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Abstract

This study investigated the model selection problem in
cognitive psychology: How should one decide between two
computational models of cognition? The focus was on model
“faithfulness, ” which refers to the degree to which a model’s
behavior originates from the theoretical principles that it
embodies. The guiding principle is that among a set of models
that simulate human performance equally well, the model
whose behavior is most stable or robust with variation in
parameter values should be favored. This is because such a
model is likely to have captured the underlying mental process
in the least complex way while at the same time being faithful
to the theoretical principles that guided the model’s
development. Sensitivity analysis is introduced as a tool for
assessing model faithfulness. Its application is demonstrated in
the context of two localist connectionist models of speech
perception, TRACE and MERGE.

Introduction

One of the most challenging tasks for researchers interested
in modeling human cognition is developing techniques for
choosing among a set of computational models (e.g.,
Grossberg, 1987; Grainger & Jacobs, 1998). The goal is to
choose the model that best captures the underlying cognitive
process. It is standard practice to select the model that most
accurately simulates or fits data generated by humans.
Justification for using this procedure, termed descriptive
adequacy, is that the best-fitting model most closely
approximates the mental process being modeled. The
adequacy of this model selection criterion is limited to cases
in which the models do not capture the underlying process
equally well. When they do, how should one decide among
models? There are at least two important issues to consider.

The first issue is model complexity, which refers to the
flexibility inherent in a model (i.e., how the parameters are
combined mathematically) that enables it to fit diverse
patterns of data. A model may describe data well, but may not
do so in a parsimonious manner. It is well established (e.g.,
Linhart & Zucchini, 1986; Myung, in press) that model
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selection based solely on descriptive adequacy will result in
the choice of an unnecessarily complex model that over-fits
the data, and therefore fails to capture the true regularities of
the underlying mental process. To avoid this mistake, both
descriptive adequacy and model complexity must be taken
into account in model selection (Myung & Pitt, 1997). These
two criteria embody the principle of Occam’s razor in model
selection: The model that fits data sufficiently well in the least
complex way should be preferred.

The second, equally critical, issue is determining the cause
of a model’s behavior. Is a model’s success in mimicking
human behavior due to the theoretical principles embodied in
the model or due to other aspects of its computational
instantiation? Put another way, is the computational
instantiation faithful to its theoretical principles? These are
not one in the same, as the latter can take on many forms
(Uttal, 1990). Even if a model provides an excellent
description of human data in the simplest manner possible, it
is often difficult to determine what properties of the model are
critical for explaining human performance and what aspects
are not. Ideally, theoretical principles from which the model
was developed must be clearly identifiable and their
contribution to determining model behavior clearly
demonstrated. In other words, the behavior of the model must
originate from the theoretical ideas that motivated its
creation, not from the computational choices made in its
instantiation. Failure to make this distinction runs the risk of
erroneously attributing a model’s behavior to its underlying
theoretical principles: computational complexity is mistaken
for theoretical accuracy.

In this paper, we undertake an investigation of model
faithfulness. The behaviors of two localist models of
phonemic perception, TRACE (McClelland & Elman, 1986;
McClelland, 1991) and MERGE (Norris et al, 1998) were
compared to determine which architectural properties are
most responsible for their behavior. Sensitivity analysis, a
measure of how sensitive the behavior of a model is to
variation in the values of its parameters, is introduced as a
tool to assess model faithfulness. An additional attractive
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property of sensitivity analysis is that the results reveal the
relative complexities of the models. A highly sensitive model
is complex. A small change in the value of a parameter can
change the model’s behavior drastically. This property
makes the model very powerful and adaptable, being able to
fit a wide range of data patterns, perhaps many more than are
necessary to model the mental process of interest. On the
other hand, a model whose behavior changes minimally with
variation in parameter values is far less flexible, but
behaviorally more stable (i.e., robust). If such a model
happens to simulate human data well, then it is an indication
that the model may have captured the regularities of interest
in the data and little else. Following Occam’s razor, such a
model should be favored. Thus, model selection using
sensitivity analysis favors the model that is least sensitive to
parameter variation, and as a consequence captures the data
the best under the widest range of parameter variation.

