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Abstract 

SUPERCONDUCTING AND NORMAL-STATE PROPERTIES OF NOVEL 

MATERIALS 

Copper-oxide and Fullerene Superconductors 

by 

Vincent Henry Crespi 

Doctor of Philosophy in Physics 

University of California at Berkeley 

Professor Marvin L. Cohen, Chair 

Interest in solid state physics naturally gravitates towards novel systems which chal­

lenge our current level of understanding such as the copper oxide superconductors, or 

·those which provide new venues for application and refinement of existing techniques such 

as the alkali-doped fullerenes. The present work tackles the challenge of high tempera­

ture superconductivity by extension of the BCS theory for ordinary superconductors, in 

particular, the incorporation of anharmonicity in the phonon dynamics and anisotropy in 

the electron-phonon coupling. These refinements can account for many of the anomalous · · 

properties of the cuprates. Phonon anharmonicity is consistent with a small isotope effect 

at optimal doping and a larger isotope effect in suboptimal systems. Anisotropy in the 

interaction, a plausible consequence of certain anharmonic models, can circumvent objec­

tions to electron-phonon coupling based on transport measurements. In addition, such 

anisotropy is consistent with gap anisotropy and the strong temperature dependence of 

the Hall coefficient. In contrast to the cuprates, the doped fullerenes appear to be under­

standable within the standard model of single electron band theory and the BCS theory. 
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The microscopic parameters derivable from transport and critical field measurements yield 

a self-consistent picture of a disordered type-11 BCS superconductor. Isotope effect ex­

periments imply that superconductivity is mediated by carbon phonons as opposed to 

alkali atom vibrations. The novel properties of the fullerenes are generally traceable to 

their microscopic heterogeneity, being a collection of tightly bound but weakly overlap­

ping molecules. For example, the separation of electronic regimes into weak intermolecular 

overlap and strong carbon-carbon on-ball bonds yields a superconductor with both a large 

density of states and a high phonon frequency, properties consistent with a relatively high 

Tc. In addition, the disordered nature of the intermolecular overlap produces a large 

residual resistivity and an interesting universal dependence to the Hall coefficient. This 

disorder is also consistent with the anomalously large carbon isotope effect for heteroge­

neous isotopic substitution. 
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Chapter 1 

Anharmonic Phonons in Superconductivity: Overview 

1.1 Background 

In a normal metal at T=O the occupied electronic states below the Fermi energy are 

neighbored by unoccupied states just above. In a macroscopic system the level spacing is 

so small that an arbitrarily small perturbation can find phase space to scatter an electron 

from an occupied state to an unoccupied one, yielding finite scattering amplitude and 

a finite resistivity. The near-continuous nature of the set of electronic states allows an 

external electric field to displace the Fermi surface and produce a current. Imagine a 

metallic system with a displaceable Fermi surface which instead has a energy gap between 

occupied and unoccupied states. At first sight this may appear ridiculous- we are already 

familiar with systems with a gap, they are semiconductors or insulators, not metals. Their 

gap arises from the crystal potential splitting the electronic bands at the Brillioun zone 

edge so that a filled lower band resides at a finite energy below the unoccupied bands. 

Since the excited electronic states of an insulator are far removed from the occupied 

electronic states, the energy denominators in the perturbation expansion for an external 

field suppress the effects of the applied field. A applied electric field which is small on the 

atomic scale (as all experimentally accessible macroscopic fields are) cannot displace the 

"Fermi surface" and insulating behavior results. How can a gap between occupied and 

unoccupied states form in a system with metallic behavior? The source of the gap must 

reside elsewhere than the crystal potential. 

The Hamiltonian matrix of the noninteracting Fermi gas is diagonal, a sum of single 

particle energies. The interactions between electrons and phonons gives rise to an effective 

1 



2 CHAPTER 1. ANHARMONIC PHONONS IN SUPERCONDUCTIVITY: OVERVIEW 

interaction between electrons which is mediated by phonons. This effective interaction is 

attractive for electrons close enough in energy; in this regime it can dominate the Coulomb 

repulsion to yield a net attractive interaction. In general, Fermi-Dirac statistics guarantee 

that the contributions to the total many-body Hamiltonian matrix from this attractive 

interaction will be composed of various matrix elements of different signs which on the 

whole compose a fairly uninteresting contribution to the energy. However, a particular 

ordered state of the electrons can yield a Hamiltonian matrix in which the complex assort-

ment of electron-phonon matrix elements contribute with the same sign, an ordered state 

which has a substantially lower energy than the normal ground state. At sufficiently low 

temperatures this alternative ordered state is thermodynamically favored, and the system 

enters this novel ground state. The crucial property of this state is that its energy ad van-

tage over the normal ground state is due to a macroscopic ordering of the wavefunction. 

The perturbation of any one electron has repercussions for the entire ordered state; the 

perturbation of any single electron therefore requires a finite energy. The system has ac-

quired an energy gap while maintaining the fundaments of the metallic state. The system 

is a superconductor. 

What in particular is this ordered state? At first sight, there would seem to be many 

schemata about which the electronic state could order. Nature chooses a simple form; the 

electronic states are occupied in correlated pairs, yielding a state in which the off-diagonal 

matrix elements connecting different many-body states enter the Hamiltonian with the 

same sign. Turning to the detailed physics, Bardeen, Cooper and Schrieffer(l] proposed 

that one could examine a reduced Hamiltonian for the electronic system with electron-

phonon interactions, a Hamiltonian which only embodied interactions between the mates 

of the correlated pairs of electrons, 

Hreduced = L Eknks + L vkk'bk,bk, (1.1) 
ks kk' 

where Ek is the single particle energy,.nks is the occupation number for electrons of wavevec-
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tor k and spin s, V kk' is the (attractive) interaction between members of a pair, and 

bl = clrcl,! creates a pair of electrons in the single particle states kl and -kl. Taking this 

reduced Hamiltonian, they proposed an ansatz for a variational ordered wavefunction, 

(1.2) 

with the {gk} a set of variational parameters. Minimizing the ground state energy while 

constraining the number of particles to be a constant yields the set {gk} expressed in 

terms of the single particle energies fk and a new entity, ~k· Skipping the detailed form 

for {gk}, we instead turn to the T=O integral equation for ~k. 

(1.3) 

where Ek = J€~ + ~~ will turn out to the the quasiparticle excitation energy. Note that 

the quasiparticle excitation energy does not go to zero at the Fermi energy, but instead 

limits to the value ~k. the energy gap. Taking a very simple form for the electron-phonon 

interaction 

(1.4) 

for some characteristic phonon frequency We yields a constant ~k for lfk I < We and ~k = 0 

outside this range. Within We of the Fermi energy the energy spectrum of the electron 

quasiparticles is qualitatively different from the free Fermi gas. 

Finite temperature is easily handled by the introduction of Fermi factors which lead 

to the generalized gap equation 

(1.5) 

At sufficiently low temperature this equation has a solution for finite ~k, a ground state 

with a finite energy gap. Once again using approximation 1.4 for the pairing interaction 

V kk', converting the sum to an integral over energy and solving for the temperature T e at 

3 



4 CHAPTER 1. ANHARMONIC PHONONS IN SUPERCONDUCTIVITY: OVERVIEW 

which A-+ 0 yields 

(1.6) 

where N(O) is the density of states at the Fermi level. The characteristic frequency We 

is set by the energy scale of the phonon distortions which mediate the coupling between 

electrons. The product N(O)V is generally written as A=N(O)V. Below Tc the material is 

a superconductor with a finite energy gap. Above Tc the system is a normal metal. 

This BCS model T c formula is accurate only for extremely small values of the coupling 

constant. For realistic systems one must take into account the finite Coulomb repulsion 

and the renormalization of the electron-phonon interaction by its own influence upon the 

individual electronic states that it couples. In its simplest form, such a treatment yields a 

transition temperature, 
1 

Tc = 1.14wce- J:h-~-'• (1.7) 

where p* = If !L is the Coulomb repulsion renormalized to take into account the large 
1+~-Lln '-'c 

difference in energy scales between electronic and vibrational dynamics. 

McMillan carried this procedure a step further by taking a physically motivated form 

of the T c equation which incorporated finite Coulomb repulsion and interaction renormal-

ization with a small set of adjustable parameters that were fit to solutions for the full 

electron-phonon coupling spectrum of Nb[2]. The resulting formula, which is valid over 

the fitted range of A ,..._, 0.0 -+,..._, 1.5, is 

T. _ WLog -1.04(1 +A) 
c- 1.2 exp A- p*(l + 0.62A) 

{1.8) 

where the original McMillan prefactor has been replaced by the more general logarithmic 

prefactor of Allen and Dynes[3], 

2 { 00 lnw 
WLog = exp :X lo dk.Jo.

2 
F(w)-;;;-· (1.9) 

In all of the T c expressions the prefactor is a measure of the characteristic phonon fre-

quency relevant to the electron-phonon coupling and the more complicated exponential 
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embodies the relative strengths and renormalizations of the electron-phonon and Coulomb 

interactions. 

A more careful treatment in the case of strong coupling yields the Eliashberg 

equations[4, 5), which may be solved numerically to obtain superconducting properties 

at arbitrary coupling constant >.. The realm of validity of the Eliashberg equations when 

applied to standard superconductors is set not so much by inherent inaccuracies in the 

treatment of the superconducting state but by the the prominence of alternative instabil-

ities at large coupling, in particular static lattice instabilities. The Eliashberg equations 

provide an accurate theoretical framework applied with great success to many cases of 

lower-temperature superconductivity. 

The standard harmonic approximation of phonon dynamics yields phonon frequencies 

1 
proportional to the inverse square root of the oscillator mass, w ex: M2. In contrast, 

the electron-phonon coupling>. is mass-independent. Ignoring Coulomb repulsion for the 

moment, we obtain that the superconducting transition temperature, which is proportional 

to the relevant (i.e. phononic) energy scale, is proportional to the inverse oscillator mass, 

· yielding an isotope effect exponent a = - ~ ~ = ~. In fact, the measurement of a ~ ~ in 

Ph provided critical guidance in the development of the BCS theory of superconductivity. 

The electron-phonon coupling can be written quite simply as >. = N~0(J;;) where 

(/2) is an averaged matrix element over electronic states and (w2) is an average phonon 

frequency[2). The numerator can be interpreted as an electronic spring constant and the· 

denominator is easily seen to be a phonon spring constant. How could this expression be 

of guidance for increasing the transition temperature? The superconducting Tc is propor­

tional to the average phonon frequency and is also a monotonically increasing function 

of >.. To increase T c, we could increase the numerator in >., increasing the sensitivity of 

the electronic states to the phonon displacements. We could also decrease the phonon 

spring constant, decreasing the denominator in the expression for >.. A decreased phonon 

spring constant will also decrease the average phonon frequency, but on the whole such 

5 



6 CHAPTER 1. ANHARMONIC PHONONS IN SUPERCONDUCTIVITY: OVERVIEW 

a modification yields a net increase in Tc· Finally, we could decrease the oscillator mass 

and thereby increasing the average phonon frequency while >.remains constant. 

Each of these proposed modifications has ramifications for the harmonic approxima­

tion of phonon dynamics. A large electronic spring constant means that a given phonon 

displacement causes large changes in the electronic structure. These changes in turn influ­

ence the energy versus displacement relation of the phonon distortion, possibly producing 

a novel form for the vibrational potential. A decrease in oscillator mass or a decrease in 

phonon spring constant both imply an increase in oscillation amplitude with a concomi­

tant increased influence of anharmonic terms. Each of the strategies for increasing the 

superconducting transition temperature carries with it the possibility of increased phonon 

anharmonicity, suggesting that phonon anharmonicity should be taken into account in 

superconductors with unusually high transition temperatures. 

Anharmonicity affects superconductivity in three ways: a shift in the phonon frequen­

cies, the introduction of Debye-Waller factors in the ionic potential, and multi-phonon 

processes. These processes are all second order in the ratio of ionic displacement to lattice 

constant[6]. We concentrate on the modification of phonon frequencies and multiphonon 

processes. For several interesting forms of anharmonicity the modification of phonon fre­

quencies is quite dramatic; for an equally wide class of anharmonic potentials the atomic 

displacement are large enough to necessitate consideration of second order multiphonon 

processes. In contrast, the modification of Debye-Waller factors seems less likely as a 

source of qualitatively new behavior. 

We assume the validity of the standard harmonic treatment for the transition tem­

perature Tc, whether the full Eliashberg equations or a simplified Tc equation in term 

of >., the Coulomb repulsion p,*, and an average phonon frequency. We emphasize that 

there is no rigorous justification for extending the scope of the harmonic T c equations. A 

self-consistent treatment of phonon anharmonicity yields expressions which are formally 

identical to the Eliashberg equations with a fully anharmonic expression replacing the 
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spectral density of the one-phonon Green function[6]. Unfortunately, the equations are 

computationally intractable. In effect, we use a simple form for this spectral density 

within an Einstein model in which phonon-phonon interactions can be neglected. At least 

for harmonic superconductivity calculations the assumption of an Einstein spectrum will 

not introduce qualita;tive errors since an Einstein model produces values of T c reasonably 

close to those given by more realistic phonon spectra[7]. Dispersion of an anharmonic 

mode could conceivably change the results qualitatively, if the anharmonic terms produce 

novel low-lying eigenstates. Preliminary classical models of various forms of anharmonic 

lattices yield relatively straightforward dynamics without suggestions of underlying novel 

quantum behavior. Unfortunately, the quantum mechanical calculation of an analog to 

a dispersion relation for a strongly anharmonic phonon is problematic. In addition, the 

strong coupling between anharmoniC phonons of different q presents a difficult exercise in 

frequency renormalization. The treatment of Einstein modes, although decidedly less rig-
' 

orous than a full dispersive calculation, has the virtue of computational simplicity. With 

these caveats in mind, we explore the effects of anharmonicity. 

The electron-phonon coupling at zero temperature can be generalized to the anhar-

.monic case by including matrix elements over all of the phonon excited states[8]. Since 

certain anharmonic modes involve large ionic excursions, the quadratic term in the ex-

pansion of the electron-ion potential is included. The zero temperature form for the 

electron-phonon coupling should be valid for transition temperatures sufficiently below 

the relevant phonon frequency, as will be the case for ,\ < 2. We begin with an expression 

for the electron-phonon coupling constant ,\ involving a sum over all phonon excited states 

labelled by the index nand electronic states lk'} and lk}, 

(FS) oo l(nl{k'l ((VV · c5R)Ro + ViV;V~c5R;) lk}IO}I2 

,\ = N{O) L L E - E ' 
kk' n=l n 0 

(1.10) 

where N(O) is the density of states at the Fermi le,/el, V(r) is the electron-ion potential, 

and c5R is the ionic displacement from the equilibrium position Ro. The sum over k and 

7 



8 CHAPTER 1. ANHARMONIC PHONONS IN SUPERCONDUCTIVITY: OVERVIEW 

(a) (b) 

Figure 1.1: Second order contributions to the electron-phonon coupling 

k' is performed over the Fermi surface. The cross terms with i # j in the second order 

term are usually small for potentials suitably oriented with respect to the coordinate axes. 

Assuming, for example, a phonon eigenmode polarized in the x direction, we obtain 

{1.11) 

) 

The electronic degrees of freedom have been factorized out and lumped into prefactors (12) 

and (J2), analogous but not identical to the prefactor in the case of pure linear coupling[2). 

The remaining expression involves a summation over only matrix elements between phonon 

states. 

We have included only one diagram of second order in the expression for lambda (or 

equivalently, the expression for the electronic self-energy). In particular, we have included 

contributions of the form shown in Fig. l.l(a), but ignored diagrams of the form shown 

in Fig. l.l(b). Diagram (a) has one intermediate electronic state, whereas diagram (b) 

has two. The dominant contributions to the coupling arise from regions of integration 

where the intermediate electronic states are near the Fermi surface. In diagram (a), this 

condition puts one constraint on Q1 +Q2 (namely, Q1 +Q2 must bridge the Fermi surface). 

In diagram (b), t~is condition puts constraints on Q1 and Q2 individually. Diagram (a) 

produces contributions to the coupling over a significantly larger portion of the phonon 

... 
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phase space. For this reason, contributions of the form shown in Fig. 1.1a are assumed to 

dominate the second-order electron-phonon coupling. 

At this point there are two routes to obtaining expressions for the superconducting 

transition temperature within an anharmonic model. The various contributions in the 

summation for >. can either be lumped into a total >. at an average phonon frequency, 

· values which are then used in a standard Tc equation, or the individual contributions 

can be incorporated into the electron-phonon coupling function o:2 F(w), which is used 

as input to the Eliashberg equations. The first approach has the virtue of computational 

simplicity, affording simple analytic formulae in certain cases, whereas the second approach 

avoids collapsing the phonon frequency spectrum to a single moment and in addition 

maintains validity over a wider range of coupling strengths. Both techniques will be used 

as appropriate. 

Keeping in mind the first approach, an expression similar to that for >. can be written 

for the average squared phonon frequency, 

(w2} = N~O) (12) f: l(ni8RIO}I2(En- Eo). 
n=l 

(1.12) 

Where for the present we have considered only the linear term. Inclusion of higher-order 

terms introduces the complication of calculating the relative weights of the electronic 

prefactors of the higher-order terms. In addition, inclusion of these terms precludes the 

use of powerful sum rule relations. By concentrating on the linear term we obtain simple 

and useful analytic results that provide guidance in more complex situations. 

The summation in 1.12 has the form of a sum rule with valu~ 1i2 /2M, where M is the 

ionic mass. Using this information, 

(1.13) 

The anharmonic >. and {w2) are related in the same manner as in the harmonic case. We 

9 



10 CHAPTER 1. ANHARMONIC PHONONS IN SUPERCONDUCTIVITY: OVERVIEW 

define separate isotopic exponents for A and ~ in the form 

where Eqn. 1.13 implies 

M d>. 
>.M = T dM' 

M dy'(WI} 
WM = ..j(WI) dM ' 

(1.14) 

(1.15) 

(1.16) 

Assuming that {12) is, independent of the ionic mass, the mass dependences of>. and 

{w2) can be calculated from the mass dependence of the dipole matrix elements and the 

oscillator levels. Note that the electronic prefactor could obtain a mass dependence if 

the electronic structure is sensitive to fine details of structural distortions. For a pure 

harmonic potential, WM = -!,so that Eqn. 1.13 yields >.M = 0, as expected. Since the 

electronic prefactor in the expression for >. is generally unknown or difficult to calculate, 

we do not calculate the absolute value of j~. Instead, we calculate '1, j~, a measure of 

the relative sensitivity of A to variations in the oscillator mass. 

Having elucidated the mass dependence of A and {w2), we can determine a from the 

Kresin-Barbee-Cohen Tc equation[9, 10], 

Tc=0.26 ~, Jet -1 
(1.17) 

where we have assumed that the Coulomb repulsion parameter f.L* = 0. The Kresin-Barbee-

Cohen equation provides a convenient analytic expression· for the transition temperature 

which. is valid at both weak and strong coupling. For moderately large >., the f.L* = 0 

approximation is a reasonable first approximation of the Eliashberg results. A simple 

calculation yields 

1 [ ef 1] 0 = 2- AM (ef -1)A - 2 . (1.18) 

The term multiplying AM is positive for all values of A, so that the direction of deviation 

of a from ! will be determined by the sign of >.M. In the strong coupling limit, we obtain 

1 ).M 
Q = 2- 2>.. (1.19) 
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The extreme strong-coupling limit of a is one half, regardless of anharmonicity. To study 

the influence of finite JL* upon this limiting form we have solved the Eliashberg equations 

for JL* from 0.05 to 0.25, obtaining a strong coupling limit of a that varies from 0.5 to 0.4. 

In the weak coupling case the two square well approximation with a finite Coulomb 

repulsion. yields an analytic form for finite JL*, 

a = - 1 - (1 + AM) - _!:!_ 1 ( ( JL* ) 2) A ( A* ) 2 
2 A* - JL* A A* - JL* 

(1.20) 

For positive AM, the introduction of JL* will decrease a, as in the harmonic case. However, 

for negative AM the effect of JL* depends on the value of AM. For sufficiently large negative 

AM, a positive JL* can actually increase a. Calculations using the Eliashberg equations 

extend this result to the strong coupling regime. These Eqns. 1.18 and 1.20 can be used 

with the corresponding T c equations to obtain a relation between T c and a for a given 

anharmonic potential. 

In contrast to the analytic approach presented above, the various energy level differ-

ences (En-Eo) and their contributions to A can also be used to create an expression for 

·. the electron-phonon coupling function a 2F, 

00 1 
a 2 F(w) = L 2AnWnb(w- Wn)· 

n=l 

(1.21) 

Once again taking the example of a phonon mode polarized in the x direction, 

(1.22) 

with 

Wn =En- Eo. (1.23) 

The three-dimensional isotropic Eliashberg equations for T c are then solved within a rna-

trix fonnalism!SJ. 

The problem remains of calculating the various energy levels of the anharmonic paten-

tial. For a one-dimensional interionic potential, the numerical solution of the Schrodinger 

11 
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equation is straightforward. The two-dimensional and three-dimensional Schrodinger 

equations are solved by expansion with a basis of eigenfunctions of the harmonic oscillator. 

For each energy level, we calculate the mass dependences of Wn and An and incorporate this 

information either into a T c equation or the Eliashberg equations to obtain the relation 

between T c and a. 

1.2 Analytic Results 

The Kresin-Barbee-Cohen equation under linear electron-phonon coupling provides 

simple analytic results for particular zoo of phonon potentials. For a pure quartic potential 

a simple scaling argument applied to the Schrodinger equation yields information about 

~· To wit, a shift in the mass can be counteracted by changes in length scale and 

energy scale. The energy rescaling implies that 

(1.24) 

so that 

(1.25) 

Since AM > 0, a is depressed below 0.5. Such an argument can be applied to any potential 

with only one length scale (e.g. 'pure sixth-order, etc); with potentials of the form V(x)=x2n 

. ld" n d ' n-1 Yle mg WM = -n+1 an "'M = n+1 . 

In the extreme anharmonic limit of a square well potential, elementary quantum me-

chanics yields 

.j(:j} ex M-1, (1.26) 

so that 

AM= 1. (1.27) 

The stronger anharmonicity produces a greater deviation from the harmonic case. 

II 



1.2. ANALYTIC RESULTS 

We next obtain analytic results for a double well potential, a potential approximated 

as a pair of negative delta function potentials at ±a. For simplicity, we initially include 

only linear electron-phonon coupling. A potential of the form 

Vo1i2 

V(x) =-
2
M a [6(x +a)+ 6(x- a)] (1.28) 

yields equations for the ground state and first excited state in which the energy level 

and oscillator mass always appear as a product, implying that WM = -1. The sum rule 

relation then yields >.M = 1, identical to the case of a square well. The double delta 

function potential has a single length scale, the separation between the wells, which is 

independent of the ionic mass, so that both the dipole and quadrupole matrix elements in 

Eqn. 1.22 are mass independent. For this reason, the inclusion of quadratic coupling will 

not change the mass dependence of.>.. or w. A similar relation applies to the square well 

potential. For both potentials a is depressed below 0.5 for weak to moderate coupling and 

a = 0.5 in the extreme strong coupling limit. 

Potentials of the form V(x)=x2
n can also be examined analytically for quadratic cou-

pling, using the same scaling arguments. For linear coupling, a sum rule relation provided 

the mass dependence of >... For quadratic coupling, we approximate the matrix element 

of x2 with the square of the classical turning point. Numerical solutions of Schrodinger's 

equation support this approximation. This technique yields >.M = ::ti and WM = n~l· 

The strong coupling limit for a can be obtained from the asymptotic strong coupling T c 

equation[3] 

Tc = 0.18J >..(w2}. (1.29) 

For second-order electron-phonon coupling, the harmonic and pure quartic potentials limit 

to a= £ and a= i respectively, values significantly different from the generic first-order 

coupling limit of ! . For smaller values of the coupling, the deviation of the isotope effect . 

exponent from 0.5 is generally in the same direction as that obtained in the strong coupling 

limit, with a larger deviation for weaker coupling. 

13 
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We now briefly consider the limit of arbitrarily deep double wells (beyond the double 

delta function approximation introduced earlier). In this situation, one would expect the 

system to decouple into two uncoupled potential wells, with the particle occupying one well 

or the other. The ground state and first excited state will become degenerate (Eo ~E1 , 

as will all subsequent pairs of excited states. At first sight, Eqn. 1.10 seems to imply 

that ,\ will diverge, since the energy denominator goes to zero. However, for such low 

first excitation energies, one must consider the finite temperature generalization of Eqn. 

1.10[11] 

where fn is the thermal weighing factor f.::~;E;. For T» (E1 - Eo), the difference 

between thermal factors for the ground state and first excites state goes to zero faster 

than the energy level difference, so that the contribution to ,\ from the nearly degenerate 

pair of lowest levels actually goes to zero in the limit of an infinitely deep double well. The 

sum over the other transitions in Eqn. 1.30 yields the same result as that calculated for 

contributions from two decoupled poten~ials, with no reference to double well character. 

1.3 Small anharmonic perturbations 

The effect of small quartic anharmonicities can be studied within perturbation theory. 

Take a potential of the form 

(1.31) 

with A>O and the quartic term in some sense small. The perturbation will shift the 

average phonon frequency to first order in the relevant expansion parameter, namely the 

ratio of the energies contained in the quartic and quadratic parts of the oscillation, 

(1.32) 



1.3. SMALL ANHARMONIC PERTURBATIONS 

The order-unity prefactor K is initially left indeterminate. Eqn. 1.13 then determines the 

mass dependence of .A, 

B 
AM= K 3 I. 

A 2M2 
(1.33) 

The prefactor K can be approximated by a perturbation calculation using the first term in 

the sum for (w2), which yields K=l.06. Numerical solutions of Schrodinger's equation for 

weakly anharmonic wells produce K=1.05±0.01, confirming the perturbative approach. 

These numerical studies also allow a rough evaluation of the coefficient of the next term 

in the perturbation expansion, producing 

B B2 

AM= 1.05 3 I - 5A3M" 
A 2M2 

(1.34) 

We obtain a shift in a as expressed by Eqn. 1.18. A positive quartic part will decrease 

the isotope effect, with the reduction most pronounced for light ions. A negative quartic 

part, on the other hand, will produce AM < 0 and thereby increase a above ~-

The influence of various forms of anharmonicity can be conveniently summarized in 

terms of the level spacing of the eigenstates in the local vibrational potential. Those 

potentials which yield excited state level spacings greater than the ground state to first 

excited state spacing will yield AM < 0 and thereby depress a below 0.5. Examples of 

such potentials are a square well and a harmonic potential hardened by a positive quartic 

part. In contrast, potentials in which the higher states are closer together than the first 

two states will yield AM > 0.0 and a > 0.5. This unusual state of affairs comes about 

when a harmonic potential is softened by a small negative quartic part. 

Before considering specific numerical results it is useful to briefly survey the qualitative 

behavior of multiple-well potentials. Starting with the perfectly harmonic potential, we 

have an exactly .. solvable quantum mechanics problem with equally spaced energy levels. 

If the oscillator mass is increased, the wavefunction contracts and the oscillator mass is 

less influenced by the steep walls of the potential. The eigenstates decrease in energy 

proportional to the inverse square root of the mass (wM = -0.5). Now consider distorting 

15 
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the potential by introducing very weak local minima some distance from the central well. 

In this situation the outer portions of the potential are weaker. When the oscillator mass 

is increased, these outer portions again have less influence on the dynamics of the oscillator 

mass. However, since these regions are weaker to begin with, the total mass dependence 

of the energy levels is weaker (0 > WM > -0.5). This argument is perturbative in nature. 

As the outer wells strengthen they_ begin to, dominate the situation and the perturbative 

picture breaks down. Eventually the dynamics will be' dominated by the near-degeneracy 

of the levels in the two outer wells. In this situation, increasing the oscillator mass will 

drop the wavefunction farther into the two outer wells and bring the system ever closer to 

a true degeneracy. In consequence, the level spacing becomes very sensitive to the mass 

(wM < -0.5). As explained previously, finite temperature effects eventually wash out the 

near-degenerate level spacings and the system returns to near-harmonic behavior in each 

of the two now-independent outer wells. Such is the life of an anharmonic multiple-well 

potential. 

1.4 Illustrative Numerical Results 

Local density approximation total energy results for a buckling vibration of the chain 

oxygens[12] in YBa2Cu307 yield a vibrational potential which provides an illustrative 

numerical example of a strongly anharmonic potential. The calculations yield a double 

well potential with roughly 0.7 A between the two wells, each of depth -150 K below the 

central maximum. Motivated by this results, we examine a series of anharmonic potentials 

of the form 

(1.35) 

with distances between the wells of 0.5, 0.7, and 1.0 A and well depths of 60, 150, and 

300K. The summations over excited oscillator states were carried over six levels, with the 

dominant contribution in all cases coming from the first term. The oscillator mass is the 



1.4. ILLUSTRATIVE NUMERICAL RESULTS 

mass of an oxygen atom. 

In addition to >w and WM, the numerical calculations also provide (w2} and the ionic 

part of A {without the electronic prefactor). In accordance with the results of Hardy and 

Flocken[ll] the ionic part of A increases substantially from the shallow, narrow wells to the 

deep, wide potentials. However, this variation is primarily caused by a decrease in phonon 

frequencies; possible variations in the electronic prefactor for different potentials rule out 

a direct comparison between the A calculations for different potentials. We circumvent 

this difficulty by exploiting the relationship between A and a given by Eqn. 1.18. For the 

value a equal to 0.02, the accepted value for YBa2Cu307, we obtain an estimate for A, 

should this chain buckling mode dominate the superconductivity. (Note that this is an 

unlikely scenario- other modes would be likely to contribute strongly. The present example 

is primarily for illustrative purposes.) The transition temperature T c is calculated from 

Eqn. 1.17. 

Imposing the a= 0.02 condition produces moderately strong coupling A's. The largest 

A's occur for wide, deep wells in which A is most sensitive to M. This trend is elucidated 

·. by Eqn. 1.19, which shows A to be proportional to AM in the strong coupling limit under 

the condition a = 0. As noted above, the wide, deep wells also have the largest ionic 

contributions to the electron-phonon coupling, as computed directly from the numerical 

solutions of Schrodinger's equation without imposing the a = 0.02 condition. 

For the particular potentials under analysis the large separation between wells leads ' 

to a very small average phonon frequency. Increasing the depth of the wells does not 

substantially increase the average frequency, since the limit of infinitely deep double wells 

yields a degeneracy between the ground state and the first excited state. This small average· 

phonon frequency limits the critical temperature to roughly 15 K. For some potentials, 

the transition temperature is only 2 or 3 K. If A is increased by hand to produce T c on 

the order of 90K, then a will approach the strong-coupling limit of one half, at variance 

with experimental results. A one dimensional incarnation of the chain oxygen vibrational 

17 
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CHAPTER 1. ANHARMONIC PHONONS IN SUPERCONDUCTIVITY: OVERVIEW 

potential, although of strongly anharmonic form, is too wide to yield simultaneous high T c 

and small a. Note that a closely related calculation by Dreschler and Plakida[13) produces 

similar results for the variation of a with A. 

