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RESEARCH ARTICLE
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Abstract

Mouse lines selectively bred for high voluntary wheel-running behavior are helpful models

for uncovering gene networks associated with increased motivation for physical activity and

other reward-dependent behaviors. The fact that multiple brain regions are hypothesized to

contribute to distinct behavior components necessitates the simultaneous study of these

regions. The goals of this study were to identify brain-region dependent and independent

gene expression patterns, regulators, and networks associated with increased voluntary

wheel-running behavior. The cerebellum and striatum from a high voluntary running line and

a non-selected control line were compared. Neuropeptide genes annotated to reward-

dependent processes including neuropeptide S receptor 1 (Npsr1), neuropeptide Y (Npy),

and proprotein convertase subtilisin/kexin type 9 (Pcsk9), and genes implicated in motor

coordination including vitamin D receptor (Vdr) and keratin, type I cytoskeletal 25 (Krt25)

were among the genes exhibiting activity line-by-region interaction effects. Genes annotated

to the Parkinson pathway presented consistent line patterns, albeit at different orders of

magnitude between brain regions, suggesting some parallel events in response to selection

for high voluntary activity. The comparison of gene networks between brain regions

highlighted genes including transcription factor AP-2-delta (Tfap2d), distal-less homeobox 5

gene (Dlx5) and sine oculis homeobox homolog 3 (Six3) that exhibited line differential

expression in one brain region and are associated with reward-dependent behaviors.

Transcription factors including En2, Stat6 and Eomes predominated among regulators of

genes that differed in expression between lines. Results from the simultaneous study of

striatum and cerebellum confirm the necessity to study molecular mechanisms associated

with voluntary activity and reward-dependent behaviors in consideration of brain region

dependencies.
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Introduction

Reward-dependent behaviors have been linked to learning, memory, and neurological disease

processes [1]. High levels of voluntary exercise can be considered a behavior that is dependent

on a physical activity reward, and this behavior is also dependent on locomotor control pro-

cesses [2, 3]. A model based on healthy human subjects proposes that the cortico-striatal and

cortico-cerebellar systems contribute differentially to motor sequence learning and motor

adaptation, respectively [4].

Mouse lines selectively bred for high voluntary wheel-running behavior have been a helpful

model for uncovering the neurological basis of motor learning and adaptation, increased moti-

vation of physical activity, and reward-dependent behaviors [2, 5, 6]. Significant behavioral

and physiological differences can be identified between lines selected for high voluntary run-

ning and non-selected control lines [2, 3]. For example, differences between high running and

control lines in the concentration of monoamines in the substantia nigra pars compacta and

dorsolateral striatum, and in the expression of genes coding for chromatin regulators of mono-

amine receptor in the striatum have been reported [7]. Consistent with the expected associa-

tion with reward-dependent pathways, we reported differential expression between the

striatum of the high running and control lines of genes coding for members of the dopamine

signaling pathway, including the neurotransmitters glutamate and GABA and the neuromodu-

lator serotonin [6]. A different set of genes associated with locomotor control, reward-depen-

dent behaviors and dopamine processes, including dopamine receptor D1 and muscarinic

acetylcholine receptor M1 were differentially expressed between the cerebellum of the high

running and control lines [8]. A more complete understanding of the complementary role of

the striatum and cerebellum on the motivation to exercise in particular, and for reward-depen-

dent behaviors in general necessitates the simultaneous analysis of transcriptome between

high running and control lines across brain regions.

The goals of this study were: 1) to identify brain-region dependent and independent gene

expression patterns and pathways between the high voluntary running and control mouse

lines; 2) to integrate information on gene relationships and differential expression between

these lines and characterize distinct gene networks between brain regions; and 3) to investigate

brain-region dependent and independent differences between the lines in transcription factor

regulation. This study advances our understanding regarding the gene networks associated

with motivation to exercise that are unique to a brain region or common across brain regions.

Understanding the molecular underlining of high voluntary physical activity advances the

knowledge on the molecular mechanisms associated with reward dependent and addictive

behaviors.

Materials and methods

Animal experiments, sampling and sequencing

The experimental procedures were approved by the UCR Institutional Animal Care and Use

Committee and were in accordance with the National Institutes of Health Guide for the Care

and Use of Laboratory Animals. The cerebellum (Ce) and striatum (St) from 7-week old male

mice corresponding to a line selected for high voluntary wheel running (designation line 7)

and a control line (designation line 1) were studied. The studied mice were derived from gen-

eration 66 of a replicated selective breeding experiment for increased voluntary wheel running

behavior on the Hsd:ICR strain [9–11]. Wheel revolutions were recorded in 1-minute inter-

vals, continuously for 6 days and mice were selected within-family for the number of revolu-

tions run on days 5 and 6. In the selected line, the highest running male and female within 10
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PLOS ONE | https://doi.org/10.1371/journal.pone.0201773 August 2, 2018 2 / 23

https://doi.org/10.1371/journal.pone.0201773


individual families were selected per generation and each mice was mated to a mice from

another family. Mating decisions minimized inbreeding such that the effective population size

is approximately 35 [12]. In the control line, one female and one male within each family were

selected at random and full sib mating were also prevented [9]. The mice in this study were

neither full nor half-sibs. A comparison of the additive genetic variance of 6 locomotor behav-

ior traits between high running and control lines indicated that, albeit the selected line having

one third of the variance than the control line, these variances remained fairly constant across

30 generations [13]. By generation 61, mice from four selected lines ran on average approxi-

mately 3.3 fold more per day relative to the four control lines [9]. The Ce and St from mice rep-

resenting the high voluntary running line (Hi) and from the control line (Co) were studied in

a 2-by-2 factorial design.

At 35 days old (±5 days) the Hi and Co mice were housed in individual cages with free

access to a running wheel and were kept on a 12-hour light/dark cycle with lights on at 0000 h

and off at 1200 h for 6 days. Complementary locomotor behavior indicators were measured

during the 6 days of the trial including: a) number of wheel revolutions within non-overlap-

ping 30 minute intervals between 150 minutes and up to when the mouse was removed from

the cage for dissection; b) maximum number of revolutions per minute in the previously

described intervals; c) average number of revolutions per minute in the previously described

intervals; and d) average number of revolutions per minute of activity in days 1 to 6.

On day 7 during a period of typical activity, starting at 1300 h and ending at 1700 h (1–4 h

after the lights were shut off), mice were removed from their cages with access to running

wheel and euthanized by immediate decapitation. Relative to the temporary access to wheel

running prior to sampling that all mice in the experiment experienced, the results from the

transcriptome comparison between Hi and Co mice are expected to be dominated by the long-

term effect of the 66 generations of selection. This expectation is based on a study that com-

pared mice selected for high wheel running versus control and concluded that selection may

have affected the motivational system resulting in lower reinforcing value of short running

periods on the first group [14].