Connectionist Models of Speech Perception

Model development in speech perception is divided on the
issue of how prior information from different sources is
integrated during recognition (see Frauenfelder & Tyler,
1987). A wide range of experimental results has demonstrated
that a listener’s knowledge about a word can influence how
the phonemes (i.e., speech sounds) of that word are perceived.
The theoretical debate in the literature has focused on
determining how these two forms of information (lexical and
phonemic) are combined during perception. In most
computation models of word recognition, there exist at least
two levels of processing, a phonemic level and a lexical (i.e.,
word) level. Information flow from the phoneme to the lexical
level is common among models. The theoretical distinction of
primary importance is how lexical information is integrated
with phonemic information. In Figure 1, TRACE and
MERGE illustrate the two positions architecturally. In
TRACE (McClelland & Elman, 1986), activation of
phonemes is influenced by bottom-up sensory input from the
speech signal itself and from top-down connections to the
lexical level. In MERGE (Norris et al, 1998), there are no
top-down connections from the lexical level that directly
affect phoneme activation. Rather, phonemic processing is
split in two, with an activation/input stage and a phonemic
decision stage. Lexical processes affect only phonemic
decision making; they cannot directly influence phoneme
activation. In MERGE, phonemic and lexical influences on
phonemic decision making are independent of each other,
being integrated only at the decision stage.

Norris et al (in press) showed that the models are fairly
comparable in their ability to simulate two sets of human
data. But what properties of the models are most responsible
for their similar behavior? MERGE was proposed as a non-
interactive alternative to TRACE, with no top-down feedback
directly to the phonemic input stage. However, the models
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Figure 1. Network architectures of the four models tested.

also differ in the number of phonemic stages, with TRACE
possessing one and MERGE possessing two. Which of these
properties is most responsible for MERGE's behavior,
direction of information flow or an additional stage?
Additionally, are the two models equally complex? That is,
we know their architectures are sufficient to capture the test
data, but are they also necessary? Or are there redundancies
in their design that make them overly complex?

To address these questions, sensitivity analyses were carried
out on TRACE and MERGE and two other models (shown in
the bottom of Figure 1), which were included to understand
better the implications of model design on model
performance. MACE is a hybrid of TRACE and MERGE that
was intended to assess the consequences of independently
integrating lexical and phonemic input at a separate decision
stage. Like TRACE, lexical information flows back to the
phonemic activation level, but like MERGE, phoneme
decisions are made separately. If MERGE derives its
descriptive power solely from its non-interactive architecture,
then MACE’s performance should be significantly inferior to
that of MERGE. Similar performance would suggest that
splitting phoneme processing into two stages is more
important than whether lexical information flows directly to
the phoneme activation level or instead to the phoneme
decision level. MERGE+MACE (M&M) is a combination of
MERGE and MACE. Lexical connections are redundant,
feeding to both the phoneme activation level and the decision
making level. It is included for completeness and to serve as
a check on the predictability of models with different
configurations of information flow.



Table 1. Experimental Conditions and Human Data.

Experimental Condition Human Data
Condition Example Phonemic Lexical
M lgl 2 I tjob” “jog”

WIWI1 (Word 1 + Word 1) JOb + joB (JOB) * E

W2W1 (Word 2 + Word 1) JOg + joB (JOB) E ¥

N2W1 (Nonword 2 + Word 1) JOv + joB (JOB) * %*

NINI1 (Nonword 1 + Nonword 1) JOz + joZ (JOZ) %*

W2NI1 (Word 2 + Nonword 1) JOg + joZ (JOZ) *

N2N1 (Nonword 2 + Nonword 1) JOvV + joZ (JOZ) *

Note: For each condition, the star ‘¥’ indicates the phoneme or word that is recognized by listeners.

Method

Overview

Norris et al (in press) evaluated TRACE and MERGE on
their ability to simulate data showing listeners’ sensitivity to
mismatching phonemic information at the end of an utterance
(Whalen, 1984; Marslen-Wilson & Warren, 1994). This same
data set was used in the evaluation of the four models in
Figure 1. First, the ability of the models to simulate the
human data was assessed to replicate Norris et al and
demonstrate that all models were comparable in descriptive
adequacy. Second, a sensitivity analysis was performed on the
models by systematically varying the parameter values around
the optimal parameter settings that provided the best fit to the
data in the first analysis. As mentioned above, the sensitivity
analysis assessed the robustness of a model’s behavior in the
face of parameter variation. It enabled us to ascertain the
degree to which performance arises from theoretical
principles that the model purports to implement. The more
the behavior of a model changes over the range of parameter
values, the less likely the model derives its power from its
theoretical design principles, in this case how lexical and
phonemic information are integrated, than from idiosyncratic
choices of parameter values.

