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ABSTRACT OF THE DISSERTATION

Efficient Gain-Driven Routing-Assisted Mechanisms for Network-wide Traffic
Monitoring

by

Chia-Wei Chang

Doctor of Philosophy in Electrical Engineering (Communication Theory and Systems)

University of California, San Diego, 2011

Professor Bill Lin, Chair

Network-wide traffic monitoring is of interest to network operators. With

constantly changing traffic characteristics and measurement objectives, existing

techniques for traffic monitoring tend to be sub-optimal dueto poor choice of

monitor deployment locations. Routing-assisted network monitoring mechanisms

have successfully catered to these needs and are able to maximize the overall traffic

monitoring utility of the network by strategically re-directing selected traffic sub-

populations over existing deployed monitoring devices. Both the traffic measurement

gain of the network and the load-balancing of measurement workloads across distributed

monitoring devices are important performance metrics in the design of efficient routing-

assisted traffic monitoring mechanisms. This thesis focuses on the design of gain-

xvi



driven routing-assisted monitoring mechanisms where maximizing the overall traffic

measurement gain is our primary design objective. This problem is tackled using two

different approaches. First, novel centralized optimal and heuristic routing solutions

are proposed for jointly optimizing monitor placement and dynamic routing strategy

to achieve maximum measurement gain of the network. Next, weconsider the load-

balancing problem about how to distribute the network measurement workload across

monitoring devices without compromising on the overall traffic measurement gain

of the network. Providing effective load-balancing is important since previously-

placed monitoring devices may be easily overwhelmed with ever-increasing link

rates and increasingly sophisticated measurement tasks. We present an optimization

framework called LEISURE (Load- EqualIzed meaSUREment) for load-balancing

network measurement workloads across distributed monitors. Finally, a distributed

measurement-aware traffic engineering protocol is proposed based on a game-theoretic

re-routing policy that attempts to optimally utilize existing monitor locations for

maximizing the traffic measurement gain of the network whileensuring that the traffic

load distribution across the network satisfies some traffic engineering constraint. It

guarantees not only a provable Nash equilibrium, but also a quick convergence without

significant oscillations to an equilibrium state in which the measurement utility of the

network is close to the maximum achievable gain using offline, centralized routing-

assisted network monitoring mechanisms. Both these centralized and distributed

routing-assisted approaches improve the overall traffic measurement utility of the

network significantly while ensuring low computation complexity.

xvii



Chapter 1

Introduction

1.1 Network-Wide Traffic Monitoring

Comprehensive traffic monitoring is essential to a variety of network man-

agement tasks, including traffic engineering (TE), assessing performance, capacity

planning, accounting, anomaly detection, and security forensics. Many existing studies

focus on the design of improving traffic measurement techniques at a single monitor,

including adaptive sampling [61], data streaming [47], andheavy-hitter detection

mechanisms [30]. These solutions typically examine packetheaders to determine if

any statistics need to be collected. While these aggregate traffic volume statistics are

sufficient for TE purposes, there is an increasing need for fine-grained flow level mea-

surements to perform accurate traffic classifications for security purposes. For example,

deep packet inspection (DPI) allows post-mortem analysis of network events and helps

understand the payload properties of transiting Internet traffic. Network DVR [17], a

programmable application-aware triggered trace collection system, performs precisely

the function of packet content recording based on user-specified signatures. This in turn

significantly reduces the number of memory copies for valid trace collection,

But doing such fine-grained flow level measurements to analyze packet payload

is often an expensive process that requires dedicated hardware (e.g., TCAMs [74]),

specialized algorithms, (e.g., Bloom Filters [25]), or vast storage capacity. Given the

fast-changing Internet traffic landscape and large traffic volume, a single monitor is not

capable of accomplishing the measurement tasks from all applications of interest due

1
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to its resource constraint. This calls for coordinated measurement between multiple

distributed monitors. Recent work has demonstrated the benefits of a network-wide

coordinated measurement for traffic engineering [31, 76] and network diagnosis [48, 49,

51]. CSAMP, a centralized coordinated measurement proposal in [66], can significantly

reduce management complexity and operating costs as [10, 14, 36]. Specifically,

network-wide traffic measurements provide essential data for network operation and

research. For example the strategy to obtain network information through end-to-end

measurements, known as Internet tomography (e.g., mainly for topology discovery, or

link delay monitoring), is therefore of great interest to the research community [35, 45,

70]. Moreover, network-wide traffic measurement at multiple monitors is also key to

uncovering global network behavior since a single monitor only provides partial views

and may not be sufficient or accurate. For example, aglobal iceberg[40] may have

high aggregate volume across many different monitors, but may not be detectable at any

single monitor. Discovering this type of event is importantfor a number of applications

(e.g. detecting DDoS attacks, discovering worms, as well asensuring SLA compliance).

1.2 Motivation for gain-driven network monitoring

mechanisms design

This thesis focuses on the design of delivering high traffic measurement

gain/utility in network-wide traffic monitoring. In this section, we discuss the motivation

behind solving this problem. Network-wide traffic measurement can be classified as two

categories: passive monitoring and active monitoring. Thepassive approaches deploy

monitoring devices to the links in order to monitor the traffic which passes through the

network while the active approaches generate explicit control messages/packets in the

network for various measurement tasks. Active network monitoring has received much

more attention than passive monitoring in the literature. Recent researches show that

active network monitoring can be used to locate failures in IP networks [12, 38, 58]. In

fact, IP networks do not typically generate feedback packets or state information and it

is the reason why active network monitoring is needed to perform traffic engineering.

Usually, active network monitoring implies additional overhead traffic and therefore its
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objectives are to (1) find the minimum number of beacons whichare used for emitting

probe packets to cover all the links in the network as [12, 38]and (2) compute the

smallest set of probe packets which has to send after the minimum number of beacons

are chosen. Bejerano et al. [12] show that this problem is NP-complete. Nguyen et al.

propose a different approach to solve this problem by starting from a set of possible

beacons in [58]. They reversely first compute an optimal set of probe packets and then

try to find the minimal number of beacons which are needed to generate these probe

packets . They show that this beacon placement problem is also NP-hard and propose

their greedy algorithm to solve it: in each iteration, they select a beacon, remove its

corresponding set of probe packets (e.g., sent by this beacon) until the optimal probe

packets set cannot be covered.

On the other hand, passive network monitoring is the basis for network operators

to provide the robust, efficient, and secure operation of modern computer networks.

Traditionally, passive network monitoring has been used for relatively simple traffic

measurement task (e.g., gathering packet traces) for off-line analysis. Now it becomes

vital for a wide class of more CPU and memory intensive network measurement

applications, such as accurate traffic categorization [8],resource provisioning, network

dimensioning, Traffic Dispersion Graph (TDG) analysis [42]and Network Intrusion

Detection Systems (NIDS) [56, 64]. Chang et al. in [18, 19] present a simple priority-

tagging filtering mechanism, called SAP (Shrew Attack Protection), that protects well-

behaved TCP flows against low-rate TCP-targeted Shrew attacks. In this passive

network monitoring scheme, routers maintain a simple set ofcounters and keeps track

of the drop rate for each potential victim. If the monitored drop rates are low, all packets

are treated as normal (e.g., low-priority) and equally compete to be admitted to the

output queue and only dropped based on the AQM (Active Queue Management) policy

when the output queue is (nearly) full. However, if the drop rate for a certain victim

becomes higher than some dynamically determined threshold(called fair drop rate),

the router treats packets for this victim as high-priority,and these high-priority packets

are preferentially admitted to the output queue. SAP keeps tagging victim packets as

high priority until their drop rate is below the fair drop rate. By preferentially dropping

normal packets to protect high-priority packets, SAP can prevent low-rate TCP-targeted
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Shrew attacks from causing a well-behaved TCP flow to lose multiple consecutive

packets repeatedly. This simple strategy protects well-behaved TCP flows away from

near zero throughput (due to slow start) under an attack. However, this passive traffic

protection mechanism consume more CPU and memory overheads.

Network DVR, a novel passive traffic monitoring system, is a programmable

application-aware triggered trace collection system which is proposed in [17]. It

performs precisely the function of packet content recording based on user-specified

trigger signatures. This in turn significantly reduces the number of memory copies

that the passive monitoring system has to consume for valid trace collection, which

has been shown previously as a key indicator of system performance [23]. However it

introduces additional deployment and operation costs (e.g., CPU and memory usage).

Another new passive monitoring methodology in [44] is to keep tracking both TCP’s

congestion window of the senders and their round trip time (RTT) in order to provide

a valuable diagnostic of end-user-perceived network performance. It places passive

devices to monitor the traffic on the link and collect the useful parts of packets with

their arrival time-stamps which also increases more operation cost. Mainly, network

operators have to deploy/operate specific tools or devices to monitor the network traffic

passively. In contrast to active network monitoring, passive network monitoring does

not introduce additional traffic overhead in the network. Unfortunately, the devices

deployed in the links which monitor the network traffic usually introduce expensive

deployment/operation cost due to the requirements for processing packets and storing

collected measured data. Therefore the main objective of passive network monitoring is

to minimize these costs (e.g., simply imply the number of monitoring devices) to cover

all of the targeted traffic in the network.

In all of the network monitoring methodologies listed above, their key common

objective is to minimize their measurement overheads, in terms of the number of

active beacons and volume of additional probe packets for active network monitoring

or in terms of the deployment cost, as well as operation/management cost for passive

network monitoring. However with the fast-changing Internet traffic landscape and

large traffic volume, monitors are not capable of accomplishing the measurement tasks

from all applications of interest and monitoring all the targeted traffic in the network.
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Also, collecting traffic data and analyzing such data from a Tier-1 backbone core

network is real challenging since it is time-consuming and expensive to deploy passive

monitoring/recording devices or active beacons in operational network. Moreover, the

range of traffic volume on the links is from 10 Mb/s on OC-3 to 10Gb/s on OC-192

backbone links, which means the monitoring devices involveprocessing terabytes of

data. Sampling now is crucial since monitoring devices are not able to sustain a 100%

traffic measurement coverage on high speed links (e.g., OC-48, OC-192 or higher) due

to their resource constraints (e.g., the processing speed,memory storage). Therefore

how to maximize the traffic measurement gain of the network ortraffic monitoring

coverage within limited exploitation overheads (e.g., deployment and operation costs)

becomes an important issue in recent designs for network-wide traffic monitoring

mechanisms.

1.3 Techniques for improving the traffic measurement

gain in network-wide traffic monitoring

Improving the traffic measurement gain in network-wide traffic monitoring is a

hard problem that has attracted significant interest in the literature. Several solutions

have been proposed for different contexts and their methodologies are categorized as

(1) deriving bettermonitor placement strategies across the network, (2) finding both

bettermonitor placement strategies and properconfiguration decisionsof monitors,

(3) using disjointflow samplingand (4) deriving betterrouting strategiesfor different

traffic sub-populations.

1. Monitor placement: Early work on network-wide traffic monitoring has focused

on the placement of monitors at appropriate locations to cover all routing paths

using as few monitors as possible [12, 20, 38, 45, 58, 72]. In [45], the authors

focus on the placement of measurement devices for active traffic monitoring,

specifically for the construction of distance maps while in [12, 38, 58], they

address the placement problem in an active monitoring infrastructure to measure

delays and detect link failures. Chaudet et al. in [20] studythe problem of

minimizing the number of monitoring devices for passive traffic monitoring and
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finding optimal strategic locations of beacons for active traffic monitoring. They

also present a combinatorial view of the problem, giving rise to approximability

and complexity results, as well as efficient and versatile Mixed Integer Program-

ming (MIP) formulations. Several greedy solutions are proposed by using this

modeling. Moreover, from this new model, they are able to derive MIP even for

the minimization of the deployment and the exploitation cost when maximizing

the total traffic measurement gain of the network. Suh et al. in [72] present

heuristics for placing passive monitoring devices in POP where each of these

devices only captures a portion of the traffic carried by the link. They also consider

how to maximize the volume of captured traffic under resourceconstraints of the

monitoring devices where each of them has its own deploymentand operational

costs.

2. Monitor placement and corresponding configuration decisions: There are

extensions to the monitor-placement problem in [72] to incorporate with configu-

ration decisions of these monitors (e.g., packet sampling rates). They consider the

problem of where to place monitoring devices in the network and how to control

their sampling rates. To address the tradeoff between measurement overheads

(e.g., deployment/operation costs) and traffic monitoringcoverage, they consider

both minimum cost and maximum coverage problems under various budget

constraints. Specifically, they consider three main problems: (1) minimizing the

deployment cost of monitoring devices to achieve a monitoring objective/task,

(2) minimizing both deployment and operation costs of monitoring devices under

the same objective/task and (3) maximizing the fraction of IP flows being sampled

(e.g., the traffic measurement gain) by addressing the problem of placing monitors

in proper locations and setting their corresponding sampling rates. However they

show that all of these defined problems are NP-hard. They further propose a two

phase greedy heuristic approach to maximize the traffic measurement gain where

they first find the links that should be deployed monitoring devices and then run

a second optimization algorithm to adjust their sampling rates. They show that

this two-phase heuristic provides solution quite close to the optimal one through

experiments using synthetic and real network topologies discovered by the
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Rocketfuel utility and with generated traffic matrices. Cantieni et al. also consider

a similar problem in [15] but they reformulate the monitor placement problem as

follows: given a network where all of the links are deployed monitoring devices,

how to decide which devices should be activated and what sampling rate should be

adjusted on these monitoring devices in order to achieve a given measurement task

with high accuracy (e.g., maximize the traffic measurement gain) and low resource

consumption? In contrast to [72], their optimization framework can solve both

the selection of activated monitors and the configurations of their packet sampling

rates in one step.

3. Flow sampling: As we mentioned before, modern traffic monitoring devices

cannot each record all packets of interest or flows that pass through due to

their technological and resource constraints (e.g., CPU and memory resources).

Coupled with ever-increasing link rates (high traffic volume), they rely on a

variety of sampling techniques to selectively record as many packets as their CPU

and memory resources allow. While sampling makes passive measurement tech-

nologically feasible (i.e., operate within the resource constraints of monitoring

resources), the overall fidelity of flow-level measurementsis reduced. The reason

is because in today’s networks, the monitoring devices record flow measurements

completely independent to each other, thus leading to redundant measurements

and inefficient use of device resources. Sekar et al. [66] show that a centralized

system, Coordinated Sampling (CSAMP), that coordinates disjoint monitoring

responsibilities across different monitoring devices cansignificantly improve the

flow monitoring capabilities (e.g., traffic coverage) of a network. Instead of

using traditional packet sampling, CSAMP uses not only flow sampling (e.g.,

proposed by by Hohn et al. in [37]) to avoid the sampling biases against small

flows but also a hash-based packet selection as a router-level primitive (e.g.,

Trajectory Sampling in [26]) to eliminate duplicate flow measurements in the

network to improve the traffic measurement gain of the network. This allows

multiple monitoring devices to measure disjoint sets of flows without requiring

explicit communication between routers, thus eliminatingredundant and possibly

ambiguous traffic measurements across the network. By usingthis disjoint flow
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sampling model, CSAMP formulates an optimization framework to specify its

network-wide monitoring objective as maximizing the totalflow-coverage across

all OD-pairs traffic subject to ensuring that the minimum fractional coverage per

OD-pair can be achieved while respecting the resource constraints of monitoring

device. The output of this optimization is then translated into per-monitor

sampling manifests that specify the set of flows that each monitoring device is

required to measure. They evaluate the benefits of CSAMP overa wide range of

network topologies and show that it can observe more than twice as many flows

compared with traditional uniform packet sampling. Also itis more effective to

achieve network-wide traffic monitoring goals.

4. Routing strategies: Several past research efforts have focused on the optimal

deployment of monitoring devices in operational networks to improve the traffic

measurement gain. Such deployment involves both monitoring device placement

as well as configuration decisions (e.g., packet sampling rates). The optimal

placement and configuration of monitoring devices for a specific measurement

task typically assumes a priori knowledge about the traffic characteristics. More-

over, these priori knowledge are typically performed at long-time scales to allow

provisioning of required physical resources. However, traffic characteristics and

measurement objectives may change dynamically, potentially rendering a previ-

ously determined optimal placement suboptimal. It is not feasible to dynamically

redeploy/reconfigure monitoring devices in the network infrastructure to cater

such evolving measurement requirements. Raza et al. propose a routing-assisted

framework called MeasuRouting in [63] to address this problem by strategically

re-directing traffic sub-populations of interest over existing deployed monitoring

devices to maximize the traffic measurement gain of the network. MeasuRouting

takes deployment locations of monitoring devices as an input and only decides

how to route network traffic/flows. Since routing decision for every packet is

made dynamically at every router, MeasuRouting can conceptually adjust those

routing decisions to both evolving traffic patterns and different measurement

tasks given by network operator to maximize the overall monitoring utility of the

network where the overall monitoring utility is defined as a weighted sum of the
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traffic amount measured over all flows. The main challenge forrouting-assisted

traffic monitoring mechanisms are to work within the constraints of existing intra-

domain traffic engineering (e.g., bandwidth resources, or Quality of Service (QoS)

constraints). In general, intra-domain routing is often specified for aggregate

flows. MeasuRouting, can therefore, differentially route traffic sub-populations

of an aggregate flows while ensuring that the aggregate placement is compliant

to original traffic engineering objectives. They define three classes of traffic

engineering objectives in [63] for routing-assisted traffic monitoring mechanism,

each differing in the level of required conformity to the original routing: 1) Least

TE Disruption MeasuRouting (LTD): The basic version of routing-assisted traffic

monitoring (MeasuRouting) problem and it requires only that the aggregate TE

policy is not violated. 2) No Routing Loops MeasuRouting (NRL): NRL is

proposed to ensure that the micro-flowset1 routing is loop-free since the flow

conservation constraints in LTD do not guarantee the absence of loops. However,

depending upon the exact forwarding mechanisms and routingprotocol, NRL

may still not be feasible. 3) Relaxed Sticky Routes MeasuRouting (RSR): RSR

ensures that the new micro-flowset routing does not pass through a link that the

macro-flowset2 traffic was not routed before in the original routing. It means RSR

guarantees feasible micro-flowset routing.

The work presented in this thesis focuses on the design of using routing-assisted

mechanisms and monitor placement strategies as primary means to improve the traffic

measurement gain in network-wide traffic monitoring. The configuration decisions of

the monitoring devices are assumed unadjustable and given (e.g., packet sampling rates)

for all traffic flows. Disjoint flow sampling can be used in conjunction with the ideas

proposed in this thesis to further improve the efficiency (e.g., eliminate measurement

redundancy) and monitoring ability (e.g., the traffic measurement gain) of the system.

