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Abstract

We show that in see-saw models with bimaximal lepton mixing at the GUT scale and with zero CP phases, the solar mixing
angle θ12 generically evolves towards sizably smaller values due to renormalization group effects, whereas the evolution of θ13
and θ23 is comparatively small. The currently favored LMA solution of the solar neutrino problem can thus be obtained in a
natural way from bimaximal mixing at the GUT scale. We present numerical examples for the evolution of the leptonic mixing
angles in the Standard Model and the MSSM, in which the current best-fit values of the LMA mixing angles are produced.
These include a case where the mass eigenstates corresponding to the solar mass squared difference have opposite CP parity.
 2002 Elsevier Science B.V.

PACS: 11.10.Hi; 14.60.Pq

Keywords: Renormalization group equation; Neutrino masses; LMA Solution

1. Introduction

Recent experimental evidence strongly favors the LMA solution of the solar neutrino problem with a large but
non-maximal value of the solar mixing angle θ12 [1–4]. An overview of the current allowed regions for the mixing
angles and the mass squared differences is given in Table 1.

A big problem for model builders is to explain the deviation of θ12 from maximal mixing, while keeping θ23
maximal and θ13 small at the same time. The renormalization group (RG) evolution is a possible candidate for
accomplishing this. Therefore, it is interesting to investigate the evolution of the mixing angles from the GUT
scale to the electroweak (EW) or SUSY-breaking scale. A number of studies with three neutrinos considered the
possibility of increasing a small mixing angle via RG evolution [7–10]. Others focused on the case of nearly
degenerate neutrinos [11–16], on the existence of fixed points [17], or on the effect of non-zero Majorana phases
on the stability of the RG evolution [18].
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Table 1
Experimental data for the neutrino mixing angles and mass squared differences. For the solar angle θ12 and the solar mass squared difference,
the LMA solution has been assumed. The results stem from the analysis of the recent SNO data [3], the Super-Kamiokande atmospheric data [5]
and the CHOOZ experiment [6]

Best-fit value Range (for θ ∈ [0◦,45◦]) C.L.

θ12 [ ◦] 32.9 26.1–43.3 99% (3σ)
θ23 [ ◦] 45.0 33.2–45.0 99% (3σ)
θ13 [ ◦] – 0.0–9.2 90% (2σ)
�m2

sol [eV2] 5 × 10−5 2.3 × 10−5–3.7 × 10−4 99% (3σ)
|�m2

atm| [eV2] 2.5 × 10−3 1.2 × 10−3–5 × 10−3 99% (3σ)

We consider the see-saw scenario, i.e., the Standard Model (SM) or MSSM extended by 3 heavy neutrinos that
are singlets under the SM gauge groups and have large explicit (Majorana) masses with a non-degenerate spectrum.
Due to this non-degeneracy, one has to use several effective theories, with the singlets partly integrated out, when
studying the evolution of the effective mass matrix of the light neutrinos [19,20]. Below the lowest mass threshold,
the neutrino mass matrix is given by the effective dimension 5 neutrino mass operator in the SM or MSSM. The
relevant RGE’s were derived in [20–25].

In this Letter, we assume bimaximal mixing at the GUT scale with vanishing CP phases and positive mass
eigenvalues. We calculate the RG running numerically in order to obtain the mixing angles at low energy and to
compare them with the experimentally favored values. We include the regions above and between the see-saw scales
in our study, which have not been considered in most of the previous works. We find that the solar mixing angle
changes considerably, while the evolution of the other angles is comparatively small, so that values compatible
with the LMA solution can be obtained. We present analytic approximations that help to understand this behavior
and show that it is rather generic.

2. Bimaximal mixing at the GUT scale

At the GUT scale, we assume bimaximal mixing in the lepton sector. We restrict ourselves to the case of positive
mass eigenvalues and real parameters, so that there is no CP violation. In the basis where the charged lepton Yukawa
matrix is diagonal, up to phase conventions the general parametrization of the effective Majorana mass matrix of
the light neutrinos is then

(1)mbimax
ν = V

(
π

4
,0,

π

4

)
· diag(m1,m2,m3) · V T

(
π

4
,0,

π

4

)
=
(
a − b c −c

c a b

−c b a

)
,

where

(2)V (θ12, θ13, θ23) =
(

c12c13 s12c13 s13
−c23s12 − s23s13c12 c23c12 − s23s13c12 s23c13
s23s12 − c23s13c12 −s23c12 − c23s13s12 c23c13

)
with sij = sin θij and cij = cosθij is the (orthogonal) CKM matrix in standard parametrization, and

(3a)a = 1
4
(m1 + m2 + 2m3) ,

(3b)b = 1
4
(−m1 −m2 + 2m3) ,

(3c)c = m2 − m1

2
√

2
.
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Fig. 1. Possible mass hierarchies for the light neutrinos. We use the convention that m1 and m2 are chosen in such a way that 0 � θ12 � 45◦ .
The LMA solution then requires m2 >m1.