Brains were extracted, placed on an iced aluminum platform and the entire Ce and St were

dissected, immediately transferred to a centrifuge tube and stored at −80˚C [15, 16]. Individual

brain region samples were homogenized with an RNase-free disposable pellet pestle (Fisher);

RNeasy1 Lipid Tissue Mini Kit (Qiagen, Valencia, CA) was used for RNA extraction; and

DNase I (Qiagen, Valencia, CA) was used to purify the isolated RNA. Qubit1 2.0 (Life Tech-

nologies, Carlsbad, CA) was used to assess total RNA yield. The integrity of isolated RNA was

measured by the 28S/18S rRNA analysis using the Agilent 2100 Bioanalyzer (Agilent Technol-

ogies, Santa Clara CA) and the integrity of the isolated RNA was measured using the Agilent

2100 Bioanalyzer with RNA Pico chip (Agilent Technologies, Palo Alto, CA). The 16 individ-

ual samples were evaluated for RNA Integrity Numbers (RIN). Samples were sequenced with

the Illumina HiSeq 2000 system (Illumina, San Diego, CA, USA) and 100nt-long paired-end

reads from individual mouse and brain regions were generated. The RNA-seq data files are

available in the National Center for Biotechnology Information Gene Expression Omnibus

(GEO) database (accession identifier GSE114062).

Differential expression analysis

The analysis compared the transcriptome profiles from 4 groups defined by the brain region

followed by the activity line: StHi, StCo, CeHi, and CeCo. These groups encompassed a total of

16 individual mouse samples; half of the samples corresponded of the Hi and the rest to the Co

line. Within line; half of the samples corresponded to the St and the rest to the Ce brain region.

Brain region-dependent pathways of high voluntary activity
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Quality control of the sequence reads included a minimum average Phred score of 30 across

all positions using FastQC [8, 17]. The reads were mapped to the genome assembly Mus mus-
culus NCBI GRCm38 using Tophat2 v2.1.1 [18]. The Cuffnorm v2.2.1 routine within the Cuf-

flinks software was used to normalize the gene counts for library size and filter genes

inadequately detected across samples [19]. Genes represented in 3 or more sample by one or

more read count per million were further studied. The Trimmed Mean of M-values normal-

ized values of 15,213 genes were analyzed for differential expression between activity lines and

brain regions. One StHi sample was removed from subsequent testing based on principal com-

ponent analysis of all genes profiled that suggested deviations from all other samples in the

same line-region group.

A linear model including the main effects of activity line, brain region, and the interaction

between these effects was used to describe the gene expression patterns. A preliminary analysis

of the locomotor measurements indicated that the variation between lines was substantially

higher than the variation within lines and thus no additional covariate was included in the

model. The analysis was implemented in the edgeR Bioconductor package, v. 3.14.0 within the

R v. 3.3.1 software environment [20, 21]. A robust common gene variance was specified using

the tag-wise dispersion option to curtail potential false positive results. The quasi-likelihood F-

test was used to test for differential expression and the P-values were adjusted for multiple test-

ing using the false discovery rate (FDR) method [22]. Among the possible interaction contrasts,

patterns of particular interest were distinct differential gene expression between activity lines

within each brain region (StHi–StCo and CeHi–CeCo). These 2 contrasts and StHi-CeHi con-

stitute 3 orthogonal contrasts that can completely characterize the interaction. These results

were complemented with a study of the main effect of line by contrasting the gene expression

levels between lines (Hi–Co) across brain regions. Likewise, the main effect of brain region was

characterized by contrasting the gene expression levels between brain regions (St–Ce).

Functional, interacting, and regulatory network analyses

Complementary enrichment analyses were used to obtain a comprehensive understanding of

the functional categories over-represented among the differentially expressed genes. The cate-

gories studied included Gene Ontology (GO) molecular function (MF) and biological process

(BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [15, 23]. Gene Set

Enrichment Analysis (GSEA) considered the expression profiles of all genes analyzed [24].

Genes were ranked based on the signed and standardized logarithm-transformed fold change

in the StHi–StCo, CeHi–CeCo, contrasts. The statistical significance of the enrichment was

assessed based on P-value from 1,000 permutations and adjusted using FDR. Categories

including at least 5 genes were considered. Functional enrichment among genes exhibiting a

significant interaction effect and among genes solely exhibiting a significant line effect was

performed using the Database for Analysis, Validation, and Integrated Discovery system

(DAVID) [25]. EASE scores (modified Fisher Exact) were used to assess the statistical signifi-

cance of the enrichment of the individual categories [8, 26]. Functional categories including

genes in common were clustered and the statistical significance of these functional clusters is

represented by the enrichment score (ES) that is the geometric mean of the EASE scores of the

categories in the cluster [15, 26]. Further analysis of the enrichment of categories from the

Mouse Genome Informatics (MGI) mammalian phenotype database of using Fisher exact test

were implemented using the software Enrichr [27].

Gene networks were reconstructed using the BisoGenet package [28] within the Cytoscape

environment [29] for the 3 orthogonal contrasts. The edges of the networks depict molecular

relationships annotated in the BIOGRID, HPRD, DIP, BIND, INTACT, and MINT databases

Brain region-dependent pathways of high voluntary activity
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[30–35] and integrated in the BisoGenet SysBiomics repository. The network framework

includes genes that exhibited differential expression in at least one of the 2 orthogonal con-

trasts between lines (CeCo-CeHi or StCo-StHi) at log2(line fold change) > |1| and P-

value < 0.05. This specification ensured adequate connectivity between genes and overlap

between brain regions and enabled direct network comparison. The network framework genes

are identified by nodes with size representing the fold change magnitude. The remaining net-

work genes connect the framework genes in at least one of the interactome databases but

missed the differential expression thresholds used for the framework genes. The comparison

of these networks enabled the detection of shared and distinct co-regulation pattern between

lines and brain regions.

The study of transcription factor representation among the target genes exhibiting interac-

tion or activity line effects offered further insights into brain region dependent and independent

differences in gene regulation. The iRegulon plugin in Cytoscape was used to detect transcrip-

tion factors, binding motifs, and their optimal sets of direct targets among the differentially

expressed genes [29, 36]. Transcription factors that can regulate differentially expressed target

genes were identified using the motif position weight matrix [36] and their prevalence was

assessed using the normalized enrichment score (NES). Using the iRegulon default parameters,

motif sensitivity and specificity was ascribed for minimum receiver operator curve estimation

of the area under the curve threshold equal to 0.03 and motif similarity was deemed significant

at FDR P-value< 0.001 [36]. Transcription factors supported by> 15% of input genes and that

surpassed the default iRegulon NES = 3 cutoff [36] and are discussed.