1A macro-flowset (e.g., per origin-destination (OD)-pair traffic) may consist of multiple micro-
flowsets.

2A macro-flowset represents a set of flows for which an aggregate routing placement is given and has
the same ingress and egress nodes.
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1.4 Problem statement and contributions

The problem solved in this thesis can be formally stated as follows:

How can we design efficient routing-assisted mechanisms that deliver the high traffic

measurement gain for network-wide traffic monitoring whileensuring low deployment

cost, low operation cost and adhere to the intra-domain traffic engineering constraints ?

In this thesis, the above problem is solved using three of thefour different

approaches discussed in Section 1.3. First, novel centralized optimal and heuristic

routing solutions are proposed for jointly optimizing monitor placement and dynamic

routing strategy to achieve maximum measurement utility ofthe network where traffic

characteristics and monitor capacities are given as inputs. In particular, all proposed

heuristic routing algorithms can approach the maximum measurement utility of the

optimal one but yet they require dramatically shorter computation times. Second,

in addition to their traffic measurement gain optimality, wefurther present a load-

balanced optimization framework to distribute the networkmeasurement workload

across participated monitoring devices without compromising on the overall traffic

measurement gain of the network by using disjoint flow sampling. Specifically,

we consider various load-balancing problems under different optimization objectives

and study their extensions to support more realistic scenarios. Next, a distributed

measurement-aware traffic engineering protocol is proposed based on a game-theoretic

re-routing policy that attempts to optimally utilize existing monitor locations for

maximizing the traffic measurement gain of the network whileensuring that the traffic

load distribution across the network satisfies some traffic engineering constraint.

The main contributions of this thesis are as follows:

• Achieving Maximum Measurement Utility of the Network by Jointly

Optimizing Monitor Placement and Dynamic Routing Strategy: A new

Measurement-aware Monitor Placement and Routing framework (MMPR) that

jointly optimizes monitor placement and dynamic routing strategy is proposed

to achieve maximum measurement utility of the network wherethe overall
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measurement utility is quantified as how well each individual flow is monitored

(e.g., how many bytes or packets are sampled), weighted by its importance. The

main challenge of MMPR is to decouple the relevant decision variables and

adhere to the intra-domain traffic engineering constraints. We formulate the

MMPR problem as an MIQP (Mixed Integer Quadratic Programming) problem,

and show how it could be reformulated as a standard MILP (Mixed Integer Linear

Programming) problem by decoupling the two key decision variables (e.g.,

monitor-placement and traffic-routing decision variables). In our framework,

the optimal routing strategy is determined for each flowset,which is defined to

be any aggregation of flows sharing the same ingress/egress routers and having

the same routing decision. We strive to adhere to the existing intra-domain

traffic engineering (TE) constraints such that we maintain similar maximum

link utilization in the network as in default routing case. We also attempt to

constrain measurement resources by activating no more thanK monitors in

arbitrary links. We investigate several approximate solutions that can approach

the performance of the optimal MILP solution, but yet they require dramatically

shorter computation times. Our heuristic algorithms include K-Best, Successive

Selection, Greedy and Quasi-Greedy. We perform detailed simulation studies

using real traces and topologies from Abilene [1], AS6461 [70], and GEANT [3].

Our results show that the optimal MMPR solution can achieve measurement

gains up to a factor 1.76X better when compared to baseline cases (i.e., optimal

Placement-only or MR(MeasuRouting)-only). We also show that our heuristic

algorithms can achieve measurement utilities that are quite close to the optimal

solution, while reducing computation times by a factor of 23X in Abilene, 246X

in AS6461, and 233X in GEANT, compared with the MILP (optimal) solution.

The details of this work are discussed in Chapter 2.

• Presenting Load-Balanced Network-Wide Traffic Measurement without

Compromising on the Overall Maximum Measurement Utility of the

Network: A new centralized optimization framework called LEISURE (Load-

EqualIzed meaSUREment) is proposed to address the network measurement

load-balancing problem on various realistic scenarios while ensuring that the
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maximum measurement utility of the network is achieved. LEISURE distributes

traffic measurement tasks evenly across coordinated monitoring devices subject

to ensuring that the required fractional coverage of those tasks (e.g., given

from MMPR) can be achieved. It takes a) routing matrix, b) thetopology and

monitoring infrastructure deployment and c) measurement requirements of tasks

as inputs, and decides which available monitoring devices should participate in

each specific measurement task and how much they need to measure to optimize

the load-balancing objectives. The load-balancing objective in this thesis is

mainly defined as two terms: 1) minimizing the variance of workloads across all

monitors or 2) minimizing the maximum workload among them. The optimal

outputs/solutions are translated into the disjoint sets ofrequired-measured flows

that each monitor is assigned to measure. We also propose simple heuristic

solutions to compare with the optimal one and extend LEISUREto incorporate

practical scenarios (constraints), i.e., (a) with limitedmeasuring resources at

monitors, (b) with limited number of deployed monitors, (c)with multiple

routing paths (e.g., ECMP) for each origin-destination (OD)-pair traffic. As

proof of concept, we perform detailed simulation studies based on Abilene [1]

and GEANT [3] network topologies and traces. Our results show that the

significant load-balancing improvement (e.g., 4.75X smaller maximum workload

and 70X smaller variance in workloads) is achieved by using LEISURE to

optimally distribute the measurement tasks across all coordinated monitors

when compared with the naive uniform assignments. We also present detailed

performance comparison of our proposed heuristic algorithms belonging to

two categories: LB-Greedy and LB-Successive Selection in flexible monitor

deployment scenario. We show that our proposed heuristic solutions can achieve

load-balancing performance that are quite close to the optimal solutions, while

reducing the computation times by a factor up to 22.5X in Abilene and 800X in

GEANT. We extend LEISURE and simulation studies to perform optimizations

and sensitivity analysis with respect to multiple measurement tasks that exhibit

different importance and incur different costs. We show that LEISURE is flexible

enough to assign the correct set of measurement tasks for coordinated monitors
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to optimize measurement utility given limited measuring resources. The design,

implementation, and evaluation of LEISURE is described in Chapter 3.

• Developing Distributed Measurement-Aware Traffic Engineering Protocol

to Achieve Maximum Measurement Utility of the Network: A distributed

measurement-aware traffic engineering protocol, Distributed MeasuRouting

(DisMR), is proposed based on a game-theoretic re-routing policy that attempts

to optimally utilize existing monitor locations for maximizing the traffic

measurement gain of the network while ensuring that the traffic load distribution

across the network satisfies some traffic engineering constraints. DisMR takes

advantage of alternative paths in a network (e.g., equal cost multi-path routing

(ECMP)). It maximizes the traffic measurement gain by adjusting the traffic

split ratios among these paths to the same destination. It actually operates on

top of an existing multiple-path routing infrastructure (e.g., ECMP). DisMR

is derived from a game-theoretic re-routing policy that captures the dynamic

decision-making process and interactions among distributed routers. We

introduce a novel cost function on each link that reflects both the measurement

capabilities (gain) and the traffic engineering (TE) constraint (i.e., links with

larger measurement resources have a smaller cost but links with a larger TE score

(e.g., link utilization) have a larger cost). The cost function is designed such that

flows are attracted to links with better measurement capabilities while avoiding

TE violations. Routers compete with each other in a game-theoretic manner in

order to minimize their own costs for the downstream paths. In DisMR, each

router periodically gathers/propagates its sub-path costinformation for upstream

routers and use it to locally decide how to adjust traffic split ratios for each

destination to the next-hop routers among these multiple equal-cost paths. Our

routing policy guarantees not only a provable Nash equilibrium, but also a quick

convergence without significant oscillations to an equilibrium state in which the

measurement gain of the network is close to the maximum achievable gain using

offline, centralized MeasuRouting. We evaluate DisMR via simulations using

both synthetic and real traces/topologies from Abilene [1], AS6461 [70], and

GEANT [3]. The simulation results show fast convergence (asexpected from the
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theoretical results), improved measurement gains (e.g., 12 % higher) and much

lower TE-violations (e.g., up to 100X smaller) compared to static, centralized

MeasuRouting in dynamic traffic scenario. The DisMR measurement-aware

traffic engineering protocol is described in Chapter 4.



Chapter 2

Measurement-aware Monitor

Placement and Routing: A Joint

Optimization Approach for

Network-Wide Measurements

2.1 Introduction

Given the sheer size and complexity of the Internet today andits increasingly

important role in modern-day society, there is a growing need for high-quality network

traffic measurements to better understand and manage the network. Obtaining accurate

network-wide traffic measurement in an efficient manner is a daunting task given the

multi-faceted challenges. First, there is an inherent lackof fine-grained measurement

capabilities in the Internet architecture. Second, the rapidly increasing link speeds make

it impossible for every router to capture, process, and share detailed packet information.

Earlier work on traffic monitoring has focused on improving single-point measurement

techniques, such as sampling approaches [22, 37], estimation of heavy-hitters [30], and

methods to channel monitoring resources on traffic sub-populations [62, 75]. To achieve

network-wide coverage, previous studies have focused on the optimal deployment of

monitors across the network to maximize the monitoring utility (as determined by the

15
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network operator) with given traffic routing [15, 20, 72]. The optimal placement for a

specific measurement objective typically assumes a priori knowledge about the traffic

characteristics. However, both traffic characteristics and measurement objectives can

dynamically change over time, potentially rendering a previously optimal placement

of monitors suboptimal. For instance, a flow of interest can avoid detection by not

traversing the deployed monitoring boxes. The optimal monitor deployment for one

measurement task might become suboptimal once the objective changes.

To address the limitation mentioned above, MeasuRouting [63] was recently

proposed to strategically/dynamically route important traffic over fixed monitors such

that it could be best measured. Using intelligent routing, it can cope with the changes

of traffic patterns or measurement objectives to maximize measurement utility while

meeting existing intra-domain traffic engineering (TE) constraints, e.g., achieving even

load distribution across the network, or meeting Quality ofService (QoS) constraints.

It is oblivious of the monitor placement problem. The key idea is that the routes

of important and unimportant flows can be exchanged to achieve better measurement

and load balancing. However, MeasuRouting is based on the assumption that monitor

locations have already been decided a priori and fixed. It does not consider the flexibility

of deploying new monitors and replacing old ones, or altering the existing monitor

placement strategies.

In practice, current routers deployed in operational networks are already

equipped with monitoring capabilities (e.g., Netflow [7], Openflow [59]). Network

operators would not turn on all these functionalities because of their associated

expensive operation cost [15, 20, 72] and measurement redundancy [66], and hence

there are potentially hundreds of monitoring points to choose from to achieve network-

wide measurements. Given routing could be changed dynamically to aid measurement,

the optimal monitor selection/placement strategies may also change to take advantage

of this new degree of freedom. Therefore, previous approaches that treat monitor

placement and routing as two separate problems may be sub-optimal (as demonstrated

in Section 2.2 with an example scenario). This naturally leads to the following open

question:Given a network where all links can be monitored, which monitors should

be activated and how to strategically route traffic sub-populations over those planned
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monitors such that both the measurement gain is maximized and the limited resources

is best utilized.

In this chapter, we propose an MMPR (Measurement-aware Monitor Placement

and Routing) framework that jointly optimizes monitor placement and traffic routing

strategy, given traffic characteristics and monitor capacities as inputs. In our framework,

the optimal routing strategy is determined for each flowset,which is defined to be

any aggregation of flows which share the same ingress/egressrouters and have the

same routing decision. The goal is to maximize the overall measurement utility,

which quantifies how well each individual flow is monitored (e.g., how many bytes

or packets are sampled), weighted by its importance. We strive to adhere to the existing

intra-domain traffic engineering (TE) constraints such that we maintain similar load

distributions in the network (e.g., maximum link utilization) as in default routing case.

We also attempt to constrain measurement resources by activating no more thanK

monitors in arbitrary links.

The properties of monitors and importance of flows in this chapter are modeled

in a very generic form such that our framework can be applied to a wide variety of

measurement scenarios. We assume that the dynamic traffic/measurement changes will

stay for long enough time for us to re-optimize monitor placement and flowset routing.

Implementation issues for continuous measurement are discussed in Section 2.7 or left

as future work. We highlight our contributions as follows:

• We formulate the MMPR problem as an MIQP (Mixed Integer Quadratic Program-

ming) problem, and show how it could be reformulated as a standard MILP (Mixed

Integer Linear Programming) problem by decoupling the two key decision variables.

• We investigate several approximate solutions that can approach the performance of

the optimal MILP solution, but yet they require dramatically shorter computation

times. Our heuristic algorithms include K-Best, Successive Selection, Greedy and

Quasi-Greedy.

• We perform detailed simulation studies using real traces and topologies from

Abilene [1], AS6461 [69], and GEANT [3]. Our results show that the optimal

MMPR solution can achieve measurement gains up to a factor 1.76X better when

compared to baseline cases (i.e., optimal Placement-only or MR(MeasuRouting)-
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only). We also show that our heuristic algorithms can achieve measurement utilities

that are quite close to the optimal solution, while reducingcomputation times by a

factor of 23X in Abilene, 246X in AS6461, and 233X in GEANT, compared with

the MILP (optimal) solution.

The rest of this chapter is organized as follows. Section 2.2illustrates through a

motivating example the benefits of a joint optimization approach that considers both

monitor placement and traffic routing together. Section 2.3formulates the MMPR

problem, and Section 2.4 presents our heuristic solutions.Section 2.5 presents detailed

experimental results using our proposed methods, and Section 2.6 outlines related

work. Finally, Section 2.7 discusses practical implementation issues and concludes this

chapter.

2.2 Motivating Example

In this section, we showcase the importance of both monitor placement and

traffic routing through an illustration. Consider the topology in Figure 2.1. We define a

flow based on the five tuple< srcip, dstip, srcpt, dstpt, proto >. We assume that due

to budget considerations, only one monitor is allowed to be deployed in any one of the 12

links. The network operator wants to identify both the best monitor deployment location

and the best routing strategy for “important" flows, to achieve maximum measurement

gain, i.e., measuring as many important flows as possible. Atthe same time, the operator

wants to ensure that the monitor placement and any routing changes have least impact

on existing QoS metric, which is defined as the “average path length" of every flow.

Figure 2.1: MMPR Motivational Example
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Initially there are two important flows, flow 1 and 2, with their default routing

show in Figure 2.1. Obviously the optimal monitor deployment location is on linkC →
D where the two important flows traverse. There are many other unimportant flows (not

shown in the figure) from each OD (origin-destination) pair.All of the N unimportant

flows (including flow 3) use shortest path routing. Suppose their average path length is

ζ .

Suppose now flow 3 becomes important over time, with its default routeA →
F → G → H. With the current monitor placement (previously determined to be

optimal), flow 3 will not be monitored at all. In order to capture this flow, a second

monitor (additional resources) will be needed along the path A → F → G → H

if the routing remain unchanged. Alternatively, a dynamic routing approach like

MeasuRouting would redirect flow 3 through linkC → D (assuming the resulting link

utilization is below a desired threshold). However, this detour increases path length for

flow 3 from 3 to 4. Since every other flow uses shortest path routing, the average path

length increases fromNζ+6
N+2

to Nζ+7
N+2

, which clearly has a negative impact on the QoS

metric.

Instead, it would be better to move the monitor fromC → D to link G → H,

and redirect the flow 1 and 2 both through linkG → H. The new routes for flow 1 and

2 can beB → F → G → H andC → G → H → I, respectively. As such, no flow

has increased its path length, i.e. average path length remains Nζ+6
N+2

. All flows can be

monitored with only one monitor (without additional resources).

One other practical concern is that the redirection of flow 1 and 2 may overload

link G→ H. This can be simply avoided by switching flow 2 with another unimportant

flow fromB toH, as long as that flow has equal traffic amount and was originally routed

throughB → F → G → H. Flow 3 can be similarly treated by switching with a flow

originally routed asC → G → H → I. MeasuRouting [63] has already shown ways

to switch flows for better measurement. In our situation, by switching flow 1 and 2

with other unimportant flows, both average path length and link load can be preserved

at initial conditions. The same scenario may lead to different optimal solutions (the

new placement location and new routes) with other TE metric definitions. The problem

becomes more complicated with more important flows, larger topology and different TE
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metrics.

The example above reveals that MeasuRouting without considering changing

monitor placement (referred to as MeasuRouting- or MR-only) may become suboptimal.

Similarly, changing the optimal monitor placement alone (referred to as Placement-only)

without the flexibility in re-routing may be infeasible without introducing additional

measurement resources (e.g., adding a second monitor in this example). A better

monitor placement combined with strategic routing can achieve optimal solution

(maximum measurement gain) while meeting both the QoS or TE constraints. This

motivates us to formulate the joint optimization problem ofboth monitor placement and

traffic routing under the MMPR framework and propose optimalsolutions that achieve

best measurement utility with limited monitor resources. We will later compare the

performance of optimal MMPR solution with MR-only and Placement-only in Figure

2.2. In the example above, Placement-only strategy will miss flow 3 completely. Both

MR-only and MMPR can monitor all flows. However, MR-only increases the average

path length (QoS metric) toNζ+7
N+2

, which is undesirable, while MMPR reduces it to
Nζ+6
N+2

.

The main focus on this chapter is to provide atheoreticalframework for MMPR

problem and examine the cost/performance trade-offs for the optimal solution and a

variety of heuristic approaches. There are several practical issues which remain to be

addressed in order to realize MMPR solutions. For example, MMPR assumes prior

knowledge of traffic importance, which is usually inaccurate in practice. All the related

implementation issues will be discussed in Section 2.7.

2.3 MMPR FRAMEWORK

We now present a formal framework for MMPR in the context of a centralized

architecture, which jointly optimizes monitor placement and traffic routing assuming it

has global knowledge ofa) the network topology,b) the size and importance of traffic

sub-populations,c) the monitor capability, andd) the TE policy.
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2.3.1 Definition

G(V,E) represents our network, whereV is the set of nodes andE is the set

of directed links.M = |V | is the total number of links. An OD pair represents a set

of flows between the same pair of ingress/egress nodes for which an aggregated routing

placement is given. The set of all|V | × |V − 1| OD pairs is given byΘ. Γx
ij denotes

the fraction ([0, 1]) of the traffic demand belonging to OD pairx placed along link(i, j).

{Γ}x∈Θ(i,j)∈E is an input to the MMPR problem and represents ouroriginal routing. We

assume{Γ}x∈Θ(i,j)∈E is avalid routing, i.e. flow conservation constraints are not violated

and it is compliant with the network TE policy.