Inverting Eqs. (3) yields the mass eigenvalues

(4a)m1 = a − b − √
2 c,

(4b)m2 = a − b + √
2 c,

(4c)m3 = a + b.

From Eq. (3a) we see that a > 0. Eqs. (4) imply that the solar mass squared difference �m2
sol = m2

2 − m2
1 is

related to c, while the atmospheric one, �m2
atm = m2

3 − m2
1, is controlled by b. Thus, a > |b| > |c|. For b > 0

we obtain a normal mass hierarchy, while for b < 0 the mass hierarchy is inverted, as illustrated in Fig. 1. For
positive c, m1 < m2, otherwise m1 > m2. Hence, �m2

sol is positive only if c is. If a � |b|, |c|, the spectrum is
called degenerate. We use the convention that the mass label 2 is attached in such a way that 0 � θ12 � 45◦. This
can always be accomplished by the replacement c ↔ −c.

In our see-saw scenario, the effective mass matrix of the light neutrinos is

(5)mbimax
ν = v2

EW
2

YT
ν M−1Yν

at the high-energy scale, with 〈φ〉 = vEW√
2

≈ 174 GeV. Obviously, the singlet Yukawa and mass matrices Yν and
M cannot be determined uniquely from this relation, i.e., there is a set of {Yν,M} configurations that yield
bimaximal mixing. After choosing an initial condition for Yν , M (and thus the see-saw scales) is fixed by the
see-saw formula (5).

3. Solving the RGE’s

To study the RG running of the leptonic mixing angles and neutrino masses, all parameters of the theory have
to be evolved from the GUT scale to the EW or SUSY-breaking scale, respectively. Since the heavy singlets have
to be integrated out at their mass thresholds, which are non-degenerate in general, a series of effective theories has
to be used. The derivation of the RGE’s and the method for dealing with these effective theories are given in [20].
Starting at the GUT scale, the strategy is to successively solve the systems of coupled differential equations of the
form

(6)µ
d

dµ
(n)

X i=
(n)

β Xi

({(n)
Xj

})
for all the parameters

(n)

X i,
(n)

X j∈ {(n)κ ,
(n)

Yν,
(n)

M, . . .} of the theory in the energy ranges corresponding to the effective
theories denoted by (n). At each see-saw scale, tree-level matching is performed. Due to the complicated structure
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of the set of differential equations, the exact solution can only be obtained numerically. However, to understand
certain features of the RG evolution, an analytic approximation at the GUT scale will be derived in Section 5.

4. Examples for the running of the mixing angles

Figs. 2 and 3 show typical numerical examples for the running of the mixing angles from the GUT scale to
the EW or SUSY-breaking scale. They contain an important effect that appears for most choices of the initial
parameters: The solar angle θ12 changes drastically, while the changes in θ13 and θ23 are comparatively small. This
agrees remarkably well with the experimentally favored scenario.

Fig. 2. RG evolution of the mixing angles from the GUT scale to the SUSY-breaking scale (taken to be ≈ 1 TeV) in the MSSM extended by
heavy singlets for a normal mass hierarchy and Yν = X diag(1, ε, ε2) with tanβ = 5, ε = 0.525, a = 0.0675 eV and X = 1. In this example,
the lightest neutrino has a mass of 0.025 eV. The kinks in the plots correspond to the mass thresholds at the see-saw scales. The grey-shaded
regions mark the various effective theories.