Results and discussion

Locomotor and sequencing statistics

The Se and Co groups were significantly distinct on several locomotor behavior indicators. The

Se mice run between 4.4 and 5.5 fold more wheel revolutions during a 30 minute interval

(0.0001< P-value< 0.004) between 150 minutes and before the mouse was removed from the

cage for dissection. The Se mice reached between 2.3 and 3.6 fold higher maximum number of

revolutions per minute (0.00002< P-value< 0.002) during the same intervals. The Se mice

attained between 3.0 and 4.3 fold higher average number of revolutions per minute (0.0002<

P-value< 0.001) during the same intervals The Se mice attained between 2.7 and 3.4 fold higher

average number of revolutions per minute of activity per day (0.01< P-value< 0.000001)

between days 1 and 6 before dissection. These comparisons offer evidence that mice from the Se

line ran more and faster than mice from the Co line and that the variation of locomotor indica-

tors between lines is substantially higher than the variation within line.

The number of reads and quality scores along the reads were concordant across samples.

The average RIN was consistent across line-brain region groups and ranged from 8.8 to 9.1.

The average number of reads per sample was 114,142,993. The average quality score Phred

across read positions and samples was 30 indicating a 99.9% base call accuracy and thus reads

were not trimmed. The percentage of reads mapped to the mouse genome was consistent

across samples and was approximately 92% corresponding to an average of 104,394,396.3 total

reads mapped per sample. The normalized values of 15,213 genes were analyzed.

Voluntary activity line-by-brain region interaction effects on the

transcriptome

An innovative comparison of the transcriptome between a line selected for high voluntary

physical activity and a control line simultaneously in two brain regions is presented. Table 1

Brain region-dependent pathways of high voluntary activity
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lists the genes that exhibited the most significant line-by-region interaction effects (FDR-

adjusted P-value < 0.01, minimum log2 (fold change between lines)> |1.25|). The extended

list of 334 genes that exhibited interaction effect (P-value < 0.005) is presented in Table A in

S1 File. Among these, 86 genes exhibited a significant interaction effect (FDR-adjusted P-

value < 0.05) and the vast majority of these (76 genes) reached the same significance level in at

least one line contrast within brain region (StCo-StHi and CeCo-CeHi).

Further study of the interaction enabled the characterization of the differential expression

between activity lines within region among the genes that exhibited a significant interaction

effect. Overall, 154 genes exhibited line effect [log2(line fold change> |1|] in each brain region,

a difference between regions in the log2(line fold change) > |1|, and interaction effect (P-

value < 0.05). Among the 154 genes that exhibited an interaction effect, the majority (107

genes) exhibited differential expression between lines in either or both brain regions (Figure A

in S1 File). Furthermore, the Spearman correlation of the log2(line fold change) between both

regions based on the 154 genes was -0.034 further confirming that the brain regions studied

exhibit distinct associations between gene expression and high voluntary wheel-running

behavior.

The expression of various neuropeptide prohormones and related receptor genes exhibited

significant line-by-region interaction (Table 1). The over-expression of neuropeptide S recep-

tor 1 (Npsr1) in the Hi relative to Co line in both brain regions, albeit different levels of magni-

tude, is in line with reports that Neuropeptide S (NPS) and its receptor system have been

associated with arousal, anxiolysis, control of fear expression [37], drug addiction, stress [38]

and addictive behaviors [39] in human and mouse models. Consistent with the under-expres-

sion of Npsr1 in Co relative to Hi observed in this study, mice deficient for Npsr1 did not

exhibit NPS-induced hyperlocomotion nor abnormal response to stress [40].

Neuropeptide Y (Npy) was also under-expressed in the Ce of Hi relative to Co mice

(Table 1). This neuropeptide modulates reward-dependent and anxiety behaviors. The pattern

of Npy gene expression recorded in this study is consistent with reports that decreased concen-

trations of NPY are implicated in alcohol drinking behaviors and anxiety [41]. Related to

Table 1. Genes exhibiting significant (FDR-adjusted P-value< 0.01, minimum log2 (line fold change)> |1.25|) activity line-by-brain region interaction.

Gene Log2(Line Fold Change)1 Line-by-region Interaction

Symbol Name CeCo-CeHi StCo-StHi P-value FDR P-value

Krt25 keratin, type I cytoskeletal 25 isoform X2 -1.98 3.02 1.5E-09 2.3E-05

Lamc2 laminin subunit gamma-2 isoform X2 1.57 -0.59 7.7E-09 5.9E-05

Fam124a protein FAM124A isoform X1 -1.35 0.03 1.4E-08 7.1E-05

Npsr1 neuropeptide S receptor isoform X2 -6.47 -0.56 4.9E-08 1.9E-04

Myo18b unconventional myosin-XVIIIb isoform X1 1.40 -1.02 1.4E-07 3.5E-04

Vdr vitamin D3 receptor -3.37 -0.39 2.0E-07 4.4E-04

Rab37 ras-related protein Rab-37 isoform 1 0.23 1.61 3.4E-07 6.5E-04

Necab1 N-terminal EF-hand calcium-binding protein 1 -2.69 -0.32 4.2E-07 7.1E-04

Pcsk9 proprotein convertase subtilisin/kexin type 9 precursor 3.21 0.54 1.2E-06 1.8E-03

Tifa TRAF-interacting protein with FHA domain-containing protein A isoform X1 -1.58 -0.30 6.7E-06 6.0E-03

Creb3l1 cyclic AMP-responsive element-binding protein 3-like protein 1 1.40 0.20 1.0E-05 7.6E-03

Col5a2 collagen alpha-2(V) chain preproprotein -0.26 1.31 1.2E-05 8.2E-03

En2 homeobox protein engrailed-2 -0.31 1.54 1.3E-05 8.4E-03

Cd300lf CMRF35-like molecule 1 isoform X3 -1.12 -4.23 1.8E-05 1.1E-02

Npy pro-neuropeptide Y preproprotein 1.28 -0.11 1.9E-05 1.1E-02

1 CeCo-CeHi: cerebellum control versus selected high running line; StCo-StHi: striatum control versus selected high running line.

https://doi.org/10.1371/journal.pone.0201773.t001
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neuropeptide production, the proprotein convertase subtilisin/kexin type 9 (Pcsk9) can cleave

preprohormones into neuropeptides and biologically active peptides, and in the present study

this gene was substantially under-expressed in the Ce of Hi relative to Co line and the same

pattern albeit at lower magnitude was observed in the St. In agreement with the over-expres-

sion of Pcsk9 in Co relative to Hi mice observed in this study, Pcsk9 was over-expressed in the

prefrontal cortex of mice selected for low stress reaction (measured by magnitude of swim

stress-induced analgesia) relative to control mice [42].