In a two dimensional double well, the angular momentum term will break the near 

degeneracy of the lowest levels, increasing the average frequency. Such a situation would 

increase Tc above the values quoted above. Since the 0(1} atoms lie in chains, we will 

examine two dimensional anharmonic buckling motion out of the chain. A neutron powder 

diffraction study has measured large thermal ellipsoids for the 0(1} atoms. The ellipsoids 

are pancake-shaped and oriented perpendicular to the Cu-0 bonds[14), providing some 

support for the hypothesis of a two-dimensional anharmonicity. Unfortunately, the exper­

imental situation is unclear; other diffraction studies have yielded a cigar-shaped thermal 

ellipsoid[15, 16}12 13, a result inconsistent with a soft two-dimensional double well. The 

standard description of phonons would necessitate a separation of the two-dimensional 

mode into two coupled one-dimensional modes. The Einstein scheme avoids the problem 

of analyzing such strongly coupled modes. Analysis of such two dimensional mode yields 

roughly a factor of 3 increase in the phonon frequency (and transition temperature}, im­

plying that a narrow form of the chain buckling mode could make a significant contribution 

on the order of 10-30 K to the high T c 



Chapter 2 

Anharmonicity and Superconductivity in PdH 

The PdH(D) materials provide a relatively simple system in which to study unusual 

isotope effects. The transition temperature of PdH is roughly 9 K. The substitution 

of deuterium for hydrogen increases the transition temperature to 11.5 K[17][18]. A 

compilation of superconducting tunneling, neutron scattering, electrical resistivity, Ra-

man scattering, thermal expansion, elastic moduli, and point-contact spectroscopy data 

yields an anharmonicity of 12%±5% in the hydrogen(deuterium)-palladium potential (i.e. 

MMHw¥ = 1.12 ± 0.05)[19]. We examine this system within a simple model of anhar-
vwv 

monic phonons in superconductivity, assuming an Einstein phonon spectrum with linear 

electron-phonon coupling at T=O and using the isotropic Eliashberg equations. 

Pseudopotential frozen phonon studies of the q=O optical phonon in PdH yield a 

strongly anharmonic potential[20]. Total energy calculations for displacements of the 

hydrogen sublattice in the (001), (110) and (111) directions can be fit to a symmetry-

preserving polynomial of the form 

yielding the values c2 = 2.800m~J'd, C4 = 14.88m~J'd and c22 = -9.77m!yd [20]. We have 

solved for the lowest excited states in a local potential of this form by expansion of the 

Hamiltonian in the eigenstates of a three-dimensional harmonic oscillator. Diagonalization 

of the resultant 512x512 matrix produces eigenvalues in excellent agreement with those 

derived by fourier expansion ofthe potential[20]. The energy difference between the ground 

state and the first excited state is calculated to be 62 meV for PdH, 42 meV for PdD and 

32 meV for PdT, as compared to experimental values of 60 meV and 40 meV for PdH and 

/ 
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PdD. The mass dependence of the linear electron-phonon coupling constant >. is calculated 

in accord with Eqn. 1.10(21][22], yielding the following ratios, 

(2.2) 

and 

APtJT = 1.27. 
APdH 

(2.3) 

The value of >. is a free parameter which must be fitted to experimental data for the 

transition temperature of one of the isotopes. Assuming a Coulomb repulsion parameter 

J.t* = 0.11, we fit the magnitude of the electron-phonon coupling to the 9.0 K transition 

temperature of PdH, yielding >.PdH = 0.52. This model then predicts >. = 0.62 and 

Tc=11.4 for PdD, in reasonable agreement with the experimental results. The model 

predicts >. = 0.67 and Tc=ll.4 for PdT. The effect of the anharmonicity is much reduced 

for PdT for several reasons. The mass dependence of >. for this interatomic potential 

is slightly weaker for the larger mass of the tritium atom. In addition, the effect of 

anharmonicity on the isotope effect is in general reduced the stronger the electron-phonon 

coupling, which is largest in the PdT system. Finally, the fractional increase in mass from 

PdD to PdT is 50%, as opposed to 100% for the change from PdH to PdD. 

In treating only the q=O optical phonon we have ignored the effects of both the acoustic 

modes and dispersion in the optical modes. A significant contribution to the electron-

phonon coupling from the acoustic modes, which are assumed to be less anharmonic, 

would decrease the calculated negative isotope effect. Previous theoretical treatments of 

the electron-phonon interaction in PdH[19) assert that the bulk of the coupling results 

from the optical modes. The effect of optical mode dispersion is more difficult to analyze. 

Neutron scattering measurement on PdDo.63 yield significant dispersion for this mode(23). 

In general, the frequencies at :finite q are from 0 to 50% larger then the q=O mode. These 

higher frequencies imply that the electron-phonon coupling should be somewhat smaller 

then that calculated from just the q=O mode. If the anharmonicity is roughly constant 



as a function of wavevector, this smaller value of A will produce a larger negative isotope 

effect, counteracting the effect of finite coupling from harmonic acoustic modes. 

One can make use of additional experimental data on the inverse isotope effect in PdH, 

namely the pressure and concentration dependence of T c· The transition temperatures of 

PdHx, PdDx and PdTx are plotted in Fig. 2.1[24]. Note that other experiments[17][18] 

have yielded different values of both T c and a at the highest hydrogen concentrations, 

suggesting possible differences in sample quality. The theoretical results are fit to the data 

for PdHx, completely determining the theoretical transition temperatures for PdDxand 

PdTx. We have assumed that the anharmonicity is constant over this doping range, as 

suggested by a comparison offrozen phonon calculations for PdH and PdH4[25]. Since nu-

merical solution of the Eliashberg equations is inefficient at small values of A, the McMillan 

equation[2] with a modified phonon frequency prefactor[26] of Eqn. 1.9 is used to calculate 

T. = (wlog) X [- 1.04(1 +A) ] 
c 1.20 e P A- JL*(1 + 0.62A) · 

(2.4) 

The agreement is good for PdD. On the other hand, the results for PdT are significantly 

below the experimental values. A possible source of error in the treatment of PdT is the 

Born-Oppenheimer approximation, which has been implicitly used in the frozen phonon 

calculation to separate the dynamics of the hydrogen and palladium atoms. This approx-

imation should be least accurate for the heaviest isotope. Other po~ible explanations 

could invoke phonon dispersion or variations in JL* between materials. Unfortunately, the 

experimental results for T c in PdT are sparse. A more complete evaluation of the the­

ory awaits additional experimental data. Numerical solution of the Eliashberg equations 

produces similar results, with a slightly larger slope for the Tc vs. x curve for PdDx. 

The transition temperature for PdH and PdD decreases with pressure at a rate of 

roughly 0.05k/kbar up to pressures of 40 kbar[27]. Unfortunately, we know of no frozen 

phonon calculations in this pressure range. However, the results for PdH4 with unre-
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Figure 2.1: Theoretical calculation of Tc versus hydrogen isotope concentration in PdHx 

(D), PdDx (0) and PdTx (.6). Corresponding filled polygons are experimental results. 
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laxed lattice constant provide an estimate of the interatomic potential for a 3.2% lattice 

contraction[20). This contraction corresponds to a pressure of roughly 180 kbar, outside 

the range of experimental results. However, the theoretical potential at 180 kbar has al­

most identical anharmonicity to that at ambient pressures, with only a shift in phonon 

frequency from 62 meV (40 meV) to 83 mev (54 meV) for PdH (PdD). If we scale the 

phonon frequency linearly with pressure, we obtain a frequency of 66.6 meV (43.1 meV) 

for PdH (PdD) at 45 kbar, at which pressure the experimental value of Tc is 6.3 K (8.7 

K). Fitting to a value of APdH = 0.47, we obtain a theoretical transition temperature of 

6.2 K (8.7 K) for PdH (PdD) . 

. In summary, a model of anharmonicity that takes into account the novel mass depen­

dences of both the phonon frequencies and the electron-phonon coupling can account for 

differences in T c between PdHx and PdDx at both ambient . and finite applied pressure. 

Theoretical results are at variance with preliminary data for Tc in PdTx. 
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Chapter 3 

Anharmonic Phonons and Dopant Effects in HTS 

The proper theoretical description of high temperature superconductivity[28] in the 

copper-oxide based superconductors remains a mystery. Proposed (sometimes nonexclu­

sive) models include large bipolarons, exchange of antiferromagnetic spin fluctuations, 

marginal Fermi liquid (a somewhat generic term)[29], spin-charge separation in a Lut­

tinger liquid[30], and various numerical explorations of the Hubbard model around half 

filling. Most of these mechanisms require a novel non-Fermi liquid electronic ground state 

in which electron correlation plays a critical role. One could be easily put off by this wealth 

of models- in pragmatic terms, what chance is there that any given novel mechanism is rel­

evant, given the breadth of mechanisms proposed? A different strategy presents itself. We 

have one very successful theory of lower-temperature superconductivity, the BCS theory 

with electron-phonon coupling. Perhaps it is most reasonable to approach the puzzle of 

high temperature superconductivity from known territory, extending the BCS theory into 

a regime of novel phonon dynamics and unusual Fermi liquid anisotropy. A more exotic 

mechanism may very well be correct. However, the choice of which exotic mechanism is 

problematic! The most likely single mechanism remains an extension of the BCS theory. 

Numerous experimental and theoretical results bear on the importance of the electron­

phonon interaction in the high-temperature superconductors. Theoretical calculations in­

dicate that the roughly 30 K transition temperature of the non-cuprate superconductor 

Ba1-:z:KxBi03 can be explained with standard electron-phonon coupling[31, 32]. Tun­

nelling measurements on Ba1-:z:K:z:Bi03 and Nd2-:z:Ce:z:Cu04 support a phonon-mediated 

mechanism[33]. Tunnelling results for YBa2Cu307 can be also interpreted as suggesting 

strong electron-phonon coupling[34]. Indications of phonon softening at the supercon-



ducting transition suggest significant coupling between the electrons and certain phonon 

modes[35][36]. Several anomalous properties ofthe high temperature superconductors can 

be explained within an electron-phonon framework. For example, the lack of a coherence 

peak in the nuclear spin relaxation time can be ascribed to strong coupling effects[37]. Pro­

ponents of novel mechanisms often assert that the temperature-dependent resistivity is too 

linear to be electron-phonon in origin. However, standard electron-phonon mediated resis­

tivity is quite linear above some fraction of the De bye temperature. In addition, converting 

the resistivity data from constant pressure to constant volume introduces nonlinearity[38], 

rendering invalidate the argument that the resistivity in the high-T c materials is "too lin­

ear" to be phonons. The lack of saturation in high-temperature resistivity data appears 

to be inconsistent with a system having strong electron-phonon coupling[195]. However, 

explanations exist incorporating anisotropic electron-phonon coupling[40] or variations in 

the Fermi velocity across the Fermi surface[41]. 

The primary difficulty with an electron-phonon mediated mechanism for superconduc­

tivity is the small isotope effect of the highest Tc materials. For example, YBa2Cu307 

has a :::::::: 0.02 and Tc :::::::: 90 K[42]. Anharmonicity provides a means to circumvent this 

objection in that anharmonic effects can yield decreased isotope effects, particularly for 

the most strongly anharmonic potentials which would likely be associated with the highest 

Tc's. Impurity doping of the optimized {highest-Tc) materials generally yields increased 

a while depressing T c· In particular La2-:z:Sr:z:Cu04 shows large variations in the isotope 

e~ect exponent with Sr doping[43]. Clearly it is difficult to explain the large isotope effect 

at certain Sr concentrations if phonons do not contribute to the pairing. Other varieties of 

doping, such as Pr for Y(44] or Fe for Cu(45], also produce high-Tc materials with isotope 

effect exponents on the order of one half. 

More direct evidence exists of unusual phonon dynamics in these materials. Mea­

surements of pair distribution functions from neutron scattering imply local structural 

distortions of the Cu-0 planes in La2-:z:Sr:z:Cu04, ThBa2CaCu20s and Nd2-:z:Ce.xCu04 
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corresponding to buckling motions of oxygen atoms perpendicular to the Cu-0 bond,[46] 

with indications that the distortions are dynamic[47]. X-ray absorption fine structure 

(EXAFS) experiments can be explained with a double well potential of width 0.13 A for 

c-axis motions of the apical oxygens in YBa2Cu307 [48], with other plausible interpre­

tations in terms of local structural distortions[49]. Infrared meaSurements indicate that 

the mode in question has at Q=O a frequency well above that derived from a local-mode 

solution to the proposed double well potential. However, the infrared measurements probe 

Q=O, whereas the EXAFS experiment probes the local lattice dynamics. Ion channelling 

experiments also indicate strong anharmonicity for vibrations involving the apical oxy­

gens and the copper atoms[50]. The proximity of superconductivity to structural phase 

transitions, especially in the La2-xMxCu04 systems, suggests the relevance of soft modes 

associated with these transitions. On the theoretical front, frozen phonon calculations 

yield multiple-well potentials for octahedral tilt motions in La2-xMxCu02[51] and for 

buckling motions in the oxygen chains of YBa2Cu307[12]. X-ray scattering data suggests 

such a buckling distortion in the chains[52]. In addition, frozen phonon calculations yield a 

strongly anharmonic, but not multiple-well, potential for the zone-center oxygen Eu mode 

in La2-xSrxC_u02[S6]. 

The evidence for unusual electron-phonon dynamics is substantial, leading to the ques­

tion of which particular modes are plausible candidates for strong electron-phonon coupling 

and anharmonic dynamics. Many of the modes discussed above do not represent generic 

modes of the high-T c oxides. The octahedral tilt is unique to materials with a single Cu-0 

plane. The chain buckling is unique to YBa2Cu307. There are several reasons why the 

apical oxygen vibrations are unlikely to be the sole contributor to an anharmonic mech­

anism. They are present as at most low concentrations of defects[53] in several high-Tc 

materials, such as the "parent compound" electron-doped superconductor Sr1-xNdxCu02 

with Tc=40 K[54]. A model based entirely on these modes may have difficulty accounting 

for the increase in T c with increasing number of Cu-0 planes in the thallium and bismuth 
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3.1. OPTIMALLY DOPED COMPOUNDS 

compounds, since the number of apical oxygens remains fixed as Cu-0 planes are added. 

In addition, Tc seems to be highest in materials where the apical have the least influence, 

the single layer compounds with large apical oxygen to planar copper distances and the 

multiple layer compounds with a decreased proportion of apical oxygens to copper-oxide 

planes. Finally, within our formalism, the potential suggested by the EXAFS experiments 

can be shown to produce Tc of roughly 30 or 40 K for a ~ 0.0, suggesting at most a 

supporting role for the apical oxygen modes. Although the apical oxygens could conceiv­

ably play a major role, the most generic modes of possible multiple-well character would 

involve oxygen atoms in the Cu-0 sheets, either buckling perpendicular to the sheets (sim­

ilar to the in-plane behavior of the octahedral tilt mode), buckling parallel to the sheets 

(modes which are experimentally inaccessible due to screening), or vibrations along the 

bond (which could have double-well character at high Q due to Peierls-like distortions.) 

3.1 Optimally doped compounds 

We first examine the optimally doped compounds to evaluate whether reasonable 

phonon anharmonicity can account for high T c and small a. Single plane Cu-0 mate­

rials such as La2_.zBa.zCu04 possess planar oxygen buckling motions some of which can 

be described as semi-rigid tilt modes of the Cu-Ooctahedra, a fairly low-frequency motion. 

The multiple-plane compounds such as YBa2Cu307 and BhBa2CaCu20s do not possess 

such a tilt mode. The relevant oxygen bucklings should have a higher frequency, since the 

Cu-0 skeleton must be nonrigidly distorted. These bucklings could be associated with 

narrow multiple well potentials, as could vibrations along the Cu-0 bond. In addition, 

the multiple-pl~ne compounds are likely to possess increased two dimensionality, which 

could be related to the relative prominence of anomalous phonon or electron dynamics 

(such as Peierls distortions). The possibilities of higher phonon frequency and increased 

coupling and anharmonicity due to two dimensionality are consistent with the higher Tc's 
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and generally lower a's in the multiple layer compounds. 

If the hypothetical multiple-well potentials corresponded to Raman active or c-axis 

polarized IR active modes, then one would expect an anomalously strong isotope effect 

in the frequencies of these modes under 160 -+180 substitution. The few isotopic IR 

and Raman studies to date do not show anharmonic behavior, implying that a plausible 

anharmonic potential must either correspond to high-Q mode or an in-plane displacement 

which is not experimentally accessible due to screening. 

Several forms of multiple-well potential can produce a near-vanishing a for T c on the 

order of 90K. A quadrupolar potential of the form 

V(r, 8) = ar2 + cr6 + br4 cos 28. (3.1) 

with a distance of 0.14 A between the origin and the outer minima can produce a= 0.0 

with Tc of lOOK and>.= 1.3. A one-dimensional double well of the form 

(3.2) 

with a distance of 0.12 A between outer minima of depth 900 K produces a Tc of ""lOOK 

with >. = 2 and a "" 0. A two-dimensional triple well potential of the form 

(3.3) 

can produce a Tc of roughly 80K with >.=2.0 and a = 0.09 for a distance of 0.10 A 

between the outer minima. These examples assume linear electron-phonon coupling. A 

quadratically coupled double-well potential with a distance of 0.25 A between the minima 

can also account for high T c and small a with similar parameter values. 

A related quadrupolar form with distance of"" 0.09A between the wells and a well 

depth of 2000 K with >. = 1.4 yields a transition temperature of llOK and an isotope effect 

exponent of a = 0.04. Quartic and sixth order potentials also depress the isotope effect 

exponent. For example, a purely sixth order linearly coupled one-dimensional potential of 
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3.2. APPLICATION TO LA~-:rSR:rCU04 

the form V(x)=3.0x108 x6 meV for x measured in A produces Tc of 93 K for a=O.Ol. 

For each of these potentials the ionic mass has been set equal to the mass of an oxygen 

atom. The Coulomb pseudopotential J.L* has been fixed at 0.1; the results are relatively 

insensitive to this parameter. Large values ofT c and near-zero isotope effects are consistent 

with electron-phonon coupling within this model of anharmonic phonons. 

These narrow, high frequency potentials do not generally have· large values for the 

ionic part of )., since the dipole matrix elements are not very large. Within this model, a 

large electron-phonon coupling for these potentials would have its origin in the electronic 

prefactor. Possible sources of a large electron-phonon coupling are local field effects[55], 

ionic properties,[56] or Peierls-type distortions[57]. 

We will examine the possible effects of anharmonicity on the superconducting isotope 

effects in high temperature superconductivity, in particular La2-·xMxCu04 and doped 

· YBa2Cu307. Measurements of the isotope effect exponent a in La2-:rSrxCu04[43, 58] 

have yielded a> 0.5 for x in the range 0.10 to 0.13 and a::::: 0.1 for larger values of x. Tc 

for M=Ba, Sr is depressed for x:::::0.125, with a much larger depression for Ba than for Sr. 

A model based on a Van Hove singularity in the electronic density of states near the Fermi 

level has been proposed to account for this unusual behavior[59) In contrast, Crawford et · 

al.[58] have speculated that an incipient phase transition from the orthorhombic to the 

low temperature tetragonal structure could produce these anomalous values of a . 

More recent evidence suggests that the peak in T c and the unusual behavior of 

a is closely associated with the electronic doping level of x=0.125. Thl+ doping in 

La2-x-yBa,r ThyCu04, which shifts the k doping level to larger Sr concentrations, shifts 

both the incipient phase transition and the suppression of Tc to x-y=0.125[60]. High 

resolution synchotron x-ray diffraction of La2-xBaxCu04suggests that the transition at 
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x=0.125 is distinct from the LTO-LTT transition. Pair distribution function data indi­

cates that the LTO phase is simply an incoherent superposition of differently oriented LTT 

phases on a -lOA length scale, yielding a crystallographically orthorhombic phase which 

is locally tetragonal[61, 62]. Finally, Nd doping, which stabilizes the LTT phase, yields a 

material in which the superconductivity is uncorrelated with the LTT instability[63J. A 

../2 x ../2 superlattice instability could be modulated by a wavevector which could span 

the Fermi surface for x:::::0.125, yielding an electronically-driven change in lattice dynamics. 

Finally, copper isotope effect experiments on the same system[64] yield nearly identical 

variation in isotope effect with doping, a surprising result that argues against a struc­

tural phase transition and by default towards an electronic mechanism for the instability. 

These results taken as a whole suggest anomalous electronically driven lattice dynamics 

near x=0.125, not necessarily a true lattice instability, but more generally a qualitative 

change in the vibrational potential, a substantial change in phonon anharmonicity. We 

will model of the effects of anharmonicity on the isotope effect to flesh out this speculation. 

Preliminary numerical study of one-dimensional modes indicates that a triple well 

potential with weak outer minima can produce o: > 0.5, while a triple well with stronger 

outer minima can produce o: < 0.5, in analogy with the results obtained from quartic 

perturbations of a harmonic potential. These results suggest a simple explanation for 

the variation in o: with Sr concentration. Frozen phonon calculations[51 J suggest that a 

multiple-well interionic potential is associated with the orthorhombic/high temperature 

tetragonal transition. We will assume a similar form of potential for the low temperature 

anomaly. As the Sr concentration is increased, the system approaches the regime of 

anomalous behavior. We posit a multiple-well potential in which the outer wells deepen 

as the anomaly is approached, evolving from a softened quadratic potential to a true 

multiple-well potential. Note that the model to this point gener~lizes to any form of 

boson-exchange superconductivity with evolving anharmonic dynamics. This model can 

reproduce the experimentally observed variations in both T c and o:. 



,. 

yYe begin the expression for the electron-phonon coupling .>. at zero temperature, 

.>. = N(O) <£l f: l(n1Mkk'IO)i2, 
kk' n=l En - Eo 

(3.4) 

which describes coupling between the lattice ground state IO) and all excited states In) 

with energy En[8]. Taking linear coupling, we obtain 

(3.5) 

where V(r) is the electron-ion potential, lk) and lk') are electronic states, and m is the 

ionic displacement from the equilibrium position Ro. Assuming a two-dimensional phonon 

mode with displacements in the x and y directions, we can recast Eqn. 3.5 in the form 

,dV dV 
Mkk' = (k I dx x + dy ylk). (3.6) 

Following McMillan[2], we factorize Eq (1) to obtain a computationally convenient form, 

.>. = ~ [(!;} l(nlxiO)I
2 + (Ixly) l(nlxiO)II(nlyiO}I + (J2) l(nlyiO}I

2
] (3.7) 

L- E -Eo E -Eo y E -Eo n=l n n n 

where the prefactors (Ii), (Ixiy}, and (I~) cont~n the electr~nic contributions and the 

summation involves matrix elements between phonon states. Numerical results indicate 

that the cross term (Ixiy) is negligible for physically plausible potentials suitably oriented 

with respect to the coordinate axes. For simplicity, the other prefa~tors, (I,;) and (~), 

will be assumed to be equal. The case of unequal prefactors can be easily treated, but 

the interesting physics is contained in the simpler situation. In any case; the prefactors 

should be equal for any potential symmetric in x and y. 

In this instance, the various energy level differences (En-Eo) and their contributions to 

.>. are used to create an expression for a 2F, 

00 

a2 F(w) = L AnWnC(w- Wn), (3.8) 
n=l 

where 

(3.9) 
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Figure 3.1: The r-dependence of the various quadrupolar potentials studied, plotted for 

() = ~. Sr concentration increases with increasing depth. 

and 

Wn =En- Eo. (3.10} 

This strategy avoids the inherent inaccuracies in reducing the phonon frequency distribu­

tion to a single mo_ment such as {w2) or {wlog)· In any case, the potentials examined will 

be dominated by the transition between the ground state and the first excited state, so 

that this energy difference will closely approximate the average phonon frequency. 

The two-dimensional SchrOdinger equation is solved by expansion with a basis of solu-

tions to the harmonic oscillator. For each energy level, we calculate the mass dependence 

of Wn and An and solve the Eliashberg equations numerically to obtain Tc and a. 

We start with an in depth analysis of potentials of the form 

(3.11} 

When b<O, the last term produces triple wells for()= i• 3;. In the case a<O, the first term 

is also multiplied by the cosine factor to produce double wells at these angles. The potential 
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examined should not be considered a quantitative prediction, but rather a representative 

example. Related multiple-well potentials to be discussed will yield similar results. To 

ensure convergence, we used from 22 to 28 basis functions in the x and y directions. We 

consider a series of potentials with the outer wells increasing in strength. A plot of the 

r-dependence of these potentials for 8 = ~ is given in Fig. 3.1. The outer minima are 

located at ±0.18 A, in accord with the frozen-phonon calculations[51]. The difficulty of 

defining normal modes in a strongly anharmonic system clouds the choice of effective 

oscillator mass. We initially assume an oscillator mass equal to the mass of an oxygen 

atom before turning to other possibilities. The relevance of the linear term in the electron­

phonon coupling for the phonon mode governing the orthorhombic to low temperature 

tetragonal transition has been questioned within the context of a tight-binding model[65, 

66]. Should the electronic anomaly have similar symmetry, the linear term in the coupling 

would be suppressed. However, the tight binding model ignores long range non-rigid ion 

contributions, which are important in the cuprate materials[67]. In addition, the strong 

anharmonicity of the system complicates any considerations based on the symmetry of 

a harmonically-defined normal mode. Finally, the symmetry argument only applies at a 

particular value of phonon wavevector; phonons of slightly different wavevector will not 

be constrained to zero linear coupling. We begin with the assumption that the linear term 

dominates the interaction, relaxing this assumption in later examples. After this in depth 

discussion, various related potentials will be examined to indicate the generic nature of 

the behavior observed for evolving multiple well potentials. 

To calculate T c and a, we need a value for ..\ to set the scale for a 2F. The formalism 

provides only the ionic part of ..\, without the electronic prefactor. This ionic part of ..\ 

increases with decreasing boson frequency, which corresponds to increasing Sr concentra­

tion. However, one cannot assume that the electronic prefactor will remain constant as 

the Sr concentration changes. For each potential, ..\ is adjusted to fit T c· We also take 

,.,. = 0.10 for each potential. The theoretical results are not particularly sensitive to the 

33 



34 CHAPTER 3. ANHARMONIC PHONONS AND DOPANT EFFECTS IN HTS 

40 I I 
0~ 

0 ce 
0 

0 
30 '- • 0 - " 

0 - • ~ i - 20 - 0 -
" e-

10 - 0 -
• 

0 J I 

0 0.1 0.2 0.3 
X 

Figure 3.2: Tc versus Sr concentration x in La2-.rSrxCu04 for the interionic potentials 

shown in Fig. 3.1 The depth of the potentials increases with increasing Sr concentration. 

Solid circles are the data of Crawford et al.[58] Open circles are the theoretical results. 

value of J.L*. Note that the coefficients a, b and c of Eqn. 3.11 were not adjusted in order 

to better match the data, but merely chosen to produce a smooth evolution in the shape 

of the potential. The results for T c. a and ). are plotted in Figs. 3.2 through 3.4, along 

with the data of Crawford et al.[58]. 

The horizontal scale of the theoretical results is arbitrary, since we do not have a 

quantitative relation between Sr concentration and the particular potentials chosen. The 

ordering of the potentials is fixed, but the horizontal scale is chosen to match the experi-

mental data. 

The proposed variation in potentials can produce an isotope parameter that starts near 

0.5, increases, and then falls to a constant value below 0.5, with Tc peaking just after a 

has dropped. For each potential we have one free parameter,)., with which to fit both Tc 

and a. This fit produces ). 's which increase with increasing Sr concentration, as does the 
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Figure 3.3: The isotope exponent a versus x in La2-xSrxCu04 for the interionic potentials 

shown in Fig. 3.1. Solid circles are the data of Crawford et a1.(58] Open circles are the 

theoretiCal results. 
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Figure 3.4: Electron-phonon coupling >.. versus x in La2-xSrxCu04 for the quadrupolar 

potentials shown in Fig. 3.1. Open squares are the>.. used to determine Tc and a. Solid 

squares are the ionic part of >.., scaled so that the first point coincides with the value of >.. 

used in the calculations of T c and a. The value of >..ionic continues to increase for higher 

Sr concentrations, with values of 6.4, 7.9, 12.1, and 36.6 for the higher Sr concentrations 

considered. 

calculated ionic part of lambda alone, as shown in Fig. 3.4. The ionic contribution has 

been scaled so that the first points of either curve coincide. 

It is not surprising that the ionic part of >.. increases much more quickly than the 

total >.. since the variations in the electronic contributions to >.. have not been taken into 

account. In fact, a comparison of the fitted values of >.. with the ionic contributions to 

>.. provides a measure of the variation in the electronic prefactor (Ii). The electronic 

prefactor begins to fall steeply at the same point that a decreases, possibly indicating a 

drop in the density of states at the Fermi level, or a significant change in the character of 
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the electronic wavefunctions, or possibly a deviation from a nesting condition operative 

near the optimal T c· 

The quadratic part of the potentials with a > 0.5 is sufficient to produce a phonon 

frequency of roughly 500K. The tetragonal to orthorhombic soft phonon mode is experi­

mentally observed at roughly 50 to 100 Kl68, 69] a considerably lower frequency. Although 

one might expect the lower temperature transition to be mediated by a mode of similar 

frequency, the actual anharmonic potential considered here is not directly related to this 

phonon distortion, but instead a posited vibrational source of the anomalous electronic 

dynamics at a doping level of k. In any case, phonon modes with smaller q than the mode 

driving the orthorhombic to low temperature tetragonal transition could have higher fre­

quencies, since these modes do not involve rigid motion of Cu-0 octahedra. Other buckling 

motions of the oxygen atoms out of-the Cu-0 plane could also produce higher frequency 

multiple well modes. We note that a mode of lower frequency than that considered would 

produce less pronounced variations in ). than that exhibited in Fig. 3.4. 

At low doping, the potential studied is roughly harmonic~ As the doping increases, 

it is assumed that the outer relative minima form and steadily increase in depth until 

a quadrupolar potential is obtained. A potential ambiguity in this analysis involves the 

difficulty of defining normal modes in a strongly anharmonic system, a problem with 

implications for the choice of effect,ive oscillator mass. In the preceding analysis, the 

oscillator mass has been taken as the mass of an oxygen atom, instead ·of the reduced 

mass of the Cu-0 octahedra, as would be valid for a harmonic normal mode. Such an 

assumption is plausible if the octahedra do not act as purely rigid entities. 

In deference to the peculiarities of anharmonic lattices, we now discuss the behavior of 

several non-quadrupolar multiple well potentials with analogous behavior under doping. 

Similar behavior for a wide class of potentials would lend some support to the physical 

relevance of this simplified model of anharmonicity. We do not propose that any :particular 

potential is relevant to La2-xSrxCu04; we merely wish to exhibit a general feature of 
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multiple-well potentials. 

We examine one-dimensional double and triple wells. We examine a triple well in the 

y direction coupled to a harmonic well in the x-direction, 

(3.12) 

We have also computed the variations in T c and a for a two dimensional triple well 

potential of the form 

(3.13) 

with 

(3.14) 

Finally, we have examined the behavior of an octapolar potential of similar dimensions. 

Since symmetry considerations within a tight binding model suggest that the linear 

term in the electron-phonon coupling is absent for the orthorhombic tilt mode at the rele-

vant phonon wavevector, these potentials have been examined for both linear and quadratic 

coupling. Linear terms are included because they will be nonzero for wavevectors near, 

but not exactly equal to, the relevant phonon ij. In the linear case, the distances between 

the outer minima of the potentials were taken in the range 0.22 to 0.25 A. Quadratic 

coupling encompasses primarily the transition from the ground state of the local oscillator 

to the second excited state. The dominance of higher energy transitions implies that a 

quadratically coupled potential will be wider than a linearly coupled potential that yields 

the same frequency scale for the electron-phonon coupling. For this reason, the interwell 

widths for quadraticly coupled potentials are in the range 0.4 to 0.5 A. For each potential 

the oscillator mass has been taken as the mass of an oxygen atom. A larger oscillator mass 

would require a narrower potential. 

