantities of interest by a series expansion
of Feynman diagrams, which correspond to certain moments of Gaussian measures.
For a specific form of quartic interaction that we refer to as the generalized Coulomb
interaction, such a perturbation theory enjoys a correspondence with the Feynman
diagrammatic expansion for the quantum many-body problem with a two-body in-
teraction [77, 2, 1]. The generalized Coulomb interaction is also of interest in its own
right and includes, e.g., the (lattice) '4 interaction [2, 108], as a special case. The
combinatorial study of its perturbation theory was the goal of Part II. Nonetheless,
the techniques of Part II, and MBPT more broadly, are more generally applicable to
various types of field theories and interactions.

The culmination of the developments of Part II is the bold diagrammatic expan-
sion, which is obtained formally via a partial resummation technique which sums
possibly divergent series of diagrams to infinite order. Indeed, the main technical
contribution of Part II was to place the combinatorial side of this procedure on firm
footing. One motivation for Part III is to interpret the bold diagrams analytically,
which we accomplish by first constructing the LW formalism. In fact this construction

7The Luttinger-Ward formalism is also known as the Kadanoff-Baym formalism [7] depending on
the context. In this work we always use the former.
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is non-perturbative and valid for rather general forms of interaction.

1.1 Contributions
Please note that this Part is based on [62] (joint work with Lin Lin). The main
contribution of this Part is to establish the LW formalism rigorously for the first time,
in the context of Gibbs measures. In this setting, the role of the Green’s function is
assumed by the two-point correlator.

The construction of the LW functional proceeds via concave duality, in a spirit
similar to that of the Levy-Lieb construction in density functional theory [56, 59] at
zero temperature and the Mermin functional [76] at finite temperature, as well as the
density matrix functional theory developed in [6, 98, 15]. With careful interpretation,
this duality gives rise to a one-to-one correspondence between non-interacting and
interacting Green’s functions. The LW formalism yields a variational interpretation
of the Dyson equation. To wit, the free energy can be expressed variationally as a
minimum over all physical Green’s functions, and the self-consistent solution of the
Dyson equation yields its unique global minimizer. We also prove a number of useful
properties of the LW functional, such as the transformation rule, the projection rule,
and the continuous extension of the LW functional to the boundary of its domain,
which can be interpreted as the domain of physical Green’s functions. In particular,
this last property suggests a novel interpretation of the LW functional as the non-
divergent part of the concave dual of the free energy. These results allow us to
interpret the appropriate analogs of quantum impurity problems in our simplified
setting. In particular, we prove that the self-energy is always a sparse matrix for
impurity problems, with nonzero entries appearing only in the block corresponding
to the impurity sites. Such a result is at the foundation of numerical approaches such
as the dynamical mean field theory (DMFT) [37, 53].

We prove that the bold diagrams for the generalized Coulomb interaction can
be obtained as asymptotic series expansions of the LW and self-energy functionals,
circumventing the formal strategy of performing resummation to infinite order. The
proof of this fact proceeds by proving the existence of such series non-constructively
and then employing the combinatorial results of Part II to ensure that the terms of
these series are in fact given by the bold diagrams.

Although the bold diagrammatic expansion (evaluated in terms of the interacting
Green’s function, which is always defined) appears to be applicable in cases where the
non-interacting Green’s function is ill-defined, we demonstrate that caution should be
exercised in practice in such cases. Using a one-dimensional example, we demonstrate
that the approximate Dyson equation obtained via a truncated bold diagrammatic
expansion may yield solutions with large error in the regime of vanishing interaction
strength or fail to admit solutions at all.
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1.2 Outline
In section 2 we review preliminary material and definitions needed to understand the
results of this Part.

Section 3 concerns the construction of the LW formalism, beginning with a dis-
cussion of the the variational formulation of the free energy and the relevant concave
duality (section 3.1). This is followed by the introduction of the LW functional and
the Dyson equation (section 3.2). Then we introduce several key properties of the
LW functional: the transformation rule (section 3.3); the projection rule, accompa-
nied by a discussion of impurity problems (section 3.4); and the continuous extension
property (section 3.5). The proof of the continuous extension property, which is the
most technically demanding part of the Part, is postponed to section 5, which has its
own outline.

Section 4 concerns the bold diagrammatic expansion. In section 4.1 we prove
the existence of asymptotic series for the LW functional and the self-energy, and in
section 4.2 we relate the coefficients of the former to the latter. Then for the rigorous
development of the bold diagrammatic expansion, it only remains at this point to
prove that the asymptotic series for the self-energy matches the bold diagrammatic
expansion of Part II. This is the most involved task of section 4. In section 4.3, we
review the results that we need from Part II in a ‘diagram-free’ way that should be
understandable to the reader who has not read Part II, and in section 4.4, we establish
the claimed correspondence. Finally, in section 4.5 we illustrate the aforementioned
warning about the truncation of the bold diagrammatic series in cases where the
non-interacting Green’s function is ill-defined.

Relevant background material on convex analysis and the weak convergence of
measures is collected in Appendices C and D, respectively. The proofs of many
lemmas are provided in Appendix E, as noted in the text.

2 Preliminaries
In this section we discuss some preliminary definitions and notations.

2.1 Notation and quantities of interest
Throughout we shall let SN , SN

+ , and SN
++ denote respectively the sets of symmetric,

symmetric positive semidefinite, and symmetric positive definite N⇥N real matrices.
For simplicity we restrict our attention to real matrices, though analogous results can
be obtained in the complex Hermitian case.

In this Part we will consider Gibbs measures defined by Hamiltonians h : RN !
R [ {+1} of the form

h(x) =
1

2

xTAx+ U(x),
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where A 2 SN . The first term represents the quadratic or ‘non-interacting’ part of
the Hamiltonian, while the second term, U , represents the interaction. We define the
partition function accordingly as

Z[A,U ] =

ˆ
RN

e�
1

2

xTAx�U(x)
dx. (2.1)

For fixed interaction U , we may think of the partition function of A alone, i.e., as
Z : SN ! R sending A 7! Z[A]. In fact we adopt this perspective exclusively for the
time being.

The free energy is then defined as a mapping ⌦ : SN ! R [ {�1} via

⌦[A] := � logZ[A] = � log

ˆ
Rn

e�
1

2

xTAx�U(x)
dx, (2.2)

We denote the domain of ⌦ by

dom⌦ := {A 2 SN
: ⌦[A] > �1},

and the interior of the domain by int dom⌦. As we will see, ⌦ is concave in A, and
this notion of domain is the usual notion from convex analysis (see Appendix C), and
it is simply the set of A such that the integral in Eq. (2.2) is convergent.

For A 2 int dom⌦, in fact the integrand in Eq. (2.2) must decay exponentially,
hence we can define the two-point correlator (which we call the Green’s function by
analogy with the quantum many-body literature) in terms of A via

Gij[A] :=
1

Z[A]

ˆ
RN

xixj e
� 1

2

xTAx�U(x)
dx,

and the integral on the right-hand side is convergent. More compactly, we have a
mapping G : int dom⌦! Sn

++ defined by

G[A] :=
1

Z[A]

ˆ
RN

xxT e�
1

2

xTAx�U(x)
dx. (2.3)

It is important to note that G[A] 2 Sn
++ for all A. As we shall see in section 3, this

constraint defines the domain of ‘physical’ Green’s functions, in a certain sense. In
the discussion below, G is also called the interacting Green’s function.

In the case of the ‘non-interacting’ Gibbs measure, where U ⌘ 0, all quantities
of interest can be computed exactly by straightforward multivariate integration. In
particular, letting G0

[A] := G[A; 0], we have for A 2 dom⌦ = Sn
++ that

G0
[A] = A�1. (2.4)

The neatness of this relation is that it motivates the factor of one half included in the
quadratic part of the Hamiltonian. We refer to G0

[A] as the non-interacting Green’s
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function associated to A, whenever A 2 Sn
++. Note that for a general interaction

U , int dom⌦ may contain elements not in Sn
++. For such A there is an associated

(interacting) Green’s function but not a non-interacting Green’s function.
In general G can be viewed as the gradient of ⌦, for a suitably defined notion of

gradient for functions of symmetric matrices, which we now define:

Definition 1. For i, j = 1, . . . , N , let E(ij) 2 SN be defined by E(ij)
kl = �ik�jl + �il�jk.

For a differentiable function f : SN ! R, define the gradient rf : SN ! SN by

rijf = (rf)ij := lim

�!0

f(A+ � · E(ij)
)� f(A)

�
.

If f is obtained by restriction from a function f : RN⇥N ! R, then equivalently
rijf =

@f
@Xij

+

@f
@Xji

.

Then on dom⌦ the gradient map r⌦ is given by

rij⌦[A] =
1

Z[A]

ˆ
xixj e

� 1

2

xTAx�U(x)
dx, (2.5)

i.e., G = r⌦, as claimed. The notion of gradient of Definition 1 is natural for our
setting in that it yields this relation. However, it may seem a bit awkward when
applied to specific computations. Indeed, consider a function X 7! f(X) on SN that
is specified by a formula that can be applied to all N ⇥N matrices and in which the
roles of Xkl and Xlk are the same for all l, k. For instance, such a formula is given
by f(X) =

P
ij X

2
ij. Then the usual matrix derivative of f , considered as a function

on N ⇥N matrices, is given by @f
@Xij

(X) = 2Xij, whereas, viewing f as a function on
SN and with notation as specified in Definition 1, we have rijf(X) = 4Xij. More
generally in this situation we have rij = 2

@
@Xij

. Since formulas like this arise from
the bold diagrammatic expansion (as discussed in Part II), it is convenient then to
further define:

Definition 2. For a differentiable function f : SN ! R, define the matrix derivative
@f
@X

: SN ! SN by
@f

@Xij

=

1

2

rijf.

Moreover, this notion of derivative will yield the relation

⌃[G] =

@�

@G
,

where ⌃ is the self-energy and � is the LW functional, as was foreshadowed in Part II.
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2.2 Interaction growth conditions
Note that dom⌦ depends on the shape of U(x). For example, if U(x) = 0, then
dom⌦ = SN

++. If U(x) =
PN

i=1 x
4
i , then dom⌦ = SN . Our most basic condition on

U is the following:

Definition 3 (Weak growth condition). A measurable function U : Rn ! R satisfies
the weak growth condition, if there exists a constant CU such that U(x) + CU(1 +

kxk2) � 0 for all x 2 Rn, and dom⌦ is an open set.

The weak growth condition of Definition 3 specifies that U cannot decay to �1
faster than quadratically, which ensures in particular that dom⌦ is non-empty. The
assumption that dom⌦ is an open set (i.e., dom⌦ = int dom⌦) will be used later
to ensure that for fixed U there is a one-to-one correspondence between A and G
(hence also between non-interacting and interacting Green’s functions) over suitable
domains.

Note that the condition of Definition 3 is weaker than the condition

1

2

xTAx+ U(x)! +1, kxk ! +1 (2.6)

For instance, if N = 2 and U(x) = x4
1, then the weak growth condition is satisfied

with CU = 0, but Eq. (2.6) is not satisfied for all A 2 SN . In fact, when U(x) only
depends on a subset of components of x 2 Rn, we call the Gibbs model an impurity
model or impurity problem, in analogy with the impurity models of quantum many-
body physics [68], and we call the subset of components on which U depends the
fragment. The flexibility of the weak growth condition will allow us to rigorously
establish the LW formalism for the impurity model. In the setting of the impurity
model, the ‘projection rule’ of Proposition 25 then allows us to understand the LW
formalism of the impurity model in terms of the lower-dimensional LW formalism of
the fragment and to prove a special sparsity pattern of the self-energy.

One of our main results (Theorem 30) is that the LW functional, which is initially
defined on the set Sn

++ of physical Green’s functions, can in fact be extended contin-
uously to the boundary of Sn

++, a fact which will not be apparent from the definition
of the LW functional. (In fact, this extension shall be specified by an explicit formula
involving lower-dimensional LW functionals.) But in order for this result to hold, we
need to strengthen the weak growth condition to the following:

Definition 4 (Strong growth condition). A measurable function U : Rn ! R satisfies
the strong growth condition if, for any ↵ 2 R, there exists a constant b 2 R such that
U(x) + b � ↵kxk2 for all x 2 Rn.

Note that the strong growth condition ensures that dom⌦ = SN and is hence an
open set. If U is a polynomial function of x and satisfies the strong growth condition,
then Eq. (2.6) will also be satisfied.
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In Section 5 we will discuss the precise statement and proof of the aforementioned
continuous extension property. In addition, a counterexample will be provided in the
case where the weak growth condition holds but the strong growth condition does not.
In fact, the continuous extension property is also valid for impurity models (which
do not satisfy the strong growth condition) via the projection rule (Proposition 25),
provided that the interaction satisfies the strong growth condition when restricted to
the fragment.

For the generalized Coulomb interaction considered in Part II, i.e.,

U(x) =
1

8

NX
i,j=1

vijx
2
ix

2
j , (2.7)

there is a natural condition on the matrix v that ensures that U satisfies the strong
growth condition, namely that the matrix v is positive definite. We will simply
assume that this holds whenever we refer to the generalized Coulomb interaction. To
see that this assumption implies the strong growth condition, first note that v � 0

guarantees in particular that U is a nonnegative polynomial, strictly positive away
from x = 0. Since U is homogeneous quartic, it follows that U � C�1|x|4 for some
constant C sufficiently large, which evidently implies the strong growth condition.
Another sufficient assumption is that the entries of v are nonnegative and moreover
that the diagonal entries are strictly positive.

Our interest in diagrammatic expansions leads us to adopt a further condition on
the interaction. Too see why this is necessary, recall from Part II that the perturbation
about a non-interacting theory (U ⌘ 0) involves integrals such asˆ

U(x) e�
1

2

xTAx
dx,

which is clearly undefined if, e.g., U(x) = ex
4 . In most applications of interest, U(x)

is only of polynomial growth, but it is sufficient to assume growth that is at most
exponential in the sense of Assumption 5, which is actually only needed in section 4
for our consideration of the bold diagrammatic expansion.

Assumption 5 (At-most-exponential growth). In this section, we assume that there
exist constants B,C > 0 such that |U(x)|  BeCkxk for all x 2 Rn.

Further technical reasons for this assumption will become clear in section 4.

2.3 Measures and entropy: notation and facts
Let M be the space of probability measures on Rn (equipped with the Borel �-
algebra), let M2 ⇢ M be the subset of probability measures with moments up
to second order, and let � denote the Lebesgue measure on Rn. For notational
convenience we define a mapping that takes the second-order moments of a probability
measure:
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Definition 6. Define G : M2 ! SN
+ by G(µ) =

´
xxT

dµ. Writing G = (Gij), we
equivalently have Gij(µ) =

´
xixj dµ.

Therefore if µ is defined via a density

dµ = ⇢(x) dx, where ⇢(x) =
1

Z[A]
e�

1

2

xTAx�U(x),

then G(µ) = G[A].
We also denote by

Cov(µ) =

ˆ
xxT

dµ�
✓ˆ

x dµ

◆✓ˆ
x dµ

◆T

the covariance matrix of µ.
For µ 2M, let H denote the (differential) entropy

H(µ) =

(
�
´
log

dµ
d�

dµ, µ⌧ �

�1, otherwise

(2.8)

where dµ
d�

denotes the Radon-Nikodym derivative (i.e., the probability density function
of µ with respect to the Lebesgue measure �) whenever µ ⌧ � (i.e., whenever µ is
absolutely continuous with respect to the Lebesgue measure). We will often refer to
the differential entropy as the entropy for convenience.

For µ, ⌫ 2M, define the relative entropy H⌫(µ) via

H⌫(µ) =

(
�
´
log

dµ
d⌫

dµ, µ⌧ ⌫

�1, otherwise.
(2.9)

Note carefully the sign convention.8 The integral in (2.9) is well-defined with values
in R [ {�1} for all µ, ⌫ 2M.

We now record some useful properties of the relative entropy.

Fact 7. For fixed ⌫ 2M, H⌫ is non-positive and strictly concave on M, and H⌫(µ) =
0 if and only if µ = ⌫. Moreover H⌫ is upper semi-continuous with respect to the
topology of weak convergence; i.e., if the sequence µk 2M converges weakly to µ 2M,
then lim supk!1 H⌫(µk)  H⌫(µ).

Proof. For proofs see [88].

By contrast to the relative entropy, the differential entropy suffers from two ana-
lytical nuisances.

8Our relative entropy is then the negative of the Kullback-Leibler divergence, i.e., H⌫(µ) =
�DKL(µk⌫).
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First, in the definition of the entropy in (2.8), the entropy may actually fail to
be defined for some measures (which simultaneously concentrate too much in some
area and fail to decay fast enough at infinity, so the negative and positive parts of
the integral are �1 and +1, respectively, and the Lebesgue integral is ill-defined).
However, Lemma 8 states that when we restrict to M2, the integral cannot have an
infinite positive part and is well-defined.

Lemma 8. For µ 2 M2, if µ ⌧ �, then the integral in (2.8) exists (in particular,
the positive part of the integrand has finite integral) and moreover

H(µ)  1

2

log

�
(2⇡e)N detCov(µ)

�
 1

2

log

�
(2⇡e)N detG(µ)

�
,

with possibly H(µ) = �1. The first inequality is satisfied with equality if and only
if µ is a Gaussian measure with a positive definite covariance matrix. The second
inequality is satisfied with equality if and only if µ has mean zero.

Note that Lemma 8 also entails a useful bound on the entropy in terms of the
second moments, as well as the classical fact that Gaussian measures are the measures
of maximal entropy subject to second-order moment constraints.

The second analytical nuisance of the differential entropy is that we do not have
the same semi-continuity guarantee as we have for the relative entropy in Fact 7.
However, control on second moments allows a semi-continuity result that will suffice
for our purposes.

Lemma 9. Assume that µj 2M2 weakly converge to µ 2M, and that there exists a
constant C such that G(µj) � C · IN for all j. Then lim supj!1 H(µj)  H(µ).

Remark 10. In other words, the entropy is upper semi-continuous with respect to the
topology of weak convergence on any subset of probability measures with uniformly
bounded second moments. The subtle difference between the statements in Fact 7
and Lemma 9 is due to the fact that the Lebesgue measure � /2M.

The proofs of Lemmas 8 and 9 are given in appendix E.
Finally we record the classical fact that subject to marginal constraints, the en-

tropy is maximized by a product measure. In the statement and throughout this
work, ‘#’ denotes the pushforward operation on measures.

Fact 11. Suppose p < N and let ⇡1 : Rn ! Rp and ⇡2 : Rn ! RN�p to be the
projections onto the first p and last N�p components, respectively. Then for µ 2M2,
H(µ)  H(⇡1#µ) +H(⇡2#µ).

Remark 12. Note that ⇡1#µ and ⇡2#µ are the marginal distributions of µ with
respect to the product structure Rn

= Rp ⇥ RN�p.
See appendix E for a short proof.
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3 Luttinger-Ward formalism
This section is organized as follows. In section 3.1, we provide a variational expression
for the free energy via the classical Gibbs variational principle. For fixed U , this allows
us to identify the Legendre dual of ⌦[A], denoted by F [G], and to establish a bijection
between A and the interacting Green’s function G. In section 3.2, we define the
Luttinger-Ward functional and show that the Dyson equation can be naturally derived
by considering the first-order optimality condition associated to the minimization
problem in the variational expression for the free energy. Then we prove that the LW
functional satisfies a number of desirable properties. First, in section 3.3 we prove
the transformation rule, which relates a change of the coordinates of the interaction
with an appropriate transformation of the Green’s function. The transformation rule
leads to the projection rule in section 3.4, which implies the sparsity pattern of the
self-energy for the impurity problem. Up until this point we assume only that U
satisfy the weak growth condition. Then in section 3.5 we motivate and state our
result that the LW functional is continuous up to the boundary of Sn

++, for which we
need the assumption that U satisfies the strong growth condition. The proof (as well
as a counterexample demonstrating that weak growth is not sufficient) is deferred to
section 5. Throughout we defer the proofs of some technical lemmas to Appendix E.
Moreover we will invoke the language of convex analysis following Rockafellar [91]
and Rockafellar and Wets [92]. See Appendix C for further background and details.

3.1 Variational formulation of the free energy
The main result in this subsection is given by Theorem 13.

Theorem 13 (Variational structure). For U satisfying the weak growth condition, the
free energy can be expressed variationally via the constrained minimization problem

⌦[A] = inf

G2SN
+

✓
1

2

Tr[AG]� F [G]

◆
, (3.1)

where
F [G] := sup

µ2G�1(G)


H(µ)�

ˆ
U dµ

�
(3.2)

is the concave conjugate of ⌦[A] with respect to the inner product hA,Gi = 1
2
Tr[AG].

(Note that by convention F [G] = �1 whenever G�1
(G) is empty, i.e., whenever

G 2 SN\SN
+ .) Moreover ⌦ and F are smooth and strictly concave on their respective

domains dom⌦ and Sn
++. The mapping G[A] := r⌦[A] is a bijection dom⌦! SN

++,
with inverse given by A[G] := rF [G].

We first record some technical properties of ⌦ in Lemma 2.

Lemma 14. ⌦ is an upper semi-continuous, proper (hence closed) concave function.
Moreover, ⌦ is strictly concave and C1-smooth on dom⌦.
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Remark 15. Recall that a function f on a metric space X is upper semi-continuous
if for any sequence xk 2 X converging to x, we have lim supk!1 f(xk)  f(x).

We now turn to exploring the concave (or Legendre-Fenchel) duality associated
to ⌦. The following lemma, a version of the classical Gibbs variational principle [88],
is the first step toward identifying the dual of ⌦.

Lemma 16. For any A 2 SN ,

⌦[A] = inf

µ2M
2

ˆ ✓
1

2

xTAx+ U(x)

◆
dµ(x)�H(µ)

�
. (3.3)

If A 2 dom⌦, the infimum is uniquely attained at dµ(x) = 1
Z[A]

e�
1

2

xTAx�U(x)
dx.

Remark 17. One might wonder whether the infimum in (3.3) can be taken over all
of M. Note that if µ does not have a second moment, it is possible to have both
H(µ) = +1 and

´ �
1
2
xTAx+ U(x)

�
dµ(x) = +1, so the expression in brackets is of

the indeterminate form1�1. The restriction to µ 2M2 takes care of this problem
because Lemma 8 guarantees that H(µ) < +1, and by the weak growth condition,
the other term in the infimum must be either finite or +1. Moreover, M2 is still
large enough to contain the minimizer, and restricting our attention to measures with
finite second-order moments will be convenient in later developments.

From the previous lemma we can split up the infimum in (3.3) and obtain

⌦[A] = inf

G2SN
+

inf

µ2G�1(G)

ˆ ✓
1

2

xTAx+ U(x)

◆
dµ(x)�H(µ)

�
.

Since
´
xTAx dµ = Tr[G(µ)A], it follows that

⌦[A] = inf

G2SN
+

✓
1

2

Tr[AG] + inf

µ2G�1(G)

ˆ
U dµ�H(µ)

�◆
.

This proves Eq. (3.1) of Theorem 13 using the definition of F [G] in Eq. (3.2).
Remark 18. For the perspective of the large deviations theory, we comment that the
construction of F from the entropy may be recognizable by analogy to the contraction
principle [88]. Indeed, the expression

´
U dµ � H(µ) is equal (modulo a constant

offset) to �H⌫U (µ), where ⌫U is the measure with density proportional to e�U . If one
considers i.i.d. sampling from the probability measure ⌫U , by Sanov’s theorem �H⌫U

is the corresponding large deviations rate function for the empirical measure. The
rate function for the second-order moment matrix (i.e., �F , modulo constant offset)
is obtained via the contraction principle applied to the mapping µ 7! G(µ). This
is analogous to the procedure by which one obtains Cramér’s theorem from Sanov’s
theorem via application of the contraction principle to a map that maps µ to its
mean [88].
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Now we record some technical facts about F in Lemma 19, which demonstrates in
particular that F diverges (at least) logarithmically at the boundary @SN

+ = SN
+ \SN

++.

Lemma 19. F is finite on Sn
++ and �1 elsewhere. Moreover,

F [G]  1

2

log

⇥
(2⇡e)N detG

⇤
+ CU(1 + TrG)

for all G 2 Sn
++.

Define
 [µ] := H(µ)�

ˆ
U dµ,

so F [G] = supµ2G�1(G) [µ]. By the concavity of the entropy,  is concave on M2.
Thus, given G, we can in principle solve a concave maximization problem over µ 2M
to find F [G], with the linear constraint µ 2 G�1

(G). Moreover, this variational
representation of F in terms of the concave function  is enough to establish the
concavity of F by abstract considerations. This and other properties of F are collected
in the following.

Lemma 20. F is an upper semi-continuous, proper (hence closed) concave function
on SN .

Now Eq. (3.1) states precisely that ⌦ is the concave conjugate of F with respect
to the inner product hA,Gi = 1

2
Tr[AG], and accordingly we write ⌦ = F⇤. Since F

is concave and closed, we have by Theorem 19 that F = F⇤⇤
= ⌦

⇤, i.e., F and ⌦ are
concave duals of one another. Thus we expect that rF and r⌦ are inverses of one
another, but to make sense of this claim we need to establish the differentiability of
F . We collect this and other desirable properties of F in the following:

Lemma 21. F is C1-smooth and strictly concave on Sn
++.

Then Theorem 20 guarantees that r⌦ is a bijection from dom⌦! Sn
++ with its

inverse given by rF . This completes the proof of Theorem 13.
Finally, following Lemma 16, together with the splitting of (3.3) and the A$ G

correspondence of Theorem 13, we observe that the supremum in (3.2) is attained
uniquely at the measure dµ :=

1
Z[A[G]]

e�
1

2

xTA[G]x�U(x)
dx.

3.2 The Luttinger-Ward functional and the Dyson equation
According to Lemma 19, F should blow up at least logarithmically as G approaches
the boundary of SN

++. Remarkably, we can explicitly separate the part that accounts
for the blowup of F at the boundary. In fact, subtracting away this part is how we
define the Luttinger-Ward (LW) functional for the Gibbs model. We will see in this
subsection that the definition of the Luttinger-Ward functional can also be motivated
by the stipulation that its gradient (the self-energy) should satisfy the Dyson equation.
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Consider for a moment the case in which U ⌘ 0, so

F [G] = sup

µ2G�1(G)


H(µ)�

ˆ
U dµ

�
= sup

µ2G�1(G)

H(µ).

The random variable X achieving the maximum entropy subject to E[XiXj] = Gij

follows a Gaussian distribution, i.e., X ⇠ N (0, G). It follows that

F [G] =

1

2

log

�
(2⇡e)N detG

�
=

1

2

Tr[log(G)] +

N

2

log(2⇡e).

This motivates, for general U , the consideration of the Luttinger-Ward functional

�[G] := 2F [G]� Tr[log(G)]�N log(2⇡e). (3.4)

For non-interacting systems, �[G] ⌘ 0 by construction.
Now we turn to establishing the Dyson equation. Theorem 13 shows that for

A 2 dom⌦, the minimizer G⇤ in (3.1) satisfies A = rF [G⇤
] = A[G⇤

], so the minimizer
is G⇤

= G[A]. Recall

F [G] =

1

2

Tr[log(G)] +

1

2

�[G] +

1

2

N log(2⇡e).

Taking gradients and plugging into A = rF [G⇤
] yields

0 = A� (G⇤
)

�1 � 1

2

r�[G⇤
].

Define the self-energy ⌃ as a functional of G by ⌃[G] :=

1
2
r�[G] =

@�
@G

[G]. Then
we have established that for G = G[A],

G�1
= A� ⌃[G]. (3.5)

Moreover, by the strict concavity of F , G = G[A] is the unique G solving (3.5).
Eq. (3.5) is in fact the Dyson equation as in section 3.8 of Part II. To see this, recall

from Eq. (2.4) that the non-interacting Green’s function G0 is given by G0
= A�1, so

we have
G�1

= (G0
)

�1 � ⌃[G].

Left- and right-multiplying by G0 and G, respectively, and then rearranging, we obtain

G = G0
+G0

⌃[G]G.

However, Eq. (2.4) requires G0 to be well defined, i.e., A 2 SN
++. On the other

hand, the Dyson equation (3.5) derived from the LW functional does not rely on this
assumption and makes sense for all A 2 dom⌦. Nonetheless, if for fixed A one seeks
to approximately solve the Dyson equation for G by inserting an ansatz for the self-
energy obtained from many-body perturbation theory, one must be wary in the case
that A /2 Sn

++; see section 4.5.
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3.3 Transformation rule for the LW functional
Though the dependence of the Luttinger-Ward functional on the interaction U was
only implicit in the previous section, we now explicitly consider this dependence,
including it in our notation as �[G,U ]. The same convention will be followed for
other functionals without comment. Proposition 22 relates a transformation of the
interaction with a corresponding transformation of the Green’s function.

Proposition 22 (Transformation rule). Let G 2 SN
++, U be an interaction satisfying

the weak growth condition. Let T denote an invertible matrix in RN⇥N , as well as the
corresponding linear transformation Rn ! Rn. Then

�[TGT ⇤, U ] = �[G,U � T ].

Proof. For G 2 Sn
++, note that the supremum in (3.2) can be restricted to the set of

µ 2 G�1
(G) that have densities with respect to the Lebesgue measure. (Indeed, for

any µ 2M2 that does not have a density, H(µ)�
´
U dµ = �1.) Then observe

�[G,U ] = �N log(2⇡e)� log detG+ 2 sup

µ2G�1(G)


H(µ)�

ˆ
U dµ

�
= �N log(2⇡e)� log detG� 2 inf

{⇢ : ⇢ dx2G�1(G)}

ˆ
(log ⇢+ U) ⇢ dx

�
= �N log(2⇡e)� 2 inf

{⇢ : ⇢ dx2G�1(G)}

ˆ �
log

⇥
(detG)

1/2⇢
⇤
+ U

�
⇢ dx

�
.

Going forward we will denote C := �N log(2⇡e).
Then for T invertible, we have

�[TGT ⇤, U ] = C � 2 inf

⇢ dx2G�1(TGT ⇤)

ˆ �
log

⇥
(detG)

1/2 · | detT | · ⇢
⇤
+ U

�
⇢ dx

�
.

Now observe by changing variables that�
⇢ : ⇢ dx 2 G�1

(TGT ⇤
)

 
=

�
| detT |�1 · ⇢ � T�1

: ⇢ dx 2 G�1
(G)

 
.

Therefore

�[TGT ⇤, U ] = C � 2 inf

⇢ dx2G�1(G)


| detT |�1

ˆ �
log

⇥
(detG)

1/2 · ⇢ � T�1
⇤
+ U

�
⇢ � T�1

dx

�
= C � 2 inf

⇢ dx2G�1(G)

ˆ �
log

⇥
(detG)

1/2 · ⇢
⇤
+ U � T

�
⇢ dx

�
= �[G,U � T ],

as was to be shown.
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Remark 23. Since T is real, the Hermite conjugation T ⇤ is the same as the matrix
transpose, and this is used simply to avoid the notation T T .

From the transformation rule we have the following corollary:

Corollary 24. Let G 2 SN
++, and consider an interaction U which is a homogeneous

polynomial of degree 4 satisfying the weak growth condition. For � > 0, we have

�[�G,U ] = �[G,�2U ].

3.4 Impurity problems and the projection rule
For the impurity problem, the interaction only depends on a subset of the variables
x1, . . . , xN , namely the fragment. In such a case, the Luttinger-Ward functional can
be related to a lower-dimensional Luttinger-Ward functional corresponding to the
fragment. This relation, called the projection rule, is given in Proposition 25 below.
In the notation, we will now explicitly indicate the dimension d of the state space
associated with the Luttinger-Ward functional via subscript as in �d[G,U ], since we
will be considering functionals for state spaces of different dimensions. We will follow
the same convention for other functionals without comment.

Before we state the projection rule, we record some remarks on the domain of
⌦ and growth conditions in the context of impurity problems. Suppose that the
interaction U depends only on x1, . . . , xp, where p  N , so U can alternatively be
considered as a function on Rp. Notice that even if U satisfies the strong growth
condition as a function on Rp, it is of course not true that dom (⌦N [ · , U ]) = SN . As
mentioned above, this provides a natural reason to consider interactions that do not
grow fast in all directions and motivates the generality of our previous considerations.

In fact, for

A =

✓
A11 A12

AT
12 A22

◆
,

one can show by Fubini’s theorem, integrating out the last N � p variables in (2.2),
that A 2 dom (⌦N [ · , U ]) if and only if both

A22 2 SN�p
++ and A11 � A12A

�1
22 A

T
12 2 dom (⌦p[ · , U ]) .

Moreover, one can show that for such A,

⌦N [A,U ] = ⌦p

⇥
A11 � A12A

�1
22 A

T
12, U

⇤
+

1

2

log((2⇡)p�N
detA22).

Therefore, if dom (⌦p[ · , U( · , 0)]) is open, then so is dom (⌦N [ · , U ]). It follows that
if U satisfies the weak growth condition as a function on Rp, then U also satisfies the
weak growth condition as a function on RN .

118



Proposition 25 (Projection rule). Let p  N . Suppose that U depends only on
x1, . . . , xp and satisfies the weak growth condition. Hence we can think of U as a
function on both Rn and Rp. Then for G 2 Sn

++,

�N [G,U ] = �p [G11, U ] ,

where G11 is the upper-left p⇥ p block of G.

Remark 26. If U can be made to depend only on p  N variables by linearly changing
variables, then we can use the projection rule in combination with the transformation
rule (Proposition 22) to reveal the relationship with a lower-dimensional Luttinger-
Ward functional, though we do not make this explicit here with a formula.

Corollary 27. Let p  N , and P be the orthogonal projection onto the subspace
span {e(N)

1 , . . . , e(N)
p }. Suppose that U( · , 0) satisfies the weak growth condition. Then

for G 2 Sn
++,

�N [G,U � P ] = �p [G11, U( · , 0)] ,
where G11 is the upper-left p⇥ p block of G.

Proof. (Of Proposition 25.) First we observe that we can assume that G is block-
diagonal. To see this, let G 2 Sn

++, and write

G =

✓
G11 G12

GT
12 G22

◆
.

Then block Gaussian elimination reveals that

G =

✓
I 0

GT
12G

�1
11 I

◆✓
G11 0

0 G22 �GT
12G

�1
11 G12

◆✓
I G�1

11 G12

0 I

◆
.

Define
T :=

✓
I 0

GT
12G

�1
11 I

◆
, eG :=

✓
G11 0

0 G22 �GT
12G

�1
11 G12

◆
,

so G = T eGT ⇤. Then by the transformation rule, we have

�N [G,U ] = �N [
eG,U � T ] = �N [

eG,U ],

where the last equality uses the fact that U depends only on the first p arguments,
which are unchanged by the transformation T .

Since eG is block-diagonal with the same upper-left block as G, we have reduced
to the block-diagonal case, as claimed, so now assume that G 2 Sn

++ with

G =

✓
G11 0

0 G22

◆
.
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Recall the expression for FN :

FN [G,U ] = sup

µ2G�1

N (G)


H(µ)�

ˆ
U dµ

�
.

Next define ⇡1 : Rn ! Rp and ⇡2 : Rn ! RN�p to be the projections onto the first
p and last N � p components, respectively. Then with ‘#’ denoting the pushforward
operation on measures, ⇡1#µ and ⇡2#µ are the marginals of µ with respect to the
product structure Rn

= Rp ⇥ RN�p. Now recall Fact 11, in particular the inequality
H(µ)  H(⇡1#µ) +H(⇡2#µ). Also note that if µ 2 G�1

N (G), then ⇡1#µ 2 G�1
p (G11)

and ⇡2#µ 2 G�1
N�p(G22). Finally observe that since U depends only on the first p

arguments,
´
U dµ =

´
U d(⇡1#µ) for any µ. Therefore

FN [G,U ]  sup

µ2G�1

N (G)


H(⇡1#µ) +H(⇡2#µ)�

ˆ
U d(⇡1#µ)

�
 sup

µ
1

2G�1

p (G
11

)


H(µ1)�

ˆ
U dµ1

�
+ sup

µ
2

2G�1

N�p(G22

)

[H(µ2)]

= Fp[G11, U ] +

1

2

log((2⇡e)N�p
detG22).

Since detG = detG11 detG22, it follows that

�N [G,U ]  �p[G11, U ].

For the reverse inequality, let µ1 be arbitrary in G�1
p (G11), and consider µ :=

µ1 ⇥ µ2, where µ2 is given by the normal distribution with mean zero and covariance
G22. Then

FN [G,U ] � H(µ)�
ˆ

U dµ = H(µ1)�
ˆ

U dµ1 +
1

2

log((2⇡e)N�p
detG22).

Since µ1 is arbitrary in G�1
p (G11), it follows by taking the supremum over µ1 that

FN [G,U ] � Fp[G11, U ] +

1

2

log((2⇡e)N�p
detG22),

which implies
�N [G,U ] � �p[G11, U ].

Remark 28. The proof suggests that for U depending only on the first p arguments
and G block-diagonal, the supremum in the definition of F is attained by a product
measure, which is perhaps not surprising. The proof also suggests, however, that for
such U and general G, the supremum is attained by taking a product measure and
then ‘correlating’ it via the transformation T .
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For the impurity problem, Proposition 25 immediately implies that the self-energy
has a particular sparsity pattern:

Corollary 29. Let p  N and suppose that U (satisfying the weak growth condition)
depends only on x1, . . . , xp. Then

⌃N [G,U ] =

✓
⌃p[G11, U ] 0

0 0

◆
.

For example, consider U(x) = 1
8

P
ijkl vijx

2
ix

2
j . Here the stipulation that U depend

only on the first p arguments corresponds to the stipulation that vij = 0 unless i, j  p.
For such an interaction, in the bold diagrammatic expansion for � and ⌃, any term
in which Gij appears will be zero unless i, j  p. This is a non-rigorous perturbative
explanation of the fact that � depends only on the upper-left block of G, which in
turn explains the sparsity structure of ⌃, as well as the fact that ⌃ also depends
only on the upper-left block of G. However, the developments of this section apply
to interactions U of far greater generality and which may indeed be non-polynomial,
hence not admitting of a bold diagrammatic expansion.

3.5 Continuous extension of the LW functional to the bound-
ary

The discussion in this subsection is only heuristic, and the proofs of the theorems
stated here are deferred to section 5.

Now in section 3.1 we saw that the functional F [G] diverges at the boundary
@SN

+ = SN
+ \SN

++. On the other hand, the projection rule together with the transfor-
mation rule, motivates the formula by which we can extend � continuously up to the
boundary @SN

+ .
Indeed, suppose that T (j) ! P , where T (j) is invertible and P is the orthogonal

projection onto the first p components, as in Corollary 27. Then for G 2 Sn
++,

�N [T
(j)G(T (j)

)

⇤, U ] = �N [G,U � T (j)
].

By naively taking limits of both sides, we expect that

�N [PGP,U ] = �N [G,U � P ]

where G11 is the upper-left p⇥ p block of G. Then by the projection rule we expect

�N

✓
G11 0

0 0

◆
, U

�
= �p[G11, U( · , 0)],

where G11 is the upper-left p⇥ p block of G. After possibly changing coordinates via
the transformation rule, this formula provides a general recipe for evaluating the LW
functional on the boundary @Sn

+, which is the content of Theorem 30 below.
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Unfortunately, there are nontrivial analytic difficulties that are hidden by this
heuristic derivation. In fact there exists an interaction U satisfying the weak growth
condition for which the continuous extension property fails. Since the discussion of
this counterexample is somewhat involved, it is postponed to section 5.5. However,
the continuous extension property is true for U satisfying the strong growth condition
of Definition 4.

Before stating the continuous extension property in Theorem 30, we provide
a more careful discussion of the structure of the boundary @Sn

+. Consider a q-
dimensional subspace K of Rn, and let p = N � q. Then the set

SK :=

�
G 2 SN

+ : kerG = K
 

forms a ‘stratum’ of the boundary of S+, which is itself isomorphic to the set of
p⇥p positive definite matrices. In turn, one can consider boundary strata (of smaller
dimension) nested inside of SK .

We will show that the restriction of the Luttinger-Ward function to such a stratum
is precisely the Luttinger-Ward function for a lower-dimensional system. To this end,
fix a subspace K and choose any orthonormal basis v1, . . . , vp for K?. (The choice
of basis is not canonical but can be made for the purpose of writing down results
explicitly.) Define Vp := [v1, . . . , vp]. We use this notation to indicate both the matrix
and the corresponding linear map.

Theorem 30 (Continuous extension, I). Suppose that U is continuous and satisfies
the strong growth condition. With notation as in the preceding discussion, �N [ · , U ]

extends continuously to SK via the rule

�N [G,U ] = �p

⇥
V ⇤
p GVp, U � Vp

⇤
for G 2 SK. Consequently, �N [ · , U ] extends continuously to all of SN

+ .

Remark 31. We interpret the extension rule as to set �N [0, U ] = �0[U ] := �2 ·U(0).
Moreover, it will become clear in the proof that even for continuous interactions U
that do not satisfy the strong growth condition, the extension is still lower semi-
continuous on Sn

+ and continuous on Sn
++ [ {0}.

Changing coordinates via Proposition 22, we see that Theorem 30 is actually
equivalent to the following:

Theorem 32 (Continuous extension, II). Suppose that U is continuous and satisfies
the strong growth condition. For G 2 Sp

++, �[ · , U ] extends continuously via the rule

�N

✓
G 0

0 0

◆
, U

�
= �p [G,U(·, 0)] .

Once again we comment that proof is deferred to section 5.
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4 Bold diagrammatic expansion for the generalized
Coulomb interaction

Using the Luttinger-Ward formalism, in this section we prove that the bold dia-
grammatic expansions from Part II of the self-energy and the LW functional (for the
generalized Coulomb interaction (4.1)) can indeed be interpreted as asymptotic series
expansions in the interaction strength at fixed G. This provides a rigorous interpre-
tation of the bold expansions that is not merely combinatorial. Recall that when
each G in the bold diagrammatic expansion of the self-energy is further expanded
using G0 and U , the resulting expansion should be formally the same as the bare
diagrammatic expansion of the self energy. The combinatorial argument in section 4
of Part II guaranteeing this fact does not need to be repeated in this setting, and we
will be able to directly use Theorem 4.12 from Part II. The remaining hurdles are
analytical, not combinatorial.

We summarize the results of this section as follows.

Theorem 33. For any continuous interaction U : Rn ! R satisfying the weak growth
condition and any G 2 Sn

++, the LW functional and the self-energy have asymptotic
series expansions as

�[G, "U ] =

1X
k=1

�

(k)
[G,U ]"k, ⌃[G, "U ] =

1X
k=1

⌃

(k)
[G,U ]"k. (4.1)

Moreover, for U a homogeneous quartic polynomial, the coefficients of the asymptotic
series satisfy

�

(k)
[G,U ] =

1

2k
Tr

⇥
G⌃(k)

[G,U ]

⇤
. (4.2)

If U is moreover a generalized Coulomb interaction (1.6), we have (borrowing the
language of Part II) that

⌃

(k)
ij [G,U ] =

X
�
s

2F2PI

2

, order k

F�
s

(i, j)

S�
s

, (4.3)

i.e., ⌃(k) is given the sum over bold skeleton diagrams of order k with bold propagator
G and interaction vij�ik�jl.

Remark 34. For a series as in Eq. (4.1) to be asymptotic means that the error of the
M -th partial sum is O("M+1

) as "! 0.
Since U is fixed, for simplicity in the ensuing discussion we will omit the de-

pendence on U from the notation via the definitions �G(") := �[G, "U ], ⌃G(") =

⌃[G, "U ], and AG(") := A[G, "U ]. We will also denote the series coefficients via
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�

(k)
G := �

(k)
[G,U ] and ⌃(k)

G := ⌃

(k)
[G,U ]. In this notation, our asymptotic series take

the form

�G(") =
1X
k=1

�

(k)
G "k, ⌃G(") =

1X
k=1

⌃

(k)
G "k. (4.4)

Notation 35. Note carefully that in this section the superscript (k) is merely a no-
tation and does not indicate the k-th derivative. Such derivatives will be written out
as dk

d"k
.

Now we outline the remainder of this section. In section 4.1 we prove that the
LW functional and the self-energy do indeed admit asymptotic series expansions. In
section 4.2 we prove the relation between the LW and self-energy expansions for quar-
tic interactions, namely Eq. (4.2). Interestingly, this relation—which is well-known
formally based on diagrammatic observations—was originally assumed to be true to
obtain a formal derivation of the LW functional [65, 68]. Our proof here does not rely
on any diagrammatic manipulation, only making use of the transformation rule and
the quartic nature of the interaction U . Similar relations for homogeneous polynomial
interactions of different order could easily be obtained. Next, in section 4.3, we sum-
marize and expand on the necessary results from Part II in diagram-free language;
this both reduces the prerequisite knowledge needed for the remainder of the section
and clarifies the arguments that follow. Finally, in section 4.4 we prove that when U
is a generalized Coulomb interaction, the series for the self-energy is in fact the bold
diagrammatic expansion of section 4 of Part II.

4.1 Existence of asymptotic series
In this section we assume that U is continuous and satisfies the weak growth condition.
We first prove the following pair of lemmas.

Lemma 36. For any G 2 Sn
++, AG(")! G�1 as "! 0

+.

Lemma 37. For G 2 Sn
++, all derivatives of the functions �G : (0,1) ! R and

⌃G : (0,1)! RN⇥N extend continuously to [0,1).

We will convey the continuous extension of the derivatives of �G to the origin by
the notation �(k)

G := �

(k)
G (0), and similarly for the self-energy ⌃(k)

G := ⌃

(k)
G (0). From

the preceding it will follow that the series (4.4) are indeed asymptotic series in the
following sense:

Proposition 38. For any nonnegative integer M , �G(") �
PM

k=1�
(k)
G "k = O("M+1

)

and ⌃G(")�
PM

k=1⌃
(k)
G "k = O("M+1

) as "! 0

+.

Proof. Consider any function f : [0,1) ! R with all derivatives extending continu-
ously up to the boundary (and so defined at 0). Let � > 0, so for " 2 (�, 1] we know
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by the Lagrange error bound that�����f(")�
MX
k=0

f (k)
(�)("� �)k

�����  C("� �)M+1  C"M+1,

where C is a constant that depends only on a uniform bound on
�

d
d"

�k+1
f over [0, 1]

(the existence of which is guaranteed by the continuous extension property). Simply
taking the limit of our inequality as � ! 0

+, and again employing the continuous
extension property, yields that

���f(")�PM
k=0 f

(k)
(0)"k

���  C"M+1. This fact together
with Lemma 37 proves the proposition.

4.2 Relating the LW and self-energy expansions
The bold diagrams for the Luttinger-Ward functional are pinned down in terms of
the bold diagrams for the self-energy via the following:

Proposition 39. If U is a homogeneous quartic polynomial, then for all k,

�

(k)
G =

1

2k
Tr[G⌃(k)

G ].

Proof. Observe that by the transformation rule that for any G 2 Sn
++, ", t > 0.

�[tG, "U ] = �[G, "U � (t1/2I)]

Taking the gradient in G of both sides, we have

t⌃[tG, "U ] = ⌃[G, "U � (t1/2I)].

Since U is homogeneous quartic, in fact we have

⌃[tG, "U ] =

1

t
⌃[G, t2"U ].

Then using this relation we compute:

�[G, "U ] =

ˆ 1

0

d

dt
�[tG, "U ] dt

=

ˆ 1

0

Tr[G⌃[tG, "U ]] dt

=

ˆ 1

0

1

t
Tr[G⌃[G, t2"U ]] dt

=

ˆ 1

0

1

t

"
MX
k=1

Tr

h
G⌃(k)

G

i
t2k"k +O

�
t2(M+1)"M+1

�#
dt
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=

ˆ 1

0

"
MX
k=1

Tr

h
G⌃(k)

G

i
t2k�1"k +O

�
t2M+1"M+1

�#
dt.

Now since t ranges from 0 to 1 in the integrand, we have that t2N+1"N+1  "N+1, and
therefore

�[G, "U ] =

ˆ 1

0

"
MX
k=1

Tr

h
G⌃(k)

G

i
t2k�1"k

#
dt+O("M+1

)

=

MX
k=1

1

2k
Tr

h
G⌃(k)

G

i
"k +O("M+1

).

This establishes the proposition.

4.3 Diagram-free discussion of results from Part II
For U satisfying the weak growth condition and A 2 dom⌦[ · , U ], define

�[A,U ] := A� (G[A,U ])

�1.

Here we use the lowercase � to emphasize that the self-energy here is being considered
as a functional of A (not G), together with the interaction.

Now we set the notation of U to indicated a fixed generalized Coulomb interac-
tion (1.6). Further define

GA(") := G[A, "U ], �A(") := �[A, "U ]. (4.5)

The following lemma concerns the bare diagrammatic expansion of the Green’s
function and the self-energy, i.e., the asymptotic series for GA and �A.
Lemma 40. For fixed A 2 Sn

++, all derivatives dnGA
d"n

: (0,1) ! Sn
++ and dn�A

d"n
:

(0,1)! SN extend continuously to [0,1). In fact, interpreted as functions of both
A and ", dnGA

d"n
(") and dn�A

d"n
(") extend continuously to Sn

++ ⇥ [0,1). Moreover, we
have asymptotic series expansions

GA(") =
1X
k=0

g(k)A "k, �A(") =
1X
k=1

�(k)
A "k,

where the coefficient functions g(k)A and �(k)
A are polynomials in A�1. More precisely,

g(k)A and �(k)
A are homogeneous polynomials of degrees 2k+ 1 and 2k� 1, respectively.

(Note that the zeroth-order term �(0)
A is implicitly zero.)

Finally, let G(M)
A (") and �(M)

A (") denote the M-th partial sums of the above
asymptotic series for GA(") and �A("), respectively. For every A 2 Sn

++, there exists
a neighborhood N of A in Sn

++ on which the truncation errors can actually be bounded���GA(")�G(M)
A (")

���  C"M+1,
����A(")� �(M)

A (")
���  C"M+1

for all ✏ 2 [0, ⌧ ], with C, ⌧ independent of A 2 N .
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Proof. The asymptotic series expansions for GA and ⌃A are established in Theorems
3.15 and 3.17 of Part II. The continuous extension of the derivatives of GA and
�A to [0,1) follows from differentiation under the integral and simple dominated
convergence arguments.

The uniform error bound follows from a Lagrange error bound argument as in
Proposition 38, together with the continuity of dnGA

d"n
(") and dn�A

d"n
(") on Sn

++⇥ [0,1).

Inspired by Eq. (4.3), let

S(k)
G =

X
�
s

2F2PI

2

, order k

F�
s

S�
s

.

In fact S(k)
G is polynomial in G, homogeneous of degree 2k � 1. At this point we do

not yet know that S(k)
G coincides with ⌃(k)

G , and indeed this is what we want to show.
For any G, also define the partial sum

S(M)
G (") :=

MX
k=1

S(k)
G "k.

Then the main result (Theorem 4.12) of Part II can be phrased as follows.

Theorem 41. For any fixed A 2 Sn
++, the expressions

S(M)

G
(M)

A (")
(") =

MX
k=1

S(k)

G
(M)

A (")
"k, �(M)

A (") =
MX
k=1

�(k)
A "k

agree as polynomials in " up to order M , and hence they agree as joint polynomials
in (A�1, ") after neglecting all terms in which " appears degree at least M + 1.

4.4 Derivation of self-energy bold diagrams
We have already shown that there exist asymptotic series for the LW functional and
the self-energy. The remainder of Theorem 33 then consists of identifying that the
self-energy coefficients ⌃(k)

G are indeed given by the bold diagrammatic expansion,
i.e., that ⌃(k)

G = S(k)
G . Equivalently, we want to show that the partial sums S(M)

G (")

and ⌃(M)
G ("), which are polynomials of degree M in ", are equal. We will think of

G 2 Sn
++ as fixed throughout the following discussion, and we omit dependence on G

from some of the notation below to avoid excess clutter. We will also think of M as
a fixed positive integer and " > 0 as variable (and sufficiently small).

Since our series expansion is only valid in the asymptotic sense, for any finite M
we consider the truncation

⌃

(M)
G (") :=

MX
k=1

⌃

(k)
G "k.
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Then we have ⌃G(") � ⌃(M)
G (") = O("M+1

). For the purpose of this discussion,
O("M+1

) will be thought of as negligibly small, and ‘⇡’ will be used to denote equality
up to error O("M+1

). Meanwhile ‘⇠’ will be used to denote error that is O("M+1�p
) for

all p 2 (0, 1), equivalently O("M+�
) for all � 2 (0, 1). We remark that the difference

between the relations ‘⇡’ and ‘⇠’ is due to technical reasons to be detailed later, and
may be neglected on first reading.

Note that it actually suffices to show that ⌃(M)
G (") ⇠ S(M)

G ("). Indeed, both
sides are polynomials of degree M in ". Thus their difference is a polynomial of
degree M . If the degree-n part of the difference is nonzero for some n = 1, . . . ,M ,
then the difference is not O("n+�) for any � > 0. But if ⌃(M)

G (") ⇠ S(M)
G ("), then the

difference is O("n+�) for all n = 1, . . . ,M , � 2 (0, 1). Thus in this case the difference
is zero. With this reduction in mind, we now make a simple yet critical observation,
namely that ⌃(M)

G (") can be identified as the exact self-energy yielded by a modified
interaction term. This will allow us to identify a quadratic form A(M)

("), for which
dependence on G has been suppressed from the notation, which generates (up to
negligible error) the Green’s function G under the interaction "U .

Lemma 42. With notation as in the preceding discussion, ⌃(M)
G (") is the self-energy

induced by the interaction U (M)
" (x) := "U(x) + 1

2
xT
h
⌃G(")� ⌃(M)

G (")
i
x, i.e.,

⌃

(M)
G (") = ⌃[G,U (M)

" ],

and moreover
A(M)

(") := A
⇥
G,U (M)

"

⇤
= G�1

+ ⌃

(M)
G (").

Thus we may identify

G = G[A(M)
("), U (M)

" ], ⌃

(M)
G (") = �[A(M)

("), U (M)
" ].

Proof. Recalling that AG(") = A[G, "U ] and ⌃G(") = ⌃[G, "U ], write
1

2

xTAG(")x+ U(x) =

1

2

xT
⇣
AG(")� ⌃G(") + ⌃

(M)
G (")

⌘
x+ U (M)

" (x)

=

1

2

xT
⇣
G�1

+ ⌃

(M)
G (")

⌘
x+ U (M)

" (x).

It follows that under the interaction U (M)
" , the quadratic form G�1

+⌃

(M)
G (") corre-

sponds to the (interacting) Green’s function G. This establishes the second statement
of the lemma, i.e., that

A[G,U (M)
" ] = G�1

+ ⌃

(M)
G (").

Moreover, by the Dyson equation we have that

⌃[G,U (M)
" ] = A[G,U (M)

" ]�G�1
= ⌃

(M)
G ("),

which is the first statement of the lemma. The last statement then follows from the
second, together with the definitions of G[ · , · ] and �[ · , · ].

128



Remark 43. Note carefully that Lemma 42 is a non-perturbative fact and is valid for
all " > 0, though we shall apply it in a perturbative context.

At this point we have defined the terms needed to present a schematic diagram
(Figure 32) of our proof that ⌃(M)

G (") ⇠ S(M)
G ("). Although the motivation for this

schematic may not be fully clear at this point, the reader should refer back to it as
needed for perspective.

⌃

(M)
G (") S(M)

G (")

A(M)
(") = G�1

+ ⌃

(M)
G (")

�A(M)(")(") �(M)

A(M)(")
(")

Lemma 45

To prove

Lemma 49

Lemma 46

Figure 32: Schematic diagram for proving the bold diagrammatic expansion. Dashed
lines indicate ‘⇠’, and solid lines indicate ‘⇡’.

Now recalling the definitions (4.5), we can write

GA(M)(")(") = G[A(M)
("), "U ], �A(M)(")(") := �[A(M)

("), "U ]. (4.6)

Meanwhile, following Lemma 42 we have the identities

G = G[A(M)
("), U (M)

" ], ⌃

(M)
G (") = �[A(M)

("), U (M)
" ]. (4.7)

Note that pointwise, "U and U (M)
" differ negligibly, but the form of "U is simpler and

easier to work with going forward.
Based on Eqs. (4.6) and (4.7), one then hopes that GA(M)(")(") is close to G and

�A(M)(")(") is close to ⌃(M)
G ("). This is the content of the next two lemmas.

Lemma 44. GA(M)(")(") ⇠ G.
Proof. See appendix E.11.

Lemma 45. �A(M)(")(") ⇠ ⌃
(M)
G (").

Proof. Based on Eqs. (4.6) and (4.7), we want to show that �[A(M)
("), U (M)

" ] ⇠
�[A(M)

("), "U ]. We have already shown that G = G[A(M)
("), U (M)

" ] ⇠ G[A(M)
("), "U ],

from which it follows that

A(M)
(")� (G[A(M)

("), U (M)
" ])

�1 ⇠ A(M)
(")� (G[A(M)

("), "U ])

�1,

which is exactly what we want to show.
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Then we can use �A(M)(")(") as a stepping stone to relate ⌃(M)
G (") with the bare

diagrammatic expansion for the self-energy via the following:

Lemma 46. �A(M)(")(") ⇡ �(M)

A(M)(")
(")

Proof. Since A(M)
(") = G�1

+O("), the result follows from Lemma 40 (in particular,
the locally uniform bound on truncation error of the bare self-energy series).

We can prove a similar fact (which will be useful later on) regarding the bare
series for the interacting Green’s function:

Lemma 47. GA(M)(")(") ⇡ G(M)

A(M)(")
(").

Proof. Since A(M)
(") = G�1

+O("), the result follows from Lemma 40 (in particular,
the locally uniform bound on truncation error of the bare series for the interacting
Green’s function).

From Lemmas 44 and 47 we immediately obtain:

Lemma 48. G(M)

A(M)(")
(") ⇠ G.

Finally, we are ready to state and prove the last leg of the schematic diagram
(Figure 32):

Lemma 49. S(M)
G ⇠ �(M)

A(M)(")
(").