An OD pair may consist of multiple flows where some of them havehigher

measuring importance than others. The purpose of traffic measurement is to capture

those important flows as much as possible. However, it is impractical to enforce

individual routing decision for each flow. On the other hand,flows are aggregated as

flowsets according to flow semantics, e.g: prefix based routing. In this paper, we define

flowset to be any aggregation of flows which share the same ingress/egress routers and

have the same routing decision. We useθ to denote the set of mutually exclusive flowsets

andΥx to denote the set of flowsets that belongs to the OD pairx. Each flow is assigned

to one flowset inθ.

We denote the fraction of traffic demand of flowsety placed along link (i,j)

as γy
ij. {γ}y∈θ(i,j)∈E represents our flowset routing and is the set of decision variables

of the MMPR problem. According to this definition, flows belonging to the same

flowsety should have the same routing. We denote{Φ}x∈Θ and{φ}y∈θ to be the traffic

demands (e.g., the sizes) for the OD pairΘ and flowsetθ, respectively. It follows that

Φx =
∑

y∈Υx
φy. Iy∈θ denotes the measurement utility of the flowsety. This is a

generic metric that defines the importance of measuring a flowset, which is related to

the importance of its individual flows.

In this chapter, we assume traffic measurements are conducted on links. We

define our measurement infrastructure and measurement requirement in abstract terms.

{S}(i,j)∈E denotes the measurement characteristic of all links, i.e. the ability of a link

to measure traffic. For example,S(i,j) can be equal topij, the sampling rate of link

(i, j). Since packet sampling is the de facto deployed measurementmethod, we will use
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Table 2.1: Summarization of Notations

Notation Description
x OD pair
y flowset
Θ set of OD pairs
φ set of flowsets
Φx traffic demands of the OD pairx
φy traffic demands of the flowsety
Γx
ij original routing for OD pairx

S(i,j), p(i,j) measurement characteristic of link (i,j)
Iy measurement utility of the flowsety
Ty measurement gain of flowsety
γy

(i,j) routing decision variable for flowsety
u(i,j) monitor placement variable for link(i, j)
β optimization objective

pij and{S}ij interchangeably to denote the measurement ability of each link, and we

discuss other possible measurement functions in Section 2.3.3. In summary,{S}(i,j)∈E
andIy∈θ are inputs given to our MMPR problem.

Another input to the MMPR problem isK, the maximum number of monitors

that would be turned on inside the network. In this paper, monitors can be turned on

any of theM links. The (0,1) boolean variableuij is used to denote the placement

strategy. Finally, we use ameasurement resolution function(β) to characterize the

overall performance of traffic measurement.β assigns a real number representing

the monitoring effectiveness of flowset routing, flowset utility, and monitor placement

strategy for given measurement characteristics. The objective of MMPR is to maximize

β. Notations are summarized in Table 2.1.

β : ({γ}y(i,j), {S}(i,j), {I}y, u(i,j))→ ℜ (2.1)

2.3.2 Formulation

In our problem, we can formulate the measurement gain through two kinds

of popular reward models [72]. Let utility functionTy denote the benefit gained by
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monitoring flowsety. We assume that there is no additional benefit gained by repeatedly

monitoring the same traffic. ThusTy can be expressed in either of two ways:

Ty = 1−
∏

(i,j)∈E

(1− pijuijγ
y
ij) (2.2)

Ty =
∑

(i,j)∈E

pijuijγ
y
ij (2.3)

Equation (2.3) approximates Equation (2.2) ifpijuijγ
y
ij is very small. This is

true for most core-networks since the sheer traffic volume/speed prohibits high rate

measurement. Equation (2.2) models the case where monitorsindependently sample

flows, while in Equation (2.3), monitors measure non-overlapping traffic. This can be

achieved by CSamp [66] likely methods, in which disjoint hash-based filters are placed

before flows get sampled. In this chapter, we use the later reward model since it is linear,

allowing us to better compare the various MMPR solutions.

Maximize β (2.4)

β =
∑

y∈θ

IyTy (2.5)

=
∑

y∈θ

∑

(i,j)∈E

Iypijuijγ
y
ij (2.6)

γy
ij ≥ 0, ∀y ∈ θ, (i, j) ∈ E (2.7)

uij ∈ {0, 1}, ∀(i, j) ∈ E (2.8)

In our model,Ty is the summation of the product ofpij , γ
y
ij, anduij. Therefore

the objective functionβ is related to the product of two decision variablesuij andγy
ij,

and the optimization problem falls into the MIQP (Mix Integer Quadratic Programming)

category. In order to avoid quadratic programming, we introducezyij to decoupleuij×γy
ij

by Equations (2.10) and (2.11). It is easy to see their equivalence. Whenuij = 0, zyij = 0

from (2.10); and whenuij = 1, zyij = γy
ij from (2.11).

zyij = γy
ij × uij (2.9)

0 ≤ zyij ≤ uij (2.10)

γy
ij + uij − 1 ≤ zyij ≤ γy

ij (2.11)
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After we substitute Equation (2.10)-(2.11) to Equation (2.6), the formulation

becomes MILP (Mixed Integer Linear Programming) instead ofMIQP:

Maximize β (2.12)

β =
∑

y∈θ

∑

(i,j)∈E

Iypijzyij (2.13)

0 ≤ zyij ≤ uij (2.14)

γy
ij + uij − 1 ≤ zyij ≤ γy

ij (2.15)

γy
ij ≥ 0, ∀y ∈ θ, (i, j) ∈ E (2.16)

uij ∈ {0, 1}, ∀(i, j) ∈ E (2.17)

We set the maximum number of allowed monitors to be no more than K:

∑

(i,j)∈E

uij ≤ K (2.18)

After introducing MMPR, the new routing should not violate the TE metric (e.g.,

maximum link utilization) by more than a certain threshold,as compared with original

routing. We useσΓ andσγ to denote TE metric of original routing and new routing,

respectively. We introduce a thresholdǫ, which bounds the violation of TE metric.

σγ ≤ (1 + ǫ)σΓ (2.19)

The traffic constraints can be formulated as follows:

∑

i:(i,j)∈E

γy
ij −

∑

k:(j,k)∈E

γy
jk = 0 y ∈ θ, j 6= iny, outy (2.20)

∑

i:(i,j)∈E

γy
ij −

∑

k:(j,k)∈E

γy
jk = −1 y ∈ θ, j = iny (2.21)

∑

i:(i,j)∈E

γy
ij −

∑

k:(j,k)∈E

γy
jk = 1 y ∈ θ, j = outy (2.22)

In MMPR, to maximizeβ, important flowsets might get repeatedly routed

through monitors. In reality, loop-free routing is desirable to avoid huge delays.

MeasuRouting [63] proposed two methods (RSR and NRL) to provide candidate routes

which are loop-free. They pre-calculate allowable acyclicpaths for each OD pair. The



25

optimization problem then selects the best routes from these candidates. In this chapter,

we borrow the idea of NRL (No Routing Loops MeasuRouting [63]). It allows us to

select paths other than original routingΓx, by introducingΨx:y∈Υx
:

γy
ij = 0 y ∈ θ, (i, j) 6∈ Ψx:y∈Υx

(2.23)

Equation (2.23) states that only links included inΨx:y∈Υx
may be used for routing

flowsety. We use the heuristic algorithm in [63] to construct these paths. For each OD

pair, it iteratively adds new link toΨx:y∈Υx
in decreasing order of sampling rate, as long

as it does not introduce any loop.

2.3.3 Extensions

In this section, we extend our formulation and discuss some related issues. First,

our formulation only introduces parameterK to bound the number of monitors, without

formulating any detailed cost functions. In reality, the operation cost of monitors also

depend on their sampling rates. Letfij(andgij) denote the unit monitor deployment

(and operation) cost at link(i, j), andB(andC) represents the maximum budget for

deployment (and operation) cost. We could add these two constraints as follows:

∑

(i,j)∈E

uij × fij ≤ B (2.24)

∑

y∈θ

∑

(i,j)∈E

pijuijγ
y
ij × gij × φy ≤ C (2.25)

We can also treat the sampling rate,pij , as another decision variable if the

operator tends to better configure the operation cost of monitors. The new problem

becomes complicated since both the optimization objective(2.13) and the constraint

(2.25) become quadratic. In reality, it is difficult to compare and tune the settings for

different measurements. It is impractical to mathematically compare these costs with

measurement gains. Instead, we formulate the fundamental situation where the cost is

only related to the number of monitors, and each monitor has fixed configuration. It is

equivalent to the case wherefij is identical to all of the monitors.

Second, our formulation is based on “uniform" measurement.That means,

each monitor will treat any traffic that traverse it equally.The objective function then
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becomes linear. In reality, more sophisticated measurements can intelligently adapt to

different flows [62, 75]. Because of this, the measurement gain functionβ might become

nonlinear, or, other parameters are needed to reflect the difference in how flows are

measured by the same monitor. We will explore different measurement methods (e.g.:

flow sampling, flexsample [62], etc) in our future work. Our current formulation applies

to any measurement scheme where all packets are treated equally by the same monitor.

For example, DPI (deep packet inspection) can be simply viewed aspij = 1.

Finally, our formulation can be easily extended to Placement-only problem. It is

defined to maximizeβ with respect to the decision variableuij only, while flowsets are

routed along their original routes:

Maximize β (2.26)

β =
∑

y∈θ

∑

(i,j)∈E

IypijuijΓ
x
y∈Υx

(2.27)

uij ∈ {0, 1}, ∀(i, j) ∈ E (2.28)

2.4 MMPR Solutions

In this section, we first describe the optimal MMPR solution by solving the

associated MILP problem in Section 2.4.1. Since the time-complexity of MILP is

generally NP-hard, we propose several heuristic solutionsto approximate the optimal

performance: “K-Best", “Successive Selection", “Greedy"and “Quasi-Greedy". It is

easy to see that MMPR becomes a LP (Linear Programming) problem if the monitor

placement strategy is given (i.e., with fixeduij). Therefore, all of our heuristic solutions

tend to decide the monitor locations first. They all start from an initial configuration in

which all M monitors are fully deployed. We refer to this initial configuration as the

“All-On" stage.

In particular, we first propose K-Best (Section 2.4.2), the most lightweight

algorithm among our heuristic methods. It directly disablesM −K monitors according

to their performance in the All-On case, based on some ranking metrics (e.g., traffic

amount, topology, link capacity, etc). We then propose several increasingly complex

algorithms, “Successive Selection", “Greedy", and “Quasi-Greedy", that iteratively
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select monitors to disable, based on the planned monitor placement strategy decided

from the previous iteration. This process is repeated untilonlyK monitors are left. The

Successive Selection algorithm (Section 2.4.3) uses the same heuristic metrics as K-

Best to successively disable monitors at each iteration. The Greedy and Quasi-Greedy

(Section 2.4.4) algorithms are the most complex since they select monitors to disable in

each iteration by testing them.

All the proposed heuristics seek the least important monitors (in accordance

to some metric) to disable and then maximize the measurementgain β. They all

start from the All-On stage and gradually exclude monitors until K are left. Our

approach is complementary to previous work on monitor placement [20, 72] that starts

with zero monitors and gradually add new monitors until there areK of them. The

reason for our design is the following: whenever monitors are chosen, the best routing

for the flowsets needs to be re-calculated, which may change substantially after new

monitors are introduced. Instead of testing possible placement and flowset routing, it is

more straightforward to disable unimportant monitors froma stage with more enabled

monitors. We therefore propose algorithms that start from the All-On stage.

2.4.1 Optimal Solution

The optimal solution searches for the bestγy
ij anduij assignments for the MMPR

problem. The MMPR formulation is an MILP problem sinceuij is a binary decision

variable andγy
ij is a continuous decision variable. There is a variety of optimization

tools that we can leverage. In particular, the optimal solution can be found using an

MILP solver (e.g., CPLEX [4]). We refer to this solution as “Optimal". For small to

medium size networks, the optimal MMPR solution can be readily found. However,

given that MILP problems are in general NP-hard, the solversare not fast enough for

large networks.

2.4.2 K-Best Algorithm

The K-best algorithm disablesM −K monitors in a single step, based on their

performance in the All-On stage. It starts from the All-On configuration and calculates
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the maximum achievableβ and optimal traffic assignmentγy
ij. It then ranks all monitors

in ascending order using one of the following metrics and directly disables the topM −
K monitors:

• Least-utility (
∑

y pijγ
y
ijIy). We disable the monitors with the least measurement

utilities. Since measurement utility is the same as our optimization objective, we

expect this metric will achieve the bestβ.

• Least-traffic (
∑

y γ
y
ijφy). The intuition behind this metric is that the monitors with

the least amount of traffic passing through them are also expected to have the least

contribution to the overall measurement utility.

• Least-importance (
∑

y γ
y
ijIy). This metric only considers the flowset importance,

regardless of the sampling rate. It treats all flowset with the same traffic demand and

all monitors with the same sampling rate.

• Least-rate (pij). We disable monitors with the least sampling rates since they are the

least capable.

• Least-neighbor (
∑

k:(k,i)∈E 1 +
∑

k:(j,k)∈E 1). From a topology perspective, the

monitors that are the least connected are also likely to provide the least amount

of freedom to MMPR for routing optimization.

The K-Best algorithm greatly saves computation time since only two LP

problems are involved. The first LP decides theγy
ij for the All-On stage. Ranked in

ascending order using one of the above metrics, the topM −K monitors are disabled.

Then, with theseM−K monitors turned off, a second LP is solved to maximizeβ using

MeasuRouting [63]. However, since K-Best ranks the importance of each monitor based

on metrics evaluated from the initial All-On stage, the measurement gain is predicted to

diverge from the optimal.

2.4.3 Successive Selection Algorithm

The Successive Selection algorithm also starts from the initial All-On configu-

ration with allM monitors and iteratively choosesD monitors to disable. Here, we use

the same five metrics introduced in Section 2.4.2. The selection of whichD monitors to

disable is based on the ranking of remaining monitorsM̂ using one of the five metrics.
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Algorithm 1 Successive Selection Algorithm

1: while More thanK monitors are leftdo

2: Maximizeβ by using all remaining monitors

3: find the correspondingγy
ij

4: for Each remaining monitor(i, j) ∈ M̂ do

5: Calculate its performance metric for one of the five principles withγy
ij

6: end for

7: DisableD monitors with least performance-metric

8: end while

In particular, it disablesD monitors based on their ranking calculated from the previous

iteration (Line 7). This means we use the information from the previous iteration (i.e.,

planned routesγy
ij, etc.) to calculate the metric for each monitor in the current iteration

(Line 5).

Note that if the metric used is either the “least-rate" or the“least-neighbor"

metric, both Successive Selection and K-Best will have the same selection of monitors

and measurement gain since the metrics do not involveγy
ij .

2.4.4 Greedy Algorithm

Similar to Successive Selection, the Greedy algorithm alsodisablesD monitors

in each iteration, untilK monitors are left. However, it is more complicated since

it tests all remaining monitorŝM in each iteration. In order to test a monitor, it re-

computes the maximizedβ after turning it off (Line 2-7), which essentially involves

using MeasuRouting [63] (Line 4). Based on the testing of every remaining monitor, it

disablesD of them that have least impact onβ (Line 8).

Since the Greedy algorithm exhaustively tests individual monitors at each

iteration, its performance is hypothesized to be close to the optimal solution. It is

still suboptimal since it tests individual monitors instead of every possible combination.

However, the algorithm remains computationally costly, since it testsO(M̂) monitors

with O(M̂) LP problems in each iteration. For a moderate sized topology, an MILP

solver can sometimes work faster than this greedy approach.To reduce the computation
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Algorithm 2 Greedy Algorithm

1: while More thanK monitors are leftdo

2: for Each remaining monitor(i, j) ∈ M̂ do

3: Disable the monitor

4: Maximizeβ based on remaining monitors

5: Storeβ

6: Enable the monitor

7: end for

8: FindD monitors with largestβ ∈ M̂ when they are disabled

9: M̂ ← M̂/{(i, j) ∈ D}
10: end while

time, we propose a less heavy-weighted algorithm called “Quasi-Greedy", which is a

derivation of the Greedy algorithm. In Quasi-Greedy, instead of testing every remaining

monitor, it only testsλ fraction candidates, where0 < λ < 1. We useC to denote

candidate sets.

The candidatesC are chosen based on the least-utility metric (Line 4), where

utility is defined as
∑

y pijγ
y
ijIy. It benchmarks how much utility a monitor measures

(Line 3). In each iteration, the Quasi-Greedy algorithm re-computes all the correspond-

ing β by turning off one-by-one the remaining monitors inC to find the least important

D monitor to disable (Line 5-11). It then disables these chosen D monitors from

the remaining monitor set,̂M (Line 12). Besides least-utility, candidates can also be

identified by using other heuristic metrics defined for the K-Best algorithm (Line 3).

2.4.5 Algorithm Examples

Suppose we haveM = 32, K = 24 andD = 4. The K-Best algorithm

directly disables8 = 32 − 24 monitors in a single step. On the other hand, the

Successive Selection algorithm involves two iterations. In each iteration,D = 4

monitors are selected for exclusion based on their performance in the previous iteration,

in accordance to one of the metrics defined in Section 2.4.2. The Greedy (Quasi-Greedy)

algorithm also disablesD = 4 monitors in each iteration. However, it selects the least
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Algorithm 3 Quasi-Greedy Algorithm (λ)

1: while More thanK monitors are leftdo

2: Maximizeβ by using all remaining monitors

3: Calculate measurement utility of each monitor(i, j) ∈ M̂

4: ChooseC=λ fraction remaining monitor(i, j) ∈ M̂ as candidates

5: for Each candidate monitor∈ C do

6: Disable the monitor

7: Maximizeβ based on remaining monitors

8: Storeβ

9: Enable the monitor

10: end for

11: FindD monitors∈ C with largestβ when they are disabled

12: M̂ ← M̂/{(i, j) ∈ D}
13: end while

important4 monitors based on testing every (candidate) monitor one-by-one and solving

the corresponding LP problem in each iteration, which is very time consuming. For the

Greedy algorithm, it involves solving32 and28 LP problems in the first and second

iteration, respectively. For the Quasi-Greedy algorithm,it involves solving32 × λ and

28× λ LP problems in the first and second iteration, respectively.

2.5 Evaluation

In this section, we evaluate the performance of MMPR. The experiment settings

are described in Section 2.5.1. Section 2.5.2 presents the traces and the metrics

of performance/cost to benchmark MMPR solutions. Section 2.5.3 discusses our

evaluation results in detail.