Data That Were Modeled

Following Norris et al (in press), the four models were
compared in their ability to simulate data from Marslen-
Wilson and Warren (1994; McQueen, Norris & Cutter, in
press), in which listeners were shown to be sensitive to
conflicting phonemic input in both phonemic decision
making and lexical decision making. When listening to
speech, listeners exhibit considerable sensitivity to deviations
from the natural production of an utterance. For example, if
the portion of the phoneme (i.e., letter sound) /g/ in the word
“jog” is spliced off and replaced with a token of the phone /b/
from the word “job,” listeners are slower to identify the final
phoneme, /b/, in the newly created cross-spliced word “job”
than in the original, unspliced token of “job.” This is because
the acoustic information signaling the identity of the final
phoneme cannot be fully removed, as it blends into the
immediately preceding vowel, creating conflicting
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information about the identity of the final phone. The acoustic
information at the end of the vowel specifies /g/ whereas the
subsequent information specifies /b/.

By varying the original source of the two parts of a cross-
spliced token (i.e., whether they came from words or
nonwords), lexical influences on phoneme and word
processing can be explored. The six conditions shown in
Table 1 were used. The alpha-numeric condition names
(column 1) refer to the composition of the cross-spliced
stimulus. For example, WIWI1 refers to the stimulus
described above in which the cross-spliced stimulus was
created from two words. In the examples, the capital letters
refer to the portions of the two utterances that formed part of
the cross-spliced utterance, with the resulting cross-spliced
stimulus in parentheses. Both identification of the final
phoneme and recognition of the cross-spliced word were
simulated. For each condition, the asterisk ‘¥’ indicates the
phoneme or word that was recognized by listeners,

Phonemic Decision Making Data

WIWI and NINI were two control conditions, included only
to demonstrate that when no conflicting phonemic cues are
present in the stimulus, recognition of the final phoneme is
not impeded. In the four remaining conditions, there is
conflicting phonemic information in the cross-spliced tokens
because stimuli with different final phonemes were cross-
spliced. The lexical status of the two “source” utterances
influences identification of the final phoneme. When the
initial item is a word (e.g., “jog”), as in conditions W2W1
and W2N1, recognition of the final phoneme, /b/ or /z/, are
comparatively slower, presumably because the lexical entry
for “jog” affects phonemic processing in some manner.
Further, the amount of the slowdown is less in W2W1 than in
W2N1, which is thought to be due to lexical competition
between “job” and “jog” diminishing lexical influences in
processing the final phoneme. If the initial portion of the
cross-spliced stimulus comes from a nonword (e.g., “jov’), as
in conditions N2W1 and N2N1, there is no slowdown in
recognition of /b/ or /z/. Although there is conflicting
phonemic information in the cross-spliced stimulus, the use
of a nonword effectively shuts down lexical influences.



Table 2. Description of Model Parameters

Parameter TRACE

MERGE MACE M&M

PE (phoneme excitation) v
PWE (phoneme to word excitation) v
PWI (phone to word inhibition)
PTE (phoneme to target excitation)
PD (phoneme decay)

WTE (word to target excitation)
WPE (word to phoneme excitation)
WWI (word to word inhibition)
WD (word decay)

TTI (target to target inhibition)

TD (target decay)

TM (target momentum)

CPS (word/target cycles per input slice) v
PPI (phoneme to phoneme inhibition) v

SS N

AN N N N UL U N N S 0 S N
LEELCRER KNS
SCNSNSNNKSKKKKLX

Note: For each parameter, the check ‘v’ indicates the models that adopt the parameter.

The bottom-up information specifying /v/ is too weak to affect
phonemic decision making.