Fig. 3. Example for the RG evolution of the mixing angles in the SM extended by heavy singlets from the GUT scale to the EW scale for a
normal mass hierarchy and Yν = X diag(1, ε, ε2) with ε = 0.65, a = 0.0655 eV and X = 1. In this example, the lightest neutrino has a mass of
0.024 eV.
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5. Analytic approximation for the running of the mixing angles at the GUT scale

In order to understand the effect found numerically in the previous section, we now derive an analytic
approximation for the RG evolution of the mixing angles at the GUT scale. It is only affected by the part of
the RGE that is not proportional to the unit matrix, which is given by

16π2µ
d

dµ
mν = Ce

[
Y †
e Ye

]T
mν + Cemν

[
Y †
e Ye

]+ Cν

[
Y †
ν Yν

]T
mν + Cνmν

[
Y †
ν Yν

]
(7)+ terms with trivial flavour structure

with Ce = −3/2, Cν = 1/2 in the SM and Ce = Cν = 1 in the MSSM. Analogously to Eq. (1), mν is parametrized
by

(8)mν(t) = V
(
θ12(t), θ13(t), θ23(t)

)
mdiag(t)V

T
(
θ12(t), θ13(t), θ23(t)

)
,

where µ is the renormalization scale, t := ln µ
µ0

, and mdiag := diag(m1,m2,m3). In general, the real Yν can be
written as

(9)Yν = V (ξ12, ξ13, ξ32)diag(y1, y2, y3)V
T (φ12, φ13, φ32).

However, the effective mixing matrix mν is invariant under the transformations Yν → V T Yν and M → V TMV ,
which correspond to a change of basis for the heavy sterile neutrinos. Thus, V (ξ12, ξ13, ξ32) in Eq. (9) can be
absorbed into M , leading to the simpler parametrization

(10)Yν(y1, y2, y3, φ12, φ13, φ32) = diag(y1, y2, y3)V
T (φ12, φ13, φ32).

Furthermore, we use the approximation that the effect of the charged lepton Yukawa matrices Ye can be
neglected compared to that of the neutrino Yukawa matrix. Note that in the MSSM a large tanβ can yield a
relatively large Ye , which can also have sizable effects that are neglected in this approximation.

We now differentiate Eq. (8) w.r.t. t and insert the RGE (7). For the evolution of the mixing angles at the GUT
scale with bimaximal mixing as initial condition, we thus obtain both in the SM and in the MSSM the ratios

θ̇12

θ̇13

∣∣∣∣
MGUT

= 2
√

2 (m1 + m2)(m3 − m1)(m3 − m2)F1

(m2 − m1)[8(m2
3 − m1m2)F2 + 4

√
2 (m2 −m1)m3F3]

(11a)≈


± 1

2
√

2
m2 + m1

m2 − m1

F1

F2
for hierarchical neutrino masses1,

1
2
√

2
�m2

atm

�m2
sol

F1

F2
for degenerate neutrino masses,

θ̇12

θ̇23

∣∣∣∣
MGUT

= 2
√

2 (m1 + m2)(m3 − m1)(m3 − m2)F1

(m2 − m1)[8(m2 − m1)m3F2 + 4
√

2 (m2
3 −m1m2)F3]

(11b)≈


±1

2
m2 + m1

m2 − m1

F1

F3
for hierarchical neutrino masses1,

1
2
�m2

atm

�m2
sol

F1

F3
for degenerate neutrino masses

with

F1 = (
y2

1 − y2
2
){

cos(2φ12)
[
(cos(2φ13)− 3) sin(2φ23)− 6 cos2(φ13)

]− 4 cos(2φ23) sin(2φ12) sin(φ13)
}

1 Note that this approximation is also valid for a relatively weak hierarchy, where m3 is a few times larger or smaller than m1, m2.
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(12a)+ (
y2

1 + y2
2 − 2y2

3
)[

cos(2φ13)
(
sin(2φ23)− 3

)+ (
1 + sin(2φ23)

)]
,

F2 = 2
(
y2

1 − y2
2
)

cos(φ13) sin(2φ12)
(
sin(φ23) − cos(φ23)

)− (
y2

1 + y2
2 − 2y2

3 + (
y2

1 − y2
2
)

cos(2φ12)
)

(12b)× sin(2φ13)
(
cos(φ23) + sin(φ23)

)
,

F3 = (
y2

1 − y2
2
)[

cos(2φ12)
(
cos(2φ13)− 3

)
cos(2φ23)+ 4 sin(2φ12) sin(φ13) sin(2φ23)

]
(12c)+ 2

(
y2

1 + y2
2 − 2y2

3
)

cos2(φ13) cos(2φ23).