2.5.1 Experiment Settings

We first define the settings for individual flows. We denote theset of flows asF ,

the traffic demand of flowf asbf , and the importance of sampling it asif . We useυy∈θ to
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represent the set of flows that belong to the flowsety. For our evaluation, we specify the

measurement utility function of each flowset to be the following: Iy∈θ =
∑

f∈υy
ifbf .

The importance of a flowf , if , can be viewed as points we earn if a byte of it is

sampled. The optimization objective of MMPR is to maximizeβ. It is easy to see thatβ

can be expressed in another way:
∑

f∈F ifbfTv−1(f), which is exactly the total number

of points earned by MMPR. Herev−1(f) denotes the flowset to which flowf belongs.

Most IP networks use link-state protocols such as OSPF [60] and IS-IS [43] for

intra-domain routing. In such networks, every link is assigned a cost and traffic between

any two nodes is routed along minimum cost paths. In this paper, we use the popular

local search meta-heuristic in [34] to optimize link weights with respect to our aggregate

traffic demands. The optimized link weights are then used to derive our original routing

{Γ}x∈Θ(i,j)∈E. To avoid randomness in [34], we conduct experiments for thesame setting

five times, and only show the average results.

We have the greatest degree of freedom if each flow is assignedto a unique

flowset. However, this is not scalable from both a computation and an implementation

perspective. Therefore, we haveq flowsets per OD pair. We also haveL ≥ q flows for

each OD pair. Each of theL flows inF belonging to a particular OD pair is assigned to

one of the flowsets. There can be multiple ways of making such an assignment. In this

paper, we randomly assign an equal number of flows to each of theq flowsets.

Table 2.1 lists the values for the MMPR parameters used for all the experiments

in Section 2.5.3. We generate sampling rates for each link using uniform distribution

between 0 and 0.1. For one realization of link sampling rate and traffic demand,

we repeat the experiments10 times with different flow importanceif generated from

the Pareto distribution. We present the average measurement gain, unless specified

otherwise. We use CPLEX [4] to find optimal solutions for the LP and MILP problems.

For all the heuristic algorithms, we chooseD = 4 and D = 8 in Abilene and

AS6461/GEANT network, respectively. The algorithms with alargerD disable more

monitors in each iteration. However, our evaluation results suggest that the performance

is actually insensitive to the value ofD, and the results are omitted here.
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Table 2.2: Default Experimental Parameters

Parameter Description Value/Distribution
q Flowsets per OD pair 10
ǫ TE violation threshold 0.1
if Flow importance Pareto (λ = 2)

2.5.2 Traces and Performance Metrics

We use these three topologies in our experiments:

• Abilene: It is a public academic network in the U.S. with 11 nodes interconnected

by 28 OC192 (10 Gbps) links. The traces used were from April 22-26, 2004 [1].

• AS6461: It is a RocketFuel [69] topology with 19 nodes and 68 links. To generate

artificial traces, we first generate aggregate traffic demands for each OD pair using a

Gravity Model [55]. The traffic demand of flowf , bf , is then set equal to the traffic

demand of its corresponding OD pair divided byL, whereL = 3000.

• GEANT: It connects a variety of European research and education networks. Our

experiments are based on the December 2004 snapshot [3], which consists of 23

nodes and 74 links ranging from 155 Mbps to 10 Gbps.

In our experiments, besides the measurement gainβ and the TE metric in

terms of MLU (maximum link utilization), we are also interested in the following four

performance metrics:

• Computation Time: In our experiment, we only collect computation time for the

LP or MILP solver. These parts usually take longer time than normal numerical

computation, and are therefore the dominant part for our solutions. Meanwhile, the

computation time for LP or MILP may vary for different solvers. We therefore do

not mix them with other numerical computation.

• F&T TE metric: We use MLU as the TE metric in Equation (19). Besides MLU, we

are also interested in the F&T metric [34], which is defined asweighted summation

of link utilization of all the links. F&T characterizes the performance of entire

network.
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• APLI(Average Path Length Inflation): It is defined as the ratio of
∑

y

∑

(i,j)∈E γy

(i,j)φy and
∑

y

∑

(i,j)∈E Γx
(i,j)φy. APLI reflects how flows get

detoured. We expect important flows to have large path inflation since they are

re-routed towards monitors.

• Monitor Selection Overlapη: It is defined as a ratio. The numerator is the number

of monitors that are both selected by the heuristic and optimal solution. The

denominator is the total number of selected monitors. A key part of the MMPR

problem is to select the best monitor locations. Thisη metric reflects how heuristics

select monitors.

2.5.3 Evaluation Results

In this section, we first compare Optimal MMPR with two baseline cases in

Section 2.5.3 and show that MMPR can have better measurementgain up to 1.17X and

2.6X when compared to Placement-only and MR-only, respectively, for Abilene, 1.71X

and 6X for AS6461, and 1.14X and 6.6X for GEANT. Section 2.5.3presents detailed

performance comparison of our proposed heuristic algorithms belonging to three

different categories: K-Best, Successive Selection and Quasi-Greedy. Section 2.5.3

shows that all our proposed heuristic algorithms in each category perform very close

to the Optimal MMPR solution and can reduce the computation by a factor of 23X in

Abilene, 246X in AS6461, and 233X in GEANT.

In all the figures below, we use “KB", “SS", and “QG" to denote K-Best,

Successive Selection and Quasi-Greedy, respectively. Forexample, “KB/utility" means

K-Best algorithm with the least-utility ranking metric. Optimal MMPR is denoted as

“Optimal" for short. For all the figures on computation time,the unit is second.

Optimal Solution vs. Default Cases

We first compare the optimal solution of MMPR with MR-only andPlacement-

only, using the same experimental settings (Section 2.5.1). Placement-only was defined

and formulated in Section 2.2. MR-only, on the other hand, first randomly selectsK

monitors, and then finds the optimal routingγy
ij using MeasuRouting [63]. As shown
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in Figure 2.2. We see that optimal MMPR can have better measurement gain up to

1.17X(87
74

) and 2.6X(4
1.5

) compared to Placement-only and MR-only, respectively, for

Abilene, 1.71X( 3
1.75

) and 6X(1.8
0.3

) for AS6461, and 1.14X(3.1
2.7

) and 6.6X(2
0.3

) for GEANT.

We also present the performance of another baseline case, “All-On", in which

every monitor is on and flowsets are routed by the default routing Γx
(i,j). As shown in

Figure 2.2, the optimalβ of MMPR is better than the “All-On" case, even with only a

small fraction of monitors turned on. Without strategic routing, even deploying monitors

everywhere does not guarantee a comparable performance gain compared with MMPR

with a small number of monitors. As shown in these figures, MMPR can achieve the

same measurement gain as the “All-On" case, but it can save 16(=28-12), 56(=68-12),

and 54(=74-20) monitors in the case of Abilene, AS6461, and GEANT, respectively.

Meanwhile, the computation time for optimal solution is fairly long (around 4 minutes)

for AS6461, and increases to around 6 minutes for the GEANT network.

Sensitivity Analysis of Heuristic Algorithms

Due to the potentially long computation times required to solve for the optimal

MMPR, we propose several heuristic algorithms to reduce thecomputation time

complexity. They are categorized as “K-Best", “SuccessiveSelection", “Greedy" and

“Quasi-Greedy". We omit performance results for Greedy since it is computationally

too costly.

We first compare K-Best algorithms (using different metrics) with the optimal

solution in Figure 2.3. As expected, using the least-utility metric achieves the best

β (very close to optimal) in all three topologies. It achieves2.36X(2.6
1.1

) higher

measurement gain compared to using the least-importance metric, but only increases

1.1X(1.22
1.1

) in computation time in AS6461.

As mentioned earlier, the computation time is only collected for the LP or MILP

solver. Results in Figure 2.4 show that using different ranking metrics lead to very

similar computation times. From the perspective of an LP solver, an unsuitable monitor

placement means either more steps are needed to achieve the optimalβ (which is more

time consuming), or there is no way to achieve very largeβ (which means shorter

solving time). If we also consider other numerical computations (i.e: computation of
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each metric, ranking monitors based on metric values), “least-utility", “least-traffic",

and “least-importance" definitely take longer, since the calculation of these three metrics

involve all flows and monitors. In contrast, “least-rate" and “least-neighbor" only need

topology information.

Figure 2.5 compares the MMPR performance of Successive Selection algorithms

with different ranking metrics, and the same trend is observed in Abilene, AS6461, and

GEANT networks. We omit “least-rate" and “least-neighbor"cases since they have

similar measurement gain as in the corresponding K-Best case. Successive Selection

with the least-utility metric also achieves the best performance. Similar to Figure 2.4,

the three metrics share very close computation time (e.g., shown in Figure 2.6). It

mostly depends on the number of iterations, which is linear with respect to the number

of monitors in the Successive Selection algorithm.

Finally, we compare the Quasi-Greedy algorithm (with different λ values)

against the optimal solution in Figure 2.7. Since Quasi-Greedy is still computationally

intensive, we only present results for AS6461. Note that there are no obvious

improvements on measurement gain for largerλ’s. However, the computation time

increases substantially with largerλ’s. This implies that even with a smaller number

of candidates, the Quasi-Greedy algorithm can perform veryclose to the optimal and

saves computation time.

Comparing K-Best, SS, and QG

In this section, we compare all three heuristic algorithms with the optimal

MMPR solution. Results from the previous section show that “least-utility" is the most

effective metric for ranking the importance of monitors. Wetherefore adopt “least-

utility” metric as a basis for comparing the K-Best, Successive Selection, and Quasi-

Greedy methods.

For the Quasi-Greedy algorithm, we present results usingλ = 0.15. It tests

0.15M̄ monitors in each iteration to chooseD monitors to disable. Figure 2.8 and

Figure 2.9 show the achieved measurement gainβ and computation time for all the

algorithms for all three topologies. In addition, we present F&T metric, APLI (Average

Path Length Inflation), andη (Monitor Selection Overlap) in Figure 2.10. Only results
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for AS6461 are shown, but the same trends are observed for theother two topologies.

We make the following observations based on our results:

• The maximumβ’s are very close for all algorithms. Both K-Best and Successive

Selection algorithms are practical for large networks; their computation times are

much less than the optimal case. Their best metric is “least-utility". Although K-

Best is slightly worse than Successive Selection for Abilene, their achievableβ’s are

almost the same for a large network like GEANT.

• Quasi-Greedy approach is very costly. However, its measurement gains are not

noticeably better than the other heuristics. Therefore, there is no need to iteratively

test monitors one-by-one to decide which ones to disable. Wecan just simply disable

monitors based on their performance metrics in the previousiteration.

• As shown in Figure 2.8, K-Best achieves almost the same measurement gain as

MMPR optimal, but reduces computation times by a factor of 23X( 2.7
0.12

), 246X(320
1.3

),

and 233X(400
1.71

) for Abilene, AS6461, and GEANT, respectively, while Successive

Selection reduces computation times by a factor of 10X(2.7
0.26

), 64X(320
5

), and

66X(400
6

) for Abilene, AS6461, and GEANT, respectively. Quasi-Greedy also saves

computation times by a factor of 3X(300
100

) for AS6461. In practice, K-Best is the best

choice since it greatly reduces computation time with measurement gains that are

very close to the optimal.

• Values for F&T metric and APLI both increase with larger number of monitors. With

more monitors, MMPR will put more weight on improving measurement gains, at

a cost to the traffic engineering and packet forwarding performance. For example,

because the same thresholdǫ = 0.1 is used to bound TE violation in Equation (2.19),

all algorithms finally achieve the same MLU in every case (graphs are omitted here).

However, both F&T metric and APLI increase with more monitors. For example,

the 20% increase in APLI implies longer end-to-end forwarding delay, which may

be acceptable for non-real-time traffic. To meet more stringent QoS requirements,

they can be introduced as constraints in the MMPR formulation.

• The optimal solution does not necessarily achieve the best F&T or APLI results,

since the optimal solution only optimizes for measurement gains with bounded

violation of MLU. Some of the heuristics work better in preserving the overall
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network performance.

• η (Monitor Selection Overlap) shown in Figure 2.10 for AS6461provides insights

into why the performance of different algorithms are so close to the optimal. All

the heuristic algorithms select almost the same set of monitor locations (e.g., 92%-

100%) as the optimal solution, with the ratio approaching one as the number of

available monitors increases. The same trend is observed for Abilene and GEANT

topologies (results not shown here).

2.6 Related Work

Previous work mostly studied traffic measurement on a singlemonitor. They

either infer traffic characteristics from sampled data [21,22, 29, 37, 54] or use measure-

ment schemes other than sampling for special traffic sub-populations [30, 50, 52, 53, 62,

75].

Recently, researchers have begun investigating network-wide traffic measure-

ment problems. Existing approaches [15, 20, 72] generally define and solve some

monitor placement problem for fixed traffic characteristicsand monitoring objectives.

[20] defines utility functions for the sampled traffic. The problem is to maximize

the overall utility with bounded measurement operation/deployment cost. It models

variations of this problem, proves their complexities, andproposes heuristic algorithms.

[15] improves upon [20] by performing a more rigorous analysis to indicate the

convergence of any heuristic solution. Most recently, [65]proposes Successive c-

Optimal design to optimize the deployment and sampling rateof large IP networks.

However, their measurement goal is traffic matrix estimation. In contrast, MMPR is

not restricted to any special measurement goal. None of themare suitable for changing

traffic conditions or monitoring objectives.

Our work builds upon the recently proposed MeasuRouting paradigm [63],

which proposes to assist traffic monitoring by intelligently routing traffic sub-

populations over the corresponding monitors. It assumes fixed and random monitor

placement, and routes flowsets based on their different measurement importance. It

maximizes the overall measurement gainβ under the constraint thatσ is preserved
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at decent levels. With the freedom of intelligent routing, flows can better utilize the

existing monitor infrastructure. Our work extends this framework by carefully choosing

monitor locations. Our formulation also builds upon CSamp [66] like methods, to

ensure non-overlapping measurement across monitors. [66]sets distinct hash filters on

each monitor such that they capture different traffic sub-populations.

2.7 Discussion and Conclusions

In this chapter, we presented MMPR, a theoretical frameworkthat jointly

optimizes monitor placement and dynamic routing strategy to achieve maximum

measurement utility, with limited monitoring resources. We formulated optimal MMPR

as an MILP problem and proposed four heuristic algorithms toreduce the computation

complexity: “K-Best", “Successive Selection", “Greedy" and “Quasi-Greedy". We

performed detailed comparative study of these algorithms on three topologies, using

both real traces and synthetic data. Our results suggest that the simplest algorithm, “K-

Best", is actually the best choice in practice. It achieves measurement gains that are

quite close to the optimal solutions, but it reduces the computation time by a factor of

246X in the best case in our experiments.

The theoretical study of MMPR framework can be extended by introducing

other constraints or variations. For instance, as discussed earlier, measurement

deployment/operation cost can be formulated in more concrete forms. Meanwhile, how

to decide the proper flow utility function and measurement objective function remain

open problems across different measurement applications.Furthermore, it would be

interesting to treat sampling rate as another degree of freedom [15, 20], to let monitors

dynamically adjust their monitoring capability. All theseissues will be explored in

future work.

MMPR, as well as MeasuRouting, require the prior knowledge of traffic

importance in order to route flowsets differently. Such information need not be accurate

in practice. Real measurements usually conduct hypothesistest procedures [71, 75].

They first obtain some global knowledge of the traffic, and zoom into the suspected

traffic sub-population for more detailed analysis. Consider measuring flow size
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distribution for small/medium flows as our target, MMPR/MeasuRouting can depend

on external modules to first estimate large flow identities. MMPR/MeasuRouting then

directs the large flows away from measurement boxes, which are devised with many

small-sized counters such that small/medium flows can be better maintained. In this

example, there is no need to accurately measure flow sizes in the first step.

There are also many implementation issues of MMPR that need to be addressed.

One important issue is to determine which exact routing protocols are used. A routing

protocol that strictly routes traffic between an OD pair along only the shortest paths

may provide less opportunities to ’re-route’ important flowsets through monitors. A

centralized routing controller, e.g. [59], is able to detour flows away from the shortest

path. Meanwhile, MMPR requires that the traffic be dynamically routed/rerouted. Such

dynamic forwarding mechanism can be implemented using programmable routers [13,

57, 59]. Besides this, two other dynamics issues are also important: how to estimate

flow importance dynamically and how configure routing table entries dynamically.

Recent work in [41] summarizes these challenges for MeasuRouting and proposes

corresponding solutions for one measurement application:global iceberg detection and

capture. The solutions are also applicable to MMPR, which builds upon MeasuRouting.

MMPR extends MeasuRouting by introducing the opportunity to turn on and off

monitors. In reality, operators should avoid frequently switching monitor status. We

plan to implement MMPR in OpenFlow [59] or other programmable routing platforms

in future work.

Chapter 2, in full, is a reprint of the material as it appears in IEEE Transactions

on Network and Service Management (TNSM) 2011, Guanyao Huang, Chia-Wei

Chang, Chen-Nee Chuah and Bill Lin, “Measurement-aware Monitor Placement and

Routing: A Joint Optimization Approach for Network-Wide Measurements”. The

dissertation author was the primary investigator and second author of the paper.



Chapter 3

LEISURE: A Framework for

Load-Balanced Network-Wide Traffic

Measurement

3.1 Introduction

Accurate traffic measurement is essential to a variety of network management

tasks, including traffic engineering (TE), capacity planning, accounting, anomaly

detection, and security forensics. Many existing studies focus on improving traffic

measurement techniques at a single monitor, including adaptive sampling [61], data

streaming [47], and heavy-hitter detection mechanisms [30]. These solutions typically

examine packet headers to determine if any statistics need to be collected. While these

aggregate traffic volume statistics are sufficient for TE purposes, there is an increasing

need for fine-grained flow level measurements to perform accurate traffic classifications

for security purposes. For example, deep packet inspection(DPI) allows post-mortem

analysis of network events and helps understand the payloadproperties of transiting

Internet traffic. Another solution, Network DVR [17], performs selective flow-based

trace collection by matching packets against application-specific signatures.