For each of these potentials we obtain a near 0.5 at low doping, with a maximum 

substantially above 0.5 at intermediate doping (near the maximum Tc), and a relatively 

constant value around 0.1 for high doping, The transition temperature peaks at -30K for 
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intermediate doping. In the linear case, the electron-phonon coupling ..\ increases from 

-1.0 for low doping, to -2.0 for the highest doping. (65). The variation in ..\is much less 

pronounced for quadratic coupling, with ..\ "" 2 for all doping concentrations. For a more 

detailed account of the behavior of a particular evolving anharmonic mode, we refer to 

a previous publication[22). The similar behavior of a broad class of potentials mitigates 

somewhat against the concerns stemming from the inadequacies of a harmonic normal 

mode description. 

We now examine in detail a particular pair of quadratically coupled octapolar potentials 

which are designed to more closely mimic the structural instabilities which arise upon 

doping. The potentials are displayed in Figs. 3.5 and 3.6, which show the potential 

energy for tilts of the semi-rigid Cu-0 octahedra. The magnitude of the tilt is expressed 

in terms of the displacement of the apical oxygen. Tilts towards the corners of the plot 

correspond to distortions to the low temperature tetragonal (LTT) phase, while tilts to 

the sides correspond to the low temperature orthorhombic (LTO) phase. In this case, the 

oscillator mass is set to 2.6 times the mass of an oxygen atom, the normal mode mass 

for the displacement in question and likely the most realistic choice for oscillator mass. 

The potential of Fig. 3.5 is designed to mimic situation at doping levels of x- 0.12 near 

the incipient transition to the low temperature tetragonal phase. The wells in the LTO 

directions have a minimum at 150 K, compared to a value of -75 K for the LTT wells. 

The deeper wells in the LTT directions is consistent with the low-temperature stability of 

the LTT phase at this doping level. The central well is set at zero energy. In the second 

potential the outer wells have flattened out, corresponding to the increased stability of the 

high temperature tetragonal phase at higher doping levels. Assuming purely quadratic 

electron-phonon. coupling, the first potential yields Tc = 35 K and a = 0.8 for a fitted 

value of..\ = 2.0. The second potential yields T c = 26 K and a = 0.07 for the same value of 

..\. In both cases the Coulomb repulsion is set at JL* = 0.13. The results are similar for JL* 

in the range 0.05 to 0.30. Without detailed experimental information on the form of the 
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tilt mode potential, the present calculations must be considered as plausibility arguments. 

However, the theoretical results are fairly robust to variations in the detailed form of 

these potentials. The important qualitative features are the comparable magnitudes of 

the central and outer wells for the first potential and the flatness of the second potential. 

This choice for the evolution of the potentials assumes that the low temperature tetrag­

onal phase becomes more favored with increasing strontium concentration. Qualitatively 

similar results could be obtained from a slightly different series of potentials which are 

identical to the potentials discussed for strontium concentrations less than x=0.12, but 

then flatten out for higher concentrations. This series of potentials produce a maximally 

stable low temperature tetragonal phase around x=0.12. 

Before concluding, we again touch on the point that the eigenvectors of harmonic 

normal modes will not be normal modes of the anharmonic system. These vibrations 

should in general couple to other modes, although it is possible that certain vibrations 

could act as effectively independent oscillators, as seen in certain metal hydrides[70, 71 J. 

Consequently, the standard normal mode masses for these vibrations will not necessarily be 

physiCally relevant. Noting these difficulties, interpretation of frozen phonon calculations 

for particular atomic displacements should proceed with caution, especially for complicated 

atomic distortions, such as the orthorhombic tilt mode. In the particular case of the 

orthorhombic tilt, the strong dependence of the structural transition temperatures on 

ionic size[58, 72] implies that the anharmonic potential is strongly doping dependent, even 

for ions of the same valence. The frozen phonon calculation for La2Cu04 [51] should be 

treated as a representative example of the form of potential for this mode; not a definitive 

conclusion. 

Numerous theories for high-T c can explain an anomalously weak isotope effect. How­

ever, few can explain strong variations in a both above and below 0.5. A multiple well 

anharmonic potential appears to be a likely candidate for a mechanism for such a vari­

ation. The reproducible measurement of a > 0.5 in La2-zSrzCu04 has put significant 
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Figure 3.5: Model octapolar potential for octahedral tilts in La1.ssSro.12Cu04. Units on 

the horizontal axis are A. On the vertical axis one unit equals 3000 K. 
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Figure 3.6: Model octapolar potential for octahedral tilts in La2-:z:Sr:z:Cu04 near the 

LTO-HTT transition. Units on the horizontal axis are A. For the vertical axis one unit 

equals 3000 K. 
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constraints on possible theories of high temperature superconductivity. 

3.3 The higher-T c oxides 

The highest T c oxides generally exhibit small positive oxygen isotope effects. How-

ever, when one introduces dopants which decrease Tc, the isotope effect generally in-

creases, often attaining values on the order of the canonical a = 0.5. We now consider the 

suboptimal compounds, discerning whether the physical effects of the dopant atoms are 

consistent with various models for the isotope effect in these materials. Specifically, the 

results of the model calculations are compared with the high temperature superconductors 

3.3.1 Interplanar coupling of vibrational modes 

We first examine the possible ramifications of interplanar coupling of planar oxygen 

buckling motions in the multiple-plane compounds to see if the interplanar coupling corre-

lates in a meaningful way with the generally higher Tc of the multiple plane compounds. 

We will assume a double-well potential for independent oxygen motions perpendicular 

to the plane with Hooke's law coupling between oxygen atoms in adjacent planes. The 

Hamiltonian is 

2 2 1 1 
H = P1 + P2 + a(q2 + q2) + b(-q4 + 3q2q2 + -q4) + 2cq2 

2m 2m 1 2 2 1 1 2 2 2 2, (3.15) 

where we have decomposed the motion into the harmonic normal mode coordinates. The 

.. coordinate q1 describes oxygen atoms moving vertically in unison, while~ measures the 

amplitude of anticorrelated motion. We ignore intraplanar dispersion. As the coupling 

constant c is increased, the degenerate ground state splits. In the lower frequency mode 

the atoms move roughly in unison such that the interplanar coupling is less important 

while the higher frequency mode is dominated by the interplanar spring. Although the 

average frequency of these two modes increases as the coupling becomes stronger, the 
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lower frequency mode (with the larger A due to the inverse dependence of A on phonon 

frequency) dominates the superconductivity, such that the net effect on Tc is minor. The 

higher frequency mode, being dominated by the presumed harmonic interplanar coupling, 

acquires reduced anharmonicity, suggesting that interplanar coupling is not the source of 

the higher T c 's in the multiplanar compounds, since reduced anharmonicity is inconsistent 

with the small isotope effect. Although not a plausible source ofT c enhancement, harmonic 

interplanar coupling should not cause any significant depression in T c since it leaves the 

dominant lower frequency mode nearly unchanged. 

3.4 Isotope Effect Under Cu site Substitution 

Substitution of Zn, Fe, or Ni for Cu in YBa2Cu307 and YBa2CutOs has a dramatic 

influence on the isotope effect[45]. Fig. 3.7 reproduces experimental results for Tc versus a 
' 

for various concentrations of these dopants. The substantial difference between the effects 

of the different dopants in the two compounds could be ascribed to different substitutional 

sites for the dopant atoms, however, we do not examine this issue in detail here (chapter 

4 has a brief discussion of different substituent sites). Instead, we present a simple generic 

model of evolving anharmonicity which is consistent with the data. This model provides 

a mechanism alternative to magnetic pair breaking from the addition of transition metal 

dopants. 

In particular, let us assume that the addition of dopant atoms destroys the delicate 

structural or electronic situation in the Cu-0 planes necessary to produce anharmonic 

modes. Although one might expect the effect of the dopants to be rather inhomogeneous, 

we will model it by an evolving effective anharmonic potential shown in Fig. 3.8. The 

variation in the potential is reminiscent of that examined in our model of La2-xSrxCu04. 

However, in this case the central well disappears more quickly so that the potential never 

produces a > 0.5. We model the effect of different dopants by assuming that each dopant 
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Figure 3. 7: Experimental results(45) for the variation of a: versus Tc for substitution of 

M=Fe (circles), Ni (squares) and Zn (triangles) for Cu in (a) YBa2Cu3-zM.z07-6 and (b) 
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Figure 3.8: Series of effective anharmonic potentials used to model Cu-site substitution 

the doping level increases. 
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produces the same series of potentials, but with varying values of>., starting with>.= 2.0 

for the undoped material. Referring to Fig. 3.9, we have produced five theoretical curves. 

For dopant A, >. decreases from 2.0 to 1.20 at the lowest T c value. For dopants B, C, D 

and E, the final values of >. are 0.95, 0. 70, 0.45 and 0.20 respectively. In each case, the 

intermediate values of >. are obtained from a linear interpolation. The swift suppression 

of >. for dopant E produces an isotope effect that actually. decreases with doping. The 

results for the variation in a with T c span the breadth of the experimental behavior, with 

a similar functional form. However, considering the rather ad hoc nature of the proposed 

potentials, this result should be considered simply a plausibility argument for the relevance 

of anharmonicity to the variations in T c and a with Cu-site doping the the high-T c oxides. 

In general, the substitution of other rare earths for the Y in YBa2Cu307 has little 

effect on the superconducting properties[73][74][75][76]. However, introduction of Pr dra-

· matically lowers T c, with superconductivity disappearing for Pr concentrations above 50% 

[77][78][79]. Several models have been proposed to explain this behavior. If the Pr ions 

are tetravalent, they would reduce the carrier concentration thereby suppressing supercon-

ductivity. On the other hand, since the 4f electrons of Pr are more extended than those 

of other magnetic rare earths, they may hybridize more readily and cause magnetic pair · 

breaking. The experimental situation is somewhat unclear, with various results suggesting 

pair breaking, [80][81][82][83] valency,[82)[84) or carrier localization[85). As the Pr concen-

tration is increased, T c decreases and the isotope effect exponent increases monotonically, 

reaching 0.5 for a Pr concentration of 50% and a Tc of 30 K[44). We have examined 

the implications of the pair breaking and valency models for reduction of Tc from the 

viewpoint of both an anharmonic model of high T c and a nonspecific electronic model. 
' 

For illustrative purposes, we model pair breaking in the simplest possible manner. 
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Figure 3.9: Results for a versus T c for the potentials of Fig. 3.8. Five different effects of 

doping on the electron-phonon coupling were considered, as discussed in the text: dopant 

A (open triangles), dopant B (filled triangles), dopant C (filled circles), dopant D (filled 

squares) and dopant E (filled diamonds). 
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In the limit of a weak concentration of magnetic ions, the superconducting transition 

temperature is reduced by a mass-independent factor[86]. 

(3.16) 

If we extrapolate this simple form to higher concentrations of magnetic ions, we obtain a 

simple qualitative formula for the isotope effect exponent as. a function of T c· 

(3.1i) 

The increase in a upon doping is critically dependent upon the "baseline" isotope effect ao 

present at maximum T c· A more thorough treatment of pair breaking yields qualitatively 

similar behavior, with a more pronounced variation in a with decreasing Tc and a similar 

sensitivity to the value of ao[87]. Within a pair breaking treatment, large values of ao 

(roughly ao "'0.08) are necessary to fit theexperimental results for Tc versus a, at variance 

with the best characterized experimental results; which yield a= 0.02[10]. Although some 

experiments have yielded a,..., 0.08, the present consensus is that a:::.:::: 0.02[88]. 

Turning to the valency mechanism, we examine an electronic model, . with a mass­

independent electronic mode at 120 K and a harmonic phonon contribution at 480 K. A 

fit of a higher frequency electronic mode to the experimental values of T c and a would 

produce a value of the electron-phonon coupling which is at variance with experimental 

results[89]. Within the valency model, we assume that the decrease in Tc is caused by 

a decrease in .A which must be apportioned between the electronic and phonon-mediated 

terms in a 2 F. If we assume that both terms are reduced by the same multiplicative 

factor, then the electronic mode will dominate for all values of T c, keeping a small until 

superconductivity disappears. However, if the addition of Pr selectively depresses the 

electronic mechanism while leaving the phononic mechanism undisturbed, then a will 

increase somewhat as Pr is incorporated. Results for the valency model are presented in 

Fig. 3.10. The increase in a is generally insufficient to explain the experimental results 
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Figure 3.10: The relationship between o: and Tc in Y1-:z:PrxBa2Cu07 for a valence model 

of Tc suppression. Experimental data[44] (triangles) is compared with two electronic 

models, both with a 120 K mass-independent electronic mode and a 480 K harmonic 

phonon mode. One model (circles) has o:(93K) = 0.04 and J.L* = 0.10, the other (squares) 

has o:(93K) = 0.10 and J.L* = 0.14. In both cases, the doping selectively depresses the 

coupling to the electronic mechanism. Curves are intended as a guide for the eye. 

unless the phononic contribution to the coupling is large enough so that the isotope effect 

exponent at maximum Tc is roughly 0.10, substantially greater than the experimental 

value of 0.02[10]. A study of models with higher frequency electronic modes yields similar 

results. 

Treatments assuming magnetic pair breaking or selective suppression of a predomi-

nately electronic model yield too weak an increase in o: with decreasing T c if the "base-

line" isotope effect at mruqmum Tc is taken to be o: = 0.02. Since the detailed behavior of 

an anharmonic phonon model under Pr doping is unclear, we do not present a particular 
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microscopic model. However, the previous discussion of Zn, Ni, and Fe doping indicates 

that strong variations in a are possible, even for a material with a vanishing isotope effect 

at maximum T c· 

The previous treatments have assumed that the density of states near the Fermi 

level is roughly constant. We note that a Van Hove singularity model for high T c 

superconductivity[90] appears consistent with the dependence of Tc on a. A thorough 

treatment of this situation is given by Carbotte et al. [91][92] The effects of the valency 

model can be interpreted as a shift in the Fermi level away from the Van Hove singularity. 

As the singularity begins to leave the region ±ODebye from the fermi level, the isotope 

exponent increases, since a small change in ODebye will produce a large change in the total 

number of states within ODebye of the fermi level. Meanwhile, Tc will decrease since the 

singularity is leaving the region in which electron-phonon coupling is operative. If the 

peak of the singularity crosses the f2Debye threshold, one would expect a to peak, and then 

decrease. Perhaps a careful examination of a for the lowest values ofT c will reveal such a 

decrease in a. However, the Van Hove singularity model has several serious shortcomings 

as an explanation of high temperature superconductivity,[93] such as increased screening 

of the electron-phonon vertex and disorder broadening of the singular peak. 

In sum, if the suppression of Tc in Y1-xPrxBa2Cu07 is due to valency effects, then a 

anharmonic model with doping-dependent anharmonicity could reproduce the experimen­

tal data on the isotope effect. Under the same assumption, an electronic mechanism with 

a small phonon contribution is inconsistent with the small value of the isotope effect at 

maximum T c· A mechanism based on magnetic pair breaking also appears to fall victim 

to the small isotope effect at maximum Tc. 

3.6 Smoking Guns of Anharmonicity 

Direct detection of strong phonon anharmonicity in the high-T c oxides would con-
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stitute strong evidence that an electron-anharmonic phonon mediated mechanism is the 

source of high transition temperatures and small isotope effects. Unfortunately, phonon 

phase space is large, and the region of anharmonicity may be relatively small. Optical 

measurements, which show no evidence of anharmonicity, probe near phonon wavevec­

tor q=O. Inelastic neutron scattering, which probes the entire phonon Brillouin zone, 

detects anomalous behavior near the zone edge for an optical branch near 50 me V in 

YBa2Cu307 [94]. An extra branch appears near the zone edge and broadens while rapidly 

decreasing in frequency, behavior characteristic of strong anharmonicity. A true smoking 

gun of anharmonicity would be direct measurement of the mass dependence of the phonon 

frequency, and preferably A as well. Such a measurement could in theory be acquired 

via inelastic neutron scattering or an extraction of a 2F(w) from high quality tunnelling 

data. Unfortunately such a measurement probably be difficult or impossible due to the 

broadness of strongly anharmonic modes. Another signal of multiple-well behavior is a 

deviation from Debye-like behavior in the low-temperature specific heat. This anomaly, 

which is seen in amorphous glasses and other complex structures, arises from a picture in 

which the multiple-well potentials are treated as an ensemble of two-level systems, yielding 

a specific heat linear in temperature. In a metal with such two-level systems this behavior 

may be masked by the linear electronic specific heat. The energy gap in a superconductor 

leads to an exponential contribution to the specific heat which may be easier to sepa­

rate from a anomalous linear two-level contribution. However, the multiple wells under 

consideration for high temperature superconductors are not quite in this two-level limit, 

suggesting that this sign of anharmonicity may not be a promising avenue of exploration. 

In contrast, a significant mass dependence to A should show up relatively clearly in a 

mass dependent gap ratio ~· Under 0 18 substitution, A would increase, so that this 

ratio should also increase. For plausible values of the anharmonicity, we estimate a 5-10% 

increase in f~ for complete 160-180 substitution, if anharmonic effects are relevant for 

the high-temperature superconductivity. 
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Another footprint of anharmonicity is a downturn in the high temperature resistivity. 

Once again, however, nature conspires to obscure the effect. First, resistivity saturation 

has a similar signature (and in fact, anharmonicity may be a significant contributor to 

the microscopic mechanism behind the phenomenological description of resistivity satu-

ration.) Second, strongly anisotropic systems may exhibit significant deviations between 

the electron-phonon coupling relevant to transport and that relevant to superconductiv-

ity, as will be discussed in chapter 5 of this thesis. The anharmonic modes, if they are 

suitably anisotropic, may be invisible to transport measurements. The best candidate for 

the observation of significant anharmonic effects is the gap ratio. 

In most theories of high temperature superconductivity a novel mass-independent 

mechanism is responsible for the large transition temperature. The small positive val-

ues of o are due to a small phonon contribution to T c (see chapter 8). In general, a 

harmonic weak-coupled BCS model allows a negative value of o for a large value of J.L*, as 

revealed by a simple two square well model of superconductivity. 

(3.18) 

Substantial negative values of o are possible only for rather low T c, since we have only 

weakly coupled phonons under the influence of a large J.L*. This single-mode result also 

applies to a primarily electronic model of high T c with a small phonon admixture; the 

posited small phonon contribution cannot produce a large negative o. In contrast, the ·. 

anharmonic phonon model could produce significant negative o. For example, a decrease in 

.A independent of other effects will depress the isotope effect for a multiple-well anharmonic 

model. However, if the decrease in .A is accompanied by a reduction in the anharmonicity, 

then the effect on o is unclear. The family of models examined in section 3.4 includes 

some in which decreased coupling strength is associated with larger o and others in which 

decreased .A is associated with decreased o. Similarly, the substitution of Ba or Sr for 

La in La2Cu04 changes the doping, therefore changing .A, but the same substitution also 
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drives the system towards an instability, suggesting a pronounced change in the character 

of the phonons. The best candidates for negative a are likely the highest T c compounds, 

which are likely to have the largest presumptive anharmonicity, and also minor structural 
-

variants of optimized compounds, materials such as YBa2-xSrxCus07, wherein the posited 

anharmonicity can be tweaked without major change in the doping level. Measurements 

on Bh.sPbo.4Sr2Ca2Cus07 with Tc of 108 K have produced a small negative isotope effect 

of -0.013±0.002,[45] which suggests the possibility of a larger negative isotope effect in the 

higher-T c three layer thallium ~om pounds. In addition, recent site selective isotope effect 

experiments indicate an inverse isotope effect for substitution of planar oxygen atoms 

in YBa2Cus07 [95]. Finally, the copper isotope effect in oxygen deficient YBa2Cus07 is 

substantial and negative[96]. The general trend of smaller a with higher Tc suggests 

materials under high pressure as another candidate for a< 0. Unfortunately, higher-Tc's 

imply stronger coupling. Referring to the strong-coupling limit of an anharmonic a 

(3.19) 

we note that competition between increasing >.M and increasing >. may prevent a from 

attaining large negative values. 

The measurement of a strong negative isotope effect in a particular high-temperature 

superconductor would lend support to an anharmonic model, which provides a natural ex-

planation of such an effect, as opposed to a mass-independent model with a small phonon 

admixture. In fairness, we note that a large negative isotope effect need not be an unam-

biguous signal of anharmonicity. For example, a-U has a T c of roughly 2K and an isotope 

effect exponent of -2.2[99). Such a strong negative isotope effect in a strongly coupling 

superconductor cannot be explained by a large p,•, but instead requires a novel mechanism. 

One could of course appeal to a similarly novel mechanism for the high temperature su-

perconductors. However, anharmonic effects, which can account for the anomalous values 

of a both above 0.5 and below 0.0, provide the most natural explanation for a significant 
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negative isotope effect in the high temperature superconducting oxides. 

3. 7 Conclusions 

Strongly anharmonic multiple-well phonons provide a means to explain several unusual 

properties of the high temperature superconductors from within a BCS-like mechanism. 

Multiple-well potentials with a characteriStic length scale on the order of 0.1 A are con­

sistent with a near-zero isotope effect and T c "' lOOK. The counterbalancing effects of 

increased A and increased AM suggest that a will generally decrease with increasing Tc. 

Eventually strong coupling effects or structural constraints assume prominence such that 

the decrease in a may bottom out near the maximum T c 's obtainable. Plausible variations 

of anharmonic potential with various forms of doping are consistent with most experimen­

tal measurements of a in nonoptimally doped materials. Finally, the observation of strong 

variation in isotope effects both above 0.5 and below 0.0 provides moderate support for 

an anharmonic mechanism of superconductivity in the high-Tc oxides. 
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Chapter 4 

Site-Selective Isotope Effects in the HTS 

Within an anharmonic phonon model of superconductivity the value a = 0.0 is not 

special; the same anharmonic mechanism which could produce small near-zero positive 

isotope effects is also capable, upon a slight change in parameters, of producing inverse 

isotope effects. In other words, phonon anharmonicity does not suppress the absolute 

magnitude of the isotope effect, in contrast with a predominately electronic mechanism 

with a small phononic admixture, in which a large mass-independent electronic part would 

swamp the (presumably harmonic) phonon contribution and yield a small, positive isotope 

effect. The observation of an inverse isotope effect in the high T c oxides would be evidence 

in favor of the anharmonic mechanism, which provides a natural explanation for a < 0.0, 

as opposed to a joint electronic/phononic mechanism which provides a natural explanation 

for only a > 0.0. The measurement of a site-selective isotope effect in YBa2Cu307 [95] 

has yielded an inverse isotope effect for planar oxygen substitution. In addition to provid­

ing moderate support for an anharmonic mechanism, this result provides an opportunity 

to estimate the relative magnitudes of possible harmonic and anharmonic contributions 

within a phonon-mediated model of superconductivity, thereby allowing predictions of the 

site-selective isotope effect in materials with depressed Tc due to doping[98]. 

Measurement of the selective isotope effect involves back-substitution of 160 into the 

off-plane sites of a uniformly substituted 180 sample[95]. Two samples, denoted #1 and 

#2, were studied. When fully substituted with 180, #1 and #2 showed standard isotope 

shifts of -0.20 K and -0.23 K respectively. However, the samples with 180 in the planes 

and predominantly 160 off-plane exhibit increases in Tc of 0.10 K and 0.14 K. [95] To 

clarify these results, we extrapolate the data to the case of perfect site selection. We make 



a linear expansion in .6.Tc, the isotope shift, as a function of the change in the average 

oxygen mass in the planar (P) and off-planar (OP) positions, 

(4.1) 

ME!asurements of isotopic shifts in planar and apical oxygen Raman lines and thermogravi-

metric analysis allow an estimate of the average mass shifts~ It is estimated [95] that the 

site-selective versions of #1 and #2 have 65% and 80% 160 in the off-plane sites, which 

implies average off-plane oxygen masses of 16.7 and 16.4 amu respectively. The shifts 

in planar-mode Raman lines yield average plane-oxygen masses of 17.5 and 17.9 amu for 

the site selective samples. This estimate assumes that the modes in question are purely 

.harmonic with frequencies linear in the square root of the average oscillator mass. The 

Raman shifts for the uniformly 180-substituted samples imply almost complete isotopic -

substitution. Using these results in Eqn. 4.1 and averaging the coefficients f3p and f3op 

over the two samples, we obtain an isotope shift of +0.32 K for pure 180 on-plane and 

pure 160 off-plane, with .6.Tc= -0.22 K for uniform substitution. 

·Application of an anharmonic phonon mechanism to the site-selective results requires 

a measure of physical interpretation to obtain a sufficiently constrained description. For 

the purposes of a descriptive model calculation, we interpret the decrease in T c under 180 

substitution in the off-plane sites as due to a moderate harmonic contribution of off-plane 

oxygen phonons to the superconductivity. The increase in T c under additional planar 180 

substitution results from a dominant anharmonic contribution from planar oxygen modes 

combined with a moderate harmonic planar contribution. 

We now address the frequency distributions and relative weights of these disparate 

contributions. .Significant shifts in the phonon density of states derived from inelastic 

neutron scattering[lOO] provide a means of estimating the frequency range of the dominant 

contributions to the electron-phonon 'coupling. Depression of Tc by oxygen deficiency,_ Zn 

doping, or Pr doping reduces the phonon density of states in the range 40-60 me V and 
( 
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produces a new peak around 80 meV. Infrared reflectivity measurements support the 

interpretation of these changes in terms of electron-phonon coupling[101]. Assuming that 

anharmonic phonons dominate the superconductivity, these phonons can be assigned to the 

selectively depressed peaks in the range from 40-60 me V. The remaining density of states 

is a.Ssigned to harmonic modes. For simplicity, we assume that the non-oxygen vibrations 

occupy the range below 20 meV, and that the harmonic on- and {)££-plane contributions 

are equal in magnitude. 

The experimental phonon density of states has been fitted to a sum of 26 Lorentzians, 

which adequately reproduce the salient features of the spectrum. The hypothetical anhar-

monic peaks are centered at 42 and 53 me V, the peak positions in the neutron scattering 

spectrum. At this point, the theory has three important free parameters: the total cou-

pling strength .>., the anharmonic (AH) contribution to the coupling >.AH, and the strength 

of the anharmonicity expressed in terms of the mass dependence of ).AH, 

M d).AH 
\AH-
/\M = ).AH dM ' (4.2) 

an expression discussed in greater detail in previous publications[102, 21]. These three 

parameters are determined by fitting to the experimental values of T c. the uniform isotope 

shift and the site-selective isotope shift. This process yields .>.total=2.45, ).AH=1.72, and 

>-tl =1.56. The harmonic (H) contribution to>. decomposes into two parts, >.!ygen = 0.64 

from the peaks above 20 me V, and >.!!on-o:r:ygen = 0.09. For these calculations we have 

assumed p.* = 0.12; the effect oflarger p.* will be discussed below. 

The value of >.H is comparable with theoretical estimates of>. from analysis of phonon 

softening at the superconducting transition. (103, 104] It is also comparable with pre-

liminary estimates of >. from ab initio band structure calculations of the electron-phonon 

coupling of harmonic modes[103]. Additional clues as to the magnitude of the harmonic 

part of the electron-phonon coupling can be gleaned from the Tc's and a's of transition 

metal doped samples. Under Fe doping into predominantly chain-Cu sites, a increases 



substantially with only a small decrease in Tc[45]. Although iron seems a plausible mag­

netic pair breaker, the form of T c versus a is inconsistent with a uniform pair breaking 

mechanism. However, since Fe primarily enters the chain Cu sites, the hypothetical pair 

breaking may selectively depress the chain contribution to T c· This chain-localized pair 

breaking is reasonable because the c-axis coherence length in the high-T c oxides is very 

small. In a superconductor with significant magnetic pair breaking, the change in T c 

upon isotopic substitution is maximal when the magnetic pair breaking has almost com­

pletely destroyed the superconductivity of the isotopic sample with lower T c· For this 

reason, near-complete pair breaking of a small chain contribution to T c should yield a 

large increase in a for a small decrease in Tc· 

As a simple example, consider modelling the chain contribution to Tc as an independent 

superconductor with Tc's of 5 K and 5.2 K for .180 and 160 respectively. Within a two 

square well model, pair breaking yields a depression in T c given by[87] 

(4.3) 

where T co is the transition temperature in the absence of pair breaking, "Ill is the digamma 

function and p = 2,..r)(l+A), where r is the scattering time for magnetic pair breaking. 

Under strong pair breaking, one obtains Tc's of 0.01 K and 0.74 K, yielding a much 

larger isotopic shift in T c· Taking this hypothetical 5 K superconductor as exemplary 

of the chain contribution to T c indicates that a large change in ~ T c can accompany a 

small change in the total T c· The detailed accuracy of this calculation is limited by· 

two effects: different contributions to T c are not simply additive, and Fe dopants attract 

extra oxygen, suggesting a more complex influence of Fe doping on the superconducting 

properties. However, the qualitative considerations of selective pair breaking suggest a 

contrib-ution of order 5 K to T c from the Cu-0 chains, consistent with a moderate off­

plane contribution to >.. Ni doping in the chain Cu sites of YBa2Cu4-xNixOs also yields 

a large increase in a for a small ~ecrease in Tc,[45] suggesting that a similar mechanism 
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is operative in the 124 compounds. 

An additional estimate of the harmonic contributions to ..X is afforded by the Zn-doped 

compounds. Zn primarily enters the plane sites,[105] depressing T c with only a small 

increase in c:t. For larger Zn concentrations, c:t increases sharply, reaching 0.3, a value 

consistent with a purely harmonic mechanism, for Tc -9 K[106]. Assuming the absence of 

pair breaking, this result suggests a lower bound· of roughly -9 K for the total harmonic 

contribution to >., which is again consistent with a moderate harmonic contribution to the 

electron-phonon coupling. 

Although consideration of the results for Fe doping provides a useful clue as to the mag­

nitude of off-plane contributions to the superconductivity, a reasonably clean theoretical 

discussion of selective isotope effects of doped materials within an anharmonic mecha­

nism requires a system which is not clouded by the possibility of significant magnetic pair 

breaking. To this end, we concentrate on the systems where Sr and La are doped into 

the Ba site. We model the effect of doping as a decrease in both the magnitude of the 

anharmonicity, ,x~H, and the strength of the coupling to the anharmonic modes, ,xAH. In 

effect, we assume that the dopants perturb a !elatively delicate situation that engenders 

multiple-well potentials. These two parameters are fixed by the experimental values of T c 

and a, allowing a prediction of the site-selective isotope effect. The suppression of T c due 

to doping is also correlated with a new phonon mode at 80 meV,[IOO] which is assumed 

to be harmonic. The results are insensitive to the detailed treatment of this mode. 

The results of this analysis are summarized in Table 4.1. The primary qualitative 

result is that the difference in Tc between samples with different oxygen isotopes off-plane 

remains relatively constant as Tc is depressed by a non-pair breaking mechanism. This 

insensitivity results from the assumption that the doping primarily degrades the anhar­

monic modes. The harmonic off-plane modes are assumed to remain relatively unchanged 

under doping, and therefore contribute a nearly constant amount to the isotopic shift in 

Tc· This qualitative explanation suggests that the prediction should be relatively robust 



-~: 

Table 4.1: Analysis of La and Sr doped YBa2Cu307. The values for total coupling strength 

..X, and strength of the anharmonicity AM have been fit to experimental results for T c, a 

at the doping level in question, yielding a prediction for the site-sele~tive isotope effect in 

the doped materials. 