This result can also be obtained from the formulae derived in [26]. The constants F1, F2 and F3 clearly depend
on the choice of Yν(MGUT). However, unless the parameters {y1, y2, y3, φ12, φ13, φ32} are fine-tuned, we expect
the ratios F1/F2 and F1/F3 to be of the order one. Consequently, the RG change of θ12 is larger than that of the
other angles if the mass-dependent factors in Eqs. (11a) and (11b) are large. This is always the case for degenerate
neutrino masses, since �m2

atm � �m2
sol. As (m1 − m2) is related to the small solar mass squared difference, it is

also true for non-degenerate mass schemes, unless m1 is very small, in which case the ratio approaches 1. This
corresponds to a normal mass hierarchy and a strongly hierarchical mass scheme. Finally, it can be shown that the
running of θ12 is always enhanced compared to that of θ13 and θ23 for inverted schemes. Hence, we conclude that
this is a generic effect.

6. Parameter space regions compatible with the LMA solution

6.1. Parameters at the GUT scale

The considerable change of the solar mixing angle found in the previous sections raises the question whether
the parameter region of the LMA solution might be reached by RG evolution, if one starts with bimaximal mixing
at high energy. We will investigate this possibility by further numerical calculations in the following. To reduce the
parameter space for the numerical analysis, we choose a specific neutrino Yukawa coupling Yν at the GUT scale.
We assume that it is diagonal and of the form

(13)Yν = X diag
(
1, ε, ε2).

Yν and M are now determined by the parameters {ε,X,a, b, c}. Moreover, we fix the GUT scale values of b and
c by the requirement that the solar and atmospheric mass squared differences obtained at the EW scale after the
RG evolution be compatible with the allowed experimental regions. Thus, we are left with the free parameters X,
ε and a. The parameter ε controls the hierarchy of the entries in Yν and thus the degeneracy of the see-saw scales,
while a determines the mass of the lightest neutrino. The dependence of physical quantities on ε and a is shown
in Fig. 4. The effect of changing the scale X of the neutrino Yukawa coupling will be discussed in Section 6.3. As
mentioned above, we work in the basis where the Yukawa matrix of the charged leptons is diagonal.

6.2. Allowed parameter space regions

The parameter space regions in which the RG evolution produces low-energy values compatible with the LMA
solution are shown in Fig. 5 for the SM and the MSSM (tanβ = 5) with a normal mass hierarchy. We find that for
the form of Yν under consideration, hierarchical and degenerate neutrino mass schemes as well as degenerate and
non-degenerate see-saw scales are possible. For inverted neutrino mass spectra, allowed parameter space regions
exist as well.

We would like to stress that the shape of the allowed parameter space regions strongly depends on the choice
of the initial value of Yν at the GUT scale. One also has to ensure that the sign of �m2

sol is positive, as the LMA
solution requires this if the convention is used that the solar mixing angle is smaller than 45◦. With bimaximal
mixing at the GUT scale, the sign of �m2

sol is not defined by the initial conditions. Using the analytic approximation
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Fig. 4. Plot (a) shows the mass of the lightest neutrino (at low energy) as a function of a for the SM and the MSSM with normal mass hierarchy,
X = 1 and ε ∈ [0.1,0.99] (grey region). Plot (b) shows the degeneracy of the see-saw scales, parametrized by ln(M3/M1) (at the GUT scale),
as a function of ε for the same cases with a ∈ [0.04 eV,0.25 eV] (grey region).

Fig. 5. Parameter space regions compatible with the LMA solution of the solar neutrino problem for the example Yν = diag(1, ε, ε2). The
initial condition at the GUT scale MGUT = 1016 GeV is bimaximal mixing, and the comparison with the experimental data is performed at the
EW scale or at 1 TeV for the SM and the MSSM, respectively. The white regions of the plots are excluded by the data (LMA) at 3σ . For this
example, we consider the case of a normal neutrino mass hierarchy and X = 1 for the scale factor of the neutrino Yukawa couplings.

of Section 5, the sign just below the GUT scale can be calculated. We find �m2
sol > 0 for F1 < 0 and vice versa.

However, in order to predict the sign of �m2
sol at low energy, the numerical RG evolution has to be used. This

excludes some of the possible choices for the neutrino Yukawa coupling Yν at the GUT scale. For example, among
the possibilities with diagonal Yν it excludes Yν = diag(ε2, ε,1).

