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Scattering of acoustic waves by a superfluid vortex

Stefan G. Llewellyn Smith

Department of Mechanical and Aerospace Engineering, UCSD, 9500 Gilman Drive,

La Jolla, CA 92093-0411, USA

E-mail: sgls@ucsd.edu

Abstract. The scattering of plane acoustic waves by a vortex in a two-dimensional

superfluid is examined for small Mach number M . The solution is developed from a

systematic expansion of the governing equations in three separate regions: an inner

vortical region which scales as the healing length, an interaction region governed by

irrotational hydrodynamics, and an outer wave region. The solutions in the different

regions are matched together. The leading-order scattered field occurs at O(M2δ)

in the wave region, where δ is the small non-dimensional amplitude of the incoming

acoustic wave. The far-field behaviour of the wave-region solution shows that a different

form of the expansion is required in the forward scatter direction: this corresponds to

the expression previously derived for the acoustic Magnus force.

Submitted to: J. Phys. A: Math. Gen.

1. Introduction

The advent of high-temperature superconductivity has led to a renewal of interest in

acoustic scattering due to vortices in a superfluid, starting with Ao and Thouless (1993)

and continuing with Sonin (1997), Stone (2000) and other papers. Similarly, the proposal

to measure vorticity in classical fluids using acoustic methods (Lund and Rojas 1990)

has led to the development of useful experimental techniques (Labbé and Pinton 1998,

Oljaca et al. 1998), and also led to renewed interest in acoustic scattering due to vortices

in a classical fluid.

The scattering of sound by vortices in classical fluids and superfluids has a long

history, dating back to Obukhov (1948) and Pitaevskii (1959) respectively. The original

source of interest in the classical fluids literature came primarily from attempts to

understand the scattering of sound by turbulence (Kraichnan 1953, Lighthill 1953,

Batchelor 1956). Subsequent work concentrated generally on the scattering of sound

by simple vortical structures. The superfluid literature has concentrated mostly on the

momentum transfer between the acoustic field and the vortex (for a review of this and

many other topics to do with vortices in nonlinear fields, see Pismen 1999).

The classical fluids literature considered the cases of short and long waves, measured

relative to the size of the vortex, which have been called the WKB and Born limits.
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The latter case was investigated, among others, by Müller and Matschat (1959), Fetter

(1964) and Fabrikant (1983). These authors all found that the scattered field had infinite

scattering far from the vortex in the forward direction, i.e. the direction in which he

plane was originally propagating.

Colonius, Lele and Moin (1994) carried out direct numerical simulations of the

Navier–Stokes equations to compute the scattering. The results of their computational

aeroacoustic calculation agreed well with the predictions of the Born limit, except in

the forward scatter direction, where the scattering amplitude was finite. (Nore et al.

1994 performed numerical simulations for superfluids, but not specifically of scattering.)

Independently, Sakov (1993) had found a uniformly valid solution which showed there

was a transition region in the forward scatter direction.

All of the above work used what might be called the Lighthill analogy, where the

equations of motion are transformed into a forced wave equation, and the forcing term

is replaced by the interaction term between wave and vortex. The validity of this

approach is not immediately apparent, since it is not based on a systematic treatment

of the equations of motion. Lighthill theory for aerodynamic sound generation had

been shown to be consistent using matched asymptotic expansions (MAEs) by Crow

(1970). Ford and Llewellyn Smith (1999; hereafter FLS) solved the problem of two-

dimensional acoustic scattering of a plane wave by an arbitrary axisymmetric vortex

with non-zero circulation using MAEs and recovered previous results, thereby putting

them on a rigorous footing. Llewellyn Smith and Ford (2001a,b) carried out the same

program for acoustic scattering by three-dimensional vortical flows. The results are

different in the sense that there is no apparent singularity to resolve, but there are also

similarities because matching is also needed to obtain the far-field scattered field.

