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Abstract of the Dissertation

Bayesian Modeling of Viral Phylodynamics

by

Mandev Singh Gill

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2016

Professor Marc Adam Suchard, Chair

Viral phylodynamics is the study of how immunodynamics, epidemiology, and evolutionary

processes act and interact to shape viral phylogenies. We build upon the foundation of

Bayesian phylogenetic inference to develop statistical tools to address phylodynamic prob-

lems. First, we present a flexible nonparametric Bayesian framework to infer the effective

population size as a function of time directly from molecular sequence data. The effective

population size is an abstract quantity that characterizes a population’s genetic diversity,

and it is of fundamental interest in population genetics, conservation biology, and infectious

disease epidemiology. Our model is based on the coalescent, a stochastic process that relates

phylogenies to population dynamics. We enforce temporal smoothing of inferred trajectories

via a Gaussian Markov random field prior. Notably, our framework incorporates data from

multiple genetic loci to achieve improved inference of population dynamics. Next, we turn

to phylogenetic trait evolution. Modeling the processes giving rise to nonsequence traits as-

sociated with molecular sequence data is crucial in comparative studies of phenotypic traits

as well as in phylogeographic analyses that reconstruct the spatiotemporal spread of viruses.

A popular, yet restrictive approach to modeling such processes is Brownian diffusion along

a phylogeny. We relax a major restriction by introducing a nontrivial estimable drift vector

into the Brownian diffusion. Importantly, we implement a relaxed drift process that per-

mits the drift vector to vary along the phylogeny. We showcase improved trait evolutionary

inference in three viral examples. Finally, we return to effective population size inference

and extend our framework to include covariates, enabling modeling of associations between
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past population dynamics and external factors. We apply our model to four examples. We

reconstruct the demographic history of raccoon rabies in North America and find a signif-

icant association with the spatiotemporal spread of the outbreak. Next, we examine the

effective population size trajectory of the DENV-4 virus in Puerto Rico along with viral

isolate count data and find similar cyclic patterns. We compare the population history of

the HIV-1 CRF02 AG clade in Cameroon with HIV incidence and prevalence data and find

that the effective population size is more reflective of incidence rate. Finally, we explore

the hypothesis that the population dynamics of musk ox during the Late Quaternary period

were related to climate change. Incorporating covariates into the demographic inference

framework enables the modeling of associations between the effective population size and

covariates while accounting for uncertainty in population histories. Furthermore, it can lead

to more precise estimates of population dynamics.
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CHAPTER 1

Introduction

The term “phylodynamics” was introduced in 2004 by Grenfell et al. (2004) to describe “the

melding of immunodynamics, epidemiology, and evolutionary biology” required to “clarify

how pathogen genetic variation, modulated by host immunity, transmission bottlenecks, and

epidemic dynamics, determines the wide variety of pathogen phylogenies observed at scales

that range from individual host to population.” At the heart of this “melding” is the devel-

opment of novel mathematical models and statistical inference frameworks. We contribute

to this development by creating new statistical methods to enhance our understanding of

infectious disease dynamics. In particular, we connect phylogenetic information to genetic

diversity over time, the spatiotemporal spread of viruses, and phenotypic trait evolution.

All of our methodology is developed in the context of Bayesian phylogenetics. In Chapter

2, we review basic concepts in Bayesian phylogenetics in order to elucidate the foundations

that we build upon. First, we review continuous-time Markov chain models for molecular

character mutation on phylogenies. Then we discuss models for evolutionary rate variation

among different DNA sequence sites, as well as different approaches to model evolutionary

rate variation among lineages. We also outline the basic Bayesian modeling framework for

phylogenetic inference.

Effective population size is fundamental in population genetics and characterizes genetic

diversity. To infer past population dynamics from molecular sequence data, coalescent-based

models have been developed for Bayesian nonparametric estimation of effective population

size over time. Among the most successful is a Gaussian Markov random field (GMRF) model

for a single gene locus. In Chapter 3, we present a generalization of the GMRF model that

allows for the analysis of multilocus sequence data. Using simulated data, we demonstrate
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the improved performance of our method to recover true population trajectories and the time

to the most recent common ancestor (TMRCA). We analyze a multilocus alignment of HIV-1

CRF02 AG gene sequences sampled from Cameroon. Our results are consistent with HIV

prevalence data and uncover some aspects of the population history that go undetected in

Bayesian parametric estimation. Finally, we recover an older and more reconcilable TMRCA

for a classic ancient DNA data set. Chapter 3 is joint work with Philippe Lemey, Nuno Faria,

Andrew Rambaut, Beth Shapiro, and Marc Suchard and has been published in Molecular

Biology and Evolution (Gill et al., 2013).

Understanding the processes that give rise to quantitative characters associated with

molecular sequence data remains an important issue in statistical phylogenetics. Examples

of such characters include geographic coordinates in the context of phylogeography and

phenotypic traits in the context of comparative studies. A popular approach is to model

the evolution of continuously varying traits as a Brownian diffusion process acting on a

phylogenetic tree. However, standard Brownian diffusion is quite restrictive and may not

accurately characterize certain trait evolutionary processes. In Chapter 4, we relax one of

the major restrictions of standard Brownian diffusion by incorporating a nontrivial estimable

drift into the process. We introduce a relaxed drift diffusion model for the evolution of

multivariate continuously varying traits along a phylogenetic tree via Brownian diffusion with

drift. Notably, the relaxed drift model accommodates branch-specific variation of drift rates

while preserving model identifiability. Furthermore, our development of a computationally

efficient dynamic programming approach to compute the data likelihood enables scaling of

our method to large data sets frequently encountered in viral evolution. We implement the

relaxed drift model in a novel Bayesian inference framework to simultaneously reconstruct the

evolutionary histories of molecular sequence data and associated multivariate continuous trait

data, and provide tools to visualize evolutionary reconstructions. We illustrate the utility of

our approach in three viral examples. In the first two, we examine the spatiotemporal spread

of HIV-1 in central Africa and the West Nile virus in North America and show that a relaxed

drift approach uncovers a clearer, more detailed picture of the dynamics of viral dispersal

than standard Brownian diffusion. Finally, we study antigenic evolution in the context of
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HIV-1 resistance to broadly neutralizing antibodies PG9, PG16 and VRC01. Our analysis

reveals evidence of a continuous drift of HIV-1 at the population level towards enhanced

resistance to VRC01 neutralization over the course of the epidemic. Chapter 4 is joint work

with Philippe Lemey, Lam Si Tung Ho, Guy Baele, and Marc Suchard.

In Chapter 5, we return to effective population size inference and extend the nonparamet-

ric Bayesian framework from Chapter 3. Despite considerable progress, there remains a need

for further development of statistical tools to understand past population dynamics. A major

goal of demographic reconstruction is understanding the association between the effective

population size and potential explanatory factors. We introduce a flexible model that incor-

porates external time-varying covariates into the inference framework. We demonstrate the

utility of such an approach on four examples. First, we find striking similarities between the

demographic and spatial expansion of raccoon rabies in North America. Second, we compare

and contrast the cyclic epidemiological dynamics of dengue in Puerto Rico with patterns of

viral diversity. Third, we examine the population history of the HIV-1 CRF02 AG clade in

Cameroon and find that the effective population size is more reflective of HIV incidence than

prevalence. Finally, we explore the relationship between musk ox population dynamics and

climate change during the Late Quaternary period. Our extension to the Skygrid proves to

be a useful framework for ascertaining the association between effective population size and

external covariates while accounting for demographic uncertainty. Furthermore, we show

that incorporating covariates into the demographic inference framework can improve esti-

mates of effective population size trajectories, increasing precision and uncovering patterns

in the population history that integrate the covariate data in addition to the sequence data.

Chapter 5 is joint work with Philippe Lemey, Shannon Bennett, Roman Biek, and Marc

Suchard.

Finally, we outline some future research directions in Chapter 6. In Chapter 3, we observe

that combining data from several effectively unlinked genetic loci with the same demographic

history enables improved inference of population trajectories. Similarly, combining data from

multiple populations can improve inference. Demographic histories of different populations

may exhibit similar, although not identical, trends over time. We outline a hierarchical

3



modeling approach to share information about population dynamics among the different

populations without strictly enforcing that they follow the same demographic history. We

also discuss how hierarchical modeling can build upon the framework of Chapter 5 to pool

information from several similar data sets to model associations with covariates.
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CHAPTER 2

Bayesian Phylogenetic Inference

2.1 Introduction

We develop all of our methodology in the context of Bayesian phylogenetics. This section

provides a brief overview of the standard Bayesian phylogenetic inference framework.

2.2 Phylogenetic Trees and Evolution

A phylogenetic tree τ is a directed graph that describes the evolutionary relationship between

a group of, say, N taxa and their common ancestors. The taxa can represent species, genes,

populations, or even individuals (Yang, 2006). The graph consists of edges and vertices,

which are referred to as branches and nodes, respectively, in the context of a tree. Lengths of

branches (edge weights) represent elapsed evolutionary time between the nodes they connect.

The tree has N nodes of degree 1, known as tips or leaves, corresponding to the N taxa.

The tips are assigned indices i = 1, . . . , N . There are N −2 nodes of degree 3 called internal

nodes, with indices i = N + 1, . . . , 2N − 2. Finally, there one node of degree 1 called the

root, with index 2N − 1. Internal nodes represent common ancestors of two or more taxa,

while the root node represents the most recent common ancestor of all N taxa. Associated

with each tip i of the phylogenetic tree is an observed nucleotide sequence of, say, length

L: Si = (Si1, . . . , SiL). Additionally, we posit unobserved sequences SN+1, . . . ,S2N−1 at the

N − 1 root and internal nodes. The characters Sij take on values in the set {A,G,C, T},

whose elements correspond to the DNA bases adenine (A), guanine (G), cytosine (C) and

thymine (T). In RNA, uracil (U) is substituted for thymine.
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The evolutionary process that generates the observed sequence data is typically mod-

eled using continuous-time Markov chain (CTMC) models for nucleotide substitution. Many

models make the following simplifying assumptions: all sites evolve according to the same

tree, all sites evolve independently, all sites evolve according to the same stochastic pro-

cess, and, conditional on the character at a given site of an internal node, evolution pro-

ceeds independently at the site along the two branches descending from the node (Lange,

2002). The character at a given site j mutates according to an instantaneous rate ma-

trix Q, and transition probabilities P(t) can be obtained through matrix exponentiation as

P(t) = exp(tQ). The matrix P(t) contains the probabilities of starting at a given nucleotide

at time 0 and ending up at another nucleotide at time t. Equilibrium base frequencies are de-

noted πA, πG, πC , πT . Let bik denote a hypothetical branch connecting nodes i and k (where

node k is a direct descendant of node i), let tik represent the length of a branch bik, and let

B denote the set of all branches that exist in the phylogenetic tree τ . Then the likelihood of

a particular set of sequences being observed on the nodes of the tree can be expressed as

P (S1, . . . ,S2N−1|τ,Q) =
∏
bik∈B

L∏
j=1

πS(2N−1),j
PSijSkj

(tik). (2.1)

The likelihood of observed sequences S1, . . . ,SN can be obtained by summing over unknown

ancestral sequences:

P (S1, . . . ,SN |τ,Q) =
∑
SN+1

. . .
∑

S2N−1

∏
bik∈B

L∏
j=1

πS(2N−1),j
PSijSkj

(tik). (2.2)

Computation of the likelihood (2.2) is made feasible through Felsenstein’s tree-pruning al-

gorithm (Felsenstein, 1981).

2.3 Nucleotide Substitution Models

There has been considerable development of different nucleotide substitution models, defined

by different parameterizations of the CTMC instantaneous rate matrix Q. The substitution

models differ in biological assumptions about the mutation process and the number of free

parameters that must be estimated. In our discussion of substitution models, the elements
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of Q are

Q =


− QAG QAC QAT

QGA − QGC QGT

QCA QCG − QCT

QTA QTG QTC −

 , (2.3)

where QAG, for instance, represents the instantaneous rate of substitution from nucleotide

A to nucleotide G. The other nondiagonal elements of Q are defined analogously. Here, the

character “-” in each row is determined by the requirement that the elements of each row

must sum to 0.

2.3.1 The JC69 Model

The JC69 model (Jukes and Cantor, 1969) is one of the simplest models of nucleotide substi-

tution. It assumes equal base frequencies πA = πG = πC = πT = 1
4
, and that every nucleotide

has the same rate λ of mutating into any other nucleotide. Its substitution rate matrix is

Q =


− λ λ λ

λ − λ λ

λ λ − λ

λ λ λ −

 , (2.4)

yielding the transition probabilities

Pij(t) =


1
4

+ 3
4
e−

4
3
t if i = j

1
4
− 1

4
e−

4
3
t if i 6= j.

(2.5)

2.3.2 The K80 Model

The DNA bases A and G are called purines, and the bases C and T are known as pyrim-

idines. Substitutions from purine-to-purine and pyrimidine-to-pyrimidine are called transi-

tions, while substitutions from purine-to-pyrimidine and pyrimidine-to-purine are said to be

transversions. Transitions typically occur more frequently than transversions in real data,
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and Kimura (1980) proposed a substitution model that allows for differing evolutionary rates

of α for transitions and β for transversions. Like the JC69 model, however, the K80 model

still assumes identical base frequencies πA = πG = πC = πT = 1
4
. Under these assumptions,

we have

Q =


− α β β

α − β β

β β − α

β β α −

 . (2.6)

Alternatively, κ can denote the transition/transversion ratio, and the rate of transversions

can be set to 1, giving us

Q =


− κ 1 1

κ − 1 1

1 1 − κ

1 1 κ −

 . (2.7)

The transition probabilities are

Pij(t) =


1
4

+ 1
4
e−4βt + 1

2
e−2(α+β)t if i = j

1
4

+ 1
4
e−4βt − 1

2
e−2(α+β)t if substitution is transition

1
4
− 1

4
e−4βt if substitution is transversion.

(2.8)

2.3.3 The F81 Model

Assuming equal base frequencies is unrealistic for virtually every real data set (Yang, 2006).

Felsenstein (1981) extended the JC69 model by allowing unequal base frequencies, subject

to the constraints that each base frequency is nonnegative, and the frequencies sum to 1.

The rate matrix of the F81 model is

Q =


− πG πC πT

πA − πC πT

πA πG − πT

πA πG πC −

 . (2.9)
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The transition probabilities are

Pij(t) =


e−βt + πj(1− e−βt) if i = j

πj(1− e−βt) if i 6= j,

(2.10)

where

β =
1

1− π2
A − π2

C − π2
G − π2

T

. (2.11)

2.3.4 The HKY85 and TN93 Models

The HKY85 model (Hasegawa et al., 1985) combines the distinction between transitions and

transversions of the K80 model with the allowance of unequal base frequencies found in the

F81 model. The rate matrix is parameterized as follows:

Q =


− απG βπC βπT

απA − βπC βπT

βπA βπG − απT

βπA βπG απC −

 . (2.12)

The TN93 model (Tamura and Nei, 1993) goes one step further than the HKY85 model by

allowing different rates for the two different types of transitions (A ←→ G and C ←→ T).

All transversions are assumed to occur at the same rate. The TN93 rate matrix is

Q =


− α1πG βπC βπT

α1πA − βπC βπT

βπA βπG − α2πT

βπA βπG α2πC −

 . (2.13)

Notably, setting α1 = α2 = α yields the HKY85 model (and additionally fixing πA = πG =

πC = πT = 1
4

gives us the K80 model). Setting α1 = α2 = α = β yields the F81 model.

2.3.5 The GTR Model

A CTMC is defined to be time-reversible if

πiqij = πjqji, for all i 6= j. (2.14)
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This is known as the detailed balance condition and means that the “flow” from state i to

state j, πiqij, is equal to the flow in the opposite direction. There is no biological reason

to expect the substitution process to satisfy time-reversibility, so it is simply a mathemat-

ical convenience (Yang, 2006). All of the nucleotide substitution models we have discussed

are time-reversible, and it is natural to seek the most general such model. An equivalent

condition for time-reversibility is that the rate matrix can be expressed as the product of a

symmetric matrix and a diagonal matrix. Under such a parameterization, the diagonals in

the diagonal matrix will specify the base equilibrium frequencies. Thus, the most general

time-reversible substitution model is defined by the rate matrix

Q =


− a b c

a − d e

b d − f

c e f −




πA

πG

πC

πT

 (2.15)

=


− aπG bπC cπT

aπA − dπC eπT

bπA dπG − fπT

cπA eπG fπC −

 . (2.16)

The resulting substitution model is known as the general time-reversible (GTR) model

(Tavare, 1986).

2.4 Variation of Substitution Rates Across Sites

The mutation models described in Section 2.3 all assume that different sites in a sequence

evolve according to the same process and at the same rate. This is an unrealistic assumption,

and failure to account for rate variation can greatly impact a phylogenetic analysis (Yang,

1996; Sullivan and Swofford, 2001). Adopting a unique rate for every site leads to over-

parameterization, and a more sensible approach is to model rate variation with a statistical

distribution (Yang, 2006).
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The discrete-rates model of Yang (1995) posits that the sites are a finite mixture of, say,

K classes. The rate at any site takes a value rk with probability pk, k = 1, . . . , K, and the rk

and pk are estimated via maximum likelihood from the data. Hasegawa et al. (1985) adopt

a special case of this model assuming two classes: a class of invariable sites with rate r0 = 0

and another class of sites with constant rate r1.

A popular approach using a continuous distribution is to assume that the rate r for

any site is a random variable drawn from a gamma distribution. However, algorithms for

computing the likelihood under a continous-rates model can be slow (Yang, 1993). Another

strategy is to use the discrete-rates model (Yang, 1995) as an approximation to the continous

gamma-distributed model, and is called the discrete-gamma model (Yang, 1994).

2.5 Molecular Clocks

The molecular clock hypothesis posits that the rate of DNA sequence evolution is constant

over time and among evolutionary lineages. The molecular clock provides a simple way

of dating evolutionary events, with the evolutionary distance between sequences increasing

linearly with the time of divergence. (Here, the evolutionary distance is defined as the

expected number of nucleotide substitutions per site.) However, while the molecular clock

assumption can hold for very closely related species, it is usually inappropriate in more

distant comparisons (Yang, 2006).

A number of models have been developed to accommodate variation in evolutionary rates

from lineage to lineage. Local clock models (Hasegawa et al., 1989; Rambaut and Bromham,

1998; Yoder and Yang, 2000) permit different user-specified regions of a phylogenetic tree

to have different evolutionary rates. However, assigning branches to different rate groups

can be difficult without strong a priori knowledge. Furthermore, they do not account for

uncertainty in positions of rate changes between local clock regions, and they do not account

for uncertainty in the phylogenetic tree topology. Drummond and Suchard (2010) overcome

such difficulties by developing a random local clock model that permits multiple evolutionary

rates on a tree, but estimates the number of different rates and positions of rate changes from
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the data. Furthermore, their random local clock accounts for phylogenetic tree uncertainty.

Importantly, the random local clock model favors a small number of data-driven rate changes

as opposed to numerous small or smoothly changing events.

An alternative to local clock models are “relaxed clock” models (Thorne et al., 1998;

Aris-Brosou and Yang, 2002; Drummond et al., 2006). Thorne et al. (1998) and Aris-Brosou

and Yang (2002) permit evolutionary rate variation among lineages in an autocorrelated

manner, with the rate on each branch being drawn a priori from a distribution whose mean

is a function of the evolutionary rate on the parent branch. Drummond et al. (2006) adopt a

hierarchical approach under which the rate on each branch of the tree is drawn independently

and identically from an underlying rate distribution.

2.6 Bayesian Inference

Let θ denote the phylogenetic parameters (which, in the simplest case, include the phy-

logenetic tree τ and mutation process rate matrix Q), and let S = (S1, . . . ,SN) denote

the observed sequence data. In Section 2.2, we observed the construction of the likelihood

P (S|τ,Q). Maximum likelihood techniques are popular and exploit efficient algorithms to

obtain point estimates (Felsenstein, 1981). However, parameter confidence interval estimates

require computationally expensive bootstrapping techniques (Felsenstein, 1985a). Bayesian

approaches offer an alternative, enabling direct measures of parameters of interest on a prob-

ability scale that is easy to interpret. Furthermore, Bayesian modeling allows prior biological

knowledge to be incorporated into the inference framework. The Bayesian framework also

makes it possible to quantify the impact of prior information on parameter estimates and

their uncertainties (Drummond et al., 2002). On the other hand, Bayesian approaches can

also be computationally onerous (though somewhat less so than bootstrapping under likeli-

hood (Yang, 2006)), and the elicitation of appropriate prior distributions can be difficult.

The posterior distribution of phylogenetic parameters θ can be computed through Bayes’
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theorem:

P (θ|S) =
P (S|θ)P (θ)

P (S)
. (2.17)

Here, P (S|θ) is the data likelihood developed in Section 2.2. P (θ) is the prior distribu-

tion of the phylogenetic parameters, quantifying our a priori beliefs about θ, and P (S) is

the marginal likelihood of the sequence data. Prior choices for the parameters of Q vary

depending on the exact substitution model, with gamma and Dirichlet distributions com-

monly employed. A popular prior distribution for the phylogenetic tree is the birth-death

prior (Rannala and Yang, 1996). This prior models trees as a forward-time process with

new lineages arising through splits that occur with a birth rate λ, and with lineages going

extinct at a death rate µ. A different class of popular phylogenetic tree priors are based

on coalescent processes (Kingman, 1982b,a) that reconstruct genealogies from contemporary

samples by proceeding backwards in time and merging lineages, with waiting times between

such mergers being exponentially distributed. Coalescent tree priors are discussed in detail

in Chapters 3 and 5.

Computation of the posterior distribution P (θ|S) requires the integration

P (S) =

∫
P (S|θ)P (θ)dθ, (2.18)

which is analytically intractable. Fortunately, Markov chain Monte Carlo (MCMC) algo-

rithms afford an alternative path to estimate the posterior, only requiring evaluation of

P (S|θ)P (θ). MCMC methods generate a dependent sample θ1, . . . ,θN from the posterior

distribution P (θ|S). In particular, θ1, . . . ,θN form an ergodic discrete-time Marko chain

with equilibrium distribution p(θ|S). Because the chain is guaranteed to converge to the

equilibrium distribution, the states of the chain after a given number of steps can be used

a sample from the posterior and used to compute summary statistics. The most common

approach to construct such a chain is the Metropolis-Hastings algorithm (Metropolis et al.,

1953; Hastings, 1970). Given current state θ(n), a new state θ∗ is proposed according to a
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proposal distribution Q(θ∗|θ(n)). The new state is accepted θ(n+1) = θ∗ with probability

α(θ(n),θ∗) = min

[
1,

Q(θ(n)|θ∗)P (θ∗|S)

Q(θ∗|θ(n))P (θ(n)|S)

]
. (2.19)

If the proposed new state is not accepted, then θ(n+1) = θ(n). Finding a suitable proposal

density that ensures sufficient mixing in the target distribution can be challenging and is of

central importance in construction of MCMC algorithms.
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CHAPTER 3

Improving Bayesian Population Dynamics Inference: a

Coalescent-Based Model for Multiple Loci

3.1 Introduction

Coalescent theory has become a cornerstone of computational population genetics. First in-

troduced by Kingman (1982b), the coalescent is a stochastic process that generates genealo-

gies relating a random sample of individuals arising from a classic forward-time population

model (such as the Fisher-Wright model). The basic assumptions on such an idealized popu-

lation are a constant population size, no selection or migration, nonoverlapping generations,

and an equal propensity among individuals to produce offspring.