In our study, vitamin D receptor (Vdr) and N-terminal EF-hand calcium-binding protein 1

(Necab1) showed the same interaction pattern as Npsr1, with over-expression in the Ce of Hi

relative to Co mice and to lesser extent in the St (Table 1). Reports of the association between

these genes, locomotor regulation, and reward-dependent behaviors support our findings.

Vitamin D interacts with the metabolites of several neuropeptides, including oxytocin [43],

vasoactive intestinal peptide, and pituitary adenylate cyclase-activating polypeptide [44] that

are associated with addiction, reward-dependent, and locomotor behaviors [45]. In agreement

with the observed over-expression of Vdr in Hi mice, Vdr-deficient mice have motor impair-

ments that interfere with their ability to float and with post-swimming activity [46]. Necab1 is

a candidate marker for commissural interneurons involved in coordinating left/right locomo-

tion and expression in the mouse dorsal root ganglia [47, 48]. Also, the Necab1/2 system serves

as a molecular marker for neuron populations of mechanosensory and pain circuits in the spi-

nal cord [48].

Similar to Vdr and Necab1, CD300 molecule like family member F (Cd300lf) was highly

over-expressed in the St of Hi relative to Co mice and presented a similar yet four-fold lower

differential expression in the Ce (Table 1). This pattern is in agreement with the reported over-

expression of Cd3001f in the St of mice that self-administered oxycodone (a highly addictive

opioid narcotic) relative to saline controls [49].

Genes associated with reward-dependent behaviors and locomotor control were among

those exhibiting highly significant interaction effects and opposite line patterns between the

two brain regions (Table 1). Keratin, type I cytoskeletal 25 (Krt25) was over-expressed in Hi

relative to Co mice in the Ce and under-expressed in the St. Krt25 was identified as a hub gene

in a network of genes associated with Rotarod and Beam Transversal tasks used to assess

motor coordination in mice [50], supporting the observed over-expression in the Ce of Hi rel-

ative to Co. Reciprocally, homeobox-containing transcription factor engrailed 2 (En2), lami-

nin subunit gamma-2 (Lamc2), and myosin XVIIIb (Myo18b) were all under-expressed in Hi

relative to Co mice in the Ce while over-expressed in the St. In agreement with the profiles

detected in this study, En2 knockout mice exhibited deficits in specific motor, spatial learning

and memory tasks, and altered social behavior including decreased play, reduced social sniff-

ing and allogrooming, and less aggressive behavior [51]. Conforming to our results, Lamc2

was under-expressed in acute nicotine exposure conditions [52] and Myo18b was under-

expressed in the midbrain ventral tegmental area that projects to the striatum of rats that self-

administered methamphetamine relative to control.

The identification of genes exhibiting significant line-by-brain region interaction effects

supports our premise that molecular mechanisms in the Ce and St can have complementary

and distinct associations during high voluntary wheel-running behavior. This finding illus-

trates the additional insights into the molecular basis of the reward-dependent and addictive

behaviors offered by the transcriptome comparison of high voluntary physical activity and

control mouse lines. Moreover, the annotation of numerous genes exhibiting significant activ-

ity-by-region interaction effects to reward-dependent and locomotor control processes

endorses the significance of the model and brain regions studied to understand mechanisms

associated with addiction-related behaviors.
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Functional analysis of voluntary activity line-by-region interaction effects

The molecular mechanisms that could be impacted by selection for high wheel running on a

brain-region dependent manner were detected by functional analysis of the genes exhibiting

an interaction effect. Table 2 lists several clusters of enriched (ES > 1.4) GO BP, MF, and

KEGG functional categories (> 5 genes exhibiting significant interaction effect and P-value <

0.0001) obtained from the DAVID analysis. A more complete list of clusters (ES> 1.5)

is available in Table B in S1 File. The enrichment of the BP nervous system development

(GO:0007399) is consistent with reports of similar functional enrichment in the striatum of

spontaneously hypertensive rats (SHi) that exhibit hyperactivity behaviors [53, 54], given that

lines of mice selected for high wheel running are also hyperactive in home cages when housed

without wheels [55]. The over-representation of this category was also observed among genes

differentially expressed in the striatum in response to acute morphine [56]. The enrichment of

neurogenesis (GO:0022008) is in agreement with reports that running and exercise were able

to increase adult neurogenesis in the dorsal dentate gyrus and hippocampus [57, 58]. These

categories are consistent with the suggestion that long-term exercise induces plastic changes in

the central nervous system, some of which may improve cognition [59].

The over-representation of cell adhesion (GO:0007155) among the genes exhibiting a sig-

nificant interaction effect is in agreement with the apparently addictive properties of high vol-

untary wheel running and is brain-region dependent [60]. Cell adhesion plays a central role in

neuronal connectivity and communication, synapse adhesion, and signal transduction, thus

providing the fundamental bases for learning, memory, and addiction [61, 62]. The enrich-

ment of BP cerebellum morphogenesis (GO:0021587) and cerebellar cortex development (GO:

Table 2. Clusters of informative Gene Ontology molecular functions (MF), biological processes (BP), and KEGG pathway categories including at least 5 genes

exhibiting an interaction effect and enriched (FDR-adjusted P-value< 0.1) from the DAVID analysis.

Cluster ES /Category GO Identifier Name Count P-value FDR P-value

ES: 2.7

BP GO:0007399 nervous system development 37 1.9E-05 5.0E-02

BP GO:0022008 neurogenesis 29 5.9E-05 5.3E-02

BP GO:0007420 brain development 18 7.2E-05 4.8E-02

BP GO:0031175 neuron projection development 18 8.6E-04 1.3E-01

ES: 2.1

BP GO:0021695 cerebellar cortex development 5 1.3E-03 1.5E-01

BP GO:0021587 cerebellum morphogenesis 4 7.0E-03 3.4E-01

BP GO:0021575 hindbrain morphogenesis 4 8.7E-03 3.7E-01

ES: 2.0

BP GO:0007610 behavior 17 1.1E-04 4.3E-02

BP GO:0044708 single-organism behavior 11 5.3E-03 3.0E-01

BP GO:0008344 adult locomotory behavior 5 9.6E-03 3.7E-01

ES: 2.0

BP GO:0007155 cell adhesion 25 1.2E-03 1.5E-01

ES: 1.5

BP GO:0071495 cellular response to endogenous stimulus 22 3.7E-04 8.0E-02

BP GO:0032870 cellular response to hormone stimulus 12 3.9E-03 2.6E-01

BP GO:1901653 cellular response to peptide 8 5.3E-03 3.0E-01

ES: 1.5

BP GO:0021953 central nervous system neuron differentiation 7 6.0E-03 3.1E-01

BP GO:0030900 forebrain development 8 4.4E-02 6.4E-01

https://doi.org/10.1371/journal.pone.0201773.t002
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GO:0021695) is in agreement with its functions in motor control, and in cognitive and motiva-

tional processes [8, 63, 64]. The enrichment of the locomotory behavior category

(GO:0008344) is consistent with the high voluntary activity line studied, with the role of the

cerebellum in locomotor control [65], and is supported by the genes associated with locomotor

control that exhibited significant interaction effect. Likewise, the enrichment of the response

to hormone and peptide categories (e.g.) is in agreement with reports that wheel-running stim-

ulates endogenous opioids [66, 67] and the anxiolytic effects of voluntary exercise [68]. This

finding is supported by the neuropeptide genes (e.g. Nr4a2, Pcsk9, Vdr) exhibiting interaction

effect in this study (Table 1).