However, doing fine-grained flow level measurements (e.g., analyzing payload)

is often an expensive process that requires dedicated hardware (e.g., TCAMs [74]),

50
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specialized algorithms, (e.g., Bloom Filters [25]), or vast storage capacity. Given the

fast-changing Internet traffic landscape and large traffic volume, a single monitor is not

capable of accomplishing the measurement tasks from all applications of interest due

to its resource constraint. This calls for coordinated measurement between multiple

distributed monitors. Moreover, network-wide traffic measurement at multiple monitors

is also key to uncovering global network behavior since traffic measured at a single

monitor only provides partial views and may not be sufficientor accurate. For example,

a global iceberg[40] may have high aggregate volume across many different monitors,

but may not be detectable at any single monitor. Discoveringthis type of event is

important for a number of applications (e.g. detecting DDoSattacks, discovering

worms, as well as ensuring SLA compliance).

To perform effective network-wide traffic measurement across multiple dis-

tributed monitors, a centralized framework that coordinates measurement responsibili-

ties across different monitors is needed. In today’s network, deployed monitors measure

traffic completely independently to each other, leading to redundant flow measurements

and inefficient use of routers’ measurement resources. Sekar et al. [66] proposed

CSAMP (Coordinated Sampling), a centralized hash-based packet selection system as a

router-level primitive, to allow distributed monitors to measure disjoint sets of traffic

without requiring explicit communications, thus eliminating redundant and possibly

ambiguous measurements across the network. CSAMP uses an optimization framework

to specify the set of flows that each monitor is required to record by considering a hybrid

measurement objective that maximizes the total flow-coverage subject to ensuring that

the optimal minimum fractional coverage of the task can be achieved. However,

both traffic characteristics and measurement tasks can dynamically change over time,

coupled with ever-increasing link rates (high traffic volume) and out of consideration

to distribute multiple measurement tasks jointly, rendering previously-placed monitors

easily overwhelmed if the measurement tasks are not judiciously load-balanced across

them, thus leading to entire coordinated measurements failure and wastage of routers’

measurement resources. In addition, existing frameworks (e.g., CSAMP) are agnostic

to differentiation in the importance of traffic sub-populations or the cost of individual

measurement tasks.
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We present a new centralized optimization framework calledLEISURE(Load-

EqualIzed meaSUREment) to address the network measurement load-balancing prob-

lem on various realistic scenarios while ensuring that the maximum traffic measurement

utility of the network is achieved. In contrast to CSAMP, LEISURE distributes traffic

measurement tasks evenly across coordinated monitors subject to ensuring that the

required fractional coverage of those tasks (e.g., the maximum traffic measurement

gain from MeasuRouting [63], MMPR [39]) can be achieved. It takes a) routing

matrix, b) the topology and monitoring infrastructure deployment and c) measurement

requirements of tasks as inputs, and decides which available monitors should participate

in each specific measurement task and how much they need to measure to optimize

the load-balancing objectives. Ideally theload-balancing objectiveis to have identical

workload for all monitors where workload denotes the normalized traffic amount that

each monitor measures. In this work, theload-balancing objectiveis mainly defined as

two terms: 1) minimizing the variance of workloads across all monitors or 2) minimizing

the maximum workload among them. We summarize our contributions as follows:

• We present LEISURE and formulate the optimization problemsfor network-

wide traffic measurements by considering different load-balancing objectives

without compromising on the overall maximum traffic measurement gain of the

network. The optimal solutions are translated into the disjoint sets of required-

measured flows that each monitor is assigned to measure. We also propose simple

heuristic solutions to compare with and extend LEISURE to incorporate practical

scenarios (constraints), i.e., (a) with limited measuringresources at monitors, (b)

with limited number of deployed monitors, (c) with multiplerouting paths (e.g.,

ECMP) for each origin-destination (OD)-pair traffic.

• As proof of concept, we perform detailed simulation studiesbased on Abilene [16]

and GEANT [73] network topologies and traces. Our results show that the

significant load-balancing improvement (e.g., 4.75X smaller maximum workload

and 70X smaller variance in workloads) is achieved by using LEISURE to

optimally distribute the measurement tasks across all coordinated monitors when

compared with the naive uniform assignments.
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• We also present detailed performance comparison of our proposed heuristic

algorithms belonging to two categories: LB-Greedy and LB-Successive Selection

in flexible monitor deployment scenario. We show that our proposed heuristic

solutions can achieve load-balancing performance that arequite close to the

optimal solutions, while reducing the computation times bya factor up to 22.5X

in Abilene and 800X in GEANT.

• We extend LEISURE and simulation studies to perform optimizations and

sensitivity analysis with respect to multiple measurementtasks that exhibit

different importance and incur different costs. We show that LEISURE is flexible

enough to assign the correct set of measurement tasks for coordinated monitors to

optimize measurement utility given limited measuring resources.

This chapter is structured as follows. Section 3.2 outlinesrelated work.

Section 3.3 motivates our load-balancing problem by showing how measurement

tasks can be distributed to several coordinated monitors using diversity of intuitions.

We present detailed optimization formulations, solutionsand implementations in

Section 3.4, followed by the discussion of extensions in Section 3.5. Section 3.6

describes our simulation setup and evaluation results, andSection 3.7 concludes this

chapter.

3.2 Related Work

Traffic measurement might involve single point or multiple monitors. Earlier

work on traffic measurement has focused on improving single-point measurement

techniques, such as sampling approaches [22, 37], estimation of heavy-hitters [30], and

methods to channel monitoring resources on traffic sub-populations [62, 75]. Recently,

researchers are interested in investigating network-widetraffic measurement problems.

In particular, they have demonstrated the benefits of a network-wide approach for traffic

engineering [76] and network diagnosis [48].

Network-wide traffic measurement presents more challenges. Previous work

on network-wide measurement mostly studied the problem of placing monitors at
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proper locations to cover all measurement task (routing paths) using as few monitors as

possible [20, 67, 72]. Suh et al. [72] first defined utility functions for the sampled traffic

and maximized the overall utility with bounded measurementoperation/deployment

cost. They proposed a two phase approach where they first identified the links that

should be monitored and then run a optimization algorithm toset the sampling rates.

Cantieni et al. in [15] argue that most ISPs already deploy routers which are equipped

with monitoring capabilities (e.g., Netflow [7], Openflow [59]) and these monitoring

tools can give greater visibility on the network-wide traffic. Network operators hence

can decide whether to turn on these capabilities, and there are potentially hundreds of

monitoring points to choose from to achieve network-wide measurements. Based on this

assumption, they reformulate the placement problem to decide which monitors should

be activated and what sampling rate should be adjusted to achieve a given measurement

task with high accuracy and low resource consumption. It performs more rigorous

analysis on the convergence of heuristic solutions.

Upon this assumption, our design of LEISURE as a centralizednetwork-wide

measurement framework is also encouraged by recent trends in network management.

[10, 14] suggest that a centralized network management approach can significantly

reduce management complexity and operating costs. [66] showcases that a centralized

system that coordinates monitoring responsibilities across multiple routers can signifi-

cantly increase the flow monitoring capabilities of a network. The global measurement

coverage can therefore be improved. In contrast, LEISURE assumes the measurement

task can be fulfilled by a given set of numerous monitoring points, and its goal is to

optimize the load-balancing objectives by determining which available monitors should

participate in each specific measurement task and how much they need to measure

instead of solving only coverage optimization problem. Also none of the previous work

ever considered possible large measurement traffic, multiple measurement tasks with

different costs and differentiation in the importance of traffic sub-populations, let alone

load balancing among distributed monitors.
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Figure 3.1: Different load-balancing approaches for our toy example,which includes

three OD-pair traffic as our measurement task (i.e., SF→NY, LA→Seattle, and

Chicago→Atlanta, each with 120 units of traffic).
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3.3 Motivating Example

We first consider the toy example with traffic demands from three OD-pairs:

SF→NY, LA→Seattle, and Chicago→Atlanta, each with 120 units of traffic (IP flows)

in Figure 3.1. Suppose the measurement task imposed by the network operator is to

measure all the traffic from these three OD-pairs, one naive approach is to simply always

measure the traffic for each OD-pair at the ingress router as shown in Figure 3.1(b). The

monitors then only need to be placed in SF, LA, and Chicago with measurement traffic

as 120 units. Similar to this approach, the traffic for each OD-pair can be measured

at the egress router as Figure 3.1(c) shown. The monitors instead need to be placed in

NY, Seattle, and Atlanta with the same measurement traffic. Both of these approaches

only need 3 monitors to accomplish the assigned measurementtask but with 120 unit

measurement traffic.

On the other hand, assume all of these routers are equipped with monitors that

are capable of performing the measurement task, our goal is to reduce their maximum

measurement traffic by determining afraction of the required measurement traffic to

each of these monitors. One simple strategy is touniformly distribute the required

measurement traffic of each OD-pair to the monitors along itsrouting path as depicted in

Figure 3.1(d). For example, the 120 units of traffic for SF→NY is measured uniformly

across monitors placed in SF, Denver, Kansas City, Indianapolis and NY. Each of

them takes the measurement responsibility as 24 units. Similarly, the monitors in LA,

Denver, Seattle and Chicago, Indianapolis, Atlanta take the measurement responsibility

as 40 units for LA→Seattle, and Chicago→Atlanta traffic respectively. The maximum

measurement traffic therefore is most likely be the router with the largest number of OD-

pairs passing through it (e.g., 64 units of measurement traffic in Denver/Indianapolis).

The other intuitive method distributes the required measurement traffic of

each OD-pair to the monitors inverse-proportion-to the traffic passing through them

as shown in Figure 3.1(e). For example, the traffic passing through SF, Denver,

Kansas City, Indianapolis and NY is 120, 240, 120, 240 and 120respectively. Based

on its calculation, SF, Kansas City and NY should measure 30 units of traffic for

SF→NY ( 120−1

120−1+240−1+120−1+240−1+120−1 × 120) while Denver and Indianapolis is 15

units. Similarly, the monitors in LA, Seattle, Chicago, Atlanta and Denver, Indianapolis
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should take the measurement responsibility as 48, 24 units for the traffic LA→Seattle,

and Chicago→Atlanta respectively.

Although these two methods achieve significant reduction inthe maximum

measurement traffic compared to the naive approaches (e.g.,120→64,120→48), it

actually can be further reduced to 40 units as shown in Figure3.1(f) by using LEISURE

to solve the global load-balancing optimization problem. In this optimal solution, the

SF→NY traffic is measured uniformly by onlythreemonitors (SF, Kansas City, and

NY) instead of five, each with 40 units of traffic while Denver and Indianapolis are

not involved in the measurement of the SF→NY traffic. This in turn allows the equal

splitting of the LA→Seattle traffic and the Chicago→Atlanta traffic across all three

routers in each of its respective path, which results in all monitors having the same

perfectly load-balanced measurement traffic as 40 units.

It is important to see that the routing path for each OD-pair traffic must overlap,

such that the shared monitors can be best utilized by LEISUREto optimally minimize

their maximum measurement traffic. If the monitors for measuring each OD-pair traffic

are disjoint, there is no opportunity for LEISURE to globally coordinate the overall

measurement task since it can only balance the monitors for each OD-pair traffic

separately. Therefore the performance of LEISURE in this case degrades as the simple

uniform assignments. Next, we are in general interested in finding globally optimal

load-balancing solutions by using LEISURE under differentnetwork conditions (e.g.,

topology, traffic demand, routing matrix, etc), measurement objectives (e.g., minimize

maximum workload, maximize measurement utility, etc), andresource constraints (e.g.,

subset of routers are capable of monitoring, some monitors have lower capacities, etc).

3.4 Leisure framework

We now present a load-balanced optimization framework to cover network-

wide traffic monitoring objectives while respecting routerresource constraints. ISPs

typically specify their network-wide measurement task in terms of OD-pairs. To cover

these measurement assignments, LEISURE needs both the traffic demand and routing

information, which are readily available to network operators in [76]. In general,
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LEISURE is a centralized architecture to allocate disjointsets of required-measurement

flows in OD-pairs for each router by given global network-wide information: a) network

topology, monitoring infrastructure deployment, b) traffic demand, routing matrix and

c) measurement requirements and the associated cost for each measurement task.The

problem formulation builds up from the simplest case in which we assume: 1) the

traffic matrix and routing information for the network are given exactly and they change

infrequently; 2) all the routers are deployed with monitorsand capable of measurement;

3) flows of each OD-pair follow a single router-level path by OSPF; and 4) there is only

one measurement task for every monitor. These constraints are gradually relaxed in

Section 3.5.

3.4.1 Basic Model

Let G(V,E) represent our network topology, whereV is the set of routers

(monitors) andE is the set of directed links. Each routerVi (i = 1 . . .M) has two

factors to limit its measurement ability: memory and bandwidth. We abstract them into

a single resource constraintCvi (i = 1 . . .M), the number of flows routerVi can measure

in a given measurement interval.

An OD-pair, ODx, represents a set of flows between the same pair of

ingress/egress routers for which an aggregated routing placement is given. The set of

all |V | × |V − 1| OD-pairs is given byΘ: ODx, x ∈ Θ. Φx characterizes the traffic

demand (IP flows) of the OD-pairODx, x ∈ Θ in a given measurement interval (e.g., 5

minutes).Px represents the given routing strategy (router-level path)for every OD-pair

ODx, x ∈ Θ.

ax denotes the desired coverage fraction of IP flows ofODx that is required

to measure, which is imposed by the network operator. Therefore the total required

measurement traffic (number of flows),β, introduced to all routers is simply a

summation of traffic demand per OD-pair timesax asβ =
∑

x∈ΘΦx × ax.

Let dxi denote the fraction of traffic demand (IP flows) ofODx that routerVi

samples/measures (i.e.,dxi =measured flows inΦx

Φx
) while Li denotes the total traffic (number

of IP flows) that routerVi measures for all OD-pairs,ODx, x ∈ Θ normalized byβ. The
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Table 3.1: Notations

Notation Description
ODx represent a set of flows between the same pair of ingress/egress routers
Θ the set of all|V | × |V − 1| OD-pairs:ODx, x ∈ Θ
Φx characterizes the traffic demand (IP flows) of OD-pairODx, x ∈ Θ
Px represents the given routing strategy for OD-pairODx, x ∈ Θ
ax the fraction ofΦx (IP flows) ofODx that is required to measure
dxi the fraction ofΦx (IP flows) ofODx that routerVi measures
β the total required measurement traffic (number of IP flows)
Li the total traffic (number of IP flows) thatVi measured normalized byβ
α load-balancing objective

summation ofLi for all routersVi (i = 1 . . .M) then equals 1. We have:

β =
∑

x∈Θ

Φx × ax (3.1)

Li =
1

β

∑

x:Vi∈Px

dxi × Φx ∀i (3.2)

M
∑

i=1

Li = 1 (3.3)

Our decision variable isdxi . The first constraint ofdxi is that the value ofdxi is

bounded between 0 and 1 as Equation (3.4). The second constraint is that the summation

of dxi along the pathPi for each OD-pairODx, x ∈ Θ is ax, as Equation (3.5). If router

Vi is not in the routing pathPx of OD-pairODx, x ∈ Θ (Vi /∈ Px), dxi is inherently0.

The third constraint is that the measured fraction ofβ for each monitorVi should not

exceed its measurement ability (resource constraint)Cvi as Equation (3.6). Notations

are also summarized in Table I.

0 ≤ dxi ≤ 1 ∀x, i (3.4)
∑

i:Vi∈Px

dxi = ax ∀x ∈ Θ (3.5)

∑

x:Vi∈Px

dxi × Φx ≤ Cvi ∀i (3.6)
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Table 3.2: dxi for each approach with the toy example shown in Figure 3.1

d13 d14 d15 d16 d17 d21 d24 d28 d32 d36 d39
LB(ingress) 1 0 0 0 0 0 0 1 1 0 0
LB(egress) 0 0 0 0 1 1 0 0 0 0 1
LB(uniform) 1/5 1/5 1/5 1/5 1/5 1/3 1/3 1/3 1/3 1/3 1/3
LB(weighted) 1/4 1/8 1/4 1/8 1/4 2/5 1/5 2/5 2/5 1/5 2/5
LB(optimal) 1/3 0 1/3 0 1/3 1/3 1/3 1/3 1/3 1/3 1/3

MAX(Li) V AR(Li) # of monitors Decision
LB(ingress) 120/360 0.025 3 local
LB(egress) 120/360 0.025 3 local
LB(uniform) 64/360 0.00167 9 local
LB(weighted) 48/360 0.000484 9 global
LB(optimal) 40/360 0 9 global

3.4.2 Problem Formulation

We define our load-balancing objective in abstract formα, which can be any

term as long as it captures load-balancing performance (i.e., identical workload for

all monitors). The overall optimization objective of LEISURE is to minimizeα that

each router operates within its resource constraint by given parameterax, the required

fractional coverage per OD-pair imposed by the network operator. In this section,

we formulate and study three different optimization problems that correspond to three

different load-balancing objectiveα: min-VAR, min-MAXandmin-VAR-given-MAX.

Minimize Variance Problem (min-VAR)

In this problem, we denoteα as the variance ofLi across all participating

routers1. The intuition is that with more even workloadLi for all routers, the variance

is smaller (e.g., variance=0 stands for ideal load-balancing objective whereLi =
1
M

for

1We use “population variance" instead of “sample variance" as our objective function since we already
know the number of monitorsm.
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all M routers). We have:

α = V AR(Li) =

M
∑

i=1

(Li − L̄)2

M
(3.7)

L̄ =
1

M

M
∑

i=1

Li =
1

M
· 1 (3.8)

This optimization problem is formulated as:

minimizeα=V AR(Li)

subject to

1

β

∑

x:Vi∈Px

dxi × Φx = Li ∀i (3.9)

∑

i:Vi∈Px

dxi = ax ∀x ∈ Θ (3.10)

∑

x:Vi∈Px

dxi × Φx ≤ Cvi ∀i (3.11)

0 ≤ dxi ≤ 1 ∀x, i (3.12)

Minimize Maximum Problem (min-MAX)

In this problem, we denoteα as the maximum value ofLi across all routers:

α = MAX(Li) i = 1 . . .M (3.13)

The intuition is that when LEISURE keeps minimizing the maximum value ofLi for all

monitors by adjusting decision variablesdxi , other smallerLi will increase, eventually

they will reach some equilibrium state that no more adjustments it can do to lower the

MAX(Li) without increasing otherLi aboveMAX(Li). The problem formulation

shares the same constraints as min-VAR problem, Equation (3.9) to (3.12), except that

the objective function is different: minimizeα = MAX(Li), i = 1 . . .M .