Researchers have extended coalescent theory to accomodate a range of relaxed assump-

tions about the population of interest, including a variable population size (Griffiths and

Tavaré, 1994; Donnelly and Tavaré, 1995), and serially-sampled data (Rodrigo and Felsen-

stein, 1999). Notably, coalescent-based inference methods enable estimation of population

genetic parameters from a fixed genealogy and, because genealogical shapes leave their im-

prints in the genomes of sampled individuals, directly from molecular sequence data (Hein

et al., 2005).

One parameter of great scientific interest is the effective population size over time (often

called the demographic model or demographic function). The effective population size is an

abstract quantity that corresponds to the population size under an idealized model of repro-

duction. The census population size can be recovered from the effective population size by

appropriate scaling. The utility of the effective population size is that it provides a measure
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of genetic diversity and its fluctuations over time, and acts as a “common denominator”,

allowing researchers to compare populations arising from different reproductive models. As

recent examples, Campos et al. (2010) reconstruct the demographic history of musk ox from

ancient DNA sequences to examine the cause of the reduction in their mitochondrial diver-

sity, Rambaut et al. (2008) uncover trends of genetic diversity of the influenza A virus and

compare them to the seasonal occurence of influenza, and Faria et al. (2012) explore past

population dynamics of HIV-1 CRF02 AG gene sequences sampled in Cameroon.

Computational biologists and statisticians have posited a number of coalescent-based

models to infer population dynamics across time. Many of these models (Kuhner et al.,

1998; Drummond et al., 2002) characterize the effective population size over time using sim-

ple parametric functions (examples of such scenarios include constant size, exponentially

growing, or logistically growing populations). This approach is advantageous in that there

are relatively few parameters to be estimated, and hypothesis testing is convenient. How-

ever, a priori parametric functions may not accurately characterize important aspects of the

population history of a given sample, and finding an appropriate parametric model can be

difficult and time consuming (Baele et al., 2012a). Accordingly, nonparametric approaches

have become popular in recent years. These approaches typically center around approxi-

mating the population history with a piecewise constant or linear function. Some of the

first nonparametric models (Pybus et al., 2000; Strimmer and Pybus, 2001) provide fast

but noisy estimation of population trajectories from a fixed genealogy. More recent models

(Drummond et al., 2005; Opgen-Rhein et al., 2005; Minin et al., 2008) estimate population

trajectories jointly, along with genealogies and mutational parameters, directly from sequence

data in a Bayesian framework. These models differ primarily by the priors they place on the

effective population size, and the choice of prior influences not only the estimated effective

population size trajectory but also the estimated genealogy (in particular, the time of the

most recent common ancestor). Opgen-Rhein et al. (2005) and Drummond et al. (2005) use

multiple change-point models to estimate past population dynamics. The latter model is

called the Bayesian Skyline, and Heled and Drummond (2008) have developed an extension

called the Extended Bayesian Skyline Plot (EBSP) model that incorporates data from mul-
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tiple unlinked genetic loci. The model proposed by Minin et al. (2008), called the Skyride,

exploits a Gaussian Markov random field (GMRF) prior to achieve temporal smoothing.

Here, we present a novel Bayesian nonparametric model, named the Skygrid, to esti-

mate effective population size trajectories. Like the Skyride, we parameterize the effective

population size as a piecewise constant function and employ a GMRF prior to smooth the

trajectory. However, while the Skyride allows the estimated trajectory to change at coa-

lescent times, our improved method does so at pre-specified fixed points in real time. This

grants the user extra flexibility and provides a natural framework to extend the model in

the future to incorporate covariate values. Furthermore, this distinction enables the Sky-

grid’s GMRF prior to be independent of the genealogy, which has important implications

for estimation of the time to the most recent common ancestor. Another departure from the

Skyride, and a major advantage of our model, is the ability to base the estimation on data

from multiple unlinked genetic loci. Data from effectively unlinked loci are rapidly becoming

the norm in the era of next-generation sequencing. Through simulation, we demonstrate that

increasing the number of loci improves estimation of past population dynamics in terms of

both bias and precision. We also compare the performance of the Skygrid with the EBSP in

two different simulation scenarios and find that the Skygrid compares favorably. The limited

number of scenarios prevents us from a comprehensive comparison of the models, but we can

still conclude that the Skygrid is a competitive alternative to the EBSP. We also show the

improvement of our model over the existing Skyride and Bayesian Skyline models in terms of

estimation of the time to the most recent common ancestor for single locus data sets arising

from three different demographic models. We analyze a multilocus data set of CRF02 AG

gene sequences sampled in Cameroon and demonstrate that our nonparametric approach

is able to recover characteristics of the sample’s population history that are undetected by

existing parametric models.
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3.2 New Approaches

The Skygrid is a Bayesian nonparametric model that estimates Ne(t), the effective population

size over time, directly from a sample of multilocus molecular sequence data. Here, t = 0

is the most recent sampling time and the time t increases into the past. Thus, Ne(0) is

the effective population size at the most recent sampling time and Ne(t) is the effective

population size t time units prior to that. We estimate the effective population size trajectory

as a piecewise constant function that changes values at pre-specified times called grid points.

The user is allowed to specify the number of grid points M and a cutoff value K. The

grid points are typically equally spaced between times t = 0 and t = K. The estimated

trajectory is constant between grid points and constant for all times further into the past

than the cutoff value K, and the values it assumes come in the form of a vector of length

M+1. To smooth the trajectory, we place a GMRF prior on the vector of effective population

sizes. The effective population size is estimated jointly along with mutation parameters, a

GMRF precision parameter, and genealogies representing the ancestries of samples at the

different genetic loci. We highly recommend reading the Methods section for further details

before proceeding.

3.3 Results

3.3.1 Simulation Studies

We assess the performance of our model in recovering population dynamics in a series of

simulation studies. In all our analyses, we transform the effective population size by taking

the natural logarithm. To generate a synthetic data set, we first simulate a genealogy

assuming one of following demographic models:

1. Constant population size: logNe(t) = 1

2. Exponential growth: logNe(t) = log 150− t
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3. Exponential growth followed by a crash:

logNe(t) =

 log 150− t if t > 1.5

log(7.4681) + t if t ∈ [0, 1.5]
(3.1)

In these models, we measure time in expected mutations per site. The genealogy has 30 tips

sampled at time t = 0. Next, we use a molecular sequence simulator available in BEAST

to generate sequence data on the tips of the genealogy. We assume a molecular clock under

the HKY85 CTMC model (Hasegawa et al., 1985) with a transition/transversion rate ratio

fixed to 4.0. To simulate a data set with n unlinked loci, we repeat this process n times. We

consider data sets with 1, 2, 5 and 10 loci.

We analyze all data sets using the Skygrid model with 29 grid points and a cutoff value

of 10. This way, the vector of effective population sizes has length of 30, equal to the number

of individuals sampled in the data set. Furthermore, the cutoff value is greater than the root

heights of typical genealogies generated by the coalescent under the aforementioned demo-

graphic scenarios. This goes towards ensuring that we capture as much of the population

trajectory as possible given the data at hand.

Figure 3.1 illustrates the results of estimating the effective population size trajectories

of constant size populations. The bold lines in the plots correspond to posterior medians

and 95% Bayesian credibility intervals (BCIs) are shown as gray shaded areas. The dashed

lines represent the true population trajectories. The model does a reasonably good job of

recovering the true effective population size trajectory. In each plot, the BCIs increase as we

move from the present time to the past. This is representative of the fact that, for constant

populations, coalescent events become increasingly rare as we move away from the tips of

the genealogy and towards the root. In other words, there are typically fewer data points

(coalescent events) to inform the estimation near the root of the tree. We also see that

the width of the BCI region decreases as more loci are incorporated into the analysis. The

shrinkage is most dramatic as we go further back in time where data are scarce. This is due

to the fact that increasing the number of loci is a very effective way of providing precious

extra information in that time frame, and it illustrates a major advantage of performing a

multilocus analysis.
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Figure 3.1: Constant population size simulation. We present plots of posterior medians (solid

black lines) and 95% Bayesian credibility intervals (gray shading) of the effective population

size Ne(t) based on data sets with 1, 2, 5 and 10 loci. The true population size trajectories

are depicted by dashed lines. Here and in all subsequent plots of effective population sizes,

we use the log transformation of the population size axis.
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Figure 3.2 shows the results under the exponential growth demographic model. As is the

case with the constant demographic model, including data from additional loci leads to more

precise esimation. Note that in each plot, following the trajectory from right to left (from

present to past), the posterior median curve is very close to the true effective population

size until it reaches a certain point, after which the curve follows a constant trajectory. In

each plot, the posterior median becomes constant around the time of the greatest of the

root heights of the coalescent trees which are used to generate the data. For instance, the

greatest root height of the trees used to generate the 10-loci data set is 6.07. This flattening

occurs because, beyond the greatest root height, the estimated effective population size is

primarily informed by the prior rather than the non-existent data. It is important when

drawing inferences to take note of the estimated root height to get an idea of where the

trajectories are informative and where they are not.

Figure 3.3 depicts results in the case of populations that undergo a period of exponential

growth followed by a period of exponential decline. As in the exponential growth case, the

estimated trajectory is constant (and uninformative) during the time frame preceding the

greatest root height of the trees used to generate the data. We do not accurately recover the

overall trend of the demographic history in the one locus plot. While it does show a clear

period of growth, the decline is rather mild and the time of transition from growth to decline

is imprecise and occurs before the actual transition time. However, the remaining plots show

that we infer with greater accuracy the transition time and the rates of growth and decline as

we incorporate more loci into the analysis. These findings illustrate that important aspects

of a population’s demographic history may go undetected in a standard one locus analysis,

but that increasing the number of loci can recover them.

Let N̂(t) denote the estimated posterior median effective population size, and N̂2.5(t) and

N̂97.5(t) the 2.5 and 97.5 percent quantiles of the estimated posterior effective population size,

respectively. To provide a comparative summary of the performance of our model for data

sets with varying numbers of loci, we use the percent error and size, which are defined as

follows:
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Figure 3.2: Exponential growth simulation. See Figure 3.1 for the legend explanation. The

times of divergence between the estimated trajectories in solid black lines and the true

trajectories depicted by dashed lines correspond approximately to the greatest root heights

of the trees used to generate the data sets and illustrate the importance of the estimated

root height in understanding the range over which the plots are informative.
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Figure 3.3: Simulation for a population that experiences exponential growth followed by

a decline. See Figure 1 for the legend explanation. As in Figure 3.2, the trajectories are

constant (and not informative) during time range (−10,−7) which precedes the greatest root

height of the trees used to generate the data sets. The plots illustrate the improvement in

correctly recovering past population trends by incorporating data from additional loci.
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Percent Error = 100× 1

Rmax

∫ R

0

|N̂(t)−Ne(t)|
Ne(t)

dt (3.2)

and

Size =
1

Rmax

∫ R

0

|N̂97.5(t)− N̂2.5(t)|
Ne(t)

dt. (3.3)

Here, R is the maximum of the mean estimated root heights for a given data set and Rmax

is the root height of the tallest tree used to generate the data set. We use R as the upper

limit in the integrals because the maximum root height provides an indication of how far

back in time the data are informative. Dividing by Rmax adjusts the metrics to ensure they

provide measures of bias and variance that are not inflated for data sets that are informative

for longer time spans.

Our results based on 100 simulated data sets are summarized in Table 3.1. We report

relative percent error, which we obtain by dividing the mean percent error of 100 simulated

data sets for a given number of loci by the mean percent error of 100 simulated one-locus

data sets. We also report the relative size, which is defined analogously.

Under all three demographic models, the size and percent error decrease as the number

of loci increases. In other words, multilocus data improve estimation in terms of both bias

and precision.

To compare the Skygrid with the EBSP, we analyze the same simulated datasets gener-

ated for the Skygrid performance analysis using the EBSP. We compare these two models

since they are, to our knowledge, the only coalescent-based nonparametric Bayesian models

that infer population dynamics from multilocus data. In Table 3.2, we report the relative

percent error and size, where we define the relative value of each metric as the mean value

over 100 simulations based on EBSP analysis divided by the mean value over 100 simulations

based on the Skygrid analysis. The Skygrid almost always outperforms the EBSP by a wide

margin in terms of percent error. The EBSP analyses generally have smaller sizes, but in

light of the much greater percent error, this extra “precision” is not especially meaningful.

Indeed, an investigation of 95% BCI regions and the proportion of the true trajectory that

24



Constant Exponential Crash

Relative Relative Relative

Loci Percent Error Size Percent Error Size Percent Error Size

1 1.00 1.00 1.00 1.00 1.00 1.00

2 0.89 0.31 0.75 0.59 0.80 0.68

5 0.69 0.16 0.57 0.38 0.71 0.25

10 0.55 0.13 0.46 0.27 0.69 0.19

Table 3.1: Improvement of Skygrid performance with additional loci. Percent error and size,

relative to estimates for one locus data sets, in simulations under the demographic scenarios

of constant population size, exponential growth and exponential growth followed by a crash.

Constant Exponential Crash

Relative Relative Relative

Loci Percent Error Size Percent Error Size Percent Error Size

1 2.88 0.76 1.23 0.32 0.97 0.20

2 2.94 1.07 1.66 0.50 1.28 0.47

5 2.28 0.93 1.90 0.58 1.26 0.73

10 1.45 0.62 2.41 0.63 1.19 0.76

Table 3.2: Performance of Extended Bayesian Skyline Plot (EBSP) model relative to Sky-

grid. Percent error and size based on EBSP analyses, relative to estimates based on Skygrid

analyses, in simulations under the demographic scenarios of constant population size, expo-

nential growth and exponential growth followed by a crash.
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each BCI region covers reveals that the Skygrid outperforms the EBSP three-fold for the

exponentially growing populations and by 6-19% for the constant size populations. The

Skygrid thus emerges as a better overall choice in common situations comparable to our

simulation set-up.

3.3.2 Performance and Mixing

In all simulation studies, we simulate MCMC chains of length set to 20 million steps and

sub-sample the chain every 1000 states, after discarding the first 10% as burn-in. To confirm

sufficient mixing within the MCMC chain, we examine the effective sample size (ESS) scores

of the model parameters and note that all ESS scores for effective population size parameters

are over 1000.

The inclusion of data from additional loci adds to the complexity of the model and in-

creases the run time necessary to achieve sufficient mixing. To investigate the computational

cost of increasing the number of loci in a Skygrid analysis, we examine the ESS scores per

unit time for effective population size parameters. We conduct all analyses on a 2.93 Ghz

Intel Core 2 Duo processor with 4 GB of RAM. ESS per minute for data sets with 1, 2, 5 and

10 loci have respective ranges of 126.9− 493.1, 124.8− 271.5, 69.2− 245.7 and 41.3− 137.4

across all effective sample size parameters. These findings suggest that, while increasing the

number of loci in a Skygrid analysis necessitates longer run times, the marginal cost is not

especially high. For instance, a ten-fold increase in the number of loci does not require a

ten-fold increase to achieve the same ESS. The feasibility of Skygrid analyses of data sets

with large numbers of loci is encouraging in light of the increasing availability of multilocus

data sets and the improvements they confer upon inference of past population dynamics.

3.3.3 Choice of Cutoff Values and Grid Points

Because it is up to the user to specify the cutoff value K and number of grid points M ,

it is natural to wonder how this choice will influence inference. A natural desired feature

of the cutoff value is that it be sufficiently greater than the root height of the unobserved
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coalescent process, thereby allowing the analysis to capture as much information about the

population dynamics as the data allow. An initial choice of a cutoff value can be informed by

prior knowledge or a time frame of scientific interest. Otherwise, we recommend performing

a preliminary analysis and examining the estimated root height to determine the need to

possibly adjust the cutoff.

To investigate the sensitivity of the estimated root height to different choices of cutoff

values, we consider a 100-taxa data set simulated under an exponential growth demographic

model with demographic function logNe(t) = log 150 − t
10

. We assume a molecular clock

under the HKY85 CTMC model (Hasegawa et al., 1985) with a transition/transversion rate

ratio fixed to 4.0. The true root height of the coalescent tree used to generate the data is

27.1. We estimate the root height under our model using cutoff values of 2, 4, 6, . . . , 28. We

adjust the number of grid points in each case so that the grid points remain 0.2 units apart.

The results are summarized in Figure 3.4. The black dots represent posterior mean root

height estimates and are connected by a dotted line, while the true root height is marked by

a dashed line. The shaded gray rectangles show the coverage of the 95% BCI for each cutoff

value.

As we see, increasing the cutoff value generally leads to more precise and less biased

estimates of the root height. Since low cutoff values force the estimated population size to

be constant for the bulk of the demographic history, this illustrates the advantage, when

estimating the root height, of using a flexible model that allows the population trajectory

to change over time. At the same time, the posterior mean estimated root heights and 95%

BCIs using relatively low cutoff values are not especially far off from the estimates found

using a cutoff value greater than the true root height. This is convenient because because

it allows the user to make an informative adjustment of the cutoff value for a subsequent

analysis if the current cutoff value turns out to be too low. In our example, low cutoff values

lead to overestimates of the root height because constant size populations generally have

greater root heights than exponentially growing populations.

In our analysis of cutoff values, we observe another nice feature of the Skygrid, in addition

to the generally low root height estimate sensitivity: the choice of cutoff value does not have
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Figure 3.4: Root height estimate sensitivity. Here we compare the estimated root height

for a simulated exponential growth data set using different cutoff values. The black dots

represent posterior mean root height estimates, and the shaded gray rectangles represent the

95% Bayesian credibility intervals. The dashed line indicates the true root height of 27.1.
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any notable impact on the trajectory of the estimated effective population size prior to the

cutoff value.

With respect to the number of grid points, it is advisable to specify enough points at

different times to capture any possible population trends. Our default suggestion is to specify

one less grid point than the number of taxa (so that the length of the population size vector

will be the same as the number of taxa) and space grid points evenly. This spacing gives us

an equal opportunity to detect trends at different times, and the resolution coincides in a

rough sense with the amount of available data. However, a major advantage of our model is

the ability to set grid points at any desired time. The user has the flexibility, for instance,

to concentrate grid points in time intervals in which the data are more informative or in

regions in which prior beliefs suggest rapid changes.

3.3.4 Estimation of Time to Most Recent Common Ancestor

It is often of interest to estimate the time to the most recent common ancestor (TMRCA),

also known as the root height, from genetic sequence data. While the Skygrid is in a

sense a generalization of the Skyride, the Skyride’s GMRF prior conditions on the genealogy

whereas the Skygrid’s does not, and this can affect TMRCA estimation. We wish to compare

the performance of the Skygrid, Skyride and Bayesian Skyline models in estimating the

TMRCA from one-locus data sets. We consider the one-locus case because the Skyride is

not equipped analyze multilocus data sets. We conduct a series of simulations under three

different demographic scenarios. First, a constant population with demographic function

logNe(t) = 1, and second, an exponentially growing population with demographic function

logNe(t) = log 150−t. The third demographic scenario is a four-epoch piecewise exponential

model motivated by the Beringian bison data set discussed below.

To analyze a data set of 152 mtDNA control region sequences from ancient bison in

Beringia (Siberia, Alaska, and north-western Canada) and central North America, Shapiro

et al. (2004) implement a coalesecent-based two-epoch parametric demographic model in

BEAST. The model is characterized by two phases of exponential growth at different rates,
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Frequentist

Model Demographic Percent Error Size Coverage

Skyride Constant 3.99 0.77 89

Skyline Constant 3.69 0.79 94

Skygrid Constant 3.66 0.79 92

Skyride Exponential 0.99 0.26 92

Skyline Exponential 1.02 0.26 91

Skygrid Exponential 0.99 0.26 94

Skyride Beringian bison 69.79 24621.74 1

Skyline Beringian bison 9.90 77742.94 96

Skygrid Beringian bison 9.29 74634.97 96

Table 3.3: Estimation of time to most recent common ancestor. Size is measured in years

for Ancient DNA demographic and in substitutions per site for other demographic models.

Here, Skyline refers to the Bayesian Skyline.
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and a transition time between the phases. Their analysis suggests an initial phase of expo-

nential growth followed by a period of exponential decline, with a transition time around

32-43 ka BP (where 1 ka BP is 1000 years before present). The estimated TMRCA has a

posterior mean of 136 ka BP with a 95% BCI of (111 ka BP, 164 ka BP).

We analyze the same data using the Skyride as well as our Skygrid model (with 150 grid

points and a cutoff of 150 ka BP). Both analyses suggest a period of sustained population

growth, peaking at about 35-45 ka BP, followed by a period of decline bottoming out around

10 ka BP, and then a post-bottleneck recovery. The post-bottleneck recovery, which is not

identified by the two-epoch parametric model, is also observed in a nonparametric analysis

by Drummond et al. (2005) using the Bayesian Skyline. While all of the nonparametric

analyses uncover similar demographic histories, the same cannot be said for estimating the

TMRCA. The Skyride gives us a posterior mean TMRCA of 101.45 ka BP with a 95% BCI

of (87.12 ka BP, 117.5 ka BP), the Bayesian Skyline gives us a posterior mean TMRCA of

133.56 ka BP with a 95% BCI of (103.86 ka BP, 167.63 ka BP), and the Skygrid yields a

posterior mean of 130.39 ka BP with a 95% BCI of (99.99 ka BP, 159.54 ka BP).

The Skygrid and Bayesian Skyline estimates are similar to those of Shapiro et al. (2004),

while the Skyride analysis paints a substantially different picture. The Skyride results do not

agree with the North American fossil record; bison are known to have been present in Alaska

during the last interglacial interval (150-100 ka BP). To further investigate which estimates

are closer to the truth, we test the Skygrid, Bayesian Skyline and Skyride on simulated data

sets that are similar to the bison data set. We generate the data sets using evolutionary

parameter values similar to the estimated values from the bison data set along with a four-

epoch demographic model (which we refer to as the ‘Ancient DNA’ model) that grows and

declines exponentially at approximately the same times and rates as the estimated trajectory

using the Skygrid model on the bison data.

For each of the three demographic scenarios, we simulate 100 one-locus genetic sequence

data sets and estimate the root heights using the three different models. To provide a
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comparative summary of the performance, we define the percent error as follows:

Percent Error = 100× |Estimated Mean TMRCA - True TMRCA|
True TMRCA

. (3.4)

Also, we define the size of each estimate as the length of the 95% BCI. Finally, we monitor

the percentage of BCIs that contain the true root height as a measure of frequentist coverage,

a useful property for inference tools that will be applied to many independent data sources.

Ideally, estimated coverage should approach its nominal level; 0.95 in this case.

The simulation results are presented in Table 3.3. The three different models exhibit simi-

lar performance in the constant and exponential growth demographic scenarios. The Skygrid

performs slightly better than the other two models in the case of exponentially growing pop-

ulations. For the constant population simulations, each of the three performance metrics

identifies a different model as the best, and none of the models dramatically outperforms the

others in any way. In the Ancient DNA demographic scenario, the Skygrid outperforms both

models. The contrast with the Skyride in terms of relative error and frequentist coverage of

the true root height is especially dramatic. For each of the three demographic situations,

the Skygrid model performs as good or better than the Skyride and Bayesian Skyline. Our

simulation studies thus offer support for the Skygrid as the best of the three models for

estimating the TMRCA from populations with a variety of demographic histories.