Parallel lines of investigation in the superfluid literature have used similar Lighthill-

analogy techniques, and obtained the same predictions for the scattering amplitude. The

aim of this work is to compute scattering of a plane acoustic wave due to a superfluid

vortex from a systematic expansion of the superfluid equations. We shall use the Gross–

Pitaevskii equation to model the superfluid.

Following FLS (and originally Crow 1970), the procedure used here starts from an

asymptotic expansion in terms of the Mach number, M , which is as usual the ratio of

the characteristic velocity of the vortex to the sound speed. The superfluid vortex has

a natural scale given by the healing length, and there is a wave region with length scale

given by the wavelength of incoming waves, where the dominant dynamics are those

of linear acoustics. However, unlike the MAE approach to dissipative dynamics of Neu

(1990) and Pismen and Rodriguez (1990), a third region is required: this is an interaction

region, where the dominant dynamics are those of irrotational hydrodynamics and where

the vortex and wave interact. The length scale of this region is fixed by relating the

Mach number of the vortex to the Strouhal number of the incoming wave compared

to the vortex. The Strouhal number is essentially the nondimensional frequency of the

incoming wave.

The amplitude of the incoming acoustic wave is taken to be small, in the sense
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that its characteristic velocity potential in the interaction region is O(δ) smaller that

the potential due to the vortex, where δ ≪ 1. We are interested only in the linear

scattering.

The plan of the paper is as follows. Section 2 outlines the equations and the physical

flow considered, and sets up the asymptotic procedure. The leading-order vortical and

wave flows are calculated. Sections 3, 4, and 5 solve the resulting equations at successive

orders in δMn. Section 6 examines the far-field behaviour of the solution, and Section 7

concludes. The calculations are similar to those of FLS, but the derivation and procedure

are outlined in a way which should be intelligible on their own. The steps involved in the

calculation of the far-field behaviour are not reproduced however. The results presented

here are not new (see Pismen 1999 and Lund and Steinberg 1995), but the aim is to

present results on a rigorous footing, and highlight the similarities and differences with

the classical case.

2. Statement of the problem

2.1. Governing equations and flow configuration

We consider a superfluid governed by the Gross–Pitaevskii equation (Donnelly 1991)

i~
∂ψ

∂t
= − ~

2

2m
∇2ψ − ψ(E − V0|ψ|2), (1)

appropriate to a weakly interacting Bose gas. This is a nonlinear Schrödinger equation

for a the single-particle wavefunction ψ(x, t) governing an assembly of bosons of mass

m, with V0 the strength of the δ-function interaction potential between the bosons, and

E the single-particle energy. The Madelung transformation ψ = ReiS, with R and S

real, leads to

∂ρa

∂t
+ ∇ · (ρau) = 0, (2)

∂φ

∂t
+ 1

2
(∇φ)2 − ~

2

2m2

∇2ρa
1/2

ρa
1/2

− E

m

(

1 − V0

Em
ρa

)

= 0, (3)

where ρa = mR2 is the total density and φ = ~S/m is the velocity potential, to which

the velocity u is related through u = ∇φ. In the language of fluid mechanics, (2) is

the continuity equation and (3) is Bernoulli’s equation. The third term in (3) is the

quantum pressure.

We now non-dimensionalize variables. The phase S is dimensionless, so the physical

variable φ must scale like ~/m. In fluid terms, φ is a velocity potential and scales as

φ ∼ UL, where U and L are the velocity and length scales appropriate to the interaction

region where the acoustic flow will interact with the vortical flow. The time scale of

the interaction region is taken to be T = L/U so that advective effects will enter the

problem. The natural scaling for density is ρ∞ ≡ Em/V0, while the speed of sound for

the medium at infinity is given by c2∞ ≡ E/m. The non-dimensional amplitude of the

incoming wave field is taken to be δ ≪ 1, and the linear scattering problem requires the

solution of the equations proportional to δ.
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The Mach number appropriate to the interaction region is defined by M ≡ U/c∞.

It may also be viewed as the ratio of vortical and interaction length scales, since

M2 = 2a2/L2, where the healing length, a ≡ ~/
√

2mE, is the length scale appropriate

to the vortical region.