Material X Tc(K) ..X AM ,.xAH AT{' (K) AT~P "(K) 

YBa2-zLazCu307 0.0 92 2.45 1.56 1.7 +0.34 -0.56 

YBa2-zLa.zCu307 -0.2 76 2.0 0.80 1.3 -1.0 -0.6 

YBa2-zLazCu307 -0.3 57 1.6 0.40 0.9 -1.3 -0.6 

YBa2-zLazCu307 -0.5 35 1.2 0.12 0.4 -1.0 -0.55 

YBa2-zSrxCu307 -1.5 76 2.0 1.42 1.3 +1.0 -0.6 

to detailed changes in the analysis. An increase in the value of J.L* to 0.2 will yield slightly 

smaller values of AM and slightly smaller values of AT~P, with the same qualitative be­

havior. The calculation is also relatively insensitive to variations in the frequency of the 

proposed anharmonic contributions. A higher frequency anharmonicity implies weaker 

coupling to a phonon spectrum with a more weakly anharmonic mode, yielding the same 

qualitative behavior of the site selective isotope effect. The primary sources of uncertainty 

involve assumptions related to the off-plane modes. If the coupling to harmonic off-plane 

modes is also depressed by the doping, A T~P for the off-plane isotopic shift will decrease 

as T c decreases, while AT{' will adjust so that the sum of the a's equals the experimental 

value for uniform isotopic substitution. If the off-plane modes are themselves somewhat 

anharmonic, then a reduction in this anharmonicity under doping would likely increase 

A T~P. In any case, the primary qualitative conclusion is that the off-plane contribution 

to the isotopic shift in Tc should remain relatively:constant under reduction in Tc from 

Sr or La doping. 
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In summary, a model of superconductivity involving a dominant anharmonic phonon 

contribution and a moderate harmonic contribution is consistent with the changes in T c 

under site-selective oxygen isotope substitution in YBa2Cu307. In addition, this treat­

ment yields semiquantitative predictions for the site selective isotope effect in La and Sr 

doped YBa2Cu307. In particular, we emphasize that Sr doped YBa2Cu307 should show 

a substantial negative isotope effect under planar 180 substitution. 



Chapter 5 

Anisotropy 

A phonon-mediated model of high temperature superconductivity must explain the 

small values of the electron-phonon coupling derived from an analysis of both high temper­

ature measurements of the resistivity[195] and measurements of infrared conductivity[107]. 

One possible explanation ascribes the discrepancy to an underestimation of the electron-

phonon coupling in the transport measurements due to variations in the Fermi velocity[41 ]. 

This work examines an alternative explanation involving the ramifications of anisotropic 

electron-phonon scattering upon transport estimates of.>.. 

We examine the effects of anisotropic electron-phonon coupling in systems with Fermi 

surfaces that contain fiat sheets with a view towards applications in the high-T c super-

conductors. Such systems can exhibit apparent inconsistencies between transport proper-

ties and superconducting properties. Transport experiments do not directly measure the 

electron-phonon coupling constant .>., which is relevant to superconductivity, but instead 

Atr. Specifically, 

(5.1) 

whereas 

(5.2) 

where Mkk' is the electron-phonon matrix element, wk-k' is the phonon frequency, vkx is 

the Fermi velocity and the sum is over the Fermi surface and the phonon branches[108]. 

Because the transport coupling coefficient is weighed by the difference in Fermi velocities 

between the different Fermi surface k points considered, certain Fermi surface nesting 

configurations can depress or increase Atr relative to .>.. 
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For concreteness we will assume that the superconductivity is mediated by buckling 

modes of 0 out of the Cu-0 bonds. In La2-xSrxCu04, one such mode is an X-point octa­

hedral tilt mode associated with a low temperature tetragonal to orthorhombic transition. 

This buckling mode could potentially produce a large electron-phonon coupling[51]. An­

other such mode involves rigid rotations of the Cu-0 octahedra about the c axis. Frozen­

phonon calculations produce a multiple-well potential for the octahedral tilt mode and a 

strongly anharmonic single-well potential for the rotational mode[51, 109]. Note, however, 

that we will not restrict the discussion to any particular class of modes, instead considering 

a general electron-phonon anisotropy. 

LAPW calculations of La2-xSrxCu04 produce a nearly square Fermi surface arising 

from states in the Cu-0 planes[109]. The sides of the squares are oriented along the r­

X direction, the same direction as the octahedral tilt mode described above. A small-q 

phonon in this direction will couple electrons all along each parallel face of the Fermi 

surface, potentially producing a large >.. However, since the Fermi velocities of the modes 

along a given face are nearly parallel, the contribution to >.tr would be small. In contrast, 

a phonon mode in this direction with large enough q to couple states on opposite sides of 

the Fermi surface could produce large contributions to both >.and >.tr· 

Unlike La2-xSrxCu04, the other high-temperature superconductors generally have 

more than one adjacent Cu-0 plane, disallowing the possibility of a rigid octahedral tilt 

mode. However, one can still consider buckling of the 0 atoms out of the bonds. Po­

tential induced breathing calculations for YBa2Cu307 suggest unstable phonon branches 

for motion of oxygens perpendicular to the Cu-0 bond(llO]. Such results in the po­

tential induced breathing model often signal strongly {and potentially strongly coupled 

anisotropic) anharmonic modes. For the multi-layer materials we focus on phonon modes 

with q's parallel to the planar Cu-0 bonds. If such phonon modes are associated with a 

Peierls-type distortion, they would be very anisotropic, with the strong anharmonicity ay 

be restricted to certain magnitudes of q. LAPW calculations for YBa2Cu307 produce a 
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Figure 5.1: Depiction of nearly-square Fermi surfaces. (a) The family of model Fermi 

surfaces used in the present calculation. (b) Depiction of a portion of the Fermi surface 

for paramagnetic tetragonal La2-zMzCu04 in the kz = 0 plane (M= Sr, Ba). Results 

shown for x=0.2[109]. (c) Depiction of the Fermi surface of YBa2Cu07 calculated using 

the LAPW method, showing a sheet of the Fermi surface arising primarily from the Cu-0 

planes[l09]. 
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nearly square Fermi surface, rotated by~ from that ofLa2-xSrxCu04 [51]. The Fermi sur­

face of BhSr2CaCu20s also contains roughly square cross sections from the Cu-0 and Bi-0 

planes[lll, 112]. Angle resolved photoemission yields Fermi surfaces in good semiquanti­

tative agreement with the LDA results(ll3, 114, 115]. For these Fermi surfaces the phonon 

modes considered can nest in a manner similar to that described for La2-xSrxCu04 • The 

coupling of electronic states along flat sheets of the Fermi surface allows the possibility of 

large superconducting ~and small ~tr· 

We now present a simple model calculation to estimate the possible values of ~ versus 

~tr. In this model, a two-dimensional Fermi surface evolves continuously from a circle 

to a square. We assume that the phonon modes contributing to Tc involve q's oriented 

within a certain opening angle relative to the sides of the square. Contributions from 

nesting vectors that span the Fermi surface are included, even though these mode-s should 

contribute strongly to ~tr· As the Fermi surface shape is varied from circle to square, ~ 

increases while ~tr remains almost constant. The ratio is plotted in Fig. 5.2 for opening 

angles of 2.3, 5.7, and 11.3 degrees. In this simple model the superconducting electron-

phonon coupling can exceed the transport coupling by several times. 

Surprisingly, strongly anisotropic electron-phonon coupling within a planar section of 

a perfectly square Fermi surface will not necessarily produce a gap with a strong signature 

of anisotropy. Within weak coupling we have the BCS gap equation[!] 

(5.3) 

We model the anisotropy by a sum of delta functions in k space, 

(5.4) 

The choice of kin L\k merely determines the side of the Fermi surface which is summed 

over; nearly all choices of k yield the same gap equation. The exceptions are the corners of 

the square Fermi surface, which encompass summations over both adjacent sides, resulting 
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Figure 5.2: Ratio of .X to Atr for the family of Fermi surfaces shown in Fig. 5.1(a). The 

parameter x determines the shape of the surface. Taking x=O.O yields a circle, while 

x=l.O produces a square. Values of x above 1.0 produce a square with concave sides. The 

circles, triangles and squares correspond to opening angles of 11.3, 5. 7, and 2.3 degrees 

respectively. 
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an a larger gap at these points. On the other hand, in the rather plausible case that 

the corners are rounded such that the anisotropic interaction only weakly connects the 

corner states with edges, then the gap will be substantially smaller at the corners of the 

Fermi surface. These results should also be applicable to strong coupling, since strongly 

coupled superconductors are expected to exhibit similar, although somewhat weaker gap 

anisotropies [ 116], 

We note a caveat associated with the assumption of strong electron-phonon coupling 

along the face of a flat Fermi surface: Migdal's approximation is suspect. For a Fermi 

surface of arbitrary shape, the second order electron-phonon graph will involve one off­

Fermi-surface electron propagator. The contribution from this diagram will be reduced by 

a factor of the square root of the ratio of ion to electron masses[117]. However, for a flat 

Fermi surface, the phonon wavevectors can lie in the same plane, so that all propagators 

are evaluated near the Fermi surface, thereby producing a non-negligible contribution to 

the total electron-phonon interaction. In this situation, any results for superconducting 

properties which are based on the Eliashberg equations must be treated with caution. 

In summary, we have examined a· model of Fermi-nested anisotropic phonons that 

can account for large differences between superconducting and transport electron-phonon 

coupling. This model implies that the superconducting gap will be anisotropic, most likely 

with a smaller gap along directions towards the corners of the Fermi surface. 



Chapter 6 

Limits on Electronic Mechanisms 

A major reason for the proliferation of models involving electronic mechanisms to 

explain high superconducting transition temperatures are the very small isotope effects 

observed in the materials with the highest transition temperatures T c[42, 10, 118, 119]. 

The apparently felicitous mass-independence of electronic models carries with it a con-

straint: an electronic mechanism must be consistent with the small finite isotope effect in 

the cuprates. Although at first sight this seems to be a trivial requirement, the isotope 

shifts are in fact finite albeit small and there are experimental and theoretical estimates 

that indicate the electron-phonon interaction in these materials is substantial. Thus, any 

model based on a dominant electronic mechanism for superconductivity must also include 

the electron-phonon interaction, especially when calculating the isotope shift. The com-

bined electronic and electron-phonon interactions must somehow produce a small isotope 

effect. 

To explore the consequences of this model, the approach taken in Ref. [89] was to 

solve the Eliashberg equations for combined electronic and phonon-mediated pairing in-

teractions. The electronic mechanism is represented by an attractive interaction at a 

particular energy, We, with a coupling strength Ae, while the phonons are represented by 

an electron-phonon coupling function with a total coupling Aph· Within the approximation 

of the McMillan formula for T c, it was shown that 

_ Aph 

0- 2.A' (6.1) 

where .A = Aph + Ae. As expected, o is reduced by the presence of an electronic mechanism. 

To determine whether it is possible to produce the observed values of T c and o for 
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reasonable values of >.ph• the Eliashberg equations were solved for specified Tc and a 

(taken to be 93 K and 0.02 respectively for YBa2Cu307) by choosing an appropriate 

phonon spectrum consisting of Lorentzian peaks. For a given energy of the electronic 

mode, We, the strength of this mode relative to that of the phonon modes as well as ).. were 

varied until correct values of T c and a were obtained. It was found that the Aph obtained 

from these calculations increased as We decreased. However, even for very small values of 

We down to 30 me V, the resultant values for >.ph were considerably smaller than theoretical 

and experimental estimates, which range upwards from >.ph= 0.3. For still smaller values 

of we, ).. becomes unphysically large; ).. > > 10, values which virtually guarantee a structural 

phase to a structure with smaller >.. It was concluded that low values of We are necessary 

for this model because they produce the largest values of .)..ph• but that the predicted value 

of >.ph is still less than half of the smallest estimates of that quantity. The present work will 

show that an electronic mechanism with an inverse isotope effect is capable of resolving 

this difficulty. As discussed in Ref. [89], it is possible that the Eliashberg model is not 

adequate to describe the high T c materials because of low-dimensionality effects, a possible 

non-Fermi liquid ground state, or a failure to describe the electronic mechanism by the 

model assumed there. However, it has generally been assumed that many of the central 

features of superconductivity can be adequately described by the Eliashberg equations 

and even if this is not the case, it is still instructive to examine the consequences of the 

conventional theory. 

Anharmonic phonons can produce values ofTc and a in agreement with experiment for 

the high-Tc oxides,[102] and there has been some experimental evidence for the existence 

of anharmonic modes. A model with large electron-phonon coupling for the anharmonic 

modes is capable of explaining the values of a > ! and the dependence of a on doping in 

La-Sr-Cu-0(102, 43, 22, 97]. Anharmonic phonons can also explain site selective isotope 

experiments[98]. Here, we take a different point of view and consider a nonphonon mech­

anism (e.g. electronic) that couples to the lattice so as to produce a positive isotope shift, 



, .. 

(i.e. Oe < 0, as opposed to Oe = 0 for a purely electronic mechanism or Oph = 0.5 for 

harmonic phonons). This mechanism is modeled an energy We and a coupling strength >.e 

relative to the phonon modes, a coupling which is determined by T c and o. We define a 

mass dependence to We and >.e by introducing the definitions 

(6.2) 

and 

(6.3) 

Unlike previous models, we also assign a positive isotope shift to the mode by considering 

negative values of We,M or >.e,M, either or which will yield an electronic contribution to 

the isotope effect Oe < 0. 

Experimental motivation for consideration of such an inverse isotope effect is pro-

vided by site-selective oxygen isotope effect experiments[95] A careful choice of exchange 

conditions allows selective diffusion of plane oxygen sites by exploitation of the different 

microscopic diffusion rates. An extrapolation of site-selective isotope effect results to per-

· feet site selection implies an increase in T c of 0.32 K for 1~0 substitution with off-plane 

oxygen remaining 160, suggesting the presence of some variety of inverse isotope effect. 

To illustrate the changes expected for Oe =I= 0, a calculation similar to that which gave 

Eqn. 6.1 and allowing for a mass-dependent >.e yields 

\ ~. M 
Aph _ 0- We,M-~ 

T- !_w M 
2 e, 

(6.4) 

where>.= Ae +>.ph· Here we assume harmonic phonons so that>.~= 0 and Oph = 1/2. 

Because o = 0.02 is very small, even modest negative values of We,M and >.e,M can increase 

>.ph/>. substantially, as required to obtain agreement with the estimated values of >.ph· To 

illustrate this result we consider the case of We,M < 0 and >.e,M = 0. For the purposes 

of calculating o, a mass-dependent>.e can be formally incorporated into an effective mass-

dependent We which yields the same shift in Tc under isotopic shift of just the electronic 
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Figure 6.1: Values of the electron-phonon coupling strength, Aph (dashed), and the ratio 

of the electron-phonon coupling to the total coupling, Aph/).. (solid), versus the energy of 

the electronic mode for various values of the electronic isotope shift, We,M=O.O, -0.1, -0.3, 

and -0.5. The curves are determined by the constraints T c=93 K and a = 0.02. 

mode. We choose to examine just We,M =F 0 since in this case we have the simple relation 

We,M = ae, expressions which will be used interchangeably in the rest of this chapter. 

For detailed numerical calculations the phonon spectrum was again modeled by 

Lorentzian peaks and the Eliashberg equations were solved numerically. The electronic 

contribution has a strength which depends on its energy We and which is determined by 

the values Tc=93 Kanda= 0.02, where p.* = 0.12 is assumed. Results of the numerical 

calculations for We,M = 0.0, -0.1, -0.3 and -0.5 are shown in Figs. 6.1 and 6.2. In all cases, 

Aph/).. is relatively independent of We as predicted by Eqn. 6.4. Eqn. 6.4 is accurate to 

-25%, even though it was derived for p.* = 0.0 and ).. < 1.5. The value of Aph is seen to 

increase rapidly with increasing lwe,MI for a given value of We· The shape of the curves 
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Figure 6.2: Values of the total coupling, ). = >.ph + Ae (dashed), and 2~/kTc (solid) 

versus the energy of the electronic mode for various values of the electronic isotope shift, 

· We,M=O.O, -0.1, -0.3, and -0.5. The curves are constrained by the conditions Tc=93 K and 

a= 0.02. 

describing >.ph in Fig. 6.1 are also described well by Eqn. 6.4 since >.ph ex >.. The total 

coupling strength >. must increase with decreasing We as shown in Fig. 6.2 to maintain a 

constant T c; hence Aph also increases for decreasing We according to Eqn. 6.4 as shown in 

Fig. 6.1. The lower bound on the range of estimates for Aph in YBa2Cu30 7 is roughly 

0.3. As shown in Fig. 6.1, the addition of a small negative We,M yields Aph above this 

value for a wide range of electronic mode frequencies. A value of lwe,MI as small as 0.02 

yields >.ph,..., 0.3 for an electronic mode at We= 30meV. 

The total coupling strength >. and the gap ratio 2~/kT c increase with decreasing we as 

shown in Fig. 6.2, with >.becoming very large for w~· < 30 meV. The gap ratio is a weakly 

increasing function of lwe,MI· Experimental values for the gap ratio up to 2~/kTc "' 8 
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have been reported and the current calculations yield 2~/kTc ""' 6 for we "' 30 meV. A 

careful study of Raman phonon frequency shifts at Tc suggests 2~/kTc ""'5,[120] which is 

consistent with an electronic mode in the frequency range 40-90 me V. These relatively low 

frequencies are also most conducive to large values of >.ph. suggesting that this frequency 

range is most plausible for an electronic. model of high Tc· 

The preceding analysis assumes that o:2 F(w) is entirely due to oxygen-atom phonons. 

A significant portion of the coupling, particularly in the lower frequency range, could 

arise from non-oxygen vibrations. This situation has been modeled by using the same 

form for o:2 F(w), but assuming the the modes below 26 meV do not shift upon isotopic 

substitution. Since a portion of Aph is mass-independent, this treatment yields values of 

Aph roughly 10% larger than those previously obtained. 

The site-selective isotope effect experiments provide an additional constraint on the 

model. These measurements are accounted for within the present model by assuming that 

the mass dependence of the electronic mechanism depends exclusively on the mass of the 

in-plane oxygen atoms. The site selective material is modeled by a spectral function in 

which the electronic contribution is isotopically shifted along with the planar portion of 

. the phonon-mediated contribution. The phonon contribution to o:2 F(w) is apportioned be­

tween planar oxygen and off-plane oxygen contributions by dividing each of the Lorentzians 

above 25 me V into two separate peaks, one attributed to planar oxygen phonons and the 

other off-plane oxygen phonons. The relative strength of these two cont.ributions is varied 

to obtain agreement with the site-selective isotope effect results. Since the total phonon 

contribution has not been modified, agreement with the full isotope effect is not affected. 

For We,M=-0.3 or -0.5, the model is consistent with the site selective results if -75% of the 

oxygen phonon contribution to ).ph arises from planar oxygens. A value of We,M = -0.1 

implies that -50% of the oxygen phonon contribution to the electron-phonon coupling 

arises from in-plane modes. Smaller values of lwe,MI require that a larger fraction of the 

electron-phonon coupling arise from non-planar phonons. 



With a view towards the evaluation of possible physical mechanisms for a negative 

We,M, we determine the minimal possible values of lwe,M I which are consistent with the site 

selective isotope effect and the constraint >.ph > 0.3. For these calculations J.L* is allowed 

to vary between 0.1 and 0.2 and the modes in a2F below 25 meV are assumed to be non­

oxygen. These conditions weaken the experimental constraints on We,M so as to yield a 

more rigorous lower bound. For electronic mode frequencies below -100 meV, the primary 

constraint is the site selective isotope effect, which requires that lwe,MI > 0.05. Values of 

lwe,Miless than 0.05 imply that less than ""15% of the oxygen contribution to >.ph arises 

from in-plane modes, a physically implausible situation. (Without the constraint from 

the site-selective isotope effect, the lower bound on lwe,MI for a low-frequency electronic 

mode is reduced to roughly lwe,MI > 0.02.) For electronic frequencies above -100 meV, 

the primary constraint is the requirement that >.ph > 0.3. This condition is fulfilled for 

lwe,MI > 0.1. 

It is instructive to examine the way in which our calculations place restrictions on a 

particular model for an inverse electronic isotope shift. If it is assumed that the shift in T c 

is due solely to the fractional change in lattice spacing, 6
0
°, under 180-+160 substitution, 

then the shift in Tc can be estimated from the pressure dependence ofTc[121]. (The varia­

tion in Tc with pressure would also involve changes in the phonon spectrum. However, the 

present model implies that the electronic contribution dominates the superconductivity, 

suggesting that the increase in T c under pressure can plausibly be ascribed to changes in 

an electronic mechanism.) The isotopic shift due to the change in lattice constant can be 

estimated from the isothermal compressibility and the Gruneisen constants as was done 

for Ge(122] and the value 6: - 1 x 10-4 at T=O is obtained. This yields We,M "' -0.005, 

roughly a facto~ of ten smaller then the minimal value required by our calculations. Ob­

viously there are other models possible for an inverse electronic isotope effect which will 

require a similar analysis. In particular, there may be interesting classes of electronic 

mechanisms in which >.M =I 0. 
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Approaching the problem of a negative electronically based isotope effect from the 

theoretical side, the volume dependence of Tc within an electronic mechanism may arise 

from variations in the electron hopping amplitude. The transition temperature is generally 

an increasing function of the hopping amplitude, which tends to increase under lattice 

compression. However, the decrease in lattice constant due to isotopic substitution is 

accompanied by a decrease in thermal ionic motion. Since the hopping rate is an increasing 

function of the inverse distance, thermal motion should increase the hopping rate at a 

given lattice, constant. A semiclassical model of this behavior assumes a hopping rate 

proportional to L -n, where L is the interatomic spacing and n"'2 or 3. The hopping rate, 

t, averaged over one period of motion, is 

1 1271" ( 1 )n t ex- . dt, 
211" o L + Asmt 

(6.5) 

where A is the vibrational amplitude. An increase in isotopic mass will decrease both the 

interatomic spacing L ._ L - 8L and the vibrational amplitude A - A - oA. In general, 

we expect 6J > > 6
/; and 1 < < 1. In the case n=2, straightforward algebra yields 

8t = _ 2cL + 3cA (A) 2 

t L A L 
(6.6) 

The effect of the decrease in vibrational amplitude on the hopping rate is reduced by a 

factor of ( 1) 2 
relative to the effect of the decrease in interatomic spacing. The qualitative 

features of this model should carry over into a quantum formulation, since the effects of 6A 

and 6D on the hopping rate should remain linear, and the effect of 6A should be reduced 

due to the oscillatory nature of the motion. The relevant scale for such a reduction is ~' 

and this ratio must be squared, since the sign of the amplitude is irrelevant. Applying this 
1 

model to YBa2Cu307, we estimate 6J :::::::: e~~:~) i- 1, and¥~ 2 X 10-4 as before. The 
0 

ratio ~ is estimated as '"""' Qd4 '"""' 0.02. We obtain as increase in the hopping rate of ¥ ~ 2 x 
2.0A 

10-4 for either n=2 or n=3. Neglecting the change in vibrational amplitude yields ¥ ~ 4 x 
( 

10-4 for n=2 and ¥ :::::::: 6 x 10-4 for n=3, indicating that the change in vibrational amplitude 



can' reduce the hopping rate significantly, counteracting the eff~cts of the decrease in lattice 

constant. Taking Tc ex t 2, (as suggested by RVB and some polaronic models) yields 

ae ""' -0.002, well below that required to reconcile a predominantly electronic mechanism 

with the experimental and theoretical constraints on >.ph· Of course superconductivity 

within an RVB model will not be amenable to an Eliashberg-based analysis. However, 

the present results suggest that the possible RVB-based contributions to the isotope effect 

are not consistent with the experimentally measured isotope effect and electron-phonon 

coupling. 

In summary, we have shown that an electronic mechanism for superconductivity in 

YBa2Cu307 is consistent with values of Tc=93 K and a = 0.02 as well as estimates of 

>.ph if the electronic mechanism couples to the lattice in such a way as to produce an 

inverse isotope effect. Electronic models for high temperature superconduCtivity should 

be evaluated in terms of their ability to produce a significant inverse isotope shift. 
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Chapter 7 

Microscopic Mechanisms 

The values of the electron-phonon coupling necessary to produce Tc ~90 K for an 

average phonon frequency of ~ 600K on of the order >. ~ 2 - 3, comparable to the values 

obtained in Pb and Pb-Bi alloys. However, in these systems, the large values of>. arise 

predominantly from the low phonon spring constants, as evidenced by the relation 

(7.1) 

where N(O) is the density of states at the Fermi surface, (/2) is an average electron-

phonon matrix element, M is the ionic mass, and (w) is an average phonon frequency. 

The maximum Tc obtainable by the strategy of reducing the denominator in Eqn. 7.1 is 

limited because such a reduction of necessity also reduces the average phonon frequency. 

Substantial increases in Tc must arise from the numerator, the detailed structure of the 

. electron-phonon matrix elements. 

One possible source of a large (/2) is a dynamic Peierls-type distortion[123], in which 

a lattice distortion which increases the unit cell size dynamically gaps a suitably shaped 

Fermi surface, producing strong electron phonon coupling for phonon modes of pot~ntially 

relatively high frequency. Although Peierls distortions are generally associated with 1 

dimensional systems, they can occur in any system in which the locus of k points satisfying 

k · G = 1rj2 where G is a reciprocal lattice vector, coincides with the Fermi surface .. 

The high T c oxides generically possess nearly square quasi-two dimensional Fermi . 

surfaces associated with the Cu-0 planes. In addition, the nesting vector between opposite 

sides of the Fermi surface generally closely corresponds to a simple rational fraction of a 

dimension of the Brillouin zone, namely ~ for YBa2Cu307 and ! for La2-xSrxCu04 . de 



Haas-van Alphen[124] and photoemission[113, 114, 115] measurements corroborate the 

detailed features of the theoretically determined Fermi surface, giving one confidence that 

the actual Fermi surface has the properties necessary to encourage Peierls distortions. 

These features suggest that certain large q static distortions could· gap the Fermi level 

in these materials, implying that corresponding dynamic distortions would yield large 

electron-phonon coupling. These distortions come in two flavors: those along a Cu-0 bond 

would couple to electrons in first order while those perpendicular to the bonds would couple 

in second order. The second order contributions could be substantial for a strongly coupled 

system with ). - 2 - 3. Both forms of distortion produce anisotropic electron-phonon 

coupling of the sort necessary to yield both an anisotropic gap and a strongly temperature­

dependent Hall coefficient[125]. In addition, distortions perpendicular to the bond are 

particularly appealing in that such a_second order coupling corresponds to strong coupling 

between electronic states along the same side of the Fermi surface, a condition which 

suppresses the transport-relevant form of the electron phonon coupling as discussed in 

Chapter 5. Finally, these distortions, in which the system dynamically enters an alternative 

structure at a local minimum in the total energy, would be described by multiple-well 

potentials, a form of anharmonicity which would suppress the isotope exponent a. 

Indirect evidence for Peierls-like behavior can be found in the sensitivity of the su­

perconductivity to the degree of order in the Cu-0 plane. The Peierls-like modes require 

the underlying lattice to possess medium to long-range order. The high temperature 

tetragonal (and low temperature tetragonal) phases of La2-zSrzCu04 are disordered ar­

rangements of tilted Cu-0 octahedra that average to the structure observed in X-ray 

scattering experiments. This profound disorder should preclude Peierls-type behavior, as 

is observed in well-annealed samples of La2-zSrzCu04 [118]. We note that aNd-doped 

La2-zSrzCu04oxide exhibits superconductivity in the low temperature tetragonal (LTT) 

phase. (43] However, in this case it is unclear if the.LTT phase is disordered or ordered. 

Thermal expansion measurements suggest the presence of a lattice instability which 
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appears to be occur at the maximum T c associated with both single layer and double layer 

compounds[35]. This instability can be interpreted as a change in the symmetry of the Cu-

0 planes sufficient to suppress the superconductivity. The instability need not be mediated 

via the actual mechanism of superconductivity; any distortion which weakens the nesting 

conditions would suffice. Of course such behavior is not unique to a dynamic Peierls model, 

but applies to any mechanism sensitively dependent on the detailed structure of the Cu-0 

planes. 

Direct evidence of potentially dynamic buckling distortions can be found in various 

local probes of the lattice dynamics (we note that q=O optical probes will not be sen­

sitive to the large-q Peierls modes). EXAFS studies of apical oxygen motion can be fit 

with a double-well potential. The EXAFS results can also be interpreted in terms of 

planar distortions, which would also be of multiple well character. As mentioned in Chap­

ter 3, neutron scattering pair distribution function measurements in La2-xSrxCu04 [46], 

Nd2-xCexCu04[126], YBa2Cu307 [127] and Tl2Ba2CaCu20s[l28] can be fit to models 

with structural distortions of the Cu-0 planes involving superpositions of planar buckling 

structures or apical oxygen displacements with hints that these distortions are dynamic. 

Ion channelling measurements can also be interpreted in terms of structural distortions 

near Tc on the oxygen sublattice[l29]. A Peierls-like mechanism would of necessity in­

volve incipient lattice distortions similar to those described. As a caveat, we note that 

although clearly there are anomalous lattice dynamics associated with the superconducting 

transition, available evidence does not indicate whether these distortions are intimately 

associated with the cause of high Tc or rather simply a side effect of an alternative mech­

anism. 

In the simplest approximation, the potential for a Peierls-like distortion would take 

the form 

V(x) = -Aixl + Bx2
, (7.2) 



where the linear term models the decrease in energy upon gapping the Fermi surface, 

with the coefficient A a monotonically increasing function of the coupling strength .A. 

The anharmonicity of the potential as measured by the magnitude of ).M will also be a 

monotonically increasing function of A, analogous to the situation with the potentials in 

Fig. 3.8. The doping dependence of T c would arise from the necessity of matching the 

Fermi surface size to a commensurate wavevector. Unfortunately, in a realistic system both 

the readjustment of the other electronic bands and the effects of zero point motion may 

change the form of the potential sufficiently such that Eqn. 7.2 is no longer accurate. The 

qualitative feature of multiple wells is likely to survive in a form related to that considered 

in Chapter 3. 

This speculative discussion presents one idea for the genesis of multiple vibrational 

potentials in a strongly coupled system. The model makes use of several of the special 

electronic features of the copper oxide superconductors, namely the two-dimensionality 

and the strong Fermi surface nesting at commensurate wavevectors. The model predicts 

either secondary maxima or plateaus in the superconducting transition temperature at 

other doping levels which yield less favorable, but still commensurate nesting wavevectors. 
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Chapter 8 

Introduction to C60 Systems 

An important first step towards understanding the solid state physics of a new material 

is an understanding of the electronic structure. The theoretical results for the electronic 

structure of pristine and doped fullerenes rely primarily upon one electron theory and 

LDA band structure, with a few theoretical quasiparticle band structure results. These 

approximations appear to be plausible although several researchers have questioned the 

applicability of theories of this kind in view of the possible importance of electron cor­

relation in these relatively narrow-band systems. Experimental results generally ·support 

the one-electron picture. A solid grounding in electronic structure facilitates the later 

discussion of phonon dynamics, electron-phonon coupling, transport and superconducting 

properties of alkali doped fullerenes[130]. The necessary background on superconductivity 

is repeated in abbreviated form so that the fullerene section of this work may be read 

independently of the earlier chapters. 