3.3.5 Population History of HIV-1 CRF02 AG Clade in Cameroon

Circulating recombinant forms (CRFs) are genomes that result from recombination of two or

more different HIV-1 subtypes and that have been found in at least 3 epidemiologically un-

related individuals. CRF02 AG is globally responsible for 7.7% of HIV infections (Hemelaar

et al., 2011) , but HIV/AIDS surveillance studies indicate that it accounts for approximately

60% of infections in Cameroon (Brennan et al., 2008).

Faria et al. (2012) investigate the population dynamics of the CRF02 AG lineage through

a multilocus alignment of 336 gag (HXB2: 1255-1682), pol (HXB2: 4228-5093) and env

(HXB2: 7890-8266) CRF02 AG gene sequences sampled between 1996 and 2004 from blood

donors from Yaounde and Douala (Brennan et al., 2008). Given the high rate of recom-
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bination in HIV, it is common to assume these three genes are unlinked. Following this

assumption, Faria et al. (2012) use BEAST to conduct a multilocus analysis employing a

parametric piecewise constant-logistic demographic tree prior model. Their analysis suggests

a period of exponential growth of the viral effective population size until the mid 1990s at

which point the growth levels off. The estimated origins of the most recent common ances-

tors for the env, gag and pol sequences are, respectively, 1967.6 (1962.4, 1972.4, 95% CI),

1967.6 (1962.5, 1972.5, 95% CI) and 1968.1 (1962.8, 1972.8, 95% CI).

We perform a multilocus Skygrid analysis of the same data with 50 grid points and a cutoff

value of 50 years. Figure 3.5 depicts the resulting estimated posterior median log effective

population size along with estimated HIV prevalence counts in Cameroon from 1990-2004

(UNAIDS/WHO, 2008). Like the parametric multilocus analysis, the Skygrid analysis points

to a period of exponential growth in effective population size from 10-30 years prior to the

most recent sampling time. It also yields similar results regarding the origin of the HIV-1

CRF02 AG clade. The most recent common ancestors for the env, gag and pol sequences

have estimated origins of 1965.2 (1959.6, 1970.1, 95% BCI), 1967.3 (1962.8, 1971.3, 95% BCI)

and 1969.3 (1963.1, 1974.1, 95% BCI), respectively. However, in contrast to the parametric

multilocus analysis, the Skygrid analysis suggests a dip in effective population size over

the 5 years prior to the most recent sampling time. This finding is supported by the drop

in HIV-1 prevalence in Cameroon from 2000-2004, but is not detected by the parametric

multilocus analysis due to the a priori constraints on the shape of the effective population

size trajectory imposed by the logistic-constant demographic model prior. It should be noted

that the CRF02 AG population in Cameroon will have some gene flow with the worldwide

population of CRF02 AG, and this is not modeled in our Skygrid analysis or the earlier

parametric analysis. This may account for some of the discordance between the inferred

population sizes and the Cameroon prevalence counts.
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Figure 3.5: Population history of HIV-1 CRF02 AG clade in Cameroon. The curve represents

the estimated median log effective population size estimated from a multilocus alignment

of 336 gag, pol and env sequences sampled between 1996 and 2004. The bars represent

estimated HIV prevalence counts in Cameroon.
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3.3.6 Prior Sensitivity

The GMRF smoothing prior we place on the vector γ of log effective population sizes informs

our model about the smoothness of the trajectory. The precision parameter τ governs the

level of smoothness. There is usually little a priori knowledge regarding the smoothness

of the effective population size trajectory, and in all of our examples we assign τ a rela-

tively uninformative gamma prior. To investigate the sensitivity of our results to different

hyperprior parameter values, we follow the suggestion of Minin et al. (2008) and analyze

the Beringian bison data set with five different values of a: 0.001, 0.002, 0.005, 0.01, and

0.1, leaving b unchanged. These choices correspond to increasing prior means of 1, 2, 5, 10

and 100, respectively. Table 3.4 presents the estimated posterior means and 95% BCIs of τ .

The results demonstrate that the posterior distribution of τ is robust to alterations of the

hyperprior parameter a. Moreover, they suggest that the data contain sufficient information

to estimate τ .

Prior Posterior

Mean Mean 95% BCI

1 5.27 (0.58, 11.82)

2 5.37 (0.63, 11.60)

5 5.19 (0.50, 11.42)

10 5.12 (0.59, 11.68)

100 5.40 (0.76, 12.50)

Table 3.4: GMRF precision sensitivity to prior. Posterior estimates of precision parameter

τ corresponding to different choices of prior mean. We use the Beringian bison data.

3.4 Discussion

The Skygrid is a powerful, flexible new model for nonparametric coalescent-based inference

of past population dynamics from molecular sequence data. It incorporates a Gaussian
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Markov random field smoothing scheme similar to that of the Skyride, and provides smooth

and realistic estimates of demographic histories. Like the Skyride, the Skygrid model does a

fairly good job of recovering essential features of simulated data based on standard parametric

coalescent models.

However, the Skygrid is an improvement over the Skyride in a number of important ways.

It allows for estimation based on multilocus data, yields improved TMRCA estimation, and

it gives the user additional flexibility.

Molecular sequence data sets from effectively unlinked loci are becoming increasingly

common thanks to lower DNA sequencing costs. Accordingly, there is a need for multilo-

cus statistical approaches to reap the benefits. The Skygrid provides estimates of effective

population size trajectories based on samples from several different genetic loci with the

same demographic histories. One of the primary difficulties in coalescent-based approaches

is that most of the coalescent events in the reconstructed genealogy usually occur in a short

time span. During the long periods of time in which few coalescent events occur, there is

not much data to infer the population dynamics. This problem is mitigated to a certain

extent by increasing the sample size, but the additional coalescent events tend to occur in

a small stretch of time. Increasing the number of loci more effectively provides extra in-

formation during the long stretches of time with few coalesecent events (Felsenstein, 2006).

We demonstrate through a series of simulations that incorporating data from additional loci

yields more precise and less biased estimates of past population dynamics. We also note

that multilocus data are especially helpful in improving estimation during time periods for

which single locus data are not very informative.

We compare our Skygrid model to existing multilocus approaches. As seen in the analysis

of HIV-1 CRF02 AG gene sequences sampled from Camaroon, our nonparametric approach

enables detection of a decline in the effective population size that is supported by HIV-

1 prevalence data. This aspect of the population history went unnoticed in a multilocus

analysis employing a parametric constant-logistic demographic tree model prior. The only

other currently available nonparametric Bayesian model that enables estimation of past

population dynamics from multilocus data is the EBSP. We analyze simulated data sets
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with the Skygrid and the EBSP and find that the Skygrid performs more favorably.

Bayesian nonparametric models for inference of population histories typically estimate

genealogies and mutation parameters jointly along with effective population size trajectories.

The different priors placed on the effective population size that distinguish these models can

affect estimation of quantities other than the population history, notably the TMRCA. In

simulation studies to explore TMRCA estimation, we consider data sets generated from a

variety of different parametric demographic scenarios. These include typical constant and

exponential growth demographic models, as well as a more complicated piecewise-exponential

model motivated by a data set of ancient DNA from Beringian bison. Considered along with

the Skyride and Bayesian Skyline models, the Skygrid emerges as the best overall choice for

TMRCA estimation in these examples.

Unlike the Skyride, the Skygrid allows the user to specify the spacing of points where

the effective population size of the estimated trajectory can change. This flexibility can be

especially convenient for future extensions of the model which incorporate covariate values

which must, necessarily, be measured at fixed times. We anticipate that such extensions will

lead to further improvement in estimation of the effective population size over time and, for

instance, enable statistical testing of environmental effects on population histories.

3.5 Methods

3.5.1 Coalescent Background

Coalescent theory was first developed by Kingman (1982b). Considering a random pop-

ulation sample of n individuals arising from a classic Fisher-Wright population model of

constant size Ne, Kingman developed a stochastic process called the coalescent to generate

genealogies relating the sample. The process begins at a sampling time t = 0 and proceeds

backward in time as t increases, successively merging lineages until all lineages have merged.

The merging of lineages is called a coalescent event and there are n − 1 coalescent events

in all. Let tk denote the time of the (n − k) − th coalescent event for k = 1, . . . , n − 1 and
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tn = 0 denote the sampling time. Then for k = 2, . . . , n the waiting time wk = tk−1 − tk is

exponentially distributed with rate k(k−1)
2Ne

.

Griffiths and Tavaré (1994) provide a generalization of the coalescent that allows for

the effective population size Ne = Ne(t) to change over time. Here, Ne(0) is the effective

population size at the sampling time, and Ne(t) is the effective population size t time units

before the sampling time. In this case, the waiting time wk is given by the conditional density

P (wk|tk) =
k(k − 1)

2Ne(wk + tk)
exp

[
−
∫ wk+tk

tk

k(k − 1)

2Ne(t)
dt

]
. (3.5)

Taking the product of such densities yields the joint density of intercoalescent waiting times,

and this fact can be exploited to obtain the probability of observing a particular genealogy

given a demographic function. Here, we consider a piecewise constant demographic function

that changes values at pre-specified times.

3.5.2 Piecewise Constant Demographic Model

We start by assuming there are m known genealogies. Let g = (g1, g2, . . . , gm) be a vector

of genealogies representing the ancestry of populations with the same effective population

size Ne(t), where the time t increases into the past. We assume a priori that the genealogies

are independent given Ne(t). This assumption implies that the genealogies are unlinked

which commonly occurs when researchers select loci from whole genome sequences or when

recombination is very likely, such as between genes in retroviruses. Let M denote the number

of points we desire for a fixed-time grid, and let K be a positive real cutoff value. Then

the temporal grid points x1, ..., xM are x1 = K
M
, x2 = 2× K

M
, . . . , xM = K. Here, we assume

the grid points are equally spaced, but the model easily extends to arbitrarily spaced grid

points.

We estimate the effective population size as a piecewise constant function that changes

values only at grid points. The cutoff value is the time furthest back into the past at which

the effective population size changes. Notice that for all times t ≥ K further into the past

than the cutoff value, Ne(t) = Ne(K). Let θ = (θ1, . . . , θM+1) be the vector of effective

population sizes. Here, Ne(t) = θk for xk−1 ≤ t < xk, k = 1, . . . ,M where it is understood
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that x0 = 0. Also, Ne(t) = θM+1 for t ≥ xM .

To construct the likelihood of genealogy i, let t0i be the most recent sampling time and

tMRCAi
the time of the most recent common ancestor (also referred to as the root height of

genealogy i). Let xαi
denote the smallest grid point greater than at least one sampling time

in the genealogy, and xβi the greatest grid point less than at least one coalescent time. Let

uik = [xk−1, xk], k = αi + 1, . . . , βi, uiαi
= [t0i , xαi

], and ui(βi+1) = [xβi , tMRCAi
]. For each

uik we let tkj, j = 1, . . . , rk, denote the ordered times of the grid points and sampling and

coalescent events in the interval. With each tkj we associate an indicator φkj which takes a

value of 1 in the case of a coalescent event and 0 otherwise. Also, let vkj denote the number of

lineages present in the genealogy in the interval [tkj, tk(j+1)]. Following Griffiths and Tavaré

(1994), the likelihood of observing an interval is

P (uik|θk) =
∏

1≤j<rk:φkj=1

vkj(vkj − 1)

2θk

rk−1∏
j=1

exp

[
−
vkj(vkj − 1)(tk(j+1) − tkj)

2θk

]
(3.6)

for k = αi, . . . , βi + 1.

Let P∗(uik|θk) denote P (uik|θk) except with any factors of the form
vkj(vkj−1)

2θk
replaced by

2(2−1)
2θk

= 1
θk

; this is for the purpose of computing the probability of a genealogy, where the

specific branches of a tree which coalesce matters. Then

P (gi|θ) =

βi+1∏
k=αi

P∗(uik|θk). (3.7)

We introduce some notation that will facilitate the derivation of the Gaussian approxi-

mation in the next section. If cik denotes the number of coalescent events which occur during

interval uik, we can write

P (gi|θ) =

βi+1∏
k=αi

(
1

θk

)cik
exp

[
−SSik

θk

]
, (3.8)

where the SSik are appropriate constants. Rewriting this expression in terms of γk = log(θk),

we arrive at

P (gi|γ) =

βi+1∏
k=αi

e−γkcik exp[−SSike−γk ] =

βi+1∏
k=αi

exp[−γkcik − SSike−γk ]. (3.9)
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Assuming conditional independence of genealogies, the likelihood of the vector g of genealo-

gies is

P (g|γ) =
m∏
i=1

P (gi|γ) (3.10)

=
m∏
i=1

βi+1∏
k=αi

exp[−γkcik − SSike−γk ] (3.11)

= exp

[
M+1∑
k=1

[
−γkck − SSke−γk

]]
(3.12)

where ck =
∑m

i=1 cik and SSk =
∑m

i=1 SSik; here, cik = SSik = 0 if k /∈ [αi, βi + 1].

To incorporate the prior assumption that effective population size changes continuously

over time we put the following Gaussian Markov random field prior on γ:

P (γ|τ) ∝ τM/2 exp

[
−τ

2

M∑
i=1

(γi+1 − γi)2
]
. (3.13)

This prior posits that differences between adjacent elements of γ are normally distributed

with mean 0 and estimable precision τ , drawing motivation from a Brownian diffusion pro-

cess. Let Q be a square matrix of dimension M + 1 with entries Qij = −1 for j = i+ 1 and

j = i− 1, Qii = 2 for i = 2, . . . ,M and Qii = 1 for i = 1,M + 1. Then we can write

P (γ|τ) ∝ τM/2 exp
[
−τ

2
γ′Qγ

]
. (3.14)

Finally, we assign τ a gamma prior:

P (τ) ∝ τa−1e−bτ . (3.15)

This yields the following posterior distribution:

P (γ, τ |g) ∝ P (g|γ)P (γ|τ)P (τ). (3.16)

It should be noted that the GMRF prior does not inform the overall level of the estimated

effective population size, just the smoothness of the trajectory. The degree of smoothness is

determined by the precision τ . Researchers typically do not have any prior knowledge about

the smoothness of the effective population size trajectory, and in such cases it is appropriate

to use relatively uninformative priors. Accordingly, we choose a = b = 0.001 in our examples,

giving τ a prior mean of 1 and variance of 1,000.

40



3.5.3 Markov Chain Monte Carlo Sampling Scheme

We use a block-updating Markov chain Monte Carlo sampling scheme (Knorr-Held and

Rue, 2002) to approximate the posterior given in Equation (3.16). First, consider the full

conditional density

P (γ|τ, g) ∝ P (g|γ)P (γ|τ)

∝ exp

[
M+1∑
k=1

(−γkck − SSke−γk)

]
τM/2 exp

[
−1

2
γ′Qγ

]

= τM/2 exp

[
−1

2
γ′Qγ −

M+1∑
k=1

(γkck + SSke
−γk)

]
. (3.17)

Let hk(γk) = (γkck + SSke
−γk). We can approximate each term hk(γk) by a second-order

Taylor expansion about, say, γ̂k:

hk(γk) ≈ hk(γ̂k) + h′k(γ̂k)(γk − γ̂k) +
1

2
h′′k(γ̂k)(γk − γ̂k)2

= SSke
−γ̂k
(

1

2
γ̂k

2 + γ̂k + 1

)
+
[
ck − SSke−γ̂k − SSke−γ̂k γ̂k

]
γk

+

[
1

2
SSke

−γ̂k
]
γ2k. (3.18)

This yields the following second-order Gaussian approximation:

P (γ|τ, g) ∝ τM/2 exp

[
−1

2
γ′[Q+ Diag(SSke

−γ̂k)]γ

−
M+1∑
k=1

(ck − SSke−γ̂k − SSke−γ̂k γ̂k)γk

]
, (3.19)

where Diag(·) is a diagonal matrix.

Now suppose we have current parameter values (τ (n), γ(n)). First, we generate a candidate

value for the precision, τ ∗ = τ (n)f , where f is drawn from a symmetric proposal distribution

with density P (f) ∝ f + 1
f

defined on [1/F, F ]. The tuning constant F controls the distance

between the proposed and current values of the precision. Next, conditional on τ ∗, we propose

a new state γ∗ using the aforementioned Gaussian approximation to the full conditional

density P (γ(n)|τ ∗, g). In the Gaussian approximation, we center the Taylor expansion about
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a point γ̂ obtained iteratively by the Newton-Raphson method:

γ(n+1) = γ(n) − [d2f(γ(n))]
−1(df(γ(n)))

′ (3.20)

with γ(0) = γ(n). Here,

f(γ) = −1

2
γ′Qγ −

M+1∑
k=1

(γkck + SSke
−γk) (3.21)

and

df(γ) = −γ′Q− [c1 − SS1e
−γ1 , . . . , cM+1 − SSM+1e

−γM+1 ] (3.22)

and

d2f(γ) = −Q− diag[SSke
−γk ]. (3.23)

Finally, the candidate state (τ ∗, γ∗) is accepted or rejected in a Metropolis-Hastings step.

3.5.4 Incorporation of Genealogical Uncertainty

In our development thus far, we have assumed the genealogies g1, . . . , gm are known and

fixed. However, in reality we observe sequence data rather than genealogies. We can think

of the aligned sequence data Y = (Y1, . . . , Ym) as arising from continuous-time Markov chain

(CTMC) models for molecular character substitution that act along the hidden genealogies.

Each CTMC depends on a vector of mutational parameters Qi, that include, for example,

an overall rate multiplier, relative exchange rates among characters and across-site variation

specifications. We let Q = (Q1, . . . , Qm). We then jointly estimate the genealogies, muta-

tional parameters, precision, and vector of effective population sizes through their posterior

distribution

P (g,Q, τ, γ|Y ) ∝

[
m∏
i=1

P (Yi|gi, Qi)

]
P (Q)P (g|γ)P (γ|τ)P (τ). (3.24)

Here, the coalescent acts as a prior for the genealogies, and we assume that Q and g are a

priori independent of each other. Hierarchical models are however available to share infor-

mation about Q among loci without strictly enforcing that they follow the same evolutionary

process (Edo-Matas et al., 2011).
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We achieve joint estimation by integrating the block-updating MCMC scheme for the

fixed-trees case into the software package BEAST (Drummond et al., 2012). We plan to

provide a user-friendly interface to this joint model in the next public release of BEAUti

(Drummond et al., 2012), a graphical user interface application for generating BEAST

model and data description files. In the meantime, we welcome users to exploit this multilo-

cus model in the development branch of the BEAST source code repository (http://beast-

mcmc.googlecode.com/svn/trunk). Examples of XML specification for the model are avail-

able at http://beast.bio.ed.ac.uk.
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CHAPTER 4

A Relaxed Drift Diffusion Model for Phylogenetic

Trait Evolution

4.1 Introduction

Phylogenetic inference has emerged as an important tool for understanding patterns of

molecular sequence variation over time. Along with the increasing availability of molec-

ular sequence data, there has been a growth of associated nonsequence data, underscoring

the need for integrated models of phylogenetic evolution of sequences and traits.

Much of the development of trait evolution models has been motivated by phylogenetic

comparative approaches focusing on phenotypic and ecological traits. A proper understand-

ing of patterns of correlation between traits can be achieved only by accounting for their

shared evolutionary history (Felsenstein, 1985b; Harvey and Pagel, 1991), and comparative

methods focus on relating observed phenotype information to an evolutionary history.

Trait evolution has been tackled from another angle in phylogeographic approaches fo-

cusing on geographic locations rather than phenotypic traits. Evolutionary change is better

understood when accounting for its geographic context, and phylogeographic inference meth-

ods aim to connect the evolutionary and spatial history of a population (Bloomquist et al.,

2010). Phylogeographic techniques have allowed researchers to better understand the origin,

spread, and dynamics of emerging infectious diseases. Examples include the human influenza

A virus (Rambaut et al., 2008; Smith et al., 2009; Lemey et al., 2009b), rabies viruses (Biek

et al., 2007; Seetahal et al., 2013), dengue virus (Bennett et al., 2010; Allicock et al., 2012)

and hepatitis B virus (e.g. Mello et al. (2013)).
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While methods for phenotypic and phylogeographic analyses are developed with different

data in mind, they address similar situations and it is appropriate to speak more generally of

trait evolution. Two key components required for modeling phylogenetic trait evolution are

a method for incorporating phylogenetic information and a model of an evolutionary process

on a phylogeny giving rise to the observed traits. Many popular approaches first reconstruct

a phylogenetic tree and condition inferences pertaining to the trait evolution process on this

fixed tree. However, computational advances, particularly in Markov chain Monte Carlo

(MCMC) sampling techniques, have made it possible to control for phylogenetic uncertainty

(as well as uncertainty in other important model parameters) through integrated models

that jointly estimate parameters of interest (Huelsenbeck and Rannala, 2003; Lemey et al.,

2010).

The evolution of discrete traits has typically been modeled using continuous-time Markov

chains (Felsenstein, 1981; Pagel, 1999; Lemey et al., 2009a), analogous to substitution models

for molecular sequence characters. However, phenotypic and geographic traits are often

continuously distributed, and while meaningful inferences may still be made partitioning

the state space into finite parts, stochastic processes with continuous state spaces represent

a more natural approach. A popular choice to model continous trait evolution along the

lineages of a phylogenetic tree is Brownian diffusion (Felsenstein, 1985b). Lemey et al.

(2010) and Pybus et al. (2012) have recently developed a computationally efficient Brownian

diffusion model for evolution of multivariate traits in a Bayesian framework that integrates

it with models for phylogenetic reconstruction and molecular evolution. Notably, their full

probabilistic approach accounts for uncertainty in the phylogeny, demographic history and

evolutionary parameters. Trait evolution is modeled as a multivariate time-scaled mixture

of Brownian diffusion processes with a zero-mean displacement (or, in other words, neutral

drift) along each branch of the possibly unknown phylogeny.

While adopting a mixture of Brownian diffusion processes is a popular and useful ap-

proach, it may not appropriately describe the evolutionary process in certain situations. Such

scenarios are more realistically modeled by more sophisticated diffusion processes. There

may, for example, be selection toward an optimal trait value. To address this phenomenon,
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there has been considerable development of mean-reverting Ornstein-Uhlenbeck process mod-

els for trait evolution, featuring a stochastic Brownian component along with a deterministic

component (Hansen, 1997; Butler and King, 2004; Bartoszek et al., 2012).

Another trait evolutionary process inadequately modeled by standard Brownian diffusion

is one characterized by directional trends. The need for relaxing the assumption of neutral

drift is highlighted by a number of evolutionary scenarios in which there are apparent trends

in the direction of variations, including antigenic drift in influenza (Bedford et al., 2014),

the evolution of body mass in carnivores (Lartillot and Poujol, 2011), and dispersal patterns

of viral outbreaks (Pybus et al., 2012). To this end, we extend the Bayesian multivariate

Brownian diffusion framework of Lemey et al. (2010) to allow for an unknown estimable

nonzero drift vector for the mean displacement in a computationally efficient manner. While

inclusion of a nontrivial drift represents a promising first step, a constant drift rate may

not hold over an entire evolutionary history. We address this issue by presenting a flexible

relaxed drift model that permits multiple drift rates on a phylogenetic tree. Importantly, we

equip the model with machinery to infer the number of different drift rates supported by the

data as well as the locations of rate changes.