We may now determine the length scale of the interaction region by fixing the value

of the Strouhal number St ≡ ωL/U , which gives the ratio of the vortex turn-over time

to the incoming acoustic wave time scale. The Mach number of the flow is then given

by M2 = St−1
~ω/E. We assume that this quantity is small. There are then three

regions in the flow: a wave region with scale LM−1, an interaction region with scale L

and a vortical region with scale LM . Note that in the acoustic case, there are just two

regions, called in FLS wave region and vortical region. The latter corresponds to both

interaction and vortical regions here. In the wave and interaction regions, the density

departs from its value at infinity by O(M2), so we may write ρa = ρ∞(1 + M2ρ). We

are thus led to three sets of equations in the three regions.

In the wave region, the appropriate physical coordinate is X ≡ Mx, and the

velocity potential and density (corresponding to ρ) are denoted by Φ and H respectively.

The governing equations are then

∂H

∂t
+ ∇2Φ +M2

∇ · (H∇Φ) = 0, (4)

∂Φ

∂t
+ 1

2
M2(∇Φ)2 −M2∇2(1 +M2H)1/2

2(1 +M2H)1/2
+H = 0, (5)

where gradient operators act with respect to the wave variable X.

In the interaction region, the equations become

M2∂ρ

∂t
+ ∇2φ+M2

∇ · (ρ∇φ) = 0, (6)

∂φ

∂t
+ 1

2
(∇φ)2 − ∇2(1 +M2ρ)1/2

2(1 +M2ρ)1/2
+ ρ = 0. (7)

In this region, once the potential φ at a certain order has been calculated, the density

ρ may be read off directly from (7). This is different from the classical case where

the pressure and density must be solved after computing the velocity, which includes a

rotational component.

Finally, there is a vortical region in which the quantum pressure is a leading-order

quantity. The physical length scale is then the healing length, a, and the appropriate

physical coordinate is ξ ≡
√

2M−1x. The equations will be written in terms of the

velocity potential ϕ and the nondimensional total density squared, R, so that now

ρa = ρ∞R
2. This leads to

M2∂R

∂t
+ 2∇R · ∇ϕ+R∇2ϕ = 0, (8)

M2∂ϕ

∂t
+ (∇ϕ)2 − ∇2R

R
+R2 − 1 = 0, (9)

where the gradients act with respect to the vortical variable ξ. The time-derivative

terms in the vortical region are small in light of the scalings considered here.
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Figure 1. The GP vortex R0(η).

2.2. Leading-order solution in the vortical region

The expansion for the solution in the vortical region takes the form

ϕ = ϕ0 + δ(ϕ01 +Mϕ11 +M2ϕ21) + O(M2, δM3, δ2), (10)

R = R0 + δ(R01 +Mρ11 +M2ρ21) + O(M2,M3δ, δ2). (11)

The leading-order solution in the vortical region is the GP vortex given by ϕ0 = θ,

R0(η), where η and θ are polar coordinates in the vortical region. The function R0(η)

satisfies

R′′
0 +

1

η
R′

0 −
R0

η2
+R0(1 −R2

0) = 0. (12)

The function R0(η), shown in figure 1, is monotonically increasing and satisfies R0 =

0.583η + O(η3) for small η and R0 = 1 − 1
2
η−2 + O(η−4) for large η.

2.3. Leading-order solution in the intermediate region

The expansion for the solution in the intermediate region takes the form

φ = φ0 + δ(φ01 +Mφ11 +M2φ21) + O(δM3, δ2), (13)

ρ = ρ0 + δ(ρ01 +Mρ11 +M2ρ21) + O(M2,M3δ, δ2). (14)

The leading-order solution is given by the steady axisymmetric solution to

∇2φ0 = 0, 1
2
(∇φ0)

2 + ρ0 = 0, (15)

with purely azimuthal flow. This leads to φ0 = Aθ and ρ0 = −1
2
A2/r2. Matching to the

vortical region gives A = 1. This is just the velocity field due to a point vortex with

circulation 2π, which is a solution of the irrotational flow equation for φ0. This solution

could have been obtained as the large-η limit of (12). Note that the leading-order part

of R0 in the vortical region matches onto the constant background density 1, and it is

the correction term of order η−2 that matches to φ0 in the intermediate region.
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For large r, the velocity potential remains an O(1) term, but the density decays like

r−2, and will hence match to an O(M2) term in the wave region. However, this term is

not linear in δ, and does not appear in the linear scattering problem.