The significant representation of the GO MF transcription factor (GO:0043565) category

(Table B in S1 File) is supported by genes such as the transcription factor En2 (Table 1). This

result suggests that regulators of gene expression are associated with high voluntary activity

line in a brain region-dependent. The enrichment of a transcription regulatory category is in

agreement with reports of a positive association between high wheel running in mice or tread-

mill running in rats and the expression of transcription factors such as Delta, c-Fos and FosB

in the brain [58, 69, 70]. More broadly, this category is in agreement with suggestions that

transcription factors contribute to reward-induced adaptations in the brain [71].

Impaired coordination (MP:0001405; P-value < 0.001), increased anxiety-related response

(MP:0001363; P-value < 0.001), abnormal cued conditioning behavior (MP:0001454; P-

value < 0.001), abnormal locomotor activation (MP:0003313; P-value < 0.003) and hyperac-

tivity (MP:0001399; P-value < 0.01) were the top MGI mammalian phenotype categories

enriched among the genes exhibiting interaction effect. Despite not reaching the FDR-adjusted

P-value < 0.05 threshold in Enrichr, these phenotypes are aligned with differences in locomo-

tor behaviors between the Se and Co lines [13].

Functional analysis of voluntary activity lines within brain region

Further insights into the molecular mechanisms potentially underlying the high voluntary

activity phenotype on a brain region-dependent manner were gained from the study of func-

tional categories over-represented among genes differentially expressed between lines within a

region. Tables 3 and 4 summarize several BP and KEGG categories enriched (FDR-adjusted P-

value < 0.05) among the over- and under-expressed genes in the CeCo-CeHi and StCo-StHi

contrasts, respectively detected using GSEA. The complete lists of all the terms enriched in

both contrasts (FDR-adjusted P-value < 0.2) are available in Tables C and D in S1 File.

Consistently enriched functional categories in Ce and St among the genes differentially

expressed between Hi and Co mice (Tables 4 and 5) include the KEGG oxidative phosphoryla-

tion (mmu00190) and ribosome (mmu03010) pathways, as well as cellular respiration process

(GO:0045333). The KEGG Parkinson’s disease pathway was also enriched among the genes

over-expressed in StCo-StHi at P-value < 1.0E-10 or FDR-adjusted P-value < 0.15 (Table D in

Table 3. Gene Ontology (GO) biological process (BP) and KEGG pathway categories enriched (FDR-adjusted P-value< 0.05) among the genes over-expressed in

the CeCo-CeHi contrast detected using GSEA.

Expression/Category Identifier Name Gene Count P-value FDR P-value

Over-expressed

KEGG mmu00190 oxidative phosphorylation 99 0.0E+00 0.0E+00

KEGG mmu03010 ribosome 82 0.0E+00 0.0E+00

BP GO:0045333 cellular respiration 127 0.0E+00 3.7E-04

KEGG mmu05012 Parkinson’s disease 101 0.0E+00 2.2E-03

KEGG mmu05016 Huntington’s disease 146 0.0E+00 6.1E-02

https://doi.org/10.1371/journal.pone.0201773.t003
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S1 File). Additional GO BPs were enriched in both regions, but these are less specific (e.g. BP

cellular respiration) or subsets of the previous three categories (e.g. BP oxidoreductase activity

acting on a heme group of donors) and thus further interpretation focuses on the 3 informative

categories.

The over-representation of the oxidative phosphorylation and cellular respiration processes

among the genes over-expressed in Co relative to Hi mice (Tables 3 and 4) is consistent with

reports that regular exercise decreases the level of reactive oxygen species and modulates pro-

tein oxidation in the brain of adult rats [72, 73]. Likewise, the enrichment of the KEGG ribo-

some pathway among the genes over-expressed in Co relative to Hi mice is consistent with

work demonstrating that protein synthesis is noticeably depressed in the brain of swimming

rats [74]. The enrichment of Parkinson’s disease in Hi relative to Co is in agreement with a

large body of studies in rodent models and humans suggesting that exercise can protects the

brain against such neurodegenerative conditions [75–77].

Further study of the consistency of the line expression patterns across regions helped us

understand the consistent enrichment of three KEGG pathways (oxidative phosphorylation,

ribosome, and Parkinson’s disease) in Ce and St summarized in Tables 3 and 4 despite the

non-overlapping differentially expressed genes listed in Table 1. The correlation between

regions of the log2(line fold change) of the genes enriching each pathway was computed to

assess the consistency of activity line patterns across brain regions. The correlation of gene

log2(line fold change) between brain regions for oxidative phosphorylation, ribosome, and

Parkinson’s pathways were 0.39, 0.53, and 0.89, respectively. The strong consistency between

brain regions of line differences among genes in the Parkinson’s pathway genes is in agreement

with reports that exercise augments the level of a dopamine receptor associated with addiction

and reward-dependent behaviors in a mouse model of Parkinson’s disease [78]. The brain

Table 4. Gene Ontology (GO) biological process (BP) and KEGG pathway categories enriched (FDR-adjusted P-value< 0.05) among the genes over- and under-

expressed in the StCo-StHi contrast detected using GSEA.

Expression/Category Identifier Name Gene Count P-value FDR P-value

Over-expressed

BP GO:0006119 oxidative phosphorylation 73 <1.0E-20 2.8E-03

BP GO:0045333 cellular respiration 129 <0.0E+00 4.2E-03

KEGG mmu03010 ribosome 82 0.0E+00 5.6E-03

Under-expressed

BP GO:0010575 + regulation of vascular endothelial growth factor production 18 0.0E+00 3.6E-02

https://doi.org/10.1371/journal.pone.0201773.t004

Table 5. Top informative genes exhibiting significant (FDR-adjusted P-value< 0.01, log2 (fold change)> |4|) differential expression between Control (Co) and

high activity (Se) lines across brain regions.