We apply our relaxed drift diffusion methodology to three viral examples of clinical im-

portance. In the first two examples, we illustrate our approach in a phylogeographic setting

by investigating the spatial diffusion of HIV-1 in central Africa and the West Nile virus in

North America. For the third example, we explore antigenic evolution in the context of

enhanced resistance of HIV-1 to broadly neutralizing antibodies over the course of the epi-

demic. We employ model selection techniques to compare the nested drift-neutral, constant

drift and relaxed drift Brownian diffusion models. We demonstrate a better fit by relaxing

the restrictive drift-neutral assumption, and an improved ability to uncover and quantify

key aspects of trait evolution dynamics.
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4.2 Methods

We start by assuming we have a dataset of N aligned molecular sequences X = (X1, . . . ,XN)

along with N associated M -dimensional, continuously varying traits Y = (Y1, . . . ,YN). The

sequence and trait data correspond to the tips of an unknown yet estimable phylogenetic

tree τ . Later we will discuss accounting for phylogenetic uncertainty, modeling the molecular

evolution process giving rise to X and integrating it with a model for trait evolution. But first,

we explore trait evolution on a fixed phylogeny via a diffusion process acting conditionally

independently along its branches.

The N -tipped bifurcating phylogenetic tree τ is a graph with a set of vertices V =

(V1, . . . ,V2N−1) and edge weights T = (t1, . . . , t2N−2). The vertices correspond to nodes of

the tree and, as the length of the tree τ is measured in units of time, T consists of times

corresponding to branch lengths. Each external node Vi for i = 1, . . . , N is of degree 1, with

one parent node Vpa(i) from within the internal or root nodes. Each internal node Vi for

i = N + 1, . . . , 2N − 2 is of degree 3 and the root node V2N−1 is of degree 2. An edge with

weight ti connects Vi to Vpa(i), and we refer to this edge as branch i. In addition to the

observed traits Y1, . . . ,YN at the external nodes, we posit for mathematical convenience

unobserved traits YN+1, . . . ,Y2N−1 at the internal nodes and root.

Brownian diffusion (also known as a Wiener process) is a continuous-time stochastic

process originally developed to model the random motion of a physical particle (Brown,

1828; Wiener, 1958). Formally, a standard multivariate Brownian diffusion process W(t) is

characterized by the following properties: W(0) = 0, the map t 7→ W(t) is almost surely

continuous, W(t) has independent increments and, for 0 ≤ s ≤ t, W(t) −W(s) has a

multivariate normal distribution with mean 0 and variance matrix (t− s)I.

Recent phylogenetic comparative methods (Vrancken et al., 2014; Cybis et al., 2015)

aim to model the correlated evolution between multiple traits and, to this end, employ a

correlated multivariate Brownian diffusion with displacement variance (t − s)P−1. Here, P

is an M ×M infinitesimal precision matrix. The mean of 0 posits a neutral drift so that

the traits do not evolve according to any systematic directional trend. Matrix P determines
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the intensity and correlation of the trait diffusion after controlling for shared evolutionary

history.

The Brownian diffusion process along a phylogeny produces the observed traits by starting

at the root node and proceeding down the branches of τ . The displacement Yi−Ypa(i) along

a branch is multivariate normally distributed, centered at 0 with variance tiP
−1 proportional

to the length of the branch. Therefore, conditioning on the trait value Ypa(i) at the parent

node, we have

Yi|Ypa(i) ∼ N
(
Ypa(i), tiP

−1) . (4.1)

An extension that introduces branch-specific mixing parameters φi into the process that

rescale ti 7→ φiti yields a mixture of Brownian processes and remains popular in phylogeog-

raphy (Lemey et al., 2010).

4.2.1 Drift

To incorporate a directional trend, we adopt a multivariate correlated Brownian diffusion

process with a non-neutral drift. In our drift diffusion process we replace the zero mean

of the increment W(t) −W(s) with the time-scaled mean vector (t − s)µ. The expected

difference between the trait values of a descendant and its ancestor is determined by the

overall drift vector µ and the time elapsed between descendant and ancestor. This yields

what we will call the constant drift model:

Yi|Ypa(i) ∼ N
(
Ypa(i) + tiµ, tiP

−1) . (4.2)

While this approach is useful for modeling general directional trends, it is quite restrictive

in that the drift µ is fixed over the entire phylogeny. We can relax this assumption by

introducing branch-specific drift vectors µi:

Yi|Ypa(i) ∼ N
(
Ypa(i) + tiµi, tiP

−1) (4.3)

for i = 1, . . . , 2N − 2. We assign the root a conjugate prior

Y2N−1 ∼ N
(
µ∗, (φP)−1

)
, (4.4)
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that is relatively uninformative for small values of φ.

Conditioning on the trait value Y2N−1 at the root of τ , the joint distribution of observed

traits Y1, . . . ,YN can be expressed as

vec [Y] |(Y2N−1,P,Vτ ,µτ ) ∼ N
(
Yroot + (T⊗ IM)µτ ,P

−1 ⊗Vτ

)
, (4.5)

building on a similar construction for drift-neutral Brownian diffusion (Felsenstein, 1973;

Freckleton et al., 2002). Here, vec[Y] is the vectorization of the column vectors Y1, . . . ,YN ,

while IM is an M×M identity matrix, and ⊗ is the Kronecker product. Yroot is the NM×1

vector (Yt
2N−1, . . . ,Y

t
2N−1)

t, and µτ is the (2N − 2)M × 1 drift rate vector (µt
1, . . . ,µ

t
2N−2)

t.

The N×N variance matrix Vτ is a deterministic function of τ and represents the contribution

of the phylogenetic tree to the covariance structure. Its diagonal entries Vii are equal to the

distance in time between the tip Vi and the root node V2N−1, and off-diagonal entries Vij

correspond to the distance in time between the root node V2N−1 and the most recent common

ancestor of tips Vi and Vj. Finally, the N × (2N −2) matrix T is defined as follows: Tij = tj,

the length of branch j, if branch j is part of the path from the external node i to the root,

and Tij = 0 otherwise.

Our development thus far clarifies some important issues. First, while it is tempting to

model a unique drift rate on each branch, not all µi are uniquely identifiable in the likelihood

(4.5). Care must be taken to impose necessary restrictions to ensure identifiability while

still permitting sufficient drift rate variation, and we discuss an approach to achieve this

in section 4.2.3. Second, the variance matrix P−1 ⊗ Vτ in (4.5) suggests a computational

order of O(N3M3) to evaluate the density. Repeated evaluation of (4.5) is necessary for

numerical integration in Bayesian modeling, and viral data sets may encompass thousands

of sequences. Fortunately, Pybus et al. (2012) demonstrate that phylogenetic Brownian

diffusion likelihoods can be evaluated in computational order O(NM2) by modeling in terms

of the precision matrix P (as opposed to the variance) and adopting a dynamic programming

approach. In section 4.2.2, we present an adaptation of their algorithm for our drift diffusion

likelihood.
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4.2.2 Multivariate Trait Peeling

Under our Brownian drift diffusion process, the joint distribution of all traits is straightfor-

wardly expressed as the product

P (Y1, . . . ,Y2N−1|τ,P,µ, φ) =

(
2N−2∏
i=1

P (Yi|Ypa(i),P, ti,µi)

)
P (Y2N−1|P,µ∗, φ), (4.6)

where µ = (µ1, . . . ,µ2N−2,µ
∗). The density of the observed traits can then be obtained

by integrating over all possible realizations of the unobserved traits at the root and internal

nodes. We adopt a dynamic programming approach that is analogous to Felsenstein’s prun-

ing method (Felsenstein, 1981) and has been employed for drift-neutral Brownian diffusion

likelihoods (Pybus et al., 2012; Vrancken et al., 2014; Cybis et al., 2015) .

We wish to compute the density

P (Y1, . . . ,YN) =

∫
· · ·
∫
P (Y1, . . . ,Y2N−1)dYN+1 . . . dY2N−1 (4.7)

=

∫
· · ·
∫ (2N−2∏

i=1

P (Yi|Ypa(i))

)
P (Y2N−1)dYN+1 . . . dY2N−1. (4.8)

We have omitted dependence on the parameters τ,P,µ1, . . . ,µ2N−2,µ∗ and φ from the

notation for the sake of clarity. The integration proceeds in a postorder traversal integrating

out one internal node trait at a time. Let {Yi} denote the set of observed trait values

descendant from and including the node Vi, and suppose pa(i) = pa(j) = k. Our traversal

requires computing integrals of the form

P ({Yk}|Ypa(k)) =

∫
P ({Yi}|Yk)P ({Yj}|Yk)P (Yk|Ypa(k))dYk. (4.9)

Because the integrand is proportional to a multivariate normal density, it suffices to keep

track of partial mean vectors mk, partial precision scalars pk and normalizing constants ρk.

Let MVN(.;κ,Λ) denote a multivariate normal probability density function with mean κ

and precision Λ. We can rewrite conditional densities to facilitate integration with respect

to the trait at the parent node:

P (Yi|Yk) = MVN

(
Yi; tiµi + Yk,

1

ti
P

)
(4.10)

= MVN

(
Yi − tiµi; Yk,

1

ti
P

)
. (4.11)
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For i = 1, . . . , N , set normalizing constant ρi = 1, partial mean

mi = Yi − tiµi (4.12)

and partial precision

pi =
1

ti
. (4.13)

Then

P ({Yi}|Yk)P ({Yj}|Yk) = ρiρj ×MVN(mi; Yk, piP)× (4.14)

MVN(mj; Yk, pjP)

= ρk ×MVN(Yk; m
∗
k, (pi + pj)P) (4.15)

where partial unshifted mean

m∗k =
pimi + pjmj

pi + pj
, (4.16)

and normalizing constant

ρk = ρiρj

(
pipj

2π(pi + pj)

)d/2
|P|1/2

exp
[
−pi

2
m′iPmi − pj

2
m′jPmj

]
exp

[
−pi+pj

2
m∗

′
k Pm∗k

] . (4.17)

Multiplying by P (Yk|Ypa(k)) and integrating with respect to Yk, we get

P ({Yk}|Ypa(k)) =

∫
P ({Yi}|Yk)P ({Yj}|Yk)P (Yk|Ypa(k))dYk (4.18)

= ρk ×MVN(Ypa(k); mk, pkP), (4.19)

where

mk = m∗k − tkµk, (4.20)

and

pk =
1

tk + 1
pi+pj

. (4.21)

Integrating out all internal node traits yields

P (Y1, . . . ,YN |Y2N−1) = ρ2N−1 ×MVN(Y2N−1; m
∗
2N−1, (p2N−2 + p2N−3)P). (4.22)

For the final step, we multiply by the conjugate root prior and integrate:

P (Y1, . . . ,YN) =

∫
P (Y1, . . . ,YN |Y2N−1)P (Y2N−1)dY2N−1 (4.23)

= ρ2N−1MVN(m∗2N−1;µ
∗, p2N−1P), (4.24)
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where

p2N−1 =
(p2N−2 + p2N−3)φ

p2N−2 + p2N−3 + φ
. (4.25)

In practice, the algorithm visits each phylogeny node once and computes partial unshifted

means m∗k, partial means mk, partial precisions pk, and normalizing constants ρk.

4.2.3 Identifiability and Relaxed Drift

Ideally, we would like to model a unique drift rate µi on each branch i of the phylogenetic

tree. However, such lax assumptions open the door to misleading inferences. Adopting the

notation of section 4.2.1, there can exist distinct drift rate vectors µτ 6= µ∗τ such that

(T⊗ IM)µτ = (T⊗ IM)µ∗τ , (4.26)

yielding identical trait likelihoods (4.5). The lack of model identifiability presents an obstacle

to uncovering the “true” values of the drift rates that characterize the trait evolution process.

We propose a relaxed drift model that allows for drift rate variation along a phylogenetic

tree while maintaining model identifiability. This is achieved by having branches inherit drift

rates from ancestral branches by default, but allowing a random number of certain types of

rate changes to occur along the tree. We describe the model here and refer readers to the

Appendix for a detailed argument establishing identifiability.

We begin at the unobserved branch leading to the root, or most recent common ancestor

(MRCA), of the phylogenetic tree τ and associate with it the drift µMRCA. Then the two

branches emanating from the root node either both inherit the drift rate µMRCA, or a rate

change occurs and one branch receives a new rate while the other branch assumes the rate

µMRCA. Similarly, whenever a branch splits into two anywhere in τ , either both child branches

assume the same drift rate as the parent branch, or one child branch takes on a new value

while the other inherits its drift from the parent branch. Both child branches taking on

different drift rates than the parent branch is not permitted.

Importantly, rather than fix the type of drift rate transfer that occurs at a given node, we

estimate it from the data. The benefits of this choice are twofold. First, a rate change is not
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forced when the data do not suggest a need for one. Unnecessarily imposing a large number

of unique drift rates to be inferred from limited data can lead to high variance estimates.

Second, in the event of a rate change occurring at a node, only one of the two child branches

can assume a new drift rate. We let the data determine which of the child branches assumes

the new rate. The data may support new rates on both child branches. While our model

may seem too restrictive to accommodate such a scenario at first glance, we are able to infer

the relative support for each child, and it is reflected in the posterior distribution in terms of

the probabilities of the two types of changes. Thus summaries of the posterior distribution

can capture the true nature of drift rate variation in spite of the identifiability restrictions.

It is important to handle the initial drift rate µMRCA with care. One option is to estimate

µMRCA from the data just as with all other drift rates. However, such a choice may not

be ideal for data sets that exhibit relatively long periods of divergence from the MRCA to

the sampling times. There is generally more information about diffusion dynamics during

time periods overlapping with or close to sampling times. Likewise, the further removed

the MRCA is from sampling times, the less information there is about µMRCA and other

drift rates near the MRCA. Because of the interconnectedness of branch drift rates in the

relaxed model, estimates of µMRCA and neighboring drift rates under such circumstances may

primarily reflect information about drift rates on branches near sampling times. To mitigate

misleading inferences of drift near the MRCA, we can adopt an initial drift µMRCA = 0 and

still interprete changes in drift rates across the tree.

To parameterize the model, we associate a ternary variable δk with each internal node

k specifying how it passes on its drift rate to its child nodes. Suppose node k has left child

node i and right child node j. If δk = −1, then µi = µk and node j assumes a new rate

µj = µk + αj. If δk = 1, then node i assumes a new rate µi = µk + αi while µj = µk. If

δk = 0, then no drift rate changes occur and µk = µi = µj. To map the ternary δk variables

to binary indicators γi of rate changes for child branches, we define

γi =
1 + δk

2
|δk|, (4.27)
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and

γj =
1− δk

2
|δk|. (4.28)

Thus

µi = µpa(i) + γiαi. (4.29)

for i = 1, . . . , 2N − 2. Working with the binary γi eases our understanding of the MCMC

procedure to infer drift rate changes, discussed below. However, we parameterize the model

in terms of the ternary δk to facilitate enforcement of the model restrictions.

Of particular interest is the random number K ∈ 0, . . . , N − 1 of rate changes that occur

in τ . We can write K in terms of the δi,

K =
2N−1∑
i=N+1

|δi|, (4.30)

and it provides us with a natural way to think of the vector δ = (δN+1, . . . , δ2N−1). For

example, we can express our prior beliefs about δ in terms of K. A popular prior for count

data is the Poisson distribution

K ∼ Poisson(λ). (4.31)

Here, λ is the expected number of rate changes in τ . In our analyses, we set λ = log(2),

which places 50% prior probability on the hypothesis of no rate changes.

In order to infer the nature of the drift rate transitions that occur at the nodes of

the phylogenetic tree, we borrow ideas from Bayesian stochastic search variable selection

(BSSVS) (George and McCulloch, 1993; Kuo and Mallick, 1998; Chipman et al., 2001).

BSSVS is typically applied to model selection problems in a linear regression setting. In this

framework, we begin with a large number P of potential predictors X1, . . . ,XP and seek

to determine which of them associate linearly with an N -dimensional outcome Y. The full

model with all predictors is

Y = X1β1 + · · ·+ XPβP + ε, (4.32)

where the βi are regression coefficients and ε is a vector of normally distributed error terms

with mean 0. When a particular βi is determined to differ significantly from 0, the cor-

responding Xi helps predict Y. If not, Xi contributes little additional information and is
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fit to be removed from the model by forcing βi = 0. Predictors may be highly correlated,

and deterministic model selection strategies tend not to find the optimal set of predictors

without exploring all possible subsets. There exist 2P such subsets, so exploring all of them

is computationally unfeasible in general and fails completely for P > N .

BSSVS efficiently explores the possible subsets of model predictors by augmenting the

model state space with a vector δ = (δ1, . . . , δP ) of binary indicator variables that dictate

which predictors to include. The indicators δi impose a prior on the regression coefficients

β = (β1, . . . ,βP ) with mean 0 and variance proportional to a P × P diagonal matrix with

its diagonal equal to δ. If δi = 0, then the prior variance on βi shrinks to 0 and forces βi = 0

in the posterior. The joint space (β, δ) is explored simultaneously through MCMC.

We apply BSSVS in our relaxed drift setting to determine the types of drift rate transfers

that occur. We achieve this by exploring the joint space (α, δ) of rate differences between

parent and child branches, and ternary rate change indicators. The δk map to binary indica-

tors γi, as shown in (4.27) and (4.28). We assume that drift rate differences αi = µi−µpa(i)

are a priori independent and normally distributed,

αi ∼ N(0,γiσ
2I). (4.33)

If γi = 0, then the prior variance σ2 on the components of αi shrinks to 0. This forces

αi = 0, and hence µi = µpa(i), in the posterior.

We complete our drift diffusion model specification by assigning the precision matrix P a

Wishart prior with, say, degrees of freedom v and scale matrix V. Importantly, the Wishart

distribution is conjugate to the observed trait likelihood. Indeed, invoking the notation for

partial means and precisions from section 4.2.2, the posterior

P (P|Y1, . . . ,YN) ∝ P (Y1, . . . ,YN |P)P (P) (4.34)

has a Wishart distribution with N + v degrees of freedom and scale matrix(
V−1 + p2N−1(m

∗
2N−1 − µ∗)(m∗2N−1 − µ∗)′

+
2N−1∑
k=N+1

[pimim
′
i + pjmjm

′
j − (pi + pj)m

∗
km
∗′
k ]

)−1
. (4.35)
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Lemey et al. (2010) exploit a similar conjugacy to construct an efficient Gibbs sampler for

P, and our adoption of the Wishart prior conveniently allows us to extend use of the sampler

to our model that now includes a relaxed drift process.

4.2.4 Joint Modeling and Inference

A major strength of our Bayesian framework is that it jointly models sequence and trait

evolution. Adopting a standard phylogenetic approach, we assume the sequence data X

arise from a continuous-time Markov chain (CTMC) model for character evolution acting

along the unobserved phylogenetic tree τ . The CTMC is characterized by a vector Q of mu-

tation parameters that may include, for instance, relative exchange rates among characters,

an overall rate multiplier and across-site variation specifications. The traits Y arise from a

Brownian drift diffusion process acting on τ , governed by parameters Λ. A crucial assump-

tion is that the processes giving rise to the observed sequences and traits are conditionally

independent given the phylogenetic tree τ :

P (X,Y|τ,Q,Λ) = P (X|τ,Q)P (Y|τ,Λ), (4.36)

enabling us to write the joint model posterior distribution as

P (τ,Q,Λ|X,Y) ∝ P (X|τ,Q)P (Y|τ,Λ)P (τ)P (Q)P (Λ). (4.37)

We implement the joint model by integrating our drift diffusion framework for trait

evolution into the Bayesian Evolutionary Analysis Sampling Trees (BEAST) software pack-

age (Drummond et al., 2012). BEAST provides an array of efficient methods for Bayesian

phylogenetic inference, particularly to estimate phylogenies and model molecular sequence

evolution. For the phylogeny τ , we choose from flexible coalescent-based priors that do

not make strong a priori assumptions about the population history (Minin et al., 2008;

Gill et al., 2013). For sequence evolution, we have access to a range of classic substitution

models (Kimura, 1980; Felsenstein, 1981; Hasegawa et al., 1985), gamma distributed rate

heterogeneity among sites (Yang, 1994), and strict and relaxed molecular clock models for

branch rates (Drummond et al., 2006).
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Estimation of the full joint posterior (4.37) is achieved through MCMC sampling (Metropo-

lis et al., 1953; Hastings, 1970). We employ standard Metropolis-Hastings transition kernels

available in BEAST to integrate over the parameter spaces of Q and τ . To sample real-

izations of the drift diffusion precision matrix P, we adapt a Gibbs sampler developed for

drift-neutral Brownian diffusion (Lemey et al., 2010). For the relaxed drift model, we need

transition kernels to explore the space (α, δ) of branch rate differences and ternary rate

change indicators. We propose new rate differences α∗i component-wise through a random

walk transition kernel that adds random values within a specified window size to the current

αi.

For δ, we implement a trit-flip transition kernel that chooses one of the N − 1 ternary

indicators δk uniformly at random and proposes a new state δ∗k assuming one of the two

possible values not equal to δk with equal probability. For example, if δk = 0, then

δ∗k =


−1 with probability 1

2

1 with probability 1
2
.

(4.38)

We have parameterized our prior on δ in terms of the number K of rate changes, and this

parameterization should be retained for the transition kernel in order to ensure the correct

Metropolis-Hastings proposal ratio (Drummond and Suchard, 2010). A proposed increase in

rate changes occurs when we choose a δk with value 0, so

q(K∗ = K + 1|K) =
N − 1−K
N − 1

. (4.39)

If we choose a δk with a nonzero value, we propose the other nonzero value with probability

0.5 (corresponding to K∗ = K), and we propose 0 with probability 0.5 (which means a

decrease in rate changes, K∗ = K − 1). Therefore

q(K∗ = K|K) = q(K∗ = K − 1|K) =
1

2

K

N − 1
. (4.40)

These calculations yield the following proposal ratio for K:

q(K|K∗)
q(K∗|K)

=


1
2

K+1
N−1−K if K∗ = K + 1

1 if K∗ = K

2(N−K)
K

if K∗ = K − 1.

(4.41)
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In addition to the parameters characterizing the trait and sequence evolution processes,

we may wish to make inferences about the posterior distribution of traits at the root and

internal nodes, or at any arbitrary time point in the past. We equip BEAST with the

ability to generate posterior trait realizations at these nodes by implementing a preorder,

tree-traversal algorithm.

A natural choice to summarize the results of a Bayesian phylogenetic analysis is a max-

imum clade credibility (MCC) tree. To form an MCC tree, the posterior sample of trees is

examined to determine posterior clade probabilities, and the tree with the maximum prod-

uct of posterior clade probabilities is the MCC tree. The branches and nodes of MCC trees

can be annotated with inferred drift rates and trait values, along with other quantities of

interest. Annotated MCC trees can be summarised using TreeAnnotator, available as part

of the BEAST distribution, and visualized using FigTree.

4.2.5 Model Selection

We can formally compare the constant and relaxed drift diffusion models through Bayes

factors (BFs). A Bayes factor (Jeffreys, 1935, 1961) compares the fit of two models, M1 and

M0, to observed data (X,Y) by taking the ratio of marginal likelihoods:

BF10 =
P (X,Y|M1)

P (X,Y|M0)
=
P (M1|X,Y)

P (M0|X,Y)

/
P (M1)

P (M0)
. (4.42)

BF10 quantifies the evidence in favor of model M1 over M0. Kass and Raftery (1995) provide

guidelines for assessing the strength of the evidence against M0: BFs between 1 and 3 are

not worth more than a bare mention, while values between 3 and 20 are considered positive

evidence against M0. BFs in the ranges 20-150 and >150 are considered to be strong and

very strong evidence against M0, respectively.