Proof. Consider S(M)

G
(M)

A

as a polynomial in (A�1, "), and let P (A�1, ") be the contri-
bution of terms in which " appears with degree at least M + 1. By Theorem 41 we
have the equality

S(M)

G
(M)

A (")
(")� P (A�1, ") = �(M)

A (")

of polynomials in (A�1, "). Then substituting A A(M)
(") we obtain

S(M)

G
(M)

A(M)

(")
(")
(")� P ([A(M)

(")]�1, ") = �(M)

A(M)(")
("). (4.8)

Although the first term on the left-hand side of Eq. (4.8) looks quite intimidating, we
can recognize it as S(M)

G(") ("), where

G(") := G(M)

A(M)(")
(") ⇠ G
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is the expression from Lemma 48. Since S(M)
[ · ] (") =

PM
k=1 S

(k)
[ · ] "

k, where each S(k)
[ · ] is

a polynomial (homogeneous of positive degree) in the subscript slot, it follows that

S(M)
G(") (") ⇠ S(M)

G (").

Then from Eq. (4.8) we obtain

S(M)
G (")� P ([A(M)

(")]�1, ") ⇠ �(M)

A(M)(")
(").

But since [A(M)
(")]�1

= G+ O(") and since P only includes terms of degree at least
M +1 in the second slot, it follows that P ([A(M)

(")]�1, ") ⇡ 0, and the desired result
follows.

Taken together (as indicated in Figure 32), Lemmas 45, 46, and 49 imply that
⌃

(M)
G (") ⇠ S(M)

G (") as desired, and the proof of Theorem 33 is complete.

4.5 Caveat concerning truncation of the bold diagrammatic
expansion

Although the LW and self-energy functionals are defined even for G such that the
corresponding quadratic form A = A[G] is indefinite (and hence there is no physical
bare non-interacting Green’s function), Green’s function methods (as discussed in
section 4.7 of Part II) based on truncation of the bold diagrammatic expansion can
fail dramatically in the case of indefinite A. One can encounter divergent behavior as
the interaction becomes small, or the Green’s function method may fail to admit a
solution. Both failure modes can demonstrated by simple one-dimensional examples.
The relevance of these to the solution of the quantum many-body problem is at this
point unclear.

Consider the one-dimensional example of

Z =

ˆ
R
e

1

2

x2� 1

8

�x4

dx, (4.9)

where a = �1. The corresponding non-interacting Green’s function is G0
= �1 < 0

and hence is not even a physical Green’s function.
Nonetheless with � > 0 the true Green’s function is still well-defined via

G =

1

Z

ˆ
R
x2e

1

2

x2� 1

8

�x4

dx.

We now compute G via the Hartree-Fock method (cf. section 4.7 of Part II), i.e.,
we approximate the self-energy as

⌃

(1)
= �1

2

�G� �G = �3

2

�G.

131



Hence the self-consistent solution G(1) of the Dyson equation solves
1

G(1)
= �1 + 3

2

�G(1).

There is only one positive (physical) solution to this equation, namely

G(1)
=

1 +

p
1 + 6�

3�
.

In the spirit of perturbation theory, one might hope that G(1) is a good approxi-
mation to G at least when �! 0. However we see just the opposite. This is perhaps
not surprising because the exact Green’s function G itself blows up in this limit.

The failure of the method as �! 0 can be understood more precisely as follows.
Rewrite the Hamiltonian from (4.9) as

1

8

�

✓
x2 � 2

�

◆2

� 1

2�
.

The corresponding Gibbs measure (which is unaffected by the additive constant) then
concentrates about two peaks at x = ±

q
2
�

as �! 0. Hence we expect

G ⇠ 2��1.

We note that, in contrast with the statement of Lemma 40, the limit lim�!0+ G(�)
does not exist. According to Eq. (4.5)

G(1) ⇠ 2

3

��1.

We find that as �! 0+, G and its first order approximation G(1) do not agree.
If we include the second-order terms of the bold diagrammatic expansion

⌃

(2)
=

1

2

�2G3
+ �2G3

=

3

2

�2G3. (4.10)

Then the self-consistent solution G(2) of the Dyson equation solves
1

G(2)
= �1 + 3

2

�G(2) � 3

2

�2
�
G(2)

�3
.

This yields a quartic equation in the scalar G(2), which in fact has no solution for
physical G(2), i.e., G(2) > 0.

To see this, first ease the notation by substituting x G(2), so we are interested
in the solutions x > 0 of

3

2

⇥
(�1/2x)4 � (�1/2x)2

⇤
+ x+ 1 = 0.

But y4 � y2 � �1
4

for all y, so the first term is at least �3
8
, which evidently implies

that no solutions exist for x > 0.
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5 Proof of the continuous extension of the LW func-
tional

In section 3.5 we motivated the continuous extension of the LW functional to the
boundary of Sn

++ and stated this result in two equivalent forms (Theorems 30 and
32). In this section we prove the continuous extension property (for interactions of
strong growth). We also develop the counterexample promised earlier, an interaction
of weak but not strong growth for which the continuous extension property fails.

The section is outlined as follows. In section 5.1, we describe some preliminary
reductions in the proof of the continuous extension property, after which the proof can
be divided into two parts: lower-bounding the limit inferior of the LW functional as
the argument approaches the boundary and upper-bounding the limit supremum. In
section 5.2, we prove the lower bound, and in section 5.3 we prove the upper bound.
In section 5.4 we provide an alternate view on the continuous extension property
from the Legendre dual side, and in section 5.5 we use this perspective to exhibit the
aforementioned counterexample to the continuous extension property, which satisfies
the weak growth condition but not the strong one.

5.1 Proof setup
We are going to prove Theorem 32, which as we have remarked suffices to prove
Theorem 30 by changing coordinates via Proposition 22.

Suppose G 2 Sn
+ is of the form

G =

✓
Gp 0

0 0

◆
,

where Gp 2 Sp
++, and suppose that G(j) 2 Sn

++ with G(j) ! G as j !1. For each j,

diagonalize G(j)
=

PN
i=1 �

(j)
i v(j)i

⇣
v(j)i

⌘T
, where the v(j)i are orthonormal, �(j)i > 0 for

i = 1, . . . , N .
We want to show that

�n[G
(j), U ]! �p[Gp, U( · , 0)].

It suffices to show that every subsequence has a convergent subsequence with its limit
being �p[Gp, U( · , 0)]. The G(j) are convergent, hence bounded (in the k ·k2 norm), so
the �(j)i are bounded. Moreover, the v(j)i are all of unit length, hence bounded, so by
passing to a subsequence if necessary we can assume that, for each i, there exist �i, vi
such that �(j)i ! �i and v(j)i ! vi as j ! 1. It follows that the vi are orthonormal
and that G can be diagonalized as G =

PN
i=1 �iviv

T
i . Since Gp is positive definite,

we must have �i > 0 for i = 1, . . . , p, and moreover �i = 0 for i = p + 1, . . . , N .
Evidently, the eigenvectors of G with strictly positive eigenvalues must be precisely
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the eigenvectors of Gp, concatenated with N � p zero entries, i.e., for i = 1, . . . , p, vi
must be of the form (⇤, 0). By orthogonality, for i = p + 1, . . . , n, vi must be of the
form (0, ⇤).

For convenience we also establish the following notation:

VG := span{v1, . . . , vp}, VG(j) := span{v(j)1 , . . . , v(j)p }.

Now the proof consists of proving two bounds: a lower bound

lim inf

j!1
�N [G

(j), U ] � �p[Gp, U(·, 0)]

and an upper bound

lim sup

j!1
�N [G

(j), U ]  �p[Gp, U(·, 0)].

These bounds will be proved in the next two sections, i.e., sections 5.2 and 5.3,
respectively.

5.2 Lower bound
We want to establish a lower bound on �N [Gj, U ] via our expression for FN as a
supremum:

FN [G
(j), U ] = sup

µ2G�1

N (G(j))


H(µ)�

ˆ
U dµ

�
. (5.1)

This strategy requires us to construct measures µ(j) 2 G�1
N (G(j)

). Intuitively, what
one hopes to do (though this strategy will require some modification) is the following:
consider the measure ↵ on Rp that attains the supremum in the analogous expression
for Fp[Gp, U( · , 0)], identify this measure with a measure on VG ' Rp, rotate and scale
appropriately to obtain a measure ↵(j) supported on VG(j) with the correct second-
order moments with respect to this subspace, and finally take the direct sum with
an appropriate Gaussian measure �(j) on V ?

G(j) . Unfortunately, due to difficulties of
analysis, it is not clear how to then prove the desired limit as j !1.

However, the analysis of this limit would be feasible if the µ(j) had compact support
(which they evidently do not). Then our approach is to carry out a construction that
preserves the spirit of the ‘ideal’ construction just described but instead works with
µ(j) of (uniform) compact support.

For convenience we let Mc ⇢ M2 denote the subset of measures of compact
support. The acceptability of working with measures of compact support can be
motivated by the following lemma, which will be used below. (In the statement
we temporarily suppress dependence on the interaction and the dimension from the
notation.)
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Lemma 50. For all G 2 SN ,

F [G] = sup

µ2G�1(G)\Mc


H(µ)�

ˆ
U dµ

�
.

Now we outline our actual construction of the µ(j). Consider an arbitrary measure
↵ 2 G�1

p (Gp) with compact support on Rp ' VG. (We abuse notation slightly by
considering ↵ as a measure on both Rp and VG.) The idea now is to construct a
measure in µ(j) 2 G�1

N (G(j)
) by rotating ↵ and scaling appropriately to obtain a

measure ↵(j) supported on VG(j) and then taking the direct sum with a compactly
supported measure �(j) on V ?

G(j) (the details of which will be discussed later). In fact
the supremum in (5.1) will be approximately attained by a measure of this form as
j !1, i.e., our lower bound will be tight as j !1.

Accordingly, for the construction of ↵(j), let O(j) be the orthogonal linear trans-
formation sending vi 7! v(j)i , and let D(j) be the linear transformation with matrix
(in the v(j)i basis) given by

diag

✓q
�(j)1 /�1, . . . ,

q
�(j)p /�p, 1, . . . , 1

◆
.

Then define T (j)
:= D(j)O(j) and ↵(j)

:= T (j)
#↵. Note that T (j) ! In as j ! 1.

Moreover, observe that ↵(j) is a measure supported on VG(j) with second-order moment
matrix given by diag(�(j)1 , . . . ,�(j)p ) with respect to the coordinates on VG(j) induced
by the orthonormal basis v(j)1 , . . . , v(j)p .

Now we turn to the construction of �(j). Let R > 1 and let � be a measure
supported on [�R,R] with

´
x2 d� = 1. The parameter R will control the size of the

support of �(j) and will be sent to +1 at the very end of the proof of the lower bound
(after the limit in j has been taken). Then define

⇤

(j)
:= diag

✓q
�(j)p+1, . . . ,

q
�(j)N

◆
,

and define a measure �(j) on RN�p by �(j)
:= ⇤

(j)
#(�⇥· · ·⇥�). Note that ⇤(j) ! 0 as

j !1. Abusing notation slightly, we will also identify �(j) with a measure supported
on V ?

G(j) ' RN�p via the identification of the orthonormal basis v(j)p+1, . . . , v
(j)
N for V ?

G(j)

with the standard basis of RN�p.
Finally, define the product measure µ(j)

:= ↵(j)⇥ �(j) with respect to the product
structure Rn

= VG(j) ⇥ V ?
G(j) , and note that µ(j) 2 G�1

N (G(j)
), so by (5.1),

FN [G
(j), U ] � H(↵(j) ⇥ �(j)

)�
ˆ

U dµ(j)

= H(↵(j)
) +H(�(j)

)�
ˆ

U dµ(j)
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= H(↵)�
ˆ

U dµ(j)
+

1

2

NX
i=p+1

log �(j)i + (N � p)H(�),

where H(↵(j)
) and H(�(j)

) are the entropies of ↵(j) and �(j) on the probability spaces
VG(j) and V ?

G(j) , respectively.
Notice that there is a compact set on which all of the measures µ(j) are supported.

It is then not difficult to see that µ(j) converges weakly to the measure ↵⇥ �0, where
the product is with respect to the product structure Rn

= VG ⇥ V ?
G and �0 is the

Dirac delta measure localized at the origin. By the continuity of U and the uniform
boundedness of the supports of µ(j), this is enough to guarantee that

ˆ
U dµ(j) !

ˆ
U d(↵⇥ �0) =

ˆ
U(·, 0) d↵

as j !1.
Next we write the Luttinger-Ward functional in terms of FN :

1

2

�N [G
(j), U ] = FN [G

(j), U ]� 1

2

Tr[log(G(j)
)]� N

2

log(2⇡e)

= FN [G
(j), U ]� 1

2

NX
i=1

log �(j)i �
N

2

log(2⇡e).

Then combining the preceding observations yields

lim inf

j!1

1

2

�N [G
(j), U ]

� lim inf

j!1

"
H(↵)�

ˆ
U dµ(j) � 1

2

pX
i=1

log �(j)i �
N

2

log(2⇡e) + (N � p)H(�)

#

= H(↵)�
ˆ

U(·, 0) d↵� 1

2

pX
i=1

log �i �
N

2

log(2⇡e) + (N � p)H(�)

= H(↵)�
ˆ

U(·, 0) d↵� 1

2

Tr [log(Gp)]�
N

2

log(2⇡e) + (N � p)H(�).

Now for any " > 0, we can choose R sufficiently large and � supported on [�R,R]

such that H(�) � 1
2
log(2⇡e) � ". Indeed, note that 1

2
log(2⇡e) is the entropy of

the standard normal distribution, i.e., the maximal entropy over measures of unit
variance. By restricting the normal distribution to [�R,R] for R sufficiently large,
we can become arbitrarily close to saturating this bound. Therefore we have that

lim inf

j!1

1

2

�N [G
(j), U ] � H(↵)�

ˆ
U(·, 0) d↵� 1

2

Tr [log(Gp)]�
p

2

log(2⇡e).
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Since ↵ was arbitrary in G�1
p (Gp) \Mc, this establishes the desired upper bound

1

2

lim inf

j!1
�N [G

(j), U ] � sup

↵2G�1

p (Gp)\Mc


H(↵)�

ˆ
U(·, 0) d↵

�
� 1

2

Tr [log(Gp)]�
p

2

log(2⇡e)

=

1

2

�p[Gp, U(·, 0)],

where we have used Lemma 50, which allows us to look at the supremum over com-
pactly supported measures.

Observe that the proof of the lower bound did not require the strong growth
assumption, hence the semi-continuity claim of Remark 31.

5.3 Upper bound
Next we turn to establishing an upper bound. The basic strategy is to select measures
µ(j) that (approximately) attain the supremum in (5.1) and take a limit as j !1.

Before proceeding, let " > 0. Moreover, define ⇡1 to be the orthogonal projection
onto VG ' Rp, and define ⇡2 to be the orthogonal projection onto V ?

G ' RN�p.
Now for every j, as suggested above choose µ(j) 2 G�1

N (G(j)
) such that

FN [G
(j), U ]  H(µ(j)

)�
ˆ

U dµ(j)
+ ".

Therefore

�N [G
(j), U ]  H(µ(j)

)�
ˆ

U dµ(j) � 1

2

NX
i=1

log(2⇡e�(j)i )| {z }
=:aj

+ ". (5.2)

Then choose a subsequence jk such that limk!1 ajk = lim supj!1 aj.
Now the µ(j) have uniformly bounded second moments, so by Markov’s inequality,

the sequence µ(j) is tight. Then by Prokhorov’s theorem (Theorem 31), we can
assume, by extracting a further subsequence if necessary, that µ(jk) converges weakly
to some measure µ.

We claim that GN(µ) � G (so in particular, µ 2M2). Indeed, for any z 2 Rn, by
the Portmanteau theorem for weak convergence of measures (Theorem 28) we have

ˆ
(zTx)2 dµ  lim inf

k!1

ˆ
(zTx)2 dµ(jk)

= lim inf

k!1

ˆ
zTxxT z dµ(jk)

= lim inf

k!1
zTG(jk)z = zTGz.
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It follows that µ 2M2 and moreover zTGn(µ)z  zTGz for all z, i.e., Gn(µ) � G. In
particular, µ is supported on VG.

Define T (j) to be the orthogonal transformation that sends v(j)i 7! vi, so T (j) ! In
as j ! 1. Define ⌫(j) := T (j)

#µ(j). Again by Prokhorov’s theorem, we can assume
that ⌫(jk) converges weakly to some measure ⌫. In fact, we must have ⌫ = µ. To see
this, note that for any continuous compactly supported function � on Rn, we have
that � � T (j) ! � uniformly as j !1. Therefore

lim

j!1

ˆ ���� � � T (j)
��
dµ(j) ! 0.

Consequentlyˆ
� dµ = lim

k!1

ˆ
� dµ(jk)

= lim

k!1

ˆ
� � T (jk)

dµ(jk)
= lim

k!1

ˆ
� d⌫(jk) =

ˆ
� d⌫.

Since µ and ⌫ agree on all continuous compactly supported functions, they must be
equal (Riesz representation theorem), and ⌫(jk) ! µ weakly.

Define µ(j)
i := ⇡i#⌫(j) =

�
⇡i � T (j)

�
#µ(j) and µi := ⇡i#µ for i = 1, 2. It follows

that µ(jk)
i ! µi weakly. Notice (using Fact 11) that

H(µ(j)
) = H(⌫(j))  H(µ(j)

1 ) +H(µ(j)
2 )  H(µ(j)

1 ) +

1

2

NX
i=p+1

log(2⇡e�(j)i ).

Therefore, using Lemma 9 with the weak convergence µ(jk)
1 ! µ1, we obtain

lim

k!1
ajk = lim

k!1

"
H(µ(jk)

)�
ˆ

U dµ(jk) � 1

2

NX
i=1

log(2⇡e�(jk)i )

#

 lim sup

k!1

"
H(µ(jk)

1 )� 1

2

pX
i=1

log(2⇡e�(j)i )

#
� lim inf

k!1

ˆ
U dµ(jk)

�
 H(µ1)� lim inf

k!1

ˆ
U dµ(jk)

�
� 1

2

log((2⇡e)p detGp).

Now for any ↵ 2 R, define U↵(x) = U(x)� ↵kxk2. Then
ˆ

U dµ(j)
=

ˆ
U↵ dµ(j)

+ ↵Tr[G(j)
].

The utility of this manipulation will be made clear later. By the strong growth
condition, U↵ is bounded below. Therefore, by the Portmanteau theorem for weak
convergence of measures,

lim inf

k!1

ˆ
U dµ(jk)

�
= ↵Tr[G] + lim inf

k!1

ˆ
U↵ dµ(jk)

�
� ↵Tr[Gp] +

ˆ
U↵ dµ.
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Since µ is supported on VG, in factˆ
U↵ dµ =

ˆ
U↵( · , 0) dµ1 =

ˆ
U( · , 0) dµ1 � ↵Tr[Gp(µ1)],

and therefore

lim

k!1
ajk  H(µ1)�

ˆ
U( · , 0) dµ1 �

1

2

log((2⇡e)p detGp) + ↵Tr[Gp(µ1)�Gp]

 Fp[Gp(µ1), U( · , 0)]� 1

2

log((2⇡e)p detGp) + ↵Tr[Gp(µ1)�Gp].

Recall from (5.2) that

lim sup

j!1
�[G(j), U ]  lim

k!1
ajk + ".

Since " > 0 was arbitrary, this means that

lim sup

j!1
�[G(j), U ]  Fp[Gp(µ1), U( · , 0)]� 1

2

log((2⇡e)p detGp) + ↵Tr[Gp(µ1)�Gp].

If we had GN(µ) = G, i.e., Gp(µ1) = Gp, then we would be done. We have Gp(µ1) � Gp,
so it will suffice to show that Tr[Gp(µ1) � Gp] = 0. Suppose for contradiction
that Tr[Gp(µ1) � G1] < 0. But then, by taking ↵ arbitrarily large we see that
lim supj!1�[G

(j), U ] = �1, which is impossible because we already have a lower
bound on lim infj!1�[G(j), U ]. Therefore Gp(µ1) = Gp, as desired, and we have

lim sup

j!1
�[G(j), U ]  �p[Gp, U( · , 0)],

which completes the proof.
Notice the strong growth assumption was only used in this part of the proof

(i.e., the proof of the upper bound). In particular, it was only used to ensure that
the measure µ(j) of maximum entropy relative to ⌫U (as in Remark 18) subject to
the moment constraint G(µ(j)

) = G(j) cannot weakly converge to a measure µ with
G(µ) 6= G = limj!1 G(j).

5.4 Dual perspective on continuous extension
We now outline how Theorem 30 can be reinterpreted via the transformation rule.
This perspective provides another way of understanding Theorem 30 and allows us to
present a counterexample that illustrates the necessity of the strong growth condition
of Definition 4.

Suppose that Tj are linear transformations such that Tj ! P , where P = Ip�0N�p

is the orthogonal projection onto span{e(n)1 , . . . , e(n)p }. Let G 2 Sn
++ with upper-

left block given by Gp. Then, using the transformation rule, Theorem 30, and the
projection rule, we obtain

�N [G,U � Tj] = �N [TjGT ⇤
j , U ]! �p[Gp, U( · , 0)] = �N [G,U � P ].

139



This manipulation suggests that Theorem 30 is equivalent to the pointwise con-
vergence

�N [ · , U � Tj]! �N [ · , U � P ] (5.3)
for all Tj ! P . To see the equivalence, consider an arbitrary sequence G(j) 2 Sn

++

converging, as before, to the block-diagonal matrix G = Gp�0N�p 2 Sn
+, where Gp 2

Sp
++. Then we want to show, using Eq. (5.3), that �N [G(j), U ]! �p[Gp, U( · , 0)].

To this end, let Tj = [G(j)
]

1/2
[Gp � IN�p]

�1/2, so G(j)
= Tj(Gp � IN�p)T ⇤

j , and
Tj ! P . Then (5.3) implies that �N [Gp� IN�p, U �Tj]! �N [Gp� IN�p, U �P ], and
combining with the transformation and projection rules yields Theorem 30.

Note that (5.3) is equivalent to the pointwise convergence of concave functions
FN [ · , U � Tj] ! FN [ · , U � P ] as Tj ! P . Since the domains of these concave func-
tions are open (namely, Sn

++), by Theorem 27 this is actually equivalent to uniform
convergence on all compact subsets of Sn

++. Furthermore, since FN [ · , U � Tj] and
FN [ · , U � P ] are both uniformly �1 on SN\Sn

++, this is in turn equivalent to uni-
form convergence on all compact subsets of SN that do not contain a boundary point
of Sn

++, which by Theorem 25 is equivalent to the hypo-convergence (see Definition
24) FN [ · , U � Tj]

h! FN [ · , U � P ]. (Note that the role of epi-convergence for convex
functions is assumed by hypo-convergence for concave functions.) But then hypo-
convergence is equivalent to hypo-convergence of the concave conjugates (Theorem
26), i.e., of ⌦[ · , U � Tj] to ⌦[ · , U � P ] as j !1.

In summary, the continuous extension property is equivalent to the hypo-convergence
⌦[ · , U � Tj]

e! ⌦[ · , U � P ].

5.5 Counterexample of weak but not strong growth
Here we give a counter example to show that the weak growth condition is insufficient
for guaranteeing the continuous extension property. By the discussion of section 5.4,
we need only find U satisfying the weak growth condition for which ⌦[ · , U � Tj] fails
to hypo-converge to ⌦[ · , U � P ].

For example, consider N = 2 and

U(x1, x2) =

(
|x1|4 |x1|  |x2|�1

|x2|�4 |x1| � |x2|�1.
.

If x2 = 0, then the first case holds for all x1. This interaction is nonnegative, and
hence satisfies the first part of the weak growth condition of Definition 3 with CU = 0.
To see that U satisfies the weak growth condition, we need only show that dom⌦ is
open. Clearly dom⌦ � Sn

++. Moreover, the restriction of U to any line except the
x1-axis is bounded, and it follows that in fact dom⌦ = Sn

++, hence dom⌦ is open, as
desired.

Now let
Tj :=

✓
1 0

0 j�1

◆
! P :=

✓
1 0

0 0

◆
.
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Since ⌦[ · , U � P ] has an open domain, namely,

dom (⌦[ · , U � P ]) =

�
A = (aij) 2 S2

: a22 > 0

 
,

the hypo-convergence of ⌦[ · , U � Tj] to ⌦[ · , U � P ] is equivalent to pointwise con-
vergence (by Theorems 25 and 27), which is the same as the pointwise convergence
Z[ · , U � Tj]! Z[ · , U � P ].

Set A = (aij) via a11 = a12 = 0, a22 = 1, so A is in the domain of ⌦[ · , U �P ], i.e.,
Z[A,U � P ] < +1. However,

Z[A,U � Tj] =

ˆ
e�

1

2

|x
2

|2�U(x
1

,j�1x
2

)
dx1 dx2 = j ·

ˆ
e�j2 1

2

|x
2

|2�U(x
1

,x
2

)
dx1 dx2.

Now the restriction of the last integrand to any line of constant x2 6= 0 is asymptot-
ically equal to e�j2|x

2

|2�|x
2

|�4

> 0, so the integral along any such line is +1, and by
Fubini’s theorem, Z[A,U � Tj] = +1. Thus convergence fails at A, and we have a
counterexample as claimed.
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Part IV

Large-interaction Luttinger-Ward

asymptotics

1 Introduction
Motivated by the preceding Parts II and III, we are interested in Gibbs measures
proportional to

e�
1

2

xTAx�U�(x),

where the interaction U� = �U is specified by

U(x) :=
1

8

X
ij

vijx
2
ix

2
j ,

with v = (vij) symmetric positive definite and � > 0. Here i should be understood as
an index on a set of discrete sites, while xi measures the ‘amount of charge’ present
on the i-th site.

Parts II and III we have analyzed the perturbative regime � ⇡ 0. Hence it
is natural to ask whether the � ! 1 limit can be characterized as well. More
specifically, in order to examine the behavior of the Luttinger-Ward functional in this
limit, we will consider the limit where A = A� also depends on � and is chosen such
that the second moments of the corresponding Gibbs measure are independent of �.
We will find that the Hartree contribution predominates in this limit, and leading-
order corrections are determined in terms of the statistical mechanics of a classical
spin system. From the point of view of perturbation theory, the dominance of the
Hartree contribution may be thought of as somewhat surprising, since it is in this
sense derived as a term in the first-order expansion about � = 0 (see Part II).

2 Preliminaries
We recapitulate the results of Part III relevant to this setting. Let Sn � Sn

+ � Sn
++

denote the sets of real symmetric, positive semidefinite, and positive definite matrices,
respectively, and define Z�,⌦� : Sn ! R via

Z�[A] :=

ˆ
e�

1

2

xTAx�U�(x) dx, ⌦�[A] := � logZ�[A].

Then define G� : Sn ! Sn
++ by

G�[A] := r⌦�[A] =
ˆ

xxT e�
1

2

xTAx�U�(x) dx.
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The naturality of the definiteness assumption on v will become clear below, but
for now, note that this assumption ensures in particular that U is a nonnegative
polynomial, strictly positive away from x = 0. Since U is homogeneous quartic, it
follows that U � C�1|x|4 for some constant C sufficiently large. In particular, for any
�, U� satisfies the ‘strong growth assumption’ of the Part III.

Let Mn be the set of probability measures on Rn with finite second-order moments,
and define G : Mn ! Sn

+ by G[µ] =
´
xxT dµ. Then define F� : Sn

++ ! R by

F�[G] := sup

µ2G�1(G)


S(µ)� �

ˆ
U dµ

�
,

where S is the differential entropy:

S(µ) =

(
�
´
log

dµ
dx

dµ, if dµ⌧ dx

�1, otherwise.

By the results of Part III, F� = ⌦

⇤
�, i.e., F� is the concave conjugate of ⌦�, and

vice-versa, with respect to the inner product hA,Gi = 1
2
Tr[AG], and the mapping G�

defined above is a bijection Sn ! Sn
++ with inverse given by A�[G] := rF�[G]. In

fact, the supremum in the definition of F� is attained uniquely by the Gibbs measure
with density proportional to

e�
1

2

xTA�x��U(x).

Moreover, the Luttinger-Ward (LW) functional, defined

��[G] := 2F�[G]� Tr log(2⇡eG)

is continuous up to the boundary of Sn
++, and �0 ⌘ 0. Finally, defining the self-energy

by ⌃�[G] := r��[G], the following Dyson equation holds for any G:

G�1
= A�[G]� ⌃�[G],

and likewise, for any A:

(G�[A])
�1

= A� ⌃� [G�[A]] .

We are interested in studying the asymptotic behavior (as � ! 1) of ��[G] for
fixed G 2 Sn

++. The transformation rule implies that

��[G] = �1

⇥
�1/2G

⇤
,

so this is the same as studying the behavior of the LW functional for fixed interac-
tion and large G. Therefore, understanding these asymptotics will complement our
existing understanding of the asymptotics of the LW functional near the boundary of
Sn
++. To understand these asymptotics it suffices to understand the asymptotics of

F�[G] for fixed G.
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3 Heuristic asymptotics
Via the aforementioned Legendre duality, we can write

F�[G] = Tr[A�[G]G]� 2⌦�[A�[G]].

Then to study the asymptotic behavior of interest, it is of interest to study the
asymptotic behavior of A�[G], and indeed this is the perspective that we will take
for now. In fact, our rigorous developments will run in the opposite direction: first
we establish the asymptotics of F�[G] and then use these to derive asymptotics for
A�. Nonetheless, before proving anything rigorous about the asymptotics of A�[G],
we use heuristic reasoning to figure out what we want to prove.

Recall A�[G] is the unique A such that G�[A] = G. Fixing G and omitting it from
the notation, we write A� = A�[G]. We will try to identify eA� such that G�[

eA�] ⇡ G,
where the approximation becomes better as � ! 1. Then one hopes that, in the
limit as �!1, the asymptotics of A� are described by those of eA�.

Recall that G�[
eA�] is the second-moment matrix of the Gibbs measure eµ� with

density e⇢� proportional to

exp

 
�1

2

xT eA�x�
1

8

X
ij

�vijx
2
ix

2
j

!
.

Now observe the following identity:
.

1

8

X
ij

�vij(x
2
i �Gii)(x

2
j �Gjj) =

1

8

X
ij

�vijx
2
ix

2
j �

1

4

X
ij

�vijGjjx
2
i +

1

8

X
ij

�vijGiiGjj.

Then choose eA� = �
�

2

diag

"X
j

v1jGjj, . . . ,
X
j

vnjGjj

#
+B,

where B is some symmetric matrix, independent of �, to be determined later. (We
will follow the MATLAB notational convention that ‘diag’ applied to a matrix returns
the vector of diagonal entries of this matrix, while ‘diag’ applied to a vector returns
the diagonal matrix with diagonal entries given by this vector.)

We then see that

e⇢� / exp

 
�1

2

xTBx� �

8

X
ij

vij(x
2
i �Gii)(x

2
j �Gjj)

!
.

Notice that in the limit as �!1, this measure concentrates around the minimizers
of

f(x) :=
1

8

X
ij

vij(x
2
i �Gii)(x

2
j �Gjj).
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Since v is positive definite, the minimum is attained if and only if x2
i = Gii for all

i, so the minimizers are precisely the vertices of a rectangular prism in dimension n,
i.e., the points

�
�1
p
G11, . . . , �n

p
Gnn

�
, where each �i 2 {�1, 1}. When Gii = 1 for

all i, these are the vertices of the unit cube, i.e., {�1, 1}n. More generally, we can
write this set as g{�1, 1}n, where we define g = diag

p
diag(G).

In fact, e��f , suitably normalized, converges (weakly) to the singular measureX
x2g{�1,1}n

⇥
detr2f(x)

⇤�1/2 · �x

supported on g{�1, 1}n.
We compute r2f explicitly:

r2f(x) = v � (xxT
) +

1

2

diag

"X
j

v1j(x
2
j �Gjj), . . . ,

X
j

vnj(x
2
j �Gjj)

#
.

Thus, for z 2 g{�1, 1}n, we have

r2f(z) = v � (zzT ) = diag(z) v diag(z) � 0,

and

detr2f(z) = det v det g2 = det v
nY

i=1

Gii

which is independent of z.Thus, e��f , suitably normalized, converges to the uniform
measure on g{�1, 1}n, written

µ := 2

�n
X

x2g{�1,1}n
�x.

It follows that the Gibbs measure eµ�, which has density e⇢� satisfying

e⇢�(x) / e�
1

2

xTBxe��f(x),

converges weakly to
µB :=

1bZ[B]

X
z2g{�1,1}n

e�
1

2

zTBz · �z,

where bZ[B] is the appropriate normalizing constant. (We use hats in the notation
here and in the following to distinguish from the Z and ⌦ already defined above.)

Now eµ� ! µB weakly, and one can show that in fact G�[
eA�]!

´
xxT dµB. Recall

that we wanted to choose eA� such that G�[
eA�] ! G. We have already chosen a

�-dependent (diagonal) part of eA� that ensures that the measure eµ� concentrates on
the set g{�1, 1}n. We are then still free to choose the constant part B such that

G =

ˆ
xxT dµB =

1bZ[B]

X
z2g{�1,1}n

zzT e�
1

2

zTBz.
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Notice that automatically
´
x2
i dµB = Gii, so we are only concerned with matching

the off-diagonal entries of G.
The details of the construction of B rely on a concave duality, entirely analogous

to the one already introduced but in the setting of spin systems. Precise details will
be accounted for in the following section, but for now we outline what is needed in
order to complete our heuristic discussion of the asymptotics as �!1.

Define b⌦[B] = � log

bZ[B], and consider b⌦ as a functional on the set bSn of sym-
metric matrices with zeros on the diagonal. (The diagonal entries of B do not affect
the corresponding Gibbs measure, so any arbitrary but fixed choice of diagonal entries
makes sense. Notice that we only need to match the off-diagonal entries of G, so we
expect to have ‘enough’ parameters in B to do so.)

Then define bG[B] := rB
b
⌦[B], where the gradient is defined appropriately within

the set bSn so that bG[B] consists of a matrix with the off-diagonal entries ‘absent.’
Abusing notation somewhat and identifying bG[B] also with the corresponding matrix
with fixed diagonal entries Gii filled in, we are trying to find B such that G =

bG[B].
One can show that b⌦ is smooth and strictly concave on bSn and consider the

concave conjugate b⌦⇤. By general concave duality theory, one sees that bG is a bijectionbSn ! dom(

b
⌦

⇤
), where dom(

b
⌦

⇤
) the set on which b⌦⇤ > �1. However, as we shall

see, dom(

b
⌦

⇤
) is not the set of all off-diagonal parts of positive definite matrices, i.e.,

there exist positive definite matrices whose off-diagonal parts are not in dom(

b
⌦

⇤
).

Such G must then be left out of the scope of the current inquiry.
We can nonetheless provide a fairly explicit description of the set dom(

b
⌦

⇤
). By

similar considerations as in the Luttinger-Ward duality picture, we find that, as a
functional of bG, bF [G] :=

b
⌦

⇤
[

bG] = sup

p 7! bG
S(p),

where the supremum is over probability vectors

p = (pz)z2g{�1,1}n

such that bG =

X
z2g{�1,1}n

zzT pz,

and S(p) is the discrete entropy:

S(p) = �
X

z2g{�1,1}n
pz log pz.

Thus dom(

b
⌦

⇤
) is the set of bG for which this supremum set is nonempty, i.e., the

convex hull Kg of the set

Vg :=
�
zzT : z 2 g{�1, 1}n

 
.
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Let Eg denote the set of positive definite matrices with diagonal g2. When g = In, this
set is referred to as the set of ‘correlation matrices,’ or, alternatively, the elliptope.
This is a convex set, and there is a large literature on its geometry. It turns out that
in dimension n � 3, Kg 6= Eg. In the language of convex geometry, the set of extremal
points of Eg is larger than Vg, though the set of vertices of Eg turns out to be precisely
Vg. For an example of a 3⇥ 3 matrix that is in EI

3

but not KI
3

, consider0@ 1 �2
5
�2

5

�2
5

1 �2
5

�2
5
�2

5
1

1A .

Let Kn =

S
g Kg, where the union is over all positive diagonal n⇥n matrices. Hence-

forth, we assume that G 2 Kn.
Returning to our discussion, under the condition that G 2 Kn (and hence G 2 Kg

for g defined with respect to G as above), we have that there exists a unique B =

B[G] 2 bSn such that bG[B] = G. Then this shall be our particular choice of B, for a
given G.

In summary, we have choseneA� = ��D[G] + B[G],

where

D[G] :=

1

2

diag

"X
j

v1jGjj, . . . ,
X
j

vnjGjj

#
,

and we have shown that G�[
eA�] ! G. Note that D depends only on the diagonal

elements of G, and recall that v is fixed throughout, hence does not appear in the
notation. Thus, as was the premise for this discussion, we expect that eA� models the
asymptotics of A�.

4 Spin system duality
In the discussion above, we defined a duality related to Gibbs measures for spin
systems. In fact, we have actually considered a duality for each possible choice of
diagonal elements of G, which fix the vertices of a rectangular prism on which our
measures are localized. To make this clear in the notation, we shall fix G⇤

ii > 0 and
define g⇤ with respect to G⇤

ii to be the diagonal matrix with g⇤ii =
p
G⇤

ii. The possible
choices of g⇤ will parametrize our dualities, which will be related to each other by
appropriate scaling transformations. Note carefully that the ‘⇤’ notation does not
indicate the adjoint anywhere in this Part.

As suggested above, definebZ[B | g⇤] =
X

z2g⇤{�1,1}n
e�

1

2

zTBz, b
⌦[B | g⇤] = � log

bZ[B | g⇤]
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for B 2 Sn. Then define

bG[B | g⇤] := rB
b
⌦[B | g⇤] = 1bZ[B | g⇤]

X
z2g⇤{�1,1}n

zzT e�
1

2

zTBz.

Also define reference functionals associated to the unit cube via

bZ[B] :=

bZ[B | In], b
⌦[B] =

b
⌦[B | In], bG[B] :=

bG[B | In].

Observe that the scaled functional can be related to the reference functionals via

bZ[B | g⇤] = bZ[g⇤Bg⇤], b
⌦[B | g⇤] = b

⌦[g⇤Bg⇤], bG[B | g⇤] := g⇤ bG[g⇤Bg⇤]g⇤.

Now let Pn be the set of probability vectors p = (p�)�2{�1,1}n on the vertices of the
unit cube, and define bG( · | g⇤) : Pn ! Sn

+ via

bG(p | g⇤) = X
�2{�1,1}n

(g⇤��T g⇤) p�.

Finally, define a reference bG(p) := bG(p | In), so bG(p | g⇤) = g⇤ bG(p)g⇤.
Then we can summarize our spin system duality in the following proposition:

Proposition 1. The concave functional bF [ · | g⇤] : Kg⇤ ! R defined by

bF [G | g⇤] := sup

p2Pn : bG[p | g⇤]=G

S(p)

is the concave conjugate of b⌦[ · | g⇤] with respect to the inner product hB,Gi = 1
2
Tr[BG],

and it is C1-smooth on relint(Kg⇤) as a function of the off-diagonal entries of its ar-
gument. Moreover bG[ · | g⇤] is a bijection bSn ! relint(Kg⇤) with inverse B[ · |g⇤] =brG

bF [ · |g⇤], where br is the gradient in the off-diagonal directions, and the supremum
in the definition of bF [G | g⇤] is attained uniquely at p defined by pz / e�

1

2

zTBz. Fi-
nally, the functionals bF can be related to the reference functional bF [ · ] := bF [ · | In]
via bF [G | g⇤] = bF ⇥(g⇤)�1G(g⇤)�1

⇤
.

Remark 2. Note that we have extended the domain of b⌦ from the domain considered
in our heuristic discussion of the previous section, namely bSn, to all of Sn. This
extension is then affine along any segment with direction given by a diagonal matrix,
hence not strictly concave. On the dual side, the conjugate is (negative) infinite
except on the set of G with Gii = G⇤

ii. In fact, the domain is even smaller: it is Kg⇤ ,
as discussed earlier.
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Proof. Define Tg⇤ : Sn ! Sn via A 7! g⇤Ag⇤. Then since b⌦[ · | g⇤] = b
⌦ �Tg⇤ , it follows

(as a general property of concave conjugation) that the concave conjugate of b⌦[ · | g⇤]
is b⌦⇤ � T�1

g⇤ . This proves the relation to the reference functional, so for the remainder
of the proof we can consider the case g⇤ = In.

Fix B 2 Sn, and let w 2 Pn be defined by w� =

1
bZ[B]

e�
1

2

�TB�. Then for p 2 Pn,
the relative entropy

Sw(p) = �
X

�2{�1,1}n
p� log

✓
p�
w�

◆
satisfies

Sw(p)  0

with equality if and only if p = w. But

Sw(p) = S(p) +
X

�2{�1,1}n
p� logw� = S(p) + b⌦[B]� 1

2

X
�2{�1,1}n

�TB� p�.

Thus we have established that

b
⌦[B]  1

2

Tr

h
B bG(p)i� S(p)

with equality if and only if p = w, so

b
⌦[B] = inf

p2Pn

✓
1

2

Tr

h
B bG(p)i� S(p)

◆
= sup

G

 
1

2

Tr[BG]� sup

p2Pn :G(p)=G

S(p)

!
,

i.e., b
⌦[B] = sup

G

✓
1

2

Tr[BG]� bF [G]

◆
.

The result then follows by further mimicking the techniques of Part III. (If we restrictb
⌦ to a subspace with fixed diagonal, then it is ‘of Legendre type’ in the sense of [91].
This means that the concave conjugate is as well, and their gradients are inverse
mappings of one another.)

5 Rigorous asymptotics
Let G⇤

ii > 0 and define g⇤ with respect to G⇤
ii to be the diagonal matrix with g⇤ii =

p
G⇤

ii

. Then define f = fg⇤ as above by

fg⇤(x) =
1

8

X
ij

vij(x
2
i �G⇤

ii)(x
2
j �G⇤

jj).
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Note that fg⇤ is nonnegative with minimum value zero, and the minimizers are
given by g⇤{�1, 1}n. Observe that for z 2 g⇤{�1, 1}n, r2fg⇤(z) = v � (zzT ), so
detr2fg⇤(z) = det v (det g⇤)2 = det(v)

Qn
i=1 G

⇤
ii.

Next define a functional with domain Sn
++ via

F�[G | g⇤] := sup

µ2G�1(G)


S(µ)� �

ˆ
fg⇤ dµ

�
.

By the results of Part III, F�[ · , g⇤] = ⌦
⇤
�, where ⌦� : Sn ! R is defined by

⌦�[B | g⇤] := � log

ˆ
e�

1

2

xTBx��fg⇤ (x) dx.

Notice that for µ with
´
x2
i dµ = G⇤

ii,

�

ˆ
f dµ =

ˆ
U� dµ�

�

4

X
ij

vijG
⇤
jj

ˆ
x2
i dµ+

�

8

X
ij

vijG
⇤
iiG

⇤
jj

=

ˆ
U� dµ�

�

4

X
ij

vijG
⇤
iiG

⇤
jj +

�

8

X
ij

vijG
⇤
iiG

⇤
jj

=

ˆ
U� dµ�

�

8

X
ij

vijG
⇤
iiG

⇤
jj.

Therefore, for G 2 Sn
++, g = diag

p
diag(G), we have the equality

F�[G | g] = F�[G] +

�

8

X
ij

vijGiiGjj.

Note that the last term on the right-hand side corresponds to the Hartree contribution
to the Luttinger-Ward functional. (Note that the right-hand side is the sum of a
concave function and a convex function, hence not necessarily concave on all of Sn

++.
However, it is concave in the off-diagonal part of G when the diagonal entries are
fixed.)

Then we will prove:

Theorem 3. For any G 2 int(Kn) and g = diag

p
diag(G),

F�[G | g] + n

2

log

✓
�

2⇡

◆
=

bF [G | g]� 1

2

Tr log v � 1

2

nX
i=1

logGii +O(��1
).

Consequently

F�[G]+

n

2

log

✓
�

2⇡

◆
+

�

8

X
ij

vijGiiGjj =
bF [G | g]� 1

2

Tr log v� 1

2

nX
i=1

logGii+O(��1
).

In fact the constant in O(��1
) can be taken to be locally uniform in G.
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Remark 4. In fact, for fixed g⇤,

F�[ · , g⇤] +
n

2

log

✓
�

2⇡

◆
! bF [ · , g⇤]� 1

2

Tr log v � 1

2

nX
i=1

logG⇤
ii

in the sense of hypo-convergence as well as pointwise convergence. This perspective
(i.e., that of foliated dualities) will be helpful in proving one of the bounds necessary
for the proof.

The remainder of this section will be dedicated to proving the theorem.
We divide the proof into a proof an upper bound and a lower bound for F�.

Throughout we will use C to denote constants independent of � that are sufficiently
large in the given context; the precise meaning of C may change across usages. The
reader should observe that constants used in the proof can be taken to be locally
uniform in G, though we will not make explicit mention of this throughout.

I. The upper bound.

Let G 2 int(Kn) and g = diag

p
diag(G). Recall that for any g⇤, F�[ · , g⇤] = ⌦

⇤
�.

Thus, in particular, setting g⇤ = g, we have the equation

F�[G | g] = inf

B2Sn

✓
1

2

Tr[BG]� ⌦�[B | g]
◆
.

Fix B to be the unique matrix in bSn such that bG[B | g] = G, furnished by the spin
system duality of Proposition 1 above. The Legendre correspondence between B and
G ensures b⌦[B | g] = 1

2
Tr[BG]� bF [G | g]. Then, making this particular choice of B in

the above infimum, we have

F�[G | g]  1

2

Tr[BG]� ⌦�[B | g],

and we will use this inequality to prove the needed asymptotic upper bound.
We write f = fg and observe via Laplace’s method (see, e.g., p. 495 of [107] for a

precise statement) that

ˆ
e�

1

2

xTBx��f(x) dx =

✓
2⇡

�

◆n/2 ⇥
detr2f(z)

⇤�1/2
e�

1

2

zTBz
⇥
1 +O(��1

)

⇤
.

Therefore we can compute

⌦�[B | g] = � log

ˆ
e�

1

2

xTBx��f(x) dx
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= � log

0@ X
z2g{�1,1}n

✓
2⇡

�

◆n/2 ⇥
detr2f(z)

⇤�1/2
e�

1

2

zTBz

1A
+O(��1

)

= � log

0@✓2⇡

�

◆n/2
1pQn
i=1 Gii

1p
det v

X
z2g{�1,1}n

e�
1

2

zTBz

1A
+O(��1

)

=

n

2

log

✓
�

2⇡

◆
+

1

2

nX
i=1

logGii +
1

2

Tr log v + b⌦[B | g] +O(��1
).

Now recall that b⌦[B | g] = 1
2
Tr[BG]� bF [G | g], so in fact the preceding implies

F�[G | g] + n

2

log

✓
�

2⇡

◆
 bF [G | g]� 1

2

Tr log v � 1

2

nX
i=1

logGii +O(��1
).

This completes the proof of the upper bound.

II. The lower bound.

Fix G 2 int(Kn) and and g = diag

p
diag(G). Throughout we write f = fg.

In this section the goal is to show that

F�[G | g] + n

2

log

✓
�

2⇡

◆
� bF [G | g]� 1

2

Tr log v � 1

2

nX
i=1

logGii +O(��1
).

The proof of this lower bound is considerably more involved, and we break it into
steps.

To get such a lower bound, we will make a specific choice of µ� in the supremizing
set from the definition of F�. The next section deals with the construction of this
measure, which is rather delicate.

II.1. Choosing µ� 2 G�1
[G].

Since G 2 Kn, let B be the unique matrix in bSn such that bG[B | g] = G, furnished
by the spin system duality of Proposition 1 above. Then as a first guess for a specific
choice of µ�, let µ0

z,� ⇠ N (z,��1H�1
z ) for z 2 g{�1, 1}n, where Hz := r2f(z) =

v� (zzT ), and consider the convex combination µ0
� :=

1
bZ[B | g]

P
z2g{�1,1}n e

� 1

2

zTBz µ0
z,�.

This is a mixture of Gaussians that weakly converges to the singular measure

µ :=

1bZ[B | g]
X

z2g{�1,1}z
e�

1

2

zTBz · �z.
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While
´
xxT d⌫ = G by construction, unfortunately

´
xxT dµ0

� 6= G. However, equal-
ity does hold approximately for large �, and moreover, the inequality has a direction.
Naively, one expects the error to be ⇠ ��1/2, hence that we must correct µ0

� by ⇠ ��1/2

to obtain the desired G. In fact, due to a special cancellation, the error is only ⇠ ��1.
(Remarkably, this fact will be essential in getting a lower bound with this approach.)
Indeed, write
ˆ

xxT dµ0
� =

1bZ[B | g]
X

z2g{�1,1}n
e�

1

2

zTBz

ˆ
xxT dµ0

z,�

=

1bZ[B | g]
X

z2g{�1,1}n
e�

1

2

zTBz

ˆ ⇥
zzT + z(x� z)T + (x� z)zT + (x� z)(x� z)T

⇤
dµ0

z,�.

Now µ0
z,� is a Gaussian centered at z, so

´
z(x � z)T dµ0

z,� =

´
(x � z)zT dµ0

z,� = 0,
and we have in fact thatˆ

xxT dµ0
� =

1bZ[B | g]
X

z2g{�1,1}n
e�

1

2

zTBz

ˆ ⇥
zzT + (x� z)(x� z)T

⇤
dµ0

z,�

= G+

1

�

1bZ[B | g]
X

z2g{�1,1}n
e�

1

2

zTBz H�1
z

= G+ ��1 1bZ[B | g]
X

z2g{�1,1}n
e�

1

2

zTBz
⇥
v � (zzT )

⇤�1
.

From here we can already see that
´
xxT dµ0

� the must overestimate G by an error term
of size O(��1

), but it is extremely worthwhile to continue simplifying this expression.
Now v � (zzT ) = diag(z) v diag(z), so⇥

v � (zzT )
⇤�1

= [diag(z)]�1 v�1
[diag(z)]�1 .

If we write � = g�1z 2 {�1, 1}n, then diag(z) = diag(�) g, and [diag(�)]�1
= diag(�),

so ⇥
v � (zzT )

⇤�1
= g�1

⇥
v�1 � (��T

)

⇤
g�1

= g�2
⇥
v�1 � (ggT )

⇤
g�2

Therefore

ˆ
xxT dµ0

� = G+ ��1g�2

0@ 1bZ[B | g]
X

z2g{�1,1}n
e�

1

2

zTBz
⇥
v�1 � (zzT )

⇤1A g�2

= G+ ��1g�2

24v�1 �

0@ 1bZ[B | g]
X

z2g{�1,1}n
e�

1

2

zTBzzzT

1A35 g�2
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= G+ ��1g�2
⇥
v�1 �G

⇤
g�2

= G+

�
��1g�2v�1g�2

�
�G.

We will try to use these calculations to see whether a different choice of measure
might have given the desired second moments. For now we give ourselves the freedom
to choose G�, which shall ultimately be G+O(��1

). Then we will define g� and B� in
terms of G� by letting g� = diag

p
diag(G�) and choosing B� to be the unique matrix

in bSn such that bG[B� | g�] = G�. (This will be possible because for � sufficiently large,
we will have G� 2 Kn.)

Then let f� := fg� , and let µz,� ⇠ N
�
z,��1H�1

z,�

�
for z 2 g�{�1, 1}n, where

Hz,� := r2f�(z) = v � (zzT ), so that detHz,� = det v det g2�. Consider the convex
combination

µ� :=
1bZ[B� | g�]

X
z2g�{�1,1}n

e�
1

2

zTB�z µz,�.

The preceding calculations establish that
ˆ

xxT dµ� = G� +
⇥
��1g�2

� v�1g�2
�

⇤
�G�,

so we want our choice of G� to be such that the latter expression is equal to the given
G, i.e., such that

Gij = G�,ij + ��1vij (G�,ii)
�1

(G�,jj)
�1 G�,ij.

The important thing to realize here is that first we can solve the ‘diagonal’ set of
equations for G�,ii, leaving a set of uncoupled linear equations for the off-diagonal
terms. Indeed, observe that the diagonal equations are

Gii = G�,ii + ��1vii (G�,ii)
�1 ,

and we want to solve them for G�,ii. Fix i, and let b = Gii > 0, c = vii > 0. Then
the desired G�,ii is a root of

0 = x2 � bx+ ��1c.

The discriminant is positive when b2 > 4��1c, which is the case for � sufficiently
large. Moreover, as �!1, the roots are

x =

b±
p
b2 � 4��1c

2

=

b±
�
b� 2c

b
��1
�

2

+O(��2
).

We choose the larger root, which is b� c
b
��1

+O(��2
), yielding

G�,ii =
Gii +

p
(Gii)

2 � 4��1vii

2

= Gii �
vii

Gii

��1
+O(��2

).
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Then the off-diagonal equations, i 6= j, can be solved simply by choosing

G�,ij =
Gij

1 + ��1vij (G�,ii)
�1

(G�,jj)
�1 ,

which makes sense for � sufficiently large.
In summary we have found G� = G + O(��1

) such that µ� as defined above sat-
isfies

´
xxT dµ� = G.

II.2. Arranging terms appropriately.

Now we can (finally!) use the specific choice µ� to get our lower bound. Indeed,

F�[G | g] � S(µ�)�
ˆ

f dµ�.

Next consider the convex combination ⌫� :=

1
2n

P
z2g�{�1,1}n µz,�. Let the density of

µz,� be denoted by ⇢z,� and that of ⌫� by ⇢�. Then write

S(µ�) = S(µ�|⌫�)�
ˆ

log ⇢� dµ�

Recall the construction of µ� as the mixture of the same Gaussians µz,� but with

weights pz,� :=

⇣ bZ[B� | g�]
⌘�1

e�
1

2

zTB�z for z 2 g�{�1, 1}n. Note that the weight

vector p� converges to pz :=

⇣ bZ[B | g]
⌘�1

e�
1

2

zTBz. It is not hard to see (via the
smoothness of the Legendre duality) that B� = B + O(��1

), so p� = p + O(��1
).

The hope now is that S⌫�(µ�) ! Sw(p), where the former and latter expressions
indicates the continuous and discrete relative entropies, respectively, and w is the
uniform probability vector. Indeed,

Sw(p) = S(p)� n log 2 =

bF [G | g]� n log 2

by the spin system duality outlined earlier and our choice of B = B[G | g], so this
contains the important term that we wanted to end up with in the limit. The other
terms will be yielded by the asymptotics of

´
log ⇢� dµ�, to which we now turn.

II.3. Asymptotics of
´
log ⇢� dµ�.

Now, with Qz,� :=
1
2
(x� z)THz,�(x� z) for z 2 g�{�1, 1}n, we have

⇢z,� =

✓
�

2⇡

◆n/2

[detHz,�]
1/2

exp (��Qz,�) ,

so

⇢� =

✓
�

2⇡

◆n/2
1

2

n

X
z2g�{�1,1}n

[detHz,�]
1/2

exp (��Qz,�)
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=

✓
�

2⇡

◆n/2
1

2

n

⇥
det v det g2�

⇤1/2 X
z2g�{�1,1}n

exp (��Qz,�)

Then
ˆ

log ⇢� dµ� =

n

2

log

✓
�

2⇡

◆
� n log 2 +

1

2

Tr log v +
1

2

nX
i=1

logG�,ii

+

ˆ
log

X
z2g�{�1,1}n

exp (��Qz,�) dµ�.

Now roughly speaking, Laplace’s principle would indicate that

h�(x) := log

X
z2g�{�1,1}n

exp (��Qz,�(x)) ⇡ �� min

z2g�{�1,1}n
Qz,�(x).

We want to make this estimate precise to obtain an upper bound for
´
h� dµ�. First

observe that h�  C globally for some constant, but we want to get a sharp bound
for h� near g{�1, 1}n.

To this end, let Nz be fixed disjoint neighborhoods of the z 2 g{�1, 1}n. These are
also neighborhoods of g�{�1, 1}n for � large. To relate our indexing of g{�1, 1}n with
that of g�{�1, 1}n, for z 2 g{�1, 1}n we let z� := g�1g�z denote the corresponding
point in g�{�1, 1}n. Observe that we can choose the neighborhoods Nz and a constant
� > 0 such that, when z 6= z0,

Qz�,� +�  Qz0�,�

on Nz for all � sufficiently large. Finally, define N :=

S
z Nz.

Next we introduce a quantitative statement of Laplace’s principle that is suited
to our needs.

Lemma 5. Suppose a1, . . . , ak 2 R and ai is strictly minimal among these numbers.
Then

log

kX
j=1

e�aj  �ai + (k � 1)e�c,

where c := minj 6=i (aj � ai) > 0.

Proof. Compute

log

kX
j=1

e�aj
= log

kX
j=1

e�aie�(aj�ai)

= �ai + log

kX
j=1

e�(aj�ai)
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= �ai + log

 
1 +

X
j 6=i

e�(aj�ai)

!
 �ai + log

�
1 + (k � 1)e�c

�
 �ai + (k � 1)e�c,

using the inequality log(1 + x)  x for x � 0.

Then the lemma implies that there exists a constant C such that, for any z 2
g{�1, 1}n,

h�(x)  ��Qz�,�(x) + Ce���

for all x 2 Nz.
Proceeding, we obtainˆ

h� dµ� =

ˆ
N c

h� dµ� +
X

z2g{�1,1}n

ˆ
Nz

h� dµ�

 Cµ�(N c
)� �

X
z2g{�1,1}n

ˆ
Nz

Qz�,� dµ� + Ce���

 Cµ�(N c
)� �

X
z2g{�1,1}n

pz�,�

ˆ
Nz

Qz�,� dµz�,� + Ce���,

where in the last line we have used the nonegativity of the Qz�,� and the definition
of µ� as a convex combination of the µz�,�. Note that µ0

�(N c
) = O(e�C�1�

) for some
C > 0, so we in turn have the upper boundˆ

h� dµ�  ��
X

z2g{�1,1}n
pz�,�

ˆ
Nz

Qz�,� dµz�,� + Ce�C�1�

= ��
2

X
z2g{�1,1}n

pz�,�

ˆ
Nz

(x� z�)
THz�,�(x� z�) dµz�,� + Ce�C�1�.