2.4. Leading-order solution in the wave region

The expansion for the flow in the wave region takes the form

Φ = Φ0 + δ(Φ01 +M2Φ21) + O(δM4, δ2), (16)

H = δ(H01 +M2H21) + O(M2,M4δ, δ2). (17)

The velocity potential Φ0 = θ matches onto the velocity potential φ0 in the intermediate

region. This is again the potential due to a point vortex at the origin in an irrotational

fluid.

2.5. The solution in the wave region at O(δ)

The incoming acoustic wave satisfies

∂H01

∂t
+ ∇2Φ01 = 0,

∂Φ01

∂t
+H01 = 0. (18)

We take the solution

H01 = ei(kX−ωt), Φ01 = − i

k
ei(kX−ωt), (19)

to aid comparison with the classical case (see FLS). The real part of all fields will be

understood in what follows. The dispersion relation is taken here to be ω = k, so that

the wave is coming from X = −∞. The O(δ) solutions in the intermediate and vortical

regions will be computed as part of the full solution. For small values of X, the incoming

wave takes the form

H01 = e−iωt(1 + ikX − 1
2
k2X2 + · · ·), Φ01 = − i

k
e−iωt(1 + ikX − 1

2
k2X2 + · · ·). (20)

3. The solution to O(δ)

3.1. The solution in the intermediate region at O(δ)

The solution in the intermediate region at O(Mδ) must match onto the solutions in

the vortical and wave regions. The matching procedure could be carried out using van

Dyke’s rule or using an intermediate variable, but we shall be content merely to use

informal limit arguments. As r → ∞, we require

φ01 → − i

k
e−iωt (21)

to match onto the incoming wave, since the solution in the intermediate region at any

order is determined by the velocity potential.

The governing equations at O(δ) are

∇2φ01 = 0,
∂φ01

∂t
+ ∇φ0 · ∇φ01 + ρ01 = 0. (22)
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The velocity potential at this order is a single-valued harmonic function and hence takes

the form

φ01 =

∞
∑

n=1

(anr
n + bnr

−n)einθ + a0 + b0 log r. (23)

Matching onto the wave region shows that the coefficients an must be zero for n > 0

since they would otherwise require terms of O(M−nδ) in the wave region, which do not

exist. The coefficient b0 is also excluded because it has no counterpart in the wave

region at O(δ). Matching onto the vortical region shows that the remaining bn must all

be zero, since there are no terms of O(M−nδ) in the vortical region. We are hence left

with

φ01 = − i

k
e−iωt, ρ01 = e−iωt, (24)

after the matching condition has been applied and ρ01 has been obtained from (22)..

3.2. The solution in the vortical region at O(δ)

The form of (24) shows that there must be an O(δ) component of the solution in the

vortical region. At this order, the system (8–9) becomes

2R′
0

∂ϕ01

∂η
+

2

η2

∂R01

∂θ
+R0∇2ϕ01 = 0, (25)

2

η2

∂ϕ01

∂θ
− 1

R0

∇2R01 +
∇2R0

R2
0

R01 + 2R0R01 = 0. (26)

These equations form a linear fourth-order system with coefficients that depend only on

η. Hence different azimuthal modes may be considered separately.

Matching onto (24) will give a condition for the axisymmetric component of R01

and ϕ01. For azimuthal wavenumber 0, the velocity potential that satisfies (25) is

ϕ
(0)
01 = A+B

∫ η
(uR2

0)
−1 du. The integral has a logarithmic singularity at the origin, so

we pick the solution with B = 0 that behaves acceptably there.