Lexical Decision Making Data

Lexical decision making with the cross-spliced stimuli was
straightforward. Between the two possible word responses
(e.g., “job” and “jog”), if the final item in the cross-splice is
a word (e.g., “job™) as in conditions WIWI1, W2W1] and
N2WI1, then only the word “job” (i.e., final item) should be
recognized, regardless of whether the initial portion originally
came from a word or a nonword. On the other hand, if the
second portion came from a nonword (e.g., /z/ in “joz”) as in
conditions NIN1, W2N1, and N2N1, then word recognition
depends on whether the initial item in the cross-splice is a
word or nonword. If it is a word (e.g., “jog™) as in W2NI,
then the word “jog” should be activated, but not substantially
to be recognized because of the following mismatching
information (/z/). If it is a nonword (e.g., “joz” or “jov”) as in
NINI and N2N1, then both “jog” and “job” will be activated
too weakly to be recognized.

Model Implementation and Simulation Procedure

The four models in Figure 1 were constructed by modifying
the architecture of MERGE, which is a localist network
consisting of six input nodes corresponding to the phonemes
/s 57, lof, Mol, Ig/, Ivl and /z/, four lexical decision nodes
representing two words (“job”, “jog”) and two nonwords (
“jov”, “joz”), and finally, four phonemic decision nodes
representing the target phonemes /b/, /g/, /v/ and /z/. In
MERGE, each lexical decision node receives inputs from the
phonemic input nodes through excitatory connections and
also receives activations from other lexical decision nodes
through lateral inhibitory connections. Similarly, the
phonemic decision nodes are linked to the phonemic input
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nodes as well as to the lexical decision nodes through
excitatory connections. Lateral inhibitory connections are
assumed among phonemic decision nodes whereas no such
connections are assumed among phonemic input nodes.
TRACE, MACE, and M&M, were created either by pruning
existing connections and/or adding new connections to
MERGE. The TRACE model had 8 parameters, MERGE and
MACE models had 12, M&M model had 13 parameters. The
parameters used in the models are cross-tabulated in Table 2
to provide one view of their similarities and differences.

In simulating the human data, each model was presented
with the same input, six numericallyrepresented cross-spliced
tokens that were all three phonemes long and were either
words or nonwords. All six of the tokens, one for each
condition, were identical to the ones used by Norris,
McQueen, and Cutler (1998). Each token was represented by
six Mx1 vectors (one vector for each phoneme) where M is
the number of time slices or iterations. The first vector gave
activation to the /d3/ node in the phoneme input layer, the
next to /o/, and so on for /b/, /g/, /v/, and /d/. Each vector
began at zero except for /d3/, which was .25 in the first time
slice, .5 in the second, and then 1 in the third (maintained for
the rest of the iterations). In the fourth time slice, /o/ went to
.25, .5in the fifth, and 1 in the sixth (maintained for the rest
of the trail). In a similar fashion, the final phoneme was
constructed, depending upon the condition. For a given input
stimulus, the activation profiles of the phonemic decision
nodes and the lexical decision nodes were obtained and then
compared to the predictions from human data to evaluate the
model’s performance.

Each of the four models was qualitatively fit to the human
data, and a set of optimal parameter values was obtained by
a hand-done parameter search, relying on initial estimates
reported in Norris, McQueen, & Cutler (1998). A model’s



behavior was judged to be either “human-like” or “not
human-like”in each condition by determining whether the
model’s output matched predictions in the corresponding
condition. Twelve judgements were made for each model, six
phoneme decisions and six lexical decisions (Table 1). In the
sensitivity analysis, the parameter values of each model were
systematically varied +75% from the optimum value. At each
value of the parameter, the model’s behavior (phonemic
decision making and lexical decision making) was re-assessed
in the twelve judgements.

Results and Discussion

Simulating Human Data

All four models produced “human-like” results in every
condition in both phonemic decision making and lexical
decision making, including the all-important slowdown in
phonemic processing in conditions W2W 1 and W2N1. Thus
in terms of descriptive adequacy, all models were functionally
equivalent in their ability to simulate this set of data. This
finding suggests that the two ways in which lexical and
phonemic information are integrated does not matter: Direct
top-down feedback (TRACE, MACE) simulates human
performance just as well as integrating the two sources of
information independently (MERGE) or a combination of the
two methods (M&M).