Now want to replace Hz�,� = v � (z�zT� ) with Hz = v � (zzT ) in this expression at a
cost of only O(��1

). Indeed, for any z 2 g{�1, 1}n,����ˆ
Nz

(x� z�)
T
[Hz�,� �Hz] (x� z�) dµz�

����  kHz�,� �Hzk
ˆ
Nz

|x� z�|2 dµz�,�

 kHz�,� �Hzk
1

�
Tr [Hz�,�]

= O(��2
),

so indeed we can make this replacement, which yieldsˆ
h� dµ�  �

�

2

X
z2g{�1,1}n

pz�,�

ˆ
Nz

(x� z�)
THz(x� z�) dµz�,� +O(��1

).
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Next we want to replace z� with z at a cost of only O(��1). Observe:

(x� z�)
THz(x� z�)

= [(x� z) + (z � z�)]
T Hz [(x� z) + (z � z�)]

= (x� z)THz(x� z) + 2(z � z�)
THz(x� z) + (z � z�)

THz(z � z�)

= (x� z)THz(x� z) + 2(z � z�)
THz(x� z�)� (z � z�)

THz(z � z�),

i.e.,

(x�z�)THz,�(x�z�)�(x�z)THz,�(x�z) = 2(z�z�)THz,�(x�z�)�(z�z�)THz,�(z�z�).

The last term on the right-hand side is O(��2
), independent of x, hence can be

ignored. The other term integrates exactly as

2(z � z�)
THz,�

ˆ
Nz

(x� z�) dµz�,� = 0.

Thus we can make the desired replacement, which yields
ˆ

h� dµ�  ��
2

X
z2g{�1,1}n

pz�,�

ˆ
Nz

(x� z)THz(x� z) dµz�,� +O(��1
)

= ��
X

z2g{�1,1}n
pz�,�

ˆ
Nz

Qz dµz�,� +O(��1
),

where Qz :=
1
2
(x� z)THz(x� z).

II.4. Resynthesizing our bounds.

Combining with our previous work we obtain

F�[G | g] + n

2

log

✓
�

2⇡

◆
� S⌫�(µ�) + n log 2� 1

2

Tr log v � 1

2

nX
i=1

logG�,ii

+ �
X

z2g{�1,1}n
pz�,�

ˆ
Nz

Qz dµz�,�

� �

ˆ
f dµ� +O(��1

).

Now ˆ
f dµ� =

ˆ
N c

f dµ� +
X

z2g{�1,1}n

ˆ
Nz

f dµ�
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=

X
z2g{�1,1}n

pz�,�

ˆ
Nz

f dµz�,� +O(��1
),

and moreover observe that G�,ii = Gii +O(��1
), so in fact we have that

F�[G | g] + n

2

log

✓
�

2⇡

◆
� S⌫�(µ�) + n log 2� 1

2

Tr log v � 1

2

nX
i=1

logGii

� �
X

z2g{�1,1}n
pz�,�

ˆ
Nz

(f �Qz) dµz�,� +O(��1
).

Now, for z 2 g{�1, 1}n, we focus on the termˆ
Nz

(f �Qz) dµz�,�

with the aim of showing that it is O(��2
).

II.5. Showing that
´
Nz
(f �Qz) dµz�,� is negligible.

The key is that the Taylor series for Pz := f�Qz vanishes through second order at
z, so Pz(x� z) = O(|x� z|4), and that |z�� z| = O(��1

). We want to use these facts
to control the Taylor series of f �Qz about z�. Since the Gaussian µz�,� is centered
at z�, the odd part of the Taylor polynomial of f �Qz about z� does not contribute
to the integral against µz�,�, so we need only control the zeroth, second, and fourth
order terms (noting that the Taylor series terminates at fourth order since f �Qz is
quartic).

The zeroth order term at z� is simply Pz(z�) = O(|z� � z|3) = O(��3
).

For second order term, we must compute r2Pz(z�). Now r2Pz vanishes through
zeroth order at z, sor2Pz(x) = O(|x�z|), and in particularr2Pz(z�) = O(��1

). The
second order term of the Taylor series of Pz at z� is then 1

2
(x� z�)Tr2Pz(z�)(x� z�),

which integrates against µz�,� to O(��2
).

Finally, we consider the fourth order term. Now the fourth derivatives of Pz

are constant, and the fourth order term of the Taylor series of Pz at z� is a linear
combination (with coefficients constant in �) of terms of the form

(xi � z�,i)(xj � z�,j)(xk � z�,k)(xl � z�,l),

which integrate against µz�,� to O(��2
).

Thus we have established thatˆ
Nz

(f �Qz) dµz�,� = O(��2
),

for all z 2 g{�1, 1}n, as desired.
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II.6. Controlling the relative entropy term.

The preceding result implies that

F�[G | g] + n

2

log

✓
�

2⇡

◆
� S⌫�(µ�) + n log 2� 1

2

Tr log v � 1

2

nX
i=1

logGii +O(��1
).

For the rest of the lower bound, as discussed above, we only need to upper-bound
S⌫�(µ�) by Sw(p) = bF [G | g]�n log 2 plus some vanishing error term. (Unfortunately,
the joint upper semi-continuity of the entropy with respect to the topology of weak
convergence gives us an inequality in the wrong direction, but in any case we can be
more quantitative.)

Recall: µ� =

P
z2g{�1,1}n pz�,�µz�,� and ⌫ =

1
2n

P
z2g{�1,1}n µz�,�, where µz�,� ⇠

N (z�,��1H�1
z�,�

). Then

S⌫�(µ�) = �
ˆ

log

"P
z2g{�1,1}n pz�,� exp (��Qz�,�)P
z2g{�1,1}n

1
2n

exp (��Qz�,�)

#
dµ�.

Notice that there exists C > 0 such that C�1  pz�,� 2
n  C, hence

C�1
X

z2g{�1,1}n

1

2

n
exp (��Qz) 

X
z2g{�1,1}n

pz�,� exp (��Qz)

 C
X

z2g{�1,1}n

1

2

n
exp (��Qz) ,

i.e.,

C�1 
P

z2g{�1,1}n pz�,� exp (��Qz�,�)P
z2g{�1,1}n

1
2n

exp (��Qz�,�)
 C.

Then

S⌫�(µ�) = �
X
z0

ˆ
Nz0

log

"P
z2g{�1,1}n pz�,� exp (��Qz�,�)P
z2g{�1,1}n

1
2n

exp (��Qz�,�)

#
dµ� +O(e�C�1�

)

 �
X
z0

ˆ
Nz0

log

"
pz0�,� exp

�
��Qz0�,�

�P
z2g{�1,1}n

1
2n

exp (��Qz�,�)

#
dµ� +O(e�C�1�

).

Furthermore, as proved earlier,

log

X
z2g{�1,1}n

exp (��Qz�,�)  ��Qz0�,�
(x) + Ce��� = log exp

�
��Qz0�,�

(x) + Ce���
�
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on Nz0 , so

S⌫�(µ�)  �
X
z0

ˆ
Nz0

log

"
pz0�,� exp

�
��Qz0�,�

�
1
2n

exp

�
��Qz0�,�

(x) + Ce���
�# dµ� +O(e�C�1�

)

= �
X
z

ˆ
Nz

log

hpz�,�
2

�n

i
dµ� +O(e�C�1�

)

= �
X
z

log

hpz�,�
2

�n

i
µ�(Nz) +O(e�C�1�

).

But µ�(Nz) = pz +O(e�C�1�
), and pz�,� = pz +O(��1

), so we have

S⌫�(µ�)  Sw(p) +O(��1
).

In summary, we have shown

F�[G | g] + n

2

log

✓
�

2⇡

◆
� bF [G | g]� 1

2

Tr log v � 1

2

nX
i=1

logGii +O(��1
).

as desired.
This completes the proof. ⇤

6 Gradient asymptotics
We want to understand not only the asymptotic behavior of F�[G] as � ! 1, but
also the behavior of A�[G] as �!1.

In order to separate the behavior on the diagonal from the behavior on the off-
diagonal, we define an operator Z which replaces the diagonal entries of its argument
with zeros and an operator D which replaces the off-diagonal entries with zeros. Thus
D + Z = Id.

Recall that A�[G] = rF�[G]. Now the main theorem of the last section implies
in particular that

1

�
F�[G]! �1

8

X
ij

vijGiiGjj

pointwise for G 2 int(Kn). The pointwise convergence of concave functions (cf.
Theorem 23 of Appendix C) implies the pointwise convergence of their supergradients
(in this case, ordinary gradients). Therefore

1

�
A�[G]! �D[G]

for all G 2 int(Kn), where D[G] is defined as before by

D[G] =

1

2

diag

"X
j

v1jGjj, . . . ,
X
j

vnjGjj

#
.
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We also saw that

F�[G] +

n

2

log

✓
�

2⇡

◆
+

�

8

X
ij

vijGiiGjj ! bF [G | g]� 1

2

Tr log v � 1

2

nX
i=1

logGii

pointwise, though this is no longer the limit of convex functions on Sn
++. However,

this is a limit of convex functions on matrices with fixed diagonal Gii = G⇤
ii, so taking

gradients in the off-diagonal directions implies that

L�[G] := Z (A�[G])! B[G].

Next, it would be desirable to show that

A�[G] + �D[G]

converges, or at least first that this quantity bounded. What we don’t yet know is
whether this holds on the diagonal, i.e., whether the ‘on-diagonal remainder’

M�[G] := D (A�[G]) + �D[G]

is bounded. This can be established by combining concavity with our quantitative
error bounds from the last section.

Proposition 6. For G 2 int(Kn), D (A�[G]) = ��D[G] +O(1), i.e., M�[G] = O(1).

Proof. This is the same as saying that M�[G] = O(1). For G 2 Sn
++, define

��[G] :=

1

�


F�[G] +

n

2

log

✓
�

2⇡

◆
+

1

2

Tr log v

�
,

so �� is concave on Sn
++, and r�� =

1
�
A�. Then for G 2 int(Kn), by Theorem 3 we

have
��[G] =  �[G] +O(��2

),

where

 �[G] := �1

8

X
ij

vijGiiGjj + ��1 bF [G | g]� 1

2

��1

nX
i=1

logGii

and the constant in O(��2
) can be taken to be locally uniform in G. Let us make

the dependence of g = g(G) = diag

p
diag(G) on G explicit and use the relation ofbF [G | g] to the reference spin system via Proposition 1 to write

bF [G | g] = bF [g(G)

�1Gg(G)

�1
].

By the smoothness of bF , it is then clear that  �[G] has derivatives that are locally
uniformly bounded on int(Kn), with bounds independent of � (sufficiently large).
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Now fix G 2 int(Kn), and consider T 2 Sn and � sufficiently small so that in
particular G+ �T 2 int(Kn), we have by concavity that

��[G] + �Tr
�
��1A�[G]T

�
� ��[G+ �T ].

Therefore

Tr

�
��1A�[G]T

�
� ��[G+ �T ]� ��[G]

�

�  �[G+ �T ]� �[G]

�
� C��1��2

� Tr (r �[G]T )� C� � C��1��2,

where we have used local �-independent uniform bounds on the second derivative of
 � to bound the error of the difference quotient in the last step.

Then choose � = �(�) = ��1 to obtain

Tr

�
��1A�[G]T

�
� Tr (r �[G]T )� C��1.

Notice, however, that (since G is fixed), r �[G] = �D[G] + O(��1
), so we have

shown that
Tr

⇥
T
�
��1A�[G] +D[G]

�⇤
� O(��1

),

i.e.,
Tr [T (A�[G] + �D[G])] � O(1),

for any fixed T 2 Sn. Simply choosing T = ±eieTi yields the result.

7 Polarization relation
Let G 2 Sn

++, and let h · i�,G denote the expectation with respect to the Gibbs measure
µ�,G with density

dµ� = (Z�[A�])
�1 e�

1

2

xTA�[G]x��U(x) dx.

In particular, hxixji�,G = Gij.
In the following, when considering a fixed G 2 Sn

++ we sometimes omit the de-
pendence on G from the notation, denoting, e.g., A� = A�[G], h · i� = h · i�,G, etc.,
when the context is clear.

Now define the polarization P� = P�[G] by

P�,ij =
⌦
(x2

i � hx2
i i�)(x2

j � hx2
ji)
↵
�
= hx2

ix
2
ji� �GiiGjj.

If X� is the random vector with distribution µ�, then P� is the covariance matrix of
X�. Evidently P� 2 Sn

++.
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Proposition 7. For all G 2 Sn
++, � > 0, and i, j = 1, . . . , n,

(A�[G]G)ij = �ij �
1

2

�
nX

k=1

vikhxixjx
2
ki�,G

= �ij � � (D[G]G)ij �
1

2

�
nX

k=1

vikhxixj(x
2
k �Gkk)i�,G.

Consequently,

(A�[G]G)ii = 1� 1

2

�
nX

j=1

vikGiiGkk �
1

2

� (P�[G]v)ii

= 1� � (D[G]G)ii �
1

2

� (P�[G]v)ii ,

so

M�,ii[G]Gii = 1� [L�[G]G]ii �
1

2

� (P�[G]v)ii ,

and
Tr

✓
A�[G] +

1

2

�D[G]� I

◆
G

�
=

1

2

�Tr (P�[G]v) .

Proof. Fix G and write A� = A�[G], etc. Let

J�(x) = exp

"
�1

2

X
kl

✓
A�,klxkxl +

1

4

�vijx
2
kx

2
l

◆#
,

so
@J�
@xi

= �
X
k

✓
A�,ikxk +

1

2

�vikx
2
kxi

◆
J(x).

Then we can integrate by parts to obtain

1 =

1

Z�[A�]

ˆ
1 · J�(x) dx

=

1

Z�[A�]

ˆ
xk

X
i

✓
A�,ikxi +

1

2

�vikx
2
ixk

◆
J(x) dx

=

X
i

A�,ik
1

Z�[A�]

ˆ
xkxi J(x) dx+

X
i

1

2

�vik
1

Z�[A�]

ˆ
x2
ix

2
k J(x) dx

=

X
i

A�,ikGki +
1

2

�
X
i

vikhx2
ix

2
ki�.
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This establishes the first statement in the case i = j.
For the case i 6= j, we apply integration by parts again:

�ij =

1

Z�[A�]

ˆ
�ij · J�(x) dx

=

1

Z�[A�]

ˆ
@xj

@xi

· J�(x) dx

=

1

Z�[A�]

ˆ
xj

X
k

✓
A�,ikxk +

1

2

�vikx
2
kxi

◆
J(x) dx

=

X
k

A�,ik
1

Z�[A�]

ˆ
xkxj J(x) dx+

X
k

1

2

�vik
1

Z�[A�]

ˆ
xixjx

2
k J(x) dx

=

X
k

A�,ikGkj +
1

2

�
X
i

vikhxixjx
2
ki�.

This establishes the first statement. The others follow by considering the case i = j
and rearranging terms.

We have shown that M� = O(1), but we have not identified a limit for M� (nor
shown that one exists). By contrast, we do have a formula for the limit of the off-
diagonal part of A� + �D[G], namely B = B[G].

The formula
M�,iiGii = 1� [L�G]ii �

1

2

� (P�v)ii

suggests a way to remedy this. Note that [L�G]ii ! (B[G]G)ii. In fact, we expect
�P� to have a limit as well. If we can compute this limit, then we can simply read
off a limiting formula for M�.

To see why �P� should have a limit, write P�,ij = hfiji�, where

fij(x) = (x2
i �Gii)(x

2
j �Gjj).

Now fij is has critical points at z 2 g{�1, 1}n, hence is locally quadratic near
g{�1, 1}n. We expect µ� to look Gaussian near g{�1, 1}n with covariance ⇠ 1

�
.

Thus hfiii� should be O(��1
), and hfiji� should be even smaller. Thus as claimed,

we expect 1
2
� (P�v)ii to have a limit.

8 Asymptotic polarization and the limit of M�[G]

We now carry out the strategy outlined at the end of the last section.

Proposition 8. Let G 2 int(Kn). Then �P�[G] ! 4v�1 as � ! 1. Consequently
M�,ii[G]! �(Gii)

�1
[1 + (B[G]G)ii], i.e.,

M�[G]! �g�1
[I +D (B[G]G)] g�1

as �!1.
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Corollary 9. Let G 2 int(Kn). Then M�,ii[G]! �(Gii)
�1

[1 + (B[G]G)ii], i.e.,

M�[G]! �g�1
[I +D (B[G]G)] g�1

as �!1. Consequently

A�[G] = ��D[G] + B[G] + g�1
[I +D (B[G]G)] g�1

+ o(1).

Proof. Throughout we suppose G 2 int(Kn) is fixed. Before proceeding, recall that
we know that

A� = ��D[G] + L� +M�,

where L� ! B = B[G] has zero diagonal and M� = O(1). Then there exists C
such that �CIn � M� � CIn. Assume C is large enough so that B 1

2

p
C(0) contains

g{�1, 1}n.
Throughout this discussion we will use C to denote constants independent of �

that are sufficiently large in the given context; the precise meaning of C may change
across usages.

Let � > 0, and assume that � is large enough so that ��In � L��B � �In. Also,
let N ⇢ Bp

C(0) be a small enough neighborhood of g{�1, 1}n such that����1
2

gTM�g �
1

2

xTM�x

����  �

on N for all �. (This is possible because M� is diagonal!)
Let

f(x) = fg(x) =
X
ij

vij(x
2
i �Gii)(x

2
j �Gjj),

and recall
f(x) =

1

2

D[G]� U(x)� 1

8

X
ij

vijGiiGjj.

Finally, define ZH
� := exp

⇣
�
8

P
ij vijGiiGjj

⌘
to ease the notation later on. (‘H’ is for

‘Hartree.’)
Then compute

Z�[A�] =

ˆ
e�

1

2

xTA�x��U(x) dx

= ZH
�

ˆ
e�

1

2

xT (L�+M�)xe��f(x) dx

= ZH
� e

� 1

2

gTM�g

ˆ
e�

1

2

xTL�xe
1

2

gTM�g� 1

2

xTM�xe��f(x) dx

= ZH
� e

� 1

2

gTM�g

ˆ
N
e�

1

2

xTL�xe
1

2

gTM�g� 1

2

xTM�xe��f(x) dx+O(e�C�1�
)

�
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 ZH
� e

� 1

2

gTM�g

ˆ
N
e�|x|

2

e�
1

2

xTBxe��f(x) dx+O(e�C�1�
)

�
 ZH

� e
� 1

2

gTM�geC�
ˆ

N
e�

1

2

xTBxe��f(x) dx+O(e�C�1�
)

�
= ZH

� e
� 1

2

gTM�geC�✓
2⇡

�

◆n/2
1pQn
i=1 Gii

1p
det v

X
z2g{�1,1}n

e�
1

2

zTBz
⇥
1 +O(��1

)

⇤
,

where in the last step we have used Laplace’s method. Meanwhile,

hfiji� = ZH
� e

� 1

2

gTM�g

ˆ
fij(x) e

� 1

2

xTL�xe
1

2

gTM�g� 1

2

xTM�xe��f(x) dx

� ZH
� e

� 1

2

gTM�g

ˆ
N
e��|x|

2

fij(x) e
� 1

2

xTBxe��f(x) dx+O(e�C�1�
)

�
� ZH

� e
� 1

2

gTM�ge�C�

ˆ
N
e�

1

2

xTBx fij(x) e
��f(x) dx+O(e�C�1�

)

�
.

Now for z 2 g{�1, 1}n, we have fij(z) = 0, r(fij)(z) = 0, and r2
(fij)(z) = 4Eij �

(zzT ), where (Eij)kl = �ik�jl + �il�jk. Then expanding e�
1

2

xTBxfij(x) to second order
near z, we have

e�
1

2

xTBx fij(x) = e�
1

2

zTBz 1

2

(x� z)T
⇥
Eij � (zzT )

⇤
(x� z) + · · ·

Note that e��f(x), normalized by the appropriate factor, looks near z like the density
of the Gaussian distribution centered at z with covariance ��1

⇥
v � (zzT )

⇤�1.
Omitting some details, the technique of Laplace’s method then yields

ˆ
N
e�

1

2

xTBx fij(x) e
��f(x) dx

⇠
✓
2⇡

�

◆n/2
1pQn
i=1 Gii

1p
det vX

z2{�1,1}n
e�

1

2

zTBz
2��1

Tr

⇣⇥
Eij � (zzT )

⇤ ⇥
v � (zzT )

⇤�1
⌘
.

But, writing ⇣ = diag(z),⇥
Eij � (zzT )

⇤ ⇥
v � (zzT )

⇤�1
= [⇣Eij⇣] [⇣v⇣]

�1
= ⇣Eijv

�1⇣�1,

so
Tr

⇣⇥
Eij � (zzT )

⇤ ⇥
v � (zzT )

⇤�1
⌘
= Tr

⇥
Eijv

�1
⇤
= 2vij.
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Therefore
ˆ
N
e�

1

2

xTBx fij(x) e
��f(x) dx ⇠ 4��1

✓
2⇡

�

◆n/2
1pQn
i=1 Gii

1p
det v

X
z2{�1,1}n

e�
1

2

zTBzvij.

Combining our results then reveals

�P�,ij =
h�fiji�
Z�[A�]

� e�2C�
4vij + o(1).

Since � > 0 was arbitrary, we have shown

�P�,ij � 4vij + o(1).

Similar reasoning guarantees the reverse inequality, so �P� ! 4v�1, as was to be
shown.

If we define the screened Coulomb interaction as W�[G] := v� 1
4
vP�[G]v, then we

see that ��1W� ! �v, so the screened Coulomb interaction is o(�).
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Part V

The 1-RDM theory and fermionic

embedding

1 Introduction
The fermionic 1-RDM theory (one-body reduced density matrix) is an analog of sorts
to the classical Luttinger-Ward (LW) theory as presented in Part III. In the LW
theory, we started with the concavity of the free energy functional, considered as a
function of the quadratic part of the Hamiltonian (with the rest of the Hamiltonian,
i.e., the interaction, fixed). The quadratic part on its own yields a Gaussian measure,
which can be thought of as a completely solved model.

Meanwhile, in the fermionic 1-RDM theory, we start with the concavity of the
quantum (fermionic) free energy functional, considered as a function of the quadratic
part of the Hamiltonian, where the interaction is again fixed. The quadratic part on
its own yields a free fermionic ensemble, which can also be thought of as a completely
solved model.

Proceeding by analogy to Part III, we can define a suitable concave duality and
examine the behavior of the dual functional (namely, the 1-RDM functional) on the
boundary of its effective domain. Unfortunately, the 1-RDM functional does not
enjoy a diagrammatic expansion, but its boundary behavior can, like that of the LW
functional, still be understood in terms of the 1-RDM functional of a smaller system
with an effective interaction, which we derive explicitly in the case of the two-body
interaction. To prove this result, we first prove a structural result that constrains
the form of fermionic ensembles whose 1-RDMs are on the boundary of the domain
of the 1-RDM functional. In addition to helping us understand the behavior of the
1-RDM functional on the boundary, this result offers some perspective on fermionic
embedding methods such as the density matrix embedding theory (DMET) [49].

2 The fermionic 1-RDM theory
Our setting is a fermionic Fock space denoted Fd with a finite number d of states.
(Refer to section 4 of Part I for background on second quantization.) The reader may
consult [38] for a related presentation of the 1-RDM theory.

Now consider a Hamiltonian ˆH, i.e., a Hermitian operator Fd ! Fd. In general
we can write

ˆH =

ˆH0 +
ˆV ,
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where
ˆH0 =

dX
i,j=1

Aijc
†
icj,

is the single-body (or noninteracting) part of the Hamiltonian, specified by a d ⇥ d
Hermitian matrix A = (Aij), and ˆV is the interacting part, also a Hermitian operator.
Though we need not define ˆV more explicitly for now, one might keep in mind the
two-body interaction

ˆV =

1

2

dX
i,j,k,l=1

(ij|kl)c†ic
†
kclcj.

In quantum statistical mechanics at inverse temperature � 2 (0,1), we are con-
cerned with the partition function

Z := Tr

h
e��(Ĥ�µN̂)

i
,

where µ 2 R is the chemical potential and ‘Tr’ denotes the trace operation for oper-
ators on the Fock space. The density operator ⇢ :=

1
Z
e��(Ĥ�µN̂) defines the so-called

grand canonical ensemble by specifying how to compute ensemble averages of oper-
ators. To wit, for an operator O : Fd ! Fd, the ensemble average of O is denoted
by

hOi = 1

Z
Tr [O⇢] ,

For now we will not think of µ as variable, we can assume without loss of generality
(by appropriately redefining A A� µId) that µ = 0, so

Z = Tr

h
e��Ĥ

i
, ⇢ =

1

Z
e��Ĥ

In fact, we will think of H, Z, and ⇢ as functions of A, writing

ˆH[A] =
X
i,j

Aijc
†
icj + ˆV , Z[A] = Tr

h
e�Ĥ[A]

i
, ⇢[A] =

1

Z[A]
e��Ĥ[A]

and further defining the free energy by

⌦[A] := � logZ[A].

It is sometimes convenient to let c = (c1, . . . , cd)> denote the vector of annhilation
operators, so ˆH[A] = c†Ac+ ˆV .

One can also think of all of these quantities as depending on ˆV , and we can
accordingly write, e.g. ⌦[A; ˆV ]. However, when the context is clear we omit the
dependence on ˆV from the notation.

For clarity, we now establish our conventions for taking derivatives on the set of
Hermitian matrices.
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Definition 1. For i, j = 1, . . . , d, let E(ij) 2 Hd be defined by E(ij)
kl =

1
2
(1+ i)�ik�jl+

1
2
(1 � i)�il�jk. For a differentiable function f : Hd ! R, define the gradient rf :

Hd ! Hd by

(rf(A))ij := rijf(A) := lim

�!0

f(A+ �E(ij)
)� f(A)

�
.

If f is obtained by restriction from a function f : CM⇥M ! R, then equivalently

rijf =

1

2

@f

@Aij

+

1

2

@f

@Aji

.

Then observe that the gradient map r⌦ is given by

rij⌦[A] =
1

Z[A]
Tr


1

2

⇣
c†icj + c†jci

⌘
e�Ĥ[A]

�
.

Notice that

Tr

h
c†icje

�Ĥ[A]
i

= Tr

h
cje

�Ĥ[A]c†i

i
= Tr

⇣
cje

�Ĥ[A]c†i

⌘†�
= Tr

h
cie

�Ĥ[A]c†j

i
= Tr

h
c†jcie

�Ĥ[A]
i
,

so in fact
rij⌦[A] = Tr

h
c†icj⇢[A]

i
.

Then D[A] := r⌦[A] is the 1-particle density matrix (1-RDM). This map will de-
fine a correspondence between single-particle Hamiltonians and 1-RDMs via concave
duality, suggested by the following lemma.

Lemma 2. ⌦ is strictly concave on Hd.

The proof follows from the following more general fact:

Lemma 3. Let M be a positive integer. Then the function fM : HM ! R defined by
f(X) = log Tr

⇥
eX
⇤

is strictly convex.

Proof. Once can prove this fact by taking derivatives, but we present much quicker
proof that makes use of nice inequalities. Indeed, let X1, X2 2 HM , and let ✓ 2 [0, 1].
Then

f(✓X1 + (1� ✓)X2) = log Tr

⇥
e✓X1

+(1�✓)X
2

⇤
 log Tr

⇥
e✓X1e(1�✓)X2

⇤
by the Golden-Thompson inequality. Now Hölder’s inequality for the Schatten norms
implies that

Tr

⇥
e✓X1e(1�✓)X2

⇤
 ke✓X1k✓�1ke(1�✓)X2k(1�✓)�1

=

�
Tr

⇥
eX1

⇤�✓ �
Tr

⇥
eX2

⇤�1�✓
.
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Therefore
f(✓X1 + (1� ✓)X2)  ✓f(X1) + (1� ✓)f(X2),

which proves convexity. In fact Hölder’s inequality is strict if X1 6= X2, so we have
strict convexity.

Proof. (Of Lemma 2.) We will apply Lemma 3 in the case M = 2

d. Observe that

⌦[A] = �f2d
 
�
X
ij

Aijc
†
icj � ˆV

!
.

Since the composition of a strictly convex function with a nondegenerate affine trans-
formation is strictly convex, it follows that ⌦ is strictly concave.

Now we turn to finding the concave conjugate (Legendre transform) of ⌦. The
answer comes to us via a contraction of the quantum Gibbs variational principle
(Lemma 9 below), analogous to the classical Gibbs variational principle from classical
statistical mechanics. In the quantum setting, the role of probability measures is
played by density operators:

Definition 4. A density operator on Fd (or for short, density operator) is a Hermitian
positive semidefinite operator Fd ! Fd of unit trace. The set of density operators on
Fd is denoted Dd.

Remark 5. Note that ⇢[A] as defined above is an example of a density operator.
Moreover, the roles of the classical entropy and relative entropy are played by the

von Neumann entropy and quantum relative entropy, defined as follows.

Definition 6. For ⇢, � 2 Dd, let

S(⇢) := Tr[⇢ log ⇢]

denote the von Neumann entropy of ⇢, and let

S(⇢k�) := Tr[⇢ log ⇢]� Tr[⇢ log �]

denote the quantum relative entropy of ⇢ with respect to �.

We collect some facts [78] about the von Neumann entropy and the relative en-
tropy:

Fact 7. The von Neumann entropy is ⇢ 7! S(⇢) is a concave function on Dd, and
0  S(⇢)  log

�
2

d
�

for all ⇢ 2 Dd.

Fact 8. For any ⇢, � 2 Dd, S(⇢k�) � 0 with equality if and only if ⇢ = �.

Now our first step to identifying the concave conjugate of ⌦ is the following lemma:
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Lemma 9. For A 2 Hd,

⌦[A] = inf

⇢2Dd

h
Tr(⇢ ˆH[A])� S(⇢)

i
.

Moreover, the infimum is uniquely attained at ⇢[A] = 1
Z[A]

e�Ĥ[A].

Proof. For ⇢ 2 Dd,

Tr(⇢ ˆH[A])� S(⇢) = � logZ[A]� Tr(⇢ log ⇢[A])� S(⇢) = ⌦[A] + S(⇢k⇢A).

But S(⇢k⇢A) � 0 with equality if and only if ⇢ = ⇢A. This completes the proof.

For notational convenience, we define a general notion of 1-RDM, as well as the
map that associates to every density matrix its 1-RDM.

Definition 10. Let D(1)
d := {D 2 Hd

: 0 � D � 1}. We refer to elements of
D(1)

d as one-body reduced density matrices, or 1-RDMs. Define � : Dd ! D(1)
d by

�ij(⇢) = Tr[⇢c†icj].

For this definition, we have to check that � as defined actually maps Dd into D(1)
d :

Lemma 11. For ⇢ 2 Dd, the matrix D 2 Hd defined by Dij = Tr[⇢c†icj] is an element
of D(1)

d .

Proof. To see this, let ⇢ 2 Dd, and let z 2 Cd with kzk2 =
Pd

i=1 |zi|2 = 1. Then

z⇤�(⇢)z =

X
ij

zizjTr[c
†
icj⇢] = Tr[c̃†c̃⇢],

where c̃ :=
Pd

i=1 zici. Now c̃†c̃ and ⇢ are positive semidefinite operators, so Tr[c̃†c̃⇢] �
0. It remains to show that Tr[c̃†c̃⇢]  1. To see this observe that

c̃†c̃+ c̃c̃† =

dX
i,j=1

zizjc
†
icj +

dX
i,j=1

zizjcic
†
j

=

dX
i,j=1

zizj
⇣
c†icj + cjc

†
i

⌘
=

dX
i,j=1

zizj (�ij IdFd
)

= IdFd
.

Since c̃†c̃, c̃c̃† ⌫ 0, it follows that c̃†c̃ � IdFd
. Therefore Tr[c̃†c̃⇢]  Tr[⇢] = 1, as was

to be shown.
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Finally, we obtain the concave conjugate of ⌦ via a ‘contraction’ principle:

Lemma 12. For A 2 Hd,

⌦[A] = inf

D2D(1)

d

(Tr[AD]� F [D]) ,

where
F [D] := sup

⇢2��1(D)

h
S(⇢)� Tr(⇢ ˆV )

i
is the 1-RDM functional. F can be thought of as a function on all of Hd via the
convention that F [D] = �1 if ��1

(D) is empty.

Proof. Write

⌦[A] = inf

D2D(1)

d

inf

⇢2��1(D)

"
dX

i,j=1

AijTr

⇣
⇢c†icj

⌘
+ Tr(⇢ ˆV )� S(⇢)

#

= inf

D2D(1)

d

✓
Tr[AD] + inf

⇢2��1(D)

h
Tr(⇢ ˆV )� S(⇢)

i◆
.

Then we have the following properties of F :

Lemma 13. F is finite and concave on D(1)
d .

Remark 14. Since F is finite on D(1)
d and F ⌘ �1 on Hd\D(1)

d (since ��1
(D) = ; for

all D in this set), in the language of convex analysis we say that D(1)
d is the effective

domain of F and write D(1)
d = domF .

Proof. First we show that F is finite. Let D 2 D(1)
d . The fact that F [D] <1 follows

from the facts that S(⇢)  d log 2 and Tr[⇢ ˆV ]  kV kop for all ⇢ 2 Dd. Then to show
that F [D] > �1 is to show that ��1

(D) is nonempty. In fact, for such D, we can
always find a noninteracting density matrix ⇢ such that �(⇢) = d.

Inspired by Appendix F, we let A = log(D�1 � 1). If D is on the boundary
of D(1)

d , then formally we allow A to have possibly eigenvalues ±1. Then let ⇢ =

⇢0[A] =
1

Z
0

[A]
e�c†Ac. Even for A understood formally to have infinite eigenvalues, ⇢ is

well-defined as a density matrix, and �(⇢0[A]) = D (see Appendix F).
Now we prove convexity. Let D1, D2 2 D(1)

d and ✓ 2 [0, 1]. Let " � 0, and choose
⇢1 2 ��1

(D1) and ⇢2 2 ��1
(D2) such that F [Di]  S(⇢i) � Tr(⇢i ˆV ) + " for i = 1, 2.

Then �(✓D1+(1� ✓)D2) = ✓D1+(1� ✓)D2, so we have from the definition of F that

F [✓D1 + (1� ✓)D2] � S(✓⇢1 + (1� ✓)⇢2)�
⇣
Tr [✓⇢1 + (1� ✓)⇢2] ˆV

⌘
.
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Then by the concavity of S,

F [✓D1 + (1� ✓)D2] � ✓
h
S(⇢1)� Tr(⇢1 ˆV )

i
+ (1� ✓)

h
S(⇢2)� Tr(⇢2 ˆV )

i
= ✓F [D1] + (1� ✓)F [D2]� ".

Since " > 0 was arbitrary, the concavity of F follows.

Now in the language of convex analysis, Lemma 12 precisely means that ⌦ is the
concave conjugate of F , and we write ⌦ = F⇤. But because F is concave, ⌦⇤

= F⇤⇤ is
the upper semicontinuous hull of F (see Appendix C). Since F is concave on D(1)

d , it
follows that F is in fact continuous on intD(1)

d (Appendix C), hence agrees with F⇤⇤

on this set. Therefore ⌦⇤
= F on intD(1)

d . In fact, our later analysis (see Remark 18
below) implies in particular that F is continuous up to the boundary of D(1)

d , hence
F⇤⇤

= F , and ⌦⇤
= F . In summary, we have

Theorem 15. ⌦⇤
= F .

Meanwhile, tentatively defining A[D] = rF [D] (pending the proof of the differ-
entiability of F), we expect that D[A] = r⌦[A] and A[D] are inverses of one another
(on appropriate sets), as is guaranteed by the following lemma.

Lemma 16. D[A] = r⌦[A] is a bijection Hd ! intD(1)
d with inverse given by A[D] =

rF [D].

Proof. In particular we need to show that F is differentiable on intD(1)
d . Since ⌦

is differentiable and strictly convex on Hd, it follows that ⌦⇤
= F⇤⇤ is differentiable

and strictly convex on intD(1)
d and that r⌦ is a bijection Hd ! intD(1)

d with inverse
given by rF⇤⇤; see Appendix C) or Theorem 26.5 of [91]. Since F⇤⇤

= F on intD(1)
d ,

the result follows.

Lemma 16 specifies, roughly speaking, a one-to-one correspondence between the
1-RDM and the single-particle part of the Hamiltonian.

2.1 The noninteracting case
We pause now to consider the noninteracting case, in which ˆV = 0. To indicate this
case, we write ˆH0[A] = c†Ac, Z0[A] = Z[A; 0], ⇢0[A] = 1

Z
0

[A]
e�Ĥ

0

[A], ⌦0[A] = ⌦[A; 0],
D0[A] = D[A; 0], F0[D] = F [D; 0], and A0[D] = A[D; 0].

In Appendix F, we prove that

Z0[A] = det

�
1 + e�A

�
,

from which it follows that

⌦0[A] = � log det

�
1 + e�A

�
= �Tr

⇥
log

�
1 + e�A

�⇤
,
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so
D0[A] = r⌦0[A] =

e�A

1 + e�A
=

�
1 + eA

��1
.

Therefore the inverse map A0[D] is given by

A0[D] = log

�
D�1 � 1

�
.

Then via Legendre duality, we compute F0 as

F0[D] = Tr[DA0[D]]� ⌦0[A0[D]]

= Tr

⇥
D log(D�1 � 1)

⇤
+ Tr

h
log

⇣
1 + e� log(D�1�1)

⌘i
= Tr

⇥
D log(D�1

(1�D))

⇤
+ Tr


log

✓
1 +

1

D�1 � 1

◆�
= �Tr [D logD] + Tr[D log(1�D)] + Tr


log

✓
D�1

D�1 � 1

◆�
= �Tr [D logD] + Tr[D log(1�D)] + Tr


log

✓
1

1�D

◆�
= �Tr [D logD] + Tr[D log(1�D)]� Tr [log(1�D)]

= �Tr [D logD]� Tr [(1�D) log(1�D)] ,

so
F0[D] = �Tr [D logD]� Tr [(1�D) log(1�D)]

is a sort of ‘matrix binary entropy.’ In fact we have proved this latter fact only for
D 2 intD(1)

d , but it follows on all of D(1)
d by the continuity of F up to the boundary

(Remark 18 below).

2.2 Comparison with the Luttinger-Ward formalism
The developments here can be viewed as a ‘quantum-statistical-mechanical’ ana-
log of the development of the Luttinger-Ward formalism in the ‘classical-statistical-
mechanical’ setting (i.e., the setting of Gibbs measures); see Part III.

Now to identify the analog of ‘Luttinger-Ward functional’ in this setting, one
should take the difference of the interacting and noninteracting F functionals. Indeed,
we may define

�[D] := F [D]� F0[D]

= F [D] + Tr [D logD] + Tr [(1�D) log(1�D)] .

Taking gradients, this yields a ‘Dyson equation’

A = rF0[D] + ⌃[D] = log(D�1 � 1) + ⌃[D]
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where ⌃ := r� is the analog of the ‘self-energy,’ so

D�1
= 1 + eA�⌃[D].

As in the classical case, the self-energy defines an effective single-particle Hamiltonian
(via A�⌃) whose noninteracting 1-RDM is precisely the interacting 1-RDM function
for A.

An important difference between this settting and the classical setting is that there
is no transformation rule, i.e., for an arbitrary, linear transformation T : Rd ! Rd,
there is no simple recipe for computing F [TDT ⇤

] or �[TDT ⇤
] in terms of F [D] or

�[D]. (However, there is a transformation rule for unitary linear transformations,
which can be established via the canonical transformation of the creation and annihi-
lation operators.) Notably, the failure of the transformation rule entails the failure of
the projection rule; this prevents us from simply downfolding the bath of an impurity
problems to derive an effective single-particle matrix. (Instead, as can be understood
from the path integral perspective in which the formal similarity to the classical field
theory is visible, one obtains a dynamical effective single-particle matrix. However,
this development is orthogonal to the discussion of this section.)

3 The embedding lemma and boundary analysis
Motivated by developments for the classical Luttinger-Ward functional, we want to
describe the behavior of F on the boundary of its domain, i.e., @D(1)

d .
Consider block-diagonal D of the form

D =

0@ Dp 0 0

0 Iq 0

0 0 0r

1A , (3.1)

where Gp 2 D(1)
p and p + q + r = d. Via canonical transformation, to determine the

boundary values of F , it suffices to determine the value of � for G of this form.
Identify the first p lattice sites as X and the last q + r as Y , and let the corre-

sponding Fock spaces be FX and FY , respectively, so F = FX⌦FY , where the tensor
product is considered with respect to the occupation number representations of the
Fock spaces in question.

Finally, define
| Y i := c†p+1 · · · c†p+q|�i 2 FY .

Then we have the following fundamental result, which constrains the form of any
density operator that yields a 1-RDM of the form (3.1).

Lemma 17 (Embedding lemma). Suppose ⇢ 2 Dd and �(⇢) = D, where D is of the
form (3.1). Then

⇢ = ⇢X ⌦ | Y ih Y |.
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Proof. First define ⇢X := TrY [⇢] and ⇢Y := TrX [⇢]. (We do not yet know that ⇢
factorizes as ⇢ = ⇢X ⌦ ⇢Y .) Then evidently

� (⇢Y ) =

✓
Ip 0

0 0r

◆
.

We claim that this implies that ⇢Y is a pure state, to wit, the projector onto the
Slater determinant | Y i.

To this end, write
⇢Y =

X
i

↵i |Yii hYi| ,

where Yi 2 FY are orthonormal and ↵i > 0 with
P

i ↵i = 1 . Then for j = p +

1, . . . , p+ q,
1 = Tr[a†jaj⇢Y ] =

X
i

↵i hYi| a†jaj |Yii . (3.2)

Now hYi| a†jaj |Yii = kaj |Yiik2 � 0, but also ka†jajk = 1, so hYi| a†jaj |Yii  1. There-
fore, in order for (3.2) to hold, it must be the case that

hYi| a†jaj |Yii = 1.

Since ka†jajk = 1, it must be the case that |Yii is a 1-eigenstate of a†jaj for all
j = p+ 1, . . . , p+ q and all i.

Meanwhile for all j > p+ 1, we have

0 =

X
i

↵i hYi| a†jaj |Yii ,

so it must be the case that

kaj|Yiik2 = hYi| a†jaj |Yii = 0.

Then aj|Yii = 0, and |Yii is a 0-eigenstate of a†jaj for all j > p+ q and all i.
Since each |Yii is a simultaneous eigenstate of all the a†jaj (with eigenvalue 1 for

j = p + 1, . . . , p + q and 0 for j > p + q), it follows that in the particle number
representation (up to scaling by a complex number of unit modulus) we can write

|Yii = | 11 · · · 1| {z }
q

00 · · · 0| {z }
r

i = | Y i

for all i, so in fact we have
⇢Y = | Y ih Y |,

as claimed.
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Now since ⇢Y is pure, S(⇢Y ) = 0, and we have by the ‘triangle inequality’ for the
von Neumann entropy [4] that

S(⇢)  S(⇢X) + S(⇢Y ) = S(⇢X)� S(⇢Y )  S(⇢),

Therefore
S(⇢) = S(⇢X) + S(⇢Y ) = S(⇢X),

i.e., subadditivity holds with equality, which implies that in fact ⇢ = ⇢X ⌦ ⇢Y .

Remark 18. A more refined argument in the case that �(⇢) not necessarily equal to
D yields k⇢Y � | Y ih Y |k = o (k�(⇢)�Dk) and in turn that k⇢�⇢X ⌦ | Y ih Y |k =
o (k�(⇢)�Dk). This fact, together with the boundary formula for F proved in Propo-
sition 19 below, can be used without great difficulty to establish the continuity of F
up to the boundary.

Now, armed with an understanding of the states that can produce boundary ele-
ments of D(1)

d , we will show that

F [D;

ˆV ] = F
h
Dp;

ˆVX

i
for D as in (3.1), where ˆVX := h Y | ˆV | Y i is an operator on FX . More precisely,
if one writes ˆV =

P
k O

(k)
X ⌦ O(k)

Y for operators O(k)
X and O(k)

Y on FX and FY , then
ˆVX =

P
k O

(k)
X h Y |O(k)

Y | Y i.
One can check that this construction is well-defined. Indeed, suppose that we

could write
ˆV =

X
k

O(k)
X ⌦O(k)

Y =

X
k

Q(k)
X ⌦Q(k)

Y .

Then we must show thatX
k

O(k)
X h Y |O(k)

Y | Y i =
X
k

Q(k)
X h Y |Q(k)

Y | Y i

as operators on FX . This holds if and only if

hX1|
 X

k

O(k)
X h Y |O(k)

Y | Y i
!
|X2i = hX1|

 X
k

Q(k)
X h Y |Q(k)

Y | Y i
!
|X2i

for all |X1i, |X2i 2 FX . But both sides are equal to hX1 Y | ˆV |X2 Y i.
We comment that one can equivalently define

ˆVX = h Y | ˆV | Y i = TrY

h
ˆV (IdFX ⌦ | Y ih Y |)

i
.

Then we are prepared to state:
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Proposition 19. If D is of the form (3.1), then

F [D;

ˆV ] = F
h
Dp; h Y | ˆV | Y i

i
,

where  Y 2 FY is defined

| Y i := a†p+1 · · · a†p+q|�i 2 FY .

Proof. By Lemma 17, if �(⇢) = D, then ⇢ = ⇢X ⌦ ⇢Y , where ⇢Y = | Y ih Y |.
Therefore

F [D;

ˆV ] = sup

⇢2��1(D)

h
S(⇢)� Tr(⇢ ˆV )

i
= sup

⇢X2��1(Dp)

⇣
S(⇢X)� Tr

h
(⇢X ⌦ | Y ih Y |) ˆV

i⌘
.

But writing ˆV =

P
k O

(k)
X ⌦O(k)

Y , we have

Tr

h
(⇢X ⌦ | Y ih Y |) ˆV

i
=

X
k

h Y |
⇣
O(k)

X ⌦O(k)
Y

⌘
(⇢X ⌦ | Y ih Y |) | Y i

=

X
k

h Y |
⇣h

O(k)
X ⇢X

i
⌦
h
O(k)

Y | Y ih Y |
i⌘

| Y i

=

X
k

O(k)
X ⇢Xh Y |O(k)

Y | Y i

=

ˆVX⇢X ,

where ˆVX = h Y | ˆV | Y i. Thus

F [D;

ˆV ] = sup

⇢X2��1(Dp)

h
S(⇢X)� Tr

⇣
⇢X ˆVX

⌘i
= F [Dp;

ˆVX ],

as was to be shown.

4 The zero-temperature limit
Thus far we have simply assumed the inverse temperature to be given by � = 1.
However, now we consider scaled interaction �V . We will add an extra argument
� to all of our functionals. Notice that rDF [D; � ˆV ] corresponds to �A[D;

ˆV ; �].
Therefore we define F [D;

ˆV ; �] := ��1F [D; � ˆV ], i.e.,

F [D;

ˆV ; �] = sup

⇢2��1(D)

h
��1S(⇢)� Tr(⇢ ˆV )

i
.
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Then in the � !1 limit we find

F [D;

ˆV ;1] = sup

⇢2��1(D)

Tr(⇢ ˆV ).

Note that the supremum will be attained by ⇢ on the boundary of the set of den-
sity matrices, whereas in the finite temperature case, the supremum will always be
attained on the interior.

The free-energy functional

⌦[A; ˆV ; �] = F⇤
[A; ˆV ; �] = ��1

⌦[�A; � ˆV ]

can be written
⌦[A; ˆV ; �] = ���1

log Tr

h
e��(c

†Ac+V̂
)

i
.

For finite temperature, ⌦ and F are both smooth and strictly convex. However,
in the zero temperature limit, ⌦ develops singularities and F develops degenerate
(flat) regions. The flat regions represent 1-RDMs that are not attainable by any
single-particle Hamiltonian with a unique ground state. In the case ˆV = 0, we
discover F [D; 0;1] ⌘ 0. This reflects the fact that, in the noninteracting case, the
only 1-RDMs that are attainable in this sense are on the boundary of D(1)

d . When
ˆV 6= 0, however, scaling does affect the 1-RDM, and there are attainable 1-RDMs
that are not in @DM . However, not all 1-RDMs are attainable. By smoothly varying
the single-particle Hamiltonian, we can cause the ground state of the Hamiltonian to
become the state of second-lowest energy. The discontinuous jump to the new ground
state reflects a singularity in ⌦[ · ;V ;1] or a jump in the 1-RDM (which at this point
passes over a flat, i.e., unattainable region of DM).

By the same proof as in the preceding section, we have the following:

Proposition 20. Let � 2 (0,1]. If D is of the form (3.1), then

F [D;

ˆV ; �] = F
h
Dp; h Y | ˆV | Y i; �

i
,

where  Y 2 FY is defined

| Y i := c†p+1 · · · c†p+q|�i 2 FY .

5 Two-body embedding Hamiltonian
Motivated by the previous section, we discuss the computation of the embedding
Hamiltonian ˆVX = h Y | ˆV | Y i in the case of the two-body interaction

ˆV =

1

2

MX
ijkl=1

(ij|kl)c†ic
†
kclcj,
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where | Y i 2 FY .
To this end, it suffices to compute h Y |c†ic

†
kclcj| Y i. Recall that, in the occupation

number representation,

c†i = s⌦ · · ·⌦ s⌦ a† ⌦ I2 ⌦ · · ·⌦ I2,

where
s =

✓
1 0

0 �1

◆
, a =

✓
0 0

1 0

◆
.

Therefore
c†ic

†
kclcj = OX ⌦ c†Y,ic

†
Y,kcY,lcY,j,

where on the RHS, the cY,i are interpreted as operators on FY , with ci = IdFY for
i  p and cY,i = ci for i > p, and OX is an operator on FX . Note that we will have
h Y |c†ic

†
kclcj| Y i = 0 except in the following three scenarios:

1. none of the operators have index i > p,

2. exactly one creation operator and exactly one annihilation operator have index
i > p,

3. all four of the operators have index i > p.

In scenario (1), we merely obtain

h Y |c†ic
†
kclcj| Y i = c†ic

†
kclcj 2 End(FX)

where i, j, k, l  p.
In scenario (3), the

h Y |c†ic
†
kclcj| Y i = IdFX h Y |c†ic

†
kclcj| Y i,

where the ci are interpreted on the RHS as operators on FY .
In scenario (2), we can have, e.g., i, j  p and k, l > p, in which case we have

c†ic
†
kclcj = c†icj ⌦ c†kcl and

h Y |c†ic
†
kclcj| Y i = c†icjDkl,

or we can have i, l  p and k, j > p, in which case c†ic
†
kclcj = �c

†
icl ⌦ c†kcj and

h Y |c†ic
†
kclcj| Y i = �c†iclDkj,

or we can have k, l  p and i, j > p, in which case c†ic
†
kclcj = c†kcl ⌦ c†icj and

h Y |c†ic
†
kclcj| Y i = c†kclDij,
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or we can have k, j  p and i, l > p, in which case c†ic
†
kclcj = �c

†
kcj ⌦ c†icl and

h Y |c†ic
†
kclcj| Y i = �c†kcjDil.

Then the sum over all contributing terms of this form is

pX
ij=1

c†icj

MX
kl=p+1

[(ij|kl)� (il|kj)]Dkl.

Therefore, we have computed:

ˆVX = EY +

pX
ijkl=1

(ij|kl)c†ic
†
kclcj +

pX
ij

c†icj

MX
kl=p+1

[(ij|kl)� (il|kj)]Dkl,

where EY is a constant. In the case | Y i = c†p+1 · · · c†p+q|�i ,we have

ˆVX = EY +

pX
ijkl=1

(ij|kl)c†ic
†
kclcj +

pX
ij

c†icj

p+qX
k=p+1

[(ij|kk)� (ik|kj)] .

Not coincidentally, this formula recovers (up to a constant) the embedding Hamil-
tonian of the density matrix embedding theory (DMET) [49] and more generally of
complete active space methods.
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Part VI

Classical and quantum impurity

problems

1 Introduction
To begin we recall the setting of Part III. Consider the second-moment matrix G 2
Rd⇥d of a Gibbs measure defined by a Hamiltonian H : Rd ! R, i.e.,

G =

1

Z

ˆ
Rd

xxT e�H(x)dx. (1.1)

Here the partition function
Z =

ˆ
Rd

e�H(x)dx

is the appropriate normalization factor.
We will write H in the form H = H0 + U , where H0 =

1
2
xTAx is a quadratic

form. Assume that A and U are such that both Z and G are finite. Via the analogy
with quantum many-body physics that will be discussed below, we refer to U as
the interacting part of the Hamiltonian, or simply the interaction. Meanwhile H0

represents the non-interacting part.
If U ⌘ 0 and A is a positive definite matrix, then immediately we have G = A�1.

One seeks a generalization of this fact to the case in which U(x) depends only on a
subset of the variables. We refer to this setting as the (classical) impurity model (cf.
section 3.4 of Part III), by analogy to the quantum impurity model to be discussed
below. Perhaps surprisingly, we have the following result:

Theorem 1. Let p  d, and let A 2 Rd⇥d be a symmetric matrix whose lower-right
(d� p)⇥ (d� p) block is positive definite. Let U : Rd ! R be a function that depends
only on its first p arguments, i.e., U(x) = U1(x1, . . . , xp) for some U1 : Rp ! R, and
assume that U1 satisfies sufficient growth conditions such that that the Gibbs measure
with density proportional to e�

1

2

xTAx�U(x) has finite second-order moments. Then,
with G defined as in (1.1),

⌃ := A�G�1
=

✓
⌃p 0

0 0

◆
,

where ⌃p 2 Rp⇥p is a symmetric matrix.

In fact, Theorem 1 can be generalized by considering an arbitrary measure dµ1(x1)

of sufficient decay in the place of e�U
1

(x
1

) dx1, where we denote x1 = (x1, . . . , xp)
T
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and x2 = (xp+1, . . . , xd)
T . In this setting the partition function is defined

Z =

ˆ
Rp

ˆ
Rd�p

e�
1

2

xTAx dx2 dµ1(x1),

and the Green’s function is defined accordingly. The case

µ1(x1) = e�
Pp

i,j=1

Jijxixj
X

�2{�1,1}p
�( · � � )

defines a notion of a classical impurity model for spin systems, in which a spin system
is coupled to a Gaussian ‘bath.’ For such a spin impurity model, we can assume
without loss of generality that the upper-left p⇥p block of A is zero, and the ensemble
is specified by the partition function

Z =

X
�2{�1,1}p

e�
1

2

Pp
i,j=1

Jij�i�j

ˆ
Rd�p

e�
1

2

yTA
22

y�yTA
21

� dy,

where A21 and A22 denote the appropriate blocks of A. We will stick to the original
setting, in which the impurity is specified by a function U1, to emphasize the analogy
with the setting of the quantum many-body problem, but we comment that the proof
of Theorem 1 is exactly the same in this broader context.

In statistics, G�1 is sometimes called the precision matrix. In our setting, if A
is positive definite and U ⌘ 0, then A is the precision matrix of the distribution in
question. Hence Theorem 1 states that the difference of the precision matrices in
the ‘interacting’ and ‘non-interacting’ settings, namely A � G�1, is a sparse matrix
if the interaction U only depends on a subset of variables. The proof of the theorem
is non-perturbative, and in fact A need not be positive definite (though, when U is
independent of the last d � p variables, the lower-right (d � p) ⇥ (d � p) block of A
must be positive definite to ensure that e�

1

2

xTAx�U(x) is normalizable). To the best
of our knowledge, other than from the perspective of the Luttinger-Ward formalism
presented in Part III, this basic linear-algebraic fact about Gibbs measures was not
previously present in the literature.

As a matter of fact, we first observed a result of this type in a more complex
setting, namely that of quantum impurity problems at zero temperature (as we shall
discuss below, the analogous result is also true at finite temperature). Consider the
Hamiltonian, denoted by ˆH, for a system of interacting fermions or bosons. Through-
out we shall distinguish the cases of fermions and bosons via a parameter ⇣ given by
⇣ = �1 in the case of fermions and ⇣ = +1 in the case of bosons. In the second-
quantized representation [33], ˆH can be generally written as ˆH =

ˆH0 +
ˆU , where

ˆH0 =

dX
i,j=1

hija
†
iaj (1.2)
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is viewed as the Hamiltonian for a system of non-interacting fermions or bosons.
Here a†i , aj are the creation and annihilation operators, respectively, and h 2 Cd⇥d is
a Hermitian matrix. (Refer to section 4 of Part I for a brief introduction to second
quantization.)

Meanwhile, ˆU is the interacting part of the Hamiltonian. Although ˆU can be far
more general, usually we have in mind the two-body interaction

ˆU =

X
i,j,k,l

(ij|U |kl)a†ia
†
jalak. (1.3)

In this case, if there exists p < d so that (ij|U |kl) 6= 0 only if i, j, k, l 2 {1, . . . , p},
then we call the Hamiltonian ˆH an impurity Hamiltonian. More generally, we say that
ˆH is an impurity Hamiltonian if ˆU can be written as a polynomial of the creation and
annihilation operators a†i and ai for i = 1, . . . , p and is particle-number-conserving
(see section 4 of Part I for details). At a glance there is no connection between this
impurity Hamiltonian and the type of Gibbs measure discussed earlier. Nonetheless,
we claim that there is an analogy under which h maps to A, the Green’s function of
the quantum many-body problem maps to G, and the self-energy matrix associated
with the Green’s function maps to ⌃. Then the counterpart of Theorem 1 can be
stated in words as: the self-energy matrix of a quantum impurity problem is a sparse
matrix, with nonzero entries only on the block associated with the impurity sites.

The connection between the classical impurity model and the quantum impurity
problem can be understood formally by writing quantum Green’s functions in terms
of the coherent state path integral [77], which formally resembles a Gibbs measure.
We remark that in the case of fermions, the resemblance should be noted with special
caution because the coherent state path integral involves Grassmann integrals. In this
sense, the setting of Theorem 1 can indeed be understood as the ‘classical impurity
problem.’

Unlike the corresponding result for Gibbs measures, the quantum result has been
well-known in the quantum physics literature since Feynman and Vernon in 1963 [35]
at the latest, and it plays a central role in numerical algorithms for solving the quan-
tum impurity problem, such as the quantum Monte Carlo (QMC) method [41]. The
sparsity of the impurity self-energy matrix is also the starting point of various ap-
proximate methods—such as the dynamical mean field theory (DMFT) [37, 53] and
its extensions [106, 58]—for solving general (i.e., non-impurity) quantum systems,
especially those that are strongly correlated. Again somewhat surprisingly, this im-
portant statement is to the best of our knowledge a ‘folk theorem,’ in that we cannot
find a rigorous proof of this result in the literature.