Evaluation of Bayes factors has become a popular approach to model selection in Bayesian

phylogenetics (Sinsheimer et al., 1996; Suchard et al., 2001, 2005). Marginal likelihood esti-

mation can be quite difficult in a phylogenetic context, and stepping-stone sampling estima-

tors have been implemented to address this (Baele et al., 2012a,b). Following the approach

of Drummond and Suchard (2010), however, we are able to straightforwardly compute the
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Bayes factor BFC supporting the constant drift model MC over the relaxed drift model MR.

The model MC is nested within the more general model MR and occurs when K = 0. This

enables us to write

BFC =
P (X,Y|MC)

P (X,Y|MR)
=
P (MC |X,Y)

P (MR|X,Y)

/
P (MC)

P (MR)
(4.43)

=
P (K = 0|X,Y,MR)

1− P (K = 0|X,Y,MR)

/
P (K = 0|MR)

1− P (K = 0|MR)
, (4.44)

requiring only our prior probability of no rate changes under the relaxed drift model, and

the posterior probability of zero rate changes.

4.3 The Spread of HIV-1 in Central Africa

Faria et al. (2014) explore the early spatial expansion and epidemic dynamics of HIV-1 in

central Africa by analyzing sequence data sampled from countries in the Congo River basin.

The authors employ a discrete phylogeographic inference framework (Lemey et al., 2009a)

and show that the pandemic likely originated in Kinshasa (in what is now the Democratic

Republic of Congo) in the 1920s. Furthermore, viral spread to other population centers in

sub-Saharan Africa was aided by a combination of factors, including strong railway networks,

urban growth, and changes in sexual behavior.

We follow up the analysis of Faria et al. (2014) by applying our continuous drift diffusion

approach to one of the data sets analysed in this study. The data set consists of HIV-

1 sequences sampled between 1985-2004 from the Democratic Republic of Congo and the

Republic of Congo and includes 96 sequences from Kinshasa (Kalish et al., 2004; Vidal et al.,

2000, 2005; Yang et al., 2005), 96 sequences from Mbuji-Mayi (Vidal et al., 2000, 2005), 96

from Brazzaville (Bikandou et al., 2004; Niama et al., 2006), 76 from Lubumbashi (Vidal

et al., 2005), 33 from Bwamanda (Vidal et al., 2000), 24 from Likasi (Kita et al., 2004), 23

from Kisangani (Vidal et al., 2005), and 22 sequences from Pointe-Noire (Bikandou et al.,

2000). We reconstruct the spatial dynamics under drift-neutral, constant drift, and relaxed

drift Brownian diffusion on a maximum clade credibility tree estimated from the sequences

and their locations of sampling. The traits in this instance are bivariate longitude and
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No Drift Constant Drift Relaxed Drift

Drift (Lat.) - - -0.09 (-0.11, -0.06) -0.03 (-0.05, -0.01)

Rate Changes (Lat.) - - - - 28.13 (27.0, 29.0)

Variance (Lat.) 0.25 (0.23, 0.27) 0.23 (0.21, 0.25) 0.13 (0.12, 0.14)

Drift (Long.) - - 0.30 (0.26, 0.33) 0.12 (0.08, 0.16)

Rate Changes (Long.) - - - - 1.48 (1.00, 3.00)

Variance (Long.) 0.59 (0.55, 0.64) 0.37 (0.34, 0.40) 0.43 (0.39, 0.45)

Correlation -0.47 (-0.54, -0.40) -0.40 (-0.47, -0.32) -0.84 (-0.87, -0.82)

Table 4.1: Spatiotemporal dynamics of HIV-1 in central Africa. Model comparison of Brow-

nian diffusion with no drift, constant drift Brownian diffusion, and relaxed drift Brownian

diffusion. We report posterior mean estimates along with 95% Bayesian credibility intervals

(BCIs). Drift rates for latitude and longitude coordinates are reported in units of degrees

per year.
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latitude coordinates, with observed traits corresponding to sampling locations. Table 4.1

reports posterior estimates of drift.

Under the constant drift model, we infer a significant longitudinal drift with posterior

mean 0.30 degrees per year and a 95% Bayesian credibility interval (BCI) of (0.26, 0.33), as

well as a significant latitudinal drift with posterior mean of -0.09 degrees per year and BCI

(-0.11, -0.06). Furthermore, for each coordinate the Bayes factor in favor of a constant drift

model over a drift-neutral model is greater than 1,000, indicating a substantially better fit for

the constant drift model. These results imply general eastward and southward trends in the

spread of HIV from the Kinshasa-Brazzaville-Pointe-Noire area to other population centers.

They also reflect the composition of sampling locations: in terms of longitude, a majority

are far to the east of the believed origin while the rest are relatively close to it. Similarly,

nearly 90% of the sequences come from locations south of Kinshasa or from neighboring

locations of similar latitude. On the other hand, the existence of samples from cities north

of Kinshasa, Bwamanda and Kisangani, suggests that diffusion with a northward trend may

more accurately characterize part of the spatial history. We explore this possibility with the

relaxed drift model.

Under the relaxed drift model, there is significant evidence of multiple longitudinal drift

rates. We estimate a posterior mean of 1.48 drift rate changes with BCI (1, 3), and the Bayes

factor in favor of relaxed drift over constant drift is greater than 1,000. The posterior mean

longitudinal drift rate across all branches is 0.12 with BCI (0.08, 0.16). Figure 4.1 shows

the maximum clade credibility tree colored according to drift rates. The tree is essentially

divided up into two clades: one clade with green-colored branches and another with brown-

colored branches. We infer eastward drift rates of 0.18 degrees per year on green branches,

and drift rates close to or equal to 0 on brown branches. Tree nodes in Figure 4.1 are depicted

as circles of different sizes, with the size of each circle being determined by the longitude of

the observed or inferred location corresponding to the node. Larger circles represent more

eastward locations. The observed and inferred longitudes provide better understanding of

the difference in drift rates between the two clades. During the period 1960-2004, there is

generally greater eastward movement along the lineages of the green clade. Although

61



drift(longitude)
0.18

-0 .03
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Figure 4.1: Maximum clade credibility tree for spread of HIV-1 in central Africa. The

posterior mean longitudinal drift is depicted using a color gradient along the branches. Green

indicates an eastward drift while brown signifies drift rates close to or equal to zero. Tree

nodes are depicted as circles of different sizes. The size of each circle is determined by

the longitude of the observed or inferred location corresponding to the node. Larger circles

represent more eastward locations.
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Figure 4.2: Maximum clade credibility tree for spread of HIV-1 in central Africa. The

posterior mean latitudinal drift is depicted using a color gradient along the branches. The

colors range between red and blue, with the former indicating a southward drift and the

latter a northward drift. Tree nodes are depicted as circles of different sizes. The size of

each circle is determined by the longitude of the observed or inferred location corresponding

to the node. Larger circles represent more northward locations.
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the lineages of the brown clade show greater eastward spread during the first half of the

evolutionary history, the drift rates in the two clades are driven by the trends of the second

half of the evolutionary history. The second half accounts for a much greater proportion of

tree branches and, because it overlaps with all sampling times, contains more information

about the spatial diffusion process.

For latitudinal drift, we estimate 28.13 rate changes with BCI (27, 29). Furthermore,

relaxed drift is supported over constant drift with a Bayes factor greater than 1,000. The

overall posterior mean drift rate across all branches is -0.03 with BCI (-0.05, -0.01). Figure

4.2 depicts an annotated maximum clade credibility tree colored according to latitudinal

drift rates. The color gradient ranges from red to black to blue, with red indicating a

southward drift, blue a northward drift, and black a neutral drift. As in Figure 4.1, tree

nodes are depicted as circles of varying sizes, with larger circles representing greater observed

or inferred latitude coordinates. Notably, external branches with positive drift rates lead

to samples from locations north of the origin (Bwamanda and Kisangani), while external

branches with nonpositive drift rates lead to samples from locations with latitudes south of

or similar to the origin.

Importantly, adopting a zero-mean displacement distribution when the diffusion process

is more accurately described with a nontrivial mean can result in inflated displacement

variance rate estimates. (Recall that the displacement variance along a branch of length ti is

tiP
−1, so by “displacement variance rates,” we mean the diagonal elements of the variance

rate matrix P−1.) By incorporating drift into the model, we are able to disentangle the

drift from the variance and uncover a clearer picture of the movement. The variance rate

estimates in Table 4.1 illustrate this point. Including a constant drift reduces the variance

rate of the displacement of the longitude coordinate from 0.59 to 0.37. For the latitude,

on the other hand, the variance rate decreases modestly from 0.25 to 0.23 and the BCIs

of (0.23, 0.27) and (0.21, 0.25) overlap. The lack of an appreciable reduction in variance

rate may be explained by the fact that the apparent northward drift to Bwamanda and

Kisangani remains unaccounted for by inclusion of a constant southward drift rate. Indeed,

by accommodating drift rate changes under the relaxed drift model, the variance rate of the
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latitudinal displacement drops to 0.13 with BCI (0.12, 0.14).

4.4 West Nile Virus

West Nile virus (WNV) is the most important mosquito-transmitted arbovirus now native

to the U.S. Birds are the most common host, although WNV has been known to infect

other animals including humans. About 70-80% of infected humans do not develop any

symptoms, and most of the remaining infections result in fever and other symptoms such as

headaches, body aches, joint pains, vomiting, diarrhea or rash. Fewer than 1% of infected

humans will develop a serious neurologic illness such as encephalitis or meningitis. However,

recovery from neurologic infection can take several months, some neurologic effects can be

permanent, and about 10% of such infections lead to death. Since 1999, WNV has been

responsible for more than 1,500 deaths in the United States. (CDC, 2013).

WNV was first detected in the United States in New York City in August 1999, and is

most closely related to a highly pathogenic WNV lineage isolated in Israel in 1998 (Lanciotti

et al., 1999). Surveillance records of WNV incidence show a wave of infection that spread

westward and reached the west coast by 2004 (CDC, 2013). Thus the spread of WNV in

North America can be naturally modeled as a spatial diffusion process with a directional

trend.

We analyze a data set of 104 WNV complete genome sequences sampled between 1999

and 2008 and isolated from a number of different host and vector species (Pybus et al.,

2012). The sequences were sampled from a wide variety of locations in the United States

and Mexico. We represent the sampling locations as bivariate traits consisting of latitude

and longitude coordinates and conduct a phylogeographic analysis using our Brownian drift

diffusion model. Results are presented in Table 4.2.

We begin by analyzing the data with the constant drift model. For the longitude, the

posterior mean drift rate is -1.77 degrees per year with a 95% BCI of (-3.43, -0.27). This

indicates a significant westward trend in the spread of WNV, consistent with WNV incidence

data. Furthermore, a Bayes factor of 18.23 lends considerable support to the constant drift
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model over the drift-neutral model. For the latitude, we have an estimated posterior mean

drift of -0.25 degrees per year, but the 95% BCI of (-1.05, 0.08) contains zero. Moreover,

the Bayes factor in favor of constant drift over no drift is 0.71. Therefore there is not much

evidence of a significant North-South drift. We check for the possibility of multiple drift

rates under the relaxed drift model. However, the inferred number of rate changes in the

latitudinal drift is 0.63 with BCI (0, 2), and the Bayes factor in favor of relaxed drift over

constant drift is 0.87. Similarly, for the longitude coordinate, we estimate 0.71 rate changes

with BCI (0, 2), and Bayes factor of 1.04. Thus the data do not support relaxed drift over

constant drift.

While inclusion of drift leads to smaller displacement variance rates in our analysis of

HIV-1 dispersal dynamics, Table 4.2 shows that not to be the case for the WNV data. Even

for the longitude coordinate where there is significant evidence of a nontrivial drift, there is

a great deal of BCI overlap in the estimated displacement variance rate for drift-neutral and

constant drift diffusion. This difference can be explained by comparing the magnitude of

the displacement drift relative to the displacement standard deviation in the WNV and HIV

examples. Here, we work with displacement standard deviation rather than displacement

variance in order to make comparisons on the same scale. Recall that the displacement mean

and variance along a branch are both proportional to the branch length. To get an estimate

of the average displacement mean and standard deviation for each example, we use the mean

branch length. The mean branch length is 16.9 years for the HIV data set, and 2.4 years

for the WNV data set. Under constant drift, we get an average longitudinal displacement

mean of 5.07 for the HIV data, and -4.25 for the WNV data. The average longitudinal

displacement standard deviation without drift is 3.25 for the HIV data, and 7.49 for the

WNV data. In the HIV analysis, the average displacement mean with drift is 1.61 times as

much as the average displacement standard deviation without drift. In the case of the WNV,

the absolute value of the average displacement mean with drift is 0.57 times as much as the

average displacement standard deviation without drift. So while the displacement standard

deviation in the drift-neutral HIV analysis is inflated by the hidden drift, the latent drift

represents a much smaller contribution to the drift-neutral displacement standard deviation
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in the WNV analysis.

No Drift Constant Drift

Drift (Lat.) - - -0.25 (-1.05, 0.08)

Variance (Lat.) 6.74 (4.83, 15.81) 6.38 (4.60, 14.61)

Drift (Long.) - - -1.77 (-3.43, -0.27)

Variance (Long.) 23.37 (16.95, 54.04) 20.06 (14.67, 45.52)

Correlation 0.22 (0.03, 0.43) 0.18 (-0.03, 0.36)

Table 4.2: Spatiotemporal dynamics of West Nile virus in North America. Model comparison

of Brownian diffusion with no drift and constant drift Brownian diffusion. We report poste-

rior mean estimates along with 95% BCIs. Drift rates for latitude and longitude coordinates

are reported in units of degrees per year.

4.5 HIV-1 Resistance to Broadly Neutralizing Antibodies

It is widely believed that a successful HIV-1 vaccine will require the elicitation of neutraliz-

ing antibodies (Johnston and Fauci, 2007; Barouch, 2008; Walker and Burton, 2008). Most

neutralizing antibodies are strain-specific and therefore not so attractive for vaccine design

(Weiss et al., 1985; Mascola and Montefiori, 2010). It is important to identify and charac-

terize antibody specificities that are effective against a large number of currently circulating

HIV-1 variants (Burton, 2002, 2004). Several broadly neutralizing monoclonal antibodies

have been recently isolated, including PG9 and PG16 (Walker et al., 2009), and VRC01

(Zhou et al., 2010).

Studies comparing viruses isolated from individuals who seroconverted early in the HIV-1

epidemic to viruses from individuals who seroconverted in recent years have shown that HIV-

1 has become increasingly resistant to antibody neutralization over the course of the epidemic

(Bunnik et al., 2010; Euler et al., 2011; Bouvin-Pley et al., 2013). Bunnik et al. (2010)

demonstrate a decreased sensitivity to polyclonal antibodies and to monoclonal antibody
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Antibody Constant Drift Relaxed Drift

PG9 0.08 (-0.05, 0.19) 0.07 (-0.04, 0.18)

PG16 0.10 (-0.02, 0.20) 0.11 (-0.01, 0.24)

VRC01 0.15 (0.06, 0.24) 0.15 (0.09, 0.21)

Table 4.3: HIV-1 resistance to broadly neutralizing antibodies. Mean drift rates under

constant and relaxed drift models for log(IC50) measurements corresponding to monoclonal

neutralizing antibodies PG9, PG16, and VRC01. Higher log(IC50) values represent lower

sensitivity to antibody neutralization, and positive drift rates indicate a trend over time

toward greater resistance. We report posterior means along with 95% BCIs.

Displacement Variance

Antibody No Drift Constant Drift Relaxed Drift

PG9 0.28 (0.18, 0.57) 0.26 (0.16, 0.53) 0.26 (0.17, 0.55)

PG16 0.26 (0.17, 0.51) 0.23 (0.15, 0.49) 0.23 (0.15, 0.51)

VRC01 0.19 (0.11, 0.43) 0.13 (0.08, 0.27) 0.06 (0.04, 0.14)

Table 4.4: HIV-1 resistance to broadly neutralizing antibodies. Displacement variance rate

under drift-neutral, constant drift and relaxed drift models for log(IC50) measurements cor-

responding to monoclonal neutralizing antibodies PG9, PG16, and VRC01. We report pos-

terior means along with 95% BCIs.
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b12. Euler et al. (2011) extend those findings by investigating whether HIV-1 has adapted

to the neutralization activity of PG9, PG16, and VRC01. Their results show that HIV-1

has become significantly more resistant to neutralization by VRC01 and also provide some

support for increased resistance to neutralization by PG16.

These studies typically do not account for phylogenetic dependence among the sampled

viruses. Vrancken et al. (2014) examine the data set of Euler et al. (2011) with a Brownian

diffusion trait evolution model that simultaneously infers phylogenetic signal, the degree to

which resemblance in traits reflects phylogenetic relatedness. They find moderate phyloge-

netic signal and, through ancestral trait value reconstruction, more evidence of decreased

sensitivity of HIV-1 to VRC01 and PG16 neutralization at the population level.

We follow up on the analysis of Vrancken et al. (2014) by incorporating drift into the

Brownian trait evolution. The data set is comprised of clonal HIV-1 variants from “historic”

and “contemporary” seroconverters with an acute or early subtype B HIV-1 infection. The

14 historic seroconverters have a known seroconversion date between 1985 and 1989, and

the 21 contemporary seroconverters have a seroconversion date between 2003 and 2006. The

percent neutralization is determined by calculating the reduction in p24 production in the

presence of the neutralizing agent compared to the p24 levels in the cultures with virus

only. The trait values of interest are 50% inhibitory concentration (IC50) assay values that

summarize the percent neutralization by antibodies PG9, PG16 and VRC01, measured in

units of µg/ml. We take the log-transform of IC50 values in order to ensure that concentration

values are strictly positive under the diffusion process. Higher log(IC50) values correspond

to greater resistance to antibody neutralization. For viruses with log(IC50) values that fall

outside the tested antibody concentration range, we integrate out the concentration over a

plausible IC50 interval.

First, we analyze the data with the constant drift model (see Table 4.3). The results are

essentially consistent with the findings of Euler et al. (2011). For VRC01, we estimate a

posterior mean drift of 0.15 with 95% BCI (0.06, 0.24), signaling a significant drift toward

higher resistance to VRC01 neutralization. Furthermore, a Bayes factor of 32.33 lends strong

support to a constant drift over no drift. There is not as much evidence of a trend for PG16.

69



On one hand, the posterior probability that the drift rate is positive is 0.953, providing some

corroboration for a decreased sensitivity to PG16 neutralization. However, we infer a mean

drift rate of 0.10 with a 95% BCI of (-0.02, 0.20) that contains zero. Furthermore, the Bayes

factor in favor of constant drift over no drift is just 1.32, showing little support for inclusion

of a drift term. We do not detect a significant drift in the case of PG9: the posterior mean

is 0.08 with 95% BCI (-0.05, 0.19) and the Bayes factor is 1.17.

To take a closer look, we fit the data to the relaxed drift model. Along with branch

specific drift rates, we examine the posterior mean rates over the entire evolutionary history

(see Table 4.3). First, we consider the results for PG9 and PG16. The posterior mean

drift rates are similar to the inferred drift rates under the constant drift model, and their

95% BCIs contain 0. There is little support for any drift rate changes occurring along the

phylogeny. The mean estimated number of rate changes are 0.17 and 0.2 for PG9 and PG16,

respectively, and the Bayes factors in favor of relaxed drift over constant drift are 0.19 and

0.20. Hence there is not much evidence of localized directional trends that differ from the

overall directional trends.

We illustrate the evolutionary pattern for resistance against VRC01 under the relaxed

drift model in Figure 4.3. The branches of the maximum clade credibility tree are colored

according to the inferred branch-specific mean drift rates, and the tree tips are labeled with

subject identifications. We obtain a posterior mean estimate of 1.13 rate changes, with a

posterior probability of 0.88 for exactly one rate change and probability greater than 0.99

for at least one rate change. Furthermore, the Bayes factor in favor of relaxed drift over

constant drift is 359.04, providing very strong support for relaxed drift. As shown in Table

4.4, the displacement variance rate decreases as we move from no drift to a constant drift,

and then to relaxed drift. Figure 4.3 shows a rate change occurring at the common ancestral

node of samples from subjects P001 and P002. Apart from the two branches leading to tips

P001 and P002 (which we refer to as “branch P001” and “branch P002,” respectively), the

branches have essentially identical mean drift rates of about 0.15 with 95% BCI (0.09,0.21).

For the blue-colored branch P001, we have an estimated drift of 2.13 with 95% BCI (0.06,

4.89), and for the red-colored branch P002 the estimated drift is -1.18 with 95% BCI (-4.46,
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0.22). Both estimated drift rates are drastically different from the parent branch rate, and

their BCIs are also much wider. If either subject P001 or P002 is deleted from the data

set, we infer a constant, significant drift rate of 0.15 over the entire evolutionary history.

Notably, we do not infer any drift rate changes after deleting either P001 or P002.

Under the relaxed drift model, situations in which both child branches have drift rates

that differ from the drift rate of the parent branch must be handled with care. In any given

tree in the posterior sample, one of the two branches must inherit its drift rate from the

parent branch. An examination of the posterior distribution of the rate change indicator at

the parent node of tips P001 and P002 reveals that branch P001 inherits the parent branch

drift rate with posterior probability of about 40% and branch P002 inherits the parent rate

with the other 60% probability mass. Thus the posterior drift rate estimate for each of

branches P001 and P002 averages over the cases where it inherits the parent drift rate and

the cases where it differs from the parent rate. While the potentially large departures from

the parent drift rate still come through in the “averaged” posterior estimates, it is of interest

to find out how representative they are of the true drift rates. It is conceivable that the

“inherited” portion of the posterior may bias the estimate, shifting the mean and widening

the BCI. In the case of branch P002, for example, the posterior mass near the parent drift

rate extends the BCI into the positive axis so that it includes zero. It is also conceivable

that the “inherited” part of the posterior represents a part of the distribution that would

show up even without the restrictions of the relaxed drift model.

To elucidate the true nature of the drift rate change that occurs at the parent of tips

P001 and P002, we conduct a follow-up analysis. We introduce a new parameterization of

our drift diffusion model that posits three unique drift rates: one each corresponding to

branches P001 and P002, and another for all remaining branches in the phylogenetic tree.

The results, presented in Table 4.5, are similar to the findings from the relaxed drift model.

Notably, the 95% BCIs for the drift on branches P001 and P002 still contain the range of

credible values for the parent drift rate. There are also some key differences between the two

analyses. The distributions for the drift on branches P001 and P002 are bell-shaped rather

than bimodal, and the 95% BCIs are wider than under the relaxed drift model. Unlike the

71



Figure 4.3: Maximum clade credibility tree depicting evolutionary pattern of HIV-1 resis-

tance to neutralization by antibody VRC01. Subject identifiers corresponding to tree tips

are listed to the right of the tree. The posterior mean drift is depicted using a color gradient

along the branches. Positive drift rates correspond to a trend toward greater resistance to

neutralization. The estimated posterior mean drift rate along the purple colored branches

that make up most of the tree is 0.15. A drift rate change is inferred at the common ancestor

of tips P001 and P002. The red colored branch leading to the tip P002 has an estimated

posterior mean drift of -1.18, and the blue colored branch leading tip P001 has an estimated

posterior mean drift of 2.13. Tree tips and internal nodes are annotated with observed and

inferred log(IC50) values.
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relaxed drift model estimate, the 95% BCI for the drift on branch P001 contains 0. However,

it has a 0.95 posterior probability of being positive, so there is still some support that the

drift on branch P001 is statistically significant.