For large η, R01 behaves like e±
√

2η: this will either give an exponentially small

solution that cannot be matched at any order, or an exponentially large solution, which

is unphysical. The origin is a regular singular point for (25), and the resulting solution

for R01 does in fact grows exponentially for large η. Its amplitude must hence be zero.

The axisymmetric part of the solution at O(δ) in the vortical region is hence

ϕ
(0)
01 = − i

k
e−iωt, R

(0)
01 = 0, (27)

matching the potential to φ01 in the intermediate region.

There may be other azimuthal modes present in the solution at O(δ). As we shall

see, azimuthal mode one is necessary to match onto terms of O(Mδ) in the intermediate

region. This solution must be well-behaved at the origin and decay as η → ∞. Such a

solution exists and takes a very simple form: it is the Goldstone mode

ϕ
(1)
01 = (β cos θ + γ sin θ)η−1, R

(1)
01 = (−γ cos θ + β sin θ)R′

0, (28)
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where the functions β and γ depend on time. (It is convenient to consider the general

case here and return to time-harmonic behaviour later.) The Goldstone mode (28) is

different from the Goldstone mode of the radial Rayleigh equation in circular geometry

(see FLS): the latter has a well-defined amplitude obtained by matching onto the wave

field. Here, however, the relation between the coefficients β and γ is as yet undetermined.

4. The solution to O(Mδ)

The matching condition for the O(Mδ) solution in the intermediate region is

φ11 → xe−iωt (29)

as r → ∞. The governing equations at this order are again (22), but for the O(Mδ)

variables. The solution takes the same general form (23). The requirements that the

solution match onto the wave region, and not produce terms larger than O(1) in both

vortical and wave regions leads to

φ11 = xe−iωt + (c cos θ + s sin θ)r−1e−iωt (30)

after the matching is carried out, with c and s undetermined constants.

The O(r−1) terms will match onto terms in the wave field at O(M2δ) which is where

the acoustic scattering takes place. The x-term in φ11 will match onto an O(M2δ) term

in the vortical region, while the r−1 terms in φ11 will match onto O(δ) terms in the

vortical region, namely the solution given by (28).

Axisymmetric terms in φ11 are impossible: they would have to be either constant

in space or logarithmic. The former cannot match onto any causal solution in the wave

region, while the latter match onto the integral in the previous section which is not an

acceptable solution. Hence there are no terms in the vortical region at O(Mδ).

5. The solution to O(M2δ)

5.1. The solution in the vortical region at O(M2δ)

The presence of the x-term in (30) shows that there is a non-zero azimuthal mode-one

component to the solution at O(M2δ) in the vortical region. This form of this term in

the limit of large η determines the coefficients β and γ of the Goldstone mode, as we

shall see.

The equations in the vortical region at O(M2δ) differ from those at O(δ) only by

the presence of time-derivatives of the O(δ) solution. The governing equations are

∂R01

∂t
+ 2R′

0

∂ϕ21

∂η
+

2

η2

∂R21

∂θ
+R0∇2ϕ21 = 0, (31)

∂ϕ01

∂t
+

2

η2

∂ϕ21

∂θ
− 1

R0
∇2R21 +

∇2R0

R2
0

R21 + 2R0R21 = 0. (32)

In general, these equations do not have a closed-form solution and must be solved

numerically. However, we will be able to extract the information we need by considering

(32) in the limit of large η.
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The matching condition for the potential is ϕ21 → r cos θ e−iωt as η → ∞. Equating

the various terms in (32) for azimuthal mode one shows that, for large η,

ϕ
(1)
21 =

η√
2

cos θ e−iωt + µ cos(θ − θ0)η
−1 + O(η−3), (33)

R
(1)
21 = (σ cos θ + χ sin θ)η−1 + O(η−3), (34)

where σ and χ are again functions of time. The second term in ϕ
(1)
21 is harmonic and

plays no further part. Substituting in these values into the governing equations leads

to four ordinary differential equations for γ, β, σ and χ, which may be solved to give

γ =
√

2e−iωt + γ0, β = β0, σ = 0, χ = 0, (35)

where γ0 and β0 are constants. Since we are looking for a purely time-harmonic solution,

we have γ0 = β0 = 0. Note that R
(1)
21 = O(η−3) as expected, since ρ01 is axisymmetric.