In this Part, we fill this gap by providing a rigorous proofs of the sparsity of the
self-energy matrix of quantum impurity problems, in both the fermionic and bosonic
cases at zero and finite temperature. We will also cover the non-equilibrium setting
via the consideration of arbitrary contour-ordered Green’s functions, as well as the
anomalous setting, which is relevant to superconductivity. Excellent introductions to
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the non-equilibrium and anomalous formalisms can be found in [100, 14], respectively.
Our results in the non-equilibrium setting should be compared to those in a re-

cent work [25], in which advanced/retarded non-equilibrium self-energies are rigor-
ously constructed in the case of fermions. Though not noted explicitly in the work,
the appropriate sparsity results for these quantities can be seen to follow from the
construction itself. By contrast, our non-equilibrium sparsity result concerns the
contour-ordered self-energy (for both fermions and bosons) and in particular recovers
sparsity results for the advanced/retarded Green’s functions. Moreover, our result
holds for arbitrary contour. However, we do not actually construct the contour-
ordered self-energy, but rather phrase our sparsity result in terms of operators that
we suggestively name ‘G⌃’ and ‘⌃G.’9 In so doing we sidestep a considerable an-
alytical challenge such as that encountered in [25]. Thus our result can be viewed
as trying to parsimoniously illustrate the broadest possible formal picture of sparsity
results for the self-energy, rather than focusing on the analytical question of the con-
struction of the self-energy itself. Incidentally, in our view a rigorous construction of
the contour-ordered self-energy (for arbitrary contour) seems to be an interesting and
non-trivial matter.

The reader is directed to section 7 of Part I for a brief introduction to the theory
of Green’s functions, both fermionic and bosonic, in the zero-temperature and finite-
temperature settings. Below we also includd introduction to the non-equilibrium and
anomalous settings. In all of these settings, the impurity model with p = 0 is precisely
the non-interacting model, and our results on the sparsity pattern of the self-energy,
applied in this special case, yield formulas for the non-interacting Green’s functions.
In the non-equilibrium setting especially, such a formula seems to be non-trivial to
establish by other means. Readers new to the subject may find this presentation of the
non-interacting Green’s functions, as well as its embedding into a unified perspective,
to be appealing in its own right. Please note that this Part is based on [63] (joint
work with Lin Lin).

1.1 Other formal perspectives
We discuss several other ways of understanding the sparsity pattern of the self-energy
for impurity problems. First, we remark by considering the coherent-state path inte-
gral representation [77] (in any of the quantum settings discussed in this Part), one
can formally view the quantum many-body ensemble as a Gibbs measure. The proof
of Theorem 1 can be mimicked in these settings at the formal level to derive the
appropriate sparsity results, but we omit such formal manipulations here.

Secondly, the sparsity pattern can be most intuitively understood via the Feynman
diagrammatic expansion, which provides another viewpoint on the formal unification

9The reader will find that from the point of view adopted in this Part, these objects can be
thought of as more natural than the non-equilibrium self-energy itself, and indeed all of our sparsity
results are proved by considering their analogs.
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of the classical and quantum settings. Indeed, due to the connection between the
classical setting of Gibbs measures and the coherent state path integral, we limit
our discussion the case of Gibbs models here for simplicity. The reader may refer to
Part II for a self-contained introduction to the diagrammatic expansion.

As before, define the partition function

Z =

ˆ
Rd

e�
1

2

xTAx�"U(x)
dx, (1.4)

where A is a positive definite matrix and where we have introduced the parameter
" > 0 as a prefactor for the interaction (referred to as the coupling constant). Then
formally we may apply Taylor expansion for e�"U(x) to obtain a series expansion for
Z, as in

Z =

ˆ
Rd

1X
n=0

"n

n!
(�U(x))ne�

1

2

xTAx
dx ⇠

1X
n=0

"n

n!

ˆ
Rd

(�U(x))ne�
1

2

xTAx
dx, (1.5)

where the ‘⇠’ is meant to indicate that the series is valid only in the asymptotic sense.
Assuming U(x) is a polynomial of x, then each term on the right hand side of

Eq. (1.5) requires the evaluation of a possibly large, but finite, number of moments
of a Gaussian distribution. The expansion can be organized in terms of Feynman
diagrams.

Feynman diagrammatic expansions can also be obtained for G and ⌃. In par-
ticular, recall from Part II that the self-energy diagrams are truncated, one-particle
irreducible Feynman diagrams. To be concrete, one can keep in mind the quartic
interaction

U(x) =
1

8

NX
i,j=1

vijx
2
ix

2
j , (1.6)

which mimics the two-body Coulomb interaction of quantum many-body physics.
Here v is a symmetric positive definite matrix. In order to specify an impurity problem
with fragment specified by indices 1, . . . , p we take vij = 0 if i > p or j > p. Then,
it can readily be read from the diagrammatic expansion of ⌃ as in Part II that for
each term in the expansion of ⌃ij, the corresponding matrix element is nonzero only
if 1  i, j  p. This observation suggests that the self-energy matrix ⌃, as the infinite
sum of all of these terms, should follow the same sparsity pattern. We remark that the
above diagrammatic argument can be applied to Gibbs models with rather general
interaction form U(x), as well as in the quantum many-body setting. , where the
diagrammatic series can be derived directly in the second-quantized representation or
via the coherent state path integral.

The major caveat to this argument is that the Feynman diagrammatic expansion
often has zero radius of convergence and maintains validity only in the asymptotic
sense. This is the case at least for the Gibbs models as well as bosonic systems. Hence
the sparsity for each term of the expansion does not necessarily imply that the same
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is true of the self-energy itself when " is positive. Even when the series does converge
(such as for fermionic systems with finitely many states), the convergence radius may
only be finite. Bootstrapping a positive radius of convergence via resummation or
analytic continuation arguments [77] is one possible route to proving the sparsity
result in such a setting, though the details seem to be cumbersome and the proof is
not as simple or general as others considered above.

Finally, we discuss a route to the sparsity of the self-energy matrix via the so-
called Luttinger-Ward formalism [65], which expresses the self-energy as a functional
derivative

⌃ =

��[G]

�G
. (1.7)

Here �[G] is a functional of the Green’s function, called the Luttinger-Ward func-
tional. We proved in Part III that for the Gibbs model, �[G] is a well-defined for
positive semidefinite G. In particular, we established a projection rule, which states
that for the classical impurity problem when U(x) = Up(x1, . . . , xp), we have

�[G] = �p[Gp]. (1.8)

Here Gp is the upper-left p ⇥ p block of G, and �p is the Luttinger-Ward functional
for the p-dimensional model. Combining Eq. (1.7) and (1.8), one immediately obtains
the sparsity pattern for ⌃.

However, establishing the existence of the Luttinger-Ward functional �[G] and its
projection rule required a significant amount of work, and the rigorous proof is so far
only applicable to the Gibbs model. In fact, the very existence of the Luttinger-Ward
functional fermionic systems has been challenged over the past few years [54, 32, 42].
Although the Luttinger-Ward perspective offers additional insight, the direct proofs
provided in this Part are at this point more generally applicable, and certainly much
simpler.

1.2 Outline
This Part is organized as follows. We use the classical impurity problem as a mo-
tivating example and prove Theorem 1 in section 2. Section 3 treats the quantum
many-body case, including the settings of fermions and bosons in the equilibrium
setting at zero and finite temperature, as well as the non-equilibrium setting specified
by an arbitrary contour in the complex plane and the anomalous setting relevant to
superconductivity.

Note that in Appendix G we discuss the technical conditions needed to define the
appropriate objects in the bosonic non-equilibrium setting and provide some back-
ground on main non-equilibrium setting of interest, specified by the Kadanoff-Baym
contour.
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2 The classical impurity problem
We now embark upon the proof of Theorem 1 stated above.

Recall the definitions:

Z =

ˆ
Rn

e�
1

2

xTAx�U(x) dx, G =

1

Z

ˆ
Rn

xxT e�
1

2

xTAx�U(x) dx,

where the interaction U only depends on the first p  d variables. Let q = d� p. It
is not hard to see that G is positive definite, hence invertible.

We will indicate the blocks of A via

A =

✓
A11 A12

A21 A22

◆
,

where the upper-left block is p ⇥ p. For various integrals considered below to be
convergent, we will require that A22 � 0. More generally, we adopt the notation that
for any d ⇥ d matrix M , the notation M21 indicates the lower-left block of M (with
respect to the above block structure), etc.

Then for the theorem, we want to show that the self-energy ⌃ := A�G�1 satisfies
⌃12 = 0, ⌃21 = 0, and ⌃22 = 0. In other words, we want to show that (G�1

)12 = A12,
(G�1

)21 = A21, and (G�1
)22 = A22. Since G and A are symmetric, it suffices to show

that (G�1
)12 = A12 and (G�1

)22 = A22, i.e., that✓
(G�1

)12

(G�1
)22

◆
=

✓
A12

A22

◆
.

Left-multiplying both sides by G (invertible), we see that this is in turn equivalent to
showing that (GA)12 = 0 p⇥q and (GA)22 = Iq.

In the following our notation will make use of the splitting

x =

✓
x1

x2

◆
,

where x 2 Rd, x1 2 Rp, and x2 2 Rq. (For notational convenience, we do not use the
notation xi as in the introduction. In this section, we will make no reference to the
individual entries of x, so the notation is clear.) Then we can write U(x) = U1(x1).
Abusing notation slightly, we write U1 = U .

Roughly speaking, the goal is to ‘integrate out’ the lower variables (i.e., the last
q variables). To this end, we expand G as

G =

1

Z

ˆ
Rp

e�U(x
1

)

ˆ
Rq

xxT
exp

"
�1

2

✓
x1

x2

◆T ✓
A11 A12

A21 A22

◆✓
x1

x2

◆#
dx2 dx1.
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Observe that✓
x1

x2

◆T ✓
A11 A12

A21 A22

◆✓
x1

x2

◆
=

�
x2 + A�1

22 A21x1

�T
A22

�
x2 + A�1

22 A21x1

�
+ xT

1 (A11 � A12A
�1
22 A21)x1,

=

�
x2 + A�1

22 A21x1

�T
A22

�
x2 + A�1

22 A21x1

�
+ xT

1A
S
11x1,

(2.1)

where A�1
22 is understood always to indicate (A22)

�1 and where we have defined the
Schur complement

AS
11 := A11 � A12A

�1
22 A21.

Then it follows that

G =

1

Z

ˆ
Rp

e�
1

2

xT
1

AS

11

x
1

�U(x
1

)⇥
ˆ
Rq

xxT
exp


�1

2

�
x2 + A�1

22 A21x1

�T
A22

�
x2 + A�1

22 A21x1

��
dx2 dx1.

(2.2)

Recall that we want to show that (GA)12 = 0 and (GA)22 = Iq. Right-multiplying
the integral in (2.2) by A, this motivates computing the upper-right and upper-left
blocks of xxTA, as in

(xxTA)12 = x1 (xT
1 xT

2 )

✓
A12

A22

◆
, (xxTA)22 = x2 (xT

1 xT
2 )

✓
A12

A22

◆
.

Now

(xT
1 xT

2 )

✓
A12

A22

◆
= xT

1A12 + xT
2A22 = (xT

1A12A
�1
22 + xT

2 )A22 = yT2 A22,

where we have defined a new variable y2 = x2 + A�1
22 A21x1, so

(xxTA)12 = x1y
T
2 A22, (xxTA)22 = x2y

T
2 A22. (2.3)

The remarkable thing is that x2 only appears in the exponent in the inner integrand
of (2.2) via the expression x2 + A�1

22 A21x1 = y2. This motivates us to eliminate x2

from the second equation of (2.3) to obtain

(xxTA)12 = x1y
T
2 A22, (xxTA)22 = y2y

T
2 A22 � A�1

22 A21x1y
T
2 A22. (2.4)

Then consider the change of variables from x1, x2 to x1, y2, yielded by the linear
transformation ✓

x1

y2

◆
=

✓
Ip 0

A�1
22 A21 Iq

◆✓
x1

x2

◆
.
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Since the Jacobian determinant of this transformation is one, it follows from (2.2)
and (2.4) that

(GA)12 =

1

Z

ˆ
Rp

e�
1

2

xT
1

AS

11

x
1

�U(x
1

) x1

✓ˆ
Rq

yT2 e
� 1

2

yT
2

A
22

y
2 dy2

◆
A22 dx1.

But evidently the inner integrand is zero, so (GA)12 = 0, as desired. It also follows
from (2.2) and (2.4) that

(GA)22 =

1

Z

ˆ
Rp

e�
1

2

xT
1

AS

11

x
1

�U(x
1

)

✓ˆ
Rq

y2y
T
2 e

� 1

2

yT
2

A
22

y
2 dy2

◆
A22 dx1

� 1

Z

ˆ
Rp

e�
1

2

xT
1

AS

11

x
1

�U(x
1

)A�1
22 A21x1

✓ˆ
Rq

yT2 e
� 1

2

yT
2

A
22

y
2 dy2

◆
A22 dx1.

The inner integrand in the second term of the last expression is once again zero.
Meanwhile, the inner integrand of the first term yields Z2A

�1
22 , where

Z2 :=

ˆ
Rq

e�
1

2

yT
2

A
22

y
2 dy2.

Then we have established

(GA)22 =
Ip
Z

ˆ
Rp

ˆ
Rq

e�
1

2

xT
1

AS

11

x
1

� 1

2

yT
2

A
22

y
2

�U(x
1

) dy2 dx1.

Changing variables back to x1, x2 and recalling from (2.1) that xT
1A

S
11x1 + yT2 A22y2 =

xTAx, we see that
(GA)22 =

Ip
Z

ˆ
Rd

e�
1

2

xTAx�U(x) dx = Ip,

which completes the proof. ⇤

3 The quantum impurity problem
Our setting then is the Fock space F⇣,d of fermions (⇣ = �1) or bosons (⇣ = +1)
with a finite number d of states. The annihilation and creation operators are denoted
a1, . . . , ad and a†1, . . . , a

†
d, respectively. We refer the reader to section 4 of Part I for

further details of the construction of F⇣,d as well as other details of second quantiza-
tion. For convenience we shall let a = (a1, . . . , ad)T denote the vector of annihilation
operators, and accordingly a† = (a†1, . . . , a

†
d).

For now10 we consider a particle-number-conserving11 self-adjoint Hamiltonian ˆH
on F⇣,d, and we write ˆH of the form

ˆH =

ˆH0 +
ˆU,

10In sections 3.3 and 3.4 below, the notion of the Hamiltonian will be somewhat modified.
11See section 4 of Part I for details.
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where
ˆH0 := a†ha =

dX
i,j=1

hija
†
iaj

is the single-particle (or non-interacting) part of the Hamiltonian, specified by a
Hermitian d⇥ d matrix h, and ˆU is the interacting part, which is itself a self-adjoint
operator on F⇣,d that conserves particle number.

In the case that ˆU can be written as a polynomial of the a†i , ai for i = 1, . . . , p,
we say that ˆH is an impurity Hamiltonian, with a fragment specified by the indices
1, . . . , p. The rest of the indices correspond to the environment. In this case, since ˆU
conserves particle number, it follows that ˆU commutes with aj and a†j for j > p.

Before proceeding, we state and prove a simple but useful lemma that will be used
repeatedly throughout the following discussion.

Lemma 2. [a†ha, a†j] =
Pd

k=1 hkja
†
k and [aj, a†ha] =

Pd
l=1 hjlal.

Proof. Simply compute

(a†ha)a†j =

dX
k,l=1

hkla
†
kala

†
j

=

dX
k,l=1

hkla
†
k(⇣a

†
jal + �jl)

=

dX
k,l=1

hkla
†
ja

†
kal +

dX
k=1

hkja
†
k

= a†j(a
†ha) +

dX
k=1

hkja
†
k,

which proves the first statement of the lemma. Similarly,

(a†ha)aj =

dX
k,l=1

hkl⇣a
†
kajal

=

dX
k,l=1

hkl(aja
†
k � �jk)al

= aj(a
†ha)�

dX
l=1

hjlal

which proves the lemma.
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3.1 Zero temperature

We consider the setting of zero temperature and fixed particle number N . Let
��
 

(N)
0

↵
denote a normalized N -particle ground state of ˆH, and let the corresponding eigen-
value be E(N)

0 . Then in this setting, the single-particle Green’s function can be un-
derstood as a rational function G : C ! Cd⇥d defined by G(z) = G+

(z) + G�
(z),

where G± are themselves rational functions12 defined by

G+
ij(z) :=

⌦
 

(N)
0

��ai 1

z � (

ˆH � E(N)
0 )

a†j
��
 

(N)
0

↵
G�

ij(z) := � ⇣
⌦
 

(N)
0

��a†j 1

z + (

ˆH � E(N)
0 )

ai
��
 

(N)
0

↵
.

The self-energy is the rational function ⌃ : C! Cd⇥d defined by

⌃(z) := z � h�G(z)�1.

As we recover in Theorem 3, z�h is in fact the inverse of the non-interacting Green’s
function, so this self-energy is defined analogously to the classical self-energy of The-
orem 1. The reader should consult Appendix 5.1 for further details and justification
of these definitions.

Theorem 3. Suppose that ˆH is an impurity Hamiltonian, with a fragment specified
by the indices 1, . . . , p. Then the self-energy ⌃ : C! Cd⇥d is (up to the resolution of
removable discontinuities) of the form

⌃(z) =

✓
⌃p(z) 0

0 0

◆
.

Remark 4. Observe that if the fragment is of size zero, i.e., p = 0, then we are in
the non-interacting setting, and Theorem 3 implies that ⌃(z) ⌘ 0, i.e., that G(z) =
(z�h)�1. Thus we recover a clean proof of the formula for the non-interacting Green’s
function. Usually this formula is proved by assuming, via a canonical transformation,
that h is diagonal and then performing explicit computations [33].

Proof. We can write ˆH =

ˆH0 +
ˆU , where ˆH0 = a†ha and ˆU commutes with aj and

a†j for j > p is the interacting part, which is itself a self-adjoint operator on F⇣,d that
conserves particle number.

It suffices to prove that the j-th column of G(z)⌃(z) is zero for j > p and that
the i-th row of ⌃(z)G(z) is zero for i > p. We will only prove the first claim; the
second follows by symmetric reasoning.

12Usually G± carry the extra information that their poles are viewed as being located infinites-
imally below/above the real axis. The choices that yield the ‘time-ordered’ Green’s function are
described in Appendix 7.2. However, this extra information is irrelevant for the purpose of our
results.
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Now G(z)⌃(z) = zG(z)�G(z)h�Id, so we want to show that zGij(z) = [G(z)h]ij+
�ij for j > p.

Then we compute, using the fact that (

ˆH � E(N)
0 )

��
 

(N)
0

↵
= 0,

zG+
ij(z) =

⌦
 

(N)
0

��ai 1

z � (

ˆH � E(N)
0 )

a†j(z � (

ˆH � E(N)
0 ))

��
 

(N)
0

↵
=

⌦
 

(N)
0

��ai 1

z � (

ˆH � E(N)
0 )

(z � (

ˆH � E(N)
0 ))a†j

��
 

(N)
0

↵
+

⌦
 

(N)
0

��ai 1

z � (

ˆH � E(N)
0 )

[a†j, z � (

ˆH � E(N)
0 )]

��
 

(N)
0

↵
=

⌦
 

(N)
0

��aia†j�� (N)
0

↵
+

⌦
 

(N)
0

��ai 1

z � (

ˆH � E(N)
0 )

[a†j, z � (

ˆH � E(N)
0 )]

��
 

(N)
0

↵
.

Now

[a†j, z � (

ˆH � E(N)
0 )] = [

ˆH, a†j] = [a†ha, a†j] + [

ˆU, a†j] =
dX

k=1

hkja
†
k,

where we have used Lemma 2 as well as the fact that j > p (so [

ˆU, a†j] = 0).
Then it follows that

zG+
ij(z) =

⌦
 

(N)
0

��aia†j�� (N)
0

↵
+ [G+

(z)h]ij.

Similarly, we compute

zG�
ij(z) = �⇣

⌦
 

(N)
0

��
(z + (

ˆH � E(N)
0 ))a†j

1

z + (

ˆH � E(N)
0 )

ai
��
 

(N)
0

↵
= �⇣

⌦
 

(N)
0

��a†j(z + (

ˆH � E(N)
0 ))

1

z + (

ˆH � E(N)
0 )

ai
��
 

(N)
0

↵
+ (�⇣)

⌦
 

(N)
0

��
[z + (

ˆH � E(N)
0 ), a†j]

1

z + (

ˆH � E(N)
0 )

ai
��
 

(N)
0

↵
= �⇣

⌦
 

(N)
0

��a†jai�� (N)
0

↵
� ⇣

⌦
 

(N)
0

��
[z + (

ˆH � E(N)
0 ), a†j]

1

z + (

ˆH � E(N)
0 )

ai
��
 

(N)
0

↵
.

Now

[z + (

ˆH � E(N)
0 ), a†j] = [

ˆH, a†j] =
dX

k=1

hkja
†
k.

Then it follows that

zG�
ij(z) = �⇣

⌦
 

(N)
0

��aia†j�� (N)
0

↵
+ [G�

(z)h]ij.

Therefore

zGij(z) = [G(z)h]ij +
⌦
 

(N)
0

��aia†j � ⇣a†jai�� (N)
0

↵
= [G(z)h]ij + �ij,

as was to be shown.
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3.2 Finite temperature
Now we consider the setting of finite inverse temperature � 2 (0,1) and chemical
potential µ 2 int domZ, where Z(µ) = Tr[e��(Ĥ�µN̂)

] (see Appendix 5.2 for further
details). Note that int domZ is guaranteed to be non-empty under Assumption 4.

We also let | mi denote the normalized eigenstates of ˆH, where m ranges from
0 to 2

d � 1 in the case of fermions and from 0 to 1 in the case of bosons. In this
setting, the single-particle Green’s function can be understood as a rational function
G : C ! Cd⇥d defined by G(z) = G+

(z) + G�
(z), where G± are themselves rational

functions13 defined by

G+
ij(z) :=

1

Z

X
m

e��(Em�µNm)
⌦
 m

��ai 1

z � (

ˆH � Em)

a†j
��
 m

↵
G�

ij(z) :=
�⇣
Z

X
m

e��(Em�µNm)
⌦
 m

��a†j 1

z + (

ˆH � Em)

ai
��
 m

↵
,

and these sums are absolutely convergent away from the poles. Here

Z = Tr[e��(Ĥ�µN̂)
] =

X
m

e��(Em�µNm).

Once again the self-energy is the rational function ⌃ : C! Cd⇥d defined by

⌃(z) := z � h�G(z)�1.

The reader should consult section 7 of Part I for further details and justification of
these definitions.

Theorem 5. Suppose that ˆH is an impurity Hamiltonian, with a fragment specified
by the indices 1, . . . , p. Then the self-energy ⌃ : C! Cd⇥d is (up to the resolution of
removable discontinuities) of the form

⌃(z) =

✓
⌃p(z) 0

0 0

◆
.

Remark 6. Once again (cf. Remark 4), we recover in the non-interacting setting the
formula G(z) = (z � h)�1.
Remark 7. There is a further object known as the Matsubara Green’s function [77],
which in turn yields the Matsubara self-energy. Although it is not usually defined this
way, the Matsubara Green’s function can be shown to be obtained from the finite-
temperature Green’s function, as defined above, by restriction to points i!m + µ,
where !m are the fermionic/bosonic Matsubara frequencies [77]. The Matsubara self-
energy can be obtained from the finite-temperature self-energy defined above via
similar restriction. Therefore Theorem 5 implies the same sparsity pattern for the
Matsubara self-energy.

13The same comments as in section 3.1 apply here as well, though instead see Appendix 7.3 for
details relevant to this setting.
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Proof. The proof is essentially the same as that of Theorem 3. Once again we want
to show that the j-th column of G(z)⌃(z) is zero for j > p and that the i-th row of
⌃(z)G(z) is zero for i > p. We will only prove the first claim; the second follows by
symmetric reasoning.

Define Gm(z) by

Gm,ij(z) :=
⌦
 m

��ai 1

z � (

ˆH � Em)

a†j
��
 m

↵
� ⇣
⌦
 m

��a†j 1

z + (

ˆH � Em)

ai
��
 m

↵
.

Then by the same reasoning as in the proof of Theorem 3 (with the roles of E(N)
0 and

| (N)
0 i played by Em and | mi, we find that

zGm,ij(z) = [Gm(z)h]ij + �ij.

Now G(z) = 1
Z

P
m e��(Em�µNm)Gm,ij(z), so the desired result follows.

3.3 Arbitrary contour
There is a more general perspective in which the time-ordering operation used in Ap-
pendices 5.1 and 5.2 to derive the Green’s functions considered above is generalized
to an ordering operation on an arbitrary contour in the complex plane. This per-
spective adds significant value in the non-equilibrium setting, in which one considers
a time-dependent Hamiltonian. For such time-dependent problems, passage to the
frequency representation is not possible. Instead we consider kernels on the contour.

Let C denote a piecewise smooth contour in the complex plane (not necessarily
closed). Technically one should think of C not as a subset of C, but as a parametrized
path, � : I ! C, where I = (s0, s1) is some interval. Then for s, s0 2 I with s < s0, we
define C(s, s0) to be the ‘sub-contour’ defined by restriction of � to the interval (s, s0).
If s > s0, we define C(s, s0) to be the contour obtained from C(s0, s) by reversing its
orientation.

Additionally let ˆH(z) denote an operator-valued function on a neighborhood of
C = �(I). Here ˆH(z) = a†h(z)a +

ˆU(z) is particle-number-conserving, and we say
that ˆH(z) is an impurity Hamiltonian with a fragment specified by indices 1, . . . , p if,
for every z 2 C, ˆU(z) can be written as a polynomial of the a†i , ai for i = 1, . . . , p. As
above, since ˆU(z) must conserve particle number, it follows that ˆU(z) commutes with
aj and a†j for j > p. It is convenient to denote z(s) := �(s), and abusing notation
slightly we will write ˆH(s) = ˆH(z(s)).

As a technical point, we assume that ˆH(s) is piecewise continuous. Since the Fock
space is finite dimensional in the case of fermions, the meaning of this statement
is unambiguous. In the case of bosons, note that since ˆH(s) is particle-number-
conserving, we can sensibly consider its restriction to each of the N -particle subspaces
(see Appendix 4), each of which is finite-dimensional. Then by the continuity of ˆH(s)
we mean the continuity of all of these restrictions individually.
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Now define a (not necessarily unitary) evolution operator from contour time s0 2 I
to s 2 I as the time-ordered exponential

U(s, s0) = T
n
e�i

´
C(s,s0) Ĥ(z) dz

o
.

This simply means that U(s, s0) is taken as the solution of the differential equation

@sU(s, s0) = �i ż(s) ˆH(s)U(s, s0), U(s0, s0) = Id. (3.1)

This initial-value problem indeed admits a unique solution in the bosonic case because
the ODE can be viewed as describing the evolution of an operator on each of the
(finite-dimensional) N -particle subspace separately.

From this definition it follows that

U(s, s00)U(s00, s0) = U(s, s0)

for all s, s0, s00 2 I and moreover that

@s0U(s, s0) = i ż(s)U(s, s0) ˆH(s0). (3.2)

Abusing notation slightly by pretending that we can invert s = s(z), we can more
cleanly write

@zU(z, z0) = �i ˆH(z)U(z, z0), @z0U(z, z0) = iU(z, z0) ˆH(z0),

where @z = (ż(s))�1@s. We will sometimes adopt this notational convention, and the
meaning should be clear from context.

The following assumption is adopted to ensure that the Green’s function can be
defined in the bosonic case:

Assumption 8. We assume that for all s > s0, U(s, s0) is a bounded operator. More-
over, we assume that there exists s > s0 such that the operator norm of the restriction
of U(s, s0) to the N-particle subspace decays exponentially in N .

Define the partition function

Z = Tr[U(s1, s0)].

Note that Assumption 8 guarantees that U(s1, s0) is trace class, so Z is indeed well-
defined. In order to define our ensemble, we must be able to divide by Z. Hence we
assume:

Assumption 9. Z 6= 0.
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We show in Appendix G how Assumptions 8 and 9 are naturally satisfied in the
major non-equilibrium setting of interest, which features the Kadanoff-Baym contour.

Then we define ‘pseudo-Heisenberg’ representations of the annihilation and cre-
ation operators via

ai(s) = U(s0, s)aiU(s, s0), a†i (s) = U(s0, s)a
†
iU(s, s0).

The contour-ordered, single-body Green’s function (which we call the Green’s function
for short when the context is clear) is a function G : I ⇥ I ! Cd⇥d defined by

Gij(s, s
0
) =

�i
Z

Tr

⇥
T
�
ai(s)a

†
j(s

0
)

 
U(s1, s0)

⇤
,

where T is the contour-ordering operator, formally defined by

T
�
ai(s)a

†
i (s

0
)

 
=

(
ai(s)a

†
j(s

0
), s0 < s

⇣a†j(s
0
)ai(s), s0 � s.

In other words we can write G = G+
+G�, where

iG+
ij(s, s

0
) =

1

Z
Tr

⇥
U(s1, s)aiU(s, s0)a†jU(s0, s0)

⇤
✓(s� s0)

and
iG�

ij(s, s
0
) =

⇣

Z
Tr

⇥
U(s1, s

0
)a†jU(s0, s)aiU(s, s0)

⇤
(1� ✓(s� s0)).

Here

✓(s) :=

(
1, s > 0

0, s  0.

In the bosonic case, Assumption 8 guarantees that the traces needed for this definition
do indeed exist. For later reference, note that we can define a product of suitable
functions A,B : I ⇥ I ! Cd⇥d (with an appropriate notion of multiplicative inverse,
at least formally) via

(AB)(s, s0) =

ˆ s
1

s
0

A(s, s00)B(s00, s0) ż(s00) ds00,

chosen so that formally we have

(AB)(z, z0) =

ˆ z
1

z
0

A(z, z00)B(z00, z0) dz00.

Notice that the appropriate identity �(z, z0) is then given by �(z, z0) = (ż(s))�1�(s�s0).
We remark that the zero-temperature and Matsubara Green’s functions discussed

in sections 3.1 and 7, respectively, can be recovered as contour-ordered Green’s func-
tions. By contrast, the real-time Green’s function at finite temperature considered in
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section 3.2 cannot be recovered directly as a contour-ordered Green’s function, though
it can be obtained indirectly via analytic continuation of the Matsubara Green’s func-
tion. For this reason, diagrammatic expansion techniques at finite temperature are
limited to the Matsubara Green’s function and must be carried over to the real-time
Green’s function via analytic continuation. For further details, see [100].

One now wants to define the self-energy as

⌃(z, z0) = i@z � h(z) �(z, z0)�G�1
(z, z0).

However, this definition is not rigorous without further justification. Indeed, note that
G can be viewed as an integral operator on L2

(I), and under reasonable assumptions
G is Hilbert-Schmidt, hence in particular compact. Therefore its inverse is guaranteed
to be an unbounded operator, if it can be constructed. Formally, one expects that
the i(ż(s))�1@s in our definition of the self-energy will cancel an analogous term in
the formal inverse G�1 and that the self-energy can be written as a sum of a static
and dynamic part as

⌃(s, s0) = ⌃stat �(s� s0) + ⌃dyn(s, s
0
),

where ⌃dyn is a properly defined integral operator.
In our view the mathematical construction of the self-energy seems to be a non-

trivial matter, and we will sidestep it in this work. (By contrast, the construction in
the equilibrium setting is more straightforward in the frequency domain; see Appen-
dices 5.1 and 5.2.)

How then to discuss the sparsity pattern of the self-energy? Observe that formally,
we should have

(⌃G)(z, z0) = i@zG(z, z0)� h(z)G(z, z0)� Id �(z, z
0
)

(G⌃)(z, z0) = �i@z0G(z, z0)�G(z, z0)h(z0)� Id �(z, z
0
),

or, more rigorously,

(⌃G)(s, s0) = i(ż(s))�1@sG(s, s0)� h(s)G(s, s0)� Id (ż(s))
�1 �(s� s0)

(G⌃)(s, s0) = �i(ż(s0))�1@s0G(s, s0)�G(s, s0)h(s0)� Id (ż(s))
�1 �(s� s0).

(3.3)

Now instead of constructing the self-energy, we can define operators ⌃G and
G⌃ via (3.3) (in the sense of distributions), with the ‘⌃’ appearing here merely as a
notation. Now the desired sparsity pattern of ⌃ is formally equivalent to the statement
that [⌃G]ij = 0 (as a distribution on I) for i > p and [G⌃]ij = 0 for j > p.

Theorem 10. With notation and assumptions as in the preceding, if ˆH(z) is an
impurity Hamiltonian with a fragment specified by the indices 1, . . . , p, then [⌃G]ij = 0

for i > p and [G⌃]ij = 0 for j > p.
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Remark 11. In the non-interacting setting p = 0, we recover the formulas

i@zG(z, z0)� h(z)G(z, z0) = Id �(z, z
0
), �i@z0G(z, z0)�G(z, z0)h(z0) = Id �(z, z

0
),

where we have abused notation slightly in the manner described above. These for-
mulas seem to be non-trivial to establish by any other means. By contrast with the
equilibrium case, this formula cannot be established simply via a canonical transfor-
mation because it may not be possible to simultaneously diagonalize the h(z) for all z.
In fact, in [100], the non-interacting Green’s function is defined via this formula (sub-
ject to certain boundary conditions) and shown to give the appropriate perturbation
theory within the Martin-Schwinger hierarchy.

Proof. We prove only the first statement, as the second follows from similar argu-
ments. Recall

iG+
ij(s, s

0
) =

1

Z
Tr

h
U(s1, s)aiU(s, s0)a†jU(s0, s0)

i
✓(s� s0).

Then compute, using Eqs. (3.1) and (3.2),

i(ż(s))�1@sG
+
ij(s, s

0
) =

i

Z
Tr

h
U(s1, s) ˆH(s)aiU(s, s0)a†jU(s0, s0)

i
✓(s� s0)

� i

Z
Tr

h
U(s1, s)ai ˆH(s)U(s, s0)a†jU(s0, s0)

i
✓(s� s0)

+ (ż(s))�1 1

Z
Tr

h
U(s1, s)aia

†
jU(s, s0)

i
�(s� s0)

=

�i
Z

Tr

h
U(s1, s)[ai, ˆH(s)]U(s, s0)a†jU(s0, s0)

i
✓(s� s0)

+ (ż(s))�1 1

Z
Tr

h
U(s1, s)aia

†
jU(s, s0)

i
�(s� s0).

Now for i > p, [ai, ˆU(s)] = 0, so [ai, ˆH(s)] = [ai, a†h(s)a] =
Pd

l=1 hil(s)al, by Lemma
2. Therefore

i(ż(s))�1@sG
+
ij(s, s

0
) =

�i
Z

dX
l=1

hil(s)Tr
h
U(s1, s)alU(s, s0)a†jU(s0, s0)

i
✓(s� s0)

+ (ż(s))�1 1

Z
Tr

h
U(s1, s)aia

†
jU(s, s0)

i
�(s� s0)

= [h(s)G+
(s, s0)]ij

+ (ż(s))�1 1

Z
Tr

h
U(s1, s)aia

†
jU(s, s0)

i
�(s� s0).

Similarly,

i(ż(s))�1@sG
�
ij(s, s

0
) =

i⇣

Z
Tr

h
U(s1, s

0
)a†jU(s0, s) ˆH(s)aiU(s, s0)

i
(1� ✓(s� s0))
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� i⇣

Z

h
U(s1, s

0
)a†jU(s0, s)ai ˆH(s)U(s, s0)

i
(1� ✓(s� s0))

� (ż(s))�1 ⇣

Z
Tr

h
U(s1, s)a

†
jaiU(s, s0)

i
�(s� s0)

=

�i⇣
Z

Tr

h
U(s1, s)[ai, ˆH(s)]U(s, s0)a†jU(s0, s0)

i
✓(s� s0)

� ⇣

Z
Tr

h
U(s1, s)a

†
jaiU(s, s0)

i
�(s� s0)

=

�i⇣
Z

dX
l=1

hil(s)Tr
h
U(s1, s)alU(s, s0)a†jU(s0, s0)

i
✓(s� s0)

� (ż(s))�1 ⇣

Z
Tr

h
U(s1, s)a

†
jaiU(s, s0)

i
�(s� s0)

= [h(s)G�
(s, s0)]ij

� (ż(s))�1 ⇣

Z
Tr

h
U(s1, s)a

†
jaiU(s, s0)

i
�(s� s0).

Therefore, since G = G+
+G�, we have

i(ż(s))�1@sGij(s, s
0
) = [h(s)G(s, s0)]ij

+

1

Z
Tr

h
U(s1, s)(aia

†
j � ⇣a

†
jai)U(s, s0)

i
(ż(s))�1�(s� s0)

= [h(s)G(s, s0)]ij + �ij (ż(s))
�1�(s� s0),

which completes the proof.

3.4 Anomalous setting
Finally we will consider a sparsity result for the self-energy of anomalous impurity
problems. These are impurity problems in which the Hamiltonian does not conserve
particle number. Since the anomalous setting is of most interest for the study of
superconductivity in fermions, we will restrict our attention to the fermionic setting.
This allows us to avoid some further analytic difficulty since our rigorous definitions
in the bosonic case (in which the Fock space is infinite-dimensional) relied on particle
number conservation. It also eases the notational burden to keep track of ⇣ to distin-
guish the bosonic and fermionic systems. In order to simply illustrate the points that
are novel to this setting, we further restrict our attention to the zero-temperature
equilibrium setting.

Now consider a self-adjoint Hamiltonian ˆH on the fermionic Fock space F�1,d, and
we write ˆH of the form

ˆH =

ˆH0 +
ˆU,

where
ˆH0 :=

ˆHNA +

ˆHA +

ˆH†
A
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is the single-particle part of the Hamiltonian (no longer particle-number-conserving),
specified by its non-anomalous and anomalous parts

ˆHNA :=

dX
i,j=1

hija
†
iaj, ˆHA :=

1

2

dX
i,j=1

�ija
†
ia

†
j.

Therefore, up to a scalar multiple of the identity operator, ˆH0 is given by✓
a
a†

◆†✓
h �

�� �h

◆✓
a
a†

◆
,

where we have abused notation slightly by using a to indicate both a row and a
column vector of operators. Without loss of generality we assume that � = (�ij) is a
complex antisymmetric matrix. (Note that then �� = �

†, and since h is Hermitian,
�h = �hT .) Meanwhile, the interacting part ˆU is itself a self-adjoint operator on
F�1,d, and we demand that it can be written as an even polynomial of the creation
and annihilation operators, which includes the particle-number-conserving ˆU as a sub-
case. In the case that ˆU can be written as a polynomial of the a†i , ai for i = 1, . . . , p,
we say that ˆH is an anomalous impurity Hamiltonian, with a fragment specified by
the indices 1, . . . , p. As in earlier settings, the rest of the indices correspond to the
environment. Note that the evenness of the polynomial specifying ˆU guarantees that
ˆU commutes with aj and a†j for j > p.

To determine the expectations computed at the end of the last section, it suffices
to determine the following Green’s functions, which are themselves desirable to know:

Ghp
ij (z) := Ghp,+

ij (z) +Ghp,�
ij (z)

:= h�0|ai
1

z � (

ˆH � E0)

a†j|�0i+ h�0|a†j
1

z + (

ˆH � E0)

ai|�0i

Gpp
ij (z) := Gpp,+

ij (z) +Gpp,�
ij (z)

:= h�0|a†i
1

z � (

ˆH � E0)

a†j|�0i+ h�0|a†j
1

z + (

ˆH � E0)

a†i |�0i

Ghh
ij (z) := Ghh,+

ij (z) +Ghh,�
ij (z)

:= h�0|ai
1

z � (

ˆH � E0)

aj|�0i+ h�0|aj
1

z + (

ˆH � E0)

ai|�0i

Gph
ij (z) := Gph,+

ij (z) +Gph,�
ij (z)
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:= h�0|a†i
1

z � (

ˆH � E0)

aj|�0i+ h�0|aj
1

z + (

ˆH � E0)

a†i |�0i,

where |�0i is the ground state of ˆH and E0 is the ground-state energy. The super-
scripts p and h stands for ‘particle’ and ‘hole’, respectively [14], so Ghh is called the
hole-hole Green’s function, Gph is the particle-hole Green’s function, etc.

Notice that the last two Green’s functions are actually redundant because Gph
(z) =

�[Ghp
(�z)]T and Ghh

(z) = [Gpp
(z)]†. We can further define the anomalous Green’s

function by

G(z) :=

✓
Ghp

(z) Ghh
(z)

Gpp
(z) Gph

(z)

◆
and the anomalous self-energy by

⌃(z) := z �
✓

h �

�� �h

◆
�G(z)�1.

In fact we will show the following result:

Theorem 12. Suppose that ˆH is an anomalous impurity Hamiltonian, with a frag-
ment specified by the indices 1, . . . , p. Then the anomalous self-energy ⌃ : C! Cd⇥d

is (up to the resolution of removable discontinuities) of the form

⌃(z) =

0BB@
⌃

hp
p (z) 0 ⌃

hh
p (z) 0

0 0 0 0

⌃

pp
p (z) 0 ⌃

ph
p (z) 0

0 0 0 0

1CCA .

Remark 13. Note that in the case p = 0 we recover the formula

G(z) =


z �

✓
h �

�� �h

◆��1

for the non-interacting anomalous Green’s function. .
Recall from Lemma 2 that

[

ˆHNA, a
†
j] =

X
�

hkja
†
k

and
[

ˆHNA, aj] = �
X
�

hjka
†
k.

Before proceeding with the proof of Theorem 12, we supplement this result with a
further simple lemma:
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Lemma 14. Let ˆHA =

1
2

Pd
i,j=1�ija

†
ia

†
j with � = (�ij) being a complex antisymmet-

ric matrix. Then

[

ˆHA, a
†
j] = 0, [

ˆH†
A, aj] = 0, [

ˆHA, aj] =
X
k

�kja
†
k, [

ˆH†
A, a

†
j] =

X
k

�jkak.

Proof. The first two identities are obvious, and the fourth follows from the third by
taking Hermitian conjugates and using the antisymmetry of �. To see the claimed
third identity, simply compute

ˆHAaj =

1

2

X
ik

�ika
†
ia

†
kaj

=

1

2

X
ik

�ika
†
i�jk �

1

2

X
ik

�ika
†
iaja

†
k

=

1

2

X
i

�ija
†
i �

1

2

X
ik

�ik�ija
†
k +

1

2

X
ik

�ikaja
†
ia

†
k

=

1

2

X
k

�kja
†
k �

1

2

X
k

�jka
†
k + aj ˆHA

=

X
k

�kja
†
k + aj ˆHA.

Proof. (Of Theorem 12.) Throughout we will often use h · i to indicate the expectation
h�0| · |�0i.

Now it suffices to show the following sparsity pattern

G(z)⌃(z) =

0BB@
⇤ 0 ⇤ 0

⇤ 0 ⇤ 0

⇤ 0 ⇤ 0

⇤ 0 ⇤ 0

1CCA , ⌃(z)G(z) =

0BB@
⇤ ⇤ ⇤ ⇤
0 0 0 0

⇤ ⇤ ⇤ ⇤
0 0 0 0

1CCA .

We will only prove the first of these claims; the other follows by similar reasoning.
Note that this first claim is equivalent to the fact that each of the following equalities
holds along the last d� p columns :

Ghp
[z � h]�Ghh

�

†
= Id,

�Ghp
�+Ghh

[z + hT
] = 0,

Gpp
[z � h]�Gph

�

†
= 0,

�Gpp
�+Gph

[z + hT
] = Id.
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Now we begin the computations. In the following we assume that j > p. Since
(

ˆH � E0)|�0i = 0, we have

zGhp,+
ij (z) = h�0|ai

1

z � (

ˆH � E0)

a†j(z � (

ˆH � E0))|�0i

= haia†ji+ hai
1

z � (

ˆH � E0)

[

ˆH, a†j]i

= haia†ji+ hai
1

z � (

ˆH � E0)

[

ˆHNA, a
†
j]i+ hai

1

z � (

ˆH � E0)

[

ˆH†
A, a

†
j]i

= haia†ji+
X
k

hai
1

z � (

ˆH � E0)

a†kihkj +

X
k

hai
1

z � (

ˆH � E0)

aki�jk

= haia†ji+
⇥
Ghp,+h

⇤
ij
+

⇥
Ghh,+

�

†⇤
ij
.

Similarly,

zGhp,�
ij (z) = h�0|(z + (

ˆH � E0))a
†
j

1

z + (

ˆH � E0)

ai|�0i

= ha†jaii+ h[ ˆH, a†j]
1

z + (

ˆH � E0)

aii

= ha†jaii+ h[ ˆHNA, a
†
j]

1

z + (

ˆH � E0)

aii+ h[ ˆH†
A, a

†
j]

1

z + (

ˆH � E0)

aii

= ha†jaii+
X
k

ha†k
1

z + (

ˆH � E0)

aiihkj +

X
k

hak
1

z + (

ˆH � E0)

aii�jk

= ha†jaii+
⇥
Ghp,�h

⇤
ij
+

⇥
Ghh,�

�

†⇤
ij
.

Therefore, adding our results and recognizing that haia†ji+ ha
†
jaii = �ij, we obtain

zGhp
ij = �ij +

⇥
Ghph

⇤
ij
+

⇥
Ghh

�

†⇤
ij

for all j > p, which implies our first desired result.
Next compute

zGhh,+
ij (z) = h�0|ai

1

z � (

ˆH � E0)

aj(z � (

ˆH � E0))|�0i

= haiaji+ hai
1

z � (

ˆH � E0)

[

ˆH, aj]i

= haiaji+ hai
1

z � (

ˆH � E0)

[

ˆHNA, aj]i+ hai
1

z � (

ˆH � E0)

[

ˆHA, aj]i

= haiaji �
X
k

hai
1

z � (

ˆH � E0)

akihjk +

X
k

hai
1

z � (

ˆH � E0)

a†ki�kj
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= haiaji �
⇥
Ghh,+hT

⇤
ij
+

⇥
Ghp,+

�

⇤
ij
,

and

zGhh,�
ij (z) = h�0|(z + (

ˆH � E0))aj
1

z + (

ˆH � E0)

ai|�0i

= hajaii+ h[ ˆH, aj]
1

z + (

ˆH � E0)

aii

= hajaii+ h[ ˆHNA, aj]
1

z + (

ˆH � E0)

aii+ h[ ˆHA, aj]
1

z + (

ˆH � E0)

aii

= hajaii �
X
k

hak
1

z + (

ˆH � E0)

aiihjk +

X
k

ha†k
1

z + (

ˆH � E0)

aii�kj

= hajaii �
⇥
Ghh,�hT

⇤
ij
+

⇥
Ghp,�

�

⇤
ij
.

Adding our results and recognizing that haiaji + hajaii = 0, we obtain our second
desired result.

Next compute

zGpp,+
ij (z) = h�0|a†i

1

z � (

ˆH � E0)

a†j(z � (

ˆH � E0))|�0i

= ha†ia
†
ji+ ha

†
i

1

z � (

ˆH � E0)

[

ˆH, a†j]i

= ha†ia
†
ji+ ha

†
i

1

z � (

ˆH � E0)

[

ˆHNA, a
†
j]i+ ha

†
i

1

z � (

ˆH � E0)

[

ˆH†
A, a

†
j]i

= ha†ia
†
ji+

X
k

ha†i
1

z � (

ˆH � E0)

a†kihkj +

X
k

ha†i
1

z � (

ˆH � E0)

aki�jk

= ha†ia
†
ji+

⇥
Gpp,+h

⇤
ij
+

⇥
Gph,+

�

†⇤
ij
,

and

zGpp,�
ij (z) = h�0|(z + (

ˆH � E0))a
†
j

1

z + (

ˆH � E0)

a†i |�0i

= ha†ja
†
ii+ h[ ˆH, a†j]

1

z + (

ˆH � E0)

a†ii

= ha†ja
†
ii+ h[ ˆHNA, a

†
j]

1

z + (

ˆH � E0)

a†ii+ h[ ˆH
†
A, a

†
j]

1

z + (

ˆH � E0)

a†ii

= ha†ja
†
ii+

X
k

ha†k
1

z + (

ˆH � E0)

a†iihkj +

X
k

hak
1

z + (

ˆH � E0)

a†ii�jk

= ha†ja
†
ii+

⇥
Gpp,�h

⇤
ij
+

⇥
Gph,�

�

†⇤
ij
,

yielding our third desired result.
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Finally, compute

zGph,+
ij (z) = h�0|a†i

1

z � (

ˆH � E0)

aj(z � (

ˆH � E0))|�0i

= ha†iaji+ ha
†
i

1

z � (

ˆH � E0)

[

ˆH, aj]i

= ha†iaji+ ha
†
i

1

z � (

ˆH � E0)

[

ˆHNA, aj]i+ ha†i
1

z � (

ˆH � E0)

[

ˆHA, aj]i

= ha†iaji �
X
k

ha†i
1

z � (

ˆH � E0)

akihjk +

X
k

ha†i
1

z � (

ˆH � E0)

a†ki�kj

= ha†iaji �
⇥
Gph,+hT

⇤
ij
+

⇥
Gpp,+

�

⇤
ij
,

and

zGph,�
ij (z) = h�0|(z + (

ˆH � E0))aj
1

z + (

ˆH � E0)

a†i |�0i

= hajaii+ h[ ˆH, aj]
1

z + (

ˆH � E0)

a†ii

= hajaii+ h[ ˆHNA, aj]
1

z + (

ˆH � E0)

a†ii+ h[ ˆHA, aj]
1

z + (

ˆH � E0)

a†ii

= hajaii �
X
k

hak
1

z + (

ˆH � E0)

a†iihjk +

X
k

ha†k
1

z + (

ˆH � E0)

a†ii�kj

= hajaii �
⇥
Gph,�hT

⇤
ij
+

⇥
Gpp,�

�

⇤
ij
,

yielding the last desired result.
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Part VII

The dynamical mean-field theory

1 Introduction
Green’s function embedding refers to an extremely flexible framework for the em-
bedding of field theories arising from the Green’s function formalism. Many Green’s
function embedding theories can be viewed as specific ansatzes for the Luttinger-Ward
functional. Here we will focus on the dynamical mean field theory (DMFT) [37, 53,
106, 58], or rather its extension to fragments consisting of several sites, known as
cluster DMFT (though we shall conflate the two under the umbrella of ‘DMFT’).
DMFT relies on the solution of impurity problems (as considered in Part VI), which
specify the embedding of an interacting system into a non-interacting bath. The sys-
tem is divided into several fragments or clusters, and to each of these is associated an
impurity problem determined via a self-consistency condition that couples the frag-
ments on a global level. The method can be introduced in the classical setting (of
Euclidean field theory), though in this setting ‘DMFT’ is really a misnomer because
the mean fields are not dynamical. However, it is nonetheless the formal analog of the
original (fermionic) DMFT, so we retain the nomenclature. DMFT can be extended
to consider overlapping fragments and to include diagrammatic corrections.

1.1 Outline
As a warm-up, we describe in section 2 the framework of DMFT (and several ex-
tensions) in the setting of classical field theory. Then in section 3 we introduce the
fermionic DMFT. In section 4, we identify the key mathematical structures in the
algorithmic loop for solving the fermionic DMFT, and in section 5 we describe some
applications of this mathematical framework, e.g., to the well-posedness of the algo-
rithmic DMFT loop. Please note that sections 3, 4, and 5 are based on joint work in
preparation with Lin Lin and Reinhold Schneider.

2 Warm-up: DMFT in Euclidean field theory

2.1 Formulation of cluster DMFT
In this section we adopt the notation of Part III. Let G 2 RM⇥M be the exact Green’s
function

Gij = h�i�ji.
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Suppose that M = RL. Define diagonal L⇥ L blocks of G via

G =

0BBB@
G1 ⇤ · · · ⇤
⇤ G2 · · · ⇤
...

... . . . ⇤
⇤ ⇤ ⇤ GR

1CCCA .

We will index the blocks (‘clusters’) by the index c. Let H1,c = H1,c(�c) be the
contribution to H1 that depends only on �c :=

�
�(c�1)L+1, . . . ,�cL

�
.

Then consider the functionals ⌦c,Fc,�c,⌃c = r�c, defined as previously but now
for the L⇥ L problem with interaction H1,c.

We define the (exact) hybridization �c via Ac +�c �G�1
c = ⌃c[Gc], i.e.,

�c = ⌃c[Gc]� Ac +G�1
c .

In other words, �c is the L⇥ L matrix such that Ac +�c 7! Gc under the Legendre
correspondence for the c-th cluster.

Since Gc = r⌦c (Ac +�c), we have

�c = ⌃
0

c [Ac +�c]� Ac +
�
⇡cG⇡

T
c

��1
,

where ⌃0
c := ⌃ � r⌦c and ⇡c : RM ! RL is the projection onto the c-th cluster, so

Gc = ⇡T
c G⇡c.

Recall that
G = (A� ⌃)�1 ,

where ⌃ is the exact self-energy, so in fact

�c = ⌃
0

c [Ac +�c]� Ac +
�
⇡c (A� ⌃)�1 ⇡T

c

��1
.

We will introduce an ansatz for ⌃ in terms of the hybridizations �c, and it is this
approximation that defines (C)DMFT:

⌃ 
RM

c0=1

⌃

0

c0 [Ac0 + �c0 ] .

This yields a self-consistent set of equations for the �c:

�c = ⌃
0

c [Ac +�c]� Ac +

24⇡c A� RM
c0=1

⌃

0

c0 [Ac0 +�c0 ]

!�1

⇡T
c

35�1

. (2.1)

The (approximate) self-energy and Green’s function can then be retrieved from the
�c that solve these equations.
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2.2 Algorithmic approach
One iterative approach to solving the equations (2.1) consists of setting

�

(k+1)
c = ⌃

0

c

⇥
Ac +�

(k)
c

⇤
� Ac +

24⇡c A� RM
c0=1

⌃

0

c0

h
Ac0 +�

(k)
c0

i!�1

⇡T
c

35�1

.

This is equivalent to the approach that is outlined in [96]. This is a fixed-point
iteration, which can be mixed and/or accelerated by standard methods.

2.3 Luttinger-Ward Perspective
There is a much simpler way to view DMFT as an approximation of the Luttinger-
Ward functional (and consequently the self-energy functional).

Suppose that we have solved (2.1) for the �c, and define

⌃ :=

RM
c=1

⌃

0

c [Ac +�c] , G := (A� ⌃)�1, Gc := ⇡cG⇡
T
c .

Then (2.1) reads
�c = ⌃

0

c [Ac + �c]� Ac +G�1
c , (2.2)

But we also know (from stationarity for the c-th cluster) that

Ac +�c � ⌃
0

c [Ac +�c] = [r⌦c (Ac +�c)]
�1 .

Therefore, combining with (2.2) yields

Gc = r⌦c (Ac +�c) .

Thus
⌃

0

c0 [Ac0 +�c0 ] = ⌃c0 [Gc] ,

and

⌃ =

RM
c=1

⌃c[Gc].

Now define a functional via

⌃

CDMFT
[G] :=

RM
c=1

⌃c

⇥
⇡cG⇡

T
c

⇤
.

Then evidently the G retrieved from CDMFT satisfies

A�G�1
= ⌃

DMFT
[G].
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In other words, DMFT is equivalent to replacing the universal functional ⌃[ · ] with
⌃

DMFT
[ · ] in the Dyson equation.

Moreover, this self-energy is �-derivable in that it can be viewed as the gradient
of an appropriate (replacement for) the Luttinger-Ward functional, to wit:

�

DMFT
[G] :=

RX
c=1

�c

⇥
⇡cG⇡

T
c

⇤
.

2.4 Diagrammatic corrections to DMFT
We now outline a framework for considering diagrammatic corrections to cluster
DMFT. In some sense, DMFT is good at treating local interactions, though a di-
agrammatic method could help take into account small long-range effects. More
specifically, the DMFT self-energy should take into account all diagrams in which
all the factors of Gij have indices living within a single cluster. When we add di-
agrammatic corrections, we do not want to double-count diagrams. Therefore we
define

⌃

D+DMFT
[G] :=

RM
c=1

�
⌃c[Gc]� ⌃D

c [Gc]
�
+ ⌃

D
[G],

where ⌃D
[ · ] is the self-energy functional of the diagrammatic method with which

we are combining DMFT, and ⌃D
c [ · ] is the functional that takes into account all

diagrams in which all the factors of Gij have incides living in the c-th cluster. For most
methods, ⌃D

c [ · ] would simply be the self-energy functional for the lower-dimensional
L⇥ L problem with interaction H1,c.

Moreover, if the diagrammatic method (along with its lower-dimensional versions)
is �-derivable, then we have the following ansatz form for the approximate Luttinger-
Ward functional:

�

D+CDMFT
[G] =

RX
c=1

�
�c

⇥
⇡cG⇡

T
c

⇤
� �D

c

⇥
⇡cG⇡

T
c

⇤�
+ �

D
[G].

2.5 Overlapping DMFT
The block-diagonal ansatz for the self-energy seems to leave something to be desired.
For instance, no matter how much we increase the block size, off-block-diagonal entries
of G never appear in any of the diagrams contributing to ⌃DMFT

[G]. In particular,
at the juncture between two clusters, we have entries adjacent to the diagonal that
do not contribute!

For now we will imagine the entries of � as corresponding to sites in a one-
dimensional periodic system, but the following construction could be generalized to
an arbitrary lattice in any dimension.
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As before, we fix a block size L, though we no longer stipulate that L divide the
total number of sites M . However, in the periodic case, for simplicity we insist that
2L+1 M . This implies that any two clusters of size L intersect only in a ‘connected’
patch. (If this were not the case, we would have to subtract off certain contributions
due to more complicated intersections later on.) This is not a restrictive assumption
because in applications we have that the cluster size is much smaller than the total
number of sites.

For a given self-energy diagram, we say that the range of this diagram is the
minimal size of a cluster C ⇢ Z/MZ (i.e., a continguous patch of sites) such that
i, j 2 C for every factor of Gij that appears in this diagram. We want to take into
account every diagram of range at most L, and we will call the resulting approximate
self-energy functional the short-range self-energy (SRSE), denoted ⌃SR.

Let i = 1, . . . , n denote a ‘cluster shift,’ and let ⇡i,L : RM ! RL denote the
projection onto the entries i, . . . , i + L � 1 (mod M). We will use this indexing
convention for other objects (arising from the L ⇥ L problem with interaction Ui,L)
without comment. Then define

⌃

(L)
[G] =

MX
i=1

⇡T
i,L

�
⌃i,L

⇥
⇡i,LG⇡

T
i,L

⇤�
⇡i,L.