6.3. Dependence on the scale X of the neutrino Yukawa coupling

For small values of X, the contribution from Yν to the evolution of the mixing angles above the largest see-saw
scale is suppressed by a factor of X2. Nevertheless, the evolution to the LMA solution is still possible, as can be seen
from the example in Fig. 6. Here the large change of θ12 also seems to be generic but takes place between the see-
saw scales, which shows the importance of carefully studying the RG behavior in these intermediate regions [20].
Note that in this case the analytic approximation of Section 5 cannot be applied, since it is only valid at the GUT
scale.
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Fig. 6. RG evolution in the SM for X = 0.01, ε = 0.3, a = 0.0535 eV and a normal mass hierarchy. The running from bimaximal mixing to the
LMA solution now takes place between the see-saw scales. In this example, the lightest neutrino has a mass of 0.017 eV.

Fig. 7. RG evolution in the SM with a negative CP parity for m2, X = 0.5, ε = 3.5 × 10−3 and a normal mass hierarchy. The running
from bimaximal mixing to the LMA solution takes place between the see-saw scales. In this example, we consider a strongly hierarchical
mass spectrum. The lightest neutrino has a mass of 0.004 eV. Note that the cases θ23 > 45◦ , �m2

23 > 0 and θ̃23 := 90◦ − θ23 < 45◦ ,
�m̃2

23 := −�m2
23 are indistinguishable in neutrino oscillations.

6.4. Effect of neutrino CP parities

An example for the running of the mixing angles to the LMA solution with a negative CP parity for the state
with mass m2 is shown in Fig. 7. For this we have chosen a different diagonal structure for Yν ,

(14)Yν = X diag
(
ε2, ε,1

)
,

at the GUT scale. Here, the evolution to the LMA solution is possible due to running between the see-saw scales.
A more detailed study of the effect of CP phases will be given in a forthcoming paper [27].

The large RG effects in this case seem surprising at first sight, since previous studies, e.g. [18,26], found that
opposite CP parities for m1 and m2 prevent a sizable change of the solar mixing angle by RG evolution. However,
these works did not consider the energy region between the see-saw scales, where the largest change occurs in our
example. This fact explains the apparent discrepancy.
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6.5. Low scale values of θ13 and θ23

The mixing angles θ13 and θ23 are affected by the RG evolution as well, i.e., they do not stay at their initial
values θ13 = 0◦and θ23 = 45◦. However, lower bounds on their changes cannot be given unless a specific model is
chosen. As one can see from the previous examples, the changes can be tiny. For instance, the evolution of Fig. 2
gives �θ13 = 0.02◦, which corresponds to sin2(2θ13) = 5 × 10−7, and �θ23 = 0.28◦. On the other hand, other
choices of Yν at the GUT scale produce �θ13 and �θ23 that come close to the experimental bounds. This can make
it possible to discriminate between models with different initial values Yν(MGUT).

7. Summary and conclusions

We have shown that in see-saw scenarios the experimentally favored neutrino mass parameters with the LMA
solution of the solar neutrino problem can be obtained in a rather generic way from bimaximal mixing at the
GUT scale by renormalization group running. We have concentrated on the case of vanishing CP phases, which
implies positive mass eigenvalues. In an example where the mass eigenstates corresponding to the solar mass
squared difference have opposite CP parity, we have demonstrated that an evolution towards the LMA solution is
possible in this case as well. The general case of arbitrary CP phases is beyond the scope of this Letter and will
be studied elsewhere [27]. The mixing angles evolved down to the electroweak scale show a strong dependence on
the mass scale of the lightest neutrino, on the degeneracy of the see-saw scales, and on the form of the neutrino
Yukawa coupling. A generic feature of the renormalization group evolution is that the solar mixing angle θ12
evolves towards sizably smaller values, whereas the change of θ13 and θ23 is comparatively small. In the SM and
MSSM, we find extensive regions in parameter space which are compatible with the LMA solution for normal
and inverted neutrino mass hierarchies and for large and small absolute scales of the neutrino Yukawa couplings.
Thus, RG running may provide a natural explanation for the observed deviation of the LMA mixing angles from
bimaximality.

Acknowledgements

We would like to thank P. Huber for useful discussions. This work was supported in part by the
“Sonderforschungsbereich 375 für Astro-Teilchenphysik der Deutschen Forschungsgemeinschaft”.