Given the similar behavior of the four models, how should
we choose among them? Overly complex models should be
avoided. Recall that MERGE, MACE and M&M assume that
phoneme activation is separate from phoneme decision
making. Relative to TRACE, which makes no such
distinction, these models require extra parameters (4 for
MERGE and MACE, 5 for M&M). The finding of virtually
no difference in descriptive adequacy between any of the
models suggests that splitting phonemic processing across
levels is a redundant property of these models, one
unnecessary to simulate human behavior. Instead, splitting
phonemic processing in two may introduce unnecessary
complexity that only reduces generalizability of the models,
making them less stable amidst parameter variation. The
sensitivity analysis explores this possibility.

Sensitivity Analysis

Figure 2 shows the proportion of non-human-like data
patterns (i.e., errors) generated by each model when the
model’s parameters were systematically varied around the
optimum values. The proportions were averaged over all
parameters and are shown separately for each of the 12
testing conditions. TRACE was the least error prone, with a
2.1% error rate, whereas the other three models made
considerably more errors (5 - 7 %). This result is clear
confirmation that splitting phonemic processing into two
stages (MERGE, MACE, and M&M) does more than reflect
the regularities of human speech processing. It introduces
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Figure 2. Results of sensitivity analysis..

unnecessary flexibility not needed to capture the phenomena
of interest.

Examination of Figure 2 reveals that errors occurred most
frequently in three conditions: W2W1, W2N1 in phonemic
decision making and W2W!1 in lexical decision making. In
the first two, phonemic and lexical information must be
integrated to simulate accurately human data. In the third, the
effects of lexical inhibition must be simulated. The three
models with independent lexical and phonemic influences on
phonemic decision making (MERGE, MACE, M&M) were
very sensitive to parameter variation in these conditions,
producing many patterns that were not human-like. TRACE,
on the other hand, was able to exhibit human-like
performance under a wider range of parameter values.

Note also in Figure 2 the similar performance profiles of
MERGE and MACE across the 12 conditions. Recall that
MACE, like TRACE, contains top-down flow of lexical
information directly to the phonemic input level, but like
MERGE, phonemic processing is split into two stages. The
fact that this hybrid model behaves so similarly to MERGE
suggests that MERGE’s behavior is determined more by the
separation of phonemic processing into two stages than by
lexical information affecting phonemic decision making
rather than phonemic activation. In other words, what



differentiates MERGE from TRACE is not so much how
information flows between processing stages, but the number
of processing stages. This result suggests that the current
implementation of MERGE is only partially faithful to the
theoretical principle that motivated its development.

The sensitivity analysis suggests that the extra parameters
that MERGE, MACE, and M&M require as a result of
separating phonemic processing into two stages, and thus
making the models non-interactive, increases the complexity
of the models. This design characteristic has the detrimental
side effect of decreasing model robustness. TRACE explains
human data sufficiently well in the least complex manner.

Summary and Conclusion

The purpose of this preliminary investigation was to explore
the model selection problem in cognitive psychology: How
should one decide between two computational models of
cognition? The particular focus of the study has been on
assessing model faithfulness, which refers to the degree to
which a model’s behavior originates from the theoretical
principles that it embodies. The idea is that among a set of
models that simulate human performance equally well, the
model whose behavior is most stable with variation of
parameter values should be favored. This is because such a
model is likely to be most faithful to the theoretical principles
that guided the model's development; it is also likely to have
captured the underlying mental process in the least complex
way. Sensitivity analysis was introduced as a tool for
assessing model faithfulness. An application of the method
was demonstrated for comparing the behaviors of four
connectionist models of speech perception, TRACE, MERGE,
MACE and M&M.

All four models were functionally indistinguishable in their
ability to simulate human data. Sensitivity analysis, however,
revealed that TRACE was the most stable model, suggesting
that it best reflects the underlying regularities of human
behavior and therefore should be preferred. An important
implication of these results for modeling speech perception is
that the separation of phonemic decision making from
phonemic activation, as assumed in MERGE, MACE, and
M&M, may be an overly complex architectural design that is
not necessary to capture the phenomenon of interest (i.e.,
lexical and phonemic interaction).
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