Notice that in this functional, every diagram of range L is counted once, every diagram
of range L�1 is counted twice, etc., and every diagram of range 1 is counted L times.

Therefore, more generally, for q = 1, . . . , L define ⇡i,q : RM ! Rq to be the
projection onto the entries i, . . . , i+ q � 1 (mod M), and define

⌃

(q)
[G] =

MX
i=1

⇡T
i,q

�
⌃i,q

⇥
⇡i,qG⇡

T
i,q

⇤�
⇡i,q,

so the functional ⌃(q) counts every diagram of range q once, every diagram of range
q � 1 twice, etc. Then define

⌃

SR
:= ⌃

(L) � ⌃(L�1).

Evidently this functional counts every diagram of any range up to p exactly once.
One can imagine a similar construction for the nonperiodic case. Indeed, define

⌃

(q)
nonper[G] =

M�q+1X
i=1

⇡T
i,q

�
⌃i,q

⇥
⇡i,qG⇡

T
i,q

⇤�
⇡i,q,

and set
⌃

SR
nonper[G] := ⌃

(L)
nonper � ⌃(L�1)

nonper.

Then ⌃SR
nonper counts any diagram of ‘nonperiodic range’ at most L, where the non-

periodic range of a diagram is the minimal size of a cluster C ⇢ {1, . . . ,M} such
that i, j 2 C for every factor of Gij that appears in this diagram. Note that for this
construction, we do not need to assume 2L+ 1 M .
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2.6 Diagrammatic corrections to overlapping DMFT
We can consider diagrammatic corrections to the SRSE in the same way as we did
before. Take the periodic one-dimensional case for specificity. Define

⌃

D
q [G] =

MX
i=1

⇡T
i,q

�
⌃i,q

⇥
⇡i,qG⇡

T
i,q

⇤
� ⌃D

i,q

⇥
⇡i,qG⇡

T
i,q

⇤�
⇡i,q,

and set
⌃

D+SR
:= ⌃

D
L � ⌃D

L�1

Lastly, observe that the remarks about the �-derivability of (D+)DMFT carry
over to (D+)SRFT with the obvious modifications. In other words, ⌃SR can be viewed
as the gradient of the appropriate short-range Luttinger-Ward functional (SRLW)
�

SR, and, if the diagrammatic method D is �-derivable, we can say the same about
⌃

D+SR.

3 Fermionic DMFT

3.1 Basic definitions
For simplicity and mathematical convenience we confine our attention to the case of
fermionic many-body systems described by a finite-dimensional Fock space F , i.e., a
Fock space with finitely many creation operators a†1, . . . , a

†
M . This setting can describe

lattice models such as the Hubbard model as well as tight-binding approximations
of continuum systems, and we view the set {1, . . . ,M} as indexing ‘sites’ in our
model. For convenience we shall let a = (a1, . . . , aN) denote the vector of annihilation
operators for the sites in our model. Recall the canonical anticommutation relations

aiaj + ajai = 0, a†ia
†
j + a†ja

†
i = 0, a†iaj + aja

†
i = �ij.

For further details on second quantization, refer to section 4 of Part I.
We remark that, more generally, one can reduce a continuum problem to this

setting via the choice of an orbital basis. To wit, in the electronic structure problem
one replaces the single-particle wavefunction space V := H1

�
R3,±1

2

�
⇢ L2

�
R3,±1

2

�
with a finite-dimensional subspace VD spanned by an orthonormal single-particle basis
D := {'1, . . . ,'M}. Then one defines the N -particle space FN

D :=

VN
i=1 VD and

considers the discrete Fock space F = FD =

LD
N=0 FN

D . The Fock space FD can be
viewed as being induced by creation operators a†i corresponding to the orbital basis
functions 'i.

We consider a Hamiltonian ˆH on the Fock space F , namely a Hermitian linear
operator ˆH : F ! F . We write the Hamiltonian as

ˆH =

ˆH0 +
ˆV ,
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where
ˆH0 := a†ha =

NX
i,j=1

hpqa
†
paq

is the single-particle (or noninteracting) part of the Hamiltonian, specified by a Her-
mitian N ⇥ N matrix h, and ˆV is the interacting part of the Hamiltonian, which is
an even polynomial in a†, a. Though we need not define ˆV explicitly for most of the
developments of this Part, we have in mind the two-body interaction

ˆV =

1

2

X
pqrs

(pq|V |rs)a†pa†qasar.

In the setting of electronic structure, hpq and (pq|V |rs) are the matrix and tensor
elements for the one- and two-body interactions, respectively; section 4 of Part I for
more details. Nonetheless, for our present purposes we need only assume that ˆV
commutes with the total number operator ˆN :=

PM
i=1 a

†
iai. In this case we say that

ˆH conserves particle number.
When discussing quantum many-body problems in this Part, we take the per-

spective a chemical potential µ 2 R is specified in advance. In practical DMFT, the
chemical potential may be adjusted (concurrently with the solution of self-consistency
conditions for the method) to guarantee that a given total particle number constraint
is satisfied. In this Part, we ignore the details of chemical potential fitting and simply
assume that the desired chemical potential is given.

Now in the zero-temperature setting, we let P0 be the orthogonal projector onto
the lowest eigenspace of ˆH � µ ˆN , and we denote the corresponding eigenvalue (the
ground-state energy) by E0. In the case in which the lowest eigenspace is simple, we
have P0 = | 0ih 0|, where | 0i is the unique ground state. If ˆN | 0i = N | 0i, i.e., if
the ground state is of definite particle number N , then we will sometimes write | N

0 i
to emphasize this point. Then one defines the Green’s function (cf. 7 of Part I) as
follows.

Definition 1. With notation and conventions as in the preceding,14 we define the
zero-temperature Green’s function G : C! CM⇥M by15

G(z) = G(+)
(z) +G(�)

(z),

where

G(+)
ij (z) :=

1

Z
Tr

h
ai(z � [

ˆH � E0])
�1a†jP0

i
, G(�)

ij (z) :=
1

Z
Tr

h
a†j(z + [

ˆH � E0])
�1aiP0

i
.

14In order to reduce notational burden, all definitions and results should be understood as being
stated with this caveat.

15In fact G is only rational, hence undefined at certain points in C, but we nonetheless shall write
the domain of such functions as C.
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Here Z = Tr[P0]. If the ground state | N
0 i of ˆH � µ ˆN is nondegenerate, we have

G(+)
ij (z) := h N

0 |ai(z� [

ˆH�E0])
�1a†j| N

0 i, G(�)
ij (z) := h N

0 |a†j(z+[

ˆH�E0])
�1ai| N

0 i.

We call these two terms, respectively, the (N ± 1)-particle parts of the Green’s func-
tions.

Remark 2. Note carefully that we do not include any infinitesimal offset i⌘ for the
poles in our definition of the Green’s function; the choice of such offsets distinguishes
the advanced, retarded, and time-ordered Green’s functions from one another (see,
e.g., [77]). However, this additional structure is irrelevant to the DMFT loop, i.e., it is
sufficient for our purposes to think of Green’s functions merely as rational functions
without any such additional data. As such, the reader familiar with many-body
Green’s functions may think of our definition as conflating the advanced, retarded,
and time-ordered Green’s functions.

Next we consider the finite temperature setting, where we let � 2 (0,1) denote
the inverse temperature.

Definition 3. The Green’s function G : C ! CM⇥M for inverse temperature � is
defined via

G(z) = G(+)
(z) +G(�)

(z),

where now
G(+)

ij (z) :=
1

Z

X
�2�(Ĥ)

e���Tr
h
ai(z � [

ˆH � �])�1a†jP�
i

and
G(�)

ij (z) :=
1

Z

X
�2�(Ĥ)

e���Tr
h
a†j(z + [

ˆH � �])�1aiP�
i
.

Here �( ˆH) denotes the spectrum of ˆH, P� is the orthogonal projector onto the �-
eigenspace of ˆH, and Z =

P
�2�(Ĥ) e

���
Tr[P�].

One sees that the zero-temperature definition is recovered in the limit � ! 1.
Notice that the adjustment via chemical potential corresponds to the subtraction of
the scalar matrix µIN from h. Throughout we will simply assume that the given h
has already incorporated any such chemical potential.

In the case of a noninteracting Hamiltonian, i.e., the case ˆV = 0, the corresponding
(noninteracting) Green’s function is denoted G0(z), and we have the following result:

Lemma 4. In arbitrary temperature, G0(z) = (zIM � h)�1, i.e., G0 is the resolvent
of h.

Proof. This result follows from elementary manipulations (made easier by reducing
to the case of diagonal h via a suitable unitary transformation of the orbitals), but see
Remark (7) below for a quick proof from the point of view of impurity problems.
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This motivates the definition of the self-energy as the difference of the pointwise
matrix inverses of the interacting and noninteracting Green’s functions:

Definition 5. The self-energy ⌃ : C! CM⇥M is defined (in arbitrary temperature)
by

⌃(z) = zIM � h�G�1
(z). (3.1)

We shall sometimes abbreviate z = zIM , but sometimes it is useful to emphasize the
dimension of the identity matrix.

Note that (3.1) is equivalent to

G(z) = (z � h� ⌃(z))�1 ,

hence h + ⌃(z) can be interpreted as specifying the effective (frequency-dependent)
single-particle Hamiltonian yielding G(z) as its noninteracting Green’s function.

Observe, moreover, that (3.1) is equivalent to the Dyson equation

G(z) = G0(z) +G0(z)⌃(z)G(z),

which can therefore be alternatively taken as the defining property for the self-energy.

3.2 The impurity problem and the hybridization
To define the impurity problem we partition our sites {1, . . . , N} into two pieces: a
fragment or impurity (thought of as being small) and an environment. Let L denote
the number of sites in the fragment, indexed A = {1, . . . , L} without loss of generality.
Let M�L is the number of sites in the environment, indexed B = {L+1, . . . ,M}. Let
FA ' C2L and FB ' C2M�L denote the Fock spaces for the fragment and environment,
respectively, and let F = FA ⌦ FB ' C2M denote the total Fock space.

We define an impurity Hamiltonian (relative to this partition) as an operator
ˆH = a†ha+ ˆV as above satisfying ˆV =

ˆVA ⌦ IdFB , where ˆVA is an operator on FA.
Define blocks of h relative to our partition by

h =

✓
h11 h12

h21 h22

◆
,

where h11 is L⇥ L, etc.
The self-energy has an special sparsity pattern in the case of impurity problems,

proved in Part VI, which we recapitulate here:

Proposition 6. For an impurity Hamiltonian as defined above, the self-energy (in
both zero and finite temperature) has the sparsity pattern

⌃(z) =

✓
⇤ 0

0 0

◆
,

where the upper-left block is L⇥ L.
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Remark 7. In fact Lemma 4 follows in particular from Proposition 6 by considering
the case of a fragment of size zero. In this case, ⌃ ⌘ 0, so by (3.1), G(z) = (z�h)�1.

We now turn to discuss the hybridization function, or hybridization for short:

Definition 8. The hybridization � : C ! CL⇥L associated to an impurity problem
is defined by

�(z) = h12(z � h22)
�1h21.

Thus in fact the hybridization is a Schur complement derived from the matrix
z � h. The significance of the hybridization can be explained as follows. Recall that
the self-energy is given by

⌃(z) = z � h�G�1
(z),

so, left-multiplying by G(z) and right-multiplying by (zIM � h)�1, we obtain

G(z)⌃(z)(z � h)�1
= G(z)� (z � h)�1.

We use the subscript indices 1 and 2 to denote appropriate blocks as done earlier for
the matrix h. By the sparsity result Proposition, taking the upper-left block of the
preceding equality yields

G11(z)⌃11(z)
⇥
(zIN � h)�1

⇤
11

= G11(z)�
⇥
(zIN � h)�1

⇤
11
.

By the Schur complement theorem, [(zIN � h)�1
]11 = [z � h11 ��(z)]�1, so left-

multiplying by G11(z) and right-multiplying by [z � h11 ��(z)] yields

⌃11(z) = z � h11 ��(z)�G11(z)
�1, (3.2)

so the hybridization is an error term that measures the failure of the upper-left blocks
of the matrices ⌃, h, and G to satisfy the appropriate L⇥L Dyson equation. In other
words, we can interpret

h11 +�(z) + ⌃11(z)

as specifying the effective single-particle Hamiltonian on the fragment that yields
G11(z) as its noninteracting Green’s function.

For concreteness, suppose that we have an eigenvalue decomposition of h22, i.e.,
h22�2 = �2⇤2, where ⇤2 = diag(�1, . . . ,�M�L) is diagonal. Then we can write

�(z) = h12�2(z � ⇤2)
�1
�

⇤
2h21 = T (z � ⇤2)

�1T ⇤,

where T := h12�2. Elementwise we have

�ij(z) =
M�LX
l=1

TilTjl

z � �l
.
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We have exhibited an exact rational expression for the hybridization. Note that we
can alternatively write

�(z) =
M�LX
l=1

TlT ⇤
l

z � �l
=

M�LX
l=1

Yl

z � �l
,

where Tl is the l-th column of T and Yl := TlT ⇤
l is positive semidefinite of rank one.

3.2.1 Bath fitting

One can approximate the influence of the bath on the fragment by replacing �(z)
with an approximation �approx(z) of the form

�approx(z) =
KX
k=1

Xk

z � "k
, (3.3)

where Xk ⌫ 0 (i.e., Xk is Hermitian positive semidefinite) and "k 2 R. (This form
defines the class SL

+ to be studied in detail below.) Note that a function of this
form can be interpreted as specifying the coupling of a fragment of size L to an
effective bath of size M 0

=

PK
k=1 rank(Xk). Therefore one may attempt to reduce the

difficulty of solving a given impurity problem with hybridization � by approximating
�approx ⇡ � with M 0 relatively small, i.e., small enough so that the size M +M 0 of
the composite fragment/effective-bath system can be approached with solvers of high
accuracy, or even solved directly by exact diagonalization.

The sense in which one attempts to approximate �(z) is not the focus of this
work, but we will highlight the method of [73], which is naturally motivated by the
analytic framework. The method fixes a number K of poles and then decomposes
the optimization over approximate hybridizations of the form (3.3) into an outer
optimization over poles " = ("1, . . . , "K) 2 RK and an inner optimization, for fixed
poles ", over residues Xk ⌫ 0. To wit, one defines a loss for fixed poles " as

F (") := inf

8<:X
l

�����
KX
k=1

Xk

zl � "k
��(zl)

�����
2

F

����� X1, . . . , Xk ⌫ 0

9=; ,

where {zl} is a sampling of points in the complex plane, in practice chosen to be
a discretization of part of the imaginary axis. Then the quantity F ("), as well as
r"F ("), can be computed via convex optimization over the Xk. The gradients are
used to implement an outer optimization over the poles ".

3.2.2 Chain Hamiltonian perspective

There is another perspective on approximating the influence of the bath on the frag-
ment. Again consider an impurity Hamiltonian of the form ˆH = a†ha+ ˆV , where

h =

✓
h11 h12

h21 h22

◆
.
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Suppose, for simplicity that h is of size (nL)⇥(nL). Then via, e.g., the block Lanczos
algorithm, one can compute a unique unitary matrix

U =

✓
IL 0

0 V

◆
,

where V 2 C(M�L)⇥(M�L) is unitary, such that U⇤hU is tridiagonal, i.e.,

U⇤hU =

0BBBBB@
h11 D0

D⇤
0 E0 D1

. . . . . . . . .
D⇤

n�2 En�2 Dn�1

D⇤
n�1 En�1

1CCCCCA .

After a suitable canonical transformation of our creation and annihilation operators,
it follows that we can assume that h is of tridiagonal form.

The benefit of this perspective is that our Hamiltonian assumes the form of a local
one-dimensional Hamiltonian, or a ‘chain Hamiltonian,’ if we identify our Fock space
with the n-fold tensor product

Nn
⇣
C2L

⌘
. Hence tensor methods such as DMRG

can be fruitfully applied, even when the chain is relatively long (i.e., even when the
dimension 2

nL of the total composite Fock space is much too large to permit exact
diagonalization).

Moreover, this perspective suggests a physically intuitive framework for truncating
the size of the bath, i.e., simply truncating the tridiagonal matrix at a certain depth
n0 < n. Since ultimately one cares to compute only the fragment part of the Green’s
function (which determines the self-energy via (3.2)), the hope is that the influence
of the tail of the chain becomes negligible at a certain distance. More rigorous and
quantitative justification of such truncation remains an open question.

3.3 The (cluster) dynamical mean field theory
Consider a partition of the set C = {1, . . . ,M} of site indices into P disjoint subsets
C(1), . . . , C(P ), which may be referred to as the ‘clusters.’16 We write L(p)

:= |C(p)|.
Throughout we shall write

LP
p=1 A

(p) to indicate a block-diagonal matrix, with di-
agonal block corresponding to the indices C(p) given by A(p). For an M ⇥M matrix
A, we let AC(p),C(q) denote the appropriate submatrix of A. More generally we may
consider submatrices AI,J for any I,J ⇢ C, and we always denote AI := AI,I .

Before proceeding, we comment that DMFT is applicable to the setting in which
our global Hamiltonian is specified by

ˆH = a†ha+
PX

p=1

ˆV (p),

16When we think the cluster as the impurity part of an impurity problem, we shall use the
terminology ‘fragment’ as above.
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where ˆV (p) is an interaction on F (p), the Fock-space for p-th cluster, i.e., a Hermi-
tian particle-number-conserving operator that is written as a polynomial in a†p, ap for
p 2 C(p). In particular, this form recovers the Hubbard model and several related
Hamiltonians as special cases. While DMFT cannot ‘see’ interaction terms that do
not live entirely within a single cluster, we shall discuss in section 5.3 the extension
HF+DMFT, which can include the effect of longer-range interaction.

3.3.1 The self-consistency condition

Now the dynamical mean field theory (DMFT)17 amounts to a block-diagonal ansatz
for the global self-energy:

⌃DMFT(z) =
PM

p=1

⌃

(p)
(z), (3.4)

where each ⌃(p) is determined in a manner to be described shortly. First, however,
observe that an ansatz for the global self-energy determines a global Green’s function
via the Dyson equation as

Gglob
(z) = (zIM � h� ⌃DMFT(z))

�1 . (3.5)

Now for each cluster p, we consider an impurity problem specified by a frequency-
dependent single-particle matrix h(p)

+�

(p)
(z), where h(p)

= hC(p) , and by the impurity
interaction ˆV (p), in the sense of section 3.2 above. If we view each of these impurity
problems as a many-body problem on a composite fragment/bath Fock space, then
we let ⌃(p) denote the fragment block of the self-energy. (Recall that all other blocks
of the fragment-bath self-energy are zero by Proposition (6).) The hybridizations
�

(p) are the unknowns of the method, and they are determined via the stipulation,
inspired by (3.2), that

⌃

(p)
(z) = z � h(p) ��(p)

(z)�G(p)
(z)�1, (3.6)

where G(p)
:=

⇥
Gglob

⇤
C(p) is the p-th cluster block of the global Green’s function.

Note that these equations must be solved self-consistently (and moreover are coupled
across p = 1, . . . , P ) because the Green’s function blocks {G(p)} are determined by
the hybridizations {�(p)} via the progression

{�(p)} 7�!
impurity problems

{⌃(p)} 7�!
ansatz (3.4)

⌃DMFT

7�!
Dyson (3.5)

Gglob 7�!
extract blocks

{G(p)}.

17In fact, when the clusters contain more than a single site, what we describe is often referred to
as the cluster DMFT.
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We shall call this map from G(p)
⇥
{�(q)}

⇤
, and moreover we denote the map �(p) 7!

⌃

(p) defined by the solution the appropriate impurity problem by ⌃(p)
[�

(p)
]. Hence

we may write our self-consistency equations somewhat more painstakingly as

�

(p)
(z) := z � h(p) � ⌃(p)

[�

(p)
](z)�

�
G(p)

[{�(q)}](z)
��1

. (3.7)

Recall that to be a ‘physical’ hybridization, i.e., a hybridization that corresponds to
a closed fragment+bath system, we must solve for �(p) 2 SL(p)

+ , i.e., �(p) must be of
the form (3.3).

We remark that the self-consistency equations (3.6) can be viewed as formally
equivalent to the ansatz

�DMFT[G] =

PX
p=1

�

(p)
[GC(p) ;

ˆV (p)
]

for the Luttinger-Ward functional, G is the global Green’s function and where the
quantity �(p)

[GC(p) ;
ˆV (p)

] is the exact Luttinger-Ward functional for the cluster with
interaction ˆV (p), or equivalently, the ansatz

⌃DMFT[G] =

PM
p=1

⌃

(p)
[GC(p) ;

ˆV (p)
]

for the self-energy functional, where ⌃(p) is the exact self-energy functional for the
cluster with interaction ˆV (p). The well-posedness of this formulation, however, re-
quires a rigorous construction of the fermionic Luttinger-Ward functional, which is a
topic of current debate; see [54, 32, 103, 42].. In the simpler setting of the Euclidean
lattice field theory, see Part III for a rigorous construction of the Luttinger-Ward func-
tional, which in turn suggests a formal analog of DMFT in that setting, as described
in section 2 above.

3.3.2 The DMFT loop

Now we outline the ‘DMFT loop,’ an iterative algorithm, which, if convergent, pro-
vides a solution to the self-consistency equations (3.6).

As previously mentioned, the hybridizations �(p) are the unknowns, and an iter-
ation of our loop amounts to a map from our current iterative guesses {�(p)} to a
new set of guesses {�(p)

new}. Inductively assuming that �(p) 2 SL(p)

+ for p = 1, . . . , P ,
we need only describe how to compute the the subsequent iteration’s hybridizations
�

(p)
new. Motivated by (3.7), we simply define

�

(p)
new(z) := z � h(p) � ⌃(p)

[�

(p)
](z)�

�
G(p)

[{�(q)}](z)
��1

. (3.8)

222



If necessary for convergence, a mixing scheme may be employed across iterations. For
example, in simple mixing we would instead define

�

(p)
new(z) := (1� ↵)�(p)

(z) + ↵
h
z � h(p) � ⌃(p)

(z)�
�
G(p)

[{�(q)}](z)
��1
i
.

For simplicity we will stick to the case ↵ = 1, though generalization of our discussion
to arbitrary ↵ is straightforward.

Now it is trivial by construction that if �(p)
new = �

(p) for all p (i.e., if the loop has
converged), then we have solved the self-consistency equations (3.7). But it is then
nontrivial that �(p)

new 2 SL(p)

+ for al p, as is required to implement the next iteration via
the identification of each impurity problem with a composite fragment/bath system.
It turns out that in fact it is true (Corollary 20 below) that the �(p)

new defined as
in (3.8) lie in SL(p)

+ , and we call this point the ‘well-posedness of the DMFT loop.’
See [52] for related work.

3.3.3 The DMFT loop with bath fitting

Although �(p)
new defined as in (3.8) does indeed lie in SL(p)

+ , the effective bath size
induced by these hybridization iterates may overwhelm the solvers used in practice
for the resulting composite fragment/bath systems. The reader should note that
Monte Carlo schemes (such as in [41]) can avoid explicit construction of any frag-
ment/bath system, but for so-called Hamiltonian-based DMFT schemes, in which
the fragment/bath system is constructed explicitly, it is necessary to introduce an
additional step into the iteration. That is, one approximates �(p)

new with �(p)
approx of

reduced effective bath size as in section (3.2.1). This requires one to compute samples
of �(p)

new at several points on the complex plane.

3.3.4 The DMFT loop with chain truncation

An alternative approach makes use of the chain Hamiltonian perspective of sec-
tion 3.2.2. Note that although it is obvious how to compute samples of �(p)

new(z)
in terms of the values ⌃(p)

(z) computed directly from the impurity problems, it is not
immediately obvious how to compute the quantities Xk ⌫ 0 and "k 2 R appearing in
the exact representation

�

(p)
new =

X
k

X(p)
k

z � "(p)k

.

We shall see that a function of this form admits expression as a matrix continued
fraction as in

�

(p)
new(z) = D(p)

0

1

z � E(p)
0 �D(p)

1

1

z � E(p)
1 �D(p)

2

1

z � E(p)
2 � · · ·

D(p)⇤
2

D(p)⇤
1

D(p)⇤
0 ,
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where the continued fraction terminates at some finite, though potentially large, depth
n, i.e., terminates in the expression z � E(p)

n�1. Note that by repeated application of
the Schur complement theorem, we have

⇥
h(p)

+�

(p)
new(z)

⇤�1
=

26666664

0BBBBBB@
h(p) D(p)

0

D(p)⇤
0 E(p)

0 D(p)
1

. . . . . . . . .
D(p)⇤

n�2 E(p)
n�2 D(p)

n�1

D(p)⇤
n�1 E(p)

n�1

1CCCCCCA

�137777775
11

,

hence �(p)
(z) is the Hybridization of an impurity problem specified by the single-

particle matrix

˜h(p)
:=

0BBBBBB@
h(p) D(p)

0

D(p)⇤
0 E(p)

0 D(p)
1

. . . . . . . . .
D(p)⇤

n�2 E(p)
n�2 D(p)

n�1

D(p)⇤
n�1 E(p)

n�1

1CCCCCCA
for the composite fragment/bath system and fragment interaction ˆV (p). Hence these
data specify a chain Hamiltonian for the impurity problem in the sense of section 3.2.

Likewise, if we can compute the continued fraction matrices D(p)
k , E(p)

k only up to
a given depth n0 < n, then these data exactly determine the truncation of the chain
Hamiltonian at depth n0. Truncating these chain Hamiltonians amounts to taking
the hybridization approximation �(p)

approx that exactly matches the continued fraction
of �(p)

new up to its depth n0.

4 Mathematical structures

4.1 Function spaces of interest
To begin we set the notations HL, HL

+, and HL
++ for L ⇥ L Hermitian, Hermitian

positive semidefinite, and Hermitian positive definite matrices, respectively. We also
write A ⌫ 0 and A � 0 for A 2 HL

+ and A 2 HL
++, respectively.

Now the discussion of section 3.2 motivates the consideration of the class SL
+ of

functions C! CL⇥L which are Stieltjes transforms of discrete positive-operator-valued
measures (POVM) on the real line; more precisely

SL
+ =

(
f : C! CL⇥L

����� f(z) =
KX
k=1

Xk

z � "k
, Xk ⌫ 0, "k 2 R

)
.
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In the following the dependence on L will often be omitted for simplicity, i.e., we
shall simply write SL

+ when the meaning is clear from context. Note that SL
+ is

the class of functions that can be realized as impurity hybridizations and is thus
worthy of our attention. Note that SL

+ is closed under addition and nonnegative
scalar multiplication. (Hence SL

+ is a convex cone.) Furthermore SL
+ is closed under

congruence transformations, i.e., transformations of the form f 7! AfA⇤ for fixed A.
Moreover, if f 2 SL

+ , then z 7! f(z) is also in SL
+.

To motivate the italicized long-form name for SL
+, recall that POVMs on R gen-

eralize ordinary measures to the operator-valued case, where the space of operators
is determined by a choice of Hilbert space (here simply CL). Heuristically POVMs
can be thought of as positive-semidefinite-valued densities dM(") = X(") d", with the
discrete case recovered as M =

P
k Xk �( · � "k), where Xk ⌫ 0 and � indicates the

Dirac delta. As we shall see, it is natural to consider the subbclass SL
1 induced by dis-

crete ‘probability’ POVMs, i.e., POVMs satisfying
´
R dM(") = Id, defined precisely

by

SL
1 :=

(
f : C! CL⇥L

����� f(z) =
KX
k=1

Xk

z � "k
, Xk ⌫ 0,

KX
k=1

Xk = IL, "k 2 R

)
.

Note that the closure of SL
1 under congruence transformations by invertible matrices

A (the matrix analog of scaling) is the class

SL
++ :=

(
f : C! CL⇥L

����� f(z) =
KX
k=1

Xk

z � "k
, Xk ⌫ 0,

KX
k=1

Xk � 0, "k 2 R

)
.

Motivated by the appearance in section 3.2 above of the expression z� h��(z),
we also consider the classes

N L
+ :=

�
g : C! CL⇥L

: g(z) = zB � C � f(z), B 2 HL
+, C 2 HL, f 2 SL

+

 
,

N L
1 :=

�
g : C! CL⇥L

: g(z) = z � C � f(z), A 2 HL
+, B 2 HL, f 2 SL

+

 
,

N L
++ :=

�
g : C! CL⇥L

: g(z) = zB � C � f(z), B 2 HL
++, C 2 HL, f 2 SL

+

 
.

We shall prove below (Lemma 16) that f 2 SL
++ if and only if the pointwise inverse

f�1 2 N L
++, so we write

�
SL
++

��1
= N L

++. Similarly,
�
SL
1

��1
= N L

1 . Note moreover
that SL

+ ⇢ �N L
+ .

Moreover, as we shall see confirm below (Lemma 12), for any f 2 S+, =[f(z)] � 0

for all z 2 H+, where H+ is the (strict) upper complex half-plane and = indicates the
imaginary part of a matrix, i.e., =[A] = 1

2i

�
A� A†�. It follows easily then that for

g 2 N+, =[g(z)] ⌫ 0 for all z 2 H+. In fact, this fact can roughly be seen as a defining
property for these spaces, in a sense that we shall describe shortly. In light of this
observation, together with the elementary fact that =[A] ⌫ 0 if and only if =[A�1

] � 0

(for all invertible A), the pointwise inversion relation is quite fundamental.
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Now for broader context, the class of (CL⇥L-valued) Nevanlinna functions is de-
fined by

N L
+ :=

�
g : H+ ! CL⇥L

analytic

�� =[g(z)] ⌫ 0 for all z 2 H+

 
.

Note that this notation is not standard but rather is chosen to be suggestive in the
current context. Indeed, it can be shown [31] that any g 2 N L

+ can be written

g(z) = Bz + C �
ˆ
R

✓
1

z � " +
"

1 + "2

◆
dM("),

where B 2 HL
+, C 2 HL, and M is a POVM on R such that

´
R

dM(")
1+"2

is convergent.
Hence N L

+ can in fact be thought of as the closure (taken in a suitable sense) of N L
+ .

Meanwhile, one can recover the closure SL
+ ⇢ �N L

+ via

SL
+ :=

⇢
�g

�� g 2 N L
+ , lim

|b|!1
f(ib) = 0

�
,

and any f 2 SL
+ admits the representation

f(z) =

ˆ
R

✓
1

z � " +
"

1 + "2

◆
dM("),

for M a POVM on R such that
´
R

dM(")
1+"2

is convergent.
In this work, we will only need to work with functions in SL

+ and N L
+ specified by

discrete POVMs; however, the number of poles needed to specify such functions may
be large, so it is natural to think of them as approximating functions in the closure.

4.2 Structure of Green’s functions
Though S was introduced as the class of physical hybridizations, in fact Green’s
functions, as defined in section 3.1, all lie in S1 ⇢ S, as we shall now see. This is
essentially a recapitulation of the Lehmann representation (see, e.g., [77]).

Lemma 9 (Lehmann). If G is a Green’s function in the sense of Definition 1 (zero
temperature) or 3 (finite temperature), then G 2 S1.

Remark 10. In the zero-temperature case, assuming for simplicity a nondegenerate
ground state | N

0 i, we derive

G(z) =
X

"2�(ĤN�1

)

X(�)
"

z + ("� E0)
+

X
"2�(ĤN+1

)

X(+)
"

z � ("� E0)
,

where
X(�)
",ij = h N

0 |a†jP"ai| N
0 i, X(+)

",ij = h N
0 |aiP"a†j| N

0 i
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In the finite–temperature case, we derive

G(z) : =

X
",�2�(Ĥ)

X(�)
"�

z � ("� �) +
X

",�2�(Ĥ)

X(+)
"�

z + ("� �) ,

where
X(�)
"�,ij =

1

Z
e���Tr

h
aiP"a

†
jP�
i
, X(+)

"�,ij =
1

Z
e���Tr

h
a†jP"aiP�

i
.

Proof. Consider an arbitrary many-body Hamiltonian ˆH, i.e., an operator on F , and
recall from Definition 1 that the zero-temperature Green’s function G : C ! CM⇥M

is given by

Gij(z) := h N
0 |a†j(z + [

ˆH � E0])
�1ai| N

0 i+ h N
0 |ai(z � [

ˆH � E0])
�1a†j| N

0 i,

where for simplicity of presentation we assume a nondegenerate ground state | N
0 i.

Index the eigenvalues of H by ", and let P" be the "-eigenspace of H. Then we
can decompose

ˆH =

X
"2�(Ĥ)

"P",

where �( ˆH) is the spectrum of H. Moreover,

(z ± [

ˆH � E0])
�1

=

X
"2�(Ĥ)

1

z ± ("� E0)
P",

Evidently the poles of G are given by " 2 �( ˆHN±1) ⇢ �( ˆH), where ˆHN±1 is the
restriction of H to the N ± 1-particle space.

Then we can write

Gij(z) =

X
"2�(ĤN�1

)

1

z + ("� E0)
h N

0 |a†jP"ai| N
0 i

+

X
"2�(ĤN+1

)

1

z � ("� E0)
h N

0 |aiP"a†j| N
0 i,

or

G(z) =
X

"2�(ĤN�1

)

X(�)
"

z + ("� E0)
+

X
"2�(ĤN+1

)

X(+)
"

z � ("� E0)
,

where

X(�)
",ij = h N

0 |a†jP"ai| N
0 i, X(+)

",ij = h N
0 |aiP"a†j| N

0 i.
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Now

h N
0 |a†jP"ai| N

0 i = Tr

h
| N

0 ih N
0 |a†jP"ai

i
= Tr

⇣
| N

0 ih N
0 |a†jP"ai

⌘†�
= Tr

h
a†iP"aj| N

0 ih N
0 |
i

= h N
0 |a†iP"aj| N

0 i,

i.e.,
X(�)
",ij = X(�)

",ji ,

and by similar reasoning X(+)
",ij = X(+)

",ji , i.e., X(±)
" is Hermitian.

In fact, X(±)
" ⌫ 0. Indeed, let v 2 CN . Then

v⇤X(�)
" v =

X
ij

h N
0 |(vjaj)†P"(viai)| N

0 i

= h N
0 |c†P"c| N

0 i,

where c :=
P

j vjaj. But P" ⌫ 0, so c†P"c ⌫ 0, and v⇤X(�)
" v � 0. Similarly,

v⇤X(+)
" v =

X
ij

h N
0 |(via†i )†P"(vja

†
j)| N

0 i

= h N
0 |d†P"d| N

0 i,

where d :=

P
j vja

†
j. Thus X(±)

" ⌫ 0, as claimed. It follows that G 2 S+.
Moreover, the sum of the residues of G is equal to the identity. Indeed, this sum

is given by X
"2�(ĤN�1

)

X(�)
",ij +

X
"2�(ĤN+1

)

X(+)
",ij

=

X
"2�(ĤN�1

)

h N
0 |a†jP"ai| N

0 i+
X

"2�(ĤN+1

)

h N
0 |aiP"a†j| N

0 i

=

X
"2�(Ĥ)

h N
0 |a†jP"ai| N

0 i+
X

"2�(Ĥ)

h N
0 |aiP"a†j| N

0 i

=

*
 

N
0

������a†j
0@ X
"2�(Ĥ)

P"

1A ai

������ N
0

+
+

*
 

N
0

������ai
0@ X
"2�(Ĥ)

P"

1A a†j

������ N
0

+
= h N

0 |a†jai| N
0 i+ h N

0 |aia†j| N
0 i

= h N
0 |a†jai + aia

†
j| N

0 i
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= h N
0 |�ij| N

0 i
= �ij.

Similarly, in the finite temperature case, we have

G(z) : =

X
",�2�(Ĥ)

X(�)
"�

z + ("� �) +
X

",�2�(Ĥ)

X(+)
"�

z � ("� �) ,

where
X(�)
"�,ij =

1

Z
e���Tr

h
a†jP"aiP�

i
, X(+)

"�,ij =
1

Z
e���Tr

h
aiP"a

†
jP�
i
.

One can likewise show that X(±)
"� ⌫ 0.

4.3 Pointwise inversion relations
We would like to study the pointwise inverses of functions in SL

+. For f 2 SL
+, write

f(z) =
KX
k=1

Xk

z � "k

and consider
f�1

(z) := [f(z)]�1 .

Notice that if
TK

k=1 ker(Xk) is nontrivial (which holds in particular if
P

k rank(Xk) <
L), then f�1 exists nowhere. Thus we assume that

TK
k=1 ker(Xk) = {0}. Equivalently,

we assume that
P

k Xk � 0, i.e., we restrict our attention to f 2 SL
++.

Now observe that f�1 is a rational matrix-valued function. Thus the holomorphic
part h (i.e., whatever is left after subtracting off the poles) is polynomial. Since

f(z) ⇠ 1

z

KX
k=1

Xk

as |z|!1, it follows that f�1
(z) = O(z) as z !1. Thus h is affine, and in fact we

have

h(z) = z

 
KX
k=1

Xk

!�1

� C,

where C 2 CN⇥N is a constant matrix. In fact C is Hermitian (because f — and
hence f�1 as well — is Hermitian on real axis), and we will provide an explicit formula
later on. Now it fill further turn out that h�f�1 2 SL

++.The first step in establishing
this is the following:

Lemma 11. Suppose that f 2 SL
++. Then all of the poles of f�1

(z) lie on the real
axis.
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Proof. Also notice that for z = x + iy 2 C, = [z�1
] = � y

x2+y2
, so = [z�1

] = 0 if and
only if z 2 R, and moreover, = [z�1

] < 0 for z 2 H+ (the upper half-plane) and
= [z�1

] > 0 for z 2 H�.
Suppose z 2 H+, and let v 2 CL be nonzero. Then

v⇤f(z)v =

KX
k=1

v⇤Xkv

z � "k
=

KX
k=1

ak
z � "k

,

where ak � 0. Now

= [v⇤f(z)v] =
KX
k=1

ak=
⇥
(z � "k)�1

⇤
.

Now z 2 H+ implies that z � "k 2 H+, so = [(z � "k)�1
] < 0, and

= [v⇤f(z)v]  0

with equality if and only if ak = 0 for all k. Since
TK

k=1 ker(Xk) = {0} and v 6= 0,
we must have ak = v⇤Xkv > 0 for at least one k. This implies in particular that
v⇤f(z)v 6= 0 for all z 2 H+ and all nonzero v 2 CL, i.e., that f(z) is invertible for
z 2 H+. Similar reasoning shows that f(z) is invertible for z 2 H�. Thus the only
poles of f�1 are on the real axis.

Note that from the proof of Lemma 11, we can further conclude:

Lemma 12. Suppose that f 2 SL
+. Then =[f(z)] � 0 for z 2 H+ and =[f(z)] ⌫ 0

for z 2 H�. If f 2 SL
++, then we have =[f(z)] � 0 and =[f(z)] � 0 in these cases,

respectively.

We go on to show that the poles of f�1 have residues of the correct sign:

Lemma 13. Suppose that f 2 SL
++. The poles of f�1 are simple with negative

semidefinite residues.

Proof. Let v 2 CL be nonzero. Then

v⇤f 0
(z)v = �

KX
k=1

v⇤Xkv

(z � "k)2
,

so —- by the fact that at least one the v⇤Xkv is strictly positive — we have v⇤f 0
(z)v <

0 everywhere on the real axis, with infinite value at the poles. (Recall from the
previous lemma that all of the poles of f�1 lie only on the real axis.) This means in
particular that f 0 is negative definite on the real axis (except the poles). (Note that,
on the real axis, f and f 0 take Hermitian values.)

Then consider z0 2 R which is a pole, i.e., for which f(z0) has a zero eigenvalue.
(Generically one expects f(z0) to have only a single zero eigenvalue at such points,
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but we need not assume this.) By shifting if necessary we can assume for simplicity
that z0 = 0, and by changing basis if necessary, we can assume that f(0) has the
block structure

f(0) =

✓
D 0

0 0

◆
,

where D is diagonal with nonzero diagonal entries. Further write

f 0
(0) =: A =

✓
A11 A12

A21 A22

◆
,

so A � 0. Then Taylor’s theorem gives

f(z) = f(0) + zA+O(|z|2) =
✓

D + zA11 zA12

zA21 zA22

◆
+O(|z|2).

Since A � 0, f(0) + zA — and hence also f(z) — is nonsingular for all z 6= 0

sufficiently small. Then for such z, by the Schur complement theorem we can see that

f�1
(z) =

✓
D�1 �D�1A12A

�1
22

�A�1
22 A21D�1 z�1A�1

22 + A�1
22 A21D�1A12A

�1
22

◆
+O(|z|).

In particular, there exists a holomorphic function g(z) such that

f�1
(z)� g(z) =

1

z

✓
0 0

0 A�1
22

◆
.

Thus the pole at 0 is simple with negative semidefinite residue. (Generically one
expects the rank of the residue to be 1.)

We collect our results into the following proposition:

Lemma 14. Let f 2 SL
++, written

f(z) =
KX
k=1

Xk

z � "k
.

Then the holomorphic part of f�1 is given by h(z) = zB � C, where

B =

 
KX
k=1

Xk

!�1

, C = B

 
KX
k=1

"kXk

!
B,

and moreover h� f�1 2 SL
+, i.e., f�1 2 N L

++.
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Proof. The only part of the proposition that we have not already established is the
explicit formula for the constant matrix C.

Since the holomorphic part of f�1 is given by zB � C, note that

d

dz
f�1

(z) = B +O(|z|�2
)

as |z|!1. (Note that here all limits are restricted to z 2 R.) Therefore

zB +O(|z|�1
) = z

d

dz
f�1

(z) = �zf�1
(z)f 0

(z)f�1
(z).

Now
f�1

(z) = zB � C +O(|z|�1
),

so

C = � lim

|z|!1

⇥
f�1

(z) + zf�1
(z)f 0

(z)f�1
(z)
⇤

= � lim

|z|!1

⇥
f�1

(z) [f(z) + zf 0
(z)] f�1

(z)
⇤
.

Now

f(z) + zf 0
(z) =

KX
k=1

✓
1

z � "k
� z

(z � "k)2
◆
Xk = �

KX
k=1

"kXk

(z � "k)2
.

Then we can rewrite

C = � lim

|z|!1


f�1

(z)

z
· z2 [f(z) + zf 0

(z)]
f�1

(z)

z

�
and observe that

f�1
(z)

z
! B, z2 [f(z) + zf 0

(z)]! �
KX
k=1

"Xk

as |z|!1. Therefore C = B
⇣PK

k=1 "Xk

⌘
B, as was to be shown.

Lastly, we show a converse:

Lemma 15. Let g(z) = zB � C � f(z), where f 2 SL
+, B � 0, and C 2 HL. Then

g�1 2 SL
++.

Proof. First we claim that g is nonsingular outside of the real axis. By Lemma 12,
=[f ] � 0 on H+ and =[f ] ⌫ 0 on H�. Since C is Hermitian and B ⌫ 0, it follows
that =[g] � 0 and =[g] � 0 in these cases, respectively. In particular, g is nonsingular
outside of the real axis, as claimed, and the poles of g�1 lie only on the real axis.
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Next notice that since f(z) ! 0 as |z| ! 1 and |z|B ! +1 as |z| ! 1, it
follows that g�1

(z)! 0 as |z|!1. Therefore the holomorphic part of the rational
function g�1 must be zero.

It remains only to show that the poles of g�1 are simple with positive semidefinite
residue. But by the reasoning of Lemma 13, it suffices to show that g0 � 0 (away from
its poles). But of course g0 = B � f 0, and by the reasoning of Lemma 13, �f 0 � 0

away from the poles. This completes the proof.

In particular, Lemmas 14 and 15 imply:

Lemma 16. f 2 SL
++ if and only if f�1 2 N L

++. Consequently f 2 SL
1 if and only if

f�1 2 N L
1 .

4.4 Structure of the self-energy and the Hartree-Fock contri-
bution

We wish to understand the structure of the self-energy a little more carefully. Recall
that the self-energy is defined by

⌃(z) = z � h�G�1
(z).

For simplicity we discuss only the zero-temperature case and assume a nondegenerate
ground state |�N

0 i. Since G 2 S1, it follows from Lemma 14 and Remark 10that
G�1

(z) = z � C � f(z), where f 2 S+ and

Cij =

X
"2�(ĤN+1

)

("� E0)h N
0 |aiP"a†j| N

0 i �
X

"2�(ĤN�1

)

("� E0)h N
0 |a†jP"ai| N

0 i

=

X
"2�(Ĥ)

("� E0)h N
0 |aiP"a†j| N

0 i �
X

"2�(Ĥ)

("� E0)h N
0 |a†jP"ai| N

0 i

=

*
 

N
0

������ai
0@ X
"2�(Ĥ)

("� E0)P"

1A a†j

������ N
0

+

�
*
 

N
0

������a†j
0@ X
"2�(Ĥ)

("� E0)P"

1A ai

������ N
0

+
.

Since ˆH � E0 =
P

"2�(Ĥ)("� E0)P", we obtain

Cij = h N
0 |ai( ˆH � E0)a

†
j| N

0 i � h N
0 |a†j( ˆH � E0)ai| N

0 i. (4.1)

Now
⌃(z) = C � h+ f(z),
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so ⌃ is the sum of a function in S+ and a constant Hermitian matrix, namely C�h. We
call this this static part of the self-energy, and we suggestively define it ⌃HF

:= C�h.
It is natural to attempt to derive a formula for this contribution, and indeed it will
turn out to be the Hartree-Fock contribution, which is the first-order contribution
(and in fact the only static contribution) to the self-energy in bold diagrammatic
perturbation theory (see Part II). Under the assumption that the interacting part of
the Hamiltonian is given by a two-body interaction, we will now recover the standard
formula for this term.

To wit, we assume that the interaction is given by

ˆV =

1

2

X
pqrs

(pq|V |rs)a†pa†qasar,

and (pq|V |rs) are the tensor elements for the two-body interaction, given in the setting
of electronic structure by suitable two-electron integrals. By defining antisymmetrized
matrix elements

{pq|V |rs} :=

1

2

[(pq|V |rs)� (pq|V |sr)� (qp|V |rs) + (qp|V |sr)] ,

we can also write

V =

1

4

X
pqrs

{pq|V |rs}a†pa†qasar.

Note that
{pq|V |rs} = �{qp|V |rs} = �{pq|V |sr} = {qp|V |sr}.

Lemma 17. The self-energy can be written ⌃(z) = ⌃HF + f(z), where f 2 S+, and
the static part of the self-energy, namely the Hartree-Fock contribution, is given by

[⌃HF]ij =

X
qr

{iq|V |jr}Dqr,

where the 1-RDM D = (Dij) is defined by D = h N
0 |a†iaj| N

0 i.

Remark 18. In the case (pq|V |rs) = vpq�pr�qs where v is real-symmetric and D is real
(hence symmetric), we have

{pq|V |rs} = vpq�pr�qs � vpq�ps�qr,

hence recover the perhaps more familiar expression

[⌃HF]ij = �ij
X
q

vipDpp � vijDij.

In this last expression the first term is the diagonal Hartree potential, and the second
term is the Fock exchange operator.
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Proof. To simplify our expression for C, our first goal is to commute ˆH � E0 past
a†j and ai in the first and second terms of (4.1), respectively. In so doing, it will be
useful to recall that standard fact

[

ˆH0, a
†
j] = [a†ha, a†j] =

X
k

hkja
†
k,

which may be recovered easily via the canonical anticommutation relations.
In order to derive the commutator [

ˆV , a†j], we likewise compute

a†j ˆV =

1

4

a†j
X
pqrs

{pq|V |rs}a†pa†qasar

=

1

4

X
pqrs

{pq|V |rs}a†pa†qa†jasar

=

1

4

X
pqrs

{pq|V |rs}a†pa†q
⇣
�jsar � asa

†
jar
⌘

=

1

4

X
pqrs

{pq|V |rs}a†pa†q
⇣
�jsar � as

⇣
�jr � ara

†
j

⌘⌘
=

ˆV a†j +
1

4

X
pqrs

{pq|V |rs}a†pa†q (�jsar � �jras)

=

ˆV a†j +
1

4

X
pqr

{pq|V |rj}a†pa†qar �
X
pqs

{pq|V |js}a†pa†qas

=

ˆV a†j +
1

4

X
pqr

[{pq|V |rj}� {pq|V |jr}] a†pa†qar

=

ˆV a†j �
1

2

X
pqr

{pq|V |jr}a†pa†qar.

Therefore
[

ˆV , a†j] =
1

2

X
pqr

{pq|V |jr}a†pa†qar.

It follows that
[

ˆH, a†j] =
X
k

hkja
†
k +

1

2

X
pqr

{pq|V |jr}a†pa†qar.

Then, using the fact that (

ˆH � E0)| N
0 i = 0, we can easily compute:

h N
0 |ai( ˆH � E0)0a

†
j| N

0 i = h N
0 |aia†j( ˆH � E0)| N

0 i+ h N
0 |ai[ ˆH, a†j]| N

0 i
= h N

0 |ai[ ˆH, a†j]| N
0 i

=

X
k

h N
0 |aia†k| N

0 ihkj
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+

1

2

X
pqr

{pq|V |jr}h N
0 |aia†pa†qar| N

0 i,

and

h N
0 |a†j( ˆH � E0)ai| N

0 i = �h N
0 |[ ˆH, a†j]ai| N

0 i
= �

X
k

h N
0 |a†kai| N

0 ihkj

� 1

2

X
pqr

{pq|V |jr}h N
0 |a†pa†qarai| N

0 i.

Then, by (4.1),

Cij =

X
k

�ikhkj +
1

2

X
pqr

{pq|V |jr}h N
0 |aia†pa†qar + a†pa

†
qarai| N

0 i.

Now

aia
†
pa

†
qar = �ipa

†
qar � a†paia

†
qar

= �ipa
†
qar � a†p

�
�iq � a†qai

�
ar

= �ipa
†
qar � �iqa†par � a†pa

†
qarai,

so
aia

†
pa

†
qar + a†pa

†
qarai = �ipa

†
qar � �iqa†par,

and

Cij = hij +
1

2

X
pqr

{pq|V |jr}�iph N
0 |a†qar| N

0 i �
1

2

X
pqr

{pq|V |jr}�iqh N
0 |a†par| N

0 i

= hij +
1

2

X
qr

{iq|V |jr}h N
0 |a†qar| N

0 i �
1

2

X
pr

{pi|V |jr}h N
0 |a†par| N

0 i

= hij +
1

2

X
qr

[{iq|V |jr}� {qi|V |jr}] h N
0 |a†qar| N

0 i

= hij +

X
qr

{iq|V |jr}h N
0 |a†qar| N

0 i.

Define the one-particle reduced density matrix (1-RDM) by

Dqr = h N
0 |a†qar| N

0 i.

Then
Cij = hij +

X
qr

{iq|V |jr}Dqr.
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5 Application to DMFT

5.1 Well-posedness of DMFT loop
We assume the notation of section (3.3) and let �(p) 2 SL(p)

+ for p = 1, . . . , P . Then
let ⌃(p)

= ⌃

(p)
[�

(p)
] be the fragment block of the self-energy of the composite frag-

ment/bath system specified by the single-particle matrix h(p)
+�

(p). By Lemma (17),
we have in particular that �⌃(p) 2 N L(p)

+ .
Recall that

Gglob
:= (z � h� ⌃DMFT(z))

�1 ,

where ⌃DMFT(z) =

LP
p=1⌃

(p)
(z). Recall further that G(p)

:=

⇥
Gglob

⇤
C(p) , so by the

Schur complement theorem we have

[G(p)
]

�1
=

⇥
(Gglob

)

�1
⇤
C(p)

�
⇥
(Gglob

)

�1
⇤
C(p),C\C(p)

⇣⇥
(Gglob

)

�1
⇤
C\C(p)

⌘�1 ⇥
(Gglob

)

�1
⇤
C\C(p),C(p) .

Now on the off-block-diagonal (Gglob
)

�1 simply coincides with �h, so we have

G(p)
=

✓
z � h(p) � ⌃(p) � hC(p),C\C(p)

⇣
[z � h� ⌃DMFT(z)]C\C(p)

⌘�1

hC\C(p),C(p)

◆�1

.

But recall from (3.8) that

�

(p)
new(z) := z � h(p) � ⌃(p) �G(p)

(z)�1,

so we have shown that

Lemma 19. The DMFT iteration (3.8) can alternatively be written

�

(p)
new(z) = hC(p),C\C(p)

⇣
[z � h� ⌃DMFT(z)]C\C(p)

⌘�1

hC\C(p),C(p) .

Corollary 20 (Well-posedness of DMFT loop). The �(p)
new as defined in (3.8) lie in

SL(p)

+ .

Proof. Now since �⌃(p) 2 N L(p)

+ , it follows that the map z 7! z � h�⌃DMFT(z) is in
N L(p)

1 . Hence the pointwise inverse

z 7!
⇣
[z � h� ⌃DMFT(z)]C\C(p)

⌘�1

is in SL(p)

1 . The congruence transformation by hC(p),C\C(p) = h⇤
C\C(p),C(p) , which yields

�

(p)
new by Lemma 19, lies within SL(p)

+ , as desired.
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5.2 Sparsity pattern of the hybridization for local models
The formula in the statement of Lemma 19 allows us to easily recover a constraint on
the hybridization, namely that the only nonzero block of the hybridization is the block
corresponding to the boundary of the cluster, in a certain sense. For hybridization
fitting in the sense of 3.2.1, this constraint allows us to fit hybridizations in a smaller
space.

Now we can think of the hopping matrix h as defining a graph on the vertex set
C = {1, . . . ,M}, in which two vertices i, j are connected if and only if hij 6= 0. Then
the boundary @I of a subset I ⇢ C is the subset of vertices in I that share an edge
with some vertex in C\I. We define I�

:= I\@I. Then we can state:

Corollary 21. Consider �(p)
new as a 2 ⇥ 2 block matrix via the partition of the in-

dices C(p) into
⇥
C(p)
⇤� and @C(p). Then the only nonzero block is the diagonal blockh

�

(p)
new

i
@C(p)

, which is given by

⇥
�

(p)
new(z)

⇤
@C(p) = h@C(p),C\C(p)

⇣
[z � h� ⌃DMFT(z)]C\C(p)

⌘�1

hC\C(p),@C(p) .

Proof. The proof follows from Lemma 19, together with the observation that, due to
the construction of the graph induced by h, h

[

C(p)
]

�
,C\C(p) = 0.

5.3 Definition and well-posedness of HF+DMFT loop
Suppose that our Hamiltonian is of the more general form

ˆH = a†ha+
PX

p=1

ˆV (p)
+

ˆV LR,

where ˆVLR indicates the long-range part of the interaction. For simplicity we let all
interaction terms be of two-body form, in which case one can assume without loss of
generality that

ˆV LR
=

1

4

X
ijkl

{ij|V LR|kl}a†ia
†
jalak,

where {ij|V LR|kl} = 0 if i, j, k, l 2 C(p) for some p and moreover

{ij|V LR|kl} = �{ji|V LR|kl} = �{ij|V LR|lk} = {ji|V LR|lk}

for all i, j, k, l.
Then, motivated by section 4.4, the Hartree-Fock plus DMFT (HF+DMFT)

method is specified by replacing ⌃DMFT in the DMFT loop with the quantity

⌃HF+DMFT := ⌃HF-LR + ⌃DMFT,
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where ⌃DMFT is defined as before and

[⌃HF-LR]ij :=
X
qr

{iq|V LR|jr}Dglob
qr

for Dglob
= Dglob

[Gglob
] is defined in terms of Gglob

(z) =

´
R

dM(")
z�" via Dglob

:=´ µ
�1 dM("), where µ is the chemical potential. Here Gglob is the global Green’s func-

tion retained from the previous iteration.
Then it is immediate from repeated arguments that

�

(p)
new(z) = ˜hC(p),C\C(p)

⇣
[z � h� ⌃DMFT(z)]C\C(p)

⌘�1
˜hC\C(p),C(p) ,

where ˜h := h+⌃HF-LR. Hence in particular the hybridization iterates stay within S+.
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Part VIII

Strictly correlated electrons in second

quantization

1 Introduction
In this Part, we consider a convex relaxation of the fermionic Gibbs variational prin-
ciple (also considered in Part V). In fact we consider a succession of two relaxations.
The first of these relaxations (note: we shall come to the second later on) is motivated
by its asymptotic tightness in the limit of infinitely strong Coulomb repulsion, called
the limit of strictly correlated electrons (SCE). The formalism of SCE that we consider
can be seen as a second-quantized analog of the first-quantized formalism heretofore
considered in the literature [95, 94, 20, 66, 26], which has been motivated largely by
its relevance to the widely-used Kohn-Sham density functional theory (DFT) [44, 50].

For ground-state electronic structure calculations, the success of DFT hinges on
the accuracy of the approximate exchange-correlation functionals. Although tremen-
dous progress has been made in the construction of approximate functionals [82, 8,
55, 81], these approximations are mostly derived by fitting known results for the uni-
form electron gas, single atoms, small molecules, and perfect crystal systems. Such
functionals often perform well when the underlying quantum systems are ‘weakly cor-
related,’ i.e., when the single-particle energy is significantly more important than the
electron-electron interaction energy. In order to extend the capability of DFT to the
treatment of strongly correlated quantum systems, one recent direction of functional
development considers the limit in which the electron-electron interaction energy is
infinitely large compared to other components of the total energy, i.e., the SCE limit,
which provides an alternative route to derive exchange-correlation energy functionals.
The study of Kohn-Sham DFT with SCE-based functionals is still in its infancy, but
such approaches have already been used to treat strongly correlated model systems
and simple chemical systems (see e.g. [75, 22, 40]).

Here we recapitulate some relevant background from Part I. A system of N
interacting electrons in a d-dimensional space can be described using either the first-
quantized or the second-quantized representation. In the first-quantized represen-
tation, the number of electrons N is fixed, and the electronic wavefunction is an
anti-symmetric function in

VN L2
(Rd

;C2
), which is a subset of the tensor product

space
NN L2

(Rd
;C2

). Here C2 corresponds to the spin degree of freedom. In first
quantization, the anti-symmetry condition needs to be treated explicitly. By contrast,
in the second-quantized formalism, one chooses a basis for a subspace of L2

(Rd
;C2

).
In practice, the basis is of some finite size L, corresponding to a discretized model
with L sites that encode both spatial and spin degrees of freedom. The electronic
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wavefunction is an element of the Fock space F ⇠
=

C2L . The Fock space contains
wavefunctions of all possible electron numbers, and finding wavefunctions of the de-
sired electron number is achieved by constraining to a subspace of the Fock space. In
the second-quantized representation, the anti-symmetry constraint is in some sense
baked into the Hamiltonian operator instead of the wavefunction, and this perspective
often simplifies book-keeping efforts. Due to the inherent computational difficulty of
studying strongly correlated systems such as high-temperature superconductors, it is
often necessary to introduce simplified Hamiltonians such as in Hubbard-type models.
These model problems are formulated directly in the second-quantized formalism via
specification of an appropriate Hamiltonian.