Minimize Variance with Max-Constraint Problem (min-VAR-g iven-MAX)

This problem involves two phases. In the first step, we formulate themin-MAX

problem given in Section 3.4.2 to find the minimum achievablemaximum valueLmax
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(Lmax= minimizedMAX(Li), i = 1 . . .M) for all routers to cover the total required-

measurement IP flows,β. Then we seek for any opportunity to further re-distribute the

measurement task (workload) evenly within this constraint. Therefore in the second

step, we introduce additional constraints to themin-VARproblem given in Section 3.4.2

to limit theLi for each routerVi to be at mostLmax. We then minimize the variance of

Li across all routers. Specifically, we only need to introduce the following constraint to

themin-VARproblem:

Li =
1

β

∑

x:Vi∈Px

dxi × Φx ≤ Lmax ∀i (3.14)

Therefore themin-VAR-given-MAXproblem actually combines themin-VARandmin-

MAX problems.

3.4.3 Optimal/Heuristic Solutions

We seek for the optimaldxi assignments for the above three problems. There is a

variety of optimization tools that we can leverage. Specifically, the optimal solutions can

be found by using a Quadratic Programming (QP) formulation for themin-VARproblem

and a Linear Programming (LP) formulation for themin-MAXproblem. The combined

problem,min-VAR-given-MAX, can be solved in a two-phase manner by using LP first

and QP follows. We refer these three optimal solutions of LEISURE as LB(min-VAR),

LB(min-MAX), and LB(min-VAR-given-MAX), respectively.

Besides the optimal solutions, we introduce one simple heuristic method called

LB(weighted) under the assumption that routers can always fulfill assigned measured

tasks (e.g., no resource constraints for all routers in Equation (3.6)). LB(weighted)

calculatesdxi in inverse-proportion to the total required-measurement traffic amount

(IP flows) passing through routerVi. The rationale behind it is that routers with

larger required-measurement IP flows passing through should be assigned with less IP

flows to measure in order to achieve load-balancing objective. Letβi denote the total

required measurement traffic passing through routerVi, which can be calculated using
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Equation (3.15). Thedxi assignment for LB(weighted) is formulated as:

βi =
∑

x:Vi∈Px

Φx · ax ∀i ∈ V (3.15)

dxi =

1
βi

∑

i:Vi∈Px

1

βi

× ax ∀x, i (3.16)

Although LB(weighted) does not necessarily lead to the optimal solution, its compu-

tation time is very fast comapred to the time required to solve QP or LP optimization

problems for LB(min-VAR), LB(min-MAX), and LB(min-VAR-given-MAX). In Sec-

tion 3.6, we compare their load-balacning performances also with the following three

simple naive strategies:

1. LB(ingress): the required measurement traffic,Φx ·ax for each OD-pairODx, x ∈
Θ, is only measured at ingress routers.

2. LB(egress): the required measurement traffic,Φx · ax for each OD-pairODx, x ∈
Θ, is only measured only at egress routers.

3. LB(uniform): the required measurement traffic,Φx·ax for each OD-pairODx, x ∈
Θ, is measured evenly across the routers on its routing pathPx.

Table 3.2 summarizes the correspondingdxi for each approach with the toy

example presented in Figure 3.1. In this example, LB(min-VAR), LB(min-MAX),

and LB(min-VAR-given-MAX) all have the same optimal load-balancing performance

(i.e., MAX(Li) = 40
360

andV AR(Li) = 0), which we denote as LB(optimal). In

comparison, LB(ingress) and LB(egress) have poorest load-balancing performance but

with least number of deployed monitors. LB(uniform) outperforms them but needs

more monitors (e.g., 9 instead of 3 monitors in our toy example). LB(weighted) and

LB(optimal) which consider global required measurement traffic can have better load-

balancing performance compared to the local approaches (e.g., LB(ingress), LB(egress)

and LB(uniform)), where LB(optimal) has the optimal load-balancing performance but

needs much more computation time.
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3.4.4 Implementation of LEISURE

The disjoint sets of required-measurement flows for each router in LEISURE

could be implemented by usinghash-based packet selectionin [66] as CSAMP used,

a router-level primitive suggested in Trajectory Sampling[26]. Trajectory Sampling

assigns all routers in the network a common hash range and each router in the network

records the passage for all packets that fall in this common hash range for applications

such as fault diagnosis. In contrast, we use hash-based packet selection to assign disjoint

hash ranges across multiple routers to ensure the non-overlapping measurement of traffic

among monitors as CSAMP. The implementation cost of hash-based packet selection in

routers could be found in [66]. Note that both LEISURE and CSAMP use the same

hash-based coordination between monitors to implement disjointed flow-measurement.

However, our disjoint sets of required-measurement flows for each router are the optimal

result which distributes traffic measurement tasks evenly across coordinated routers

while in CSAMP, their disjoint flow sets are derived from the output of an optimization

framework which aims to maximize the flow-coverage objectives.

3.5 Extensions

In this section, we extend previous formulations to cover some practical

scenarios, including 1) only a subset of fixed routers are deployed with monitors and

capable of measurement; 2) these limited monitors are flexible to deploy in any subset

of routers 3) traffic from each OD-pair follows multiple paths (e.g., ECMP: equal cost

multiple path); and 4) multiple measurement tasks with different measurement costs and

importance factors.

3.5.1 Measurement with Limited Monitors Scenario

In practice, not every router is equipped with monitor and capable of measure-

ment. Suppose onlyK out of theM routers are deployed with monitors and thus have

measurement capability. We assume each OD-pairODx, x ∈ Θ has at least one router

on its routing pathPx which is capable of measurement to fulfill the measurement
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tasks imposed by the network operator. Our formulation includes two problems: 1)

measurement with fixed monitor deployment problem and 2) measurement with flexible

monitor deployment problem.

Fixed Monitor Deployment Problem

In the first case, we assume that theseK monitors have been deployed in routers

and fixed. Our goal is to distribute required measurement tasks to these limitedK

routers. It can be simply solved by changing the routing index Px as follows: we exclude

routerVi from Px if Vi is not equipped with monitor and unable to measure (e.g.,P ∗
x =

Px − {Vi} for all OD-pairODx, x ∈ Θ). Variance calculation should also be modified

accordingly since we now only haveK monitors instead ofM . All constraints remain

the same except thatPx are replaced byP ∗
x in Equation (3.17)-(3.19).

P ∗

x = Px − {Vi},if Vi is not deployed with monitor (3.17)

V AR(Li) =

K
∑

i=1

(Li − L̄)2

K
(3.18)

L̄ =
1

K

K
∑

i=1

Li =
1

K
(3.19)

Flexible Monitor Deployment Problem

In the second case, the location ofK monitors have not been decided and they

are flexible to be deployed in any router. This problem includes not only thedistribution

of measurement tasks, but also theplacementof monitors. To formulate this problem,

we introduce additional decision variablesui, whereui = 1 if router Vi is selected

to deploy a monitor, andui = 0 otherwise. The summation ofui is therefore to be

K. We assume every monitor has identical limited measurementcapability (resource

constraint) asCm. The problem is formulated below with load-balancing objective as

α = MAX(Li). Note that it is no longer an LP/QP problem sinceui, i ∈ V are Boolean



66

variables.

minimizeα

subject to

1

β

∑

x:Vi∈Px

dxi × Φx × ui = Li ∀i (3.20)

∑

i:Vi∈Px

dxi × ui = ax ∀x ∈ Θ (3.21)

∑

x:Vi∈Px

dxi × Φx × ui ≤ Cm ∀i (3.22)

M
∑

i=1

ui = K (3.23)

0 ≤ dxi ≤ 1 ∀x, i (3.24)

ui ∈{0, 1} ∀i (3.25)

In this model,Li is the summation of the product ofΦx, dxi andui. Therefore the

objective functionα is related to the product of two decision variablesui anddxi , and

the optimization problem falls into the MIQP (Mix Integer Quadratic Programming)

category. In order to avoid quadratic programming, we couldintroducezxi to decouple

dxi × ui by using Equations (3.26) to (3.28). It is easy to see their equivalence. When

ui = 0, zxi = 0 from (3.27); and whenui = 1, zxi = dxi from (3.28).

zyij = γy
ij × uij (3.26)

0 ≤ zyij ≤ uij (3.27)

γy
ij + uij − 1 ≤ zyij ≤ γy

ij (3.28)

Although we could reduce the MIQP problem to the MILP (Mix Integer Linear

Programming) problem by introducingzxi , the new MILP problem actually has doubled

number of decision variables. This is because the cardinality of ui ≪ the cardinality

of dxi in practice. Fortunately, the decision variabledxi (for distributing measurement

tasks) is highly dependent on the decision variableui (for monitor placement). Ifui = 0

(i.e., routerVi is not selected to deploy a monitor), routerVi cannot participate in any

specific measurement task. It meansdxi , the fraction ofΦx (IP flows) for each OD-pair,
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ODx, x ∈ Θ that routerVi measures should be zero (i.e.,dxi = 0). On the other hand

whenui = 1 (i.e., routerVi is selected to deploy a monitor and capable of measurement),

dxi could be any decimal bounded between 0 and 1. Therefore we candirectly use

dxi to substitutedxi × ui to avoid quadratic programming but with a new constraint,

0 ≤ dxi ≤ ui. It is easy to see their equivalence. The formulation now becomes MILP

and keeps the original number of decision variables:

minimizeα

subject to

1

β

∑

x:Vi∈Px

dxi × Φx = Li ∀i (3.29)

∑

i:Vi∈Px

dxi = ax ∀x ∈ Θ (3.30)

∑

x:Vi∈Px

dxi × Φx ≤ Cm ∀i (3.31)

M
∑

i=1

ui = K (3.32)

0 ≤ dxi ≤ ui ∀x, i (3.33)

ui ∈{0, 1} ∀i (3.34)

Optimal MILP/ Heuristic Solutions

The optimal solution searches for the bestdxi andui assignments for the hybrid

load-balancing and placement problem under the assumptionof using limited flexibleK

monitors instead ofM to minimize the maximum measurement workload across them

(e.g., minimizeMAX(Li), i = 1 . . .K). The simplified formulation is MILP problem

sinceui is a binary decision variable anddxi is a continuous decision variable. There is a

variety of optimization tools that we can leverage. In particular, we use an MILP solver

(e.g., CPLEX [4]) to find the optimal solution. We refer to this solution as “Optimal".

For small to medium size networks, the optimal load-balancing with placement solution

can be readily found. However, given that the time-complexity of MILP problems are

in general NP-hard, the solvers are not fast enough for largenetworks.



68

It is easy to see that the hybrid load-balancing and placement problem becomes a

LP (Linear Programming) problem if the monitor placement strategy is given (i.e., with

fixeduij). Therefore, all of our proposed heuristic solutions tend to decide the monitor

locations first. In this section, we propose two heuristic solutions to approximate the

optimal performance: “LB-Successive Selection" and “LB-Greedy". Both of them

iteratively select monitors to disable, based on the different planned monitor placement

strategy decided from the previous iteration. They all start from an initial configuration

under the assumption that allM routers are fully deployed with monitors. We refer to

this initial configuration as the “All-On" stage. The monitor-disable process is repeated

until onlyK out ofM monitors are left.

Algorithm 4 LB-Successive Selection Algorithm

1: while More thanK monitors are leftdo

2: Minimizeα by using all remaining monitors

3: find the correspondingdxi

4: for Each remaining monitorVi ∈ M̂ do

5: CalculateLi for each remaining monitor withdxi

6: Calculate one of the three metrics withdxi

7: end for

8: Find monitor with minimumLi

9: if only one monitor has minimumLi then

10: Disable that monitor

11: else

12: Disable the monitor with minimumLi and least performance-metric

13: end if

14: end while

LB-Successive Selection: it starts from the initial All-On configuration where

all M routers are assumed to be fully deployed with monitors, and iteratively chooses

one monitor to disable after optimization process (i.e., minimize MAX(Li)) until

only K out of M monitors are left. The selection of which monitor to disableis

based on their ranking of measurement workload (e.g.,Li). We choose the one

having least measurement workload across all remaining monitors (e.g.,Vi=min(Li),
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i=1 . . . M̂ ), whereM̂ stands for the set of remaining routers deployed with monitors.

The intuition is that the monitors with higher measurement workloads after optimization

process (i.e., minimize MAX(Li),∀i, the maximum workload across all monitors) take

more measurement responsibility for the traffic from some OD-pairs which have few

monitors deployed in their routing paths. Therefore, thosemonitors can not be disabled,

otherwise their assigned measurement task can not be further redistributed. If more

than two routers have the same minimum measurement workloadin each iteration, LB-

Successive Selection calculates one of the following threemetrics which are served as

tie-breaker and disables the one with least value:

• Least-traffic (
∑

x:Vi∈Px
Φx). The intuition is that the monitors with the least

amount of traffic passing through them have less freedom to load-balance the

measurement tasks for each OD-pair traffic.

• Least-LB(uniform). We use LB(uniform) heuristic mentioned in Section 3.4.3 to

find corresponding measurement workload across all remaining monitors to serve

as our second-stage tie-breaker.

• Least-LB(weighted). We use LB(weighted) heuristic to find corresponding

measurement workload across all remaining monitors to serve as our second-stage

tie-breaker.

In particular, it disables monitor based on their ranking calculated from the previous

iteration (Line 12). This means we use the information from the previous iteration (i.e.,

planned measurement fractiondxi ) to calculate the metric for each monitor in the current

iteration (Line 5-6).

LB-Greedy Algorithm : similar to LB-Successive Selection, the LB-Greedy

algorithm also disables one monitor in each iteration, until K monitors are left.

However, it is more time-consuming since it tests all remaining monitors one-by-one

in each iteration. To test the importance of each monitor, LB-Greedy re-computes the

minimizedα after turning off each monitor alternately (Line 2-7), which essentially

involves numerous optimization procedure (Line 4) mentioned in Section 3.4.3. Based

on the testing of every remaining monitor, it disables the one that has least impact onα

(Line 8).
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Since the LB-Greedy algorithm exhaustively tests individual monitor in each

iteration, its performance is expected to be close to the optimal MILP solution. However

it is still suboptimal since LB-Greedy only tests individual monitor instead of every

possible combination. Besides, the algorithm remains computationally costly, since it

testsO(M̂) monitors withO(M̂) LP problems in each iteration. For a moderate sized

topology, an MILP solver can sometimes work faster than thisLB-Greedy approach.

Details are shown in Section 3.6.3.

Algorithm 5 LB-Greedy Algorithm

1: while More thanK monitors are leftdo

2: for Each remaining monitorVi ∈ M̂ do

3: Disable the monitor,Vi

4: Minimizeα based on remaining monitors

5: Storeα

6: Enable the monitor,Vi

7: end for

8: Find monitor,Vi, with smallestα ∈ M̂ when they are disabled

9: M̂ ← M̂/{Vi}
10: end while

3.5.2 Multi-Path Routing Scenario

All the sections above have assumed single-path routing (e.g., OSPF). In this

section, we extend our work to support “load-balancing" of measurement tasks in

the case of multi-path routing (e.g., ECMP). Since ECMP enables routers to make

forwarding decisions on a per IP-flow basis rather than on a per-packet basis, packets

for a single flow will still follow one path.

Our formulation treats each of the different paths as a distinct virtual OD-pair

with different portions of the origin traffic demand. Suppose each OD-pairODx, x ∈ Θ

hasNx routing paths, denoted asPxh (h = 1 . . .Nx) with total traffic demandΦx. We

create virtual OD-pairsODxh for each pathPxh (h = 1 . . . Nx) of OD-pairODx, x ∈ Θ

with traffic demandΦxh where
∑Nx

h=1Φxh = Φx, ∀x. We also letaxh denote the given
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fraction ofΦxh that is required to be measured for each virtual OD-pairODxh where
∑Nx

h=1 axh = ax, ∀x. dxhi denotes the fraction ofΦxh that routerVi measures for each

virtual OD-pairODxh. The problem can be formulated below. In this formulation,dxhi

are the decision variables.Li andaxh can in turn be calculated as functions ofdxhi . α

can still be defined according to different optimization criteria.

minimizeα

subject to

∑

x∈Θ

Nx
∑

h=1

Φxh × axh = β (3.35)

1

β

∑

x:Vi∈Pxh

Nx
∑

h=1

dxhi × Φxh = Li ∀i (3.36)

∑

i:Vi∈Pxh

dxhi = axh ∀h, x (3.37)

∑

x:Vi∈Pxh

Nx
∑

h=1

dxhi × Φxh ≤ Cvi ∀i (3.38)

0 ≤ dxhi ≤ 1 ∀h, x, i (3.39)

3.5.3 Measurement with Multiple Tasks Scenario

Until now, we have assumed a single measurement task/function with identical

unit cost at every router. In practice, traffic measurement may involve multiple tasks

with different measurement cost factors (e.g., DPI is much more resource-intensive than

say counting). It is important that we evenly distribute measurement tasks to monitors

in this setting. Meanwhile, in some fringe cases, differentmeasurements might compete

for limited resources. It is also important to study how theycooperate to achieve better

global measurement.

Therefore we have two optimization objectives: 1) minimizethe maximum value

of Li for all routers (i = 1 . . .M) from load-balancing perspective; 2) maximize the

aggregated measurement utility across all measurement tasks. This joint optimization

problem involves two phases. In the first step, we use themin-MAXproblem formulation

given in Section 3.4.2 to find the minimum achievable maximumvalueLmax to fulfill
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every requested measurement task for all routers by temporarily ignoring routers’

measurement capabilities (resource constraints). In the second step, we introduceθi to

reflect the resource constraints for all routers by limitingtheirLi to not exceedθi×Lmax

asLi ≤ θi × Lmax, i = 1 . . .M where0 ≤ θi ≤ 1. The more severe the resource

constraint is (i.e., with smallerCVi
), the lower theθi will be while θi = 1 means no

resource constraint for routerVi. We then maximize the measurement utility for all

tasks under limited resource constraints and load-balancing conditions.

We assume there are in totalζ measurement tasks. Each task, denoted ast

(t = 1 . . . ζ), is characterized by its measurement costCt. Let axt denote the given

fraction ofΦx that is required to be measured for each measurement taskt (t = 1 . . . ζ)

per OD-pairODx, x ∈ Θ. We assume single path routing for every OD-pairx ∈ Θ

and all routers are capable of processing every measurementtask. Our first optimization

problem is to evenly distribute the measurement tasks/costs across all routers where the

measurement capabilities (resource constraints) of all routers are temporarily ignored.