Symbol Name Log2(Co/Hi) FDR P-value

Zfp33b low quality protein: zinc finger protein 431-like -4.46 3.76E-12

Ms4a2 high affinity immunoglobulin epsilon receptor subunit beta isoform c 8.20 4.25E-11

Hist1h2al histone Cluster 1 H2A Family Member L 5.06 1.26E-09

Arhgap8& rho GTPase-activating protein 8 isoform X2 -5.13 1.61E-08

Ms4a3 membrane-spanning 4-domains subfamily A member 3 8.16 2.14E-08

Cyp11a1 cholesterol side-chain cleavage enzyme, mitochondrial isoform X1 -5.29 2.82E-08

Lipo2 lipase, member O2 isoform X3 4.30 8.35E-08

Gif gastric intrinsic factor precursor 8.25 2.02E-05

Krt12 keratin, type I cytoskeletal 12 -4.44 6.49E-05

Shox2 short stature homeobox protein 2 isoform X1 -5.34 0.0092

https://doi.org/10.1371/journal.pone.0201773.t005
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region-dependent profiles of the genes exhibiting interaction effect yet common enrichment

of the Parkinson’s disease pathway observed in this study supports the paradigm that both

striatal and cerebellar systems participate in motor skill learning albeit in distinct processes

[4]. The striatum processes may predominate during the learning of a sequence of movements

that support fast wheel running, whereas the cerebellum processes may predominate during

motor adaptation to environmental perturbations such as free access to running wheel. Evi-

dence supporting the previously hypothesized complementary role of these brain systems in

motor skill learning has come from impairments found in patients with striatal dysfunction

such as Parkinson’s disease [4]. With respect to the other two pathways enriched in genes

exhibiting brain-region dependent profiles between lines, ribosome and oxidative phosphory-

lation pathways were enriched in a rat model of cerebral ischemic tolerance to restricted blood

flow [79]. Learning a complicated sequence of voluntary finger movements in humans has

been associated with higher regional cerebral blood flow in the cerebellum and that acquisition

of the motor skill results in an increase of the regional cerebral blood flow in the striatum [80].

A motivating finding is the enrichment of the BP positive regulation of vascular endothelial

growth factor (VEGF) production among genes over-expressed in the St of Hi relative to Co

mice (Table 4, Table D in S1 File), whereas no functional category achieved significant enrich-

ment among the genes exhibiting the same pattern in the Ce (Table 3, Table C in S1 File).

Despite the presence and role of VEGF in both brain regions, the over-representation of the

positive regulation of VEGF in the St of Hi mice is consistent with the neuroprotective effect of

VEGF in Parkisons’s disease. Parkinson’s disease patients exhibit dopamine deficit in the St and

suffer loss of locomotor control, expressed in rigidity and shaking [81]. These findings lead us

to suggest that the high gene expression of VEGF in the Hi mice could support higher locomo-

tor control through the St, rather than the Ce. Our study of Ce and St simultaneously enabled

this innovative insight into the molecular mechanisms supporting high voluntary activity.

Interaction networks of voluntary activity lines within brain region

Gene networks were inferred to understand the simultaneous impact of line and brain region

on multiple gene expression profiles while accounting for known molecular relationships. The

reconstructed networks supplemented the discovery of candidate genes and enriched biologi-

cal processes. Networks were obtained for the contrasts between the Hi and Co lines within

brain region. Figs 1 and 2 depict the gene networks for the CeCo-CeHi and StCo-StHi con-

trasts, respectively. The majority of the genes in the network were differentially abundant at

FDR P-value < 0.1 (Six3, Ndst4, Lamc2, Dlx5, Spp1, Vdr, Cd300lf, Tifa, Nphs1, Tfap2d, Tec,

Pik3ap1). Four genes differentially abundant at P-value < 0.05 were included to enable con-

nectivity and a more populated network. The network reconstruction centered on a frame-

work of genes that exhibited a line fold change difference between brain regions > |2| and an

activity line-by-brain region interaction effect. This strategy enabled the reconstruction of a

network of 110 genes, afforded adequate connectivity between framework genes and corre-

spondence between brain regions, and facilitated the interpretation of gene network differ-

ences between lines and brain regions. In the networks, green and red rectangular nodes

represent over and under-expressed framework genes. The size of the node and intensity of

the color denote the magnitude of the fold change. The genes in the network depicted without

nodes did not reach the differential expression threshold but connect the framework genes

based on the protein-protein interaction databases considered. The edges represent known

direct associations between the corresponding nodes.

Two network framework genes, Cd300lf and secreted phosphoprotein 1 (Spp1), reached

significant differential expression level in both brain region networks and have been associated

Brain region-dependent pathways of high voluntary activity

PLOS ONE | https://doi.org/10.1371/journal.pone.0201773 August 2, 2018 11 / 23

https://doi.org/10.1371/journal.pone.0201773


with functional categories relevant to this study. Cd300lf was over-expressed whereas Spp1 was

under-expressed in Hi relative to Co in both brain regions. Both genes were more differentially

expressed in the St than in the Ce. The pattern of these genes in this study is consistent with pro-

files associated with reward-dependent behaviors. Spp1 is postulated to have neuroprotective

activity in the cerebellar cortex in adult rats [82] and was down-regulated in the dorsolateral

prefrontal cortex of alcoholic patients relative to controls [83]. Also, this gene is annotated to

multiple risk pathways associated with Parkinson’s disease [84]. In our study, the Parkison’s

pathway was enriched among the genes differentially expressed between activity lines, and the

expression patterns were highly and positively correlated between brain regions. Also, Cd300lf

was over-expressed in the striatum of mice that self-administered oxycodone relative to saline

controls [49]. Laminin, gamma 2 (Lamc2) was under-expressed in Hi relative to Co mice only

in the Ce network. Lamc2 was also down-regulated by acute nicotine exposure [8, 52].

Both networks (Figs 1 and 2) highlight several transcription regulators that are under-

expressed in Hi relative to Co and that have been previously associated with reward-depen-

dency studies. In the Ce, these genes include transcription factor AP-2-delta (Tfap2d), Sine

oculis homeobox homolog 3 (Six3), and distal-less homeobox 5 gene (Dlx5). Tfap2d is a key

transcriptional regulator of the posterior midbrain region that adjoins the cerebellum [85] and

was identified among the genes associated with preferential amplification in the dorsal dentate

gyrus of rats administered methamphetamine relative to saline [86]. Six3 is a transcription reg-

ulator that has been associated with alcohol and nicotine co-dependence [87]. In a study of

Fig 1. Network of differential gene expression in the cerebellum. Delineated nodes: framework genes that exhibited

a line fold change difference between brain regions> |2| and an activity line-by-brain region interaction effect; red:

under-expression in Hi and green: over-expression in Hi relative to Co. The size of the node and intensity of the color

denote the magnitude of the fold change. Non-delineated nodes: genes that did not reach the differential criteria or

connecting genes. Edges: known direct associations between the corresponding nodes.

https://doi.org/10.1371/journal.pone.0201773.g001
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Lewis rats known to be more vulnerable to drugs of addiction than Fischer 344 rats, Dlx5

exhibited differential expression in the nucleus accumbens and frontal cortex between both

strains [88]. Dlx5 was proposed to activate transcriptional networks required for GABAergic

fate specification of neurons in the forebrain [89].