8.1 Electronic Structure 

The electronic structure of an isolated C60 molecule provides a convenient starting 

point. The bonding character of C&o is predominantly sp2 with a small admixture of 

sp3 character due to the non-zero curvature. For this reason, the electronic states can 

be decomposed into approximate 1r and q states. The bonding q states reside well below 

the highest occupied level, which is composed of orbitals having primarily 1r character[131, 

132]. The nearly spherical structure of the C60 suggests a labelling of these electronic states 

in terms of spherical harmonics, with the q and 1r electrons corresponding to different radial 

quantum numbers. The carbon-derived potential splits the degenerate energy levels of the 
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spherical potential, producing the level structure shown in Fig. 8.1. The non-spherical 

part of the potential is dominated by an f.= 10 contribution, which splits electronic levels 

having f.~ 5 [133]. 

Fifty 1r electrons fill orbitals from f. = 0 to f. = 4, and ten electrons occupy part of 

the f. = 5 shell. The carbon potential splits the eleven {ignoring spin) degenerate states 

of this f.= 5 level into a five-fold degenerate highest occupied molecular orbital (HOMO) 

of hu symmetry, a three-fold degenerate lowest unoccupied molecular orbital (LUMO) of 

t 1u symmetry, and an additional three-fold degenerate level at slightly higher energy. The 

ten f.= 5 electrons fill the five-fold level, yielding a closed-shell configuration. 

C60 forms a Vander Waals solid wherein the fairly weak overlap between molecular lev­

els yields relatively narrow bands. Doping with alkali atoms yields an ionically bound solid 

still with relatively weak dispersion. Electronic band theory provides a consistent explana­

tion of semiconducting fcc Cso [133, 134], doped metallic systems such as K3Cso [135, 136] 

and semiconducting KsCso [137]. We focus on fcc Cso and K3Cso as prototype materials 

for examining normal-state and superconducting properties .. 

Although there are still some open questions related to the effects of electron-electron 

correlation energy for these materials,[138] it has been argued [133, 134] that one-electron 

band theory yields consistent results for Cso and K3Cso with band widths "'0.5eV. The 

outstanding difficulty of one electron theory appears to be the nonmetallic nature ofK4Cso, 

which according to band theory should be a metal. Putting this unusual material aside for·. 

the purposes of this discussion, we describe the prototype systems Cso and K3 Cso using 

standard band theory. 

Solid fcc C60 is bound by van der Waals attraction between the clusters with a nearest­

neighbor separation of 10 A. This relatively large separation compared to the C-C separa­

tions within the clusters (- 1.45 A) results in fiat bands formed from the predominantly 

sp2 states. As in the isolated molecule, the resulting band states near the band gap have 1r 

character. If a spherical harmonics decomposition is used for the wavefunctions as in the 
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Figure 8.1: Electronic energy levels of 1r states in an isolated C6o molecule.[131, 132, 133] 

The highest q states, which have been omitted for clarity, lie at roughly -4 eV. The 

density of states of the bands in KaC6o which correspond to the hu, t1u and t19 states of 

the molecule has been superimposed.[134, 135, 143, 144, 145, 146] The Fermi level of the 

solid is set at 0 eV. 
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molecular system, then the states near the band gap have angular momentum character 

off= 4 and 5. 

Band structure calculations by Saito and Oshiyima (SO )[135] and by Martins and 

Troullier (MT)[136J give similar results and differ only in the finer .details. Both calcu­

lations employ pseudopotentials and the local density approximation (LDA). SO employ 

a gaussian-orbital basis which is considerably smaller than the plane wave basis set used 

by MT, which has as many as -30,000 plane waves. Both the SO and MT calculations 

include total energy estimates of lattice constants, bulk moduli, and cohesive energies. It 

is encouraging that the results of these calculations are similar considering the differences 

in the wavefunction expansion. 

Some general features of the band structure can be discussed in terms of the relation 

of the bands to molecular orbitals. · Since there are 240 electrons per primitive cell, one 

expects 120 (90 q and 30 1r) filled bands. The 90 filled q-bands are well below the Fermi 

energy. The top five bands are derived from the hu five-fold degenerate HOMO of C6o· 

The lowest three valence bands are related to the t1u LUMO. The remaining three of 

the 11 f = 5 states are contained in an upper unoccupied t19 state. Both the valence 

band maximum and conduction band minimum lie at the X-point of the Brillouin zone, 

with a gap separation of "' 1.5 e V. The relative orientations ofthe C6o clusters can affect 

the band structure. Here the highest symmetry configuration, Th, is assumed for the fcc 

lattice of rigid molecules. The rotation of the molecules above -260K[139] alters the band 

structure and broadens the bands. 

Because the states near the band gap originate from states of u-symmetry, optical 

transitions between the top of the valence band and the bottom of the conduction band 

are forbidden in lowest order. Although the LDA calculations are best suited for ground 

state properties, photoemission [140] and inverse photoemission[141] data are in reasonably 

good agreement with the predictions of the pseudopotential-LDA calculations. 

When alkali atoms are placed in the two interstitial tetrahedral sites and the octahedral 
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site, a rigid-band model would predict that the t1u derived bands are half full, implying 

that K3Cso should be metallic. In the gas phase, the Cso molecule can accommodate 

two electrons and form a stable C6i ion. (142] In the solid phase, analysis of K3C60 and 

KsCso suggest that the potassium 4s electron is transferred to the Cso molecule, resulting 

in a strongly bonded ionic metal for K3C60 and a semiconductor with a band gap of 

,..., 1 eV [137] for K6C60 . Hence, the charge state of Cso is strongly influenced by its 

local environment. The Madelung energy of the crystal, electron affinity of the Cso, and 

ionization energy of the alkali are major factors in the bonding and charge states. 

Although evidence for the inadequacy of a strict rigid band model exists (140], the 

concept of alkali metal doping appears to be representative of the situation for K3Cso· 

Electrons are transferred and the weakly bonded van der Waals crystal transforms into a 

more strongly bound ionic metal. The Fermi level crosses the lowest two t1u bands with 

the electrons occupying almost all of the lowest band and more than half of the second of 

the three bands. The Fermi level lies on a steep downward slope in the density of states, 

as indicated in Fig. 8.1, so that the density of states is a sensitive function of the lattice 

constant. For these reasons, theoretical results for the density of states at the Fermi level, 

N(EF) vary from 10 to 30 states per eV per Cso· Because of the band dispersion between r 
and X, hole-like Fermi surfaces exist at r for both the first and second conduction bands. 

The first band also contains hole surfaces near the L point of the Brillouin zone .. For the 

next highest band there are both hole and electron surfaces, yielding a Fermi surface with 

at least two hole-like and two electron-like branches(143, 144, 145, 146, 147, 148]. 

In contrast to the undoped material, K3Cso exhibits low-temperature orientational 

disorder, with equal population of two orientations related by a I rotation(149]. This 

disorder will smear out peaks in the density of states(150] and contribute to a large residual 

resistivity(151]. Electronic structure results based on a perfect crystal should be used with 

caution in light of this microscopic orientational disorder. 
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8.2 Phonons 

The phonons of C6o-based solids can be conveniently divided into low frequency in­

terball and high frequency intraball modes. The int.erball phonons are further divided 

into librational, vibrational, and alkali-atom modes. Each of these modes could plausibly 

contribute to some degree to the electron-phonon coupling necessary for the BCS the­

ory of superconductivity. The mechanisms of electron-phonon coupling will be described 

later; here we consider the various phonon modes and give a qualitative discussion of the 

possibilities for electron-phonon coupling for each class of modes. 

The lowest-energy phonons of doped C6o are the rotational motions of the C60 

molecules. In contrast to pristine C6o, the doped material does not exhibit quasi-free 

molecular rotation[152]. Instead, the C6o molecules of the doped materials undergo small­

amplitude librational motions. These librational modes have very low frequencies - on the 

order of 20 or 30 K [153], as expected due to the large oscillator mass, near-spherical nature 

of C6o and the rather weak van der Waals binding between the C6o molecules. Since the 

band dispersion of solid C6o is determined by the electronic overlap between molecules, 

which in turn is sensitive to the relative orientation of adjacent molecules, the librational 

modes could potentially exhibit significant electron-phonon coupling. However, the low 

frequency of these modes suggests that they will not make substantial contributions to the 

superconducting transition temperature. 

The fullerene systems also possess low-frequency modes of translational character. 

These are expected to have somewhat higher frequencies than the librational modes, 

since bulk translational motions should induce greater interaction between the molecules 

than rotations .. A rough estimate of their frequencies based on the bulk modulus of the 

material[154] yields w ""' 60 K. Inelastic neutron scattering[155] and Raman scattering[156] 

reveal broad peaks near 50 K and 150 K which have been identified with these modes. 

Low to moderate q translational modes induce local changes in the lattice constant, which 
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induces local changes in the bandwidth. A tight-binding picture of interball interaction 

yields small to moderate electron-phonon coupling for these distortions[157, 158]. 

The alkali atoms reside in the tetrahedral and octahedral interstitial sites of the fcc C60 

lattice. Electron energy loss spectroscopy [159] suggests that the vibrational modes of the 

alkalis in these sites have frequencies around 100-200 K. Local density calculations indicate 

that the sites are effectively "holes" in the Cso lattice, with little charge density other than 

that residing immediately atop the alkali atom. This result allows the possibility that the 

alkali atoms reside in strongly anharmonic potentials with a significant quartic component 

and perhaps a weak multiple-well character, results that could have implications for a 

possible alkali atom superconducting isotope effect. The large electron affinity of the 

C6o molecule guarantees that the alkali atoms will be almost completely ionized. The 

positively charged ions will polarize the electrons on adjacent Cso molecules, thereby 

coupling the alkali motions to the electronic system. An estimate of the potential electron­

phonon coupling due to a static displacement of the alkali atoms suggests extremely strong 

coupling[160]. However, a model of superconductivity based entirely on the alkali atom 

vibrations encounters significant difficulties in explaining the large carbon isotope effect, 

as will be discussed in more detail later. 

The high-frequency intraball phonons subdivide into two ill-defined classes, the lower­

frequency radial modes and the higher-frequency tangential modes. The tangential modes 

involve stretching and compression of the carbon-carbon bonds, as opposed to the pri­

marily radial motions of the carbon atoms for the lower-frequency modes. The situation 

is analogous to that in graphite, in which the modes with in-plane displacements have 

higher frequencies than those involving buckling motions out of the graphitic sheets. The 

curvature of Cso produces hybridization between the radial Pz orbitals and the s orbitals 

which allows new scattering channels for the electron-phonon coupling which are absent in 

planar graphite. [161, 162) In contrast to doped Cso, alkali-intercalated graphite systems 

have superconducting transition temperatures .-1 K [163]. 
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Table 8.1: Experimental phonon frequencies[162] for intraball modes in undoped C6o of the 

correct symmetry to mediate electron-phonon coupling. Upon doping, the energies shift 

by a few percent. 

Mode w(K) 

H9 (1) 393 

H9 (2) 629 

H9 (3) 1022 

H9 (4) 1071 

H9 (5) 1581 

H9 (6) 1799 

H9 (7) 2055 

H9 (8) 2266 

A9 (1) 715 

A 9 (2) 2114 
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We concentrate on the C60 intraball phonon modes of A9 and H9 symmetry, since group 

theory implies that only these modes will couple with the t1u symmetry electronic states 

at the Fermi level. The relevant phonons are enumerated in Table 8.1 [164}. The lower­

frequency A9 mode corresponds to a breathing motion, whereas the higher frequency mode 

involves out-of-phase oscillations of the single and double bonds. The lowest frequency H9 

mode produces a radial distortion ofthe C6o molecule into an ellipsoid, whereas the higher 

frequency H9 modes possess progressively more tangential character[165}, as anticipated. 

By fortune, the selection rules for electron-phonon coupling and Raman scattering 

are the same, so that these same ten modes are also Raman active. Electron-phonon 

coupling will cause decay of phonons into electron-hole pairs, yielding a finite phonon 

lifetime, which may be evidenced by the non-zero widths of the Raman peaks. [166] 

In theory, if = 0 Raman-active modes will not couple to the electrons because of phase 

space factors; however, the strong orientational disorder in the doped system will allow 

wavevector-nonconserving processes. A study of the broadening of the Raman lines upon 

doping indicates a significant coupling to the H9 (2) mode at 560 K, and moderate coupling 

to the higher frequency H9 (7) and H9 (8) modes[167, 168} Inelastic neutron scattering[155] 

also indicates substantial broadening of several of the H9 modes. If this broadening is 

interpreted in terms of electron-phonon coupling, then a reasonably consistent argument 

for electron-phonon superconductivity can be made. 

8.3 Superconductivity 

In contrast to the high-Tc copper oxides, the C60-based superconductors[169], with T c 's 

exceeding 30 K, are isotropic three-dimensional systems At first glance, the C60 systems 

look more amenable to theoretical analysis than the oxides. However, there is still not a 

general consensus on the origin of superconductivity or on the nature of various electron­

electron interactions in these materials. The discussion proceeds from the assumption that 



8.3. SUPERCONDUCTIVITY 

the doped C6o materials are conventional BCS superconductors, with a brief discussion 

of the ramifications of more exotic pairing mechanisms 

In BCS and Eliashberg [1, 4] models for Tc, the primary parameters determining the 

superconducting properties are the electron-phonon coupling constant >., the Coulomb 

repulsion /1-, and some average phonon energy En. For standard band structure models of 

metals, J.L is renormalized to p,*, 

1 1 Ep 
-=-+ln­
p,* J.L En 

(8.1) 

and J.L is typically reduced by a factor of 2 to 5. Strong coupling effects arising from 

electron-phonon renormalization and quasiparticle damping change >. to ).* = >.j(1 + >.) 

yielding a McMillan [2] equation for T c of the form 

(8.2) 

which is appropriate for >. < 1.5. Numerical constants can be included in Eqn. (8.2), as 

was done by McMillan to fit the case of Nb. 

The electron-phonon coupling parameter >. can be expressed [2] in terms of (/2), a 

Fermi surface average of the square of the matrix elements representing the scattering of 

electrons by an atomic displacement. We obtain 

). ,.,., N(EF )(/2
) 

M{w2} ' 
(8.3) 

where M is the atomic mass and {w2} represents an average of the square of the phonon 

frequencies [2]. Eqn. 8.3 for >. can be interpreted as the ratio of an average electronic 

spring constant and an average lattice vibrational or phonon spring constant. H the (w2 ) 

are related to the C-C bond oscillations, then one would expect similar phonon spring 

constants for C6o solids and graphite[161, 162]. Hence, from this point of view the signifi-

cantly higher T c's for M3C50, where M is an alkali metal atom, arises from the numerator 

in Eqn. 8.3. As mentioned earlier, it is expected that the curvature of the C6o molecule 
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opens up additional scattering channels not available in doped graphite. In graphite the 

mirror plane symmetry yields (12} = 0 for several displacement-induced electron scat­

terings when matrix elements are taken between s and Pz states. The curvature in the 

C6o case mixes these states and yields non-zero matrix elements which can increase ~ 

substantially above that in graphite intercalated compounds. 

It is widely held that the intraball vibrational modes dominate the electron-phon cou­

pling. In this model, the C6o molecules reside in a sea of electrons with sufficient charge 

transfer to create bands ~ 1 eV in width. Electronic charge density plots [135, 136] re­

veal spread-out charge distributions consistent with the itinerant-electron picture of this 

model. The diameters of the C6o molecules and their separations are both "' 10 A. Hence 

electrons pair via phonons localized on the molecules, but retain their band-like itinerant 

nature. In most of these models, vibrations arising from coupling between moh~cules or 

. from movement of the alkali atoms are considered to be less important than intraball 

excitations because of the higher energies (and presumably significant coupling) of the 

latter. 

The above model of pairing via intraball phonons has been justified to some extent by 

measurements ofT c as a function of pressure and as a function of different substitutions for 

M in M3C6o· A negative dependence on pressure was found for M=K and Rb [170], where 

~ "'-0.8/Kbar. A similar effect arises when larger alkalis are used [171]. A increase in 

lattice constant or volume causes a decrease in band width, an increase in N(EF ), and a 

concoiilitant increase in ~- For example, T c increases from 19.3 K for K3C6o to 29.4 K for 

Rb3C60 when the lattice constant increases from 14.253 A to 14.436 A. 

Although the data for T c versus .lattice constant is monotonic, it is not exactly linear 

as is sometimes claimed. A striking linear relation has been found found [172] between 

the measured Tc and the calculated N(EF). It is tempting to interpret this dependence 

as a signal of non-BCS behavior since the weak-coupling formula most commonly used for 

Tc is exponentially dependent on N(EF)· However, Tc varies exponentially with~ at low 
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A and as ..f>. at large A. In fact, a good approximation to the solution of the Eliashberg 

equations for tt"' = 0 is (9, 10] 

Tc = 0.25 v'{W2) . 
Vef -1 

(8.4) 

This function has a linear dependence on A in an intermediate range of A. Hence, the 

linear dependence ofT c on N(EF) can be explained within .conventional BCS-Eliashberg 

theory if the coupling parameters are in the appropriate range. 

One assumption inherent in the above model is that the variation of N(EF) does not 

significantly change A or J.L apart from a multiplicative factor. Screening effects could 

reduce the electron-phonon matrix elements for the larger values of N(EF ), yielding a 

nonlinear dependence of A on N(EF ). This is an open problem at this point, and it bears 

on the relevance of the model. 

The various theoretical on-ball phonon-induced pairing proposals differ primarily in 

the phonons considered to be important for the pairing. Because of the wide spectrum of 

phonon energies, the choice of the parameters A and J.L depend sensitively on the choice 

of phonon frequencies. In the models proposed, the average phonon energies and coupling 

strengths are w -1100 K with A""' 0.6(161], w""' 1300 K with A""' 0.6 [173], w""' 2000 K 

with A""' 0.5 [174], and w""' 500 K with A""' 1.0 [175]. Since weakly and strongly coupled 

superconductors have different experimental signatures for various properties, these could 

be used to constrain the values of A. Two experiments which bear on this distinction are 

the superconducting gap-to-T c ratio 2!::../ kTc and the discontinuity in the heat capacity at 

Tc. We are unaware of data for the latter, while infrared measurements [176) of!::.. suggest 

that A:!t ""' 3.5, which suggests weak coupling and hence moderate values of A. 

Raman scattering provides another approach for estimating A [166]. By examining 

broadening effects on various phonon contributions to the Raman spectrum, an estimate 

of the electron-phonon coupling can be obtained. Some theoretical distillation of the data 

is necessary and extrapolations to obtain contributions of phonons having non-zero q are 
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needed. In general, the results yield couplings which are consistent with the theoretical 

models of the superconductivity and suggest a particularly important role for the lower 

H 9 ( 2) mode with w "" 600 K. 

Critical field data provide another source of information on the superconducting pa­

rameters. Measurements of the upper critical field of single crystal K3C6o[177] yield 

Hc2=17.5 T, which implies a coherence length of 45 A. Analysis of Hc2(T) yields a scat­

tering time ,. "" 1 - 2 x 10-14 sec,- in accord with transport measurements[157]. Using a 

penetration depth of roughly 5000 A, as suggested by muon spin relaxation data[178] and 

Ginzburg-Landau theory[157, 179], we obtain K"" 100, indicating strong type-II behavior. 

Although the evidence to date favors the phonon models of superconductivity based on 

intraball vibrations, we briefly consider the possibilities of "rescuing" an alkali-mediated 

mechanism. The low alkali vibrational frequencies require strong coupling to reproduce the 

experimental T c 's. The alkali phonons could strongly polarize the adjacent C6o molecules, 

yielding strong coupling [160]. The main objections to such a mechanism are the lack of 

a change in T c upon substitution of Rb for K at the same lattice constant, and the large 

carbon isotope effect. 

As discussed previously, the alkali atoms probably vibrate in strongly anharmonic po­

tentials, which could decrease the superconducting isotope effect for these modes [22, 102] 

as seen in PdH(D) [17, 18, 71]. In addition, the potential will change form for ions of dif­

ferent radius. These effects could explain the slight increase in T c upon substitution of Rb 

for K, although a quantitative analysis awaits a better knowledge of the alkali atom vibra­

tional potentials. However, the lack of a significant 87Rb to 85Rb isotope effect[180] reduces 

the attractiveness of this mechanism. Should the primary carbon phonon contribution to 

>. be of high frequency, then even a strong anharmonicity to the alkali atom vibrations 

will not reconcile a small alkali isotope effect with a significant electron-alkali phonon cou­

pling. On the other hand, if the main carbon phonon contribution to >. arises from the 

low frequency interball modes, then a reasonable anharmonicity to the alkali vibrations 
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is sufficient to depress the alkali isotope effect even for large alkali atom electron-phonon 

coupling. 

A mechanism based purely on alkali vibrations cannot account for the substantial 

carbon isotope effect. One is forced to include a contribution from phonons involving 

carbon atoms. · Consider a model in which interball vibrational motions supplement the 

alkali atom contributions to the electron-phonon coupling.· The M3C60 system is close 

to a phase transition to the M4C60 bet phase[181, 182). The bulk motions of the C60 

molecules corresponding to distortions into this structure could be anharmonic, with a 

softening of the quadratic potential. This form of potential could enhance the carbon 

isotope effect, [102, 21) yielding acarbon ::::::: 0.3 even though the carbon phonons do not 

dominate the superconductivity. Such potentials should be pressure-dependent, implying 

an unusual pressure dependence of the carbon isotope effect. Another possible source of an 

isotope-effect enhancing anharmonic potential is the very low frequency librational modes. 

Within an alkali-phonon model, the broadening of the intraball Raman-active phonons 

upon doping would be interpreted as an effect of the orientational disorder of the doped 

· ·phase. A large value of the gap ratio [183, 207] becomes a natural consequence of strong 

coupling. The possibility of a large value of the Coulomb repulsion p,* [160] would not 

have as profound an effect on Tc as in a weakly coupled superconductor. However, the 

relatively low frequencies of the alkali vibrations appears inconsistent with the temper­

ature dependence of the resistivity, which shows curvature at high temperatures. This · 

temperature dependence cannot be accounted for by temperature-dependent anharmonic 

contributions to the resistivity from the various multiphonon transitions which become 

important at higher temperatures since such transitions will contribute negative curva­

ture to the temperature dependent resistivity. The most likely phonon mechanism by 

far for superconductivity remains weak-to-moderate coupling to high frequency intraball 

phonons. 

The previous discussion has assumed that the electron-phonon interaction is the cause 
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of superconductivity in the doped fullerenes. We now consider the possibility that correla-

tion effects between electrons on the same C60 molecule could produce an effective pairing 

interaction. The standard starting point for a discussion of strong electron correlation is 

the Hubbard Hamiltonian [184] 

(8.5) 

where the first term describes the kinetic energy of the electrons hopping between sites i 

and j and the second term describes the Coulomb repulsion between electrons of different 

· spins on the same site. The model assumes that the Coulomb interaction is strongly 

screened, since only an on-site Coulomb term is incorporated. 

We consider a Hubbard model where the site index refers to individual carbon atoms on 

a C6o molecule. The pair binding energy is defined as the difference in energy between two 

C6o molecules with three electrons each and one molecule with two and another molecule 

with four. At first glance, the repulsive nature of the Coulomb interaction appears to 

guarantee that the electrons will prefer to spread out uniformly between the balls, resulting 

in a negative pair binding energy. However, strongly correlated electron systems often 

exhibit subtle behavior. Exact numerical solutions for small model systems [185], and 

second-order perturbative results for a 60-site system (186, 187] yield a positive binding 

energy for intermediate values of the ratio ¥. Examination of the spin-charge correlation 

function on a C6o molecule[188] indicates that this pair binding cannot be interpreted 

in terms of spin-charge separation[187, 189). Instead, the pair binding results from the 

dominance of the pair-scattering contributions to the energy(188). 

The model allows for a substantial carbon isotope effect through isotopic variation in 

the hopping matrix element t. The hopping rate between carbon atoms will be a function 

of the bond length, which will change upon isotopic substitution due to the influence 
I 

of anharmonic terms on the zero-point motion. The pairing energy is a function of the 

hopping matrix element, and the transition temperature is a sensitive function of the 
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pairing energy, 
w 

T. "" We- Epoir · 
c ' (8.6) 

where W is the electronic bandwidth. The change in the C-C bond length upon substitu­

tion of 13C for 12C yields a change in Tc of roughly 0.5 K,[190) in accord with experiment. 

The tiny isotopic change in bond length is a factor of ten or twenty smaller than the 

dynamic changes in bond length due to intraball phonons, suggesting an important role 

for fluctuations in this model of superconductivity. 

A difficulty with this model is the assumption that the Coulomb interaction is screened 

completely over the distance of a carbon-carbon bond. The inclusion of a nearest-neighbor 

Coulomb repulsion strongly suppresses the pair binding, resulting in no pairing for a 

nearest-neighbor repulsion on the order of fo [185). Perturbative results for a screened 

Coulomb interaction indicate that the regime of negative pair binding energy for a more 

realistic system occurs at values of ¥ beyond those which are likely to be physically 

relevant,[191] and also well beyond the values for which the pertUI'bation theory is accurate. 

In fact, a Hubbard-like model is more likely to be relevant to interball hopping and on-ball 

Coulomb interactions. 

8.4 Conclusions 

The one-electron theory of relatively narrow bands arising from molecular states of 

different orbital character appears to work reasonably well for the pristine and doped 

C60 systems. The most plausible model of the superconductivity involves high-frequency 

on-ball carbon phonons weakly to moderately coupled to the electrons. The following 

chapters provide detailed analysis of experimental results relevant to the normal state and 

superconducting properties of these novel systems. 
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Chapter 9 

Upper Critical Field 

Upper critical field measurements provide a wealth of information on the microscopic 

parameters relevant to superconductivity and normal-state transport. We discuss results 

of magnetoresistance measurements in A. Zettl's group on K and Rb-doped single crystal 

C6o, beginning with the measurements on KaC6o· 

The measurements of KaC6o directly yield the upper critical field between Tc=19.7 K 

and 13 K..Further analysis nets the intrinsic parameters Hc2(0), the coherence length~' the 

penetration depth>., the scattering timer, the mean free path f., and the zerO-temperature 

resistivity p(O). These parameters provide a self-consistent picture of the normal and 

superconducting states within Bloch-Boltzmann transport and Eliashberg theory. 

K-doped C60 single crystals were prepared using a sublimation/growth method devel­

oped in A. Zettl's group[192]. X-ray diffraction of the crystals prior to doping confirmed 

the well-known fcc structure. Electrical measurements were made using van der Pauw and 

in-line four probe contact geometries with gold leads attached with silver paint to evapo­

rated silver pads. The sample temperature was monitored with a carbon-glass resistance 

thermometer. 

Fig. 9.1 shows the resistivity near the superconducting transition of a KaC6o sample 

for applied fields up to 7.3 T. The inset shows the zero field resistivity over an extended 

temperature range. Above Tc(H=0)=19.7 K (transition midpoint) the resistivity displays 

a metallic temperature dependence. The transition to the superconducting state is sharp, 

!:!..T ::::::250 mK at zero field. The applied de current was small enough to ensure minimal 

Joule heating effects. Although the transition broadens slightly under the higher magnetic 

fields, the increase in !:!..T evidences none of the anomalous broadening seen in the copper 
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Figure 9.1: Normalized resistivity of K3C6o near Tc for different applied fields H. Po is 0.4 

times the resistivity at T=300 K. 
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oxide superconductors. This sharpness allows a clear identification of Hc2(T). 

Using the resistivity midpoints to define the T-H critical line we obtain Hc2(T) as 

shown in Fig. 9.1. A linear fit near Tc(H = 0) yields dflt.2 = -1.34 K. Because it is not 

immediately clear if K3C5o is in a clean or dirty limit, we perform an analysis valid for 

arbitrary mean free path. 

The Hc2 (T) data is analyzed to extract the scattering time T. The critical field is 

related to the scattering time by the expression [193] 

1 +A T Nc 1 
-A---JL-* = 271" T. ?: x-:-1 - (2r*)-I' 

c l=O ' 

(9.1) 

where 

Xi= - 2- ['x;, e-92 tan- 1 ( q../fr* ) dq. 
.JQ* lo . (2i + 1)7rf + 2!. 

(9.2) 

The magnetic field enters through the expression 

(9.3) 

where we have the renormalized quantities 

H* Hc2 
c2 = (1 + A)Tc' (9.4) 

* VJ 
vf = J(1 + A)Tc' 

(9.5) 

and 

-r* = -r(1 + >.)Tc. (9.6) 

The sum is limited to the range 

i < Nc = ~ ( :r + 1) . (9.7) 

These expressions derive from a two-square well analysis of the Eliashberg theory of the 

upper critical field. Within this two-square well model we have 

- -~ Tc = 1.13we -p. , (9.8) 



which determines>. for given values of Tc, w, and J.L*. Pauli limiting has been neglected, 

an approximation consistent with the relatively small value of d?fJ.2 1 ~>. [193]. 

In order to proceed with the analysis, we must assume values for the Coulomb repulsion 

J.L*, the average phonon frequency w, and the Fermi velocity v1. The Coulomb repulsion 

is taken to be in the range 0.1 $ J.L* $ 0.3. We obtain the Fermi velocity from a band 

structure calculation[147] which yields Vf = 1.8 x 107 =· The average phonon frequency 

is estimated within various theoretical electron-phonon models of the superconducting 

properties of this material[174, 175, 173]. These three models yield very similar results. 

The models of Schluter et al. and Jishi et al. yield T :::::: 1. 7 x 10-14 sec for J.L* = 0.2, 

whereas the model of Varma et al. yields r :::::: 1.6 x 10-14sec. Assuming J.L* = 0.1(0.3) 

produces scattering times roughly 0.2 x 10-14sec smaller (larger). Taking into account 

the uncertainties in the calculation, we estimate the zero-temperature scattering time of 

the sample to be of the order 1 - 2 x 10-14sec, with a mean free path of 27±7A. The 

extrapolated zero-temperature upper critical field is 17.5 T, implying a coherence length 

of 45 A, which indicates that K3C6o is in neither the clean nor the dirty limit. 

The calculation is sensitive to the Fermi velocity, with T varying roughly as the in-

verse Fermi velocity squared. The band structure calculation which yields Vf assumes 

orientational order of the C6o molecules, at variance with experimental results[149], which 

imply random occupation of two orientations. A tight-binding calculation[150] indicates 

that this disorder will smear out the peaks in the density of states. However, the density 

of states at the Fermi level is roughly equal for the ordered and disordered systems, sug-

gesting (but not guaranteeing) that the actual Fermi velocity is not substantially different 

from the oriented case. 

Knowledge of the scattering time and the plasma frequency allows a derivation of the 

resistivity by the relation p = ~- A band structure calculation[147] yields a plasma 
. WPT 

frequency of 1.2 eV, close to the free electron value of 1.3 eV for three electrons per C6o 

and an effective mass of m• :::::: 3.6me, the value which brings the free electron Fermi velocity 
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Figure 9.2: Temperature dependence of Hc2· Circles are experimental data and solid line 

is theoretical calculation. 



into agreement with the band structure result. Using a plasma frequency of 1.2 e V and 

r = 1. 7 ± 0.5 x w-14 sec, we estimate the zero temperature resistivity to be of order 

p(O) = 0.18 ± 0.06m0-cm. This value is in good agreement with p(O) ~ 0.12m0-cm from 

fluctuation conductivity measurements[194]. Although uncertainties in effective sample 

geometry complicate direct measurements of the resistivity, the most reliable results to 

date yield p(O) ~ 0.5m0-cm, the same order of magnitude as the indirect results and, 

comparable to measurements on thin film samples[195]. 

We briefly consider the sensitivity of the calculation to errors in the bare plasma 

frequency. The plasma frequency varies as wp "" J<N(O)vy), so that a smaller plasma 

frequency may imply a smaller Fermi velocity, which implies a longer scattering time. A 

smaller plasma frequency and longer scattering time tend to cancel in the calculation of the 

resistivity, suggesting that the calculated resistivity is relatively insensitive to uncertainties 

in Wp· The mean free path, the product of the scattering time and the Fermi velocity, 

behaves similarly. 