We choose the load-balancing objective asα =MAX(Li) and the problem is formulated

below.

minimizeα =MAX(Li)

subject to

∑

x∈Θ

Φx ×
ζ
∑

t=1

axt × Ct = β (3.40)

1

β

∑

x:Vi∈Px

Φx ×
ζ
∑

t=1

dxti × Ct = Li ∀i (3.41)

∑

i:Vi∈Px

dxti = axt ∀x, t (3.42)

0 ≤ dxti ≤ 1 ∀x, t, i (3.43)

After the optimal minimum achievable maximum workloadLmax is found for

every router (with no resource constraint) to cover all measurement tasks (Lmax=

minimized MAX(Li), i = 1 . . .M), we next consider that routers have their own

resource constraintCVi
which may make theirLi < Lmax and fail partial measurement

tasks. Letθi denote the fraction ofLmax to reflect the resource constraintCVi
for router
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Vi (i = 1 . . .M) as θi = min(
CVi

Lmax·β
, 1) where0 ≤ θi ≤ 1 2 We introduce a new

constraint for all routers to bound theirLi by θi × Lmax as3:

Li ≤ θi × Lmax ∀i (3.44)

Under this constraint, we study how different measurement tasks are assigned

with proper portion of resources such that the overall measurement utility is maximized.

Let I t denote the importance factor for each measurement taskt (t = 1 . . . ζ) andG

denote the ideal aggregated measurement utility weighted by I t for all measurement

tasks without considering resource constraints at routers, G =
∑

x∈ΘΦx ×
∑ζ

t=1.

Gi denotes the total measurement utility that routerVi gets for all measurement tasks

normalized byG, Gi =
1
G

∑

x:Vi∈Px
Φx ×

∑ζ

t=1 d
xt
i × I t. The optimization problem can

be formulated as follows, withdxti as the decision variables:

maximize
M
∑

i=1

Gi

subject to

∑

x∈Θ

Φx ×
ζ
∑

t=1

axt × Ct = β (3.45)

1

β

∑

x:Vi∈Px

Φx ×
ζ
∑

t=1

dxti × Ct = Li ∀i (3.46)

θi × Lmax ≥ Li ∀i (3.47)
∑

i:Vi∈Px

dxti ≤ axt ∀x, t (3.48)

0 ≤ dxti ≤ 1 ∀x, t, i (3.49)

The value of normalized objective function,
∑M

i=1Gi, is always in the range as

0 <
∑M

i=1Gi ≤ 1. For the case whenθi=1 ∀i, ∑M
i=1Gi = 1, which means all the

required measurement tasks can be satisfied (
∑

i:Vi∈Px
dxti =axt ∀x, t) and the aggregated

measurement utility is maximum since there is no resource constraints on all routers.

2θi=1 implied that there is no resource constraint on routerVi since the traffic amount it measured is
less than its resource constraint:Li × β ≤ Lmax × β ≤ CVi

.
3By substitutingθi=min(

CVi

Lmax·β
, 1) with Equation 3.41 into Equation 3.44, the traffic amount,

∑

x:Vi∈Px
Φx ×

∑ζ
t=1

dxti × Ct, that routerVi measured is always less than its resource constraint (CVi
).
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However, with the resource constraints (θi decreases), only a subset of measurement

tasks can be fulfilled, and the goal of the above formulation is to maximize the global

measurement utility and maintain the load-balancing conditions simultaneously.

3.6 Performance Evaluation

We evaluated the performance of LEISURE with three optimal solutions,

LB(min-VAR), LB(min-MAX) and LB(min-VAR-given-MAX), for different load-

balancing objectives in various realistic scenarios on twoseparate real, large point-

of-presence(PoP)-level backbone networks: Abilene [16] and GEANT [73]. We also

compare them with several simple naive approaches, namely LB(ingress), LB(egress),

LB(uniform), and LB(weighted). Our starting point is to conduct a preliminary

evaluation on the basic model in Section 3.6.2 based on threeassumptions: (1) all routers

are equipped with monitors that are capable of performing the measurement task, (2)

traffic from each OD-pair has a single router-level path by OSPF and (3) there is only

one measurement task. We relax these assumptions in Section3.6.3 and Section 3.6.4

to show our load-balancing ability and computation time complexity. Section 3.6.5

presents our load-balancing and measurement utility maximizing results for the scenario

of multiple measurement tasks with different cost and importance factors.

3.6.1 Experimental Setup and Performance Metrics

We use two real datasets from the Abilene [16] and GEANT networks [73], both

of which have been studied and discussed in the research literature. Their data sets are

publicly available, including network topology, routing information. Based on these

available data sets, we implemented a flow-based trace-driven simulation to conduct

our evaluations. For both networks, we use the real traffic matrices provided by a third

party [5]. The traffic matrix data sets for the Abilene network are available at [2], and

the traffic matrix data sets of the GEANT network are available at [6].

Abilene: A public academic network in the U.S. with 11 nodes interconnected

by OC192, 10 Gbits/s links. The traces we use were collected from April 22-26, 2004.

The routers in ATLA, CHIN, DENV, HSTN, IPLS, KSCY, LOSA, NYCM, SNVA,
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STTL and WASH are denoted asR0, R1, · · · , R10 respectively.

GEANT: It connects a variety of European research and education networks.

Our experiments were based on the December 2004 snapshot available at [3], which

consists of 23 nodes and 74 links varied from 155 Mbits/s to 10Gbits/s. The traces we

use were collected from April 11-15, 2004.

The traffic matrix we use consists of demands for every OD-pair within a certain

time interval (5 mins for Abilene and 15 mins for GEANT). We construct OD-pairs by

considering all possible pairs of PoPs and calculate their shortest-path routes. In brief,

these traffic matrices are derived from flow information collected at key locations of the

network, and is transformed into the demand rate for each OD-pair based on the control

plane information.

In the following sections, we assume our target is to measureall traffic (i.e.,

ax = 1, ∀x ∈ Θ). Therefore the workloadLi for routerRi (i = 1 . . .M) is defined

as the traffic amount that routerRi measured normalized by the total traffic demand.

Theoretically, the ideal load-balancing workloadLi for M monitors is 1
M

. However,

it might be unachievable due to routing limitations from TE or resource constraints on

monitors. In our experiments, we are interested in the following threeperformance

metrics:

• Maximum Workload: We use the maximum value of each monitor’s measurement

workload in the entire network to serve as our load-balancing performance metric

mainly (e.g., MAX(Li),i=1 . . .M).

• Variance of Workload: The other load-balancing performance metric used in this

paper is the variance of workloads across all monitors (e.g., VAR(Li)).

• Computation Time: In our experiment, we only collect computation time for

the LP or MILP solver since they usually take much longer timecompared to

normal numerical computation, and therefore dominate the whole computation

time of LEISURE. Meanwhile, the computation time for LP or MILP may

vary for different solvers. We therefore do not mix them withother numerical

computations.
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Table 3.3: Comparisons on Maximum value ofLi

Naive Approaches Heuristic Approaches
Network ingress egressuniform weighted
Abilene 19.16% 29.59% 21.67% 12.12%
GEANT 28.79% 13.19% 13.73% 10.67%

Optimal Load-Balancing
Network min-VAR min-MAX min-VAR given MAX
Abilene 10.11% 9.45% 9.45%
GEANT 6.15% 6.06% 6.06%

Table 3.4: Comparisons on Variance ofLi

Naive Approaches Heuristic Approaches
Network ingress egress uniform weighted
Abilene 0.004107 0.007366 0.003158 0.000602
GEANT 0.003978 0.001626 0.001594 0.000662

Optimal Load-Balancing
Network min-VAR min-MAX min-VAR given MAX
Abilene 0.000105 0.000131 0.000105
GEANT 0.000378 0.000495 0.000378

3.6.2 Basic Load-Balancing Comparison

In this section, we compare the load-balancing performanceof all approaches

based on two assumptions (ubiquitous monitors and single path routing). Table 3.3

compares MAX(Li) of all monitors for different approaches. For GEANT, our optimal

load-balancing solutions can reduce MAX(Li) by a factor of 4.75X(=28.79%
6.06%

) when

compared to the naive approach of LB(ingress) and 2.27X(=13.73%
6.06%

) when compared

to LB(uniform). Similar gains can be seen in the results for Abilene as well. Figure 3.2

and Figure 3.3 plot in more details theLi values of 11 monitors and 23 monitors for

different load-balancing approaches in Abilene and GEANT networks respectively.

Another relative performance measure is to see how close themaximum

workloads are in comparison to the ideal load-balancing case of L̄ = 1
M

, as given
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(b) Optimal Approaches in Abilene

Figure 3.2: Measurement load distribution for different approaches in Abilene
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Figure 3.3: Measurement load distribution for different approaches in GEANT
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by Eq.(3.8). For Abilene and GEANT, the idealL̄ is 9.09%(=1
11

) and 4.35%(=1
23

),

respectively. However, the MAX(Li) of LB(ingress) for Abilene and GEANT are

19.16% and 28.79%, respectively, which are 2.11X and 6.62X worse than the ideal

case. For simple heuristic approaches, they still have large MAX(Li) values compared

to the ideal case: e.g., 21.67% (2.3X worse) for LB(uniform)in Abilene and 10.67%

(2.4X worse) for LB(weighted) in GEANT. On the other hand, our three optimal load-

balancing solutions presented in Figure 3.4 and Table 3.3 perform very close to the

theoretical ideal case: 10.11%, 9.45%, and 9.45% for LB(min-VAR), LB(min-MAX),

and LB(min-VAR given MAX), respectively, as compared to theideal case of 9.09%

for Abilene. Similarly, our three optimal solutions are 6.15%, 6.06%, and 6.06%,

respectively, as compared to the ideal case of 4.35% for GEANT.

Table 3.4 compares VAR(Li) across all monitors for different approaches.

For Abilene, our optimal load-balancing solutions can reduce VAR(Li) by a factor

of 70X(=0.007366
0.000105

) when compared to the naive approach of LB(egress), and over

30X(=0.003158
0.000105

) when compared to LB(uniform). Similar improvements in variance can

be seen for GEANT as well.

To better understand why our optimal solutions can achieve more evenly

distributed measurement load, we use traffic from only five OD-pairs in Abilene4 to

show the detailed load assignment in Figure 3.4 (WAS-DNV, NYC-HST, DNV-IPL,

CHI-LOS and ATL-STT with 66.5 MB, 44.9 MB, 44.6 MB, 19.8 MB and11.7 MB,

respectively). In Figure 3.4(a), although LB(uniform) distributes each OD-pair traffic

to all monitors in the path uniformly (e.g., WAS-DNV with 6 monitors), the aggregated

workload for overall measurement task in each monitor is still unbalanced (e.g.,Li for

all routersRi (i = 1 . . . 10) are distributed between 1% to 17%). LB(weighted) in

Figure 3.4(b) improves the load-balancing performance dueto the global view it has

but still load-balanced poorly (e.g.,Li distributed between 4% to 14%). In contrast,

the optimal solutions can achieve much better load-balancing performance (e.g.,Li

distributed between 5.5% to 10.5%) by excluding some monitors from measuring certain

OD-pair traffic (e.g., R4 and R5 do not measure traffic for WAS-DNV OD-pair in

Figure 3.4(d)).

4The notations of these OD-pairs and their routing information could be found in [16], [2].
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(b) LB(Weighted)
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(c) LB(Min-MAX)
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(d) LB(Min-VAR given MAX)

Figure 3.4: (Continued) Detailed Abilene results for five OD-pairs. Optimal solutions

allow nodes to be excluded from measurement if they are already overloaded.
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Figure 3.5: Measurement load distribution with limited 7 out of 11 monitors in

Abilene.

3.6.3 Limited number of Monitors

In this section, we relax our first assumption to the case thatonly a subset

of routers are deployed monitors and capable of measurement. We further evaluate

LEISURE in the following two scenarios: 1) measurement withfixed monitor deploy-

ment scenario and 2) measurement with flexible monitor deployment scenario.

Fixed Monitor Deployment Scenario

In the first case, we assume there areK = 7 out ofM = 11 routers are deployed

with fixed monitors in Abilene. The routers which are excluded to deployed monitors

areR0, R5, R7 andR8
5. Therefore LEISURE can only distribute the measurement task

to the remaining 7 monitors. We omit naive approaches and focus on heuristic (i.e.,

LB(weighted)) and optimal approaches in Figure 3.5. Compared with ubiquitous case

in Figure 3.2(a), the ideal load-balancing workload is increased from 9.09% to 14.29%.

For LB(min-VAR), LB(min-MAX) and LB(min-VAR given MAX), the MAX(Li) is

5The reason to choose those 4 excluded routers is to maintain the fact that at least one capable monitor
in each OD-pair’s route to fulfill the measurement tasks imposed by the network operator.
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Figure 3.6: Measurement load distribution for different approaches inAbilene with

limitedK flexible deployed monitor
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only increased from 9.67% to 17.61%. However, for heuristicapproach, LB(weighted),

MAX(Li) increased from 12.12% to 23.33%. We observe that LEISURE with these

three optimal solutions for different load-balancing objectives only increased 7.94%

workload for MAX(Li), which are close to 5.2% for the theoretical ideal case and are

much better than 11.21% for LB(weighted).

Flexible Monitor Deployment Scenario

In the second case, we assume there are limitedK out of M = 11 routers

are deployed with flexible monitors in Abilene (e.g.,K=11, 10, 9, 8, 7 and 6).

Therefore LEISURE can only distribute the measurement taskto theseK monitors.

Figure 3.6 plots the detailedLi (normalized measurement workload) values of monitors

for different load-balancing approaches in Abilene. Compare to the ideal load-balancing

case ofL̄ = 1
K

, as given by Eq.(3.8) whereK is the limited number of deployed

monitors, our optimal MILP solution (e.g., LB(Optimal)) performs almost the same

as the ideal case. As shown in Figure 3.6(a), forK=11, 10, 9, 8, 7 and 6 in Abilene,

theLmax (Lmax=minimized MAX(Li), i = 1 . . .M) of LB(Optimal) is 9.43%, 10.0%,

11.11%, 12.5%, 14.29% and 16.96%, respectively while the ideal L̄ is 9.09%(=1
11

),

10.0%(=1
10

), 11.11%(=1
9
), 12.5%(=1

8
), 14.29%(=1

7
) and 16.67%(=1

6
).

Due to the potentially long computation time required to solve for the

LB(Optimal), we propose several heuristic algorithms to reduce the computation

time complexity. They are categorized as “Greedy" and “Successive Selection". We

first show that they all have nearly equivalent load-balancing performance,Lmax, as

LB(Optimal). In Figure 3.6(b), theLmax for K=11, 10, 9, 8, 7 and 6 in LB-Greedy is

9.45%, 10.0%, 11.11%, 12.5%, 14.29% and 16.96% respectively which is nearly the

same as 9.43%, 10.0%, 11.11%, 12.5%, 14.29% and 16.96% in LB(Optimal) although

their deployment of monitors might be different. The same observation could be

also found in LB-Successive Selection(traffic)/LB-Successive Selection(uniform), and

LB-Successive Selection(weighted) (e.g., see Figure 3.6(c) and 3.6(d)). We omit the

result of LB-Successive Selection(uniform) since it performs close to LB-Successive

Selection(traffic).

Next we compare their computation time complexity with LB(Optimal). As
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Figure 3.7: Computation cost for different Approaches with various limitedK flexible

monitor deployment in Abilene/GEANT
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shown in Figure 3.7(a), LB-Greedy reduces computation times by a factor of 3.6X(9.484
2.64

)

compared to LB(Optimal) withK = 8 in Abilene but still achieves almost the

same load-balancing performance as LB(Optimal) while LB-Successive Selection could

further reduce computation times by a factor of 22.5X(9.484
0.421

) without losing load-

balancing performance. As mentioned earlier, the computation time is only collected

for the LP or MILP solver since they usually take much longer time compared to normal

numerical computations. The results show that using different tie-breaker metrics

(e.g., least-traffic, uniform, weighted) in LB-SuccessiveSelection lead to very similar

computation times.

Since the LB-Greedy algorithm exhaustively tests every individual monitor in

each iteration and disables the least-impact one, its load-balancing performance is

expected to be close to the optimal MILP solution. However itmight not find the feasible

solution whenK is small since LB-Greedy only tests individual monitor instead of every

possible combination. For example, LB-Greedy cannot find any feasible load-balancing

solution whenK=13 or 12 in GEANT since it disables the un-replaceable monitor6 in

the previous iterations as shown in Figure 3.7(b). The same drawback could be observed

in LB-Successive Selection.

Note that LB-Greedy algorithm remains computationally costly, since it tests

O(M̂) monitors withO(M̂) LP problems in each iteration. In GEANT withK=23,

22, 21, 20 and 19, the LB-Greedy approach even works slightlyslower than the MILP

solver, LB(Optimal). However for moderate size of limited monitors (e.g.,K=14 to

19 out ofM=23) in GEANT, LB-Greedy still can reduce computation time by a factor

up to 65.8X(4417.08
67.12

) compared to LB(Optimal) whenK=16 and achieves almost the

same load-balancing performance. Furthermore, LB-Successive Selection could reduce

computation times up to 800X(4417.08
5.51

) compared to LB(Optimal) without losing load-

balancing performance in GEANT.

6In order to fulfill the measurement tasks imposed by the network operator, at least one capable
monitor is needed in each OD-pair’s routing path. If there isonly one monitor left in its route, we denote
it as un-replaceable monitor.
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Figure 3.8: Measurement load distribution with multiple paths per OD-pair in Abilene.

3.6.4 Multiple Paths per OD-pair

Here we relax our second assumption to allow multi-path routing (e.g,. ECMP)

for each OD-pair in Abilene network. In Figure 3.8, our proposed optimal solutions

and heuristic approaches all have better load-balancing performance when applied in

multi-path routing case compared to the single path routing. The rationale behind this

is that with more overlaps in monitors/paths, LEISURE has more freedom (e.g.,dxhi in

Eq. (3.39)) to optimally load-balance the workloads acrossthe participating monitors.

The VAR(Li) in multi-path case for LB(min-VAR), LB(min-MAX) and LB(min-VAR-

given-MAX) is 0.0000917, 0.0000982 and 0.0000917, respectively while in the single

path case is 0.000105, 0.000131 and 0.000105 in Figure 3.3.