In the St network, epsin 3 (Epn3) and the transcription regulators LIM/homeobox protein

Lhx1 (Lhx1) and SKI family transcriptional corepressor 1 (Skor1) were under-expressed in Hi

relative to Co mice. Consistent with our results, Lhx1 was over-expressed in the striatum of

rats treated with the sedative Isoliquiritigenin that reduced cocaine-triggered locomotor activ-

ity [90]. Variants in Skor1 have been associated with restless leg syndrome that has high inci-

dence during opioid withdrawal periods [91]. The comparison of the gene networks of

differential expression between activity lines across brain regions exemplified the mostly dis-

tinct impact of high voluntary activity in the Ce and St.

Brain-region independent effect of activity line

Genes that exhibited differential expression between activity lines independent of brain region

(excluding genes with a significant interaction effect) were studied. Table 6 lists several top differ-

entially expressed genes between activity lines (FDR-adjusted P-value< 0.01, log2(line fold

change)> |4|). An extended list of 144 genes log2(Co/Se)> |1| is presented in Table E in S1 File.

Many of these genes have been associated with reward-dependent behaviors and with loco-

motor regulation in a manner similar to that observed in the present study. Among the genes

Fig 2. Network of differential gene expression in the striatum. Delineated nodes: framework genes that exhibited a

line fold change difference between brain regions> |2| and an activity line-by-brain region interaction effect; red:

under-expression in Hi and green: over-expression in Hi relative to Co. The size of the node and intensity of the color

denote the magnitude of the fold change. Non-delineated nodes: genes that did not reach the differential criteria or

connecting genes. Edges: known direct associations between the corresponding nodes.

https://doi.org/10.1371/journal.pone.0201773.g002
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in Table 5, cytochrome P450 11A1 (Cyp11A1) was over-expressed in the Hi relative to the Co

mice in both brain regions. This gene modulates the brain sensory and motor systems and

locomotor coordination through the involvement of the coded enzyme in the modifications of

neurosteroidogenesis-related proteins and neurosteroids [92].

The differential expression of rho GTPase activating protein 8 (Arhgap8) in Hi relative to

Co mice is consistent with reports that several rhoGAPs are coded by a gene that modulates

stimulant and sedative behaviors, such as motor incoordination induced by ethanol in the

fruit fly [93]. The over-expression of keratin, type I cytoskeletal 12 (Krt12) in Hi relative to Co

mice is consistent with the detected association between mutations in this gene and sensitivity

of mice to the locomotor stimulant methamphetamine [94]. Likewise, the over-expression of

Shox2 in the Hi relative to Co mice is consistent with the association between the expression

of this gene and chronic substance abuse treatments in mice [95].

The functional enrichment analysis of the 122 genes differentially expressed between Co

and Hi mice was implemented in DAVID because of the removal from consideration of genes

exhibiting an interaction effect. Among these genes, 24 genes were annotated to the GO BP

immune system process (GO:0002376), 16 genes were annotated to the GO BP immune

response (GO:0006955), and 7 genes to the KEGG pathway cytokine-cytokine receptor inter-

action (mmu04060). These categories were enriched at P-value < 0.0007) yet did not reach the

FDR-adjusted P-value < 0.1. The enrichment of MGI mammalian phenotype categories

including: abnormal immune system organ morphology (MP:0002722; P-value < 0.0008),

decreased tumor necrosis factor secretion (MP:0008561; P-value 0.003) detected by EnrichR

among the differentially expressed genes support the previous findings. Overall, a limited

number of genes exhibited differential expression between lines exempt of interaction effect,

and the known function of several of these genes support the categories identified for genes

exhibiting line-by-brain region interaction effects.

Main effect of brain region on gene expression

The focus of this study was to further the understanding of the transcriptome differences between

a high voluntary activity relative to control line in both or either the St and Ce. The comparison of

gene expression between brain regions presented here serves as molecular confirmation of the

regions studied and analytical completeness. The comparison of brain regions also offers evidence

of the statistical power of the experimental design used to detect genes known to be differentially

expressed between brain regions based on the mouse ENCODE transcriptome database [96]. Sup-

porting the expected differences between regions, 243 genes presented a significant (FDR-adjusted

P-value< 1.0E-15) brain region effect, excluding genes exhibiting an interaction effect. Table 6

lists the top differentially expressed genes (FDR-adjusted P-value< 1.0 E-19, log2(region fold

change)> |5|) and an extended list of genes is presented in Table G in S1 File.

Several known molecular markers of Ce and St were differentially expressed in this study,

confirming the representativeness of the brain region samples profiled. Consistent with

known expression patterns of genes for the 2 brain region studied in the mouse ENCODE

database, Homer3, Car8, Cbln3, Gabra6, Pcp2, Fat2, Arhgef33, and Cbln1 are uniquely or

highly over-expressed in the Ce relative to the whole brain whereas Foxg1, Rin1, Dlx6as1,

Chrm4, and Dlx1as are highly over-expressed in non-cerebrum regions relative to the Ce.

Regulatory networks of brain-region dependent and independent activity

line effects

The Ce and St gene networks in Figs 1 and 2 highlight the differential expression between

activity lines of genes that regulate the transcription of other genes. This finding was
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corroborated by the enrichment of MF category related to transcription regulation among the

genes that exhibited an interaction effect. Further understanding of this phenomenon was

gained by studying the enrichment of transcription factors among the 276 potential target

genes that exhibited interaction and activity line main effects. Both groups of genes were ana-

lyzed together for potential co-regulatory enrichment because transcription factors may

impact the expression of some target genes on a brain region-dependent and on a brain-inde-

pendent manner in other genes.

Table 7 summarizes the transcription factors over-represented (NES > 3.5,> 15% of all the

differentially expressed genes analyzed) together with the number of target genes, number of

motifs used to assign the transcription factors to the genes, and the magnitude of the interac-

tion and line effects on the transcription factor. Fig 3 depicts the relationships between the 3

transcription factors (triangles), target genes (ovals) and the targets of multiple transcription

factors.

The 3 transcription factors most enriched were: En2, signal transducer and activator of

transcription 6 (Stat6), and eomesodermin (Eomes), and these transcription factors have been

associated with behavior, locomotor, and dopamine processes. En2 exhibited a significant

interaction effect characterized by under-expression in the St of Hi relative to Co mice

(Table 1). This trend is consistent with reports that En2-deficient mice perform under-par in

Table 6. Lists top differentially expressed genes between the cerebellum (Ce) and the striatum (St) at FDR-adjusted P-value< 1.0 E-19 and log2(fold change)> |5|.