We now finish the matching procedure to determine φ11 in the intermediate region,

using (28) and (35). The xe−iωt term has already been matched onto the wave region

and onto the vortical region. We now match the r−1 term to ϕ01 onto the vortical region

and obtain s = iω−1e−iωt.

5.2. The solution in the wave region at O(M2δ)

At O(M2δ), the equations in the wave region are

∂H21

∂t
+ ∇2Φ21 + ∇ · (H01∇Φ0) = 0, (36)

∂Φ21

∂t
+ ∇Φ0 · ∇Φ01 +H21 = 0. (37)

This leads to the forced wave equation

∂2Φ21

∂t2
−∇2Φ21 = ∇Φ0 · ∇H01 − ∇Φ0 ·

∂∇Φ01

∂t
= −2ik

Y

R2
ei(kX−ωt). (38)

We may write the solution to this equation as

Φ21 = −1
2
iψ e−iωt +

∞
∑

n=0

H(1)
n (kR) [An cosnθ +Bn sinnθ] e−iωt, (39)

where ψ satisfies

(−k2 −∇2)ψ = 4k eikX ∂

∂Y
lnR, (40)

H
(1)
n is a Hankel function of the first kind (Abramowitz and Stegun 1965), and the

constants An and Bn must be determined by matching to the solution in the vortical

region. We know that An and Bn must be zero for n > 2 to avoid solutions that cannot

be matched to the vortical region.

From FLS, we may write ψ as

ψ = sgnY

∫ ∞

−∞

eilX

l − k

[

e−|l−k||Y | − e−(l2−k2)1/2|Y |
]

dl. (41)
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The following result is required for the matching:

ψ = 2kY
(

1 − γ − ln (1
2
kR) − 1

2
iπ

)

+ O(R2 lnR), (42)

where γ = 0.5772 . . . is Euler’s constant. Note that ψ(kX) is an odd function of Y , as

may be seen from (40).

5.3. The solution in the intermediate region at O(M2δ)

At O(M2δ), the governing equation is

∇2φ21 = −∂ρ01

∂t
= iωe−iωt. (43)

A convenient solution is

φ21 = 1
2
iωx2 e−iωt +

∞
∑

n=1

(enr
n + fnr

−n)einθ + e0 + f0 log r. (44)

The matching condition as r → ∞ is

φ21 → 1
2
ikx2e−iωt. (45)

Matching to the far field shows that en = 0, since these terms cannot match to any

causal solutions in the wave region. Matching onto the vortical region also gives fn = 0

for n > 2. However, the values of f1 and f2, which match onto the vortical region at

O(Mδ) and O(δ) respectively are not required since they only come into the matching

to the wave region at orders higher than O(M2δ) As a result, we need not compute

them.

5.4. Matching at O(M2δ)

To complete the matching at O(M2δ), we need to compute An and Bn in (39). These

coefficients must vanish for n > 1 for consistency with the vortical region.

There can be no A0 or B0 terms as was explained for the the O(Mδ) solution in the

intermediate region. The ψ contribution to the O(M2δ) solution will match onto terms

in the intermediate region at O(M4δ) (actually at O(M4 logM δ) to be precise). What

remains is to compute A1 and B1. These terms match onto the intermediate region

solution at O(Mδ) from (30). The matching gives A1 = 0 and B1 = 1
2
iksF , using the

result H
(1)
1 (z) ∼ −2i(πz)−1 for small z.