An examination of the maximum clade credibility tree in Figure 4.3, annotated with

observed log(IC50) values and inferred ancestral trait realizations, clarifies why we infer a drift

rate change. Consider node triples consisting of two nodes and their common parent node.

The triple of tips P001, P002 and their common ancestor features a relatively large difference

in trait values at the child nodes as well as relatively short branch lengths connecting nodes

P001 and P002 to their parent. While there are other triples with child nodes possessing a

comparable difference in log(IC50) values, they have much longer branches leading from the

parent node to the children. Similarly, while other triples feature relatively short branches

connecting the parent to the children, the trait values at the child nodes do not differ as

much. The unique combination of short branches coupled with a large difference between

log(IC50) values at the child nodes explains why the drift rate present on most of the tree

may be incompatible with the triple of P001, P002 and their parent.

Although there is strong evidence of a drift rate change at the ancestral node of samples

P001 and P002, the wide BCIs for the branch P001 and branch P002 drift rate estimates

suggest that they are poorly informed by the data. The type of drift rate change that occurs

at the ancestral node of tips P001 and P002 also remains unclear. Subjects P001 and P002

are a transmission couple and it appears that one person mounted a very different antibody

response than the other to a highly similar virus. Further research may clarify the situation.

Nevertheless, we infer a clear, significant drift towards increased resistance to neutralization

by VRC01, and it is robust to deletion of either subject P001 or P002. At the population level,

the phylogenetic structure of HIV is “starlike,” featuring multiple co-circulating lineages,

the dynamics of which generally reflects neutral epidemiological processes (Grenfell et al.,

2004). It is therefore notable to find evidence of population level evolution towards increased

resistance.
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Relaxed Drift Fixed-Changes

Branch Mean 95% BCI P(Drift > 0) Mean 95% BCI P(Drift > 0)

P001 2.13 (0.06, 4.89) > 0.99 2.27 (-0.36, 5.10) 0.95

P002 -1.18 (-4.46, 0.22) 0.60 -1.81 (-4.61, 1.03) 0.10

Other 0.15 (0.09, 0.21) > 0.99 0.14 (0.08, 0.20) > 0.99

Table 4.5: Rate changes in HIV-1 drift toward resistance to antibody VRC01. We report

posterior means, 95% BCIs, and posterior probabilities that the drift > 0.

4.6 Discussion

Standard Brownian diffusion is a popular and, in many ways, natural starting point for

modeling continuous trait evolution in a phylogenetic context. On the other hand, it is very

restrictive and may not adequately describe the dynamics of the underlying evolutionary

process. Development of non-Brownian models, such as mean-reverting Ornstein-Uhlenbeck

processes, represents a promising avenue. However, substantial gains can also be made

through building upon standard Brownian diffusion approaches. For example, the displace-

ment along a branch is typically assumed to have variance equal to the product of the branch

length and a diffusion variance rate matrix P−1, where P−1 does not vary along the phylo-

genetic tree. Lemey et al. (2010) demonstrate improvements by relaxing this homogeneity

assumption via branch-specific diffusion rate scalars that yield a mixture of Brownian pro-

cesses. Here, we show that progress towards a more realistic trait diffusion can be made

by relaxing the assumption of a zero-mean displacement. Furthermore, the drift diffusion

approach we consider is very general. Notably, the Ornstein-Uhlenbeck process is nested

within the drift diffusion process defined by

Yi|Ypa(i) ∼ N
(
β1(ti)Ypa(i) + β2(ti)µi,Σ(ti)

)
. (4.45)

Consider the special case where µi = µ for every branch, and

β1(ti) = e−αti , β2(ti) = 1− e−αti , and Σ(ti) =
σ2

2α

[
1− e−2αti

]
. (4.46)
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This is equivalent to an Ornstein-Uhlenbeck process on a phylogenetic tree defined by the

stochastic differential equation

dYt = α(µ−Yt)dt+ σdWt, (4.47)

where Wt is a standard Brownian diffusion process. Here, µ can be thought of as an optimal

trait value, α represents the strength of selection towards µ, and σ2 is the variance of the

Brownian diffusion component. Such generality enables formal testing between a wide class

of different Gaussian process models.

We introduce a flexible new Bayesian framework for phylogenetic trait evolution, mod-

eling the evolutionary process as Brownian diffusion with a nontrivial drift. By allowing an

estimable mean vector in the displacement distribution, we can account for and quantify a

directional trend. However, imposing a constant drift rate can make for an unrealistic ap-

proximation of the underlying process. We overcome this limitation through the relaxed drift

model. The relaxed drift model permits drift rate variation along a phylogenetic tree while

maintaining model identifiability. Drift rates are generally passed on from parent branches

to child branches, and variation is achieved by allowing at most one branch of any given pair

of child branches to assume a different drift rate from their common parent branch.

The utility of incorporating drift into the diffusion is corroborated by our analyses of three

viral examples. We apply our methodology to both geographic traits in a phylogeographic

setting as well as phenotypic traits. Our phylogeographic analysis of the spread of HIV-1

in central Africa confirms the findings obtained by discrete phylogeographic inference (Faria

et al., 2014). Drift diffusion models fit the data better than drift-neutral Brownian diffusion,

and we uncover directional trends in the dispersal of the virus from its origin to sampling

locations. We also see that drift rate variation characterizes real spatiotemporal diffusion

processes. The absence of drift in the diffusion model can lead to conflation of the latent drift

with other parameters, particularly the displacement variance. Our analysis of the spread

of HIV-1 illustrates how inferred displacement variance rates can decrease with appropriate

drift rate modeling, revealing a clearer, more detailed picture of dispersal dynamics.

While it is tempting to assume drift rate variation and seek out the additional insight
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it may provide, the data may not support multiple drift rates. This may be the case even

when there is a significant constant drift, as we see in our analysis of the West Nile virus.

Parameterizing the model to allow the maximal number of unique drift rates can result

in numerous small rate changes that are a consequence of the modeling choice and are not

necessarily driven by the data. Our relaxed drift framework overcomes this issue by inferring

the locations and types of rate changes directly from the data as opposed to making a priori

assumptions about the number of unique drift rates and their appropriate assignments.

Bayesian stochastic search variable selection enables efficient exploration of all possible drift

rate configurations.

Although our focus has been on drift, a major strength of our approach is its implemen-

tation in the larger Bayesian phylogenetic framework of BEAST. Through BEAST, we have

access to a plethora of different models for molecular character substitution, demographic

history and molecular clocks. Bayesian inference provides a natural framework for control-

ling for different sources of uncertainty in evolutionary models, including the phylogenetic

tree and trait and sequence evolution parameters, and testing evolutionary hypotheses.

The gains from introducing drift into our real data examples are encouraging, and there is

a need for continued development of more realistic trait evolutionary models. We anticipate

that our drift diffusion approach will be useful in other scenarios not examined here, including

antigenic drift in influenza. Antigenic drift is the process by which influenza viruses evolve to

evade the immune system, and an understanding of its dynamics is essential to public health

efforts. Bedford et al. (2014) have recently developed an integrated approach to mapping

antigenic phenotypes that combines it with genetic information. It may be fruitful to model

the diffusion of the antigenic phenotype in their framework with a relaxed drift.

While the relaxed drift model has proven to be flexible and useful, its identifiability

restrictions may render it inappropriate for some evolutionary scenarios. For example, once

a drift rate appears anywhere in the phylogenetic tree, the restrictions mandate that it must

be passed on and “survive” until it reaches an external branch. Lack of support for the

survival of a specific drift rate may not preclude its inclusion under relaxed drift. In the

analysis of HIV-1 resistance to neutralization, for example, the parent branch of branches
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P001 and P002 must pass on its drift rate to one of the two child branches in each tree in the

posterior sample. Yet, the branch which is forced to inherit the parent drift rate alternates

between P001 and P002 in the posterior sample, resulting in posterior drift distributions for

both branches that differ from that of their parent drift. However, this unnatural mechanism

of deflecting an unsupported drift rate may contribute to misleading drift rate estimates.

It would be preferable to sidestep such problems by developing alternative models that

accommodate drift rate variation while retaining identifiability.
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4.7 Appendix: Identifiability

To ensure that our results are meaningful, it is important to understand the conditions

under which our model is identifiable. For convenience, and without loss of generality, we

assume here that traits are one-dimensional. Following the development in section 4.2.1, the

observed traits Y = (Y1, . . . ,YN)t at the tips of the phylogeny τ are multivariate-normal

distributed:

P (Y|Y2N−1,P,Vτ ,µτ ) = MVN
(
Y; Yroot + Tµτ ,P

−1 ⊗Vτ

)
. (4.48)

Here, Yroot is an N × 1 vector with the root trait Y2N−1 repeated N times. The vector

µτ = (µ1, . . . ,µ2N−2)
t consists of branch-specific drift rates µi. The N ×N variance matrix

Vτ is a deterministic function of τ and represents the contribution of the phylogenetic tree

to the covariance structure. Its diagonal entries Vii are equal to the distance in time between

the tip Vi and the root node V2N−1, and off-diagonal entries Vij correspond to the distance
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in time between the root node V2N−1 and the most recent common ancestor of tips Vi and

Vj. Finally, the N × (2N − 2) matrix T is defined as follows: Tij = tj, the length of branch

j, if branch j is part of the path from the external node i to the root, and Tij = 0 otherwise.

In other words, the ith row of T specifies the path of branches in τ connecting external node

i to the root.

Let V(µτ ) denote the vector space of permissible values of µτ for our model. With

respect to the drift, the model is identifiable if the equality

P (Y|Y2N−1,P,Vτ ,µτ ) = P (Y|Y2N−1,P,Vτ ,µ
∗
τ ) (4.49)

implies that µτ = µ∗τ . Because the drift appears only in the mean of the distribution, we

have an identifiability problem if the same mean E(Y) can be realized from different values

of µτ . In other words, if there exist µτ 6= µ∗τ such that Tµτ = Tµ∗τ . This can happen if and

only if the linear transformation T has a nontrivial kernel. We know that

dimV(µτ ) = dim ker(T) + dim range(T), (4.50)

and we also know that for any phylogeny τ , T is of full rank because its rows are linearly

independent. It follows that for the kernel of T to be trivial, we must have

dimV(µτ ) ≤ N. (4.51)

If we allow a unique drift rate on each branch of τ , we have V(µτ ) = R2N−2. Therefore we

must take a different approach.

It is illuminating to look at identifiability from the perspective of linear equations. For a

given µτ , T maps µτ to an N × 1 vector γ:

Tµτ = γ. (4.52)

Identifiability is then equivalent to the system (4.52) of N linear equations having a unique

solution.

To achieve identifiability, we introduce the relaxed drift model. Starting with a drift rate

on the unobserved branch leading to the root node and moving down the tree toward the
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external nodes, every time a branch splits into two branches, one of two things happens.

Either both of the child branches inherit the drift rate from the parent branch, or exactly

one of the child branches inherits the drift rate from the parent branch while the other gets

a new drift rate. Both child branches taking on different drift rates than the parent branch

is not permitted. To avoid confusion, we continue to denote the 2N − 2 branch-specific

drift rates as µ1, . . . ,µ2N−2, with the understanding that they are not all unique. We let

µ∗1, . . . ,µ
∗
K denote the unique drift rates, where K ≤ N .

Definition: We say that a row Ti = (Ti1, Ti2, . . . , Ti,2N−2) in T is µ∗k − dominated if its

associated path from the root of τ to a tip ends with a branch with drift rate µ∗k. We also

refer to the sum Tiµτ =
∑2N−2

j=1 Tijµj and the path associated with Ti as µ∗k − dominated.

Note that each unique drift rate dominates at least one path.

Definition: An initial branch of the rate µ∗k is a branch whose parent branch has a different

drift rate. The unobserved branch leading to the root node is also defined to be an initial

branch.

Observe that every branch with drift µ∗k is an initial branch of µ∗k or a descendant of an

initial branch of µ∗k. A drift rate may have more than one initial branch. In order to quantify

how deep into the tree τ a drift rate extends (starting from the tips and going toward the

root), we make the following definition.

Definition: By a descendant path of a branch b, we mean a series of connected branches,

starting with a child branch of b and ending with a branch leading to a tip. The depth of a

branch b is equal to the maximal number of branches in descendant paths of b. The depth

of a drift rate µ∗k is equal to the maximal depth of its initial branches.

For example, if µ∗k has one initial branch leading to a tip, then µ∗k has depth 0. If the

number of unknowns K is less than the number of equations N in the system Tµτ = γ, a

unique solution can be established by working with a reduced system. We form the reduced

system by choosing K of the N rows in T, say Ti1 , . . . ,TiK , such that each is dominated

by a different drift rate. If a drift rate dominates more than one path, we choose a path

containing a maximal depth initial branch of the rate for the reduced system.
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Claim: The relaxed drift model is identifiable.

Proof: The reduced linear system

2N−2∑
j=1

Ti1jµj = γi1 (4.53)

2N−2∑
j=1

Ti2jµj = γi2 (4.54)

. . . (4.55)
2N−2∑
j=1

TiKjµj = γiK , (4.56)

consists of K equations and K variables. Therefore to show that the solution is unique, it

suffices to show that the linear system is independent. To establish independence, it suffices

to show that if

a1

2N−2∑
j=1

Ti1jµj + a2

2N−2∑
j=1

Ti2jµj · · ·+ aN

2N−2∑
j=1

TiKjµj = 0, (4.57)

for some constants a1, . . . , aK , then we must have

a1 = a2 = · · · = aK = 0. (4.58)

Suppose (4.57) holds. The idea behind the proof is as follows: we consider all drift rates of

depth 0, conclude that each sum in (4.57) dominated by a drift rate of depth 0 must have

its corresponding coefficient ai = 0, then consider all drift rates of depth 1, conclude that

each sum in (4.57) dominated by a drift rate of depth 1 must have corresponding coefficient

ai = 0, and so on until we have gone through all possible depth values of drift rates in τ .

Suppose µ∗k has depth 0. Then µ∗k only appears in the single µ∗k−dominated sum and

cannot be canceled out by a linear combination of the other sums. This forces the coefficient

ai of the µ∗k−dominated sum in (4.57) to be equal to zero. Having shown that any sum

dominated by a drift rate of depth 0 must have a zero coefficient in (4.57), we can move

on to the case of depth 1. Rather than handle the case of depth 1 separately, we present a

general argument.

Suppose the coefficients of all sums in (4.57) that are dominated by drift rates of depth

less than m have been shown to be zero. Consider drift rates of depth m. If µ∗k has depth
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m, then it appears in the µ∗k−dominated path, and it may appear in paths dominated by

other rates. Suppose µ∗k appears in a path Pi dominated by a different rate, say µ∗i . By

construction of the reduced system, Pi contains an initial branch bi of µ∗i of maximal depth.

This means the depth of bi is equal to the depth of µ∗i . Because bi is a descendant of a

branch with rate µ∗k, the depth of µ∗i must be less than the depth of µ∗k. But sums dominated

by rates of depth less than m have already been shown to have zero coefficients in (4.57).

Thus the sum associated with Pi has coefficient zero. Because µ∗k appears in only one sum

which is not already known to have a zero coefficient, the µ∗k−dominated sum, it follows

that in order for (4.57) to hold, the µ∗k−dominated sum must also have a zero coefficient.

Therefore sums dominated by drift rates of depth m must have zero coefficients in (4.57).

Invoking this argument until we have gone through all possible values of drift rate depth,

it follows that a1 = a2 = · · · = aK = 0. �
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CHAPTER 5

Understanding Past Population Dynamics: Bayesian

Coalescent-Based Modeling with Covariates

5.1 Introduction

The effective population size is an abstract parameter of fundamental importance in pop-

ulation genetics, evolutionary biology and infectious disease epidemiology. Wright (1931)

introduces the concept of effective population size as the size of an idealized Fisher-Wright

population that gains and loses genetic diversity at the same rate as the real population

under study. The Fisher-Wright model is a classic forward-time model of reproduction that

assumes random mating, no selection or migration, and non-overlapping generations. Coa-

lescent theory (Kingman, 1982a,b) provides a probabilistic model for generating genealogies

relating samples of individuals arising from a Fisher-Wright model of reproduction. Im-

portantly, the coalescent elucidates the relationship between population genetic parameters

and ancestry. In particular, the dynamics of the effective population size greatly inform the

shapes of coalescent-generated genealogies. This opens the door for the inverse problem of

coalescent-based inference of effective population size trajectories from gene genealogies.

While the coalescent was originally developed for constant-size populations, extensions

that accommodate a variable population size (Slatkin and Hudson, 1991; Griffiths and

Tavaré, 1994; Donnelly and Tavaré, 1995) provide a basis for estimation of the effective pop-

ulation size as a function of time (also called the demographic function). Early approaches

assumed simple parametric forms for the demographic function, such as exponential or logis-

tic growth, and provided maximum likelihood (Kuhner et al., 1998) or Bayesian (Drummond

et al., 2002) frameworks for estimating the parameters that characterized the parametric
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forms. However, a priori parametric assumptions can be quite restrictive, and finding an

appropriate parametric form for a given demographic history can be time consuming and

computationally expensive. To remedy this, there has been considerable development of

nonparametric methods to infer past population dynamics.

Nonparametric coalescent-based models typically approximate the effective population

size as a piecewise constant or linear function. The methodology has evolved from fast but

noisy models based on method of moments estimators (Pybus et al., 2000; Strimmer and

Pybus, 2001), to a number of flexible Bayesian approaches, including multiple change-point

models (Opgen-Rhein et al., 2005; Drummond et al., 2005; Heled and Drummond, 2008),

and models that employ Gaussian process-based priors on the population trajectory (Minin

et al., 2008; Gill et al., 2013; Palacios and Minin, 2013). Extending the basic methodological

framework to incorporate a number of key features, including accounting for phylogenetic

error (Drummond et al., 2005; Minin et al., 2008; Heled and Drummond, 2008; Gill et al.,

2013), the ability to analyze heterochronous data (Pybus et al., 2000; Drummond et al.,

2005; Minin et al., 2008; Heled and Drummond, 2008; Gill et al., 2013; Palacios and Minin,

2013), and simultaneous analysis of multilocus data (Heled and Drummond, 2008; Gill et al.,

2013) has hastened progress.

In spite of all of these advances, there remains a need for further development of popu-

lation dynamics inference methodology. One promising avenue is introduction of covariates

into the inference framework. A central goal in demographic reconstruction is to gain insights

into the association between past population dynamics and external factors (Ho and Shapiro,

2011). For example, Lorenzen et al. (2011) combine demographic reconstructions from an-

cient DNA with species distribution models and the human fossil record to elucidate how

climate and humans impacted the population dynamics of woolly rhinoceros, woolly mam-

moth, wild horse, reindeer, bison and musk ox during the Late Quaternary period. Lorenzen

et al. (2011) show that changes in megafauna abundance are idiosyncratic, with different

species (and continental populations within species) responding differently to the effects of

climate change, human encroachment and habitat redistribution. Lorenzen et al. (2011)

identify climate change as the primary explanation behind the extinction of Eurasian musk
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ox and woolly rhinoceros, point to a combination of climatic and anthropogenic factors as

the causes of wild horse and steppe bison decline, and observe that reindeer remain largely

unaffected by any such factors. Similarly, Stiller et al. (2010) examine whether climatic

changes were related to the extinction of the cave bear, and Finlay et al. (2007) consider

the impact of domestication on the population expansion of bovine species. Comparison of

external factors with past population dynamics is also a popular approach in epidemiological

studies to explore hypotheses about the spread of viruses (Lemey et al., 2003; Faria et al.,

2014).

In addition to the association between past population dynamics and potential driving

factors, it is of fundamental interest is to assess the association between effective population

size and census population size (Crandall et al., 1999; Liu and Mittler, 2008; Volz et al., 2009;

Palstra and Fraser, 2012). For instance, Bazin et al. (2006) argue that in animals, diversity of

mitochondrial DNA (mtDNA) is not reflective of population size, whereas allozyme diversity

is. Atkinson et al. (2008) follow up by examining whether mtDNA diversity is a reliable

predictor of human population size. The authors compare Bayesian Skyline (Drummond

et al., 2005) effective population size reconstructions with historical estimates of census

population sizes and find concordance between the two quantities in terms of relative regional

population sizes.

Existing methods for population dynamics inference do not incorporate covariates directly

into the model, and associations between the effective population size and potentially related

factors are typically examined in post hoc fashions that ignore uncertainty in demographic

reconstructions. We propose to fill this void by including external time series as covariates

in a generalized linear model framework. We accomplish this task by building upon the the

Bayesian nonparametric Skygrid model of Gill et al. (2013). The Skygrid is a particularly

well-suited starting point among nonparametric coalescent-based models. In most other

comparable models, the trajectory change-points must correspond to internal nodes of the

genealogy, creating a hurdle for modeling associations with covariates that are measured

at fixed times. The Skygrid bypasses such difficulties by allowing users to specify change-

points, providing a more natural framework for our extension. Furthermore, the Skygrid’s
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Gaussian Markov random field (GMRF) smoothing prior is highly generalizable and affords

a straightforward extension to include covariates.

We demonstrate the utility of incorporating covariates into demographic inference on four

examples. First, we find striking similarities between the demographic and spatial expansion

of raccoon rabies in North America. Second, we compare and contrast the epidemiological

dynamics of dengue in Puerto Rico with patterns of viral diversity. Third, we examine the

population history of the HIV-1 CRF02 AG clade in Cameroon and find that the effective

population size is more reflective of HIV incidence than prevalence. Finally, we explore the

relationship between musk ox population dynamics and climate change during the Late Qua-

ternary period. Our extension to the Skygrid proves to be a useful framework for ascertaining

the association between effective population size and external covariates while accounting

for demographic uncertainty. Furthermore, we show that incorporating covariates into the

demographic inference framework can improve estimates of effective population size trajec-

tories, increasing precision and uncovering patterns in the population history that integrate

the covariate data in addition to the sequence data.

5.2 Methods

5.2.1 Coalescent Theory

Coalescent theory forms the basis of our inference framework, and here we review the basic

set-up. Consider a random sample of n individuals arising from a classic Fisher-Wright

population model of constant size Ne. The coalescent (Kingman, 1982a,b) is a stochastic

process that generates genealogies relating such a sample. The process begins at the sampling

time of all n individuals, t = 0, and proceeds backward in time as t increases, successively

merging lineages until all lineages have merged and we have reached the root of the genealogy,

which corresponds to the most recent common ancestor (MRCA) of the sampled individuals.

The merging of lineages is called a coalescent event and there are n − 1 coalescent events

in all. Let tk denote the time of the (n − k)th coalescent event for k = 1, . . . , n − 1 and
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tn = 0 denote the sampling time. Then for k = 2, . . . , n, the waiting time wk = tk−1 − tk is

exponentially distributed with rate k(k−1)
2Ne

.