To the extent of our knowledge, all existing works on SCE treat electrons in the
first-quantized representation with (essentially) a real space basis. In this Part we
aim at studying the SCE limit in the second-quantized setting. Note that gener-
ally Kohn-Sham-type theories in the second-quantized representation are known as
‘site occupation functional theory’ (SOFT) or ‘lattice density functional theory’ in
the physics literature [93, 60, 21, 97, 23]. A crucial assumption of this Part is that
the electron-electron interaction takes the form

PL
p,q=1 vpqn̂pn̂q, which we call the

generalized Coulomb interaction. (The meaning of the symbols will be explained in
Section 2.) We remark that the form of the generalized Coulomb interaction is more
restrictive than the general form

PL
p,q,r,s=1 vpqrsâ

†
pâ

†
qâsâr appearing in the quantum

chemistry literature, to which our formulation does not yet apply. Assuming a gener-
alized Coulomb interaction, we demonstrate that the corresponding SCE problem can
be formulated as a multi-marginal optimal transport (MMOT) problem over classical
probability measures on the binary hypercube {0, 1}L. The cost function in this prob-
lem is of pairwise form. Hence the objective function in the Kantorovich formulation
of the MMOT can be written in terms of only the 2-marginals of the probability
measure. In order to solve the MMOT problem directly, even the storage cost of the
exact solution scales as 2L, and the computational cost also scales exponentially with
respect to L. Thus a direct approach becomes impractical even when the number of
sites becomes moderately large.

1.1 Contributions
Please note that this Part is based on [47] (joint work with Yuehaw Khoo, Lin Lin,
and Lexing Ying). Based on the recent work of Khoo and Ying [48], in this Part we
propose a convex relaxation approach for MMOT that imposes only certain neces-
sary constraints satisfied by the 2-marginals. This can be considered as the second
relaxation in our succession of relaxations of the fermionic variational principle. The
relaxed problem can be solved efficiently via semidefinite programming (SDP). While
the 2-marginal formulation provides a lower bound to the optimal cost of the MMOT
problem, we also propose a tighter lower bound obtained via an SDP involving the
3-marginals. The computational cost for solving these relaxed problems is polynomial
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with respect to L, and, in particular, the semidefinite constraint is only enforced on a
matrix of size 2L⇥ 2L. Numerical results for spinless and spinful Hubbard-type sys-
tems demonstrate that the 2-marginal and 3-marginal relaxation schemes are already
quite tight, especially when compared to the modeling error due to the Kohn-Sham
SCE formulation itself.

By solving the dual problems for our SDPs, we can obtain the Kantorovich dual
potentials, which yield the SCE potential needed for carrying out the self-consistent
field iteration (SCF) in the Kohn-Sham SCE formalism. To this end we need to show
that the dual problem satisfies strong duality and moreover that the dual optimizer is
actually attained. We show that a straightforward formulation of the primal SDP does
not have any strictly feasible point, and hence Slater’s condition cannot be directly
applied to establish strong duality (see, e.g., [17]). By a careful study of the structure
of the dual problem, we prove that the strong duality and dual attainment conditions
are indeed satisfied. We also explain how the SDP relaxations introduced in this
Part can be applied to arbitrary MMOT problems with pairwise cost functions. We
comment that the justification of the strong duality and dual attainment conditions
holds in this more general setting as well.

1.2 Related work
In the first-quantized formulation, for a fixed real-space discretization the computa-
tional cost of the direct solution of the SCE problem scales exponentially with respect
to the number of electrons N . This curse of dimensionality is a serious obstacle for
SCE-based approaches to the quantum many-body problem. Notable exceptions to
the unfavorable computational scaling are the cases of strictly one-dimensional sys-
tems (i.e., d = 1) and spherically symmetric systems (for any d) [94], for which
semi-analytic solutions exist.

In [9], the Sinkhorn scaling approach is applied to an entropically regularized
MMOT problem. This method requires the marginalization of a probability measure
on a product space of size that is exponential in the number of electrons N . Thus the
complexity of this method also scales exponentially with respect to N . Meanwhile,
a method based on the Kantorovich dual of the MMOT problem was proposed in
[20, 74]. However, there are exponentially many constraints in the dual problem.
Furthermore, [20] assumes a Monge solution to the MMOT problem, but it is unknown
whether the MMOT problem with pairwise Coulomb cost has a Monge solution for
d = 2, 3. Moreover, if it exists, the Monge solution is hard to evaluate in the context
of the Coulomb cost.

Recently, Khoo and Ying proposed a semidefinite relaxation-based approach to
the MMOT problem arising from SCE in the first-quantized setting [48]. This is the
first approximation method for the general SCE problem with polynomial complexity
with respect to the system size. The relaxation avoids exponential scaling by directly
handling only the 2-marginal distributions (known as the pair densities in the physics
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literature), which are subjected to certain necessary joint representability constraints.
In particular, the method provides a lower bound to the SCE energy. Furthermore,
by proper treatment of the 3-marginal distributions, an upper bound to the SCE
energy is recovered as well. Numerical results indicate that both the lower and upper
bounds are rather tight approximations to the SCE energy.

In the second-quantized setting, our semidefinite relaxation-based approach for
finding a lower bound to the SCE energy is also related to the two-particle reduced
density matrix (2-RDM) theories in quantum chemistry [24, 71, 69, 70]. However, the
MMOT problem in SCE only requires the knowledge of the pair density instead of
the entire 2-RDM. The number of constraints in our formulation is also considerably
smaller than the number of constraints in 2-RDM theories, thanks to the generalized
Coulomb form of the interaction.

1.3 Outline
In Section 2, we describe the Hamiltonians under consideration and derive an appro-
priate formulation of Kohn-Sham DFT based on the SCE functional, which is in turn
defined in terms of a MMOT problem. In Section 3, we solve the MMOT problem
by introducing a convex relaxation of the set of representable 2-marginals, and we
prove strong duality for the relaxed problem. In Section 4, a tighter lower bound is
obtained by considering a convex relaxation of the set of representable 3-marginals.
In Section 5, we comment on how a general MMOT problem with pairwise cost can be
solved by directly applying the methods introduced in Sections 3 and 4. We demon-
strate the effectiveness of the proposed methods through numerical experiments in
Section 6, and we discuss conclusions and future directions in Section 7.

2 Preliminaries

2.1 Density functional theory in second quantization
Our goal is to compute the ground-state energy of a fermionic system with L states.
With some abuse of terminology, we will refer to fermions simply as electrons. Also for
simplicity we use a single index for all of the states, as opposed to using separate site
and spin indices in the case of spinful systems. Double indexing for spinful fermionic
systems can be recovered simply by rearranging indices, e.g., by associating odd state
indices with spin-up components and even state indices with spin-down components.

In second quantization, the state space is called the Fock space, denoted by F .
We shall now recapitulate some of the relevant background on second quantization
from section 4 of Part I and meanwhile set some notation for this Part.

The occupation number basis set for the Fock space is

{|s1, . . . , sLi}si2{0,1},i=1,...,L,
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which is an orthonormal basis set satisfying

hsi
1

, . . . , siL |sj1 , . . . , sjLi = �i
1

j
1

· · · �iLjL . (2.1)

A state | i 2 F will be written as a linear combination of occupation number basis
elements as follows:

| i =
X

s
1

,...,sL2{0,1}

 (s1, . . . , sL) |s1, . . . , sLi ,  (s1, . . . , sL) 2 C. (2.2)

Hence the state vector | i can be identified with a vector  2 C2L , and F is isomorphic
to C2L . We call | i normalized if the following condition is satisfied:

h | i =
X

s
1

,...,sL2{0,1}

| (s1, . . . , sL)|2 = 1. (2.3)

We also refer to |0i = |0, . . . , 0i as the vacuum state.
The fermionic creation and annihilation operators are respectively defined as

â†p |s1, . . . , sLi = (�1)
Pp�1

q=1

sq
(1� sp) |s1, . . . , 1� sp, . . . , sLi ,

âp |s1, . . . , sLi = (�1)
Pp�1

q=1

sqsp |s1, . . . , 1� sp, . . . , sLi , p = 1, . . . , L.
(2.4)

The number operator defined as n̂p := â†pâp satisfies

n̂p |s1, . . . , sLi = sp |s1, . . . , sLi , p = 1, . . . , L. (2.5)

The Hamiltonian operator is assumed to take the following form:

ˆH =

LX
p,q=1

tpqâ
†
pâq +

LX
p=1

wpn̂p +

LX
p,q=1

vpqn̂pn̂q. (2.6)

Here t 2 CL⇥L is a Hermitian matrix, which is often interpreted as the ‘hopping’ term
arising from the kinetic energy contribution to the Hamiltonian. w is an on-site term,
which can be viewed as an external potential. v 2 CL⇥L is also a Hermitian matrix,
which may be viewed as representing the electron-electron Coulomb interaction. Note
that n̂p = â†pâp = n̂pn̂p, hence without loss of generality we can assume the diagonal
entries tpp = vpp = 0 by absorbing, if necessary, such contributions into the on-site
potential w. Following the spirit of Kohn-Sham DFT, one could think of t, v as fixed
matrices, and of the external potential w as a contribution that may change depending
on the system (in the context of DFT, w represents the electron-nuclei interaction
and is therefore ‘external’ to the electrons). We remark that the restriction of the
form of the two-body interaction

PL
p,q=1 vpqn̂pn̂q is crucial for the purpose of this

Part. In particular, we do not consider the more general form
PL

p,q,r,s=1 vpqrsâ
†
pâ

†
qâsâr

as is done in the quantum chemistry literature when a general basis set (such as the
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Gaussian basis set) is used to discretize a quantum many-body Hamiltonian in the
continuous space. In the discussion below, for simplicity we will omit the index range
of our sums as long as the meaning is clear.

The exact ground state energy E0 can be obtained by the following minimization
problem:

E0 = inf

| i2F : h | i=1
h | ˆH � µ ˆN | i . (2.7)

Here the minimizer | i is the many-body ground state wavefunction, and ˆN :=

P
p n̂p

is the total number operator. µ, which is called the chemical potential, is a Lagrange
multiplier chosen so that the ground state wavefunction | i has a number of electrons
equal to a pre-specified integer N 2 {0, 1, . . . , L}, i.e., such that

h | ˆN | i = N. (2.8)

It is clear that µ ˆN is an on-site potential, and without loss of generality we absorb µ
into w, and hence write ˆH � µ ˆN as ˆH in the discussion below.

The electron density ⇢ 2 RL is defined as

⇢p = h |n̂p| i =
X

s
1

,...,sL

| (s1, . . . , sL)|2sp, p = 1, . . . , L, (2.9)

which satisfies
P

p ⇢p = N . Note that

h |
X
p

wpn̂p | i =
X
p

wp⇢p =: W [⇢]. (2.10)

Then we follow the Levy-Lieb constrained minimization approach [56, 59] and rewrite
the ground state minimization problem (2.7) as follows:

E0 = inf

⇢2JN

(X
p

⇢pwp +

 
inf

| i7!⇢,| i2F
h |
X
pq

tpqâ
†
pâq +

X
pq

vpqn̂pn̂q | i
!)

= inf

⇢2JN

{W [⇢] + FLL[⇢]},
(2.11)

where
FLL[⇢] := inf

| i7!⇢,| i2F
h |
X
pq

tpqâ
†
pâq +

X
pq

vpqn̂pn̂q | i . (2.12)

Here the notation  7! ⇢ indicates that the corresponding infimum is taken over
states | i that yield the density ⇢ in the sense of Eq. (2.9), and the domain JN of ⇢
is defined by

JN :=

(
⇢ 2 RL

����� ⇢ � 0,
X
p

⇢p = N

)
. (2.13)
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Note that the external potential w is only coupled with ⇢ and is singled out in the
constrained minimization. It is easy to see that for any ⇢ 2 JN , the set {| i 2 F :

| i 7! ⇢} is non-empty, as we may simply choose

| i =
X
p

p
⇢p
���s(p)1 , . . . , s(p)L

E
, s(p)q = �pq.

Therefore the constrained minimization problem (2.11) is in fact defined over a
nonempty set for all ⇢ 2 JN .

The functional FLL[⇢], which is called the Levy-Lieb functional, is a universal
functional in the sense that it depends only on the hopping term t and the interaction
term v, hence in particular is independent of the potential w. Once the functional
FLL[⇢] is known, E0 can be obtained by minimization with respect to a single vector ⇢
using standard optimization algorithms, or via the self-consistent field (SCF) iteration
to be detailed below. The construction above is called the ‘site occupation functional
theory’ (SOFT) or ‘lattice density functional theory’ in the physics literature [93, 60,
21, 97, 23]. To our knowledge, SOFT or lattice DFT often imposes an additional
sparsity pattern on the v matrix for the electron-electron interaction, so that the
Hamiltonian becomes a Hubbard-type model.

2.2 Strictly correlated electron limit
Using the fact that the infimum of a sum is greater than the sum of infimums, we can
lower-bound the ground state energy in the following way:

FLL[⇢] � inf

| i7!⇢
h |
X
pq

tpqâ
†
pâq | i+ inf

| i7!⇢
h |
X
pq

vpqn̂pn̂q | i =: T [⇢] + Esce[⇢], (2.14)

where the functionals T [⇢] and Esce[⇢] are defined via the last equality in the manner
suggested by the notation. The first of these quantities is called the kinetic energy,
and the second the strictly correlated electron (SCE) energy. The SCE approximation
is obtained by treating T [⇢]+Esce[⇢] as an approximation for the Levy-Lieb functional.
Though in general it is only a lower-bound for the Levy-Lieb functional, this bound
is expected to become tight in the limit of infinitely strong interaction. We do not
prove this fact in this Part (though we demonstrate it numerically below), but we
nonetheless refer to this approximation as the SCE limit by analogy to the literature
on SCE in first quantization [95, 94].

Due to the inequality in Eq. (2.14), we have in general the following lower bound
for the total energy, which we shall call the Kohn-Sham SCE energy:

E0 � EKS-SCE := inf

⇢2JN

{W [⇢] + T [⇢] + Esce[⇢]} . (2.15)

The advantage of the preceding manipulations is that now each term in this infimum
can be computed. Specifically, W [⇢] is trivial to compute, T [⇢] is defined in terms of a
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non-interacting many-body problem (i.e., a problem with Hamiltonian only quadratic
in the creation and annihilation operators), for which an exact solution can be ob-
tained via the diagonalization of t [77]. Finally, as we shall see below the SCE term
(and its gradient) can be computed in terms of a MMOT problem (and its dual). Thus
in principle, it would be possible to take gradient descent approach for computing the
infimum in the definition (2.15) of EKS-SCE.

2.2.1 The Kohn-Sham SCE equations

In practice, to compute the Kohn-Sham SCE energy we will instead adopt the self-
consistent field (SCF) iteration as is common practice in Kohn-Sham DFT. It can be
readily checked that Esce[⇢] is convex with respect to ⇢. By the convexity of W [⇢],
T [⇢], and Esce[⇢], the expression in Eq. (2.15) admits a minimizer, which is unique
unless the functional fails to be strictly convex. We assume that the solution is
unique and Esce[⇢] is differentiable for simplicity, and we derive nonlinear fixed-point
equations satisfied by the minimizer as follows.

For suitable ⇢, define the SCE potential via

vsce[⇢] = r⇢Esce[⇢], . (2.16)

and we will discuss how to compute this gradient later. Now assume that the (unique)
infimum in Eq. (2.15) is obtained at ⇢?, which is then in particular a critical point of
the expression

W [⇢] + T [⇢] + Esce[⇢]. (2.17)

But then ⇢? is also a critical point of the expression obtained by replacing Esce[⇢] with
its expansion up to first order about ⇢?, which is (modulo a constant term that does
not affect criticality)

G[⇢] := W [⇢] + T [⇢] + vsce[⇢
?
] · ⇢ = T [⇢] + (w + vsce[⇢

?
]) · ⇢. (2.18)

Hence · means the inner product, and we are motivated to try to minimize G[⇢] over
⇢ 2 JN . But we can write

G[⇢] = inf

| i7!⇢
h |
X
pq

hpq[⇢
?
]â†pâq | i ,

where
h[⇢] := t+ diag(w + vsce[⇢]).

Here diag(·) is a diagonal matrix. Then

inf

⇢2JN

G[⇢] = inf

| i2F : h | i=1, h |N̂ | i=N
h |
X
pq

hpq[⇢
?
]â†pâq | i .
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The latter infimum is a ground-state problem for a non-interacting Hamiltonian and
is obtained [77] at a so-called Slater determinant of the form

| i = ĉ†1 · · · ĉ†N |0i . (2.19)

Here the c†k are ‘canonically transformed’ creation operators defined by

ĉ†k =
X
p

â†p'pk, (2.20)

where � = ['1 · · ·'N ] = ['pk] 2 CL⇥N is a matrix whose columns are the N lowest
eigenvectors of h[⇢?]. We assume the eigenvectors form an orthonormal set, i.e. �⇤

� =

IN .
Moreover, one may directly compute that the electron density of | i as defined in

Eq. (2.19) is given by

⇢p = h |n̂p| i =
NX
k=1

|'pk|2, (2.21)

i.e., ⇢ = diag(��

⇤
). Hence the optimizer ⇢? of Eq. (2.15) solves the Kohn-Sham SCE

equations:

(t+ diag(w + vsce[⇢]))'k = "k'k, k = 1, . . . , N.

⇢ = diag(��

⇤
).

(2.22)

Here ("k,'k) are understood to be the N lowest (orthonormal) eigenpairs of the
matrix in the first line of Eq. (2.22).

Eq. (2.22) is a nonlinear eigenvalue problem and should be solved self-consistently.
The standard iterative procedure for this task works as follows. (1) For the k-th
iterate ⇢(k), form the matrix h[⇢(k)], and compute �(k) by solving the corresponding
eigenproblem. (2) Define ⇢(k+1)

:= diag(�

(k)
�

(k)⇤
). (3) Iterate until convergence,

possibly using mixing schemes [3, 87, 64] to ensure or accelerate convergence.
Once self-consistency is reached, the total energy can be recovered by the relation

EKS-SCE =

NX
k=1

"k � vsce[⇢
?
] · ⇢? + Esce[⇢

?
], (2.23)

as can be observed by adding back to G[⇢?] the constant term discarded between
equations (2.17) and (2.18).
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2.2.2 The SCE energy and potential

The problem is then reduced to the computation of Esce[⇢] and its gradient vsce[⇢].
To this end, let us rewrite

Esce[⇢] = inf

| i7!⇢
h |
X
pq

vpqn̂pn̂q | i

= inf

| i7!⇢

X
s
1

,...,sL

X
pq

vpqspsq| (s1, . . . , sL)|2

= inf

µ2⇧(⇢)

X
s
1

,...,sL

X
pq

vpqspsqµ(s1, . . . , sL),

(2.24)

where ⇧(⇢) is the space of joint probability mass functions on {0, 1}L. The 1-marginals
µ(1)
p are defined in terms of µ via

µ(1)
p (sp) :=

X
s
1

,...,sL\{sp}

µ(s1, . . . , sL), (2.25)

and they satisfy
µ(1)
p (s) = (1� ⇢p)�s0 + ⇢p�s1, s = 0, 1. (2.26)

Considering the µ(1)
p alternately as vectors, we also write (by some abuse of notation)

µ(1)
p = [1� ⇢p, ⇢p]>. (2.27)

Note that the last line of Eq. (2.24) is obtained by considering | (s1, . . . , sL)|2 as a
classical probability density µ(s1, . . . , sL) 2 ⇧(⇢). (The marginal condition derives
from the condition | i 7! ⇢.)

Define the cost function C : {0, 1}L ! R by

C(s1, . . . , sL) :=
X
pq

vpqspsq. (2.28)

Then our SCE energy may be written

Esce[⇢] = inf

µ2⇧(⇢)

X
s
1

,...,sL

C(s1, . . . , sL)µ(s1, . . . , sL) = inf

µ2⇧(⇢)
hC, µi, (2.29)

where the angle bracket notation is introduced to indicate the suggested inner product,
i.e., the inner product of L2

({0, 1}L). This is precisely the form of a MMOT problem,
namely, minimization of a linear functional of a joint probability measure subject to
constraints on all of the marginals of the measure [80]. Note that the dimension of
the feasible space for this problem is exponential in L, rendering infeasible any direct
approach based on the formulation as a general MMOT, at least for L of moderate
size.
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Nonetheless, we remark that in this exact formulation, r⇢Esce[⇢] is the derivative
of the optimal value of a convex optimization problem (in particular, a linear program)
with respect to a variation of it constraints. This quantity can be obtained in terms
of the variables dual to the varied constraints [17]. In the setting of MMOT, these
dual variables are known as the Kantorovich potentials [104]. We will discuss the
duality theory of our SDP relaxations in detail later on.

Despite the fact that it is possible to formulate our problem as a general MMOT
problem, doing so loses the important structure of our pairwise cost. To wit, recall
that the diagonal entries of v are set to zero, C can be written

C(s1, . . . , sL) =
X
p 6=q

vpqspsq =:

X
p 6=q

Cpq(sp, sq).

Hence the sum can be taken over p 6= q. Accordingly, the objective function of (2.24)
can be written as

Esce[⇢] = inf

µ2⇧(⇢)

X
p 6=q

hCpq, µ
(2)
pq i, (2.30)

where angle brackets are now used to indicate the suggested inner product, i.e., that
of L2

({0, 1}2), and where the 2-marginals µ(2)
pq are defined implicitly in terms of µ by

marginalizing out all components other than p, q, i.e., by

µ(2)
pq (sp, sq) :=

X
s
1

,...,sL\{sp,sq}

µ(s1, . . . , sL). (2.31)

Later we also identify µ(2)
pq with the 2⇥ 2 matrix

µ(2)
pq =

"
µ(2)
pq (0, 0) µ(2)

pq (0, 1)

µ(2)
pq (1, 0) µ(2)

pq (1, 1)

#
, (2.32)

and we do likewise for Cpq. Using the matrix notation (and the symmetry of Cpq), it
follows that

Esce[⇢] = inf

µ2⇧(⇢)

X
p 6=q

Tr[Cpqµ
(2)
pq ], (2.33)

where ‘Tr’ indicates the matrix trace.
At first glance, it might seem that one may achieve a significant reduction of

complexity by directly changing the optimization variable in Eq. (2.30) from µ to
{µ(2)

pq }Lp,q=1. However, extra constraints would then need to be enforced in order to
relate the different 2-marginals; i.e., the two-marginals must be jointly representable
in the sense that all of them could simultaneously be yielded from a single joint
probability measure on {0, 1}L.
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3 Convex relaxation
In this section, we show that a relaxation of the representability condition implicit
in Eq. (2.30) allows us to formulate a tractable optimization problem in terms of the
{µ(2)

pq }Lp,q=1 alone. In fact, this optimization problem will be a semidefinite program
(SDP).

3.1 Primal problem

We now derive certain necessary constraints satisfied by 2-marginals {µ(2)
pq }Lp,q=1 that

are obtained from a probability measure µ on {0, 1}L. In the following we adopt the
notation

s = (s1, . . . , sL) 2 {0, 1}L.
Then for any such s, let e

s

: {0, 1}L ! R be the Dirac probability mass function on
{0, 1}L localized at s, i.e.,

e
s

(s0) = �
s,s0 .

Note that we can also write e
s

as an L-tensor, i.e., an element of R2⇥2⇥···⇥2, via

e
s

= es
1

⌦ · · ·⌦ esL ,

where we adopt the (zero-indexing) convention e0 = [1, 0]>, e1 = [0, 1]>.
Any probability measure on {0, 1}L can be written as a convex combination of the

e
s

since they are the extreme points of the set of probability measures; in particular
we can write a probability density µ 2 ⇧(⇢) as

µ =

X
s

a
s

e
s

, where
X
s

a
s

= 1, a
s

� 0. (3.1)

From the definitions of the 1- and 2-marginals (2.25), (2.31), it follows that

µ(1)
p =

X
s

a
s

esp , µ(2)
pq =

X
s

a
s

esp ⌦ esq =
X
s

a
s

espe
>
sq . (3.2)

Now define

M = M({a
s

}) =
X
s

a
s

264es1...
e
sL

375 ⇥e>
s

1

· · · e>
sL

⇤
, (3.3)

Then by Eq. (3.2), M is the matrix of 2⇥ 2 blocks Mpq given by

Mpq =

(
diag(µ(1)

p ), p = q,

µ(2)
pq , p 6= q.

(3.4)
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Accordingly we write M = (Mpq) 2 R(2L)⇥(2L). Then let C = (Cpq) 2 R(2L)⇥(2L) be
the matrix of the 2⇥ 2 blocks Cpq defined above, which specifies the pairwise cost on
each pair of marginals18. Observe that the value of the objective function of Eq. (2.33)
can in fact be rewritten as X

p 6=q

Tr[Cpqµ
(2)
pq ] = Tr[CM ].

Then the MMOT problem Eq. (2.33) can be equivalently rephrased as

Esce[⇢] = minimize

M2R(2L)⇥(2L), {as}s2{0,1}L
Tr(CM)

subject to M =

X
s

a
s

264es1...
e
sL

375 ⇥e>
s

1

· · · e>
sL

⇤
, (3.5)

Mpp = diag(µ(1)
p ) for all p = 1, . . . , L,X

s

a
s

= 1, a
s

� 0 for all s 2 {0, 1}L.

Note that in our application to SCE, we have fixed

µ(1)
p =


1� ⇢p
⇢p

�
in advance, i.e., µ(1)

p is not an optimization variable.
At this point, our reformulation of the problem has not alleviated its exponential

complexity; indeed, note that {a
s

}
s2{0,1}L is a vector of size 2L. However, the reformu-

lation does suggest a way to reduce the complexity by accepting some approximation.
In fact, we will omit {a

s

}
s2{0,1}L entirely from the optimization, retaining only M as

an optimization variable and enforcing several necessary constraints on M that are
satisfied by the solution of the exact problem.

First, note from the constraint (3.5) that M is both entry-wise nonnegative (writ-
ten M � 0) and positive semidefinite (written M ⌫ 0). Second, the fact that the
1-marginals can be written in terms of the 2-marginals imposes additional local con-
sistency constraints on M . Indeed, with 12 2 R2 denoting the vector of all ones, we
can write

µ(2)
pq 12 = µ(1)

p , p 6= q, (3.6)

from which it follows that

Mpq12 =


1� ⇢p
⇢p

�
, p, q = 1, . . . , L. (3.7)

18Without loss of generality, one can assume Cpp = 0.
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Then we obtain the relaxation

Esce[⇢] � Esdp
sce [⇢] := minimize

M2R(2L)⇥(2L)

Tr(CM) (3.8)

subject to M ⌫ 0,
Mpq � 0 for all p, q = 1, . . . , L (p 6= q),
Mpq12 = µ(1)

p for all p, q = 1, . . . , L (p 6= q),

Mpp = diag(µ(1)
p ) for all p = 1, . . . , L.

Again, µ(1)
p is not an optimization variable. It is actually helpful to reformulate the

primal 2-marginal SDP (3.8) as

Esdp
sce [⇢] = minimize

M2R(2L)⇥(2L)

Tr(CM) (3.9)

subject to M ⌫ 0, (3.10)
Mpq � 0 for all p, q = 1, . . . , L (p < q), (3.11)
Mpq12 = µ(1)

p for all p, q = 1, . . . , L (p < q), (3.12)
M>

pq12 = µ(1)
q for all p, q = 1, . . . , L (p < q), (3.13)

Mpp = diag(µ(1)
p ) for all p = 1, . . . , L. (3.14)

Note that this formulation is equivalent to (3.8), given the symmetry of M (implicit
in the notation M ⌫ 0). However, the new formulation removes a few redundant
constraints and will help us derive a more intuitive dual problem. The problem (3.9)
will be referred to as the primal 2-marginal SDP, or the primal problem for short.
Note that the optimal value of the primal problem is in fact attained because the
constraints (3.10)-(3.14) define a compact feasible set.

Reflecting back on the derivation, we caution that replacing Esce[⇢] with Esdp
sce [⇢]

comes at a price. Since we only enforce certain necessary conditions on M , the 2-
marginals that we recover from M may not in fact be the 2-marginals of a joint
probability measure on {0, 1}L. Thus Esdp

sce [⇢] should in general only be expected to
be a lower-bound to Esce[⇢], though we will see that the error is often small in practice.

3.2 Dual problem
As detailed in Section 2.2.1, in order to implement the SCF for Kohn-Sham SCE
it is necessary to compute r⇢Esce[⇢]. After replacing the density functional Esce[⇢]
with the efficient approximation Esdp

sce [⇢], the same derivation motivates us to compute
r⇢Esdp

sce [⇢]. This quantity can obtained by examining the convex duality of our primal
2-marginal SDP.

We let Y ⌫ 0 be the variable dual to the constraint (3.10), Zpq � 0 be dual to
(3.11), �pq be dual to (3.12),  pq be dual to (3.13), and finally let Xp be dual to (3.14).
Note that Zpq 2 R2⇥2 and �pq, pq 2 R2 for each p < q, and Xp 2 R2⇥2 for each p.
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Then our formal Lagrangian is of the form

L (M,Y, {Zpq,�pq, pq}p<q, {Xp}) ,

where the domains of M is the set of symmetric 2L ⇥ 2L matrices (equivalently, it
is convenient to think of M as depending only on its upper-block-triangular part),
and the dual variables are as specified above (i.e., only Y ⌫ 0 and Zpq � 0 are
constrained), and more specifically we have (omitting the arguments of L from the
notation)

L = Tr(CM)� Tr(YM) (3.15)
� 2

X
p<q

⇥
Tr(Z>

pqMpq) + �>
pq

�
Mpq12 � µ(1)

p

�
+  >

pq

�
M>

pq12 � µ(1)
q

�⇤
�
X
p

Tr

�
X>

p

⇥
Mpp � diag(µ(1)

p )

⇤�
.

It is helpful to realize the identities

�>
pqMpq12 = Tr

�
Mpq[12�

>
pq]
�
,  >

pqM
>
pq12 = Tr

�
Mpq[ pq1

>
2 ]
�
.

Then, recognizing that C = C> and Y = Y > (so that C>
pq = Cqp and Y >

pq = Yqp),
minimization over M of the Lagrangian (3.15) yields the dual problem

maximize

Y, {Zpq ,�pq , pq}p<q , {Xp}

X
p

Tr

�
X>

p diag(µ(1)
p )

�
+ 2

X
p<q

�
�>
pqµ

(1)
p +  >

pqµ
(1)
q

�
subject to Y ⌫ 0,

Zpq � 0 for p < q, (3.16)
Cpq � Ypq � Zpq � �pq1

>
2 � 12 

>
pq = 0 for p < q,(3.17)

Cpp � Ypp �X>
p = 0. (3.18)

Observe that the variables Zpq can be removed by combining constraints (3.16) and
(3.17) to yield

Cpq � Ypq � �pq1
>
2 � 12 

>
pq � 0.

Moreover, Xp can be removed simply by substituting Xp = �Ypp into the objective
function (recall that Cpp = 0). These reductions yield

maximize

Y, {�pq , pq}p<q

2

X
p<q

�
�pq · µ(1)

p +  pq · µ(1)
q

�
�
X
p,s

Ypp(s, s)µ
(1)
p (s) (3.19)

subject to Y ⌫ 0, (3.20)
�pq1

>
2 + 12 

>
pq  Cpq � Ypq for p < q. (3.21)

Here we think of Ypp(s, s) as the (s, s) entry of the 2 ⇥ 2 matrix Ypp, and likewise
µ(1)
p (s) is the s-th entry of µ(1)

p .
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The dual problem may be interpreted as follows. Observe that for Y fixed (e.g.,
fixed to its optimal value), the maximization problem decouples into a set of indepen-
dent maximization problems for each pair of marginals. We think of eCpq := Cpq�Ypq

as defining an effective cost function for each pair of marginals. Then the decoupled
problem for a pair p < q is exactly the Kantorovich dual problem in standard (i.e., not
multi-marginal) optimal transport, specified by cost function eCpq and marginals µ(1)

p ,
µ(1)
q [104]. In other words, after fixing Y , our problem decouples into independent

standard optimal transport problems for each pair of marginals. Nonetheless, these
problems are in turn themselves coupled via the optimization over Y ⌫ 0.

Recall that we wanted to compute r⇢Esdp
sce [⇢]. Assuming that strong duality holds,

as shall be established later, the optimal value of the dual problem (3.19) is in fact
equal to Esdp

sce [⇢]. (Recall that here we think of the 1-marginals µ(1)
p = [1 � ⇢p, ⇢p]>

as being defined in terms of ⇢.) Hence we can compute derivatives by evaluating
the gradient of the objective function (3.19) with respect to ⇢ at the optimizer
(Y, {�pq, pq}p 6=q). (If the optimizer is not unique, then in general we will get a
subgradient [91].)

To carry out this program, first note that @
@⇢r

µ(1)
p = �pr[�1, 1]>. Therefore the

partial derivative of the objective function (3.19) with respect to ⇢r yields

@Esdp
sce [⇢]

@⇢r
= 2

X
q>r

[�rq(1)� �rq(0)] + 2

X
p<r

[ pr(1)�  pr(0)]� [Yrr(1, 1)� Yrr(0, 0)].

If one extends the definition of �pq, pq to p > q via the stipulation �pq =  qp, then
one has

@Esdp
sce [⇢]

@⇢r
=

X
p 6=r

[�rp(1)� �rp(0)]� [Yrr(1, 1)� Yrr(0, 0)].

3.3 Strong duality and dual attainment
In order to faithfully compute the SCE energy and potential via the dual prob-
lem (3.19), we need to verify that the dual problem satisfies strong duality, i.e.,
that the duality gap defined by the difference between the infimum of Eq. (3.9) and
the supremum of Eq. (3.19) is zero. In fact, since the domain of the primal problem is
compact, Sion’s minimax theorem [51] immediately guarantees that the duality gap
is zero. We state this result as a lemma:

Lemma 1. The primal and dual problems (3.9) and (3.19), respectively, have the
same (finite) optimal value.

However, in order to compute the SCE potential, we actually require not only that
the duality gap is zero, but also that the supremum in the dual problem is attained.
One might hope to verify Slater’s condition [17], which provides a standard method
for verifying both strong duality and such ‘dual attainment’ simultaneously.
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The trouble is that Slater’s condition requires the existence of a feasible interior
point M , i.e., a point M satisfying M � 0 and Mpq > 0 for all p 6= q. This scenario
is in fact impossible since for example the vector⇥

1>
2 �1>

2 0 · · · 0

⇤> 2 R2L (3.22)

lies in the null space of any feasible M , hence M � 0 never holds for feasible M .
Instead of using Slater’s condition, we will prove dual attainment via a very careful

study of the structure of the dual problem.

Theorem 2. The optimal value of the dual 2-marginal SDP (3.19) is attained. By
Lemma 1, this optimal value is equal to the optimal value of the primal 2-marginal
SDP (3.9).

Proof. Without loss of generality we assume

0 < ⇢p < 1, p = 1, . . . , L. (3.23)

To see why this assumption can be made, observe that if ⇢p 2 {0, 1} for some p,
then attainment for the dual problem (3.19) can be reduced to attainment for a
strictly smaller dual 2-marginal SDP. We leave further details of such a reduction to
the reader.) Also, for later reference, we let F (Y, {�pq, pq}p<q) denote the objective
function (3.19), and we let D denote the feasible domain defined by the constraints
(3.20), (3.21).

Now to get started, observe that if we fix Y ⌫ 0 and view (3.19) as an optimization
problem over {�pq, pq}p<q only, the resulting problem is in fact a linear program. Let
us call this the Y -program, more specifically:

maximize

{�pq , pq}p<q

2

X
p<q

�
�pq · µ(1)

p +  pq · µ(1)
q

�
�
X
p,s

Ypp(s, s)µ
(1)
p (s)

subject to �pq1
>
2 + 12 

>
pq  Cpq � Ypq for p < q.

In fact we may consider the Y -program for any matrix Y , and this will slightly
simplify some discussion later. Observe that each Y -program is feasible, and the
optimal values f(Y ) of all Y -programs are finite. Since they are linear programs, this
means that the optimal values of the Y -programs can be attained. Thus for each Y ,
there exist �?pq(Y ),  ?pq(Y ) for p < q which optimize the Y -program, i.e., attain the
value f(Y ). By construction f(Y ) is concave, hence continuous, in Y .

Now let d0 = f(0), so d? � d0, where d? is the optimal value of the dual problem
(3.19). Hence the feasible set of (3.19) could be refined to S \D, where

S := {Y ⌫ 0 : f(Y ) � d0},

without altering the optimal value. Now if S were compact, then the lemma would
follow. To see this, note that since d? < 1 (which follows from weak duality), we
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could take an optimizing sequence (Y (k), {�(k)
pq , 

(k)
pq }p<q) for (3.19), where Y (k) 2 S\D.

Then by compactness we could find a subsequence of Y (k) converging to some Y ?.
By the continuity of f , then f(Y ?

) = d?. Then it would follow that the optimum is
attained at the point (Y ?, {�?pq(Y ?

), ?pq(Y
?
)}p<q).

Unfortunately, S is not compact, but we will find a further constraint that does
yield a compact feasible set without altering the optimal value. Then the preceding
argument will complete the proof.

To further constrain the feasible set, we will observe a transformation of Y that
preserves the value of f(Y ), then ‘mod out’ by this transformation. To this end, first
note that via the discussion of Kantorovich duality following (3.19) we can in fact
write

f(Y ) = �
LX

p=1

Tr

⇥
Yppdiag(µ

(1)
p )

⇤
+

LX
p,q=1

OTpq(Cpq � Ypq),

where OTpq(A) is the optimal cost of the standard optimal transport problem with
cost matrix A and marginals µ(1)

p , µ(1)
q .

Then let P 2 R(2L)⇥(L�1) be defined by

P :=

2666664
12

�12 12

�12
. . .
. . . 12

�12

3777775 , (3.24)

and let its columns be denoted Pi for i = 1, . . . , L� 1. Then we claim that

f(Y ) = f
�
Y + Piv

>
+ vP>

i

�
(3.25)

for any Y , v 2 R2L, and any i = 1, . . . , L� 1. To prove this, write

v =

⇥
v>1 · · · v>L

⇤>
,

where vq 2 R2 for q = 1, . . . , L. Then observe that, via the discussion of Kantorovich
duality following the statement (3.19) of the dual problem, we can in fact write

f(Y ) = �
LX

p=1

Tr

⇥
Yppdiag(µ

(1)
p )

⇤
+ 2

X
p<q

OTpq(Cpq � Ypq),

where OTpq(A) is the optimal cost of the standard optimal transport problem with
cost matrix A and marginals µ(1)

p , µ(1)
q .

Then compute

f(Y + Piv
>
) = �

LX
p=1

Tr

⇥
Yppdiag(µ

(1)
p )

⇤
� Tr

h
12v

>
i diag(µ

(1)
i )

i
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+ Tr

h
12v

>
i+1diag(µ

(1)
i+1)

i
+ 2

X
p<q, p/2{i,i+1}

OTpq(Cpq � Ypq)

+ 2

LX
q=i+1

OTiq(Ciq � Yiq � 12v
>
q )

+ 2

LX
q=i+2

OTi+1,q(Ci+1,q � Yi+1,q + 12v
>
q ).

Now

Tr

h
12v

>
i diag(µ

(1)
i )

i
= vi · µ(1)

i , Tr

h
12v

>
i+1diag(µ

(1)
i+1)

i
= vi+1 · µ(1)

i+1,

and moreover it is not hard to see that

OTpq(A+ 12x
>
) = OTpq(A) + x · µ(1)

q

for any A 2 R2⇥2, x 2 R2, hence

f(Y + Piv
>
) = �

LX
p=1

Tr

⇥
Yppdiag(µ

(1)
p )

⇤
� vi · µ(1)

i + vi+1 · µ(1)
i+1

+ 2

X
p<q

OTpq(Cpq � Ypq)� 2

LX
q=i+1

vq · µ(1)
q + 2

LX
q=i+2

vq · µ(1)
q

= f(Y )� vi · µ(1)
i � vi+1 · µ(1)

i+1.

Similarly

f(Y + vP>
i ) = �

LX
p=1

Tr

⇥
Yppdiag(µ

(1)
p )

⇤
� Tr

h
vi1

>
2 diag(µ

(1)
i )

i
+ Tr

h
vi+11

>
2 diag(µ

(1)
i+1)

i
+ 2

X
p<q, q /2{i,i+1}

OTpq(Cpq � Ypq)

+ 2

i�1X
p=1

OTpi(Cpi � Ypi � vp1
>
2 )

+ 2

iX
p=1

OTp,i+1(Cp,i+1 � Yp,i+1 + vp1
>
2 )

= f(Y ) + vi · µ(1)
i + vi+1 · µ(1)

i+1.

Since the identities

f(Y +Piv
>
) = f(Y )� vi ·µ(1)

i � vi+1 ·µ(1)
i+1, f(Y + vP>

i ) = f(Y )+ vi ·µ(1)
i + vi+1 ·µ(1)

i+1
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hold for arbitrary Y , the claim Eq. (3.25) is proven.
Then from Eq. (3.25) it follows that

f(Y ) = f(Y + PB +B>P>
) (3.26)

for arbitrary B 2 R(L�1)⇥(2L).
Now let Q 2 R(2L)⇥(L+1) be defined by

Q =

26664
w1 0 · · · 0 w2

0 w1
...

...
... . . .
0 · · · w1 w2

37775 , w1 =
1

2


1

�1

�
, w2 =

1

2

12,

and observe that Q is chosen so that each column of Q is orthogonal to each column of
P . Moreover P and Q both have full rank, so it follows that R := [Q,P ] is invertible.

Then for fixed Y , consider

ˆY = R>Y R =

✓
Q>Y Q Q>Y P
P>Y Q P>Y P

◆
.

We aim to choose B such that

R>
(PB +B>P>

)R =

✓
0 0

P>PBQ P>PBP

◆
+

✓
0 Q>B>P>P
0 P>B>P>P

◆
cancels ˆY on all but the top-left block. Using Q>P = 0 (and P>Q = 0), one can
readily check that such a choice is given by

�B = (P>P )

�1
ˆY21(Q

>Q)

�1Q>
+

1

2

(P>P )

�1
ˆY22(P

>P )

�1P>.

By the identity (3.26), it follows that we can further restrict the feasible set by
intersecting with

S 0
=

⇢
Y : R>Y R =

✓
⇤ 0

0 0

◆
⌫ 0, f(Y ) � d0

�
. (3.27)

In fact S 0 is compact, and the proof is complete pending the proof of this claim, to
which we now turn.

Observe that for (Y, {�pq, pq}p<q) feasible, we may multiply Eq. (3.21) from the
left by

�
µ(1)
p

�> and from the right by µ(1)
q to obtain

�pq · µ(1)
p +  pq · µ(1)

q 
�
µ(1)
p

�>
[Cpq � Ypq]

�
µ(1)
q

�
=

�
µ(1)
q

�>
[Cpq � Ypq]

>�µ(1)
p

�
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= Tr

⇣
[Cpq � Ypq]

>�µ(1)
p

��
µ(1)
q

�>⌘
.

By substituting this inequality into the objective function F (Y, {�pq, pq}p<q) as de-
fined in (3.19), we see that

F (Y, {�pq, pq}p<q)  Tr(CM)� Tr(YM).

for (Y, {�pq, pq}p<q) feasible, where

Mpq :=

(
diag

�
µ(1)
p

�
, p = q�

µ(1)
p

��
µ(1)
q

�>
, p 6= q.

It follows then that
f(Y )  Tr(CM)� Tr(YM).

In fact M can be written M = QfMQ>, where fM � 0. This can be verified directly
by taking

fM =

26664
e⇢1
...e⇢L
1

37775 ⇥e⇢1 · · · e⇢L 1

⇤
+ diag

�⇥
1� e⇢21 · · · 1� e⇢2L 0

⇤�
,

with e⇢p = 1� 2⇢p, p = 1, . . . , L.

Note that fM � 0 by the assumption (3.23). Hence

f(Y )  Tr(CM)� Tr(Q>Y QfM).

Now since fM � 0, there exists a scalar K > 0 such that if Y ⌫ 0 and Q>Y Q 6� K,
then f(Y ) < d0. But Q>Y Q is the upper-left block of R>Y R, so it follows from the
definition (3.27) of S 0 that that

S 0 ⇢
⇢
Y : R>Y R =

✓
A 0

0 0

◆
, 0 � A � K

�
,

from which it follows that S 0 is compact, and the proof is complete.

Remark 3. Note that the proof of Theorem 2 guarantees that the domain of the
dual problem (3.19) can be restricted to Y of the form Y = QeY Q>, yielding a
‘reduced’ dual problem in which eY replaces Y as an optimization variable. In fact,
one can also verify directly that any M feasible for the primal problem (3.9) satisfies
MP = 0, hence the domain of the primal problem can be restricted to M of the form
M = QfMQ>, likewise yielding a reduced primal problem.
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But despite this apparent symmetry, the latter observation need not imply the
former in a more general SDP setting, and the arguments given in the proof of The-
orem 2, which use more of the specific structure of our problem, do appear to be
necessary to the proof of dual attainment for this problem.

Moreover, observe with caution that the dual of such a reduced primal problem
is not the reduced dual problem!

4 Tighter lower bound via 3-marginals
In this section, we further tighten the convex relaxation proposed in Section 3 with a
formulation that additionally involves the 3-marginals.

One defines the 3-marginals µ(3)
pqr (for p, q, r, distinct) induced by a probability

measure µ on {0, 1}L via

µ(3)
pqr(sp, sq, sr) :=

X
s
1

,...,sL\{sp,sq ,sr}

µ(s1, . . . , sL). (4.1)

There is no 3-marginal analog known to us of the semidefinite constraint that can
be enforced using the 2-marginals. However, we can nonetheless use the 3-marginals
to enforce additional necessary local consistency constraints. Indeed, the 2-marginals
can themselves be written in terms of the 3-marginals via

µ(2)
pq (sp, sq) =

X
sr

µ(3)
pqr(sp, sq, sr). (4.2)

Accordingly, we will include K = {Kpqr} for distinct p, q, r as optimization vari-
ables for the 3-marginals. Note that based on Eq. (4.1) we can enforce that K is
symmetric, by which we mean that

Kpqr(sp, sq, sr) = K�(p)�(q)�(r)(s�(p), s�(q), s�(r))

for any permutation � on the letters {p, q, r}. If we were to extend Kpqr by zeros
to p, q, r not distinct, then we could think of K 2 R(2L)⇥(2L)⇥(2L) as a symmetric
3-tensor, with (p, q, r)-th 2 ⇥ 2 ⇥ 2 block given by Kpqr. In principle the imposition
of symmetry removes some redundancy in the specification of K.

Then we arrive at the following 3-marginal SDP :

minimize

M2R(2L)⇥(2L),K2R(2L)⇥(2L)⇥(2L)

Tr(CM) (4.3)

subject to M ⌫ 0,
Mpq � 0 for p 6= q,
Mpq12 = µ(1)

p for p 6= q,

Mpp = diag(µ(1)
p ) for all p,

K � 0, K symmetric,
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Mpq(sp, sq) =
X
sr

Kpqr(sp, sq, sr) for p, q, r distinct.

Note that the blocks Kpqr for p, q, r not distinct are superfluous and can be discarded
in an efficient optimization.

For simplicity, we omit discussion of the duality of (4.3). Since only linear con-
straints have been added, most of the interesting features from the mathematical
viewpoint have already been discussed above. Indeed, as in Section 3.2, we may de-
rive the dual of the 3-marginal problem (4.3), and we may certify as in Section 3.3
that the 3-marginal problem satisfies strong duality and dual attainment.

5 General MMOT with pairwise cost
As has been suggested both explicitly and via the notation, almost all of our discussion
of relaxation methods for MMOT can be applied to general MMOT problems with
pairwise cost functions. The main caveat is that specific references to the fact that the
1-marginal state space has two elements should be suitably generalized. For clarity, we
now recapitulate our methods for the general MMOT problem with pairwise cost. The
reader interested in general MMOT should still see the earlier sections for derivations,
discussions, and proofs. Here we only summarize the methods.

We will consider a problem with L marginals, written µ(1)
p for p = 1, . . . , L. These

quantities are fixed in advance and never varied in the following discussion. We let
Np be the size of the state space of the p-th marginal, so µ(1)

p is a probability vector
of length Np. Note that the marginals need not all have the same state space, i.e.,
Np can depend on p. We write the p-th state space as Xp := {1, . . . , Np}. Then the
joint state space is given by X :=

QL
p=1 Xp, and we write Prp for the p-th projection

X ! Xp. Suppose that we are given a pairwise cost function Cpq 2 RNp⇥Nq for each
pair p 6= q of marginals. (Without loss of generality we assume Cpp = 0.) Then we
consider the problem

min

µ2P(X )

X
(s

1

,...,sL)2X

LX
p,q=1

Cpq(sp, sq)µ(s1, . . . , sL), s.t. (Prp)#µ = µ(1)
p , p = 1, . . . , L.

(5.1)
Here µ : X ! R can be thought of as an L-tensor whose p-th index ranges from
1, . . . , Np. Again, the objective function of such a MMOT problem can be rephrased
in terms of the 2-marginals:

min

µ2P(X )

LX
p 6=q

Tr(Cpqµ
(2)
pq ), s.t. (Prp)#µ = µ(1)

p , p = 1, . . . , L, (5.2)

where the 2-marginals µ(2)
pq are here implicitly defined in terms of the optimization

variable µ.
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Then we introduce the 2-marginal primal SDP

minimize

M2RN
tot

⇥N
tot

Tr(CM) (5.3)

subject to M ⌫ 0,
Mpq � 0 for all p, q = 1, . . . , L (p 6= q),
Mpq1Nq = µ(1)

p for all p, q = 1, . . . , L (p 6= q),

Mpp = diag(µ(1)
p ) for all p = 1, . . . , L.

Here Ntot :=

PL
p=1 Np and 1k denotes the vector of ones of length k. The dual of

(5.3) is given by

maximize

Y, {�pq , pq}p<q

2

X
p<q

�
�pq · µ(1)

p +  pq · µ(1)
q

�
�
X
p,s

Ypp(s, s)µ
(1)
p (s) (5.4)

subject to Y ⌫ 0,

�pq1
>
Nq

+ 1Np 
>
pq  Cpq � Ypq for p < q.

In (5.4) is it understood that Y 2 RN
tot

⇥N
tot and moreover �pq 2 RNp ,  pq 2 RNq .

By generalizing the discussion of Theorem 2, we have strong duality for the 2-
marginal SDP, hence the optimal values of (5.3) and (5.4) are equal, and moreover
the dual problem admits a maximizer. (The primal problem admits a maximizer
trivially because the feasible set is compact.)

Finally, we turn to the 3-marginal primal SDP

minimize

M2RN
tot

⇥N
tot ,K2RN

tot

⇥N
tot

⇥N
tot

Tr(CM) (5.5)

subject to M ⌫ 0,
Mpq � 0 for p 6= q,
Mpq1Nq = µ(1)

p for p 6= q,

Mpp = diag(µ(1)
p ) for all p,

K � 0, K symmetric,
Mpq(sp, sq) =

X
sr

Kpqr(sp, sq, sr) for p, q, r distinct.

For simplicity we omit the concrete formulation of the corresponding dual problem,
but we note that strong duality and dual attainment can be proved by methods similar
to those applied in the 2-marginal case.

6 Numerical results
In this section, we numerically demonstrate the effectiveness of the proposed methods
on model problems of strongly correlated fermionic systems.
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6.1 One-dimensional spinless model
Here we consider a 1D spinless Hubbard-like model defined by the Hamiltonian of
Eq. (2.6), in which we take

tpq =

(
1 if |q � p| = 1,

0 otherwise
(6.1)

and consider two different cases of v, with next-nearest neighbor (NN) interaction,

vpq =

8><>:
U/2 if |q � p| = 1,

U/40 if |q � p| = 2,

0 otherwise
(6.2)

and next-next-nearest neighbor interaction (NNNN)

vpq =

8>>><>>>:
U/2 if |q � p| = 1,

U/20 if |q � p| = 2,

U/200 if |q � p| = 3,

0 otherwise.

(6.3)

The reason why we omit the obvious scenario of the nearest neighbor (NN) interaction
is that in such a case, we find that our convex relaxation becomes numerically exact
and hence we consider the case to be not representative. We do not have a proof yet
to explain why our convex relaxation scheme can be numerically exact.

We will compare the Kohn-Sham SCE energies yielded by our methods with one
another, as well as with the exact ground-state energy (2.7), which is computed via
exact diagonalization (ED) in the OpenFermion [72] software package. The MMOT
problems arising in Kohn-Sham SCE and their SDP relaxations are solved in MATLAB
with the CVX software package [39].

We refer to the exact self-consistent Kohn-Sham SCE solution obtained by solving
the original linear programming (LP) problem for MMOT as the ‘LP’ solution. Hence
the tightness of the Kohn-Sham SCE lower bound (2.15) itself can be evaluated by
comparing the exact energy with the LP energy, while the tightness of our SDP
relaxations of the relevant MMOT problems (which, in turn, yield lower bounds for
the Kohn-Sham SCE energy) can be evaluated by comparing the LP energy with the
2- and 3-marginal SDP energies. We refer to these two sources of error, respectively,
as the ‘Kohn-Sham SCE model error’ and the ‘error due to relaxation.’

In Figs. 33(a) and 34(a), we plot E/U with respect to U for v as in Eqs. (6.2) and
(6.3), respectively. In these experiments, L = 14 and N = 9. The energy differences
of the Kohn-Sham SCE solutions from the exact energy are plotted in Figs. 33(b) and
34(b). It is confirmed numerically that the LP energy lower-bounds the exact energy,
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and in turn the SDP energies lower-bound the LP energy. While the 3-marginal SDP
lower bound is noticeably tighter than the 2-marginal SDP lower bound, the error
due to relaxation is dominated by the Kohn-Sham SCE model error in both cases.

Since the effective potential is of interest in Kohn-Sham DFT, in Fig. 35 we plot
the SCE potential (2.16) at self-consistency in the case of v as in Eq. (6.3). It can
be seen that the 3-marginal SDP performs better than the 2-marginal SDP in this
regard, as one might expect. (However, note carefully that although it is guaranteed a
priori that the 3-marginal SDP provides a lower bound on the energy that is at least
as tight as that of the 2-marginal SDP, no such comparison is theoretically guaranteed
in advance for the effective potential.)

To study the scaling of energy in the thermodynamic limit L!1, in Fig 36(a),
we plot E/U as a function of L by fixing U = 5 and a filling factor of N/L = 2/3.
In Fig 36(b), we plot the total runtime of our methods on a MacBook Pro with a
2.3GHz Core I5 CPU and 16GB of memory.
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Figure 33: Spinless 1D fermionic lattice model with v as in Eq. (6.2), L = 14,
N = 9. (a) E/U as a function of U . (b) Difference between the exact energy and the
Kohn-Sham SCE energies obtained from the unrelaxed LP and the SDP relaxations.

6.2 Two-dimensional spinful model
We consider a 2D generalized Hubbard type model defined by the Hamiltonian

ˆH =�
L�1X
i,j=1

X
�2{",#}

⇣
â†i+1,j;�âi,j;� + â†i,j+1;�âi,j;� + h.c.

⌘

+ U
LX

i,j=1

n̂i,j;"n̂i,j;# + V
L�1X
i,j=1

(n̂i+1,jn̂i,j + n̂i,j+1n̂i,j) .

(6.4)

Here n̂i,j := n̂i,j;" + n̂i,j;#. As discussed in section 2, although the creation and
annihilation operators in Eq. (6.4) involve two spatial indices and one spin index, one
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Figure 34: Spinless 1D fermionic lattice model with v as in Eq. (6.3), L = 14,
N = 9. (a) E/U as a function of U . (b) Difference between the exact energy and the
Kohn-Sham SCE energies obtained from the unrelaxed LP and the SDP relaxations.
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Figure 35: The effective potential for the spinless 1D fermionic lattice model with
v as in Eq. (6.3), U = 5, L = 14, N = 9. The relative `2 errors for the 2- and
3-marginal formulations (compared to the unrelaxed LP formulation) are 1.2⇥ 10

�2

and 2.7⇥ 10

�3, respectively.

may of course order the operators with a single index by defining

b(j�1)L+i = ai,j;", b(j�1)L+i+L2

= ai,j;#.

The new creation operators are fixed as the Hermitian adjoints of these new annihila-
tion operators. The term associated with U is the on-site electron-electron interaction,
while V specifies the nearest-neighbor electron-electron interaction. In the standard
Hubbard model, we have V = 0. (However, in the case V = 0, the MMOT problem
arising in the SCE framework becomes a trivial problem, since the interaction terms
associated with different sites are decoupled.) Fig. 37 shows the energies for the gen-
eralized Hubbard model on a 3⇥3 lattice, with V = 0.05U and U ranging from 1.0 to
19.0. The number N of electrons is set to be 12. Here energies are obtained from the
exact solution, the exact Kohn-Sham SCE solution obtained by linear programming
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Figure 36: Spinless 1D fermionic lattice model with v as in Eq. (6.3), U = 5,
N/L = 2/3. (a) E/U as a function of L. (b) Running time as a function of L.
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Figure 37: Spinful 3⇥ 3 Hubbard model with N = 12.

(LP), and the approximate Kohn-Sham SCE solution obtained via the 2-marginal
SDP relaxation. We find that the Kohn-Sham SCE formulation becomes asymptot-
ically accurate when U becomes large. Furthermore, the error due to relaxation is
much smaller than the Kohn-Sham SCE model error. Fig. 37(b) further shows that
the energy difference between the LP and 2-marginal SDP solutions is approximately
constant with respect to the on-site interaction strength U .