References

[1] V. Barger, D. Marfatia, K. Whisnant, B.P. Wood, Phys. Lett. B 537 (2002) 179, hep-ph/0204253.
[2] A. Bandyopadhyay, S. Choubey, S. Goswami, D.P. Roy, hep-ph/0204286.
[3] J.N. Bahcall, M.C. Gonzalez-Garcia, P. Peña-Garay, hep-ph/0204314.
[4] P.C. de Holanda, A.Yu. Smirnov, hep-ph/0205241.
[5] T. Toshito, et al., Super-Kamiokande Collaboration, hep-ex/0105023.
[6] M. Apollonio, et al., CHOOZ Collaboration, Phys. Lett. B 466 (1999) 415, hep-ex/9907037.
[7] M. Tanimoto, Phys. Lett. B 360 (1995) 41, hep-ph/9508247.
[8] K.R.S. Balaji, A.S. Dighe, R.N. Mohapatra, M.K. Parida, Phys. Lett. B 481 (2000) 33, hep-ph/0002177.
[9] T. Miura, E. Takasugi, M. Yoshimura, Prog. Theor. Phys. 104 (2000) 1173, hep-ph/0007066.

[10] G. Dutta, hep-ph/0203222.
[11] J.R. Ellis, S. Lola, Phys. Lett. B 458 (1999) 310, hep-ph/9904279.
[12] J.A. Casas, J.R. Espinosa, A. Ibarra, I. Navarro, Nucl. Phys. B 556 (1999) 3, hep-ph/9904395.
[13] J.A. Casas, J.R. Espinosa, A. Ibarra, I. Navarro, Nucl. Phys. B 569 (2000) 82, hep-ph/9905381.
[14] P.H. Chankowski, A. Ioannisian, S. Pokorski, J.W.F. Valle, Phys. Rev. Lett. 86 (2001) 3488, hep-ph/0011150.



10 S. Antusch et al. / Physics Letters B 544 (2002) 1–10

[15] M.-C. Chen, K.T. Mahanthappa, Int. J. Mod. Phys. A 16 (2001) 3923, hep-ph/0102215.
[16] M.K. Parida, C.R. Das, G. Rajasekaran, hep-ph/0203097.
[17] P.H. Chankowski, W. Krolikowski, S. Pokorski, Phys. Lett. B 473 (2000) 109, hep-ph/9910231.
[18] N. Haba, Y. Matsui, N. Okamura, Eur. Phys. J. C 17 (2000) 513, hep-ph/0005075.
[19] S.F. King, N.N. Singh, Nucl. Phys. B 591 (2000) 3, hep-ph/0006229.
[20] S. Antusch, J. Kersten, M. Lindner, M. Ratz, Phys. Lett. B 538 (2002) 87, hep-ph/0203233.
[21] P.H. Chankowski, Z. Pluciennik, Phys. Lett. B 316 (1993) 312, hep-ph/9306333.
[22] K.S. Babu, C.N. Leung, J. Pantaleone, Phys. Lett. B 319 (1993) 191, hep-ph/9309223.
[23] S. Antusch, M. Drees, J. Kersten, M. Lindner, M. Ratz, Phys. Lett. B 519 (2001) 238, hep-ph/0108005.
[24] S. Antusch, M. Drees, J. Kersten, M. Lindner, M. Ratz, Phys. Lett. B 525 (2002) 130, hep-ph/0110366.
[25] S. Antusch, M. Ratz, hep-ph/0203027.
[26] J.A. Casas, J.R. Espinosa, A. Ibarra, I. Navarro, Nucl. Phys. B 573 (2000) 652, hep-ph/9910420.
[27] S. Antusch, J. Kersten, M. Lindner, M. Ratz, in preparation.


	The LMA solution from bimaximal lepton mixing at the GUT scale by renormalization group running
	Introduction
	Bimaximal mixing at the GUT scale
	Solving the RGE's
	Examples for the running of the mixing angles
	Analytic approximation for the running of the mixing angles at the GUT scale
	Parameter space regions compatible with the LMA solution
	Parameters at the GUT scale
	Allowed parameter space regions
	Dependence on the scale X of the neutrino Yukawa coupling
	Effect of neutrino CP parities
	Low scale values of theta13 and theta23

	Summary and conclusions
	Acknowledgements
	References