Researchers have extended coalescent theory to model the effects of recombination (Hud-

son, 1983), population structure (Notohara, 1990), and selection (Krone and Neuhauser,

1997). We do not, however, incorporate any of these extensions here. The relevant exten-

sions for our development generalize the coalescent to accommodate a variable population

size (Griffiths and Tavaré, 1994) and heterochronous data (Rodrigo and Felsenstein, 1999).

The latter occurs when one samples the n individuals at possibility different times.

Let Ne(t) denote the effective population size as a function of time, where time increases

into the past. Thus, Ne(0) is the effective population size at the most recent sampling time,

and Ne(t
′) is the effective population size t′ time units before the most recent sampling time.

We also refer to Ne(t) as the “demographic function” or “demographic model.” Griffiths

and Tavaré (1994) show that the waiting time wk between coalescent events is given by the

conditional density

P (wk|tk) =
k(k − 1)

2Ne(wk + tk)
exp

[
−
∫ wk+tk

tk

k(k − 1)

2Ne(t)
dt

]
. (5.1)

Taking the product of such densities yields the joint density of intercoalescent waiting times,

and this fact can be exploited to obtain the probability of observing a particular genealogy

given a demographic function.

5.2.2 Skygrid Demographic Model

The Skygrid posits that Ne(t) is a piecewise constant function that can change values only

at pre-specified points in time known as “grid points.” Let x1, . . . , xM denote the temporal

grid points, where x1 ≤ x2 ≤ . . . ≤ xM−1 ≤ xM . The M grid points divide the demographic

history timeline into M + 1 intervals so that the demographic function is fully specified by

a vector θ = (θ1, . . . , θM+1) of values that it assumes on those intervals. Here, Ne(t) = θk

for xk−1 ≤ t < xk, k = 1, . . . ,M , where it is understood that x0 = 0. Also, Ne(t) = θM+1

for t ≥ xM . Note that xM is the time furthest back into the past at which the effective

population size can change. The values of the grid points as well as the number M of total
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grid points are specified beforehand by the user. A typical way to select the grid points is to

decide on a resolution M , let xM assume the value furthest back in time for which the data

are expected to be informative, and space the remaining grid points evenly between x0 = 0

and xM . Alternatively, as discussed in the next section, grid points can be selected to align

with covariate sampling times in order to facilitate the modeling of associations between the

effective population size and external covariates.

Suppose we have m known genealogies g1, . . . , gm representing the ancestries of samples

from m separate genetic loci with the same effective population size Ne(t). We assume

a priori that the genealogies are independent given Ne(t). This assumption implies that

the genealogies are unlinked which commonly occurs when researchers select loci from whole

genome sequences or when recombination is very likely, such as between genes in retroviruses.

The likelihood of the vector g = (g1, . . . , gm) of genealogies can then be expressed as the

product of likelihoods of individual genealogies:

P (g|θ) =
m∏
i=1

P (gi|θ). (5.2)

To construct the likelihood of genealogy gi, let t0i be the most recent sampling time of

sequences contributing to genealogy i and tMRCAi
be the time of the MRCA for locus i. Let

xαi
denote the minimal grid point greater than at least one sampling time in the genealogy,

and xβi the greatest grid point less than at least one coalescent time. Let uik = [xk−1, xk],

k = αi + 1, . . . , βi, uiαi
= [t0i , xαi

], and ui(βi+1) = [xβi , tMRCAi
]. For each uik we let tkj,

j = 1, . . . , rk, denote the ordered times of the grid points and sampling and coalescent

events in the interval. With each tkj we associate an indicator φkj which takes a value of

1 in the case of a coalescent event and 0 otherwise. Finally, let vkj denote the number of

lineages present in the genealogy in the interval [tkj, tk(j+1)]. Following Griffiths and Tavaré

(1994), the likelihood of observing an interval is

P (uik|θk) =
∏

1≤j<rk:φkj=1

vkj(vkj − 1)

2θk

rk−1∏
j=1

exp

[
−
vkj(vkj − 1)(tk(j+1) − tkj)

2θk

]
, (5.3)

for k = αi, . . . , βi + 1.
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The product of interval likelihoods (5.3) yields the likelihood of coalescent times given

the sampling times with genealogy gi. To obtain the likelihood of the genealogy, however,

we must account for the specific lineages that merge and result in coalescent events. Let

P∗(uik|θk) denote P (uik|θk) except with factors of the form
vkj(vkj−1)

2θk
replaced by 2(2−1)

2θk
= 1

θk
.

Then

P (gi|θ) =

βi+1∏
k=αi

P∗(uik|θk). (5.4)

We introduce some notation that will facilitate the derivation of a Gaussian approxima-

tion used to construct a Markov chain Monte Carlo (MCMC) transition kernel. If cik denotes

the number of coalescent events which occur during interval uik, we can write

P (gi|θ) =

βi+1∏
k=αi

(
1

θk

)cik
exp

[
−SSik

θk

]
, (5.5)

where the SSik are appropriate constants. Rewriting this expression in terms of γk = log(θk),

we arrive at

P (gi|γ) =

βi+1∏
k=αi

e−γkcik exp[−SSike−γk ] =

βi+1∏
k=αi

exp[−γkcik − SSike−γk ]. (5.6)

Invoking conditional independence of genealogies, the likelihood of the vector g of genealogies

is

P (g|γ) =
m∏
i=1

P (gi|γ) (5.7)

=
m∏
i=1

βi+1∏
k=αi

exp[−γkcik − SSike−γk ] (5.8)

= exp

[
M+1∑
k=1

[
−γkck − SSke−γk

]]
(5.9)

where ck =
∑m

i=1 cik and SSk =
∑m

i=1 SSik; here, cik = SSik = 0 if k /∈ [αi, βi + 1].

The Skygrid incorporates the prior assumption that effective population size changes

continuously over time by placing a GMRF prior on γ:

P (γ|τ) ∝ τM/2 exp

[
−τ

2

M∑
i=1

(γi+1 − γi)2
]
. (5.10)
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This prior does not inform the overall level of the effective population size, just the smooth-

ness of the trajectory. One can think of the prior as a first-order unbiased random walk with

normal increments. The precision parameter τ determines how much differences between

adjacent log effective population size values are penalized. We assign τ a gamma prior:

P (τ) ∝ τa−1e−bτ . (5.11)

In absence of prior knowledge about the smoothness of the effective population size trajectory,

we choose a = b = 0.001 so that it is relatively uninformative. Conditioning on the vector

of genealogies, we obtain the posterior distribution

P (γ, τ |g) ∝ P (g|γ)P (γ|τ)P (τ). (5.12)

5.2.3 Incorporating Covariates

We can incorporate covariates into our inference framework by adopting a generalized linear

model (GLM) approach. Let Z1, . . . , ZP be a set of P predictors. Each covariate Zj is

observed or measured at M + 1 time points, t1, . . . , tM , tM+1. Here, t0 = 0 is the most recent

sequence sampling time, ti denotes the units of time before t0, and t0 < t1 < · · · < tM < tM+1.

Alternatively, the covariate may correspond to time intervals [t0, t1], . . . , [tM−1, tM ], [tM , tM+1]

rather than time points (for example, the yearly incidence or prevalence of viral infections).

In any case, Zij denotes covariate Zj at time point or interval i. Skygrid grid points are

chosen to match up with measurement times (or measurement interval endpoints): x1 =

t1, . . . , xM = tM . Then Ne(t) = θk for xk−1 ≤ t ≤ xk, k = 1, . . . ,M , and Ne(t) = θM+1 for

t ≥ xM . In our GLM framework, we model the effective population size on a given interval

as a log-linear function of covariates

γk = log θk = β1Zk1 + · · ·+ βPZkP + wk. (5.13)

Here, we can impose temporal dependence by modeling w = (w1, . . . , wM+1) as a zero-mean

Gaussian process. Adopting this viewpoint, we propose the following GMRF smoothing

prior on γ:

P (γ|Z,β, τ) ∝ τM/2 exp
[
−τ

2
(γ − Zβ)′Q(γ − Zβ)

]
. (5.14)
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In this prior, Z is an (M + 1)×P matrix of covariates and β is a P × 1 vector of coefficients

representing the effect sizes for the predictors, quantifying their contribution to γ. Precision

Q is an (M + 1) × (M + 1) tri-diagonal matrix with off-diagonal elements equal to −1,

Q11 = QM+1,M+1 = 1, and Qii = 2 for i = 2, . . . ,M . Let γ−i denote the vector obtained by

excluding only the ith component from vector γ. Therefore, conditional on γ−i, γi depends

only on its immediate neighbors. Let Zi denote the ith row of covariate matrix Z. The

individual components of γ have full conditionals

γ1|γ−1 ∼ N

(
Z′1β − Z′2β + γ2,

1

τ

)
, (5.15)

γi|γ−i ∼ N

(
Z′iβ +

γi−1 + γi+1 − Z′i−1β − Z′i+1β

2
,

1

2τ

)
(5.16)

for i = 2, . . . ,M,

γM+1|γ−(M+1) ∼ N

(
Z′M+1β − Z′Mβ + γM ,

1

τ

)
. (5.17)

As in the original Skygrid GMRF prior, the precision parameter τ governs the smoothness

of the trajectory and is assigned a gamma prior

P (τ) ∝ τa−1e−bτ . (5.18)

To complete the model specification, we place a relatively uninformative multivariate normal

prior P (β) on the coefficients β. This yields the posterior

P (γ,β, τ |g,Z) ∝ P (g|γ)P (γ|Z,β, τ)P (β)P (τ). (5.19)

5.2.4 Missing Covariate Data

It is important to have a mechanism for dealing with unobserved covariate values. This

is particularly crucial because the population history timeline, which ranges from the most

recent sampling time to the time of the MRCA, necessitates observations from a wide and

a priori unknown time span. Let Zobs denote the observed covariate values and Zmis the

missing covariate values, so that Z = (Zobs,Zmis). The missing data can be treated as extra

unknown parameters in a Bayesian model, and they can be estimated provided that there

is a model that links them to the observed data and other model parameters. We have the
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factorization

P (γ,Zmis|Zobs,β, τ) = P (γ|Zobs,Zmis,β, τ)P (Zmis|Zobs,β, τ), (5.20)

and the marginal density P (γ|Zobs,β, τ) can be recovered by integrating out the missing

data. As a starting point, we assume a missing completely at random structure, meaning

that the probability that a covariate value is missing is independent of observed trait values

and other model parameters. For the priors on missing covariate values in (21), we can adopt

uniform distributions over plausible ranges.

Alternatively, we can formulate a prior on the missing covariate data that makes use of

the observed covariate values. Here, we focus on a common scenario where covariate j is

observed at times x0, . . . , xK and unobserved at times xK+1, . . . , xM . Thus, we can write

Zobs
j = (Z0j, . . . , ZKj)

′ and Zmis
j = (Z(K+1)j, . . . , ZMj)

′. We model the joint distribution of

the observed and missing covariate values as multivariate normal, Zobs
j

Zmis
j

 ∼ N


 µ1

µ2

 ,

 P11 P12

P21 P22

−1
 , (5.21)

where

P =

 P11 P12

P21 P22

 (5.22)

is the precision matrix. To impose a correlation structure that enforces dependence between

covariate values corresponding to adjacent times, we adopt a first-order random walk with

full conditionals

Z0j|Z−0j ∼ N

(
Z1j,

1

κ

)
, (5.23)

Zij|Z−ij ∼ N

(
Z(i−1)j + Z(i+1)j

2
,

1

2κ

)
(5.24)

for i = 1, . . . ,M − 1,

ZMj|Z−Mj ∼ N

(
Z(M−1)j,

1

κ

)
. (5.25)

Let ZK denote a vector of dimension M − K with every entry equal to ZKj. Then the

distribution of missing covariate values conditional on observed covariate values is

P (Zmis
j |Zobs

j ) ∝ κ(M−K)/2 exp
(
−κ

2
(Zmis

j − ZK)′P22(Z
mis
j − ZK)

)
, (5.26)

91



where

P22 =


−1 2 −1

. . . . . .

−1 2 −1

−1 1

 . (5.27)

5.2.5 Markov Chain Monte Carlo Sampling Scheme

We use MCMC sampling to approximate the posterior

P (γ,β, τ |g,Z) ∝ P (g|γ)P (γ|Z,β, τ)P (β)P (τ). (5.28)

To sample γ and τ , we propose a fast-mixing, block-updating MCMC sampling scheme for

GMRFs (Knorr-Held and Rue, 2002). Suppose we have current parameter values (γ(n), τ (n)).

First, consider the full conditional density

P (γ|g,Z,β, τ) ∝ P (g|γ)P (γ|Z,β, τ)

∝ exp

[
M+1∑
k=1

(−γkck − SSke−γk)

]
τM/2 exp

[
−τ

2
(γ − Zβ)′Q(γ − Zβ)

]
= τM/2 exp

[
−τ

2
(γ − Zβ)′Q(γ − Zβ)−

M+1∑
k=1

(γkck + SSke
−γk)

]

= τM/2 exp

[
−τ

2
γ ′Qγ + (Zβ)′τQγ −

M+1∑
k=1

(γkck + SSke
−γk)

]
. (5.29)

Let hk(γk) = (γkck + SSke
−γk). We can approximate each term hk(γk) by a second-order

Taylor expansion about, say, γ̂k:

hk(γk) ≈ hk(γ̂k) + h′k(γ̂k)(γk − γ̂k) +
1

2
h′′k(γ̂k)(γk − γ̂k)2

= SSke
−γ̂k
(

1

2
γ̂k

2 + γ̂k + 1

)
+
[
ck − SSke−γ̂k − SSke−γ̂k γ̂k

]
γk

+

[
1

2
SSke

−γ̂k
]
γ2k. (5.30)

We center the Taylor expansion about a point γ̂ = (γ̂1, . . . , γ̂M+1) obtained iteratively by

the Newton-Raphson method:

γ(n+1) = γ(n) − [d2f(γ(n))]
−1(df(γ(n)))

′ (5.31)
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with γ(0) = γ(n), the current value of γ. Here,

f(γ) = −1

2
γ ′τQγ + (Zβ)′τQγ −

M+1∑
k=1

(γkck + SSke
−γk) (5.32)

with

df(γ) = −γ ′τQ + (Zβ)′τQ− [c1 − SS1e
−γ1 , ..., cM+1 − SSM+1e

−γM+1 ] (5.33)

and

d2f(γ) = −τQ− diag[SSke
−γk ]. (5.34)

Replacing the terms hk(γk) with their Taylor expansions yields the following second-order

Gaussian approximation to the full conditional density P (γ|g,Z,β, τ) :

P (γ|g,Z,β, τ) ≈ τM/2 exp

[
−1

2
γ ′[τQ + Diag(SSke

−γ̂k)]γ + (τQZβ)′γ

−
M+1∑
k=1

(ck − SSke−γ̂k − SSke−γ̂k γ̂k)γk

]
, (5.35)

where Diag(·) is a diagonal matrix.

Starting from current parameter values (γ(n), τ (n)), we first generate a candidate value

for the precision, τ ∗ = τ (n)f , where f is drawn from a symmetric proposal distribution with

density P (f) ∝ f + 1
f

defined on [1/F, F ]. The tuning constant F controls the distance

between the proposed and current values of the precision. Next, conditional on τ ∗, we

propose a new state γ∗ using the Gaussian approximation (5.35) to the full conditional

density P (γ|g,Z,β, τ ∗). In the final step, the candidate state (τ ∗,γ∗) is accepted or rejected

according to the Metropolis-Hastings ratio (Metropolis et al., 1953; Hastings, 1970).

5.2.6 Genealogical Uncertainty

In our development thus far, we have assumed the genealogies g1, . . . , gm are known and

fixed. However, in reality we observe sequence data rather than genealogies. It is possible

to estimate genealogies beforehand from sequence data and then infer the effective popu-

lation size from fixed genealogies. However, this ignores the uncertainty associated with
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phylogenetic reconstruction. Alternatively, we can jointly infer genealogies and population

dynamics from sequence data by combining the estimation procedures into a single Bayesian

framework.

We can think of the aligned sequence data Y = (Y1, . . . , Ym) for the m loci as arising from

continuous-time Markov chain (CTMC) models for molecular character substitution that act

along the hidden genealogies. Each CTMC depends on a vector of mutational parameters Λi,

that include, for example, an overall rate multiplier, relative exchange rates among characters

and across-site variation specifications. We let Λ = (Λ1, . . . ,Λm). We then jointly estimate

the genealogies, mutational parameters, precision, and vector of effective population sizes

through their posterior distribution

P (g,Λ, τ,γ|Y) ∝

[
m∏
i=1

P (Yi|gi,Λi)

]
P (Λ)P (g|γ)P (γ|τ)P (τ). (5.36)

Here, the coalescent acts as a prior for the genealogies, and we assume that Λ and g are a

priori independent of each other. Hierarchical models are however available to share informa-

tion about Λ among loci without strictly enforcing that they follow the same evolutionary

process (Suchard et al., 2003; Edo-Matas et al., 2011). We implement our models in the

open-source software program BEAST (Drummond et al., 2012). The posterior distribution

is approximated through MCMC methods. We combine our block-updating scheme for γ

and τ with standard transition kernels available in BEAST to update the other parameters.

5.3 Results

5.3.1 Expansion in Epizootic Rabies Virus

Rabies is a zoonotic disease caused by the rabies virus, and is responsible for over 50,000

human deaths annually. In over 99% of human cases, the rabies virus is transmitted by

dogs. However, there are a number of other important rabies reservoirs, such as bats and

several terrestrial carnivore species, including raccoons (WHO, 2015b). Epizootic rabies

among raccoons was first identified in the U.S. in Florida in the 1940s, and the affected area

of the subsequent expansion was limited to the southeastern U.S. (Kappus et al., 1970). A
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second focus of rabies among raccoons emerged in West Virginia in the late 1970s due to

the translocation of raccoons incubating rabies from the southeastern U.S. The virus spread

rapidly along the mid-Atlantic coast and northeastern U.S. over the following decades, and

is one of the largest documented outbreaks in the history of wildlife rabies (Childs et al.,

2000).

Biek et al. (2007) examine the population dynamics of the rabies epizootic among rac-

coons in the northeastern U.S. starting in the late 1970s. In a spatiogenetic analysis, Biek

et al. (2007) compare a coalescent-based Bayesian Skyline estimate (Drummond et al., 2005)

of the demographic history to the spatial expansion of the epidemic. In a post hoc approach,

the authors find very similar temporal dynamics between the effective population size and

the 15-month moving average of the area (in square kilometers) of counties newly affected by

the rabies outbreak each month. The effective population size exhibits stages of moderate

and rapid growth, as well as plateau periods with little or no growth. Population expansion

coincides with time periods during which the virus invades new area at a generally increasing

rate. On the other hand, the effective population size shows little, if any, growth during peri-

ods when the virus invades new area at a declining rate. These trends can be seen in Figure

5.1, which depicts a Skygrid demographic reconstruction from sequence data along with the

monthly area newly affected by the virus as a solid black line. Notably, Biek et al. (2007)

demonstrate through their analysis that the largest contribution to the population expan-

sion comes from the wave front, highlighting the degree to which the overall viral dynamics

depend on processes at the wave front.

We build upon the analysis of Biek et al. (2007) by incorporating the spatiotemporal

spread of rabies into the demographic inference model through the Skygrid. The data consist

of 47 sequences with sampling dates between 1982 and 2004. As a covariate, we initially adopt

the 15-month moving average of the log-transformed area of all counties newly affected by

the raccoon rabies virus each month from 1977-1999 (Biek et al., 2007). We infer a posterior

mean covariate effect size of 0.24 with a 95% Bayesian credibility interval (BCI) of (-0.77,

1.27), implying that there is not a significant association between the log effective population

size and the covariate. This is not surprising, considering the patterns of growth and decline
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Figure 5.1: Demographic history of raccoon rabies epidemic in the northeastern United

States. The black line represents the covariate, the 15-month moving average of the log–

transformed area of all counties newly affected by the raccoon rabies virus each month. The

solid red line is the posterior mean log effective population size trajectory estimated from

sequence data. The 95% Bayesian credibility interval region for the trajectory is shaded in

light red.

96



in the covariate compared with the essentially monotonic trend in the log effective population

size (see Figure 5.1).

Graphically comparing the rate at which the virus invades new area with population

dynamics clearly illustrates the relationship between the demographic and spatial expansion

of the raccoon rabies outbreak. In modeling the association between the population dynamics

and a covariate, however, we relate the covariate to the total effective population size (as

opposed to the change in the effective population size). In this case, the cumulative affected

area is a more suitable covariate than the newly affected area. We conduct an additional

Skygrid analysis and use the log-transform of the cumulative area (in square kilometers)

of counties affected by raccoon rabies at various time points between 1977 and 1999 as a

covariate. The area of a county is added to the cumulative total for the month during

which rabies is first reported in that county. There are 175 months for which the cumulative

affected area changes, and we specify the grid points to coincide with these change points.

The Skygrid analysis with the log cumulative affected area covariate yields a posterior

mean estimate of 1.30 for the coefficient β, with a 95% BCI of (0.18, 2.86), implying a

significant, positive association between the effective population size of the raccoon rabies

virus and the cumulative area affected by the outbreak. Skygrid demographic reconstructions

of the epidemic are displayed in Figure 5.2. The red line is the posterior mean log effective

population size trajectory inferred using the Skygrid without incorporation of the covariate.

Its 95% BCI region is shaded in light red. The log effective population size trajectory from

the Skygrid analysis with the log cumulative area covariate is represented by the blue line,

and its 95% BCI region is shaded in light blue. The overlap between the two BCI regions

is shaded purple. The log cumulative area affected by the rabies epidemic is depicted as

a solid black line. Figure 5.2 shows great correspondence between the temporal dynamics

of the demographic and spatial expansions. The period 1977-1984 is marked by a steady

increase in effective population size and a rapid exponential increase in affected area. This is

followed in the period 1984-1990 by a plateau in effective population size along with a much

more modest rate of increase for the affected area. The affected area begins increasing at a

greater rate around 1990 and then plateaus around 1996. Similary, 1990-1996 marks a stage
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Figure 5.2: Demographic history of raccoon rabies epidemic in the northeastern United

States. The black line represents the covariate, the log cumulative area of counties affected

by raccoon rabies virus. The solid blue line is the posterior mean log effective population

size trajectory from the Skygrid analysis with the covariate, and the solid red line is the

posterior mean log effective population size trajectory from the Skygrid analysis without the

covariate. The 95% Bayesian credibility interval regions for the trajectories are shaded in

light blue for the analysis that includes the covariate and in light red for the analysis without

the covariate. The overlap between the two Bayesian credibility interval regions is shaded in

purple.
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of demographic expansion, culminating in a period of stasis from 1996 on. The two effective

population size curves are nearly identical from 1977-1990 and 1996-2004. From 1990-1996,

both effective population size trajectories increase, but the rate of increase is more modest

in the Skygrid estimate that incorporates the covariate data. Notably, the light blue BCI

region inferred from the sequence and covariate data is narrower than and virtually entirely

contained within the red BCI region inferred only from the sequence data. Thus including

the covariate in this analysis not only yields an estimate consistent with what we infer from

the sequence data alone, but also a more precise estimate.