7 Conclusion
In this Part, we have considered the strictly correlated electron (SCE) limit of a
fermionic quantum many-body system in the second-quantized formalism. To the
extent of our knowledge, the setup of the SCE problem in this setting has not ap-
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peared in the literature. Mathematically, the SCE limit requires the solution of a
multi-marginal optimal transport problem over certain classical probability measures.
We propose a relaxation that enforces constraints on the 2-marginals of these mea-
sures, and the relaxed problem can be solved efficiently via semi-definite programming
(SDP). We prove that the SDP problem satisfies strong duality and moreover that the
dual solution is attained, despite the fact that the primal problem does not possess
a strictly feasible point. We consider a tighter relaxation involving the 3-marginals
and discuss how our methods can be applied to completely general multi-marginal
optimal transport problems with pairwise costs.

The relaxed formulation is not exact and provides only a lower bound to the SCE
energy. Hence it is meaningful to compare the error due to relaxation with the Kohn-
Sham SCE model error, i.e., the disparity between the Kohn-Sham SCE energy and
the exact energy of the solution to the quantum many-body problem. Our numerical
results for various fermionic lattice model problems indicate that the former can be
much smaller than the latter, hence our convex relaxation scheme can be considered
to be effective. On the other hand, as indicated in, e.g., [67], Kohn-Sham SCE is only
the zero-th order approximation to the quantum many-body ground state energy in
the limit of large interaction. Hence the SCE functional and SCE potential should be
considered more properly as an “ingredient” for designing more accurate exchange-
correlation functionals. From such a perspective, just as the exact formulation of SCE
is only a model, it may even be appropriate to consider the relaxed SCE formulation
as a model itself. It can capture certain strong correlation effects and can be solved
efficiently.

One immediate extension of the current work is to include finite-temperature ef-
fects via entropic regularization. In fact, entropic regularization may be relevant
for another reason as well. During our numerical studies, we observed that the self-
consistent iteration for Kohn-Sham SCE (not the convex optimization problem solved
within each iteration) can be difficult to converge. The convergence behavior may de-
pend sensitively on the filling factor, the lattice size, and the form of the interaction.
Such difficulty can arise for both the exact SCE formulation solved via linear pro-
gramming and the relaxed formulations solved by SDP. Preliminary results show that
entropic regularization can help make the loop easier to converge. We are not aware
of any reports of such issues in the literature, and we plan to study such behavior
more systematically in future work.
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Part IX

Variational embedding for quantum

spins and fermions

1 Introduction
In this section we strengthen and broaden the convex relaxation considered earlier
in Part VIII. Recall that in Part VIII, we actually considered a sequence of two
relaxations: the relaxation from the exact problem to exact SCE and the relaxation
of exact SCE to approximate SCE (via relaxation of MMOT). We referred to the errors
accrued in these two steps as the model error and the relaxation error, respectively.

In this Part we consider a relaxation of the quantum Gibbs variational principle
(for quantum spin systems in addition to fermionic systems) which takes inspiration
from the relaxation of MMOT introduced in Part VIII but acts directly on the exact
variational principle, i.e., there is no analogous ‘model error.’ (Moreover, there is
no analogous restriction to ‘generalized Coulomb interactions.’) As such these re-
laxations can be viewed as unrelated to the SCE formalism, though they may be
motivated by our method for SCE.

In addition to providing variational lower bounds for the ground state energies
of quantum ensembles, these relaxations can be viewed as embedding methods in the
spirit of, e.g., the density matrix embedding theory [49] and the dynamical mean-
field theory.19 As far as we know, however, our relaxations are the only variational
quantum embedding methods.

1.1 Outline
Please note that this Part is based on joint work in preparation with Lin Lin. In
section 2, we introduce the variational embedding method for quantum spin systems.
In this section 3, we introduce the analogous method for fermionic systems. In order
to consider this analog, we must generalize our perspective from section 2 to the
setting of star-algebras. In section 4 we show preliminary numerical results for these
methods. We close in section 5 with a discussion of convex duality, which clarifies the
embedding perspective on our methods.

19See Part VII for detailed discussion of DMFT.
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2 Quantum spins

2.1 Preliminaries
Let i = 1, . . . ,M index the sites of our model, and for each site i let Xi be the
classical state space (discrete, for simplicity). For each site, the quantum state space
is Qi := CXi , and the global quantum state space is

Q :=

MO
i=1

Qi ' CX ,

where X :=

QM
i=1 Xi. Let Hi denote a Hermitian operator Qi ! Qi, and let Hij

denote a Hermitian operator Qi ⌦ Qj ! Qi ⌦ Qj. We will use the hatted notation
ˆHi to denote the operator Q! Q obtained by tensoring Hi by the identity operator
on all sites k 6= i, and likewise we identify ˆHij with the operator Q! Q obtained by
tensoring Hij with the identity on all sites k /2 {i, j}. Then we consider a Hamiltonian
ˆH : Q! Q of the form

ˆH =

X
i

ˆHi +

X
i<j

ˆHij.

Remark 1. We shall introduce several examples of interest in the case Xi = {�1, 1},
i.e., the case of quantum spin-1

2
systems. To this end, first recall the Pauli matrices:

�x
=

✓
0 1

1 0

◆
, �y

=

✓
0 �i
i 0

◆
, �z

=

✓
1 0

0 �1

◆
,

which, together with the identity I2, form a basis for Hermitian operators on C2.
Now let �x/y/z

i 2 H(

N
i C2

) '
N

i H(C2
) be obtained by tensoring a copy of �x/y/z

for the i-th site with the identity I2 on all the other sites. Given a graph structure
on the site indices (with adjacency indicated by ‘⇠’), we define two model Hamiltoni-
ans of interest—the transverse-field Ising (TFI) Hamiltonian and anti-ferromagnetic
Heisenberg (AFH) Hamiltonian—as follows:

ˆHTFI = �h
X
i

�x
i �

X
i⇠j

�z
i �

z
j , (2.1)

ˆHAFH =

X
i⇠j

⇥
�x
i �

x
j + �y

i �
y
j + �z

i �
z
j

⇤
. (2.2)

In the TFI Hamiltonian, h 2 R is a scalar parameter.
We are interested in the computing the ground-state energy

E0 = inf

n
h�| ˆH|�i : |�i 2 Q, h�|�i = 1

o
,

which can be equivalently recast as
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E0 = inf

⇢2D(Q)
Tr[

ˆH⇢],

where D(Q) denotes the set of density operators on Q (i.e., positive semidefinite linear
operators Q ! Q of unit trace). Assuming that there exists a unique ground state
|�0i, the infimum is attained at ⇢ = |�0ih�0|. Now we can write

E0 = inf

{⇢ij}i<j2QM

2

(Q)

 X
i

Tr [Hi⇢i] +
X
i<j

Tr [Hij⇢ij]

!
, (2.3)

where QM2(Q) denotes the set of collections {⇢ij}i<j of representable quantum two-
marginals, i.e., those collections {⇢ij} which can be obtained as reduced density op-
erators of a single ⇢ 2 D(Q) via the partial trace, as in

⇢ij = Tr{1,...,M}\{i,j}[⇢],

where i < j.
To clarify, here we view ⇢ as being equipped with labels 1, . . . ,M for its indices

as ⇢ = ⇢i
1

···iM ,j
1

···jM , and for any subset S ⇢ {1, . . . ,M}, ⇢S = Tr{1,...,M}\S[⇢] denotes
the reduced density operator obtained by tracing out the indices contained in S,
with the remaining labels maintained. We comment that the partial trace ⇢S may be
equivalently defined as the unique operator on

N
i2S Qi such that Tr[ ˆA⇢S] = Tr[

ˆA⇢] for
all operators ˆA on

N
i2S Qi (alternatively viewed as operators on Q by tensoring with

the identity). This perspective illustrates the relationship between marginalization
in the quantum spin setting (i.e., computing the partial trace) and the more abstract
notion of marginalization that is necessary for the treatment of fermions in section 3
below.

For convenience, we denote ⇢ij = ⇢{i,j} for i < j as above. It is convenient to then
define ⇢ij for i > j via the stipulation that �ij⇢ij�ji = ⇢ji, where �ij : Qi ⌦ Qj !
Qj ⌦ Qi is the linear operator defined by �ij(�i ⌦ �j) = �j ⌦ �i. Finally, we remark
that the one-marginals ⇢i = Tr{1,...,M}\{i}[⇢] are determined by the two-marginals via
⇢i = Tr{j}[⇢ij], and this dependence is meant to be understood implicitly in (2.3). We
will occasionally denote ⇢ii := ⇢i.

2.2 Local consistency constraints
Now it is of interest to determine necessary conditions satisfied by collections in
QM2(Q). By enforcing a set of necessary conditions as a proxy for membership in
QM2(Q), we can obtain a lower bound on the ground state energy.

To begin with, the ⇢ij are themselves density operators on Qi ⌦ Qj, i.e., ⇢ij ⌫ 0

with Tr[⇢ij] = 1. Moreover, we must have Trj[⇢ij] = Trj0 [⇢ij0 ] for all i and j, j0 6= i, and
we must have �ij⇢ij�ji = ⇢ji. These constraints define the set of locally consistent
quantum two-marginals. Call this set LQM2(Q). In practice we define auxiliary
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variable ⇢i for the one-marginals, constrained to satisfy ⇢i = Trj[⇢ij] = Tri[⇢ji]. The
constraints Tr[⇢ij] = 1 for all i, j can in fact be enforced by enforcing Tr[⇢i] = 1 for
all i, since Tr[⇢ij] = Tr[Trj[⇢ij]].

Note that the local consistency constraint Trj[⇢ij] = ⇢i is equivalent to ensisting
that Tr[

ˆA⇢ij] = Tr[

ˆA⇢i] for all operators ˆA on Qi (considered also as operators on
Qi ⌦ Qj by tensoring with the identity). This perspective highlights the connection
to the abstract local consistency constraints appearing in the discussion of fermionic
systems in section 3 below.

2.3 Global semidefinite constraints and the two-marginal SDP
We can derive a further constraint, more global in nature, as follows. Consider oper-
ators ˆO : Q! Q (not necessarily Hermitian) of the form ˆO =

P
i
ˆOi, where each ˆOi

is a one-body operator on Q, i.e., obtained by tensoring an operator Oi on Qi with
the identity. Now ˆO†

ˆO ⌫ 0, so

Tr

h
⇢ ˆO†

ˆO
i
� 0 (2.4)

for any ⇢ 2 D(Q). We will expand the left-hand side to obtain a constraint on the
quantum two-marginals, which can be phrased as a semidefinite matrix constraint.
First compute

0  Tr

h
⇢ ˆO†

ˆO
i

= Tr

"
⇢
X
ij

ˆO†
i
ˆOj

#
=

X
i

Tr

h
⇢iO

†
iOi

i
+

X
i 6=j

Tr

h
⇢ijO

†
i ⌦Oj

i
.

Now without loss of generality, we can identify Xi with {1, . . . ,mi} where mi = |Xi|,
hence we can think of Oi as an arbitrary complex matrix Oi = (Oi,kl)k,l=1,...,mi

. We will
use square brackets to indicate entries of an operator as in [Oi]kl = Oi,kl. Note that
the two-marginal ⇢ij is an operator Qi⌦Qj ! Qi⌦Qj, so we denote its ((k, p), (l, q))
entry by [⇢ij]kp,lq for k, l = 1, . . . ,mi and p, q = 1, . . . ,mj. Finally, for i 6= j, observe
that h

O†
i ⌦Oj

i
kp,lq

= [O†
i ]kl[Oj]pq

= O⇤
i,lkOj,pq

Then we expand the i 6= j sum to obtainX
i 6=j

Tr

h
⇢ij O

†
i ⌦Oj

i
=

X
i 6=j

miX
k,l=1

mjX
p,q=1

[⇢ij]lq,kp
h
O†

i ⌦Oj

i
kp,lq
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=

X
i 6=j

miX
k,l=1

mjX
p,q=1

[⇢ij]lq,kpOi,lkOj,pq

=

MX
i,j=1

miX
k,l=1

mjX
p,q=1

(1� �ij)[⇢ij]lq,kpOi,lkOj,pq

Next expand the i sum:X
i

Tr

h
⇢i O

†
iOi

i
=

X
i

miX
k=1

miX
q=1

[⇢i]qk
h
O†

iOi

i
kq

=

X
i

miX
k,l=1

miX
q=1

[⇢i]qk[ ˆO
†
i ]kl[

ˆOi]lq

=

X
i

miX
k,l=1

miX
q=1

[⇢i]qkOi,lkOi,lq

=

X
i

miX
k,l=1

miX
p,q=1

�lp[⇢i]qkOi,lkOi,pq

=

MX
i,j=1

miX
k,l=1

mjX
p,q=1

�ij�lp[⇢i]qkOi,lkOi,pq.

Therefore we have derived
MX

i,j=1

miX
k,l=1

mjX
p,q=1

[�ij�lp[⇢i]qk + (1� �ij)[⇢ij]lq,kp]Oi,lkOj,pq � 0.

We can think of Oj,pq as a vector O 2
QM

i=1 Cmi⇥mi ' C
PM

i=1

m2

i . The choice of such O

was completely arbitrary. Therefore we have proved that the
⇣PM

i=1 m
2
i

⌘
⇥
⇣PM

i=1 m
2
i

⌘
matrix G(2)

= G(2)
[{⇢ij}ij] defined by

G(2)
ilk,jpq := �ij�lp[⇢i]qk + (1� �ij)[⇢ij]lq,kp

is positive definite. This matrix can be thought of as a linear operator G(2)
:QM

i=1 Cmi⇥mi !
QM

i=1 Cmi⇥mi . (One can readily check that G(2) is Hermitian.) For a
quantum spin system, we have mi = 2 for all i, so this is a semidefinite constraint on
a (4M)⇥ (4M) matrix, which is (relatively) efficient to enforce.

At last we have derived a semidefinite relaxation, which we shall call the two-
marginal SDP :

E(2)
0 = inf

{⇢ij}i<j2LQM

2

(Q) :G(2)[{⇢ij}ij ]⌫0

 X
i

Tr [Hi⇢i] +
X
i<j

Tr [Hij⇢ij]

!
.

273



The relaxation yields the energy lower bound E0 � E(2)
0 , as well as a minimizer ⇢(2)

that is expected to approximate the exact two-marginals.
The two-marginal SDP can be written, in expanded form, as

minimize
{⇢i}, {⇢ij}i<j

X
i

Tr [Hi⇢i] +
X
i<j

Tr [Hij⇢ij] (2.5)

subject to ⇢ij ⌫ 0, i, j = 1, . . . ,M, (2.6)
⇢i = Tr{j}[⇢ij], ⇢j = Tr{i}[⇢ij], i, j = 1, . . . ,M, (2.7)
Tr[⇢i] = 1, i = 1, . . . ,M, (2.8)
G[{⇢ij}ij] ⌫ 0. (2.9)

Although there are several ways to write constraints yielding the same feasible set,
the dual SDP is actually influenced by the choice of constraints used to define this
set. The choices made here will yield interesting dual structure, to be explored below.

2.4 Abstract perspective on the global semidefinite constraints
More abstractly, it is useful to think of G = G[{⇢ij}] as being composed of blocks
Gij[⇢ij] (indexed by marginal pairs i, j), defined by

(Gij[⇢ij])↵� =

8<:Tr

h
⇢i O

†
i,↵Oi,�

i
i = j

Tr

h
⇢ij O

†
i,↵ ⌦Oj,�

i
i 6= j,

where {Oi,↵}↵ is basis for the set of one-body operators on site i. (Note that this
collection is of cardinality m2

i .) By considering ↵ as a multi-index ↵ = (k, l) and
choosing

�
Oi,(k,l)

�
k0,l0

= �kk0�ll0 to be the ‘standard unit vectors’ in Cmi⇥mi , we exactly
recover our former explicit representation of G[{⇢ij}].
Remark 2. (Restricted operator sets.) The more abstract perspective suggests a
natural framework for further relaxation. Suppose that for each i = 1, . . . ,M , we are
given a linearly independent collection {Oi,↵}↵2Ii of one-body operators for the i-th
site, where Ii is a given index set. Then we can define G = G[⇢(2)] in terms of blocks
as above, where the block Gij[⇢ij] is a |Ii|⇥ |Ij| matrix, defined once again by

(Gij[⇢ij])↵� =

8<:Tr

h
⇢i O

†
i,↵Oi,�

i
i = j

Tr

h
⇢ij
⇣
O†

i,↵ ⌦Oj,�

⌘i
i 6= j

for ↵ 2 Ii, � 2 Ij. In principle one can consider restricted index sets with |Ii| < m2
i

containing only the most physically important operators. Such restricted structure
will correspond to interesting structure from the perspective of the dual problem to
be considered below.
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Remark 3. (Quasi-local constraints.) In order to improve the efficiency of the semidef-
inite introduced above, one could enforce the semidefiniteness of certain principal
submatrices of G. E.g., for each k, one could define a submatrix G(k) of G by re-
stricting the block indices i, j to those satisfying d(i, k), d(j, k)  dmax, where d is
an appropriate notion of distance between indices (e.g., graph distance for a lattice
model) and dmax is a locality parameter. Then one enforces G(k)

[{⇢ij}] ⌫ 0 for all k.
For constant dmax suitably large, in principle such constraints could achieve good per-
formance while maintaining linear scaling in M of the SDP problem size for suitably
local Hamiltonians, by omitting ⇢ij from the optimization variables for d(i, j) > dmax.

2.5 Higher constraints
A tighter SDP relaxation can be derived by considering a set {⇢ijk}i<j<k of quantum
three-marginals as the optimization variable. One may enforce the suitably defined
local consistency constraints, denoted {⇢ijk}i<j<k 2 LQM3(Q), then defining vari-
ables ⇢ij in terms of the ⇢ijk via partial traces, additionally enforce G[{⇢ij}ij] ⌫ 0.
We refer to the corresponding semidefinite relaxation as the three-marginal SDP.

To derive further semidefinite constraints, we have to keep track of the four-
marginals. Suitable necessary conditions can derived by enforcing Tr

h
⇢ ˆO†

ˆO
i
� 0 for

all ˆO of the form ˆO =

P
i,i0

ˆOi,i0 , where the ˆOi,i0 are two-body operators. As such one
may define the four-marginal SDP, and so on. Note that, e.g., the four-marginal SDP
can in fact accommodate more general Hamiltonians, i.e., Hamiltonians including
additional four-body terms.

2.6 Cluster perspective
In order to systematically improve the accuracy of the two-marginal SDP, instead
of considering higher marginals we may alternately consider increasing cluster size.
Formally, such considerations will yield problems can still be accommodated as special
cases of our previously introduced setting. However, the difference in perspective is
noteworthy, and the generalization to the case of overlapping clusters (considered in
the next section) is not accommodated as such a special case.

Suppose that our site index set is written as a union of cluster index sets C�, i.e.,

{1, . . . ,M} =

N
c[

�=1

C�,

where the cluster index sets C� are disjoint. Then one can define

Y� :=
Y
i2C�

Xi
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to be the classical state space for the �-th cluster. Then by considering the clusters
now as sites with classical state spaces Y� and following the derivation of thw two-
marginal SDP, we may derive the cluster two-marginal SDP, relative to the cluster
decomposition {C�}. Note that this problem may be viewed formally as a two-
marginal SDP ; however, the distinction makes sense when we think of the limit of
expanding clusters for a problem that is otherwise fixed. Higher-marginal cluster
SDPs can be derived similarly.

2.7 Overlapping clusters
The treatment of overlapping clusters is more delicate. Suppose again that

{1, . . . ,M} =

N
c[

�=1

C�,

but now relax the assumption that the C� are disjoint. Since the overlap of two
clusters might even be a single site of the original model, we can no longer just
‘coarse-grain’ clusters and forget all of their intra-cluster structure. In particular,
imposition of necessary local consistency constraints demands a bit more care.

Now the primary objects in our relaxation will be the two-cluster marginals, de-
noted ⇢�� := ⇢C�[C�

for �  �. Each ⇢�� is an operator on the quantum state space
specified by the union of sites C� [ C�, which may of course be smaller in size than
|C�| + |C�|. Then the one-cluster marginals ⇢� := ⇢C� (which we sometimes also
denote by ⇢��) are obtained in terms of the two-cluster marginals via

⇢� = TrC�\C� [⇢��] , ⇢� = TrC�\C�
[⇢��] .

These identities yield consistency constraints analogous to the local consistency con-
straints introduced earlier. However, we can also include the overlap constraints by
introducing the variable ⇢(��)\(�0�0) representing the marginal corresponding to the set
(C� [ C�) \ (C�0 [ C�0), for all � < �, �0 < �0, constrained by

⇢(��)\(�0�0) = Tr(C�[C�)\(C�0[C�0 ) [⇢��] = Tr(C�0[C�0 )\(C�\C�) [⇢�0�0 ] .

Note that these constraints are nontrivial only if the intersection (C�[C�)\(C�0[C�0)
of cluster pairs is nonempty.

To complete the discussion of the overlapping cluster two-marginal SDP, we need
to derive the semidefinite constraint. This is derived by observing the necessary
condition Tr

h
⇢ ˆO†

ˆO
i
� 0 for all ˆO of the form ˆO =

P
�
ˆO� , where ˆO� is a one-cluster

operator, i.e., an operator on
N

i2C�
Qi, interpreted also (abusing notation slightly)

as an operator on Q by tensoring with the identity on all sites outside of C�.
In fact, given a collection of one-cluster operators {O�,↵}↵2I� for the �-th cluster

(i.e., operators on
N

i2C�
Qi), we build G[{⇢��}] blockwise by defining

(G��[⇢��])↵� = Tr

h
⇢�� ˜O†

�,↵
˜O�,�

i
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for ↵ 2 I�, � 2 I�, and � < � (extending to � > � by hermiticity), where ˜O�,↵ is on
operator on

N
i2C�[C�

Qi obtained from O�,↵ by tensoring with the identity operator
over all sites in C�\C�. For example, if C� = {1, 2} and C� = {2, 3}, then we can
represent ˜O�,↵ = O�,↵⌦Im

3

and ˜O�,� = Im
1

⌦O�,� (recall that here O�,↵ is an operator
on Q1 ⌦Q2 and O�,� is an operator on Q2 ⌦Q3).

The semidefinite constraint is, as before, G[{⇢��}] ⌫ 0. The resulting SDP can
accommodate Hamiltonians of the form

ˆH =

X
�

ˆH� +

X
�<�

ˆH��,

where ˆH� and ˆH�� are one-cluster and two-cluster operators, respectively.
Suitable analogous relaxations with higher overlapping cluster marginal constraints

may also be derived.

2.8 Translation-invariant setting
In this section we describe how translation-invariant structure can be exploited in a
natural way in our semidefinite relaxation framework. For simplicity we focus only
on the case of the two-marginal SDP for a translation-invariant Hamiltonian in one
dimension. Extension to higher dimensions is straightforward.

For the purposes of this section it is convenient to adopt a zero-indexing convention
for our site indices (usually denoted by i, j), i.e., we index our sites as i = 0, . . . ,M�1.
We obtain a translation-invariant Hamiltonian by assuming that ˆHi =

ˆH0 for all i
and ˆHij =

ˆH0,j�i for all i < j. In turn we are guaranteed translation-invariance of the
ground-state density operator (note: symmetry-breaking cannot occur for systems of
finite size). In particular, we have ⇢i = ⇢0 for all i and ⇢ij = ⇢0,j�i for all i < j, and
it follows that we can constrain the matrix G = G[{⇢ij}] to be block-circulant, so
that the block Gij depends only on i � j (mod M). Hence all of the information of
G is contained in the first row of blocks, and moreover G can be block-diagonalized
by taking the blockwise discrete Fourier transform of the first row of blocks. Indeed,
these diagonal blocks are obtained as

˜Gk =
1p
M

M�1X
j=0

exp

✓
◆
2⇡jk

M

◆
G0j,

k = 0, . . . ,M � 1, where we use ‘◆’ to denote the imaginary unit to avoid confusion
with our indexing notation. Now the constraint G ⌫ 0 is equivalent to the constraint
that ˜Gk ⌫ 0 for all k. Hence we arrive at the periodic two-marginal SDP:

minimize
⇢
0

, {⇢
0j}j=0,...,M�1

Tr [H0⇢0] +
M�1X
j=1

Tr [H0j⇢0j]
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subject to ⇢0j ⌫ 0, j = 0, . . . ,M � 1,

⇢0 = Tr{j}[⇢0j], ⇢0 = Tr{0}[⇢0j], j = 0, . . . ,M � 1,

Tr[⇢0] = 1,
M�1X
j=0

exp

✓
◆
2⇡jk

M

◆
G0j[⇢0j] ⌫ 0, k = 0, . . . ,M � 1.

Notice that we have economized significantly on optimization variables, and, more-
over, we have exchanged a semidefinite constraint of size ⇠ M for M semidefinite
constraints of size constant in M . Moreover, a careful implementation of a solver for
this SDP should be able to exploit the FFT in the implementation of the semidefinite
constraints.

2.8.1 Periodicity constraints

If our sites are obtained as composite sites representing non-overlapping clusters (as
discussed in section 2.6) and if, moreover, our Hamiltonian is translation-invariant
with respect to these underlying sites, then we can impose further constraints to en-
force the internal translation-invariance of our cluster marginals. To wit, in addition
to our optimization variables {⇢C0�} for the two-cluster marginals, we can define addi-
tional optimization variables {⇢0j} for the two-site marginals and then enforce, for all
i 2 C0, j 2 {1, . . . ,M}, that ⇢0,j�i = TrC

0

[C�(j)\{i,j}

h
⇢C0,�(j)

i
, where �(j) is the index

of the cluster containing site j. We refer to these additional constraints as periodicity
constraints.

3 Fermions

3.1 Preliminaries
The fundamental objects in fermionic second quantization are the creation operators
a†1, . . . , a

†
M and their Hermitian adjoints, the annihilation operators ai, which act on

the Fock space F and satisfy the canonical anticommutation relations

{ai, a†j} = �ij, {ai, aj} = {a†i , a
†
j} = 0,

where { · , · } denotes the anticommutator. One defines the number operators by
n̂i := a†iai and the total number operator by ˆN :=

PM
i=1 n̂i.

These objects can be concretely realized via the identification of Hilbert spaces
F '

NM C2 ' C2M , under which the annihilation operators correspond to quantim
spin-1

2
operators as

a†i  �z ⌦ · · ·⌦ �z| {z }
i�1 factors

⌦
✓

0 0

1 0

◆
⌦ I2 ⌦ · · ·⌦ I2.
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This identification of operators defines the Jordan-Wigner transformation (JWT).
Note that the JWT depends on the ordering of the states in the sense that permuting
the states before the JWT is not equivalent to permuting the tensor factors after the
JWT.

After specifying a particle-number-conserving Hamiltonian ˆH, i.e., a Hermitian
operator on the Fock space which commutes with ˆN , and a fixed particle number N ,
we are interested in computing the N -particle ground state energy

E0(N) = inf

n
h | ˆH| i : | i 2 F , h | i = 1, h | ˆN | i

o
.

It is equivalent to solve

E0(N) = inf

⇢2D(F) : Tr[N̂⇢]=1
Tr

h
ˆH⇢
i
,

where D(F) indicates the set of density operators on the Fock space (i.e., positive
semidefinite Hermitian operators F ! F of unit trace).

Observe that although F can be identified with a quantum-spin state space, the
creation operators are not one-qubit operators in the sense of quantum spin systems,
nor are hopping operators a†iaj + a†jai generically two-qubit operators. Moreover, the
complexity of such operators after the JWT can depend unphysically on the ordering
of the sites. Hence most second-quantized problems of interest (with the exception
of local one-dimensional models) simply do not fit into the framework of variational
embedding introduced above for quantum spin systems.

To illustrate this point and provide some concrete examples, we now describe sev-
eral Hamiltonians of interest in this setting. Of particular note is the Hubbard model,
whose states we enumerate via the orbital-spin index (i, �), where i = 1, . . . ,M ,
� =", #.

ˆH = �t
X
ij�

Aija
†
i�aj� + U

X
i

n̂i"n̂i#, (3.1)

where Aij is the adjacency matrix of a graph with vertex set {1, . . . ,M}, e.g., a square
lattice.

More generally, one can consider a ‘generalized Coulomb model’ of the form

ˆH =

X
ij�

hija
†
i�aj� +

X
ij�⌧

Uijn̂i�n̂j⌧ ,

which includes in particular the Hubbard model and variants with longer-range in-
teractions. In fact, via certain choices of orbital bases such as the recently introduced
Gausslets [105], electronic structure problems in the continuum can be mapped to
second-quantized Hamiltonians of this form. As we shall see, the generalized Coulomb
model is accommodated naturally within the framework of fermionic variational em-
bedding.
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Broading our view further still, consider a general two-body Hamiltonian ˆH, writ-
ten as

ˆH =

X
ij

hija
†
iaj +

1

2

X
ijkl

vijkla
†
ia

†
jalak.

Electronic structure problems in first quantization can mapped to such Hamiltonians
via an arbitrary choice of orbital basis {�i} for (a subspace of) L2

(Rd
), where d is

the physical dimension. If the basis functions have compact support, then vijkl can
be nonzero only if both supp(�i) \ supp(�k) 6= ; and supp(�j) \ supp(�l) 6= ;. It
will follow that after a suitable choice of overlapping clusters (chosen so that each
pair of intersecting basis functions ), such Hamiltonians can also be accommodated
within fermionic variational embedding. We leave investigation of ab initio quantum
chemistry problems by these means to future work.

In order to define a convex relaxation of the fermionic Gibbs variational princi-
ple that is analogous to our relaxation for quantum spin systems, we adopt a more
abstract (and indeed general) perspective in section 3.2, allowing for the derivation
of a suitable two-cluster-marginal SDP in 3.3. We will in fact see in section 3.4 that
our relaxation is tight for noninteracting Hamiltonians, i.e., Hamiltonians that are
quadratic in the creation and annihilation operators. This feature has no analog in
the quantum spin setting because there is no related notion of noninteracting sys-
tems. Then in section 3.5, we will describe how one can translate our abstract convex
optimization problem into an explicit SDP that can be implemented on a computer.

3.2 Abstract perspective
The fundamental objects of interest in the abstract perspective is the algebra of
operators on the Fock space. In fact, the Fock space itself plays no direct role in
the following developments, nor does any global JWT. Marginalization will make use
of the notion of a subalgebra subordinate to each cluster. It is in the details of how
these subalgebras lie within the global algebra that the quantum-spin and fermionic
cases differ.

Now let
A := h1, a1, . . . , aM , a†1, . . . , a

†
Mi

denote the unital star-algebra over the complex numbers20 generated by the cre-
ation and annihilation operators subject to the canonical anticommutation relations
{ai, a†j} = �ij, {ai, aj} = {a†i , a

†
j} = 0. (Throughout we will use angle brackets to

denote such generated algebras.) We let n̂i = a†iai denote the corresponding number
operators and let ˆN =

P
i n̂i denote the total number operator.

20Recall that a star-algebra over C is essentially an associative algebra over C in which one can
take adjoints, where the adjoints satisfy their usual algebraic properties. We will use no deep results
from the theory of star-algebras but nonetheless find the perspective to be clarifying. In specific, it
is useful to view our algebra of fermionic operators independently from any Fock space on which it
acts, and in fact the notion of the Fock space does not play any explicit role in our developments.
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In fact the algebra A comes equipped with a Z2-grading, i.e., we can write A as a
direct sum of vector spaces A = Ae�Ao, where Ae and Ao denote the sets of even and
odd operators, respectively. An operator is even (resp., odd) if it can be written as a
sum of even (resp., odd) monomials in a1, . . . , aM , a†1, . . . , a

†
M . (The reader can check

that this notion is well-defined.) The Z2-grading refers to the fact that AeAe ⇢ Ae,
AoAo ⇢ Ae, AeAo ⇢ Ao, and AoAe ⇢ Ao.

For any subset C ⇢ {1, . . . ,M}. Let AC denote the subalgebra

AC :=

D
{1} [ {ai, a†i : i 2 C}

E
,

and let the even and odd components Ae
C and Ao

C be defined accordingly. Suppose
that our site index set is written as a union of cluster index sets C�, i.e.,

{1, . . . ,M} =

N
c[

�=1

C�,

where the cluster index sets C� are disjoint, for simplicity.
We comment that, in contrast to our exposition for the case of quantum spins,

we shall directly work with general clusters (as opposed to clusters consisting of a
single site). The reason is that in the quantum spin setting, it was possible to view
non-overlapping clusters as single sites (with enlarged local state spaces). Such a
reduction is not natural in the fermionic setting. Hence we retain the index notation
�, � for clusters and i, j for individual sites (of which the clusters are comprised).

Now our structural assumption on our Hamiltonian ˆH 2 A is that it can be
written as a sum of one-cluster and two-cluster operators, i.e., as

ˆH =

X
�

ˆH� +

X
�<�

ˆH��,

where ˆH� 2 AC� and ˆH�� 2 AC�[C�
.

Note carefully for context that the subalgebra AC� corresponds in our earlier set-
ting of quantum spin systems to the subalgebra of operators on

N
i2C�

Qi, viewed as
operators on Q by tensoring with the identity. Clearly, even by viewing the fermionic
system as a spin system via JWT, this subalgebra is inequivalent to the fermionic sub-
algebra above defined. The reader should keep this perspective on the developments
of section 2 in mind as we transpose them to the fermionic setting.

Next we turn to defining our notion of a statistical ensemble and its marginals.
For this task we turn to the language of star-algebras. The role of our full ensemble is
played by the state, a linear functional ! : A! C such that !(1) = 1 and !(A†A) � 0

for any A 2 A. In our setting (which is finite-dimensional), the action of a state can
be viewed as nothing more than tracing against a density operator on the Fock space,
as can be verified readily via the Riesz representation theorem. However, the abstract
perspective will be useful in defining the notion of a marginal because if we try to
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directly borrow the corresponding notion from the setting of quantum spins, i.e., the
partial trace, then we find ourselves in need of a global JWT to proceed.

We let ⌦ denote the set of states on A. Then in star-algebraic language, the
N -particle ground-state energy E0(N) minimization problem is naturally recast as

E0(N) = inf

!2⌦ :!(N̂)=N
!( ˆH). (3.2)

Next, our notion of a marginal in this setting is simply the restriction of a state
to a subalgebra. That is, for a subset C ⇢ {1, . . . ,M}, we define the marginal !C via

!C := !|AC .

Of course, !C is itself a state on AC . We let ⌦C denote the set of states on AC .
Notice that, as follows immediately from the definition, the sets ⌦, ⌦C are convex.

Note that in the quantum spin setting of section 2, the action !( ˆA) of the state
corresponds to the trace Tr[

ˆA⇢] against the density operator ⇢. For ˆA an oper-
ator on

N
i2C Qi, we have !C(

ˆA) = !( ˆA) = Tr[

ˆA⇢] = Tr[

ˆA⇢C ], i.e., our notion
of marginalization—applied to a cluster subalgebra in the quantum spin setting—
precisely recovers the partial trace operation.

3.3 The two-cluster-marginal SDP
In this section we shall derive an ‘abstract SDP’ without describing how it can be
realized on a computer. Later, in section 3.5, we will describe how to achieve such
realization (which makes use of JWTs only for each pair of clusters). For simplicity,
we will only derive a relaxation that analogizes the (nonoverlapping) two-cluster-
marginal SDP. Further analogs can be derived by straightforward (though perhaps
tedious) modifications of the arguments presented below.

For simplicity we denote the one-cluster marginals by !� := !C� and the two-
cluster marginals by !�� := !C�[C�

. Note carefully from the definitions here that
!�� = !�� : AC�[C�

! C and that !�� = !� : AC� ! C. Our one- and two-cluster
marginals evidently satisfy the local consistency constraints

!� = !��|AC�
, !� = !��|AC�

via nested restriction.
Now, by analogy to (2.4), our semidefinite constraint will be derived from the

observation that for any ˆA 2 A of the form ˆA =

P
�
ˆA�, where ˆA� 2 AC� for all �,

0  !(A†A) = !

0@"X
�

ˆA�

#† "X
�

ˆA�

#1A
=

X
��

!
⇣
ˆA†
�
ˆA�

⌘
.
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Therefore the two-cluster marginals satisfyX
��

!��
⇣
ˆA†
�
ˆA�

⌘
� 0

for all choices of {A�}Nc

�=1 for which ˆA� 2 AC� for all �.
More specifically, for each cluster � consider a list

n
ˆA�,↵

o
↵2I�

of operators in AC� ,

possibly (but not necessarily) spanning the space of all operators in AC� . (Compare
to the perspective of section 2.4 on the global semidefinite constraints in the quantum
spin setting.) Then one obtains G [{!��}] ⌫ 0, where G = (G��) is specified blockwise
by

(G��[!��])↵� = !��
⇣
ˆA†
�,↵

ˆA�,�

⌘
.

In fact, G = G[{!��}��] depends only on !�� for �  � because the lower triangular
part can be obtained from the upper triangular part via hermiticity.

Then we have derived the following relaxation of the variational principle (3.2),
in which the !� and !�� are considered as optimization variables:

E(2)
0 (N) := minimize

{!�}, {!��}�<�

X
�

!�
⇣
ˆH�

⌘
+

X
�<�

!��
⇣
ˆH��

⌘
, (3.3)

subject to !�� 2 ⌦C�[C�
, 1  � < �  Nc,

!� = !��|AC�
, !� = !��|AC�

, 1  � < �  Nc,

N =

X
�

!�( ˆN�),

G [{!��}��] ⌫ 0,

where ˆN� :=
P

i2C�
n̂i denotes the �-th cluster number operator. Since the constraints

are convex, we have specified an abstract convex optimization problem. Now that we
know that this relaxation makes sense in principle, our hope is to express it later as
a concrete semidefinite program.

It is computationally useful to realize a simplification. Physical fermionic Hamil-
tonians are always even (including the anomalous, or particle-number-nonconserving,
Hamiltonians that arise in effective descriptions of superconductivity), and hence one
expects the action of a physical state on an odd operator in fact always yields zero.
Hence

(G��[!��])↵� = !��
⇣
ˆA†
�,↵

ˆA�,�

⌘
is zero unless ˆA�,↵ and ˆA�,� are either both even or both odd. It follows that we can
reduce the size of the semidefinite constraint by splitting our operator lists into even
and odd subsets which we denote

n
ˆAe
�,↵

o
↵2Ie

�

and
n
ˆAo
�,↵

o
↵2Io

�

, respectively. Then we
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define separate matrices Ge and Go blockwise by⇣
Ge/o
�� [!��]

⌘
↵�

= !��

✓h
ˆAe/o
�,↵

i† h
ˆAe/o
�,�

i◆
. (3.4)

Then we may equivalently substitute our semidefinite constraint G ⌫ 0 with two
semidefinite constraints Ge/o ⌫ 0, each of half (assuming that complete operator lists
are chosen) the original size.

3.4 Exactness for noninteracting problems
In this section we assume that ˆH is noninteracting, i.e., of the form ˆH =

P
ij hij a

†
iaj,

where h = (hij) is Hermitian. We want to show that in this setting E(2)
0 (N) = E0(N),

i.e., the relaxation just introduced is tight, under the meager further assumption that
for each i 2 {1, . . . ,M}, the operators ai, a

†
i are contained in some cluster’s operator

list.
Indeed, under this latter assumption it is not hard to see that the matrices

D(!{i,j}) :=
⇣
!{i,j}(a

†
iaj)

⌘M
i,j=1

and D0
(!{i,j}) :=

⇣
!{i,j}(aia

†
j)

⌘M
i,j=1

appear as princi-
pal submatrices of Go

[{!��}], where the two-site marginals !{i,j} are suitably obtained
in terms of the two-cluster maginals !�� by appropriate restriction. Note that by the
fermionic anticommutation relations, in fact D0

(!{i,j}) = IM � D(!{i,j}). Hence for
any feasible solution to our SDP, we have 0 � D(!{i,j}) � IM . Then it follows that
E(2)

0 (N) is itself an upper bound for the optimal value E 0
0(N) of the following (further

relaxed) SDP:

E 0
0(N) := minimize

D2CM⇥M
Tr[hD]

subject to 0 � D � IM ,

Tr[D] = N.

But it is not hard to show that E 0
0(N) =

PN
i=1 �i(h), where �i(h) indicates the i-th

lowest eigenvalue of h. But as is well known for noninteracting problems, this is
precisely the value of E0(N). Hence we have shown E0(N) � E(2)

0 (N) � E 0
0(N) =

E0(N), from which it follows that E(2)
0 (N) = E0(N).

For many problems one also expects asymptotic tightness in the limit of strong in-
teraction. For example, in the t! 0 limit of the Hubbard model, the sites completely
decouple, and we conjecture that our SDP is tight in this scenario.

3.5 Concrete perspective
We want to figure out how to represent !�� in concrete terms. Note that !�� is defined
by its action on AC�[C�

. It is at this point that we introduce for computational
purposes the JWT, though only for restricted fermionic algebras. After specifying
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ordering the sites of C� [C�, i.e., a labeling map �� : C� [C� ! {1, . . . , L��} where
L�� := |C�[C�|, the corresponding JWT fixes an algebra isomorphism J�� : AC�[C�

!
End

⇣NL��

i=1 C2
⌘
' C2

L�� , and we define c��(i) 2 End

⇣NL��

i=1 C2
⌘

to be the image of ai
under this isomorphism for i 2 C� [ C�. More specifically, the transformation J�� is
specified by setting J��(a�1

�� (i)
) = c��i , where

c��i := �z ⌦ · · ·⌦ �z| {z }
(i�1) factors

⌦
✓

0 1

0 0

◆
⌦ I2 ⌦ · · ·⌦ I2| {z }

(L���i) factors

.

Here �z is the usual Pauli matrix �z :=

✓
1 0

0 �1

◆
. Notice that the case � = �

makes perfect sense according to the above definitions, though we will also introduce
the alternative notation J� := J��.

Moreover, F�� := J���!���J �1
�� is a linear functional on End

⇣NL��

i=1 C2
⌘

satisfying

F��(Id) = 1 and F��(A†A) � 0 for any A 2 End

⇣NL��

i=1 C2
⌘
. It follows (via Riesz

representation) that there exists a unique ⇢�� ⌫ 0 with Tr[⇢��] = 1 such that F��(A) =
Tr[A⇢��] for all A 2 End

⇣NL��

i=1 C2
⌘
. That is to say, !��( ˆA) = Tr[A⇢��] whenever

A = J��( ˆA). Again, we introduce the alternative notation ⇢� = ⇢�� for conceptual
clarity.

Motivated by the preceding, we shall replace our optimization over states !�� :

AC�[C�
! C with optimization over density operators ⇢�� 2 End

⇣NL��

i=1 C2
⌘
. Cru-

cially, the correspondence between states and density operators has relied on a sepa-
rate JWT for each pair (�, �), not a single global JWT that maps the global fermionic
state to a global density operator.

Under this correspondence Ge/o
�� [!��] as defined (3.4) can be obtained as⇣

Ge/o
�� [⇢��]

⌘
↵�

= Tr

✓h
J��

⇣
ˆAe/o
�,↵

⌘i† h
J��

⇣
ˆAe/o
�,�

⌘i
⇢��

◆
,

where we abuse notation slightly by identifying Ge/o
�� [⇢��] with Ge/o

�� [!��].
In order to write down a concrete realization of the optimization problem (3.3),

the hurdle that remains is to encode the local consistency constraints !� = !��|AC�

and !� = !��|AC�
for � < �, which require us to ‘marginalize’ our fermionic states.

To see how to do this, we first assume that the labeling map �� satisfies ��(C�) <
��(C�) in the sense that every element of the left-hand side is less than every element
of the right-hand side. (In the case of overlapping clusters, the relevant generaliza-
tion ensures that ��(C�) < ��([C� [ C�]\C�).) For simplicity we also assume that
��|C� = �� for all � < �, and from now on we think of the labeling maps �� as
fixed. It is always possible to choose a labeling that satisfies these assumptions.
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Then it follows from the definition of the JWT that any element A = J��( ˆA) of
J��(AC�

) is of the form

A = B ⌦ Id

N|C� |
i=1

C2

= B ⌦ I2 ⌦ · · ·⌦ I2| {z }
|C� | factors

,

where B = J�( ˆA) 2 End

⇣NL�

i=1 C2
⌘
. Then

!��( ˆA) = Tr[A⇢��] = Tr[B⇢̃�],

where ⇢̃� := Tr��(C�)[⇢��]. Meanwhile, we have J�( ˆA) = B, and !�( ˆA) = Tr[B⇢�].
Hence the constraint !� = !��|AC�

for � < � is equivalent to the stipulation that
Tr[B⇢̃�] = Tr[B⇢�] for all B, i.e., that

⇢� = Tr��(C�)[⇢��].

Meanwhile, for any A = J��( ˆA) where ˆA 2 Ae
C�

is even, we can write

A = I2 ⌦ · · ·⌦ I2| {z }
|C� | factors

⌦B,

where B = J�( ˆA) 2 End

⇣NL�
i=1 C2

⌘
. Hence for all ˆA 2 Ae

C�
, we derive as above that

!�( ˆA) = Tr [B⇢̃�], where ⇢̃� := Tr��(C�)[⇢��]. But for ˆA 2 Ao
C�

, as mentioned above
we can assume !��( ˆA) = !�( ˆA) = 0 (because this identity is a necessary condition
satisfied by the exact marginals) and hence also that Tr[B⇢�] = 0 = Tr[B⇢̃�] for
all B 2 J�(Ao

C�
). Thus the constraint !� = !��|AC�

for � < � is equivalent to the
stipulation that Tr [B⇢̃�] = Tr[B⇢�] for all B, i.e., that

⇢� = Tr��(C�)[⇢��].

Finally, note that the constraint Tr[⇢��] = 1 can simply be encoded, given our first
local consistency constraint, by Tr[⇢�] = 1. Then we obtain the following concrete
realization of (3.3):

E(2)
0 (N) := minimize

{⇢�}, {⇢��}�<�

X
�

Tr

h
J�
⇣
ˆH�

⌘
⇢�
i
+

X
�<�

Tr

h
J��

⇣
ˆH��

⌘
⇢��
i
,

subject to ⇢�� ⌫ 0, 1  � < �  Nc,

⇢� = Tr��(C�)[⇢��], ⇢� = Tr��(C�)[⇢��], � < �,

Tr[⇢�] = 1, � = 1, . . . , Nc,

N =

X
�

Tr

h
J�
⇣
ˆN�

⌘
⇢�
i
,

G [{⇢��}��] ⌫ 0.
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Figure 38: TFI model on periodic 12⇥ 1 lattice. Approximate energies are computed
via the two-cluster-marginal relaxation. Note that ‘p.c.’ indicates the inclusion of
the periodicity constraints introduced in section 2.8.1, and ‘overlap’ indicates that
the choice of overlapping 2⇥ 1 clusters, i.e., {1, 2}, {2, 3}, {3, 4}, . . . , {11, 12}, {12, 1}.

4 Numerical results
All numerical results were computed in MATLAB with CVX [39]. We limit our ex-
periments to problems that are small enough to validate by exact diagonalization.
In particular, we will illustrate numerically the fact that all of our relaxations must
yield lower bounds for the exact energy. As discussed in section 5.3 below, a more
scalable implementation should be possible, but such an implementation (as well as
an accompanying numerical study of properties of larger systems, e.g., approaching
a thermodynamic limit) will be left to future work.

4.1 Transverse-field Ising model
First we consider the transverse-field Ising (TFI) model (2.1) on a periodic 12 ⇥ 1

square lattice, comparing results of the two-cluster-marginal SDP for various cluster
sizes. We also test the periodicity constraints of 2.8.1 and the case of overlapping
clusters. The results are shown in Figure 38.

Next we consider the TFI model on a periodic 4 ⇥ 3 square lattice, comparing
results of the two-cluster-marginal SDP for various cluster sizes. The results are
shown in Figure 39.
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Figure 39: TFI model on periodic 4⇥ 3 lattice. Approximate energies are computed
via the two-cluster-marginal relaxation.

Energy error per site
Exact energy per site 1⇥ 1 2⇥ 1 2⇥ 1, p.c. 2⇥ 1, overlap 3⇥ 1, p.c.

�1.7958 0.6017 0.0634 0.0462 0.0159 0.0048

Table 1: AFH model on periodic 12⇥ 1 lattice. Approximate energies are computed
via the two-cluster-marginal relaxation. Note that ‘p.c.’ indicates the inclusion of
the periodicity constraints introduced in section 2.8.1, and ‘overlap’ indicates that
the choice of overlapping 2⇥ 1 clusters, i.e., {1, 2}, {2, 3}, {3, 4}, . . . , {11, 12}.

4.2 Anti-ferromagnetic Heisenberg model
Here we consider the anti-ferromagnetic Heisenberg model (2.2) on a periodic 12⇥ 1

square lattice, comparing results of the two-cluster-marginal SDP for various cluster
sizes. We also test the periodicity constraints of 2.8.1 and the case of overlapping
clusters. The results are shown in Table 1.

In Table 2 we show results for the AFH model on a periodic 4 ⇥ 3 lattice for
various cluster sizes.

4.3 Hubbard model
Finally we consider the Hubbard model (3.1) on a non-periodic 8 ⇥ 1 lattice with
particle numbers N = 6, 7, 8, 9, 10 and interaction strengths U 2 [0, 12]. In Figure 40,
we plot results for the two-cluster-marginal relaxation with 1⇥ 1 clusters Ci := {(i, "
), (i, #)}. Observe that the for large U , the energy error (even before normalizing by
U) is decreasing in U .
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Energy error per site
Exact energy per site 1⇥ 1 clusters 2⇥ 1 clusters 1⇥ 3 clusters

�2.4561 1.0439 0.3937 0.0410

Table 2: AFH model on periodic 4 ⇥ 3 lattice. Approximate energies are computed
via the two-cluster-marginal relaxation.
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Figure 40: Hubbard model on non-periodic 8 ⇥ 1 lattice. Approximate energies are
computed via the two-cluster-marginal relaxation with 1⇥1 clusters Ci := {(i, "), (i, #
)}. Note that the energy errors in the cases N = 6 and N = 7 coincide with the errors
in the cases N = 10 and N = 9, respectively.
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5 Duality and the effective Hamiltonian perspective
For simplicity, we consider duality only for the two-marginal SDP in the quantum
spin setting, and it will be convenient to take the ‘abstract perspective’ of section 2.4,
with possibly restricted operator sets as in Remark 2. Duality in other settings can
be approached by similar means.

5.1 The quantum Kantorovich problem
In preparation for our discussion of the duality of the two-marginal SDP, we first
introduce the notion of the quantum Kantorovich problem, which is a direct quantum
analog (and in fact generalization) of the Kantorovich problem of optimal transport.
The analogy is defined by replacing probability measures with density operators, a
cost function with a cost operator ˆC, and classical marginalization with quantum
marginalization (i.e., the partial trace). Given operators µi 2 End(Qi) for i = 1, 2 of
unit trace, we may define the optimal quantum Kantorovich cost via the SDP

QK[

ˆC ; µ1, µ2] := minimize
⇡2End(Q

1

⌦Q
2

)
Tr[C⇡]

subject to ⇡ ⌫ 0

µ1 = Tr{2}[⇡], µ2 = Tr{1}[⇡].

Note that if µ1 6⌫ 0 or µ2 6⌫ 0, then since ⇡ ⌫ 0 implies that Tr{i}[⇡] ⌫ 0, the problem
is infeasible, i.e., QK[C ; µ1, µ2] = +1. Hence without loss of generality one may
assume that µi ⌫ 0, i.e., that the µi are indeed density operators on Qi. Nonetheless,
the slightly relaxed perspective will be of some use below. In fact, conversely, the
program is feasible whenever µ1, µ2 ⌫ 0 because in this case ⇡ = µ1⌦ µ2 is a feasible
point.

There is a notion of quantum Kantorovich duality that analogizes the usual notion,
as follows. Let the Hermitian operators A 2 End(Q1) and B 2 End(Q2) be dual
variables for the first and second marginal constraints, respectively. These will be the
‘quantum Kantorovich potentials.’ Dualizing these constraints yields the Lagrangian

LQK(⇡, A,B) = Tr[C⇡] + Tr[A(µ1 � Tr{2}[⇡])] + Tr[B(µ2 � Tr{1}[⇡])]

still constrained by ⇡ ⌫ 0. Using the fact that Tr[ATr{2}[⇡]] = Tr[(A ⌦ Id)⇡] and
Tr[B Tr{1}[⇡]] = Tr[(Id⌦ B)⇡], we obtain

LQK(⇡, A,B) = Tr[Aµ1] + Tr[Bµ2] + Tr[(C � A⌦ Id� Id⌦ B) ⇡].

Now for fixed A,B, we have

inf

⇡⌫0
Tr[(C � A⌦ Id� Id⌦ B) ⇡] =

(
0, C � A⌦ Id� Id⌦ B ⌫ 0

�1, otherwise.
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Hence we have derived the Kantorovich dual problem

maximize
A,B Hermitian

Tr[Aµ1] + Tr[Bµ2] (5.1)

subject to A⌦ Id + Id⌦ B � C.

Strong duality holds by Sion’s minimax theorem (together with the compactness of
the feasible set of the primal problem).

Let ⇡ be the minimizer for the primal problem, ad suppose that the dual problem
admits a maximizer (A,B). Then let M = C � A⌦ Id� Id⌦ B, so

Tr[M⇡] = Tr[C⇡]�Tr[(A⌦ Id)⇡]�Tr[(Id⌦B)⇡] = Tr[C⇡]�Tr[Aµ1]�Tr[Bµ2] = 0,

by primal and dual optimality. But ⇡ ⌫ 0, so we can write ⇡ =

Pm
i=1 pi �i�⇤

i where
pi > 0, and Tr[M⇡] =

Pm
i=1 pi �

⇤
iM�i. But also M ⌫ 0, so pi �⇤

iM�i � 0 for all
i = 1, . . . ,m. Then since Tr[M⇡] = 0 it follows that �⇤

iM�i = 0 for all i = 1, . . . ,m,
and since M ⌫ 0 this means that M�i = 0 for all i = 1, . . . ,m.

Therefore ⇡ is a convex combination of orthogonal projectors onto mutually-
orthogonal, degenerate ground state eigenvectors of the Hamiltonian C � A ⌦ Id �
Id ⌦ B. This observation lifts the corresponding observation in the classical setting
on the support of the Kantorovich coupling, i.e., that ⇡ij � 0 only if �i +  j = cij,
where ⇡ = (⇡ij), � = (�i) and  = ( i) are the Kantorovich potentials, and c = (cij)
is the cost matrix.

In fact, one can consider a regularization of the primal problem by a von Neumann
entropy penalty (scaled by �), for which the solution can be shown to be of the form

⇡� =

1

Z�
exp [��(C � A� ⌦ Id� Id⌦ B�)] ,

where A� and B� are the unique operators chosen to yield the desired marginals
µ1, µ2. In the ‘zero-temperature’ limit � ! 1 one expects ⇡� ! ⇡, A� ! A, and
B� ! B.

5.2 Partial duality
Now we turn to the discussion of duality. Referring to (2.5), we first consider a partial
Lagrangian obtained by dualizing only the constraint (2.9):

Lpart ({⇢i}, {⇢ij}, X) =

X
i

Tr [Hi⇢i] +
X
i<j

Tr [Hij⇢ij]� Tr (G[{⇢ij}]X) ,

whose domain is defined by X 2 C(
P

i m
2

i )⇥(
P

i m
2

i ) Hermitian positive semidefinite
and {⇢i}, {⇢ij} satisfying constraints (2.6), (2.7), and (2.8).
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Now

Tr (G[{⇢ij}]X) =

X
ij

Tr (Gij[⇢ij]Xji)

=

X
i

X
↵�

Tr

h
⇢iO

†
i,↵Oi,�

i
(Xii)�↵

+

X
i 6=j

X
↵�

Tr

h
⇢ij
⇣
O†

i,↵ ⌦Oj,�

⌘i
(Xji)�↵

=

X
i

X
↵�

Tr

h
⇢iO

†
i,↵Oi,�

i
(Xii)�↵

+

X
i<j

X
↵�

⇢
Tr

h
⇢ij
⇣
O†

i,↵ ⌦Oj,�

⌘i
(Xji)�↵

+ Tr

h
⇢ji
⇣
O†

j,� ⌦Oi,↵

⌘i
(Xij)↵�

�
.

Now by the hermiticity of X we have (Xji)�↵ = (Xij)↵�, and we also have the identity

Tr

h
⇢ji
⇣
O†

j,� ⌦Oi,↵

⌘i
= Tr

h
⇢ij
⇣
Oi,↵ ⌦O†

j,�

⌘i
.

Therefore

Tr (G[{⇢ij}]X) =

X
i

Tr [Yi(Xii) ⇢i] +
X
i<j

Tr [Yij(Xij) ⇢ij] ,

where we have defined the functions Yi : C|Ii|⇥|Ii| ! End(Qi) and Yij : C|Ij |⇥|Ii| !
End(Qi ⌦Qj) by

Yi(M) =

X
↵�

M↵� O
†
i,↵Oi,�, Yij(M) =

"X
↵�

M↵�

⇣
O†

i,↵ ⌦Oj,�

⌘#
+ h.c.,

where ‘h.c.’ denotes the Hermitian conjugate. Note that if M is Hermitian, then
Yi(M) is Hermitian as well, hence Yi(Xii) and Yij(Xij) are Hermitian operators.

By applying Sion’s minimax theorem [51] and then separating the infimum over
{⇢i}, {⇢ij} into an outer infimum over {⇢i} (subject to constraint (2.8)) and an inner
infimum over {⇢ij} (subject to constraints (2.6) and (2.7)), we may rewrite the two-
marginal SDP energy as

E(2)
0 = sup

X⌫0
inf

{⇢i} : Tr[⇢i]=1 8i
F (X, {⇢i}) , (5.2)

where

F (X, {⇢i}) :=
X
i

Tr [(Hi � Yi(Xii))⇢i] +
X
i<j

QK[Hij � Yij(Xij) ; ⇢i, ⇢j]. (5.3)
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This is the form of a concave-convex maxmin problem. The effective domain of the
minimization over {⇢i} is in fact specified by the constraints Tr[⇢i] = 1, ⇢i ⌫ 0 for
all i, because if ⇢i 6⌫ 0 for some i, then at least one of the quantum Kantorovich
problems in the expression for F (X, {⇢i}) is infeasible, i.e., of infinite optimal cost.
The significance of this form is that for fixed X, {⇢i}, the two-marginals ⇢ij have
been entirely decoupled from one another in the evaluation of F (X, {⇢i}). Moreover,
for each pair i < j, we see the emergence of an effective Hamiltonians He↵

i (Xii) :=

Hi � Yi(Xii) and He↵
ij (Xij) := Hij � Yij(Xij) on Qi and Qi ⌦Qj, respectively. Notice

that the new contributions to these effective Hamiltonians are linear combinations
of operators of the form O†

i,↵Oi,� and O†
i,↵ ⌦ Oi,�, respectively. Thus we see how our

choice of effective operator lists is reflected in the richness of our class of possible
effective Hamiltonians.