Symbol Name log2(Ce/St) P-value FDR P-value

Homer3 homer protein homolog 3 isoform X1 5.47 4.7E-24 3.6E-20

Car8 carbonic anhydrase-related protein 7.09 4.7E-24 3.6E-20

Cbln3 cerebellin-3 precursor 10.79 1.1E-23 5.5E-20

Gabra6 gamma-aminobutyric acid receptor subunit alpha-6 isoform X1 11.52 7.9E-23 2.4E-19

Atp2a3 sarcoplasmic/endoplasmic reticulum calcium ATPase 3 isoform a 5.67 7.3E-22 1.2E-18

Foxg1 forkhead box protein G1 -9.40 7.6E-22 1.2E-18

Pcp2 Purkinje cell protein 2 isoform X2 10.48 2.1E-21 2.3E-18

Rin1 ras and Rab interactor 1 isoform X4 -5.09 4.0E-21 3.3E-18

Adora2a adenosine receptor A2a isoform X2 -7.40 4.8E-21 3.7E-18

Fat2 protocadherin Fat 2 isoform X2 11.20 5.2E-21 3.7E-18

Arhgef33 rho guanine nucleotide exchange factor 33 isoform X1 7.38 5.4E-21 3.7E-18

Chrm4 muscarinic acetylcholine receptor M4 -5.93 6.4E-21 3.9E-18

Cbln1 cerebellin-1 precursor 6.40 1.9E-20 9.3E-18

Dbpht2 DNA binding protein with his-thr domain -5.21 2.0E-20 9.4E-18

https://doi.org/10.1371/journal.pone.0201773.t006

Table 7. Transcription factors over-represented (normalized enrichment score> 3.5, targeting> 15% of all the differentially expressed genes considered) among

genes exhibiting interaction and line effect and identified by at least 2 motifs.

Transcription factor NES1 Target Count2 %3 Motif/Track Count4 Interaction Effect Line Effect

P-value FDR P-value Log2(Co/Se) P-value FDR P -value

Stat6 3.80 61 22.1 4 3.5E-01 8.5E-01 0.21 3.2E-02 1.7E-01

En2 3.49 48 17.4 12 1.3E-05 8.4E-03 -0.62 7.7E-04 1.6E-02

Eomes 3.49 42 15.2 2 1.3E-01 6.9E-01 -1.10 1.6E-03 2.5E-02

1NES: normalized enrichment score or maximal enrichment score for a transcription factor
2 Number of target genes
3 Percentage of potential target genes out of all genes analyzed
4 Number of motifs per transcription factor

https://doi.org/10.1371/journal.pone.0201773.t007
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motor, spatial learning and memory tasks [51]. Eomes is highly expressed in the cerebellum

compared to the frontal cortex and is associated with neurodevelopment [97]. Stat6 was

under-expressed in Hi relative to Co mice and this pattern is consistent with reports that

Stat6-deficient mice exhibited lower immobility time in the forced swimming test relative to

wild type mice [98].

Fig 3 depicts the association between En2 and Eomes through a reciprocal regulation of

each other and this mode of action is in agreement with the consistent over-expression of both

genes in Hi relative to Co mice (Table 5). En2 and Eomes have been associated with multiple

neuropeptide genes that exhibited line-by-region effects including vasoactive intestinal poly-

peptide (Vip), neurotensin (Nts), cholecystokinin (Cck), neuropeptide Y (Npy), and the recep-

tor Npsr. This finding indicates that members of the neuropeptidome system have distinct

profiles between activity lines. Moreover, the association between neuropeptides and activity

line are distinct between the Ce and the St.

Conclusions

The innovative comparison of the transcriptome between two mouse lines that exhibit differ-

ent levels of voluntary wheel-running behavior simultaneously in the Cerebellum and Striatum

offered novel insights into brain-region specific and common differential gene expression and

networks that can be associated with reward-dependent behaviors. The analysis of locomotor

measurements between days 1 and 6 prior to dissection indicated that the mice from the

selected line run substantially further and faster than the mice from the control line. The ratio

between selected and control mice on average number of revolutions per minute of activity

per day remained fairly uniform between days 1 and 6 prior to dissection. This result does not

Fig 3. Transcription factors enriched among the genes exhibiting line-by-region interaction or activity line main

effect. Triangles: transcription factors; ovals: target genes.

https://doi.org/10.1371/journal.pone.0201773.g003
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offer evidence of differential sensitization to running wheel access for the mice and period

studied although sensitization during longer trials should be assessed. The majority of these

genes were differentially expressed between activity lines in either one or the other brain

region, with approximately even distribution between Ce and St.

The differentially expressed genes detected in this study have been previously associated

with reward-dependent behaviors, locomotor control, and neurological or behavioral disor-

ders. Moreover, the differential expression patterns discussed were consistent with patterns

observed in relevant studies of addiction, locomotor behaviors, and/or neurological disorders.

Insufficient resources prevented further validation of the profiles using different quantitative

technologies. On the other hand, the detection of differential expression of multiple genes that

are accepted molecular markers of the corresponding brain regions from other studies sup-

ports the capacity of the experimental design to detect molecular differences.

Applying the environmental conditions of the high voluntary running and control lines, all

mice had access to running wheels prior to sampling. This practice minimized the likelihood

that highly motivated mice would experience stress akin to withdrawal from reward if blocked

from wheel access. On the other hand, the used practice hinders the possibility to distinguish

the effect of a genetic basis of motivation for wheel running from the effect of running per se

on the transcriptome. Further studies comparing female and male mice enabled or blocked

from physical activity can offer insights into potential multi-factorial interactions impacting

gene expression profiles.

A breakthrough result was the identification of 3 KEGG pathways that were enriched

among the genes differentially expressed between activity lines in both brain regions studied.

Among these, the pattern of expression between lines of genes in the enriched Parkinson’s

pathway was high and positively correlated between regions whereas the patterns in the

enriched oxidative phosphorylation and ribosome pathways were less consistent between

brain regions. This result highlights how the same selection for high voluntary activity can

impact some molecular mechanisms in a consistent manner across brain regions while other

processes are impacted in distinct manner across regions. The simultaneous study of St and Ce

enabled us to confirm the predominant brain-region dependent association of transcription

factors with activity line through their target genes. Our study of transcriptional regulation

advanced the understanding of the inherent role of transcription factors in modulating volun-

tary exercise and possibly reward-dependent behaviors in general.

A compelling finding was the prevailing differential expression of genes in the neuropeptide

system between lines across the brain regions studied. Moreover, the enriched transcription

factors detected in this study are associated with neuropeptide and related genes. The predom-

inant brain-region dependent differential gene expression associated with lines that exhibit

distinct voluntary activity behavior supports the necessity to develop biomarkers and therapies

for reward-dependent behaviors in consideration of brain-region dependencies.
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