Hence the solution in the wave region at O(M2δ) is

Φ21 = −1
2
iψ(kX)e−iωt − 1

2
πH

(1)
1 (kR) sin θ e−iωt. (46)

This may be obtained by substituting Γ = 2π into (4.20) of FLS. The density is now

obtained from (37) and takes the form

H21 = 1
2
ωψ(kX)e−iωt − 1

2
iπωH

(1)
1 (kR) sin θ e−iωt +

Y

R2
ei(kX−ωt). (47)

This expression is identical to the pressure and density in the classical case. Both

potential and density are odd functions of Y .
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6. Far-field analysis

Following FLS, we may compute the far-field behaviour of H21. The asymptotics of

the function ψ are slightly non-standard, but may be calculated by careful use of the

method of steepest descents. The result comes out to be

Φ21 = (π − θ)eikX − 1
2
i cos θ cot (1

2
θ)

(

2π

kR

)1/2

ei(kR−π/4) + O
(

(kR)−3/2 cot3 (1
2
θ)

)

. (48)

This expression is valid for θ in the range 0 < π < θ. The result for −π < θ < 0

may be obtained from the fact that Φ21 is an odd function of Y . The second term

in (48) is the one that gives the infinite scattering amplitude in the forward direction.

Most papers starting from the Lighthill analogy for classical fluids have missed the first

term, although not Sakov (1993). The expansion (48) breaks down close to the forward

scatter direction. The expansion is non-uniform in space, and near the positive X-axis,

a different expansion holds.

There is a distinguished scaling for kRθ2 = O(1), which leads us to define a new

variable ϑ = θ(kR/2)1/2. This corresponds to a parabolic region around the forward

scatter direction. The solution in this area is called the acoustic Magnus force in Pismen

(1999; see also Iordanskii 1966). In this region,

H21 = −1
2
ieikRF (ϑ)e−iωt + O(kR−1/2), (49)

where the function F is defined by

F (ϑ) = 4π1/2ei(π/4−ϑ2)

∫ η

0

eiu2

du = 2−3/2π ei(π/4−ϑ2)(C + iS)[(2/π)1/2ϑ]. (50)

The functions C and S are Fresnel integrals (Abramowitz and Stegun 1965). The form

(49) matches onto the expansion (48) for large ϑ.

7. Conclusions

The scattering due to a superfluid vortex turns out to be the same as that due to

a classical vortex with circulation 2π, although the nature of the interaction region

between wave and vortex is different. The asymptotic procedure used here forces the

vortex to be ‘oscillating’ rather than ‘pinned’, which seems to be the situation that

in any case is usually considered (cf. 4.61 of Pismen 1999). The scattered field has

amplitude O(M2δ) in the far field. The acoustic drag and Magnus forces correspond

naturally to the far-field expansion of the wave region scattered field in regions far from,

and near to, the forward scatter direction, respectively.

The results of this work show that the classical and superfluid vortices scatter sound

in a similar fashion, even though the superfluid vortex has a further level of complication

in its dynamics. The Goldstone mode of the vortex plays a key role in the solution in

both cases. For the superfluid vortex it is a steady mode to leading order.

As mentioned earlier, much of the recent interest in acoustical scattering by classical

fluid vorticity has been aroused by the development of new non-intrusive experimental
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techniques to measure vorticity, as in Labbé and Pinton (1998), Oljaca et al. (1998) and

Manneville et al. (1999). Lund and Steinberg (1995), following the approach of Lund

and Rojas (1980) have suggested using second sound to detect and measure quantum

vorticity, and their results are similar to those obtained here. Davidovitz and Steinberg

(1997) have also advocated using the Aharonov–Bohm effect, which is implicit in (48),

to measure quantized vorticity in a superfluid.

The problem of sound scattered by a more general vortical structure is interesting.

The results of FLS and Llewellyn Smith and Ford (2001a) suggest that, in this MAE

framework, the scattered field will just be determined by the total circulation of the

vortices, provided they are separated by a distance of the order of the interaction length

or less, with vortex-vortex interactions on the healing length scale being set aside.

Finally, a natural extension of this work is to consider how these results change for

a two-fluid model. Given the results of this paper and of FLS, one might conjecture

that the scattering amplitude would again be the same.
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