5.3 Computational significance of partial duality
From the computational point of view, the partial dual perspective is of no small
importance. Although general results guarantee that the complexity of solving the
two-marginal SDP (2.5) is only polynomial in M , direct solution (by, e.g., interior-
point methods) may still scale quite poorly in practice. One might hope that the
complexity should be limited only by O(M3

) per iteration, i.e., the cost of diagonal-
izing a matrix of size proportional to M , since the SDP constraint (2.9) concerns a
matrix of size proportional to M . However, since the semidefinite matrix G is entan-
gled with further equality constraints, the best guarantees for interior-point methods
are far more pessimistic. One can interpret our discussion of duality thus far as re-
vealing a special structure of these equality constraints that allows us in principle
to design methods achieving a cost of O(M3

) per iteration. (We remark that simi-
lar considerations could be expected to achieve a cost of O(M) per iteration for the
quasi-local two-marginal SDP with fixed dmax as discussed in section 3, though we
omit details for simplicity.)

Though we will leave implementation along these lines to future work, we will
describe how one can compute gradients of F (X, {⇢i}), enabling the application of
projected gradient ascent-descent methods. For fixed X, {⇢i}, let (A?

ij, B
?
ij) be the

unique dual optimizer (assuming that it exists) for the Kantorovich dual formulation
of QK[Hij � Yij(Xij) ; ⇢i, ⇢j]. Then it follows that

@F
@⇢k

(X, {⇢i}) = Hk � Yk(Xkk) +

X
j>k

A?
kj +

X
i<k

B?
ik

(Note that if the dual optimizer is not unique, one only gets a supergradient.) One
may take a gradient descent step for ⇢k in the direction of the traceless part of @F

@⇢k
, ad-

justing the step size if necessary to guarantee that ⇢k ⌫ 0. Moreover, letting ⇢?ij be the
primal solution of the Kantorovich problem indicated by QK[Hij + Yij(Xij) ; ⇢i, ⇢j],
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we have
@F

@(X ii)↵�

(X, {⇢i}) = �Tr[O†
i,↵Oi,� ⇢i],

@F
@(X ij)↵�

(X, {⇢i}) = �Tr
h⇣

O†
i,↵ ⌦Oj,�

⌘
⇢?ij

i
.

(If the primal optimizer is not unique, one only gets a subgradient.) After taking a
gradient ascent step in X, one may project onto the feasible domain {X ⌫ 0} by
diagonalizing X and zeroing all negative eigenvalues.

Efficient methods for solving the primal and dual quantum Kantorovich problems
(beyond black-box SDP solvers) will be explored in future work. In particular, prelim-
inary results indicate promise for a quantum analog of the classical Sinkhorn scaling
algorithm, for which the computational cost per iteration is roughly given by the cost
of diagonalizing certain operators on Qi ⌦Qj.

5.4 Full duality
We now turn to deriving the full dual to the original two-marginal SDP. For now
we proceed formally, postponing a discussion of strong duality until the end of the
section. First introduce dual variables �i 2 R for the constraints Tr[⇢i] = 1 appearing
in the minimization within (5.2), and then exchange supremum and infimum to obtain
the problem:

sup

X⌫0,�
inf

{⇢i}

(X
i

�i(1� Tr[⇢i]) + F (X, {⇢i})
)

= sup

X⌫0,�

⇢X
i

�i + inf

{⇢i}

⇢X
i

Tr [(Hi � Yi(Xii)� �i)⇢i] +

X
i<j

QK[Hij � Yij(Xij) ; ⇢i, ⇢j]

��
.

Now by substituting the Kantorovich dual expression (5.1) for QK and then exchang-
ing maximization and minimization, we obtain the problem:

maximize
X⌫0,�2RM , {Aij}, {Bij}

X
i

�i + inf

{⇢i}

⇢X
i

Tr [(Hi � Yi(Xii)� �i)⇢i]

+

X
i<j

Tr [Aij⇢i] +
X
i<j

Tr [Bij⇢j]

�
subject to Aij ⌦ Id + Id⌦ Bij � Hij � Yij(Xij), i < j,

X ⌫ 0.

Now the expression within the infimum in the objective function can be rewrittenX
i

Tr

" 
Hi � Yi(Xii)� �i +

X
j>i

Aij +

X
j<i

Bji

!
⇢i

#
,
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so carrying out the infimum within the objective function, we arrive at the full dual:

maximize
X⌫0,�2RM , {Aij}, {Bij}

1>�

subject to Hi � Yi(Xii)� �i +
X
j>i

Aij +

X
j<i

Bji = 0, i = 1, . . . ,M,

Aij ⌦ Id + Id⌦ Bij � Hij � Yij(Xij), 1  i < j M,

X ⌫ 0,

where the optimization variables Aij 2 End(Qi) and Bij 2 End(Qj) are understood
to be Hermitian.

Strong duality can be understood as follows. Though we have taken an indirect
path, the same dual problem could have been derived by directly dualizing the original
primal problem (2.5) in the usual fashion. Since the feasible domain for {⇢i}, {⇢ij}i<j

in this problem is compact, Sion’s minimax theorem applies, and strong duality holds.
The question of whether the dual optimizer is attained is more subtle and will be
deferred to future work, though see Part VIII for the discussion of strong duality in
a similar setting.
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Appendices

A Proof of Isserlis-Wick theorem
Proof. For any b 2 RN , define

Z0(b) =

ˆ
RN

e�
1

2

xTAx+bT x
dx. (A.1)

Clearly Z0 = Z0(0). Performing the change of variable ex = x+ A�1b, we find

Z0(b) = e
1

2

bTA�1bZ0. (A.2)

Observe that, for integers 1  ↵1, . . . ,↵m  N ,

@mZ0(b)

@b↵
1

· · · @b↵m

���
b=0

=

ˆ
RN

x↵
1

· · · x↵me
� 1

2

xTAx
dx. (A.3)

Combining with Eq. (A.2), we have that

hx↵
1

· · · x↵mi0 =
@m

@b↵
1

· · · @b↵m

e
1

2

bTA�1b
���
b=0

. (A.4)

Now write the Taylor expansion

e
1

2

bTA�1b
=

1X
n=0

1

n! 2n
�
bTA�1b

�n
. (A.5)

Since the expansion contains no odd powers of the components of b, the right-hand
side of Eq. (A.4) vanishes whenever m is odd. If m is an even number, only the term
n = m/2 in the Taylor expansion will contribute to the right-hand side of Eq. (A.4).
This gives

@m

@b↵
1

· · · @b↵m

e
1

2

bTAb
���
b=0

=

1

2

m/2
(m/2)!

@m

@b↵
1

· · · @b↵m

�
bTA�1b

�m/2
. (A.6)

Now one can write
@m

@b↵
1

· · · @b↵m

=

@m

@m1b�
1

· · · @mpb�p

where the indices �1, . . . , �p are distinct and
Pp

j=1 mj = m. Then to further simplify
the right-hand side of Eq. (A.6), we are interested in computing the coefficient of the
bm1

�
1

· · · bmp

�p
term of the polynomial (bTA�1b)m/2. Expand (bTA�1b)m/2 into a sum of

monomials as
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(bTA�1b)m/2
=

X
j
1

,k
1

,...,jm/2,km/2

m/2Y
i=1

(A�1
)ji,kibjibki .

Thus each distinct permutation (j1, k1, . . . , jm/2, km/2) of the multiset {↵1, . . . ,↵m}21

contributes
Qm/2

i=1 (A
�1
)ji,ki to our desired coefficient.

Since
@m

@m1b�
1

· · · @mpb�p
bm1

�
1

· · · bmp

�p
= m1! · · ·mp!,

we obtain from Eq. (A.4) and Eq. (A.6)

hx↵
1

· · · x↵mi0 =
m1! · · ·mp!

2

m/2
(m/2)!

X
(j

1

,k
1

,...,jm/2,km/2)

m/2Y
i=1

(A�1
)ji,ki , (A.7)

where the sum is understood to be taken over multiset permutations of {↵1, . . . ,↵m}.
Now every permutation of Im can be thought of as inducing a permutation of

the multiset {↵1, . . . ,↵m} via the map (l1, . . . , lm) 7! (↵l
1

, . . . ,↵lm). By this map
each multiset permutation of {↵1, . . . ,↵m} is associated with m1! · · ·mp! different
permutations of Im.

Moreover, every permutation of Im can be thought of as inducing a pairing on
Im by pairing the first two indices in the permutation, then the next two, etc. For
example, if m = 4, then the permutation (1, 4, 3, 2) induces the pairing (1, 4)(3, 2).
By this map, each pairing on Im is associated with 2

m/2
(m/2)! permutations of Im

since a pairing does not distinguish the ordering of the pairs, nor the order of the
indices within each pair.

Finally, observe that if we take any two permutations of Im associated with
a pairing on Im and then consider the (possibly distinct) multiset permutations
(j1, k1, . . . , jm/2, km/2) and (j01, k

0
1, . . . , j

0
m/2, k

0
m/2) of {↵1, . . . ,↵m} associated to these

permutations, then in fact
Qm/2

i=1 (A
�1
)ji,ki =

Qm/2
i=1 (A

�1
)j0i,k

0
i
.

Thus we can replace the sum over multisets in Eq. (A.7) with a sum over pairings
on Im. Each term must be counted 2m/2(m/2)!

m
1

!···mp!
times because each pairing on Im

induces 2

m/2
(m/2)! permutations of Im, each of which is redundant by a factor of

m1! · · ·mp!. This factor cancels with the factor in Eq. (A.7) to yield

hx↵
1

· · · x↵mi0 =
X

�2⇧(Im)

Y
i2Im/�

(A�1
)↵i,↵�(i)

.

Recalling that G0
= A�1, this completes the proof of Theorem 2.

Remark 4. In field theories, the auxiliary variable b is often interpreted as a coupling
external field.

21For instance, if ↵1 = 1,↵2 = 1,↵3 = 2, there are only three distinct multiset permutations:
(1, 1, 2), (1, 2, 1), and (2, 1, 1).
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B Proof of skeleton decomposition
Proof. As suggested in the statement of the proposition, let �(k) be the maximal
insertions admitted by �, where we do not count separately any insertions that differ
only by their external labeling (see Remark 25). Let h(k)

1 and h(k)
2 be half edges such

that � admits the insertion �(k) at (h(k)
1 , h(k)

2 ). Let e(k)1 , e(k)2 be the external half-edges
of the truncated Green’s function diagram �

(k) paired with h(k)
1 , h(k)

2 , respectively, in
the overall diagram �.

First we aim to show that the �(k) are disjoint, i.e., share no half-edges. In this
case we say that the �(k) do not overlap. In fact we will show additionally that the
external half-edges of the �(k) do not touch one another (i.e., are not paired in �),
and accordingly we say that the �(k) do not touch.

To this end, let j 6= k. The idea is to consider the diagrammatic structure formed
by collecting all of the half-edges appearing in �(j) and �(k) and then arguing by
maximality that �(j) and �(k) cannot overlap or touch, let this structure admit �(j)

and �(k) as insertions.
We now formalize this notion. Let H(j) and H(k) be the half-edge sets of �(j) and

�

(k), respectively, and consider the union H(j,k)
:= H(j)[H(k), together with a partial

pairing ⇧(j,k) on H(j,k), i.e., a collection of disjoint pairs in H(j,k), defined by the rule
that {h1, h2} 2 ⇧(j,k) if and only if {h1, h2} 2 ⇧� and h1, h2 2 H(j,k). In other words,
the structure (H(j,k),⇧(j,k)

) is formed by taking all of the half-edges appearing in �(j)

and �(k) and then pairing the ones that are paired in the overall diagram �.
Let E(j,k) be the subset of unpaired half-edges in H(j,k), i.e., those half-edges that

do not appear in any pair in ⇧(j,k). Since all half-edges in �(k) besides e(k)1 , e(k)2 are
paired in the diagram �

(k), we must have E(j,k) ⇢ {e(j)1 , e(j)2 , e(k)1 , e(k)2 }.

Lemma 5. |E(j,k)| = 4.

Proof. We claim that |E(j,k)| is even. To see this, we first establish that |H(j,k)| is
even. Notice that a truncated Green’s function diagram (in particular, �(j) and �(k))
contains an even number of half-edges (more specifically 4n, where n is the order
of the diagram). Thus |H(j)|, |H(k)| are even. Moreover, �(j) and �(k) share a half-
edge if and only if they share the vertex (or interaction line) associated with this
half-edge, in which case �(j) and �(k) share all four half-edges emanating from this
vertex. Thus the number |H(j) \H(k)| of half-edges common to �(j) and �(k) is four
times the number of common interaction lines, in particular an even number. So
|H(j,k)| = |H(j)| + |H(k)| � |H(j) \H(k)| is even, as desired. Now any partial pairing
on H(j,k) includes an even number of distinct elements, so the number of leftover
elements, i.e., |E(j,k)|, must be even as well, as claimed.

Next we rule out the cases |E(j,k)| 2 {0, 2}.
Suppose that |E(j,k)| = 0. Then the structure (H(j,k),⇧(j,k)

) defines a closed sub-
diagram of �, disconnected from the rest of �. Since � is not closed, the sub-diagram
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cannot be all of �. This conclusion contradicts the connectedness of �.22

Next suppose that |E(j,k)| = 2. Then the structure (H(j,k),⇧(j,k)
) has two unpaired

half-edges, hence defines a truncated Green’s function diagram �

(j,k) that contains
both �(j) and �(k) and admits both as insertions. But since �(j) 6= �

(k), �(j,k) is
neither �(j) nor �(k) (i.e., the containment is proper). This conclusion contradicts the
maximality of �(j) and �(k).

From Lemma 5 it follows that E(j,k)
= {e(j)1 , e(j)2 , e(k)1 , e(k)2 }. (And moreover we

have e(j)1 , e(j)2 , e(k)1 , e(k)2 are distinct, which was not assumed!) This establishes one of
our original claims, i.e., that the external half-edges of �(j) and �(k) do not touch (i.e.,
are not paired.)

We need to establish the other part of our original claim, i.e., that the half-edge
sets H(j) and H(k) are disjoint. To see this, suppose otherwise, so �(j) and �(k) share
some half-edge h. Since �(j) 6= �(k), one of H(j) and H(k) does not contain the other,
so assume without loss of generality that H(j) does not contain H(k), so there is some
half-edge h0 2 H(k)\H(j). Since �(k) is connected there must be some path in �(k)

connecting h with h0.23 Now �

(j) can be disconnected from the rest of � by deleting
the links {e(j)1 , h(j)

1 } and {e(j)2 , h(j)
2 } from the pairing ⇧�, so evidently our path in �(k)

connecting h and h0 must contain either (e(j)1 , h(j)
1 ) or (e(j)2 , h(j)

2 ) as a ‘subpath.’ But
then either e(j)1 or e(j)2 is paired in �(k), hence also by ⇧(j,k), contradicting its inclusion
in E(j,k).

In summary we have shown that the �(k) are disjoint, i.e., share no half-edges,
and that the external half-edges of the �(k) do not touch one another, i.e., are not
paired in �. We can define a truncated Green’s function diagram �s by considering
�, then omitting all half-edges and vertices appearing in the �(k). Since the �(k) are
disjoint and do not touch, this leaves behind the half-edges h(k)

1 , h(k)
2 for all k, which

are now left unpaired. Then we complete the construction of �s by adding the pairings
{h(k)

1 , h(k)
2 }. In short, we form �s from � by replacing each insertion �(k) with the edge

{h(k)
1 , h(k)

2 }. Eq. (4.2) then holds by construction, for a suitable external labeling of
the �(k).

Moreover, we find that �s is 2PI. It is not hard to check first that �s is 1PI.
Indeed, the unlinking of any half-edge pair in �s that is not one of the {h(k)

1 , h(k)
2 } can

be lifted to the unlinking of the same half-edge pair in the original diagram �. Since
� is 1PI, this unlinking does not disconnect �. Re-collapsing the maximal insertions
once again does not affect the connectedness of the result, so �s does not become
disconnected by the unlinking. On the other hand, the unlinking of a half-edge pair
{h(k)

1 , h(k)
2 } were to disconnect �s, then necessarily the unlinking of either {e(k)1 , h(k)

1 }
or {e(k)2 , h(k)

2 } would disconnect �, which contradicts the premise that � is 1PI.
22Interestingly, if one were to try to construct a unique skeleton decomposition for closed connected

diagrams, i.e., free energy diagrams, this is the place where the argument would fail; see section 4.9.
23By such a ‘path’ we mean a sequence of half-edges (h1, h2, . . . , h2m�1, h2m) in �(k) such that

h1 = h; h2m = h0; hl, hl+1 share an interaction line for l odd; and hl, hl+1 are paired by �(k).
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Thus �s is 1PI, and two-particle irreducibility is equivalent to the absence of any
insertions. But if �s admits an insertion containing either h(k)

1 or h(k)
2 , then this

contradicts the maximality of the insertion �(k) in �. Moreover, if �s admits an
insertion containing none of the h(k)

1 , h(k)
2 , then this insertion lifts to an insertion in

the original diagram �, hence this insertion (i.e., all of its interaction lines and half-
edges) must have been omitted from �s (contradiction). We conclude that �s admits
no insertions, hence is 2PI.

Finally it remains to prove the uniqueness of the decomposition of Eq. (4.2). To
this end, let �s 2 F2PI

2 and �(k) 2 Fc,t
2 for k = 1, . . . , K, and let

n
h(k)
1 , h(k)

2

o
be distinct

half-edge pairs in �s for k = 1, . . . , K. Then define � via Eq. (4.2). The uniqueness
claim then follows if we can show that the �(k) are the maximal insertions in �.

Suppose that �(k) is not maximal for some k. Then by definition the diagram �

0

formed from � by collapsing the insertion �(k) admits an insertion containing h(k)
1 or

h(k)
2 (assume h(k)

1 without loss of generality). In fact let �(k)
m be a maximal insertion

containing h(k)
1 . Note also that �0 still admits the �(j) for j 6= k as insertions.

Then for j 6= k form the structure (H(j,k),⇧(j,k)
) by ‘merging’ �(j) and �(k)

m via the
same construction as above (now within the overall diagram �

0). By the same reason-
ing as in Lemma 5, the set of unpaired half-edges E(j,k) must be of even cardinality,
and we can rule out the case |E(j,k)| = 0.

In the case |E(j,k)| = 2, the structure (H(j,k),⇧(j,k)
) once again defines a truncated

Green’s function diagram �

(j,k) admitting both �(j) and �(k)
m as insertions. But since

�

(k)
m is maximal, �(j,k)

= �

(k)
m , and �(j) is contained in �(k)

m .
In the case |E(j,k)| = 4, since �(j) does not contain �(k)

m (i.e., the half-edge set of the
former does not contain that of the latter), the same reasoning as above guarantees
that �(j) and �(k)

m do not overlap or touch.
Then consider the diagram �

00 formed from �

0 by collapsing the insertion �(j). In
both of our cases (namely, that �(j) is contained in �(k)

m and that �(j) and �(k)
m do not

overlap or touch), the insertion �(k)
m descends to an insertion in �00 containing h(k)

1 .
Iteratively repeating this procedure for all j 6= k (i.e., collapsing all of the inser-

tions �(j) to obtain the original skeleton diagram �s), we find that �(k)
m descends to

an insertion in �s containing h(k)
1 , contradicting the fact that �s is 2PI.
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C Definitions and results from convex analysis
In this section we review some definitions and results from convex analysis. In this
work many results are stated for concave functions, i.e., functions f such that �f are
convex. The standard results of convex analysis can always be applied by considering
negations. We state results below for convex functions to maintain consistency with
the literature. Many results are stated in somewhat more generality than is needed
for the purposes of this work (e.g., we do not simply conflate proper and non-proper
convex functions). This is done to make sure that the reader can refer to the cited
references. The discussion follows developments from Rockafellar [91] and Rockafellar
and Wets [92].

C.1 Convex sets and functions
We begin with the definition of convex sets and functions.

Definition 6. A set C ⇢ Rn is convex if (1� t)x+ ty 2 C for every x, y 2 C and all
t 2 [0, 1].

Definition 7. An extended real-valued function f on a convex set C, i.e., a function
f : C ! [�1,1] = R [ {�1,+1}, is convex if

f ((1� t)x+ ty)  (1� t)f(x) + tf(y)

for all x, y 2 C and all t 2 (0, 1), where we interpret 1 �1 = +1 if necessary.
We say that f is strictly convex on the convex set C if this inequality holds strictly
whenever x 6= y.

Definition 8. The (effective) domain of a convex function f on S, denoted dom f ,
is the set dom f = {x 2 S : f(x) < +1}.

The following is an immediate consequence of the preceding definitions:

Lemma 9. Let f be convex on S ⇢ Rn. Then dom f is convex.

We note that when f 2 C2
(C), our definition of convexity coincides with the

definition from multivariate calculus:

Theorem 10. Let f 2 C2
(C), where C ⇢ Rn is open and convex. Then f is convex

on C if and only if the Hessian matrix r2f(x) is positive semi-definite for all x 2 C.

Proof. See Theorem 4.5 of Rockafellar [91].

Notice that for f convex on a convex set C ⇢ Rn, we can extend to ˜f defined on
Rn by taking ˜f |Rn\C ⌘ +1. It is immediate that ˜f is convex on Rn. Thus one loses
no generality by considering only functions that are convex on Rn.

The following definitions are helpful for ruling out pathologies:
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Definition 11. A convex function f is called proper if dom f 6= ; and f(x) > �1
for all x.

We will only ever need to consider proper convex functions.

Definition 12. If f is a proper convex function, then f is called closed if it is also
lower semi-continuous. (If f is a non-proper convex function, then f is called closed
if it is either f ⌘ +1 or f ⌘ �1.)

Remark 13. For the fact that this can be taken as the definition, see Theorem 7.1 of
[91].

The convexity of a function guarantees its continuity in a certain sense:

Theorem 14. A convex function f on Rn is continuous relative to any relatively
open convex set in dom f . In particular, f is continuous on int dom f . In fact, it
holds that a proper convex function f is locally Lipschitz on int dom f .

Proof. See Theorems 10.1 and 10.4 of Rockafellar [91].

C.2 First-order properties of convex functions
There is an extension of the notion of differentiability that is fundamental to the
analysis of convex functions.

Definition 15. Let f be a convex function on Rn. y 2 Rn is called a subgradient of
f at x 2 dom f if f(z) � f(x) + hy, z � xi for all z 2 Rn. The subdifferential of f
at x 2 dom f , denoted @f(x), is the set of all subgradients of f at x. By convention
@f(x) = ; for x /2 dom f .

Theorem 16. Let f be a proper convex function. @f(x) is a non-empty bounded set
if and only if x 2 int dom f .

Proof. See Theorem 23.4 of Rockafellar [91].

It is perhaps no surprise that the derivative and the subdifferential of a convex
function coincide wherever it is differentiable.

Theorem 17. Let f be a convex function, and let x 2 Rn such that f(x) is finite. If
f is differentiable at x, then rf(x) is the unique subgradient of f at x, where r is
the gradient defined with respect to the inner product used to define the subgradient.
Conversely, if f has a unique subgradient at x, then f is differentiable at x.

Proof. See Theorem 25.1 of Rockafellar [91].
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C.3 The convex conjugate
A fundamental notion of convex analysis is convex conjugation, which extends the
older notion of Legendre transformation.

Definition 18. Let f be a function Rn ! [�1,+1]. Then the convex conjugate (or,
Legendre-Fenchel transform) f ⇤

: Rn ! [�1,+1] with respect to an inner product
h · , · i on Rn is defined by

f ⇤
(y) = sup

x
{hx, yi � f(x)} = � inf

x
{f(x)� hx, yi} .

Theorem 19. Let f be a convex function. Then f ⇤ is a closed convex function,
proper if and only if f is proper. Furthermore, if f is closed, then f ⇤⇤

= f.

Proof. See Theorem 12.2 of Rockafellar [91].

It is an important fact that the subgradients of f and f ⇤ are, in a sense, inverse
mappings.

Theorem 20. If f is a closed proper convex function, then x 2 @f ⇤
(y) if and only if

y 2 @f(x).

Proof. See Corollary 23.5.1 of Rockafellar [91].

Roughly speaking, differentiability of a convex function corresponds to the strict
convexity of its conjugate. Indeed:

Theorem 21. If f is a closed proper convex function, then the following are equiva-
lent:

1. int dom f is nonempty, f is differentiable on int dom f , and @f(x) = ; for all
x 2 dom f \ int dom f .

2. f ⇤ is strictly convex on all convex subsets of dom @f ⇤
:= {y : @f ⇤

(y) 6= ;}.

Proof. See Theorem 11.13 of [92].

Note that for proper convex f , if dom f ⇤ is open, then dom @f ⇤
= dom f ⇤ by

Theorem 16, and under the additional assumption that dom f is open, Theorem 21
simplifies to the following:

Theorem 22. Let f is a lower semi-continuous, proper convex function, and suppose
that dom f and dom f ⇤ are open. Then the following are equivalent:

1. f is differentiable on dom f .

2. f ⇤ is strictly convex on dom f ⇤.
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C.4 Sequences of convex functions
Pointwise convergence of convex functions entails a kind of convergence of their sub-
gradients.

Theorem 23. Let f be a convex function on Rn, and let C be an open convex set
on which f is finite. Let f1, f2, . . . be a sequence of convex functions finite on C and
converging pointwise to f on C. Let x 2 C, and let x1, x2, . . . be a sequence of points
in C converging to x. Then for any " > 0, there exists N such that

@fi(xi) ⇢ @f(x) + B"(0)

for all i � N .

Proof. See Theorem 24.5 of Rockafellar [91].

Besides pointwise convergence, there is in fact another nature of convergence for
convex functions. This is the notion of epi-convergence, which is defined (even for
non-convex functions) as follows:

Definition 24. Let fi, f be extended-real-valued functions on Rn. Then we say that
the sequence {fi} epi-converges to f , written as f = e limi!1 fi or fi

e! f as i!1,
if for all x 2 Rn, the following two conditions are satisfied:

lim inf

i
fi(xi) � f(x) for every sequence xi ! x

lim sup

i
fi(xi)  f(x) for some sequence xi ! x.

We say that the sequence {fi} hypo-converges to f , written as f = h limi!1 fi or
fi

h! f as i!1, if {�fi} epi-converges to �f .

The notion of epi-convergence is particularly natural in the theory of convex func-
tions; accordingly hypo-convergence is more relevant to concave functions. Note
also that epi-convergence is neither stronger nor weaker than pointwise convergence.
However, there is a useful theorem that relates the pointwise convergence and epi-
convergence of convex functions.

Theorem 25. Let fi be a sequence of convex functions on Rn, and let f be a lower
semi-continuous convex function on Rn such that dom f has non-empty interior. Then
f = e limi!1 fi if and only if the fi converge uniformly to f on every compact set C
that does not contain a boundary point of dom f .

Proof. See Theorem 7.17 of Rockafellar and Wets [92].

Under certain mild conditions, the epi-convergence of a sequence of convex func-
tions is equivalent to the epi-convergence of the corresponding sequence of conjugate
functions. Indeed, the following theorem is a natural motivation for considering epi-
convergence as opposed to pointwise convergence.
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Theorem 26. Let fi and f be lower semi-continuous, proper convex functions on
Rn. Then the fi epi-converge to f if and only if the f ⇤

i epi-converge to f ⇤.

Proof. See Theorem 11.34 of Rockafellar and Wets [92].

Finally, under certain circumstances one can upgrade mere pointwise convergence
of convex functions to uniform convergence on compact subsets:

Theorem 27. Let fi and f be finite convex functions on an open convex set O ⇢ Rn,
and suppose that fi ! f pointwise on O. Then fi converges uniformly to f on every
compact subset of O.

Proof. See Corollary 7.18 of Rockafellar and Wets [92].
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D Classical results on weak convergence of probabil-
ity measures

For completeness we recall here several classical results on the weak convergence of
measures. For reference, see, e.g., Billingsley [13].

Let S be a metric space, and let P(S) denote the set of probability measures on
S (equipped with the Borel �-algebra). We say that a sequence µk 2 P(S) converges
weakly to µ 2 P(S), denoted µk ) µ, if

´
f dµk !

´
f dµ as k ! 1 for all

bounded, continuous functions f : S ! R. A number of equivalent characterizations
of weak convergence are given in the following result, often known as the Portmanteau
theorem:

Theorem 28 (Portmanteau). Let S be a metric space, and let µk, µ 2 P(S). The
following are all equivalent conditions for the weak convergence µk ) µ:

1. limk!1
´
f dµk =

´
f dµ for all bounded, continuous functions f : S ! R.

2. lim infk!1
´
f dµk �

´
f dµ for all lower semi-continuous functions f : S ! R

bounded from below.

3. lim infk!1 µk(U) � µ(U) for all open sets U ⇢ S.

Remark 29. There are several other equivalent conditions often included in the state-
ment of this result.

A condition for extracting a weakly convergent subsequence, as guaranteed by
Prokhorov’s theorem below, is given by the following notion of tightness:

Definition 30. Let S be a metric space equipped with the Borel �-algebra. A set C
of measures on S is called tight if for any " > 0, there exists a compact subset K ⇢ S
such that µ(K) > 1 � " for all µ 2 C. A sequence of measures is called tight if the
set of terms in the sequence is tight.

Theorem 31 (Prokhorov). Let S be a metric space equipped with the Borel �-algebra.
Then any tight sequence in P(S) admits a weakly convergent subsequence.
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E Proofs of lemmas from Part III

E.1 Lemma 8
Proof. Suppose µ ⌧ � is in M2 and write dµ = ⇢ dx where ⇢ is the probability
density. Since µ ⌧ �, Cov(µ) must be positive definite. Let µG be the Gaussian
measure with the same mean and covariance as µ, and let ⇢G be the corresponding
probability density. Then one can compute that

ˆ
⇢ log ⇢G dx = �1

2

log

�
(2⇡e)N detCov(µ)

�
(and in particular this integral is absolutely convergent). Now

⇢ log ⇢ = ⇢ log ⇢G + ⇢ log
⇢

⇢G
.

The first term on the right-hand side of this equation is absolutely integrable, and
the integral of the second term exists (in particular, the integral of the negative part
of the second term is finite, and the value of the full integral is in fact �HµG(µ)).
Therefore the integral

´
⇢ log ⇢ dx 2 (�1,1] exists. Moreover

H(µ) = �
ˆ
⇢ log ⇢ dx

=

1

2

log

�
(2⇡e)N detCov(µ)

�
+HµG(µ)

 1

2

log

�
(2⇡e)N detCov(µ)

�
,

with equality if and only if µG = µ.
To prove the second inequality in the statement of the lemma, define µ :=

´
x dµ

to be the mean of µ. Then Cov(µ) = G(µ) � µµT , so in particular detCov(µ) 
detG(µ), with equality if and only if µ = 0.

E.2 Lemma 9
Proof. Without loss of generality we can assume that µj = ⇢j dx for all j.

First, by the Portmanteau theorem for weak convergence of measures (Theorem
28) we have, for any z 2 Rn, that

zTG(µ)z =

ˆ
(zTx)2 dµ  lim inf

j!1

ˆ
(zTx)2 dµ(j)

= lim inf

j!1

ˆ
zTxxT z dµ(j)

= lim inf

j!1
zTG(µj)z  Ckzk2.

It follows that µ 2M2 (and moreover G(µ) � C · In).
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Our goal is to put ourselves in a position to use the upper semi-continuity (note
our sign convention) of the relative entropy with respect to the topology of weak
convergence (see Fact 7). Let � > 0, and let Z� =

´
e��kxk

2

dx. Let �� be the
Gaussian measure with density proportional to e��kxk

2 . Then

H(µj) = �
ˆ
⇢j log ⇢j dx

= log(Z�)�
ˆ
⇢j(x) log

⇢j(x)
1
Z�
e��kxk2

dx+ �

ˆ
⇢j(x)kxk2 dx

= log(Z�) +H��(µj) + �Tr[G(µj)].

Then by the upper semi-continuity of the relative entropy with respect to the
topology of weak convergence, we have

lim sup

j!1
H(µj)  log(Z�) +H��(µ) + �CN = H(µ) + � (CN � Tr[G(µ)]) .

Since this inequality holds for any � > 0, the lemma follows.

E.3 Fact 11
Proof. We can assume that µ is absolutely continuous with respect to the Lebesgue
measure, i.e., has a density ⇢ (otherwise H(µ) = �1 and the inequality is trivial).
It follows that µi := ⇡i#µ are absolutely continuous with respect to the Lebesgue
measure, i.e., have densities ⇢i, for i = 1, 2. Let x = (x1, x2) denote the splitting of
x 2 RN according to the product structure Rn

= Rp ⇥ RN�p. Then using the fact
that µ1 ⇥ µ2 has density ⇢1(x1)⇢2(x2), one directly computes that

H(µ1) +H(µ2) +Hµ
1

⇥µ
2

(µ)

=

ˆ
⇢1(x1) log ⇢1(x1) dx1 +

ˆ
⇢2(x2) log ⇢2(x2) dx2 +

ˆ
⇢(x) log

⇢(x)

⇢1(x1)⇢2(x2)
dx

=

ˆ
⇢(x) log ⇢1(x1) dx+

ˆ
⇢(x) log ⇢2(x2) dx+

ˆ
⇢(x) log

⇢(x)

⇢1(x1)⇢2(x2)
dx

=

ˆ
⇢(x) log ⇢(x) dx

= H(µ).

But by Fact 7, the relative entropy term is non-negative.

E.4 Lemma 2
Proof. Upper semi-continuity follows directly from Fatou’s lemma. ⌦ is proper be-
cause its domain is nonempty and evidently ⌦ does not attain the value +1.
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Now let ✓ 2 [0, 1] and A1, A2 2 dom⌦. Then

⌦[✓A1 + (1� ✓)A2]

= � log

ˆ
Rn

⇣
e�

1

2

xTA
1

x�U(x)
⌘✓ ⇣

e�
1

2

xTA
2

x�U(x)
⌘1�✓

dx

� � log

"✓ˆ
Rn

e�
1

2

xTA
1

x�U(x)
dx

◆✓ ✓ˆ
Rn

e�
1

2

xTA
2

x�U(x)
dx

◆1�✓
#

= ✓⌦[A1] + (1� ✓)⌦[A2],

where we have used Hölder’s inequality in the second step. This establishes concavity.
Strict concavity on dom⌦ follows from the following fact: Hölder’s inequality holds
with equality in this scenario if and only if e� 1

2

xTA
1

x�U(x)
= e�

1

2

xTA
2

x�U(x) for all x,
i.e., if and only if A1 = A2.

Lastly observe that since dom⌦ is an open set, for any A 2 dom⌦,
ˆ n

R
e�x

2

e�
1

2

xTAx�U(x)
dx < +1

for some � > 0. Now, for any polynomial P , there exists a constant C such that for
all A0 in a sufficiently small neighborhood of A,

P (x)e�
1

2

xTA0x�U(x)  Ce�x
2

e�
1

2

xTAx�U(x).

Since derivatives of all orders of the integrand in (2.2) are of the form

P (x)e�
1

2

xTAx�U(x),

differentiation under the integral is justified, and the smoothness result follows.

E.5 Lemma 16
Proof. First assume A 2 dom⌦, so Z[A] < +1. Let µ 2 M2 and define f(x) :=

1
2
xTAx+U(x). For any f such that e�f is integrable, define ⌫f to be the probability

measure with density proportional to e�f . Then provided µ⌧ �,
ˆ

f dµ�H(µ) = ⌦[A]�
ˆ

log

✓
1

Z[A]
e�f

◆
dµ�H(µ)

= ⌦[A] +

ˆ
log

✓
dµ

d�

◆
� log

✓
d⌫f
d�

◆
dµ

= ⌦[A] +

ˆ
log

dµ

d⌫f
dµ

= ⌦[A]�H⌫f (µ) � ⌦[A].

(E.1)
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Since µ 2M2, we have H(µ) < +1 as discussed in Remark 17. Careful observation
reveals that manipulations are valid in the sense of the extended real numbers even
when

´
f dµ = +1. Moreover, µ 6⌧ � if and only if µ 6⌧ ⌫f , in which case both

sides of (E.1) are +1. Therefore (E.1) holds for all µ 2M2.
For A 2 dom⌦, (E.1) establishes the ‘’ direction of (3.3). For A /2 dom⌦,

⌦[A] = �1, so this direction is immediate.
Next suppose that A 2 dom⌦. Since dom⌦ is open, it follows that ⌫f 2 M2.

From (E.1) and the inequality �H⌫f (µ) � 0 (which holds with equality if and only if
µ = ⌫f ), it follows that (3.3) holds. Moreover, that the infimum in (3.3) is uniquely
attained at µ = ⌫f , i.e., at dµ(x) = 1

Z[A]
e�

1

2

xTAx�U(x)
dx.

E.6 Lemma 19
Proof. By definition F [G] = �1 whenever G 2 SN\SN

+ . Now we show that also
F [G] = �1 for G on the boundary @SN

+ . This follows from the fact that for such G,
any µ 2 G�1

(G) is supported on a subspace of Rn of positive codimension, i.e., not
absolutely continuous with respect to the Lebesgue measure, and therefore H(µ) =
�1. Moreover, since such µ is in M2, we have (via the weak growth condition) that´
U dµ 2 (�1,1], so the expression within the supremum of (3.2) is �1 for all

µ 2 G�1
(G).

Meanwhile, for G 2 SN
++, one can see that F [G] > �1 by considering µ to be

mean-zero with a compactly supported smooth density, linearly transformed to have
the appropriate covariance G. For such µ, both terms in the supremum are finite.

Moreover, for G 2 SN
++ we also have that F [G] < +1. Indeed, for µ 2 G�1

(G),
by Lemma 8 we have H(µ)  1

2
log [(2⇡e)n detG]. Since

´
U dµ � �CU(1+TrG), we

have a finite upper bound on the expression in the supremum in (3.2), which finishes
the proof.

E.7 Lemma 20
Proof. Let G1, G2 2 Sn

++, ✓ 2 [0, 1], and " > 0. Furthermore let µ1, µ2 2 M2 such
that µi 2 G�1

(Gi) and  [µi] � F [Gi] � "/2. Then, noting that ✓µ1 + (1 � ✓)µ2 2
G�1

(✓G1 + (1� ✓)G2), we observe

F [✓G1 + (1� ✓)G2] = sup

µ2G�1(✓G
1

+(1�✓)G
2

)

 [µ]

�  [✓µ1 + (1� ✓)µ2]

� ✓ [µ1] + (1� ✓) [µ2]

� ✓F [G1] + (1� ✓)F [G2]� ",

where the penultimate step employs convexity of  . Since " was arbitrary, we have
established concavity.
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The fact that F is proper follows from Lemma 19. Since F is concave, by Theorem
14 it is continuous on int domF , which is in fact all of domF by the weak growth
assumption. Thus we only need to check upper semi-continuity at points G outside
of domF . At G /2 domF = Sn

+, upper semi-continuity is trivial because F ⌘ �1
on a neighborhood of G. Therefore let G 2 @Sn

++ and suppose that Gk 2 Sn
++ such

that Gk ! G as k !1. We need to show that lim supk!1 F [Gk] = �1. Throwing
out all Gk /2 Sn

++ from the sequence cannot increase the limit superior, so we can just
assume that Gk 2 Sn

++ for all k. Since G 2 @Sn
++, we have detG = 0, and therefore

detGk ! 0. By Lemma 19 we have

F [Gk] 
1

2

log [(2⇡e)n detGk] + CU(1 + TrGk).

Since the right-hand side of this inequality goes to �1 as k ! 1, the proof is
complete.

E.8 Lemma 21
Proof. Observe that (1) ⌦ and F are upper semi-continuous, proper concave functions
(by Lemmas 2 and 20), (2) F = ⌦

⇤ and ⌦ = F⇤, and (3) both dom⌦ and domF =

Sn
++ are open. Then the strict concavity and differentiability of F on domF = Sn

++

follow directly from Theorem 22.
Now we turn to proving C1-smoothness. Though infinite-order differentiability

is not typically discussed in convex analysis, it can be obtained from infinite-order
differentiability and strict convexity of the convex conjugate via the implicit function
theorem. Indeed, define the smooth function h : Sn

++ ⇥ dom⌦! Sn by

h(G,A) = r⌦[A]�G.

Then Dh =

�
�ISn

�� r2
⌦

�
, and since ⌦ is smooth and strictly concave, the right

block is invertible for all A,G. Fix some G0 2 Sn
++, and let A0

= rF [G0
] 2 dom⌦,

so h(G0, A0
) = 0. Then the implicit function theorem gives the existence of a smooth

function � on a neighborhood V ⇢ Sn
++ of G0 such that h(G,�(G)) = 0 for all G 2 V .

But this means precisely that � = rF , hence in particular rF is smooth at G0.

E.9 Lemma 36
Proof. Write

Z[A, "U ] =

ˆ
e�

1

2

xTAx�"U(x)
dx.

We want to show that as " ! 0

+, Z[ · , "U ] epi-converges (see Definition 24) to
Z[ · , "U ]. If so, then �⌦[ · , "U ] epi-converges �⌦[ · , 0], and Theorems 26 and 25
yield in particular that F [ · , "U ] ! F [ · , 0] pointwise on Sn

++ as " ! 0

+. Then
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by Theorem 23 we have the pointwise convergence of the gradients on Sn
++, i.e.,

A[G, "U ]! A[G, 0] = G�1 as "! 0

+ for G 2 Sn
++.

Thus it remains to show that Z[ · , "U ] epi-converges to Z[ · , "U ]. The first of the
conditions in Definition 24 follows immediately from Fatou’s lemma, so we need only
show that for any A 2 SN , there exists a sequence A" ! A such that

lim sup

"!0+
Z[A", "U ]  Z"[A, 0]

In particular, it suffices to show that

lim sup

"!0+
Z[A, "U ]  Z"[A, 0]. (E.2)

For A /2 Sn
++, the righthand side is +1, so the inequality holds trivially.

Thus assume A 2 Sn
++. By the weak growth condition, we can write U(x) =eU(x)� �� �kxk2, where C > 0 and eU � 0. Then

Z[A, "U ] =

ˆ
e"�e�

1

2

xT (A�"�)x�"eU(x)
dx 

ˆ
e"�e�

1

2

xT (A�"�)x
dx,

and evidently the righthand side converges to Z[A, 0] by dominated convergence.

E.10 Lemma 37
Proof. Let G 2 Sn

++. Recall Eq. (E.2) from the proof of Lemma 36. From this
inequality, it follows that there exists ⌧ > 0 and an open neighborhood N of G�1 in
Sn
++ such that A 2 dom⌦[ · , "U ] for all (", A) 2 (0, ⌧)⇥N .

Now consider "̂ > 0 sufficiently small so that "̂ < ⌧ and ˆA := AG("̂) 2 N (possible
by Lemma 36). Define the smooth function h : (0, ⌧)⇥N ! SN by

h(", A) = rA⌦[A, "U ]�G.

Then Dh(", A) =
�
⇤
�� r2

A⌦[A, "U ]

�
, and since ⌦[ · , "U ] is smooth and strictly con-

cave, the right block is invertible for all ", A. Moreover, we have h("̂, ˆA) = 0 by
construction. Then the implicit function theorem gives the existence of a smooth
function � on a neighborhood I of "̂ such that h(",�(")) = 0 for all " 2 I. But this
means precisely that � = AG. The implicit function theorem then also says that

A0
G(") = �(r2

A⌦[AG("), "U ])

�1@h

@"
(", AG(")) (E.3)

for all " 2 I, where A0
G denotes the ordinary derivative of the function AG of a single

variable. In particular Eq. (E.3) holds at " = "̂. But since "̂ was arbitrary (beyond
being taken sufficiently small), it follows that Eq. (E.3) simply holds for all " > 0

sufficiently small.
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We want to show that all derivatives of AG : (0,1)! SN extend continuously to
[0,1). Starting with A0

G, we can examine these functions by taking further derivatives
on the righthand side of Eq. (E.3). The result will be an expression involving integrals
of the form ˆ

P (x, U(x)) e�
1

2

xTAG(")x�"U(x)
dx,

where P is some polynomial, and it suffices to show that such integrals converge to
their desired limits ˆ

P (x, U(x)) e�
1

2

xTG�1x
dx.

The argument is by dominated convergence. First observe that from the at-most-
exponential growth assumption (Assumption 5), it follows that there exist a, b > 0

such that |P (x, U(x))|  aebkxk for all x. As in the proof of Lemma 36, write U(x) =eU(x)� �� �kxk2, where C > 0 and eU � 0. Then

|P (x, U(x)) e�
1

2

xTAG(")x�"U(x)|  |P (x, U(x))| e"�e� 1

2

xT (AG(")�"�)x�"eU(x)

 aebkxke"�e�
1

2

xT (AG(")�"�)x.

Then for all " > 0 small enough such that " < 1 and AG(")� "� � 1
2
G�1, we see that

the absolute value of the integrand is bounded uniformly by

aebkxke�e�
1

4

xTG�1x,

which is integrable. This completes the dominated convergence argument, and we
conclude that all derivatives of AG extend continuously to [0,1).

Next we aim to use the preceding to show that all derivatives of �G and ⌃G also
extend continuously to [0,1).

To this end, recall the Dyson equation

⌃G = AG �G�1,

which requires that the desired extension property of ⌃G is equivalent to that of AG,
which we have already proved.

Now for any " > 0, we have

�G(") = 2F [G, "U ]� Tr logG�N log(2⇡e)

= Tr[AG(")G]� 2⌦[AG("), "U ]� Tr logG�N log(2⇡e)

by Legendre duality, from which it follows from our extension property for AG, to-
gether with the arguments used to establish it, that all derivatives of �G extend
continuously to [0,1).
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E.11 Lemma 44
Proof. Based on Eqs. (4.6) and (4.7), we want to show that G[A(M)

("), U (M)
" ] ⇠

G[A(M)
("), "U ]. As a first step, we aim to show that

Z[A(M)
("), U (M)

" ] ⇠ Z[A(M)
("), "U ].

Indeed, we can write

Z[A(M)
("), "U ]� Z[A(M)

("), U (M)
" ]

=

ˆ
e�

1

2

xTA(M)(")x�"U(x)

✓
1� e

� 1

2

xT
h
⌃G(")�⌃

(M)

G (")
i
x

◆
dx. (E.4)

We can choose C such that

�C"M+1 � ⌃G(")� ⌃(M)
G (") � C"M+1

for all " > 0 sufficiently small.
Now let R(") = "�p/2 for p 2 (0, 1). We split the integral in (E.4) into a part

over BR(")(0) and another part over the complement. The integrand is dominated by
e��x

T x for some � uniform in ", the integral of which over the complement of BR(")(0)

decays super-algebraically as "! 0, so we can neglect this contribution.
Meanwhile, for x 2 BR(")(0), we have���xT

h
⌃G(")� ⌃(M)

G (")
i
x
���  C"M+1�p,

hence there exists C 0 such that����1� e
� 1

2

xT
h
⌃G(")�⌃

(M)

G (")
i
x

����  C 0"M+1�p

for all x 2 BR(")(0). Combining with (E.4) and dominated convergence, we have
established Z[A(M)

("), U (M)
" ] ⇠ Z[A(M)

("), "U ].
This result, together, together with analogous arguments applied to integrals of

the form ˆ
xixj e

� 1

2

xTA(M)(")x�"U(x)

✓
1� e

� 1

2

xT
h
⌃G(")�⌃

(M)

G (")
i
x

◆
dx,

yields G[A(M)
("), U (M)

" ] ⇠ G[A(M)
("), "U ].

E.12 Lemma 50
Proof. For convenience, we define

Fc[G] := sup

µ2G�1(G)\Mc


H(µ)�

ˆ
U dµ

�
.
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Evidently Fc  F and Fc[G] = �1 if G /2 Sn
++, so we can restrict attention to

G 2 Sn
++.

Fix " > 0. Let G 2 Sn
++, so F [G] is finite, and let µ 2M2 such that

H(µ)�
ˆ

U dµ � F [G]� "/2.

In particular, H(µ) 6= �1, so dµ = ⇢ dx for some density ⇢. Then consider the
measure µR 2Mc(R) given by density ⇢R := Z�1

R · ⇢ · �R, where �R is the indicator
function for BR(0) and ZR =

´
BR(0)

⇢ dx. By monotone convergence, ZR ! 1.
Unfortunately we cannot expect G(µR) = G, but we do have G(µR)! G (following

from dominated convergence, together with the finite second moments of µ). We then
want to modify µR (keeping its support compact) to construct a nearby measure with
the correct second moments.

To this end let GR = ⌧R[G � G(µR)] + G(µR), where ⌧R > 1 is chosen so that
⌧R ! +1 and the eigenvalues of GR remain uniformly bounded away from zero and
infinity (possible since G(µR)! G). Note that we have G = ⌧�1

R GR+(1�⌧�1
R )G(µR).

Now let ⇡ 2M2 be any compactly supported measure with a density and finite
entropy, and let ⇡R = TR#⇡, where TR is a linear transformation chosen so that
G(⇡R) = GR. Since the eigenvalues of GR are uniformly bounded away from zero and
infinity, the TR can be chosen to have determinants uniformly bounded away from
zero and infinity (which guarantees that that the |H(⇡R)| are uniformly bounded),
and ⇡R can be taken to have uniformly bounded support. Then finally we can define
a measure ⌫R := ⌧�1

R ⇡R + (1� ⌧�1
R )µR, so G(⌫R) = G and ⌫R is compactly supported.

For the proof it suffices to show that

H(⌫R)�
ˆ

U d⌫R ! H(µ)�
ˆ

U dµ (E.5)

as R!1.
By the weak growth condition (Definition 3), we can choose a constant C such

that eU defined by eU(x) := C(1 + kxk2) + U(x) satisfies eU(x) � kxk2. Now
ˆ

(1 + kxk2) dµR !
ˆ
(1 + kxk2) dµ < +1

by monotone convergence together with the fact that ZR ! 1. Furthermore

⌧�1
R

ˆ
(1 + kxk2) d⇡R ! 0,

so in fact ˆ
(1 + kxk2) d⌫R !

ˆ
(1 + kxk2) dµ < +1

Therefore, without loss of generality, we can prove E.5 under the assumption
that U(x) � kxk2. But then

´
U dµR !

´
U dµ by monotone convergence, and
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⌧�1
R

´
U d⇡R ! 0 since the ⇡R have uniformly bounded support, so in fact

´
U d⌫R !´

U dµ.
Then we need only show that H(⌫R) ! H(µ). Here one verifies from the con-

struction that ⌫R converges weakly to µ, and moreover the second moments of ⌫R, µ
are uniformly bounded, so by Lemma 9, we have lim supR H(⌫R)  H(µ).

But by the concavity of the entropy, we have H(⌫R) � ⌧�1
R H(⇡R)+(1�⌧�1

R )H(µR).
Now recall that the |H(⇡R)| are uniformly bounded in R, so ⌧�1

R H(⇡R) ! 0. Thus
the statement lim infR H(⌫R) � H(µ) (and hence also H(⌫R) ! H(µ)) will follow if
we can establish H(µR)! H(µ).

Now
H(µR) = log(ZR)� Z�1

R

ˆ
BR(0)

⇢ log ⇢ dx.

But we know ZR ! 1, so we need only show that
ˆ
BR(0)

⇢ log ⇢ dx!
ˆ
⇢ log ⇢ dx.

From Lemma 8, the negative part of ⇢ log ⇢ is integrable. But then the fact that
H(µ) > �1 precisely means that the positive part of ⇢ log ⇢ is integrable, i.e., ⇢ log ⇢ is
absolutely integrable. Then the desired fact follows from dominated convergence.
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F The noninteracting partition function
We want to compute Z0[A] = Z[A; 0] for A 2 Hd. Fix some A 2 Hd, and diagonalize
A = U †

⇤U , where U is unitary and ⇤ = diag(�1, . . . ,�d). Then ˆH0[A] =
1
2
c†U †

⇤Uc.
Define c̃j =

P
k Ujkck, so c̃†i =

P
k[U

†
]kic

†
k, and let c̃ = (c̃1, . . . , c̃d)>. Then ˆH0[A] =

1
2

P
i �iñi, where b̃ni := c̃†i c̃i. It can be readily verified that the operators c̃i and

c̃†i defined via such a canonical transformation satisfy the same anticommutation
relations as the ci and c†i , hence can be viewed as new annihilation and creation
operators. Hence in particular the number operators b̃ni all commute, and

Z0[A] = Tr

h
e�Ĥ

0

[A]
i

= Tr

h
e�

P
k �k

b̃nk

i
= Tr

"Y
k

e��k
b̃nk

#
.

Now since ñk is idempotent,

e��k
b̃nk

=

1X
m=0

1

m!

(��i)m
⇣b̃nk

⌘m
= 1 +

 1X
m=1

1

m!

(��i)m
! b̃nk

= 1 + (e��k � 1)

b̃nk.

Then with |˜ni denoting, for n 2 {0, 1}d, the occupation number basis with respect to
the new creation and annihilation operators, we have

Z0[A] = Tr

"Y
k

⇣
1 + [e��k � 1]

b̃nk

⌘#
=

X
n2{0,1}d

h˜n|
Y
k

⇣
1 + [e��k � 1]

b̃nk

⌘
|˜ni

=

X
n2{0,1}d

Y
k

�
1 + [e��k � 1]nk

�
=

Y
k

X
n2{0,1}

�
1 + [e��k � 1]n

�
=

Y
k

�
1 + e��k

�
= det

�
1 + e�A

�
,
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from which it follows that

⌦0[A] = � log det

�
1 + e�A

�
= �Tr

⇥
log

�
1 + e�A

�⇤
,

so
D0[A] = r⌦0[A] =

e�A

1 + e�A
=

�
1 + eA

��1
.

Therefore the inverse map A0[D] is given by

A0[D] = log

�
D�1 � 1

�
for D 2 intD(1)

d .
Now the noninteracting density operator is then given by

⇢0[A] =
1

Z0[A]
e�c†Ac

=

1

Z0[A]
e�

P
k �k

ênk
=

dY
k=1

1 + [e��k � 1]

b̃nk

1 + e��k
.

Note that even in the case in which �k = ±1, ⇢0[A] is then well-defined, and in fact
� (⇢0[A]) can be obtained as a limit of �

�
⇢0[A(m)

]

�
for A(m)

= U †
⇤

(m)U for ⇤(m) finite
and diagonal such that ⇤(m) ! ⇤.

Thus if D 2 @D(1)
d and one takes D(m) 2 intD(1)

d simultaneously diagonaliz-
able with D such that D(m) ! D, then �

�
⇢0
⇥
A0[D(m)

]

⇤�
= D(m) ! D, but also

�
�
⇢0
⇥
A0[D(m)

]

⇤�
! � (⇢0[A]), where A = log (D�1 � 1) has eigenvalues possibly

±1.
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G The Kadanoff-Baym contour
Here we briefly discuss one main non-equilibrium setting of interest, known as the
Kadanoff-Baym formalism. One considers an initial time t0 and a final time t1, with
t1 > t0, and for t 2 [t0, t1], ˆH(t) denotes the Hamiltonian at time t. This Hamiltonian
determines the evolution, starting at time t0, of a prepared grand canonical ensemble
defined by a density operator ⇢, i.e., a positive semi-definite operator on the Fock
space of unit trace. Assuming, for simplicity, strict positive definiteness, we can write

⇢ =
1

Tr[e��H ]
e��H

for some Hamiltonian H and inverse temperature �. Of course, this form leaves
freedom in choosing �, but it is good to think of � as a free parameter. Often
H may be thought of as ˆH(t0) � µ ˆN , but this need not be the case. To ensure
that Assumption 8 holds, it will suffice to assume that Tr[e��H+"N̂

] < +1 for some
" > 0 sufficiently small. This condition is analogous to the condition µ 2 int domZ
discussed in Appendix 5.2 for the equilibrium finite-temperature ensemble. Assuming
the condition, let ˆON denote the restriction of e��H to the N -particle subspace. Then
it follows that Tr[

ˆON ] decays exponentially in N , hence k ˆONk2 does as well.
Here the contour is the Kadanoff-Baym contour CKB, specified by the path �KB,

which can be written as a concatenation

�KB
= �� + �+ + �M.

Here �� : (0, t1 � t0)! C is defined by s 7! s+ t0, �+ : (0, t1 � t0)! C is defined by
s 7! t1� s, and �M : (0, �)! C is defined by s 7! t0� is. Accordingly we define sub-
contours, C± and CKB. The concatenation �KB is viewed as a function (s0, s1) ! C,
where s0 = 0 and s1 = 2(t1 � t0) + �.

We have already defined the contour Hamiltonian ˆH(z) for z 2 C±. To complete
the specification of our ensemble we stipulate that ˆH(z) = H for z 2 CM . For
contour times s, s0 < t1 � t0, the contour-ordered Green’s function G(s, s0) recovers
the appropriate notion of the real-time-ordered non-equilibrium Green’s function;
similarly, appropriate notions of advanced and retarded Green’s functions can be
recovered from the contour-ordered Green’s function. However, only the contour-
ordered Green’s function admits a favorable perturbation theory, and this remarkable
fact is one motivation for considering it. See [100] for further details. In this work
we additionally see that the contour-ordered setting is also the natural setting in
which to recover a sparsity result for the self-energy of impurity problems in the
non-equilibrium setting.

Now one can readily check that the partition function is given by Z = Tr[e��H ] > 0

(so Assumption 9 is satisfied). Now we verify Assumption 8. For s0  s  s1 � �,
note that U(s, s0) is unitary, hence bounded. Moreover, for s1 � �  s0  s, we
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have U(s, s0) = e�(s�s0)H , which is trace class (by our assumption), hence bounded.
It follows that for any s0  s0  s  s1, the operator U(s, s0) is bounded. In fact,
U(s1, s1 � �) = e��H , and as mentioned above, the operator norm of this operator
restricted to the N -particle subspace decays exponentially in N . Thus Assumption 8
is satisfied.
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