Assuming a plasma frequency of 1.2 eV, we obtain a London penetration depth of 

)..L = : =1560 A. Using Ginzburg-Landau theory with r = 1. 7 ± 0.5 X w-14 sec yields 
p 

>.(O) ~ 2400 ± 300 A. For comparison, muon spin relaxation measurements yield ).. ~ 

4800±800A[178], whereas lower critical field measurements on powder samples[196] suggest 

).. ~ 2400A. The Ginzburg-Landau theory can also be applied to derive the clean limit 

coherence length ~o ~ 135 ± 20A. This value is slightly larger than that obtained from 

Allen's formula 

(9.9) 

which yields ~0 ::::: 80- 110 A for ).. = 0.5 -+ 1.0, the relevant range for the models studied. 

We note a caveat in the Ginzburg-Landau analysis in that real systems deviate some-

what from the Ginzburg-Landau temperature dependence. The quoted errors in >.(0) and 

{o take into account uncertainties in r but do not include deviations from the simple version 
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of Ginzburg-Landau theory used. Our analysis also ignores interball electron-electron cor­

relations which may be significant for this relatively narrow band system. We also remark 

that our analysis assumes metallic conduction, i.e. k1t > 1. Although K3C60 crystals 

appear to satisfy this condition, the relatively high normal state resistivity suggests the 

possibility of nonconventional scattering mechanisms. The results for the superconducting 

and normal state parameters of K3C6o have been summarized in Table 9.1 for convenience. 

Similar experiments were performed for Rb-doped single crystal C60 . In contrast to 

K3C60 , the resistive transition in Rb3C6o· is substantially broadened by the magnetic field, 

necessitating a detailed treatment of the resistive transition to extract accurate values of 

Tc(H). In analogy to the copper oxide superconductors, we consider two mechanisms of 

broadening, thermodynamic fluctuations[194] and dissipative flux line motion[197]. The 

results suggest that the transition onset is dominated by thermodynamic fluctuations while 

the broadening near the transition "foot" is mediated by flux creep with a characteristic 

activation energy substantially lower than that found for conventional superconductors. 

The analysis of fluctuation magnetoconductivity provides accurate estimates of the true 

thermodynamic Tc, thereby yielding the upper critical field Hc2(T). The Hc2 data are then 

analyzed in a manner similar to that for K3C6o to extract the scattering time r. 

High quality C60 single crystals were prepared by vapor transport and characterized 

by x-ray diffraction. Rb doping procedures were similar to those used for K[192]. The 

electrical resistivity was measured using a de four probe Van der Pauw configuration. The 

inset to Fig. 9.3 shows the metallic resistivity ofRb3C6o over a wide temperature range for 

H=O. Good sample homogeneity is indicated by the similarity of the functional forms for 

the two components of the Van der Pauw resistance. ·The superconducting transition width 

is less than 200 mK. The main body of Fig. 9.3 shows the resistive transition for different 

applied fields. Measur~ments on different samples yield similar results, indicating that the 

broadening is intrinsic. Comparison of the fitted values of diJ.t for T c defined as transition 

onset (-4.04 T/K) versus the transition midpoint (-3.14 T/K) clearly indicates the need 
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for a detailed analysis of the transition broadening to extract the true thermodynamic T c· 

We first investigate the origin of the magnetic field induced broadening for the 

upper portion of the resistive transition. In the absence of applied magnetic field, 

Rb3C6o displays fluctuation conductivity with excess conductivity proportional to ct = 
I 

(TT-?'') -~ [194], the behavior expected of a bulk three dimensional superconductor. Under 

finite field the divergence of the fluctuation conductivity shifts to lower temperatures and 

becomes anisotropic. For a bulk superconductor in the dirty limit with H parallel to the de 

I 3 
current the excess conductivity in the high field limit is u ex H2t-2, similar to the result 

for one-dimensional filaments (in both cases the allowed states in momentum space are 

I I 
cylinders). H perpendicular to the current yields u ex H2C2, with the same temperature 

dependence as the zero field case. Although the applied fields do not access the high field 

limit, a small admixture of this functional.form may occur. In addition, the application 

of magnetic field near the transition onset will make it energetically favorable for the real-

space regions of fluctuating superconductivity to elongate along the field axis, potentially 

yielding a one-dimensional contribution to the fluctuations even when the sample is not 

in the high-field limit. 

The crystals in the study concerned were roughly 0.5 x 0.5 x l.Omm3 with the magnetic 

field approximately perpendicular to the largest surface. Because the conductivity was 

measured in the Van der Pauw configuration, the current has components both parallel and 

perpendicular to the field, implying a magnetic field dependent fluctuation conductivity of 

I 3 I 1 
the form u::::: AH2C2 +BTH-2t-2 where A and Bare field and temperature-independent 

fitting parameters. Fig. 9.4 shows the fits thus obtained. Fig. 9.5 shows in detail 

the resistive transition for H=3.2 T along with the calculated magnetofluctuation curve, 

exhibiting the good agreement and showing the fitted value of Tc(3.2 T). similar fits for 

different applied fields yield a well defined thermodynamic Tc(H) (or Hc2(T) ). However, 

before turning to a discussion of Hc2(T) we first investigate a second mechanism which 

can explain the lower portion of the broadened superconducting transition, dissipative flux 
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Figure 9.5: Resistance versus temperature for H=3.2 T. Solid line is the fit to fluctuation 

conductivity u'. 

creep. 

The fit in Fig. 9.5 is excellent for the upper portion of the transition but degrades at 

lower temperatures, suggesting an additional mechanism of broadening which is proposed 

to be dissipative flux line motion. Taking a thermally activated jumping rate proportional 
u 

to e- "sT with U the activation energy we obtain a resistivity of(198] 

2voLH U . . J HVcL 
• P = J exp- kBT smh kBT ' (9.10) 

where vo is the attempt frequency for hopping of flux lines or bundles, U is the barrier 

height, L is the hopping distance and V c is the volume of a vortex. Taking a hopping 

•. 



distance equal to the intervortex distance ao leads to the relation VeL:::::: a5Lc, where Lc 

is the flux line length. For small current density (the region explored by experiment) we 

obtain 

{9.11) 

where ~ = H aij is the flux quantum. Motivated by results for copper-oxide supercon­
a 

ductors, we assume the simple scaling form U{T,H)=U(H){1 - t2) 2 where U(H) is a field 

dependent activation energy. The prefactor Pc depends weakly on temperature and is 

taken as a constant in the temperature region of interest. The semilog plot of Fig. 9.6 

confirms the relevance of Eqn. 9.11 with constant Pc· Fig. 9.7 shows U(H). Taking a 

power law form for U(H) yields two field regimes, Ucx H-0·32 for H< 2 T and Ucx H-1.2s 

at larger fields. 

We emphasize two salient features of flux creep dissipation in Rb3C60 . First, the 

activation energies are small, less than 1 eV, as compared to several eV for conventional 

superconductors. Second, the ratio of the resistivity prefactor Pc to the normal state 

· resistivity is less than unity and independent of field, temperature and sample, a situation 

in marked contrast to the copper oxides, wherein the ratio~ attains extremely large values 

to which it is difficult to give a physical interpretation[199]. Finally, we note that near 

the transition onset, the regions of fl.uctuating superconductivity in real space will have 

dimension much smaller than the penetration depth, suggesting that the diSsipative flux · 

· creep broadening will not greatly interfere witp the fluctuation conductivity contributions 

in this temperature range. 

A linear fit to the fluctuation-determined Tc's yields d:fJ:2 = 3.28 T/K. The Hc2 data 

have b~n analyzed in a manner similar to that previously applied to K3C60. The fairly 

large value of d:fJ.2 11~ for Rb3C60 indicates the importance of Pauli limiting, which has 

been included in the analysis[193]. 

The treatment requires values for the Coulomb repulsion JL*, the average phonon fre-
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quency w, and the Fermi velocity VJ· The Coulomb repulsion is taken to be in the 

range 0.1 $ JL* $ 0.3. The Fermi velocity can be approximated in two manners. A 

preliminary band structure calculation for K3C5o at the Rb3C5o lattice constant yields 

VJ ~ 1.56 x 107 ~ (200]. This value is corroborated by a simple rescaling.of the K3C5o 

Fermi velocity by the ratio of the density of states for Rb and K doped C60 , [172] which 

yields v/ ~ 1.47 x 107 £!!!.. We take VJ ~ 1.5 x 107 £!!!.. Estimates of the average phonon sec sec 

frequency are loosely based on three theoretical electron-phonon models of the supercon-

ducting properties of this material[174, 175, 173]. The models of Jishi et al., Schluter 

et al. and Varma et al. are taken to have w ~500 K, 1000 K, and 2000 K respectively. 

Taking JL* = 0.2, we obtain T ~ 5.5 x 10-15 sec (Jishi), T ~ 7 x 10-15 sec (Schluter) 

and T ~. 7.5 x 10-15 sec (Varma). Assuming JL* = 0.1(0.3) produces scattering times 

roughly 1.0 x 10-15sec smaller (larger). Taking into account the uncertainties in the cal-

culation, we estimate the zero-temperature scattering time of the sample to be of the ... 

order 0.4- 1.0 x 10-14sec, implying a mean free path of 1~11±5A, several times the in-

teratomic spacing. The extrapolated zero-temperature upper critical field is 62 T, which 

yields a coherence length of (.(T = 0) ~24 A. (For comparison, a treatment neglecting 

Pauli limiting would have yielded a critical field of 68 T.) Since the coherence length is of 

the same order as the mean free path, Rb3C5o is in neither the clean nor the dirty limit. 

For comparison, we note that a previous rf absorption measurement suggested that Pauli 

limiting is significant ~d yielded a result of Hc2(0)=73 T (201]. 
41) 

Knowledge of the scattering time and the plasma frequency allows an estimation of 

the resistivity from the relation p = ~- A preliminary band structure estimate[202] 
WPT 

yields a plasma frequency of 1.11 eV, close to the free electron value of 1.25 eV for three 

electrons of effective mass 3.6me per C60 (this value of the effective mass reproduces the 

band structure Fermi velocity). This value is corroborated by reflectivity and electron 

energy loss measurements on K3C50, which is expected to have a comparable plasma 

frequency (theoretical estimates suggest a plasma frequency for K3C50 roughly 10% larger 



than that of RbaC6o). Infrared reflectivity measurements have been fit by a Drude model 

with a plasma frequency of 1.56 eV [203). Electron energy loss spectroscopy measures 

the plasma frequency screened by the background dielectric constant of € = 4.4[204]. 

These measurements yield a peak in the loss spectrum at 0.55 eV which corresponds to 

an unscreened plasma frequency of 1.15 eV [205}. For resistivity calculations, we use the 

theoretical value of wp = 1.11 eV and the scattering time of0.4-l.Ox1o-14 sec to obtain a 

zero-temperature resistivity of 0.57±0.21 mS'l-cm. This ~lue compares well to theoretical 

calculations of 0.39 mS'l-cm[151) and 0.42 mS'l-cm[206} and infrared measurements of 0. 7 

mS'l-cm [207]. The present result is slightly larger than an estimate based on analysis of 

fluctuation conductivity near Tc which yields 0.23 mS'l-cm. 

Knowledge of wp, ~(0) and T allows estimation of the penetration depth >. and BCS 

coherence length ~o within Ginzburg-Landau theory[179]. A plasma frequency of 1.11 eV 

implies a London penetration depth of >.L = ..£.. = 1690A in the clean limit. Allowing 
Wp 

for the finite value of T within Ginzburg-Landau theory yields >.(T = 0) = 3200 ± 800 

A. Similarly, the experimental value for the zero temperature coherence length, ~(0) = 24 . 

A, together with T ~ 0.4 - 1.0 x 10-14sec yields a BCS clean limit coherence length of 

~0 ~ 85 ± 15A. Similar to the case of KaC6o. this value is somewhat larger than that 

obtained from Allen's formula, 

(9.12) 

which yields ~o ::::::: 46 ± 8 A for >. = 0.6 --+ 1.3, the relevant range for RbaC6o· 

The linear relation between Hc2 and temperature breaks down for fields below roughly 

2 Tesla. A similar nonlinearity has been seen in RbaC6o powder and KaC6o powder and 

doped single crystal samples. The observation in doped single crystals indicates that the 

deviation is likely not caused by sample inhomogeneity. Instead, this "foot" may be the 

result of flux creep, since a large thermally activated flux creep near T c would drastically 

reduce the critical current and in effect suppress Tc[197]. A flux creep model predicts 
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Figure 9.8: Upper critical field Hc2(T) for Rb3C60 • Solid dots are experimental data 

with transition temperatures derived from :fits to fluctuation conductivity. Solid line is 

theoretical result. 



Hc2 ex (TeO- T)L5
, as compared to a best fit exponent of 1.52 for H<2 T and Tc0=29.8 

K. Prominence of thermally activated flux creep at low field and high T c is consistent 

with the small activation energy derived from the flux creep analysis of the transition 

broadening. 

Alternatively, the "foot" could arise from a breakdown of Ginsburg-Landau theory in 

the regime where the fluctuations in the order parameter are of the same order as the 

order parameter itself[208]. Such a situation arises in the temperature range 

4T3 

I I -9 K cO 
T- Tc < 10 Hc2(0) (9.13) 

where K is the ratio of penetration depth to coherence length. Within this range one obtains 

Hc2(T) ex (Teo- T)l.34 [208], with a crossover to linear behavior at lower temperature. 

Taking K ::::: 130 yields a range of roughly 0.1 K, somewhat smaller than that observed 

experimentally for the low field foot. 

In conclusion, upper critical field measurements yield a wealth of information on the 

intrinsic parameters characterizing the normal and superconducting states of K3C6o and 

· Rb3C6o. These results are summarized in Table 9.1, which provides a reasonably self-

consistent picture of the transport properties of the alkali-doped fullerenes. 
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Parameter K3C6o Rb3C6o 

Tc 19.7 K 30.8 K 

dftz -1.34 T/K -3.28 T/K 

Hc2(0) 17.5 T 62 T 

{(0) 45 A 24 A 

{o 96±16 Aa ,130±15 Ab 46 ± 8 A a, 85 ± 15 Ab 

>.(0) 2400 ± 300 Ab 3200 ± 800 Ab 

).L 1560 Ac 1690 Ac 

"' 53± 10 130 ± 40 

T 1. 7 ± 0.5 x 10-14 sec 0.7 ± 0.3 x 10-14 sec 

e 31 ±7 A 11 ±5 A 

p(T- 0) 0.18 ± 0.06 mn-cmd 0.57 ± 0.2lmn-cmd 

Table 9.1: Superconducting and normal-state parameters of K3C6o and Rb3C6o· 

a from Allen's formula 9.12 

b within Ginzburg-Landau theory [179] 

c from Ref. [147] 

d assuming wp{K3C60)=1.2 eV[147], wp(Rb3C6o)=l.1 eV(200]. 
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Chapter 10 

Transport 

10.1 Superconducting Fluctuations 

Just above Tc, thermodynamic :fluctuations produce small transient regions of the 

superconducting state, causing an anomalous increase in the normal state conductivity. 

The form of the temperature dependence of :fluctuation conductivity is strongly dependent 

on dimensionality. Measurements on K and Rb doped single crystal C60 in A. Zettl's group 

provide the first (to our knowledge) observation of pure three dimensional :fluctuation 

conductivity. These results in addition allow an indirect determination of the normal state 

resistivity, an important intrinsic parameter. Synthesis of K3C6o and Rb3C6o followed 

standard techniques pioneered in the Zettl group. A standard in-line four probe contact 

configuration with small (10-100JLA) de current provided the resistivity measurements. 

Figs. 10.1 and 10.2 show a detailed view of the superconducting transition for K3C60 

and Rb3C60· Just above Tc, the resistivity deviates from normal-state .behavior before 

dropping precipitously at T c· We associate this deviation with superconducting :fluctua­

tions. The :fluctuation conductivity u' is obtained by subtracting the extrapolated normal 

state conductivity from the measured values. The appropriate form for extrapolation at 

low temperatures is expected to be the Bloch T5 form, although in the relevant temper­

ature range a simple linear extrapolation also provides a reasonable fit. Both materials 

were fit the normal state to the temperature range from 1.4 T c to 2.0 T c, using a T 5 form 

for K3C6o and a simple linear fit for Rb3C6o, choices which provide good agreement both 

at high temperatures(T-2.0Tc) and (for K3C6o) at lower temperatures (T<1.4Tc)under 

finite magnetic field. The conclusion that three dimension :fluctuation conductivity has 
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Figure 10.2: Normalized resistivity as a function off for Rb3C6o· Circles are experimental 

data and solid line is a linear extrapolation of the normal state resistivity. 

been observed is not sensitive to the choice of fitting form. The ambiguity in :fitting 

form introduces roughly a 20% error into the values derived for the intrinsic normal state 

residual resistivity. 

The Aslamazov-Larkin fluctuation conductivity is given by[209] 

I 4-d 
qAL ""'t-2-, {10.1) 

where dis the dimensionality of the sample and tis the reduced temperature t = T-:;;'. 

The AL term, known as the regular fluctuation conductivity, arises from the direct acceler-

ation of fluctuation-induced superconducting pairs of quasi particles. The Maki-Thompson 

term[210, 211], an additional source of fluctuation conductivity, arises from the scattering 

of normal state quasiparticles by the superconducting :fl.uctuations. The sum of these two 
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terms yields 

I I 1 ( _l 4 ) 
C13d = C1 AL + CTMT = CTexcess t 2 + 1 . 1 

t2 + 82 
(10.2) 

where 6 is a pair-breaking parameter which determines the relative strength of the Maki-

Thompson term[212]. The prefactor CTexcess is related to the coherence length by 

CTexcess = 321i~(O) · {10.3) 

The log-log plots of Figs. 10.3 and 10.4 show the best fits to the data for three 

dimensional fluctuation conductivity as expressed by Eqn. 10.2. The K3C60 data is 

best fit by a fairly small Maki-Thompson contribution with 6 ::::::: 0.58, whereas the fit 

to the Rb3C6o data yields a negligible anomalous contribution and a large 6, a result 

consistent with a larger electron-phonon coupling in Rb3C6o[213]. The fit to the Rb3C6o 

excess conductivity also shows the best fits for dimensionalities 1 and 2, providing strong 

support for an interpretation in terms of three dimensional fluctuation conductivity. 

As a superconductor approaches Tc from above the coherence volume of the super-

conducting fluctuations grows monotonically unless limited by reduced dimensionality at 

larger length scale, as would be the case for a granular superconductor. Granular super-

conductors exhibit zero dimensional crossover in the form of the fluctuation conductiv-

ity as the Ginzburg-Landau coherence length approaches "' l of the characteristic grain 

size[214]. Such crossover would be signaled by an increase in slope at small t. The absence 

of zero dimensional crossover down to t::::: 0.0005 gives a lower limit for the grain size of 

roughly 0.6JLm, a value at least 100 times the zero-temperature coherence length, a value 

guaranteeing that local physical parameters measured on these samples represent intrinsic 

properties of the K3C60 phase. 

Uncertainties in effective sample geometry render difficult a direct measurement of 

the absolute resistivity of alkali doped fullerenes. Although different samples yield iden­

tical normalized fluctuation conductivity curves (i.e. identical ;~ ), these samples show 

scatter in the absolute magnitude of CTn· However, nature is kind in that the coherence 
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Figure 10.3: Log-log plot of the normalized fluctuation conductivity versus f for K3C6o· 

Circles are experimental data and line is theoretical fit. 
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length determined by upper critical field measurements provides a means to determine 

the absolute magnitude of Uexcess through Eqn. 10.3. Using the experimental values 

~ ::::::: 2 x 10-3 and ~ ::::::: 45A for K3C6o and ~ ::::::: 7.3 x 10-3 and c ::::::: 24A for 
vn Un ~ 

Rb3C6o yields p(T=O):::::: 0.12mf2-cm for K3C6o and p{T=O):::::: 0.23mf2-cm for Rb3C6o, 

with uncertainties of roughly 20%. These estimate are in reasonable agreement with the 

most reliable direct measurements (p ::::::: 0.5mf2-cm for K3C6o)[195, 215], infrared studies 

(p::::::: 0.4mf2-cm for Rb3C6o)[207], calculations based on Hc2 measurements (p::::::: 0.18mf2-

cm for K3C6o [177] and p ::::::: 0.57mf2-cm for Rb3C6o[216]) and disordered supercell calcu­

lations (p::::::: 0.39mf2-cm for both materials[151]). 

As this is to our knowledge the first observation of pure three dimensional fluctuation 

conductivity in an isotropic superconductor, it is appropriate to address the difficulty 

in observing similar behavior in other materials {most conventional superconductors are 

of course three dimensional). Fluctuation conductivity has been reported for the high-

temperature cuprate superconductors; however, strong anisotropy, materials difficulties 

and uncertainties as to the microscopic mechanism have clouded the situation and there 

is at present no consensus as to the dimensionality of the observed fluctuations. For 

conventional superconductors, the fractional change in conductivity :~ ::::::: k~~c tTtd is of 

order ......, 10-7 d, much too small to be observed in any accessible temperature interval 

above Tc (E1 is the Fermi energy, kt is the Fermi wavevector and lis the mean free path). 

In such materials one must introduce large concentrations of impurities or defects in order 

to reduce land increase ~. These modifications generally imply reduced dimensionality in 
tTn 

the form of granularity. In contrast, the isotropic fullerene-based superconductors possess 

a very short intrinsic mean free path (due to orientational disorder), a short coherence 

length, a relatively small Fermi energy and a high Tc, all of which contribute towards the 

salience of three dimensional fluctuation conductivity. 
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10.2 Temperature-Dependent Resistivity of K 3C60 

Determination of the transport mechanisms in alkali-doped C60 can provide valuable 

information pertinent to superconductivity. Transport measurements!192, 177] forK- and 

Rb-doped single crystals of C6o have been analyzed in terms of both electron-electron and 

electron-phonon scattering processes. For simplicity, it is assumed that one or the other 

mechanism is dominate so as to elucidate the primary physical consequences of either 

scattering process. 

The small bandwidth and large on-site Coulombinteractionl138] in the doped fullerenes 

suggest a role for electron-electron interactions. The standard treatment of electron­

electron scattering yields a T2 temperature dependence due to phase-space factors. Moti­

vated by these considerations, the resistivity data have been fit to a form p(T) = a+ bT2, 

shown as the solid line of Fig. 10.5. A log-log plot· of the raw experimental data 

actually yields a slope of 1. 73. The situation is reminiscent of the organic conduc­

tors, several of which exhibit a nearly quadratic temperature dependence up to high 

temperaturesl217]. However, the theoretical T 2 dependence assumes constant volume. 

Thermal expansion will increase the density of states at the Fermi level, producing a re­

sistivity p(T) = a+ b (N0(T)T) 2
, where N0 (T) is the temperature-dependent density of 

states at the Fermi level. We have taken account of this effect by combining thermal 

expansion data for undoped C60!218) and density of states versus lattice constant results 

from a pseudopotential calculationl172) (use of thermal expansion for doped C60 yields 

essentially equivalent results). The quality of the fit decreases, as evidenced by the dashed 

line in Fig. 10.5. The insert shows a log-log plot of the resistivity data corrected for 

thermal expansion compared to a line of slope 2. The thermally corrected data have a 

shallower slope and are slightly nonlinear. (mention results with correct thermal expansion 

data) In this context we note that theoretical results that suggest that metallic screening 

could be very efficient,!219) suggesting that electron-electron interactions are not domi-
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nant. More importantly, direct measurements at constant sample volume yield a near 

linear temperature dependence to the resistivity[220), a further indication that electron-

electron scattering is not the primary scattering mechanism. Unfortunately, the results at 

constant volume have not yet been reproduced, so the detailed analysis to follow focuses 

upon the well characterized constant pressure measurements. 

The absolute magnitude of the resistivity is inconsistent with a predominantly electron­

electron scattering mechanism. On a very simplistic level, the first Born approximation 

for a Coulomb potential screening by a Thomas-Fermi screening len~h of 0.45 A yields 

an electron-electron scattering time of Tee "" 10-12sec at 250 K. A much more rigorous 

calculation[22l) yields Tee ::::::: 4 x 10-13sec at 250 K for K3C60· In these derivations the 

alkali-doped system was treated as a free electron gas with an effective mass of 3me. This 

value for the effective mass gives reasonable agreement with band structure r.esults for the 

Fermi velocity and the plasma frequency. This compares to a much smaller experimental 

non-residual scattering time ofT ::::::: 1. 7 ± 0.5 x 10-14 sec at 250 K, another indication that 

the temperature-dependent resistivity in alkali-doped C6o is not due to electron-electron 

scattering. 

We next examine the data from the point of view of electron-phonon coupling. We 
I 

begin with the Ziman resistivity formula, [222] 

871"2 lo"'moz 1iwo:~rF(w) 
p(T) = 2 ( ) dw, 

wpksT o cosh k';;'T - 1 
(10.4) 

which relates the resistivity to the transport electron-phonon coupling function o:~rF(w). 

In most cases o:~rF(w) provides a reasonable approximation to o:2 F(w), the expression 

relevant to superconductivity, The transport expression weighs the differences in Fermi 

velocities between different points on the Fermi surface. The two expressions could be 

significantly different if the electron-phonon matrix elements have a strong dependence 

on wavevector. However, the intramolecular phonons should exhibit very little dispersion, 

strongly suggesting that the electron-phonon coupling for these modes is isotropic in k-
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Figure 10.5: Fits of theoretical electron-electron scattering models to the experimental 

resistivity (circles). The solid line is a fit to the form a+ bT2 • The dashed line is a fit to 

the form a + b (No(T)T) 2
, where No(T) is the temperature-dependent density of states. 

The experimental data have been normalized to the value at T=260 K. The insert shows 

a log-log plot of the resistivity after correction fo~ thermal expansion compared to a line 

of slope 2. 
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space. Meroscopic orientational disorder[149] should further encourage isotropic coupling. 

The situation is less clear for the lower frequency librational, vibrational and alkali modes. 

Phase space factors suggest that phonons along cartesian directions will be preferentially 

weighed in the electron-phonon coupling integral. These nesting phonons have two flavors: 

those that bridge across necks of the Fermi surface and those that nest along the flat sides 

of these necks. The first (second) variety yields fairly large (small) differences in Fermi 

velocities. If the electron-phonon matrix elements for the low frequency phonons are 

anomalously large or small for either variety of nesting wavevector, then these modes 

could contribute to O:FrF(w) and o:2 F(w) to differing degrees. As a caveat, the phase space 

results assume orientational order, at variance with experiment[149]. 

The Ziman formula assumes an isotropic, energy-independent scattering time. An 

fcc crystal such as KaC6o should be reasonably isotropic. The approximation of an 

energy-independent scattering time typically overestimates of the resistivity at interme­

diate temperatures[222]. In addition, the Bloch-Boltzmann transport formalism assumes 

that N(O)wDebye is small[223], a questionable assumption for a system with high phonon 

· frequencies and a potentially large density of states. A final concern is that the Bloch­

Boltzmann theory fails for mean free paths on the order of the interatomic spacing. Recent 

upper critical field measurements on single crystal samples imply a T=O mean free path on 

the order of 27 A[177], substantially larger than the interatomic separation and somewhat 

larger than the intermolecular spacing. 

Before analyzing the experimental resistivity data, we discuss the importance of the 

absolute' magnitude .of the resistivity to the calculations. Experimental geometrical un­

certainties imply that the magnitude of the resistivity is uncertain by roughly a factor of 

two. For this reason, we appeal to an analysis of upper critical field data, which suggest a 

scattering time of 1.7±0.5 x w-14sec [177]. The fitted values of>. are dependent solely on 

the scattering time, not the resistivity. The scattering time determines the overall scale of 

the electron-phonon coupling, while the functional form of the temperature dependence 

127 



128 CHAPTER 10. TRANSPORT 

provides a constraint on the frequency distribution of the electron-phonon coupling. 

In order to gain a measure of physical insight into the form of a;rF(w), we first fit 

the data with a delta-function form, a:~F(w) = !Aw6(w- w), yielding w ~400 K and 

A ~ 0.6. This drastic simplifying assumption is not directly physically relevant. However, 

the simple fit implies that a more physical analysis should involve modes with frequencies 

both above and below 400 K. 

. To proceed further, we consider various theoretical calculations for the electron-phonon 

coupling. The model of Jishi et al.[175] (JD) emphasizes the lower-frequency radial intra­

ball modes, producing an average frequency of roughly 500 K and A~ 1. The models of 

Schluter et al.[173] (SLNB) involves contributions from a broad range ofH9 modes with an 

average frequency of Wlog"' 1000K and A~ 0.6. The particular model chosen for detailed 

analysis is the first listed in Table I of [173]. In contrast, the calculations of Varma et 

al.[174] (VZR) yield significant coupling only to the two highest H9 modes at frequencies 

near 2000 K, with A ~ 0.5. These models are evaluated by two criteria: the correspon­

dence of the theoretical and experimental temperature dependences, and the magnitude 

of A necessary to reproduce the experimentally measured resistivity. For each model, the 

overall coupling strength and the residual resistivity were adjusted in a least-squares fit 

to the data. 

Referring to Fig. 10.6, JD produces a reasonable fit to, the temperature dependence over 

the range 0-260 K. At high temperatures the theoretical curve has a somewhat smaller slope 

than the experimental results. SLNB and VZR do not adequately reproduce the measured 

temperature dependence. The quality of the fits is decreased further if the residual resis­

tivity is fixed at the experimental value. The insufficient curvature at low-temperatures 

suggests additional coupling at a lower frequency. Motivated by this consideration, we 

include a lower frequency contribution of adjustable strength, with the results presented 

in Fig. 10.7. The new phonon mode was set at a frequency of 150 K, but the quality of 

the fit and the magnitude of the coupling to this lower mode are roughly unchanged for 
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Figure 10.6: Fits of theoretical electron-phonon scattering models to the experimental 

· resistivity for K3C60 (circles). The solid, dashed, and dotted lines are for the models 

VZR[174], SLNB[173], and JD[175] respectively. The data have been normalized to the 

value at T=260 K. 
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Figure 10.7: Fits of theoretical electron-phonon models with an additional phonon mode 

at 150 K to the experimental data for K3C6o· The curve assignments are the same as Fig. 

10.6. 

frequencies in range 20-200 K. For SLNB and VZR, this modification greatly improves the 

agreement with experiment. This result is not an artifact of the additional free parame-

' 
ter; the fit is not improved if the additional mode is placed at a frequency above 400 K. 

Within the accuracy of the analysis, these three models yield agreement with experiment 

which is comparable to or better than that obtained by the electron-electron analysis. 

Consideration of the results at constant volume strengthens this conclusion. 

Is there a physical motivation for the inclusion of a lower frequency mode? A back-of-

the-envelope calculation yields an estimate of .A for interball translational modes. Within 
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a tight binding model, the bandwidth W varies as an overlap integral between electronic 

states ¢(T} and ¢(r + R). Consider the change in the overlap integral under a change in 

lattice constant, where we assume that the on-ball electronic states are unchanged, 

6W .... J ¢*(T)6U(T)¢(r + R)df, {10.5) 

where U{r) is the deviation from superposed molecular potentials. This expression has the 

same form as a real-space formulation for the McMillan-Hopfield parameter (/2), which 

enters the expression for A as A = N~0(j{}l, [2] where (w2) is an average squared phonon 

frequency, M is the molecular mass, and N{O) is the density of states at the Fermi level. 