5.3.2 Epidemic Dynamics in Dengue Evolution

Dengue is a mosquito-borne viral infection that causes a severe flu-like illness in which poten-

tially lethal syndromes occasionally arise. Dengue is caused by the dengue virus, DENV, an

RNA virus which comes in four antigenically distinct but closely related serotypes, DENV-1

through DENV-4. (WHO, 2015a). A recent estimate places the worldwide burden of dengue

at 390 million infections per year (with 95% confidence interval 284-528 million), of which 96

million (67-136 million) manifest clinically (with any level of disease severity) (Bhatt et al.,

2013). Dengue is found in tropical and sub-tropical climates throughout the world, mostly

in urban and semi-urban areas (WHO, 2015a).

Dengue incidence records show patterns of periodicity with outbreaks every 3-5 years

(Cummings et al., 2004; Adams et al., 2006; Bennett et al., 2010). Studies have shown

that the epidemiological dynamics of dengue transmission in Puerto Rico are reflective of

changes in the viral effective population size (Bennett et al., 2010; Carrington et al., 2005).

Bennett et al. (2010) explore the dynamics of DENV-4 in Puerto Rico from 1981-1998. By

post hoc comparing dengue isolate counts to effective population size estimates obtained

using the Skyride model (Minin et al., 2008), Bennett et al. (2010) show that the pattern of

cyclic epidemics is highly correlated with similar fluctuations in genetic diversity. We build

upon their analysis by inferring the effective population size of DENV-4 in Puerto Rico with

DENV-4 isolate counts as a covariate.
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We analyze a data set of 75 DENV-4 sequences, compiled by Bennett et al. (2003) through

sequencing randomly selected DENV-4 isolates from Puerto Rico from the U.S. Centers for

Disease Control and Prevention (CDC) sample bank. The sampling dates include 1982

(n = 14), 1986/1987 (n = 19), 1992 (n = 15), 1994 (n = 14), and 1998 (n = 13). The

covariate data consist of the number of DENV-4 isolates recorded over every 6-month period

from 1981-1998. DENV-4 isolate counts are transformed via the map x 7→ log(x + 1) (this

specific logarithmic transformation is chosen to accommodate the transformation of isolate

counts of zero).

Figure 5.3 presents the demographic and epidemiological patterns of DENV-4, with the

top plot consisting of Skygrid effective population size estimates and the bottom showing

a bar graph of transformed DENV-4 isolate counts. The blue and red curves in the top

plot correspond to the posterior mean log effective population size trajectories from Sky-

grid analyses with and without the DENV-4 isolate count covariate, respectively. The 95%

BCI regions for the trajectories are shaded in light blue for the analysis that includes the

covariate and in light red for the analysis without the covariate. The overlap between the

two BCI regions is shaded in purple. The demographic patterns are generally consistent

with the isolate count fluctuations, and suggest a periodicity of 3-5 years. This concordance

is supported by a positive, statistically significant estimate of the coefficient β relating the

effective population size to isolate counts: a posterior mean of 0.90 with 95% BCI (0.36,

1.69).

While the two effective population size trajectories are similar, they do have some notable

differences. The blue-colored trajectory inferred from both sequence and covariate data

closely reflects the DENV-4 isolate count patterns, but the red-colored trajectory inferred

entirely from sequence data diverges from the isolate count trends during certain periods.

First, the red trajectory shows a dramatic increase in effective population size in 1981,

consistent with a rise in DENV-4 isolates. However, the red trajectory decreases during

1982 while the DENV-4 isolate counts remain at a high level. Second, the period from late

1986 to late 1988 begins and ends with relative peaks in DENV-4 isolates, with a trough in

between. By contrast, the red curve reaches a peak during the isolate trough and is on the
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Figure 5.3: Population and epidemiological dynamics of DENV-4 virus in Puerto Rico. The

top plot depicts Skygrid effective population size estimates. See Figure 5.2 for the legend

explanation. The bars in the bottom plot represent DENV-4 isolate count covariate data.
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decline during the late 1988 peak. Third, the red trajectory shows a trough in the effective

population size during 1994 that occurs about a year before a similar trough in DENV-4

isolates. These discrepancies may be due to biased sampling in isolate counts and reflect

limitations of epidemiological surveillance. Isolate counts are a rough measure of incidence,

and their error rates are subject to accurate diagnostic rates by medical personnel, reporting

rates, and the rate at which suspected cases are submitted for isolation (Bennett et al., 2010).

On the other hand, the epidemiological trends are not necessarily incompatible with the ef-

fective population size trajectory estimated entirely from sequence data when the latter’s

uncertainty is taken into account. The blue-colored trajectory inferred from both sequence

and isolate count data does not deviate from the isolate count data in the ways that the red

trajectory does. However, the blue trajectory lies entirely inside the red 95% BCI region.

Furthermore, apart from a 1.5 year period in 1981-82, the blue 95% BCI region is virtu-

ally entirely contained within, and is narrower than, the red 95% BCI region. Therefore,

the Skygrid estimate that incorporates the DENV-4 isolate count covariate yields a demo-

graphic pattern that reflects epidemiological dynamics, and is more precise than, but not

incompatible with, the effective population size estimate inferred only from sequence data.

5.3.3 Demographic History of the HIV-1 CRF02 AG Clade in Cameroon

Circulating recombinant forms (CRFs) are genomes that result from recombination of two or

more different HIV-1 subtypes and that have been found in at least three epidemiologically

unrelated individuals. Although CRF02 AG is globally responsible for only 7.7% of HIV

infections (Hemelaar et al., 2011), it accounts for 60-70% of infections in Cameroon (Brennan

et al., 2008; Powell et al., 2010).

We investigate the population history of the CRF02 AG clade in Cameroon by examining

a multilocus alignment of 336 gag, pol, and env CRF02 AG gene sequences sampled between

1996 and 2004 from blood donors from Yaounde and Douala (Brennan et al., 2008). Faria

et al. (2012) infer the effective population size from this data set with a parametric piecewise

logistic growth-constant demographic model. Their results point to a period of exponential
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growth up until the mid 1990s, at which point the effective population size plateaus. Gill

et al. (2013) follow up with a nonparameteric Skygrid analyis that reveals a monotonic

growth in effective population size that peaks around 1997 and is then followed by a decline

(rather than a plateau) that persists up until the most recent sampling time. We build upon

these analyses by introducing two covariates: the yearly prevalence of HIV in Cameroon

among adults ages 18-49, and the yearly HIV incidence rate in Cameroon among adults ages

18-49 (UNAIDS, 2015). UNAIDS prevalence and incidence estimates for Cameroon only go

back to 1990, so we integrate out the missing covariate values as described in Section 5.2.4

by modeling the covariate values as a first-order random walk.

Figure 5.4 depicts the effective population size trajectory along with the HIV prevalence

data. The prevalence increases up until 2000, stays constant for 4 years, and then declines

slightly in 2004. The temporal pattern of the prevalence differs markedly from that of the

demographic history, and this discordance is reflected in the GLM coefficient quantifying

the prevalence effect size. The coefficient has a posterior mean of 0.85 with 95% BCI (-

0.18, 2.03), indicating no significant association between the effective population size and

prevalence.

The coefficient quantifying the effect size for the incidence rate covariate has a posterior

mean of 9.20 with 95% BCI (1.43, 16.17), implying a significant association between the

population history of the CRF02 AG clade and the HIV incidence rate among adults ages

18-49 in Cameroon. As shown in Figure 5.5, the effective population size and incidence rate

display similar dynamics: both increase up until a peak around 1997, then decline. The

posterior mean log effective population size and 95% BCI under the Skygrid model without

covariates are virtually the same as the Skygrid estimates that incorporate the incidence

data. This is in contrast to the previous examples we’ve seen, where inclusion of covariates

affects effective population size estimates, and it may reflect the larger amount of sequence

data relative to covariate data in this example. It is notable that in this example the effective

population size is more reflective of incidence than prevalence. This is in accordance with

expectations put forth by recent epidemiological modeling of infectious disease dynamics

(Volz et al., 2009; Frost and Volz, 2010).
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Figure 5.4: Demographic history of HIV-1 CRF02 AG clade in Cameroon. The solid black

line is the posterior mean log effective population size trajectory, and its 95% Bayesian

credibility interval region is shaded in gray. The bars represent HIV prevalence estimates for

adults of ages 18-49 in Cameroon.
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Figure 5.5: Demographic history of HIV-1 CRF02 AG clade in Cameroon. The solid black

line is the posterior mean log effective population size trajectory, and its 95% Bayesian

credibility interval region is shaded in gray. The bars represent HIV incidence rate estimates

for adults of ages 18-49 in Cameroon.
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5.3.4 Population Dynamics of Late Quaternary Musk Ox

Population decline and extinction of large-bodied mammals characterizes the Late Quater-

nary period (Barnosky et al., 2004; Lorenzen et al., 2011). The causes of these megafaunal

extinctions remain poorly understood, and much of the debate revolves around the impact of

climate change and humans (Stuart et al., 2004; Lorenzen et al., 2011). Demographic recon-

structions from ancient DNA enable clarification of the roles of climatic and anthropogenic

factors by providing a means to compare demographic patterns over geologically significant

time scales with paleoclimatic and fossil records (Shapiro et al., 2004; Lorenzen et al., 2011).

Campos et al. (2010) employ the Skyride (Minin et al., 2008) and Bayesian Skyline

(Drummond et al., 2005) models to reconstruct the population dynamics of musk ox dating

back to the late Pleistocene era from ancient DNA sequences. The musk ox population was

once widely distributed in the holarctic ecozone but is now confined to Greenland and the

Arctic Archipelago, and Campos et al. (2010) explore potential causes of musk ox population

decline. The authors find that the arrival of humans into relevant areas did not correspond

to changes in musk ox effective population size. On the other hand, Campos et al. (2010)

observe that time intervals during which musk ox populations increase generally correspond

to periods of global climatic cooling, and musk ox populations decline during warmer and

climatically unstable periods. Thus environmental change, as opposed to human presence,

emerges as a more promising candidate as a driving force behind musk ox population dy-

namics.

We apply our extended Skygrid model to assess the relationship between the population

history of musk ox and climate change. Oxygen isotope records serve as useful proxies for

temperature in ancient climate studies. Here, we use ice core δ18O data from the Greenland

Ice Core Project (GRIP) (Johnsen et al., 1997; Dansgaard et al., 1993; GRIP Members,

1993; Grootes et al., 1993; Dansgaard et al., 1989). δ18O is a measure of oxygen isotope

composition. In the context of ice core data, lower δ18O values correspond to colder polar

temperatures. As a covariate, we adopt a mean δ18O value, taking the average of δ18O

values corresponding to each 3,000-year interval. The sequence data consist of 682 bp of
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the mitochondrial control region, obtained from 149 radiocarbon dated specimens (Campos

et al., 2010). The ages of the specimens range from the present to 56,900 radiocarbon (14C)

years before present (YBP). The sampling locations span the demographic range of ancient

musk ox, with samples from the Taimyr Peninsula (n = 54), the Urals (n = 26), Northeast

Siberia (n = 12), North America (n = 14) and Greenland (n = 43).

Figure 5.6 presents the posterior mean log effective population size trajectory (blue line)

along with its 95% BCI region shaded in light blue. The δ18O covariate values are represented

by the red line. The plot shows a steady increase in effective population size up until about

60,000 YBP. During this period, the covariate pattern suggests a general trend of cooling,

although there is considerable fluctuation in the mean δ18O values. The effective population

size plateaus from 60,000 to 55,000 YBP, then decreases from 55,000 to 40,000 YBP. During

the aforementioned period of demographic decline, the covariate does not display any clear

trends, fluctuating back and forth. The effective population size increases from about 40,000

to 25,000 YBP while the δ18O covariate continues to fluctuate, although it undergoes a

net decrease from the beginning to the end of the phase. Notably, the musk ox population

reaches its peak diversity at around 25,000 YBP, coinciding with the Last Glacial Maximum.

The period from 25,000 to 12,000 YBP is marked by a decrease in effective population size

along with a postglacial warming. Finally, a demographic recovery and a very mild decline

in the δ18O covariate characterize the last 12,000 YBP. The patterns we note in Figure 5.6

are consistent with the observations of Campos et al. (2010). However, the GLM coefficient

β has a posterior mean of -0.09 with a 95% BCI of (-0.50, 0.35), indicating that there is not a

significant association between the log effective population size and the δ18O covariate. This

is not surprising upon further reflection. While the net changes in the covariate from the

beginning to the end of the various monotonic phases of the population trajectory lend some

support to the hypothesis of a negative relationship between the effective population size

and δ18O covariate, the pervasive covariate fluctuations render the relationship insignificant.

There are more than 5,000 δ18O measurements in the GRIP data corresponding to dif-

ferent time points in the musk ox population history timeline. Our default approach is to

specify Skygrid grid points so that the trajectory has as many piecewise constant segments
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Figure 5.6: Demographic history of ancient musk ox. The axis is labelled according to

years before present. The solid blue line is the posterior mean log effective population size

trajectory, and its 95% Bayesian credibility interval region is shaded in light blue. The solid

red line represents the δ18O covariate. We do not infer a significant relationship between the

effective population size and the covariate.
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as there are covariate measurement times. To avoid having an inappropriately large number

of change points, however, we’ve used the average of δ18O values corresponding to each

3,000-year interval in the timeline as a covariate. Notably, adopting averages over intervals

of lengths 1,000, 5,000, or 10,000 years as covariates yields the same basic outcome: the

effect size of the covariate is not statistically significant.

While we do not infer a significant association between the log effective population size

and δ18O covariate values, this does not rule out climate change as a driving force behind

musk ox population dynamics. The musk ox is known to be very sensitive to temperature and

is not able to tolerate high summer temperatures (Tener, 1965). Using species distribution

models, dated fossil remains and paleoclimatic data, Lorenzen et al. (2011) demonstrate a

positive correlation between musk ox genetic diversity and its climate-driven range size over

the last 50,000 years. The δ18O data we use here do not account for geographic variability

in temperature. Furthermore, we have not controlled for any potential confounders, such as

range size or proportion of range overlap with humans. Nevertheless, our analysis serves as a

precaution against oversimplification in the search for explanations of megafaunal population

decline and extinctions. Incorporating additional covariate data into future studies may

reveal a more complete, nuanced story of large mammal population dynamics during the

Late Quaternary period.

5.4 Discussion

We present a novel coalescent-based Bayesian framework for estimation of effective popula-

tion size dynamics from molecular sequence data and external covariates. We achieve this

by extending the popular Skygrid model to incorporate covariates. In doing so, we retain

the key elements of the Skygrid: a flexible, nonparametric demographic model, smoothing

of the trajectory via a GMRF prior, and accommodation of sequence data from multiple

genetic loci.

Effective population size is of fundamental interest in population genetics, infectious

disease epidemiology, and conservation biology. It is crucial to identify explanatory factors,

109



and to achieve a greater understanding of the association between the effective population

size and such factors. In the context of viruses, it is important to assess the relationship

between effective population size and epidemiological dynamics characterizing the number of

infections and the spatiotemporal spread of an outbreak. Our extended Skygrid framework

enables formal testing and characterization of such associations.

We showcase our methodology in four examples. Our analysis of the raccoon rabies

epidemic in the northeastern United States uncovers striking similarities between the viral

demographic expansion and the amount of area affected by the outbreak. We reconstruct a

cyclic pattern for the effective population size of DENV-4 in Puerto Rico, coinciding with

trends in viral isolate count data. Comparing the population history of the HIV-1 CRF02 AG

clade in Cameroon with HIV incidence and prevalence data reveals a greater alignment with

the HIV incidence rate than the prevalence rate. Finally, we consider the role of climate

change in ancient musk ox population dynamics by using oxygen isotope data from the GRIP

ice core as a proxy for temperature. We do not find a significant association, but our analysis

demonstrates the need for a more thorough examination with additional covariates to follow

up on previous investigations of the causes of ancient megafaunal population dynamics that

consider a number of different factors.

Simultaneous inference of the effective population size and its association with covari-

ates enables the uncertainty of the effective population size to be taken into account when

assessing the association. Post hoc analyses comparing the mean effective population size

trajectory with covariates (employing a standard linear regression approach, for example)

are possible. However, such approaches may erroneously rule out significant associations

by overemphasizing incompatibilities between the covariates and mean population trajec-

tory. Furthermore, in the case of significant associations, regression coefficient estimates

that disregard demographic uncertainty may have inflated precision.

Integrating covariates into the demographic inference framework not only enables testing

and quantification of associations with the effective population size, it also provides addi-

tional information about past population dynamics. In two of our four examples, effective

population size trajectories inferred from both sequence and covariate data differ markedly
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from trajectories inferred only from sequence data. In the rabies and dengue examples, the

estimates based on sequence and covariate data are essentially consistent with with the es-

timates from the sequence data (in terms of the former having BCI regions almost entirely

contained in the BCI regions of the latter), but more precise and more reflective of covariate

trends.

Our extension of the Skygrid represents a first step toward a more complete understand-

ing of past population dynamics, and the utility of the approach as demonstrated in the

real data examples is promising. Our examples have only involved one or two covariates,

but our implementation can support a large number of predictors. Furthermore, we plan

to equip the Skygrid with efficient variable selection procedures to identify optimal subsets

of predictors (George and McCulloch, 1993; Kuo and Mallick, 1998; Chipman et al., 2001).

There is considerable potential for further development. For example, there is a prominent

correspondence between spatial distribution and genetic diversity in the raccoon rabies ex-

ample, and in previous studies of megafauna species (Lorenzen et al., 2011). We envision

combining the Skygrid with phylogeographic inference models (Bloomquist et al., 2010) to

simultaneously infer the wave-front of a population from sampling location data and use

the wave-front as a predictor to model the effective population size. Attempts to infer as-

sociations between covariates and effective population size dynamics can be hampered by a

scarcity of covariate data. Fortunately, there may exist measurements of the same covariates

corresponding to different, but similar, genetic sequence data sets. We may, for example,

have drug treatment data corresponding to several different HIV patients and wish to assess

the relationship between the drug and intrahost HIV evolution. In such a setting, Bayesian

hierarchical modeling could enable pooling of information from multiple data sets.
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CHAPTER 6

Future Work

6.1 Hierarchical Modeling of Past Population Dynamics

One of the Skygrid’s major features is the ability to infer past population dynamics simulta-

neously from multilocus data. Combining data from several effectively unlinked genetic loci

with the same demographic history can strikingly improve inference. We can also achieve

gains by extending this principle of combining data to samples from different populations.

Traditional modeling of demographic histories of multiple populations generally assumes

that within-population demographic histories vary independently. However, there are nu-

merous scenarios in which there are commonalities in the population dynamics of different

populations. For example, within-host HIV population dynamics may be similar in different

patients (Shriner et al., 2004; Lemey et al., 2006).

Data from multiple populations can be combined by enforcing strict equality of demo-

graphic histories of different populations, but such an assumption can be unrealistic and

unnecessarily restrictive. We propose a hierarchical modeling approach to combine data and

draw conclusions across multiple populations while still allowing different demographic histo-

ries for each population. Once again, the Skygrid framework is well-suited for our goal. The

GRMF prior can be naturally extended to a hierarchical prior with an unknown estimable

mean, and population-specific demographic histories can vary about this common mean.

Formulating a hierarchical framework with a common “mean” trajectory is not straight-

forward when effective population size trajectories for different populations have different

change-points. Fortunately, the Skygrid’s user-specified change-point functionality enables

exact alignment of trajectory change-points across populations.
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6.1.1 Hierarchical Models for Multiply Observed Demographic Histories

Coalescent theory provides a striking connection between genealogical relationships and past

population dynamics. Nevertheless, there remain significant challenges in inferring the effec-

tive population size as a function of time from a genealogy. A genealogy provides information

about population dynamics through the times of its coalescent events. Therefore a dearth

of coalescent events results in imprecise estimates of the demographic function. A geneal-

ogy relating n individuals has n− 1 coalescent events, so the number of coalescent times in

general can be increased by simply increasing the sample size n. However, even with large

sample sizes, there are typically long stretches of time in the population history during which

relatively few coalescent events occur. In a constant-size population, for example, coalescent

events become increasingly rare as we move further back in time toward the MRCA. Increas-

ing the sample size n will mitigate the problem to some extent, but most of the additional

coalescent events occur during stretches of time where they are already plentiful. A more

effective way to combat this problem is by incorporating data from additional effectively

unlinked genetic loci that share the same demographic history. Samples corresponding to

different loci are related by different genealogies, and increasing the number of loci provides

additional coalescent events during times frames for which they are rare (Felsenstein, 2006;

Heled and Drummond, 2008; Gill et al., 2013).

Inspired by the improvements from incorporating data from multiple loci into the infer-

ence framework, we seek to take advantage of the same philosophy in additional settings.

There are a number of situations where samples are available from populations that exhibit

similar, although not identical, demographic histories. Examples include HIV populations in

different patients (Shriner et al., 2004; Lemey et al., 2006), and human influenza dynamics

during different flu seasons (Minin et al., 2008). We pool information from different genealo-

gies generated by similar demographic functions through hierarchical modeling. Hierarchical

modeling provides a summary of the demographic history across populations while permit-

ting the demographic history of each population to vary. This is accomplished by placing a

hierarchical prior on the effective population size trajectory of each population. The hierar-
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chical priors posit that the demographic functions of the different populations vary about a

common unknown estimable mean demographic function.

Suppose we have samples from m different populations, and let g1, . . . , gm denote genealo-

gies representing the ancestries of the m samples. We assume M grid points, x1, . . . , xM ,

and we let γi = (γi1, . . . , γiM , γi(M+1)) denote the vector of log effective population sizes for

population i. Importantly, we adopt the same grid points for each population. The like-

lihood P (gi|γi) is constructed according to the Skygrid demographic model, as detailed in

section 5.5.2. We can extend over i = 1, . . . ,m populations simultaneously by assigning the

γi the hierarchical prior

P (γi|γ, τ) ∝ τM/2 exp
[
−τ

2
(γi − γ)′Q(γi − γ)

]
. (6.1)

Thus the effective population size across the different populations is captured in the mean

γ of the prior. We assign γ a relatively uninformative multivariate-normal hyperprior.

6.1.2 Hierarchical Modeling for Multilocus Data

Our development of a hierarchical modeling approach thus far has been motivated by situ-

ations where we desire to combine information from genealogies that correspond to demo-

graphic histories that cannot be assumed to be identical. Population dynamics inference

frameworks developed for multilocus data typically assume that the different loci share the

same demographic history. This assumption is justified so long as the loci are unlinked. Hi-

erarchical modeling may prove useful in the context of multilocus data by enabling detection

of linkage if the inferred effective population size trajectories for different loci are divergent

(Storz et al., 2002).

6.1.3 Hierarchical Modeling with Covariates

Attempts to infer associations between covariates and effective population size dynamics can

be hampered by a scarcity of data. Fortunately, if there exist measurements of the same

covariates Z1, . . . , ZP in different populations, hierarchical modeling may afford a solution.
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Let Z(i) denote the matrix of covariate measurements corresponding to population i. Also,

let γi and βi denote the vector of log effective population sizes and regression coefficients,

respectively, for population i. Likelihoods P (gi|γi) are constructed for each population as in

5.2.2, and the association between covariates and effective population size in each population

is modeled as in 5.2.3 through priors:

P (γi|Z(i),βi, τ) ∝ τM/2 exp
[
−τ

2
(γi − Z(i)βi)

′Q(γi − Z(i)βi)
]
. (6.2)

We assign each population-specific vector of regression coefficients βi a hierarchical prior

βi|σ2 ∼ N(β, σ2I), (6.3)

where I is the identity matrix. We place relatively uninformative hyperpriors on β and σ2.
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