A low-q longitudinal interball vibrational phonon will produce a local change in the lat-

tice constant. Using pseudopotential calculations to estimate the bandwidth and change 

in density of states upon lattice contraction, [172] we approximate A by the expression 

w2(~)2 
A"' 7J"M'(w'tf• which yields A of order 0.1 for a mode of frequency"' 100 K. More sophisti-

cated tight-binding calculations for high-q intermolecular modes indicate large changes in 

the band structure, indicative of significant electron-phonon coupling[158]. Low-frequency 

librational modes could also exhibit significant coupling, since the overlap integrals be-

tween buckyballs will be sensitive functions of their relative orientations. Polarization of 

the C6o molecules by alkali atom vibrations could also produce a low-frequency contribu-

tion to the electron-phonon coupling[160J. 

The resistivity has also been fit to an a 2 F(w) corresponding to a uniformly scaled 

version of the inelastic neutron scattering intensity[155]. The approximation of constant 

coupling strength is unlikely to be valid, since the scattering data includes modes of. 

qualitatively distinct character. In fact, this naive fit yields too strong a temperature 

dependence at low temperatures, suggesting excessive coupling to low frequency modes. 

If the modes below 25meV are removed by hand, the fit is too flat at low temperatures, 

S'!lggesting that the lower frequency modes contribute to the scattering process, but less 

so then implied by the magnitudes of the peaks in the neutron scattering. 
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Table 10.1 shows the values of A deduced from the fits to the resistivity data for each 

of the theoretical forms for cx2 F(w). The range of values corresponds to variations in the 

scattering time from 1.2-2.2x10-14 sec. JD yields A slightly lower than that required to 

produce the observed Tc, whereas VZR yields A too big. These results suggest that an 

electron-phonon model for superconductivity should include contributions from a broad 

range of intramolecular vibrations. 

A correction for the effect of thermal expansion on the density of states yields a 10-15% 

reduction in the coupling to the higher frequency modes and little change in the coupling 

to the lower frequency mode. These changes do not substantively alter the conclusions 

of the analysis. The temperature dependence of the resistivity is reproduced to the same 

accuracy with or without the treatment of thermal expansion. 

An estimate based on theoretical results for other superconductors[193] suggests that 

the preceding analysis will yield a near-BCS gap ratio of k!"}c ::::: 3.6 - 4.0. Prelimi­

nary tunneling measurements yield k!t = 5.3,[183] while infrared measurements suggest 

k!t - 3.5 [176]. The unambiguous determination of this important superconducting 

parameter merits further effort. 

In conclusion, an analysis of resistivity data on doped single crystals of K3C6o sug­

gests that the supercondu<;tivity is consistent with conventional electron-phonon coupling 

involving a range of intramolecular phonons. Within this analysis, the coupling strength 

to lower frequency modes does not contribute significantly to either the superconducting 

transition temperature or the gap ratio. 

10.3 Temperature-Dependent Resistivity of Rb3C6o 

The temperature-dependent resistivity of Rb doped single crystals was analyzed by 

use of the Ziman resistivity formula in a manner similar to that used for a K-doped 

sample[157]. The absolute values of A are derived by using a T=O scattering time of 
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Model A High A Low 

SLNB 1.0- 2.5 

SLNB(low) 0.7- 1.6 0.1 - 0.25 

SLNB(low, thermal) 0.6- 1.4 0.1 - 0.25 

VZR 2.2- 5.4 

VZR(low) 1.5 - 3.7 0.1- 0.25 

VZR(low, thermal) 1.3 - 3.1 0.1 - 0.3 

JD 0.4'" 0.9 

JD(low) 0.4- 0.9 0.01- 0.02 

JD(low ,thermal) 0.3 - 0.8 0.03- 0.06 

Table 10.1: Best-fit values of >.High and >.Low to the temperature dependent resistivity for 

various theoretical models of the electron-phonon coupling. The expression >.High refers 

to the total coupling to on-ball modes, while >.Low refers to the coupling a mdoe at 150 K. 

The appellation "low" refers to the coupling function with this additional low frequency · 

mode at 150 K. The appellation "thermal" implies that a correction for thermal expansion 

has been applied. 
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r = 0.7 ± 0.3 x 10-14 sec., the value derived from upper critical field data[216]. The fre-

quency distribution of the electron-phonon coupling is obtained from three different the-

oretical models of intramolecular electron-phonon coupling, denoted JD[175], SLNB[173] 

and VZR[174]. Additional contributions arise from interball and alkali modes, which oc-

cupy two frequency ranges. Interballlibrations for Rb3C60 lie in the frequency range -50 

K, whereas inter ball vibrations/ alkali atom optical modes have frequencies around 150 K 

[155]. These two possible sources of additional electron-phonon coupling were considered 

separately. First, the three theoretical models were augmented with a variable-strength 

mode at 50 K which models librational modes. Second, each model was augmented. by a 

mode at 150 K which models the vibrational and alkali modes. The range of results from 

these separate models should encompass the actual physical situation which is expected 

to be a combination of both low-frequency contributions. 

The results of the analysis are summarized in Table 10.2 and Figs. 10.8 and 10.9. JD, 

which stresses the lower-frequency intramolecular phonons, is too linear at high tempera-

tures. The introduction of an intermolecular contribution to the electron-phonon coupling 

does not improve the agreement with experiment. The actual values of the electron-phonon 

coupling derived from this analysis are consistent with the measured Tc ofRbaC6o· 

In contrast to JD, the model of VZR is dominated by the two highest-energy H9 modes. 

Before introduction of a low-frequency contribution, this model yields poor agreement with 

experiment at low temperatures. The introduction of either a 50 K or 150 K mode greatly 

improves the quality of the fit, with little difference between the two cases (only the 

150 K case is shown). VZR yields rather large .A's which necessitate an extremely large 

Coulomb repulsion (JL* ~ 0.7- 0.9) in order to be consistent with the measured Tc· These 

large values of 11-• yield very small isotope effect exponents, at variance with experimental 

results[224, 225]. In addition, these very large values of .A begin to approach the range in 

which the system would be expected to be unstable to a structural phase transition. 

Like VZR, the model of SLNB profits greatly from the introduction of a low frequency 
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Figure 10.8: Fits of theoretical electron-phonon scattering models to the experimental 

resistivity for Rb3C6o {circles). The solid, dashed, and dotted lines are for the models 

VZR[174), SLNB[173), and JD[175] respectively. The data have been normalized to the 

value at T=245 K. 
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Figure 10.9: Fits of theoretical electron-phonon models with an additional phonon mode 

at 150 K to the experimental data for Rb3C6o· The curve assignments are the same as 

Fig. 10.8. 
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Table 10.2: Best-fit values of>. to the temperature dependent resistivity for various theo­

retical models of the electron-pho~on coupling. The expression >.~9h refers to coupling to 

the high frequency on-ball modes while >.fbow refers to an additional low frequency mode 

at 150 K. A correction for thermal expansion has been applied. 

Model 

SLNB 

VZR 

JD 

2.0 ± 0.8 

5.4 ± 2.2 

0.85 ± 0.34 

0.2 ±0.08 

0.18 ± 0.07 

-0.00 

mode. In this case, the model with a mode at 150 K provides the best agreement with 

experiment. Like JD, SLNB yields values of the electron-phonon coupling forK and Rb 

doped C6o which are reasonably consistent with the measured superconducting transition 

temperatures. 

We briefly consider the effects of phonon anharmonicity on the treatment of the re­

sistivity. The best candidates for strong phonon anharmonicity are the vibrations of the 

alkali atoms, which reside in relatively large interstitial sites that could be associated 

with flat-bottomed potentials, as is seen for hydrogen atoms intercalated into the octa­

hedral interstitial sites of a fcc palladium lattice. This anharmonicity would affect both 

the temperature dependence of the resistivity and the isotope effect exponent. A model 

of anharmonic phonons in superconductivity[21, 102] can be extended to a treatment of 

the resistivity. The temperature-dependent anharmonic electron-phonon coupling relevant 

to superconductivity, Eqn. 5.1, is identified with the electron-phonon coupling function 

relevant to transport processes, Eqn. 5.2. The resistivity is then calculated with the 

Ziman resistivity formula. We note a caveat that >.tr may differ from >. if the electron­

phonon coupling is anisotropic[223, 40]. Although the coupling to the low frequency mode 
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is weak, its contribution to the resistivity changes significantly upon assumption of an-

harmonic behavior, leading to substantial changes in the fitted values of .A. Preliminary 

analysis indicates that a treatment of SLNB in which the low-frequency contribution to the 

electron-phonon coupling is assumed to be purely quartic yields Ahigh roughly 30% higher 

and Azow roughly 20% smaller then a treatment assuming purely harmonic modes. The 

size of the electron-phonon coupling is still reasonably consistent with the experimental 

values of Tc and a. Similar changes in Ahigh and .Azow are observed for VZR; however, the 

increase in Ahigh for this model increases the disagreement with experiment. The model 

of JD, on the other hand, is almost unaffected by the introduction of low-frequency an-

harmonicity, since this treatment requires only a very small low-frequency contribution. 

In summary, the assumption of strong anharmonicity of the low frequency mode produces 

modest changes in the fitted values of the electron-phonon coupling, but not enough to 

affect the agreement with experiment. 

10.4 A brief reanalysis of the temperature-dependent resistivity 

The preceding analysis depends on an analysis of critical field data to determine the 

scattering time and thereby set the overall scale of the electron-phonon coupling. An 

alternative method is available, using fluctuation conductivity results to determine the 

absolute scale of the resistivity and then using the plasma frequency to derive the scattering 

time from p = ~. w,.-r 

Fluctuation conductivity results yield p(T ~ 20K) = 0.12m0-cm for K3C6o and p(T :::::: 

30K) = 0.23m0-cm for Rb3C60. These values are reasonably consistent with an analysis 

of the upper critical fie_ld [177] which suggests resistivities of 0.18±0.06m0-cm and 0.57 ± 

0.21m0-cm for K3C60 and RbgC60 respectively. Band structure calculations[147, 200] 

suggest bare plasma frequencies of wff3C60 = 1.2eV and w~3c60 =1.1eV. The value for 

Rb3C6o is actually a preliminary result from a calculation of K3C60 at the Rb3C6o lattice 
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constant[200], which should be an adequate approximation. 

An analysis similar to that performed previously, but using these parameters yields the 

values of A given in Table 10.3. The results for KaC60 are slightly lower than those of the 

original analysis, while the values of the coupling for Rb3C60 are substantially smaller. 

For RbaC6o, the model of Jishi et al. yields values of the electron-phonon coupling which 

are generally too low to account for the superconductivity. Allowing for a 50% error in the 

fitted values of A and taking a rather small value of J.L* = 0.08 for the Coulomb repulsion, 

the model of JD implies a maximum for RbaC6o of Tc=7.1 K with a= 0.45. 

This analysis is beset by uncertainties in the plasma frequency, which enters the cal-

culation squared. However, this uncertainty actually turns to our advantage. A slight 

modification of the value of plasma frequency used will reconcile the two methods of de-

termining the coupling strength. Using the infrared reflectivity result of wp ~ 1.56 eV for 

Rb3C6o (203] instead of the theoretical value of 1.1 eV increases the fitted values of A in 

the present by a factor of ( 1j~16 ) 
2 

= 2, b!inging these results into closer agreement with 

the original analysis in Tables 10.1 and 10.2. The original analysis in terms of critical field 

data experiences a concomitant modification, maintaining the same values of A (since the 

scattering time has not changed but yielding values of the resistivity smaller by the same 

factor of two. From this point of view, there are certain robust conclusions. Only the 

values of A for the model of Schluter et al. are in the correct range to account for the 

observed T c· The other models yield A at variance with experimental results for T c and · 

a. Specifically, using the coupling function of Schluter et al. and solving the Eliashberg 

equations with J.L* = 0.18 yields Tc=17.6 K, a=0.32 for KaC60 and Tc=32.8 K, c:t=0.34 for 

Rb3C60, in good agreement with the experimental results of Tc=19.2 K, a=0.3±0.06[225] 

for K3C60 and Tc= 30.8 K(180], c:t=0.37±0.05[224] for RbaC60. 

The present state of experimental and theoretical knowledge precludes a definitive 

statement regarding the exact values of the plasma frequency, the intrinsic resistivity and 

the electron-phonon coupling in the alkali-doped fullerenes. However, a detailed analysis 
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Table 10.3: Best-fit values of A to the temperature dependent resistivity for various theo­

retical models of the electron-phonon coupling. The absolute values of A are determined 

by using the theoretical values for the plasma frequency[147, 200] and fluctuation conduc­

tivity results for the resistivity[194]. The expressions AHigh refer to coupling to the high 

frequency on-ball modes whereas ALow refers to an additional low frequency mode at 150 

K. A correction for thermal expansion has been applied. 

SLNB 0.58 0.08 0.82 0.08 

VZR 1.50 0.07 2.15 0.07 

JD 0.27 <0.02 0.34 0.00 

of several sources of information strongly supports a model with moderate 'electron-phonon 

coupling to phonons with an average frequency of ~ 1000 K. 

10.5 Resistivity Saturation 

The family of alkali-doped fullerenes contains the highest-T c isotropic three dimen­

sional superconductors presently known. Several experimental results point towards 

electron-phonon mediated superconductivity in these materials. In particular, the car­

bon isotope effect is substantial(225, 224] and both Raman measurements[167] and in­

elastic neutron scattering[155) yield phonon linewidths consistent with moderately strong 

electron-phonon coupling. Theoretical calculations of the electron-phonon coupling lend 

additional credence to this model[175, 173, 174, 226]. On the other hand, the alkali-doped 

fullerenes have several characteristics which suggest that the detailed preconditions of the 
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standard BCS theory may not be fulfilled. The characteristic phonon energy scale (:::::: 

0.1 eV) approaches the energy scale of intraband electronic dynamics (:::::: 0.4 eV) Calcu­

lations of metallic screening in the doped material suggest that the Coulomb interaction 

is efficiently screened, but with the possibility of a significant long-range Hubbard U[219]. 

Measurements of normal-state transport properties provide a means to evaluate the de­

gree to which these materials can be described within Bloch-Boltzmann transport theory, 

a treatment which assumes a separation of vibrational and electronic timescales and a 

single-particle view of electron dynamics. In particular, Bloch-Boltzmann theory predicts 

its own demise: a "run-of-the-mill" conductor will exhibit resistivity saturation as the 

mean free path approaches the interatomic spacing. The low temperature mean free path 

in the alkali-doped fullerenes is fairly short, suggesting that these materials are plausible 

candidates for the observation of resistivity saturation at high temperatures. However, if 

the alkali-doped fullerenes are dominated by correlative effects they will not necessarily 

be hostage to high-temperature resistivity saturation. 

Previous experimental work has been interpreted as evidencing an absence of saturation 

for temperatures up to 550 Kin KsC6o and RbsC6o thin films[195]. These measurements 

were taken to support the possibility of novel transport mechanisms such as resonant 

tunnelling. However, as pointed out by these authors, an accurate evaluation of the 

high temperature resistivity in these materials requires a detailed consideration of the 

temperature dependent density of states, an effect which could mask the signature of 

resistivity saturation. 

We report high temperature pulsed heating resistivity measurements up to 800 K on 

K- and Rb- doped C60 single crystals. The data are analyzed within the parallel-resistor 

extension to Bloch-Boltzmann transport theory[227] with a temperature-dependent den­

sity of states to obtain a saturation mean free path of lsat :::::: 1 ± 0.4A for RbsC6o, on the 

order of the carbon-carbon bond length of 1.4 A. KsC60 does not show obvious signs of sat­

uration up to 800 K, suggesting an upper bound of lsat < 1.5A. Both results are consistent 
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with the expectations of resistivity saturation within Bloch-Boltzmann transport theory. 

These results indicate that the electronic states relevant to high-temperature transport 

have a characteristic length scale significantly smaller than the fcc lattice constant. 

Single crystals of C6o were doped with Rb and Kin the standard fashion[192], with 

iterative dope/anneal stages proceeding until a final resistivity minimum is reached. Since 

the metallic phase A3C60 (A = K, Rb) is not the saturation phase of the intercalation 

process, it is useful to ask if a uniform A3C6o phase can be easily obtained in a bulk 

sample. In this context we note that direct resistivity measurements on bulk samples yield 

results which are often 2-3 x higher than estimates based on various indirect, theoretical, 

or optical probes[194, 177, 216, 228, 151, 207]. Doping of bulk samples most likely begins 

with the formation of islands of doped material in pristine C60. The finite vacancy energy 

of A3C6o guarantees that the equilibrium dopant concentration at moderate temperature 

and dopant level will be somewhat substochiometric. In addition, at sufficiently high 

doping rate it may become possible to nucleate A4C6o or A6C6o inside the doped portions 

of the sample before the substochiometric A3C6o phase diffuses through the crystal. A 

heterogeneous doping profile would account for the discrepancy between direct and indirect 

measurements of the DC resistivity in A3C6o· We emphasize that the functional form of 

the temperature dependent resistivity is independent of detailed doping profile. Modulo 

differences in effective geometry, the temperature dependent resistivity of different samples 

of both K3C60 and Rb3C6o is precisely reproducible. 

A major concern of high-temperature resistivity measurements in these materials is 

the possibility of thermally-driven rearrangement of the intercalant species, in particular 

deintercalation and/or formation of ~C60, A6C60, or solid solution AxC60 phases at high 

temperature. To minimize these effects, a pulsed heating apparatus was used which can 

heat the sample from room temperature to 800 K on a timescale of a few seconds. Details 

of the experimental techniques can be found in reference [229]. 

Fig. 10.10 shows the results of several runs of pulsed heating on single samples of both 
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Figure 10.10: High temperature resistivity of K3C6o and Rb3C6o· Different symbols repre-

sent sequential pulsed heating runs. Data forT< 300 K were obtained using conventional 

slow-cooling techniques. 
, 



144 CHAPTER 10. TRANSPORT 

K3C6o and Rb3C6o· The dashed lines below 300 K are de resistivity data for the same 

samples obtained by the more conventional slow-cooling technique. The high-temperature 

data in Fig. 10.10 are reproducible over several pulsed beatings excursions, indicating 

minimal deintercalation or irreversible intercalant rearrangement. Similar results were 

obtained for different crystals of K3C6o and Rb3C50. We note that freshly doped sam-

pies of K3C6o often exhibit an interesting resistive anomaly near 380.K consisting of small, 

smooth hysteretic resistive step of order 10%, possibly accompanied by a very slight change 

in slope. This anomaly is also observed in samples that are heated in a non-pulsed manner. 

The origin of this anomaly is at present unclear, but it may reflect a change in effective 

geometry of the conducting portion of the sample or a change in lattice constant in the 

A3C60 portion of the sample, either a stress-induced expansion due to a structural transi-

tion in a minority phase or an expansion local to the A3C60 phase due to an orientational 

order/disorder transition in the doped material. In any case, this anomaly is "annealed 

out" and disappears after one or two high temperature cycles of the sample, yielding the 

smooth and reproducible p(T) behavior shown in Fig. 10.10. 

Turning to data analysis, we begin with a discussion of the theoretical treatment 

of resistivity saturation. Bloch-Boltzmann transport theory fails as the electronic mean 

free path approaches the lattice spacing. One can account for this effect by imposing a 

phenomenological minimum electron scattering time Tsat, which corresponds to a length 

scale, lsat = TsatV 1, on the order of the interatomic spacing. This minimal time acts as an 

offset to the Poisson distribution of electron scattering events, yielding a parallel resistor 

model of resistivity saturation,[227, 230] 

1 1 1 -=-+-. 
P PBB Psat 

At all temperatures, the finite offset Tsat yields a resistivity lower than that expected from 

conventional transport theory. At high temperatures, the reSistivity eventually saturates at 

the value Psat· The Bloch-Boltzmann resistivity PBB is composed of two parts, a residual 
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resistivity Po and an electron-phonon resistivity Pep. which are assumed to contribute 

additively in accord with Mattheisen's rule. The electron-phonon contribution is modelled 

within the Ziman resistivity formula[222] for three different models of the op.-ball electron­

phonon coupling with different weights of contributions from the range of on-ball phonon 

frequencies. These models yield average phonon frequencies of w ::::::: 500K[175], w ::::::: 

1200K[173], w ::::::: 2000K[174]. Each model is augmented by the addition of variable 

coupling to a low-frequency mode set at w = 150K. This low frequency mode is a generic 

representation of possible contributions from alkali atom optic modes, librational modes, 

or interball translational modes. In all cases, the coupling to this mode turns out to be 

small, and the important features of the calculated resistivity are not sensitive to variations 

in the frequency of this mode from 50 to 200 K. 

At first sight one might think that the presence of resistivity saturation could simply 

be read off of a graph of resistivity versus temperature. However, the special properties 

of the alkali-doped fullerenes necessitate a detailed theoretical treatment. In particular, 

the characteristic phonon frequency is quite high; within the experimentally accessible 

temperature range the system may never reach the high-T limit in which the resistivity is 

strictly proportional to the temperature. More importantly, the density of states at the 

Fermi level N(O) for the alkali-doped fullerenes is a sensitive function of the lattice constant 

which varies considerably due to thermal expansion. The electron-phonon component of 

the resistivity is expected to be proportional to the density of states squared, one factor 

of N(O) from wP2, another from the scattering time in the formula Pep = ~ where wp 
W'PT . 

is the plasma frequency. Alternatively, the density of states dependence can be recast 

as a dependence on Fermi velocity wherein the conductivity is proportional to the Fermi 

velocity squared. -Taking Vf - N(o), we again obtain a resistivity proportional to density 

of states squared. An increasing N(O) as a function ofT will contribute positive curva-

• 
ture to p(T), obscuring the signature of saturation. The temperature dependence of the 

residual resistivity is less clear. Theoretically, one expects a density of states dependence 
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to the residual resistivity if the residual scattering mechanism is slaved to a microscopic 

time scale or energy scale, and a density of states-independent residual resistivity if the 

mechanism is slaved to a microscopic length scale. Experimentally, the residual resistivity 

of Rb3Cso shows a significant pressure dependence[220]. In addition, several sources of 

information[195, 194, 177, 216] indicate that the residual resistivity in K3Cso is roughly ! 
of the residual resistivity of Rb3Cso, a difference which could be attributed to the differ­

ence in density of states between these two materials. In the present analysis we a.Ssume 

that the residual resistivity scales as the density of states squared. Should this assumption 

be in error, the effect upon the final results should be small since the low temperature 

residual resistivity is a small fraction of the total resistivity at high temperatures. 

We obtain the temperature dependent density of states by combining the density of 

states as a function of lattice constant from a LDA band-structure calculation[172] with 

the experimental coefficient of thermal expansion to yield the density of states as a func­

tion of temperature. The result is in reasonably good agreement with NMR measurements 

of the temperature dependence of J;&'[231]. The thermal expansion for both K3Cso[232] 

and Rb3C60 [233] has been measured from 5 K to 300 K. Above 100 K the lattice constant 

is accurately modelled with a linear temperature dependence, the form chosen for extrap­

olation to 800 K. The density of states has been calculated for lattice constants from 14.0 

A to 14.435 A. Treatment of the Rb3Cso experiment requires extrapolation beyond the 

range of calculated values. We compared two functional forms for this extrapolation, a 

least squares cubic polynomial fit, and a fit to the form N(a)=No (a- a)'1, with No, a and 

'TJ as fitting parameters. Both forms yield comparable fits with similar extrapolations. The 

variations in extrapolation are taken into account in the estimation of uncertainties. 

We normalize the experimentally determined resistivity curves by appeal to an anal­

ysis of upper critical field data which yields values of the T=O scattering time[177, 216]. 

Combining these results with theoretical values for the plasma frequencies of K3Cso and 

Rb3C6o (1.2 and 1.11 eV respectively)[147, 200] yields values of the T=O resistivity of 
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Figure 10.11: Normalized resistivity versus temperature for KaCso (lower curve) and 

Rb3Cso (upper curve). Shaded areas indicate indicate uncertainties in resistivity nor-

malization. Solid and dashed curves are theoretical fits. For Rb3Cso the dashed line 

fit uses the electron-phonon coupling spectrum from Jishi et al. (w ::::::: 500 K), whereas 

the solid line fit uses the spectrum of Varma et al. (w::::::: 2000K). Both models include a 

temperature-dependent density of states. The fits to the K3Cso data use the coupling spec-

trum from Schluter et al. (w ::::::: 1200 K). The solid fit includes a temperature-dependent 

density of states whereas the dashed fit does not. 
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0.18±0.06mn-cm and 0.57±0.21mn-cm respectively. Normalizing the data of Fig. 10.10 

to these values yields the absolute resistivity curves in Fig. 10.11 (open circles). The 

shaded areas indicate the range of uncertainty in the normalization. Representative theo­

retical fitting curves are included in this figure. 

Two ancillary points are immediately evident from the theoretical analysis. First, a 

temperature-dependent density of states is necessary to obtain a satisfactory fit to the full 

range of experimental data for K3C6o· The continuous (dashed) curve following the K3C6o 

data in Fig. 10.11 shows the best fit with (without) a temperature-dependent density of 

states for the model with w ~ 1200K. The fit at constant N(O) is substantially worse. 

Secondly, the fits using the coupling spectrum with lowest average frequency (w=500 K) 

are quite poor, as evidenced by the dashed fit to the Rb3C6o data in Fig. 10.11 . This 

result suggests that the relative contributions of on-ball phonons to the electron-phonon 

coupling is centered at moderate to high frequencies. Finally, we note that the values of 

the total electron-phonon coupling >. derived from these analyses are in accord with the 

range expected for a BCS superconductor[157]. 

The high-temperature resistivity of Rb3C6o is in reasonably good agreement with the 

parallel resistor model of saturation. The model with w ~ 1200K yields Psat = 5.1±1.9mn­

cm while the model with w ~ 2000K yields Psat = 6.3 ± 2.4mn-cm (this fit is shown in 

Fig. 10.11 as the solid curve following the Rb3C6o data). The saturation length can 

be derived from these values by appeal to theoretical values for the plasma frequency 

and Fermi velocity (1.8 x 107 em/sec for K3C6o and 1.6 x 107 em/sec for Rb3C6o) which 

are obtained from LDA electronic structure calculations in the orientationally ordered 

structure[147, 200]. The results for Rb3C60 are lsat = 0.9 ± 0.4A for w ~ 1200 K and 

. lsat = 1.0 ± o.sA for w :::::: 2000 K. 

The K-doped sample does not show obvious signs of saturation. The theoretical anal­

ysis yields a lower bound on the magnitude of the saturation resistivity. The solid curve 

following the K3C6o data in Fig. 10.11 is the best fit to the model with w ~ 1200 K 
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and Psat = 6.4±2.0 mn-cm. Smaller values of Psat yield unsatisfactory fits to the data. 

The model with w ~ 2000 K yields an analogous bound of Psat > 4.8 ± 1.5 mn-cm. Tak­

ing 4.8 ± 1.5mn-cm as a lower bound on Psat yields a bound on the saturation length of 

lsat < 1.1 ± 0.4A. Like the situation for Rb3C6o, this value is consistent with the C-C 

bond length. A comparison of the normalized resistivity data for K3C6o and Rb3C6o in 

Fig. 10.11 clearly shows that even at the highest temperatures reported ("'800 K) the 

K3C6o sample has not yet reached a resistivity regime similar to that in which the Rb3C6o 

sample begins to exhibit resistivity saturation. 

We note two experimental uncertainties which could have significant impact of the 

conclusions of this work. First, the absolute value of the resistivity is somewhat in question. 

We note that estimates of the resistivity from fluctuation measurements[194] are smaller 

than the values used in the present analysis. Using these fluctuation-derived values would 

yield saturation lengths 2x larger for Rb3C6o and 1.5x larger for K3C6o· On the other 

hand, if one believes that the direct measurements of the resistivity represent intrinsic 

properties, one obtains saturation lengths roughly 2-3x shorter than derived in this work. 

These values, substantially smaller than the carbon-carbon bond length, would be at odds 

with the parallel resistor extension to Bloch-Boltzmann transport theory. We believe that 

the direct measurements of the absolute resistivity are least accurate due to uncertainties 

in the effective volume of the sample. Second, we note that an experimental measurement 

of the low-temperature constant volume resistivity[220] suggests that the spUrious positive 

curvature introduced by constant pressure measurement is substantially greater than that 

predicted by a temperature dependent density of states, indicating that the signature of 

saturation adjusted to constant sample volume may be stronger than that resulting from 

the present anaJ.ysis, yielding a longer lsat· Detailed consideration of this point awaits 

experimental data on the constant volume resistivity at higher temperatures. Finally, 

we remark that inclusion of the temperature dependence of the low frequency interball 

modes would yield slightly ( -10%) longer saturation mean free paths without substantively 
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altering the conClusions of the analysis. 

In passing we note several additional effects which could contribute anomalous tem­

perature dependence to p(T) at a 5-10% level. The low-frequency librational modes are 

strongly temperature dependent. The interball translational modes are expected to also 

be strongly temperature dependent. In addition to a large Gruneisen effect, the electron­

phonon coupling to these modes should be proportional to the squared derivative of the 

bandwidth with respect to the lattice constant,[157) a derivative which varies significantly 

over the temperature range of interest. The instantaneous distribution of local effective 

lattice constants in a macroscopic sample of A3C6o will show thermal variation on a length 

scale of a lattice constant,,causing the electrons to see an effective density of states slightly 

different from the average value. These effects are estimated to effect the results for satu­

ration mean free path at the 5-10% level or less. 

We note that the strong temperature dependence to the density of states will interfere 

with the backwards extrapolation of the high temperature resistivity to PBB = 0 at T=O .. 

In the present work, a backwards linear extrapolation of the Rb3C6o data does in fact 

intersect the origin. However, this result should be regarded as fortuitous in light of the 

temperature dependent density of states. Previous backwards extrapolations (at lower 

temperatures)[195) which fall below the (PBB, T) origin should not be taken as prima 

facie evidence of a novel transport mechanism. 

The present results indicate that the single particle states relevant to transport at high 

temperature have a characteristic length scale much smaller than the fcc lattice constant of 

roughly 14 A. Although calculations for the orientationally disordered A3C6o lattice[228) 

suggest that the extended-state description of electron dynamics is applicable at T=O, 

the present work indicates that the character of the appropriate electronic states changes 

significantly from low to high temperatures. 



Chapter 11 

Hall Effect 

The alkali-doped C6o superconductors[169] compose a family of uniquely tunable bi­

nary superconductors with high transition temperatures. Variations in lattice constant 

yield variations in Tc over an order of magnitude from IV 3 K to IV 30 K[154]. The elec­

tronic structure[150, 234] and transport properties[151, 228, 229] of these materials are 

strongly affected by the orientational disorder of the C6o constituents, raising questions 

as to the most appropriate picture for the electronic states. Measurements of the Hall 

effect should provide information as to the nature of the relevant electronic structure. 

Unfortunately, the only existing Hall effect measurements were performed on a granu­

lar K-doped C60 film[235] with a non-metallic resistivity and· zero-dimensional fluctuation 

conductivity near T c· Since Hall effect measurements are known to be sensitive to sample 

· granularity[236], experiments on single crystal samples are necessary to obtain accurate 

information on electronic and transport processes. 

We present the first measurements of the Hall effect in K and Rb-doped single crystal 

C6o samples. The temperature dependence of the Hall coefficients of K3C6o and Rb3C6o 

from the superconducting transition to room temperature can be described by a universal , 

·function of lattice constant. The results are interpreted within a conventional band picture 

with significant disorder broadening of electronic states near the Fermi level and a lattice 

constant-dependent density of states. In the temperature range of these measurements the 

Fermi surface is strongly modified by scattering processes on a length scale on the order 

of the inter-ball distance. 

Thin platelike C60 single crystals of typical size 500 x 200 x 30~tm3 with shiny facets 

were doped with K or Rb according to standard techniques[192]. Prior to doping, eight 
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Figure 11.1: Temperature-dependent Hall coefficient of the optimally doped K3C60 and 

gold wires were bonded to the edges of the crystal. The iterative dope/anneal process 

was guided by in situ monitoring of the two and four probe resistance. The Hall effect 

was determined applying an external magnetic field of up to 8 Tesla perpendicular to the 

largest crystal face and passing an AC current of "'10 mA at 37Hz through the sample. A 

current balance technique(237] was used to zero the Hall voltage at zero applied magnetic 

field. Both positive and negative magnetic field sweeps were used throughout to eliminate 

low frequency drift effects. 

Fig. 11.1 shows the temperature-dependent Hall coefficient Rn from just above the 

superconducting transition to 300 K for optimally doped K3C6o and Rb3C6o samples. Rn 

for K3C6o is negative and linearly increasing with increasing temperature with a slope 

. -
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Figure 11.2: Hall coefficient as a function oflattice constant for the optimally doped K3C5o 

of 0.0055 x w-9~. The room temperature value of -1.4 x w-9 ~3 
coincides with the 

free electron value for three electrons per C6o· We emphasize, however, that a direct 

comparison with the free electron result is of limited utility in a system with a complex 

Fermi surface. The Hall coefficient for Rb3C60, also linearly temperature-dependent with 

similar slope, is displaced upwards from that of K3C5o and has a zero crossing at T-120 

K. 

We characterized the possible effects of variations in effective sample geometry by sys-

tematically measuring the doping-dependence of p and RH. The functional form of p(T) is 

doping independent, indicating that neither the intrinsic residual resistivity nor the intrin-

sic temperature-dependent resistivity is doping-dependent[238]. Fig. 11.3 shows the Hall 
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mobility ttH = ~ for three K-doped samples which have room temperature resistivities in 

the ratio 1:2:3, a ratio consonant with substantial differences in doping between the sam­

ples. As shown in Fig. 11.3, ttH is doping invariant, suggesting that the phase boundaries 

inside of the thin-plate samples are parallel to the major faces, a geometry in which the 

functional forms of p(T) and Ry(T)" are intrinsic to the AaCGo phase[239]. In addition, the 

ratio of extrapolated T=O resistivities for the optimally doped Rb3C6o and KaCGo sam-

estimates of the ratio of intrinsic resistivities for these two compounds[195, 194, 177, 216] 

and indicative of similar effective geometries for our optimally doped samples. 

Previous work demonstrates a strong influence of thermal expansion upon the form 

of p(T) in Rb3C60 [220]. This result suggests that lattice thermal expansion should be 

taken into account in a discussion of Ry(T). The lattice thermal expansion of A3C60 in 

the temperature range of interest can be adequately expressed as a(T) = a0 + bT, where 

b is 3.52 x 10-4AK-1 for K3C60[240] and 4.40 x 10-4AK-1 for Rb3C60 [241]. Using these 

results, we plot Ry as a function of lattice constant in Fig. 11.2. We obtain a striking 

relation- the difference in Ry between KaC6o and RbaCGo samples at a given temperature 

can be ascribed purely to the difference in the lattice constant between the two materials! 

This result suggests that the variation in Ry with temperature for a given sample can 

also be attributed purely to changes in lattice constant. Apparently, Ry at constant 

volume is temperature-independent for both materials. A simple linear fit yields a lattice 

constant dependence of Ra = [-2.8 + 13.9(a -14.15)] x (10-9~) where a is measured 

in angstroms. 

Prior calculations of the Hall coefficient using the Jones-Zener solution[242] of the 

Boltzmann equation in an orientationally ordered system at zero temperature with 

isotropic scattering time yield Ry = 7 x 10-9~ for both KaC60 and Rb3C60 [243]. The 

result, which is weakly pressure-dependent, arises from a complex weighted average over 

a Fermi surface composed of a hole-like pocket and a pair of open sheets with regions of 
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Figure 11.3: Temperature dependence of the apparent Hall mobility of three KxC6o sam-

ples with different doping levels. The resistivity ratios at 300 K are £::.. : 0 : • = 3 : 2 : 1. 

positive and negative curvature. These results are at variance with the present experi-

ments, wherein the Hall coefficient is much smaller in absolute magnitude and negative 

over a broad temperature range. In addition, the universal dependence of RH on lattice 

constant suggests a pressure dependence much stronger than that calculated. Since the 

Hall coefficient is sensitive to Fermi surface topology, it is plausible that the discrepancy 

between theory and experiment is due to disorder-induced modification of the Fermi sur-

face which is. not taken into account in the orientationally ordered calculation. Although 

other etiologies could be envisioned (nonadiabatic effects, electron-electron correlation), 

the primary electronic feature determining the character of the electronic states appears 

to be the strong orientational disorder. 

The common source of a temperature dependent Hall coefficient is a temperature de-

pendent anisotropy in the scattering time at temperatures below the Debye temperature. 

Judging from experimental and theoretical indications of moderate total electron-phonon 
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coupling[173, 174, 175, 157, 176] and small electron-alkali-phonon coupling[180], the pri­

mary contribution to the electron-phonon scattering time can plausibly be attributed to 

high frequency on-ball optical phonons. The near-Einstein nature of C60 optical phonons 

and the strong electronic disorder suggest that any purely phonon anisotropy is weak and 

insensitive to temperature. Although the interball vibrational modes are expected to show 

significant dispersion, their frequencies are too low (-100 K) to explain the temperature 

dependence in Rn observed up to 300 K. In addition, the measured universal depen­

dence on lattice constant argues strongly (if somewhat circularly) against a significant 

temperature-dependent phonon contribution to Rn, contributions which would not pro­

duce scaling behavior between materials. Instead, we must seek an explanation invoking 

a mechanism which itself shows universal scaling. In particular, the combined influence of 

orientational disorder and universal scaling of the density of states. 

We begin our discussion of a model for the influence of disorder on Rn by introducing 

the appealing theoretical construct of the scattering length surface[244]. In this treatment, 

the Hall conductivity u :ryz of a two dimensional system is identified with the number of flux 

quanta that thread a surface constructed by tracing the circuit of the vector scattering path 

length l = v"krk ask circumscribes the Fermi surface (the three dimensional case is treated 

as an integral over these two dimensional constructs). The Hall coefficient Rn is obtained 

from the ratio Rn = u;~· . For a single-sheet Fermi surface with isotropic scattering, 

the resulting scattering path locus is simply a circle (sphere in 3D) which yields the free 

electron result of Rn=- n~c· More complex Fermi surfaces with anisotropic scattering 

times yield additional loops in the scattering length locus which contribute in accord with 

the sign of circulation of the scattering length vector about these regions. 

Calculations using~ tight-binding disordered supercell, a cluster-Bethe lattice model 

and a disorder-smeared virtual crystal[228] all yield a Fermi surface for the disordered 

system composed of pairs of parallel sheets in the cartesian directions with square electron­

like regions centered at r, X and K (the region around K is severely smeared). The 
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electron-like nature of the disordered Fermi surface is consistent with the predominately 

negative Hall coefficient. For the purposes of gaining a qualitative understanding of the 

Hall effect, we conceptually model the disorder· by considering large supercells with the 

disorder incorporated into the unit cell. Since this model system has perfect order, the 

resulting Fermi surface is well-defined and unsmeared, albeit quite complex due to the 

very large unit cell. Qualitatively, this Fermi surface will mimic the cluster-Bethe result 

of a smeared quasi-Fermi surface, but instead of true smearing the Fermi surface will 

have fine detail over a width consistent with the zero-temperature mean free path. This 

fine detail will consist of both numerous small electron-like and hole-like pockets and the 

complex local curvature of the larger sections of Fermi surface, sections which may either 

encompass the r and X points or bridge across the zones in a multiple zone scheme. 

The numerous small hole-like and electron-like pockets will contribute oppositely to 

the integral determining RH, presumably yielding a small net contribution to the Hall 

coefficient. Anisotropy in the scattering length along the large-scale sections of the Fermi 

surface will lead to the formation of secondary loops associated with high-curvature regions 

of these extended portions of the Fermi surface. Should the secondary loops be equally 

positive and negative, they will on average cancel each other out. However, the increase in 

Fermi velocity with distance from r and X should produce secondary loop contributions 

of generally opposite sign from the main contribution (similar to the generic situation 

of parabolic bands(244]). The greater the k-space extent of the disorder broadening, the 

·larger the contributions from the secondary loops. 

The variation in RH with lattice constant can be qualitatively modelled by assuming 

that the relative k-space extent of the disorder broadening of the Fermi surface increases 

with increasing lattice constant. As the relative k-space extent of the disorder increases, 

the secondary loops sample regions of smaller Fermi velocity near the r and X points, 

leading to larger secondary loops and an increasing Hall coefficient. The question remains 

how an increase in lattice constant could yield an increase in the disorder broadening at 
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the Fermi level. If the disorder potential has a characteristic energy scale which is to 

first order independent of the lattice constant, then the k-space extent of the disorder 

broadening will be an increasing function of density of states and hence an increasing 

function of lattice constant. The differences in residual resistivity between KaC60 and 

Rb3C6o[195, 194, 177, 216) are consistent with greater density of states in Rb3C60 and 

hence greater k-space extent to the disorder broadening. The universal scaling of RH is a 

natural consequence of the universal scaling of the density of states at the Fermi level as 

a function of the lattice constant[172). This argument suggests that the Hall coefficient 

RH in A3C6o will increase from negative values at low disorder broadening (K3C6o sample 

at low T and small density of states) to positive values at larger disorder broadening 

(Rb3C6o sample at high T and large density of states), in accord with the experimental 

result. The behavior is similar to that suggested[245) for disordered nearly free electron 

metals, wherein the Hall coefficient is inversely dependent on the density of states. 

To obtain rough numerical results we assume that the secondary loops do not overlap 

and thereby perfectly cancel the primary loop in l-space over an extent consonant with 

the k-space extent of the disorder broadening, so that the net contribution to the Hall 

coefficient will arise from a residual Fermi surface at the inner edges of the smearing 

zones, a region of decreased Fermi velocity and therefore smaller contributions to RH. In 

this crude approximation the dynamics can be modelled quite simply by taking a smearing 

length perpendicular to the Fermi surface equal to the inverse zero temperature mean free 

path corresponding to a particular lattice constant and only taking contributions to RH 

from electronic states around the r and X points that lie entirely inside of these regions of 

disorder, treating the system as if it had (for the purposes of the Hall effect) an effective 

Fermi surface which lies at the inner (nearest r and X) edge of the actual disorder­

broadened Fermi surface. Using the experimental results for the T=O mean free paths of 

K3C6o and Rb3C6o which arise from an analysis of upper critical field data[177, 216), we 



obtain a ratio of RH between K3C6o and Rb3C6o at T=O of :: ~~~~) - 5, in possibly 

fortuitously close agreement with the experimental result of ,..,_ 4.5 for linear extrapolation 

to T=O. 

Although finite phonon energies, thermal smearing and true (non-super cell) disorder 

will wash out the finest structure of the disordered supercell Fermi surface, the functional 

form of RH is primarily determined by the Fermi surface sampling of the large-scale vari­

ation in v 1, a large-scale feature which should not be washed out by moderate smearing. 

Temperature-dependent thermal smearing will contribute a nonuniversal term to the vol­

ume dependence of the Hall coefficient. However, taking a mean free path of 12A for 

Rb3C60 at T=0[216] and v1 = 1.5 x 108 ~[216], a simple estimate for the energy scale of 

the disorder yields .6-E:::::: ~ ::::::1400 K, substantially larger than the temperature range 

of this experiment- temperature-dependent thermal smearing will make at most a minor 

non universal contribution to RH. Before concluding, we also note that the orientational 

disorder in alkali-doped C60 appears to be frozen in in the temperature regime of this 

experiment, thereby disallowing the possibility of nonuniversal contributions to RH from 

temperature dependence in the nature of the orientational disorder. 

Hall effect measurements on K3C6o and Rb3C6o single crystal samples yield RH as 

a universal of lattice constant, apparently regardless of whether dilation is caused by 

thermal expansion or steric effects. A qualitative model incorporating lattice-constant 

dependent disorder broadening at the Fermi level is consistent with this universal form and 

accounts for the discrepancy between the experimental results and previous calculations 

on orientationally ordered systems. The theoretical treatment yields a simple prediction 

for the pressure dependence of the Hall coefficient, namely, the same universal functional 

dependence on volume should be evinced if the volume change is induced by pressure 

rather than temperature or species of alkali atom. ·A similar argument applies to alloys 

such as Rb.xCS3-xC6o or KxRb3-xC6o, materials which are expected to have temperature 
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dependent Hall coefficients in accord with this universal form. 



Chapter 12 

Isotope Effects 

12.1 Carbon Isotope Effect 

A crucial experiment in the development of the BCS theory of superconductivity was 

the observation of an isotope effect for T c· For several metals, the isotope parameter 

a = - ~!~~ was found to be approximately 0.5, indicating that electron-lattice effects 

are intimately connected with superconductivity. Values of a less than ! were found for 

transition metals and reconciled with the different frequency cutoffs for the .phonon and 

Coulomb interactions, which yield 

(12.1) 

wherein a finite Coulomb repulsion /l* reduces the isotope effect exponent from the canon­

ical value of ! . 
At this time, five measured values of a for carbon substitution in A3C60 have been 

reported: a = 1.4 ± 0.5 for 33% 13C replacement [246], a = 1.7 ± 0.5 for 60% 13C 

replacement [247], a= 0.37 ± 0.05 for 75 ± 5% 13C replacement [224], a= 0.30 ± 0.06 for 

99% 13C replacement [225], and an unpublished measurement of a= 0.2 ± 0.2 [248]. One 

obvious conclusion, if these data are correct, is that lattice effects appear to be related 

to the superconductivity. However, the substantial scatter in results begs explanation. A 

comparison of samples with different microscopic isotopic profiles may provide a solution. 

Measurements at half 13C substitution have been performed on samples in which the 12C 

and 13C were mixed on each fullerene molecule (intraball substitution) and also on samples 

composed of a mixture of pure 12C and 13C molecules (interball substitution). The interball 

s"ubstitution yields the larger isotope effect, ~Tc = 0.9K versus ~Tc = 0.45K[249]. These 
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results suggest that the larger values of a cited above arise from heterogeneous mixtures 

of different flavors of fullerene molecules. 

The values of a in the range of 0.3 to 0.4 are consistent with standard models of 

superconductivity in which a is depressed from ! by the Coulomb repulsion as described 

in Eqn. 12.1. In particular, an average phonon frequency of 1000 K yields Tc = 29 K and 

a= 0.37 for .A= 0.81 and p,* = 0.19. Lower average frequencies require stronger coupling 

and larger p,*. For example, w"' 200 K implies .A= 2.5 and p.* = 0.31 for a:::::: 0.37. 

In this context, the general question of whether p.* can be reduced much from p. has 

been raised [250]. It is argued that the log(*) factor in p.* is small and ineffective in 

reducing p,. In addition, N(EF) is large because of the narrow bands and this causes p,, 

which is proportional to N (E F), to be large. However, it is likely that since p. ,....., (N < ~F )V) , 

where V is the Coulomb interaction and c is the dielectric function, the N(EF) factor 

in c will dominate this function and cancel the N(EF) factor in the numerator. This is 

characteristic of systems with large N(EF ). The result would be a p. in the range of 0.15 

to 0.3. 

The experimental measurements of a "' 1.5 [246, 247] provide a greater challenge to 

conventional theories of superconductivity. We consider four possible explanations for an 

isotope effect greater than the BCS maximum of 0.5: a strong energy dependence of the 

electronic density of states near the Fermi level, anharmonic phonons, isotopically disor­

dered intraball phonons and materials variability associated with the differing effective 

thermal histories of intraball and interball substituted samples. Electronic structure cal­

culations place the Fermi level on the upper side of a peak in the density of states of 

width"' 0.5 eV, as depicted in Fig. 8.1. Assuming an average phonon frequency less than 

2000 K, a calculation within BCS theory using a Lorentzian form for the density of states 

[193] yields a maximum change of only ±0.05 in the isotope effect exponent due to the 

energy-dependent density of states. An anharmonic phonon with positive quadratic and 

sixth-order contributions and a negative quartic part can increase the isotope exponent 
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above 0.5 [22, 102]. The effect is most pronounced at weak coupling. Unfortunately, weak 

coupling implies high-frequency phonons, which are unlikely to be softened by a negative 

quartic part. Stronger coupling to lower frequency phonons would imply stronger (and 

likely unphysical) anharmonicities. 

These two mechanisms do not provide a natural explanation for the difference between 

intraball and interball isotopic substitution. In addition, neither of them is consistent 

with an isotope effect exponent a "' 0.4 upon 100% 13C substitution. At intermediate 

isotopic substitution, the mass distribution on the C6o molecule is disordered[251]. The 

normal modes of this system will not have the exact symmetries of the isotopically pure 

material. Therefore, the electron-phonon coupling function a2 F(w) will spread out as the 

isotopic disorder allows additional modes to couple to the electrons [252]. This effect can 

be crudely modelled as a broadening of the peaks in a 2 F(w) as the system becomes max­

imally isotopically disordered. At first sight, it may appear plausible that this broadening 

could influence the isotope exponent. However, within linear electron-phonon coupling the 

magnitude of). is independent to isotopic disorder[252] such that isotopic disorder has no 

effect on a. 

Finally, we consider the possibility that the anomalous isotope effect for interball sub­

stitution arises from a unique thermal history to a heterogeneously substituted molecular 

solid. The interball substituted material has two different flavors of fullerene molecules. 

As the temperature is lowered below that necessary for intercalation of alkali atoms the 

rotational motion of the fullerene molecules will freeze out. The heavy and light balls 

of the interball substituted material will freeze out at different temperatures, effectively 

creating an intrinsic anneal and plausibly leading to a different variety of orientational 

disorder compared to the more homogeneous intraball isotopically substituted material. 

The freezing out of rotational motion in the pristine material is accompanied by a"' 0.1A 

change in lattice constant, suggesting that a difference in the character of the orientational 

disorder in the two varieties of doped material could produce a comparable, although likely 
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smaller difference in lattice constant. The interball isotope effect as measured by the group 

of Lieber et al.[249] is 0.45 K above that of the nonanomalous intraball material. This 

anomalous decrease in T c could be accounted for by a 0.01 A decrease in lattice constant 

for the intrinsically annealed interball substituted material. The size of this anomalous 

decrease would be sensitive to materials processing conditions, consistent with the large 

scatter in the experimental results for the carbon isotope effects greater than 0.5 in alkali­

doped c60· 

12.2 Alkali Isotope Effect 

Although the preponderance of evidence points towards electron-phonon mediated su­

perconductivity in the alkali-doped fullerenes, the details of the mechanism remain con­

troversial, with several different phonon-mediated[174, 175, 173, 160, 253, 226] models 

proposed. These models can be subdivided into those that rely exclusively upon on-ball 

molecular phonons[174, 175, 173] and those which incorporate additional modes such as 

librons,[226] translational modes[254] or alkali-C6o optic phonons[160, 253]. For any su­

perconducting mechanism, we can write Tc ex: Mi-a:; where Mi is mass of a given atomic 

constituent and O:i is the isotope shift exponent for this atomic species. Although these 

models generally predict a carbon isotope effect, a substantial intercalant isotope effect 

is expected only for models with a significant alkali-C6o optic phonon contribution to the 

pairing mechanism. An accurate measurement of the alkali atom isotope effect would 

therefore provide a useful constraint on the mechanism of superconductivity. 

To date, isotope effect measurements on A3C60 (A=K, Rb) consist of a single rubid­

ium experiment[255) and several carbon isotope effect experiments[225, 224, 246,247, 256). 

There is uncertainty concerning the intrinsic carbon isotope effect in that a more homoge­

neous carbon isotopic distribution seems to yield a smaller carbon isotope effect[249). The 

most complete substitution to date yields ac = 0.3 ± 0.05 for K3C6o and Rb3C6o[249]. 
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Susceptibility measurements on powder samples of T c have yielded an upper limit on the 

rubidium isotope effect exponent of aRb < 0.2 [255]. Comparing the Tc's of K3C60 and 

Rb3C5o at equal lattice constant does not constitute a valid alkali isotope experiment. 

Since T[ib3 C60 > TcK3c60 at equal lattice constant[154] such an approximation would sug­

gest an inverse isotope effect of rough magnitude O.alkali ::::::: -0.2 ± 0.2. However, this result 

is clouded by the large difference in ionic radii between K and Rb, which could yield a 

change in vibrational dynamics of the same magnitude as that caused by the change in 

alkali mass. Considering the present experimental situation, a greater certainty in aRb 

is desirable in order to narrow the constraints on plausible pairing mechanisms. Burk et 

al. have performed detailed measurements of the effect of rubidium isotope substitution 

on the resistive T c in C60 single crystals doped with 85Rb, 87Rb and natural abundance 

rubidium, naRb[180]. 

Single-crystal C6o samples (typically 1 mm x 1 mm x 0.1 mm) were intercalated with 

rubidium vapor following the technique developed by Xiang et al.[l92]. Since isotopically 

pure elemental rubidium is not commercially available, all rubidium used in this experi­

ment was produced by. extraction of Rb metal from RbCl. Rubidium metal was extracted 

from isotopically enriched RbCl {RbCl @ 99.2% 87Rb, 0.8% 85Rb and RbCl @ 99.8% 85Rb, 

0.2% 87Rb from US Services) and from natural abundance RbCl {RbCl @ 72.2% 85Rb, 

27.8% 87Rb from Aldrich). The Rb metal is liberated by reaction with Ca, which yields 

Rb and CaCh (see reference [180] for details). The procedure differs from that described 

by Ebbesen et al.[255] in that they reacted lithium with RbCl to liberate rubidium, a 

reaction complicated by the higher vapor pressure of Li. 

Fig. 12.1 shows resistance versus temperature data of 85Rb, 87Rb and naRb­

intercalated samples near T c, normalized to the resistance at T=32 K. The resistive tran­

sitions are sharp (for this material), indicating a high degree of homogeneity within a given 

sample. We define T c by the maximum in the derivative of the resistance with. respect 

to temperature. Fig. 12.2 shows ~ for each sample. The data were fitted with a cubic 
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Figure 12.1: Normalized resistance versus temperature near Tc for 85Rb3C60 , 87Rb3C60 

spline, and the maximum of the fit determines T c (parabolic and gaussian fits yield es-

sentially equivalent results). We measured the resistive transition several times, Tc being 

reproducible to within 5 mK for a given sample. We define the width of the transition 

as the separation between the maximum and minimum in the second derivative, yielding 

transition widths from 140 to 180 mK. Although the transition for naRb3C6o appears to 

be slightly narrower, the range of variation in transition width observed in natural abun-

dance samples encompasses the results for the isotopically pure samples. We assign an 

uncertainty in Tc of 0.1 times the transition width. This uncertainty estimate is always 

greater than the reproducibility spread of T c for a given sample; it reflects our estimate 

· of the errors introduced by inhomogeneous broadening of the transition. 

Before presenting the isotopically shifted results, we note that our measurements pro-

vide an accurate determination of Tc in Rb3C60· For naRb3C6o we find Tc=30.82±0.09 K, 

where the uncertainty reflects possible temperature sensor calibration errors. This result 
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Figure 12.2: Derivative with respect to temperature of normalized resistance near Tc for 

85Rb3C5o, 87Rb3C5o and naRb3C50. 
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data to T c ex Mif28 . Dashed line shows T c ex M~2 with proportionality constant chosen 

so that the line passes through the 87Rb3C6o data point. 

is 1-2 K higher than reported susceptibility measurements of Tc[225, 257] and about 0.6 

K higher than previous resistive Tc's[194]. 

Fig. 12.3 displays our results for T c measured in 85Rb3C5o, 87Rb3C5o and naRb3C6o· 

The data are plotted as T c versus average rubidium mass. For comparison we plot the re­

sult for the BCS maximum value of O:Rb = 0.5 normalized to the 87Rb3C5o data point. We 

obtain O:Rb = -0.028±0.036, or equivalently ~Tc = -20±26 mK for 87Rb3C5o-85Rb3C6o 

(the error bars indicate the 65% confidence interval). To within our experimental uncer-

tainty there is no rubidium isotope effect on Tc in Rb3C6o· 

Before discussing the implications of this result for the different pairing mechanisms, we 
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consider an indirect rubidium isotope effect due to a weak dependence of lattice constant on 

Rb mass. Both electronic[190] and phonon-mediated mechanisms are expected to exhibit 

an effect of lattice constant on transition temperature. To estimate this effect, we use the 

experimentally determined lattice constant dependence of Tc, 44 KA -I (257, 154]. The 

isotopic. shift in lattice constant can be estimated from the fractional change in crystal 

isotopic mass ~_:, the bulk modulus B, the phonon mode energies Ei and Griineisen 

constants /i,[258] 

{12.2) 

We treat the C6o molecule as a single entity, yielding four "atoms" per unit cell. The 

relevant phonon frequencies are the intermolecular translational and Rb-C6o optic modes, 

with frequencies in the range 50-300 K. An upper limit on the Griineisen constants can be 

estimated from the pressure dependence of the bulk modulus,[154] which provides infor-

mation about the hardening of the intermolecular modes with pressure. These estimates 

yield ~a :::::: 0.5 - 2.0 x 10-4 A for 87Rb3C6o-+85Rb3C6o, which translates into an increase 

· in T c of 2-9 mK. The entire range of this estimate falls within two standard deviations 

of the experimental result for aRb, indicating that the null experimental result is robust 
. \ 

under consideration of isotopic shifts in lattice constant. 

In addition to increasing the lattice constant, the substitution of 85Rb for 87Rb 

could harden the librational potential, reducing a possible librational contribution to the · 

electron-phonon coupling. Such an effect can be estimated from the dependence of the 

librational mode frequency upon the size of the alkali atom[259]. The substitution of Rb 

for K increases the librational frequency by 8 K. The steric effects of this substitution 

also increase the lattice constant by 0.15A. The 87Rb-+85Rb substitution increases lattice 

constant by 0.5-2.0 x 10-4 A, implying a tiny increase in librational mode frequency on 

the order of 10-2 K, a negligible effect. 

A model of superconductivity in Rb3C6o incorporating both on-ball carbon phonons 
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and Rb-C6o optic modes would predict a direct rubidium isotope effect due to isotopic shift 

in phonon frequency. The present experiment places limits on the relative contributions 

of rubidium modes within such a model. First we obtain a simple analytic constraint on 

the relative contribution of rubidiuii1 modes to the electron-phonon coupling. We assume 

that T c depends on atomic mass only through the mass dependence of the average phonon 

frequency, 

1 dIn Tc d ln wlo; 
a· = - -:-:--~~~~ 

' 2 dlnwz09 dlnMi ' 
(12.3) . 

where wz09 in the case of discrete phonon frequencies is defined by 

"' 6l.Inwn Wlog = eL....n >. , (12.4) 

with An the electron-phonon coupling constant to the mode with frequency Wn and A 

is the total coupling constant. The logarithmic frequency average is the most accurate 

single-frequency approximation for the full spectrum of electron-phonon coupling. Using 

the McMillan formula for Tc[2] with a spectrum ofpure carbon and Rb-C60 optic modes 

we obtain 

aRb 3MRb ARb 
ac +aRb Meff = T' (12.5) 

where Met/= !Mc~:J:b is an estimate of the effective optic mode mass. The contribution c60 Rb 

to ac from the weak Rb mass dependence of the carbon modes has been neglected. An 

upper bound on aRb yields an upper bound on the fractional contribution of ARb to A. 

Using the minimal reported value for ac (ac = 0.3(225]) and two standard deviations 

above the measured aRb as an upper bound on aRb (aRb < 0.044), this simple analytic 

model yields ~ < 0.17. Adjusting for a possible lattice-constant induced isotope shift of 

2-9 mK would decrease this bound by roughly 10%. 

In order to examine the effects of the detailed frequency distribution of the electron-

phonon coupling we performed numerical solutions of the Eliashberg equations for various 

electron-phonon coupling spectra. The on-ball carbon phonons were modelled following the 

results of three theoretical calculations[174, 175, 173]. The frequency of the Rb-C60 optic 



12.2. ALKALI ISOTOPE EFFECT 

2 1 

0.8 
1.5 

0.6 

A.1 
0.4 

0.5 
0.2 

QI....L.-JU-1-I...J.....L...J.....L..J....L....L...L..J.....L...J....L...J....I.....1-I....L.-JU-.J....J-lQ 

50 100 150 

CJRb 

200 250 300 

(K) 

Figure 12.4: Total electron-phonon coupling strength >. (upper curves, solid symbols) and 

upper bound on the ratio of Rb-C6o optic mode coupling strength to total coupling ~ 

(lower curves, open symbols) as a function of alkali mode frequency for three theoretical 

models of the on-ball electron-phonon coupling. The values of ~ plotted yield O:Rb = 

0.044, the experimentally determined upper bound "on the rubidium isotope effect. Dotted 

curves refer to the model of Varma et al.[174] which has the fitted 'value IL* = 0.16. Solid 

curves refer to the model of Schluter et al.[173] (IL* = 0.17). Dashed curves refer to the 

model of Jishi et al.[175] (IL* = 0.23). 
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modes was varied from 50 to 300 K. Neutron scattering results suggest mode frequencies 

on the order of 200 K,(260] while theoretical treatments(160, 261] place these modes in 

the range from 50 to 200 K. For each electron-phonon coupling spectrum the values of 

A, p,* and Am were varied to match experimental constraints of a:c = 0.3, T c=30.8 and 

am < 0.044. The results are presented in Fig. 12.4. The three models yield different 

values of A and p,* while the limits on ~ remain essentially unchanged. As the frequency 

of the alkali modes increases from 50 K to 300 K, the limit on ~ decreases from 0.33 

to 0.08 for all three spectra. Although the contribution of the alkali modes to Tc is at 

best small, the contribution of a low frequency alkali mode to A can be substantial. In 

contrast to the analytic model, the ratio ~ is only weakly dependent on a:c. Decreasing 

(increasing) the carbon isotope effect exponent to 0.2 (0.4) results in significantly increased 

(decreased) values of A and p,*, but the ratio~ decreases (increases) by only 10%. This 

reduced sensitivity to a:c is due to the great disparity between the alkali and carbon 

phonon frequencies. Modifying the electron-phonon coupling spectrum by the addition of 

substantial coupling to a low-frequency librational mode at 50 K(262] yields a limit on ~ 

roughly 10% larger. In all cases, removal of the maximal allowed alkali-C6o optic mode 

contribution to the coupling function results in a reduction in T c of 1-4 K, indicating that 

the alkali modes make at most a minor contribution to Tc. 

Although the estimated uncertainty in T c yields a value of isotope exponent consistent 

with a:m = 0, the actual data points hint at a small inverse isotope effect. An· inverse 

isotope effect is well known for hydrogen at the octahedral interstitial sites of the fcc 

Pd lattice;(17] it has been interpreted within the framework of anharmonic phonons(71]. 

Anharmonicity of the alkali vibration in the A3C6o system could conceivably depress or 

·even invert the isotopic signature of the alkali modes, weakening the limit on ~-

In summary, precise measurements of T c in isotopically substituted Rb3C6o yield a 

null result for the rubidium isotope effect in Rb3C6o· This result puts stringent limits on 

the possible contributions of alkali-C6o optic phonons to the superconductivity. 
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