3.6.5 Multiple Measurement Tasks

In this section, we examine our two-phase solution to the formulated joint

optimization problem described in Section 3.5.3. Assume wehave two measurement

tasks with cost factor ratioC1:C2 and importance factor ratioI1:I2. Let θ reflect the
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Figure 3.9: Two measurement tasks with different cost ratio and fixed importance ratio

as 1:10.

identical resource constraintCm for all routersVi (i = 1 . . .M) and represented as the

fraction ofLmax, the maximum workload routers can achieve derived from Eq. (3.40) to

(3.43) where0 ≤ θ ≤ 1. Figure 3.9 presents the result of our normalized measurement

utility under different setup ofC1:C2 (e.g., from 100:1 to 1:100) and fixedI1:I2=1:10 by

changing resource constraintθ from 100% to 0%. Note that without resource constraint

(i.e., θ = 100%), the normalized measurement utility LEISURE can achieve is always

1.0 (cover all measurement tasks).

As observed, ifC1:C2 is directly proportional toI1:I2, the measurement utility

decreases linearly when the resource constraint becomes severe (e.g., lowerθ). On the

other hand, ifC1:C2 is inversely proportional toI1:I2, the measurement utility will not

drop significantly untilθ is extremely low (e.g.,C1:C2=100:1 withI1:I2=1:10). This is

because the optimal solution for Eq. (3.45) to (3.48) will let monitors always first fulfill

the measurement request from the task with lower cost and higher importance. The other

observation is that whenC1:C2=1:1 andI1:I2=1:10, LEISURE can still remain 90% of
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the measurement utility as in ideal case (i.e., without resource constraint) by using only

half of the routers’ resources (e.g.,θ drops to 50%(=1/(1+1))). These results suggest that

our framework can intelligently distribute measurement tasks for better load-balancing

under resource constraints, while the overall measurementutility can still be preserved

at a high level.

3.7 Conclusion

In this chapter, we proposed an optimization framework for load-balancing

network-wide traffic measurements across coordinated monitors in the network while

ensuring that the maximum traffic measurement utility of thenetwork is achieved. This

is an important problem because individual monitors are notcapable of accomplishing

the measurement tasks for all applications of interest due to its resource constraint,

particularly resource-intensive measurement tasks such as those requiring deep packet

inspection. Further, to uncover global network behavior, there is an inherent need to

coordinate measurements among monitors distributed across the networks since the

visibility of each monitor is only limited to the traffic thatpasses through it. Therefore,

these distributed monitors can be coordinated for both coverage and optimized resource

utilization. Based on our simulation measurement studies using the Abilene and

GEANT networks, we found that our load-balancing optimization framework LEISURE

can achieve up to 4.75X smaller maximum measurement workload and 70X smaller

variance in workloads across all coordinated monitors.We also show that our proposed

heuristic solutions could achieve almost the same load-balancing performance as the

optimal solution, while reducing the computation times by afactor up to 22.5X in

Abilene and 800X in GEANT under flexible monitor deployment scenario. The

distributed LEISURE algorithm for load balancing problem is deferred as our future

work.

Chapter 3, in part, is a reprint of the material as it appears in the following

publications:

• Chia-Wei Chang, Guanyao Huang, Bill Lin and Chen-Nee Chuah,“LEISURE:

A Framework for Load-Balanced Network-Wide Traffic Measurements”,
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ACM/IEEE Symposium on Architectures for Networking and Communications

Systems (ANCS),Brooklyn, NY, October 3-4, 2011.

Chapter 3, in full, has been submitted for publication of material as it may appear

in IEEE Transactions on Network and Service Management (TNSM), Chia-Wei Chang,

Guanyao Huang, Bill Lin and Chen-Nee Chuah, “A Joint Optimization Approach for

Load-Balanced Network-Wide Traffic Measurements and Monitor Placement”. The

dissertation author was the primary investigator and author of the papers.



Chapter 4

Distributed Measurement-Aware

Routing: Striking a Balance between

Measurement and Traffic Engineering

4.1 Introduction

Achieving accurate and efficient network-wide traffic measurement is often

plagued with multi-faceted challenges. While packet and flow sampling mechanisms

are widely deployed (e.g, NetFlow) [29], detailed packet capture and analysis (e.g.,

deep packet inspection [25]) is computationally expensive. Hence, typically only a

subset of nodes are equipped with such high-fidelity monitoring capabilities. To reap the

maximum measurement benefits without incurring huge deployment costs, these high-

fidelity monitors need to be configured properly and strategically placed across the net-

work. Most previous work on the latter domain focused on deriving the optimal monitor

placement that maximizes the monitoring utility for a givenrouting and traffic profile.

They are typically intended for longer time-scales and assume a priori knowledge

about the traffic characteristics. However, both traffic characteristics and measurement

objectives can dynamically change over time, rendering a carefully designed placement

of monitors sub-optimal. To address these limitations, a measurement-aware routing

framework, MeasuRouting, was recently proposed to assist traffic measurement [63].

90
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It introduces routing as another degree of freedom and intelligently routes traffic sub-

populations over pre-deployed monitorsto maximize the traffic measurement gain.

However, MeasuRouting requires the existence of some centralized controller and

offline analysis to find the optimal routing strategies for every router, which is unrealistic

in production IP networks. It can therefore only be interpreted as the best-case bounds

for routing-assisted measurement.

In order to gain comparable measurement improvement as the centralized

approach, ade-centralized (distributed)measurement-aware routing solution faces two

main challenges. First, individual nodes (being selfish) tend to compete unknowingly

for the limited monitoring resources. A natural solution tosuch problem is to design

a game-theory based distributed algorithm to achieve some equilibrium point. The

solution should not only guarantee the existence of an equilibrium point, but also provide

fast convergence. While similar in spirit, existing work onselfish routing tends to

minimize a singleTE cost function of the network, e.g., path delay or average link

utilization [28, 32, 46]. Distributed measurement-aware routing, on the other hand,

needs to maximize measurement gains while adhering to traffic engineering constraints,

which cannot be achieved easily with existing approaches. Second, individual nodes

need to make local routing decisions based on local (partial) view of the network

conditions, including the “possible” measurement gain andlink congestions. A light-

weight protocol is needed to distribute accurate measurement and load information

across the network.

In this chapter, we presentDistributed MeasuRouting (DisMR), a new traffic

engineering protocol that attempts to optimally utilize existing monitor locationsfor

maximizing the traffic measurement gainwhile distributing the traffic load evenly across

the network. DisMR takes advantage of alternative paths in a network (e.g., ECMP

multipaths). It maximizes the traffic measurement gain by adjusting the traffic split

ratios among these paths to the same destination. It actually operates on top of an

existing ECMP infrastructure.DisMR is derived from a game-theoretic re-routing

policy that captures the dynamic decision-making process and interactions among

distributed routers. In our model, we design a cost functionon each link that reflects

both the measurement capability and TE constraint, i.e., links with larger measurement
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resources have a smaller cost but links with a larger TE score(e.g., link utilization)

have a larger cost. The cost function is designed such that flows are attracted to links

with better measurement capabilities while avoiding TE violations. Routers compete

with each other in a game-theoretic manner in order to minimize their own costs for

the downstream paths. In DisMR, every router periodically gathers/propagates sub-path

cost information for upstream routers. Based on this information, each router makes

local decisions on how to adjust routing split ratiosfor each destination traffic to the

next-hop routers among these multiple equal-cost paths.Our routing policy guarantees

not only a provable Nash equilibrium but also a fast convergence without significant

oscillations. Meanwhile, the measurement gain of the network at the equilibrium

state is close to the maximum achievable gain calculated using offline, centralized

MeasuRouting. We outline our contributions as follows:

• We de-centralizeMeasuRouting in a game-theoretic setting and propose a novel

cost function that balances the potentially contradictingmeasurement and traffic

engineering objectives. The cost function is designed to encourage flows to be

routed through monitors with abundant resources while avoiding TE violation.

We prove the existence of Nash equilibrium and derive boundson the price of

anarchy (POA) for the game.

• We design a new traffic engineering protocol,Distributed MeasuRouting

(DisMR), based on the routing game. DisMR converges fast to equilibrium point

and achieves comparable measurement gain with centralizedMeasuRoutingin

static traffic scenario.

• We evaluate DisMR via simulations using both synthetic and real

traces/topologies from Abilene [1], AS6461 [69], and GEANT[3]). The

simulation results show fast convergence (as expected fromthe theoretical

results), improved measurement gains (e.g., 12 % higher) and much lower

TE-violations (e.g., up to 100X smaller) compared to static, centralized

MeasuRouting in dynamic traffic scenario.

The rest of this chapter is organized as follows: We first prove the existence

of equilibrium on the new cost function in Section 4.2. We next study the rerouting
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policies in a “dynamic round-based” variant of equilibriumin Section 4.3. We present

practicalDistributed MeasuRoutingalgorithm in Section 4.3.1 and prove it to be stable

and converge quickly in a game-theoretic model under realistic conditions. Section 4.4

presents detailed performance evaluation of our proposed algorithm. Section 4.5

discusses related work and Section 4.6 concludes this chapter.

4.2 Adaptive traffic measurement problem

In this section, we formulate the Distributed MeasuRoutingproblem in a game-

theoretic setting. It strikes the balance between measurement and TE constraints by

introducing two novel definitions:Ψ (effective non-sampling rate) andζ (link penalty

function). We present theoretical results regarding the static convergence of the game.

Note that our work differs fundamentally from Beckmann’s work in that our introduced

link cost function is a novel combination of link measurement ability and TE constraint.

Moreover, the path cost is defined as the product of link costs, which makes the proofs

of existence of Nash Equilibrium and POA different from [11]. The dynamic behavior

of this game and its distributed implementation are presented in next section.

We consider a measurement objective of maximizingG (sampling resolution

function), which characterizes the overall measurement utility of the whole networkas

MeasuRouting used [63]. In contrast to MeasuRouting,we assume independent uniform

sampling across every link, the de-facto implemented method in current Internet. Let

Sa be the given fixed sampling rate at every arca ∈ A. The total effective sampling

rate of a pathP ∈ P with respect to flow set,[f ] = {fP , P ∈ P} is defined as:

SP (fP ) = 1 − ∏

a∈P

(1− Sa). ThereforeG(f) =
∑

P∈P

SP (fP ) · fP . We defineΨa to be

the effective non-sampling rate at arca ∈ A: Ψa = 1 − Sa. The total non-sampling

rate of a pathP ∈ P with respect tofP is then the product of the non-sampling rate of

the arcs on that path:ΨP (fP ) =
∏

a∈P

Ψa(fP ), P ∈ P. Therefore the total non-sampled

amount is defined asC(f) =
∑

P∈P

ΨP (f) · fP . Given fixed traffic demand, maximizing

G(f) could be equivalent to minimize the cost functionC(f).

Our goal is to let the flow sets at each end point route their traffic selfishly

to better learn a Nash equilibrium of non-sampling ratewhile adhering to traffic
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engineering constraints. However, in a distributed environment, flow sets will all choose

the best paths with minimumΨP (f) and may overload some specific arcs. This is

becauseΨa at every arca ∈ A is constant (e.g., sampling rates do not adapt to the

traffic amount). In order to reflect TE constraints, we add penalty functionζ(f) to Ψa,

i.e.,Ψa(f) = Ψa + ζ(f) for each arca ∈ A. We design theζ(f) such that its value

increases sharply when the traffic amount is above the TE-constraint (e.g., maximum

link utilization), otherwise it will stay at zero. Therefore,Ψa(f) becomes a function of

traffic for every arca ∈ A (i.e., a non-decreasing and continuous function).

Suppose every flow set tends to minimize its own cost,C(fP ) = ΨP (fP ) · fP ,

we prove the existence of static Nash equilibrium for this game in Section 4.2.1 and the

optimal flow in Section 4.2.2. The details about how to designthe penalty function are

discussed in Section 4.2.3.

4.2.1 The Existence of Nash Equilibrium

We consider a model for selfish routing where each of an infinite population

of agents wants to send an infinitesimal amount of traffic (flows) through a network

G = (V,A) with vertex setV , arc setA, andk source-to-destination vertex pairs,

{si, ti}, i ∈ [k] = {1, . . . , k} with flow demandri. Each agent belongs to one of the

{si, ti}, i ∈ [k]. Let Pi denotes the set ofmultiple equal-cost routing pathsfrom si to

ti in G andP =
⋃

i Pi, the set of all possible routing paths. The flow setfP , P ∈ P is

feasible if for alli ∈ [k],
∑

P∈Pi
fP = ri. For a given flow setfP , P ∈ P, we define

the aggregated flows on arca ∈ A asfa =
∑

P∈P:a∈P fP . The non-sampling rate of a

pathP ∈ P is ΨP (f) =
∏

a∈P

Ψa(f) whereΨa(f) = Ψa + ζ(f) for each arca ∈ A. We

are interested in flow assignments that are stable in the sense that no agent can improve

theirΨP (f) by changing their paths selfishly.

Definition 1. A feasible flow setfP , P ∈ P is at a Wardrop (Nash) equilibrium if for

eachi ∈ [k] and every pathP,R ∈ Pi with fP > 0, it holds thatΨP (f) ≤ ΨR(f).

To prove that the Nash flows always exist in our non-sampling rate case and the

achieved cost is unique, we use the Karush-Kuhn-Tucker optimality conditions as in the

studies by Beckmann et al. [11] and Dafermos et al. [24]. LetQa(x) = ln(Ψa(x)) for
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every arca ∈ A (i.e., also non-decreasing and continuous). Similarto [11] and [24],

we construct a convex program (CP) as following with continuously differentiable and

convex functions(ha)a∈A, which is defined asha(fa) =
fa
∫

0

Qa(x)dx:

Minimize
∑

a∈A

ha(fa) (4.1)

s.t.
∑

P∈Pi

fP = ri ∀i ∈ [k] (4.2)

fa =
∑

P∈P:a∈P

fP ∀a ∈ A (4.3)

fP ≥ 0 ∀P ∈ P (4.4)

ha(fa) =

fa
∫

0

Qa(x)dx (4.5)

Based on the Karush-Kuhn-Tucker optimality conditions, a feasible flow set

fP , P ∈ P is an optimal solution for this convex program if and only if

∀i ∈ [k],∀P,R ∈ Pi, fP > 0 (4.6)

h′P (f) =
∑

a∈P

h′a(fa) ≤
∑

a∈R

h′a(fa) = h′R(f), (4.7)

whereh′
a(x) refers to the first derivative ofha(x). Therefore

h′P (f) =
∑

a∈P

h′a(fa) =
∑

a∈P

Qa(fa) =
∑

a∈P

ln(Ψa(fa)) (4.8)

= ln(
∏

a∈P

Ψa(fa)) = ln(ΨP (f)) (4.9)

≤
∑

a∈R

h′a(fa) =
∑

a∈R

Qa(fa) =
∑

a∈R

ln(Ψa(fa)) (4.10)

= ln(
∏

a∈R

Ψa(fa)) = ln(ΨR(f)) (4.11)

It meansln(ΨP (fa)) ≤ ln(ΨR(fa)), which impliesΨP (fa) ≤ ΨR(fa) for ∀i ∈
[k], ∀P,R ∈ Pi, fP > 0. The optimality condition of the convex problem coincides with

the condition of the Nash equilibrium.
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4.2.2 The Existence of Optimal Flow

An optimal flow is defined as a feasible flow set[f ] = {fP , P ∈ P} that

minimizes the total system costC(f) instead of letting all agents selfishly minimize

their own costC(fP )
1. Recall that the total cost with respect tof is defined as:

C(f) =
∑

P∈P

ΨP (f)fP =
∑

P∈P

(
∏

a∈P

Ψa(fa))fP (4.12)

=
∑

P∈P

(
∏

a∈P

Ψa(
∑

P∈P:a∈P

fP ))fP (4.13)

If we replace the objective function in Equation (4.1) to minimize C(f) instead, the

optimal solution,fP , P ∈ P, to this new problem becomes the optimal flow. In our

case,C(f) is the summation of product of numerous decision variables as Equation

(4.13), which can not be easily solved.

By applyingInequality of Arithmetic and Geometric Means, we give the lower

bounds ofC(f) as follows. We first take natural log of the total cost,C(f), and

ln (C(f)) could be simplified as following by usingln(a1 + a2 + . . .+ aN ) ≥ ln(N) +
ln(a1)+ln(a2)+...+ln(aN )

N
sincea1+a2+...+aN

N
≥ N
√
a1 · a2 · . . . · aN if a1, a2, . . . , aN ≥ 0 and

N ∈ N .

ln (C(f)) = ln

(

∑

P∈P

ΨP (f)fP

)

= ln

(

∑

P∈P

∏

a∈P

Ψa(fa) · fP
)

≥ ln(N) +
1

N
·
(

∑

P∈P

ln(
∏

a∈P

Ψa(fa) · fP )
)

= ln(N) +
1

N
·
(

∑

P∈P

(
∑

a∈P

ln(Ψa(fa)) + ln(fP ))

)

= ln(N) +
1

N
·
(

∑

P∈P

∑

a∈P

ln(Ψa(fa)) · 1 +
∑

P∈P

ln(fP )

)

= ln(N) +
1

N
·
(

∑

a∈A

na · ln(Ψa(fa)) +
∑

P∈P

ln(fP )

)

= ln(N) +
1

N
·
(

∑

a∈A

ln(Ψa(fa)) · na +
∑

P∈P

ln(fP )

)

= ln(N) +
1

N
· (C∗(f))

1Theratiobetween the total cost at Nash equilibrium and optimal flow isusually called POA (Price of
Anarchy) in [27]
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whereN is the number of pathP ∈ P andna =
∑

P∈P,fP>0:a∈P

1, is the number of

effectivepaths passing through arca with traffic fP > 0, P ∈ P. We use boolean

variable,uP , to indicate whether the routing policy uses pathP , i.e.,uP = 1 if using path

P ∈ P (fP > 0), otherwiseuP = 0 if (fP = 0). Therefore,na =
∑

P∈P:a∈P

uP , ∀a ∈ A
and the constraints Equation (4.2)-(4.3) become:

∑

P∈Pi

fP · uP = ri ∀i ∈ [k] (4.14)

fa =
∑

P∈P:a∈P

fP · uP ∀a ∈ A (4.15)

SinceN is constant given by the network topology, the lower bound objective

function could be equivalent to minimizeC∗(f) whereC∗(f) =
∑

a∈A

ln(Ψa(fa)) · na +
∑

P∈P

ln(fP ). In order to avoid quadratic programming, we introducezP = fP · uP to

decouplefP · uP in Equation (4.16)-(4.17). It is easy to see their equivalence. When

uP = 0, zP = 0 from Equation (4.16); and whenuP = 1,zP = fP from Equation (4.17).

0 ≤ zP ≤ uP (4.16)

fP + uP − 1 ≤ zP ≤ fP (4.17)

After we substitutezP to Equation (4.14)-(4.15), the convex program could be

simplified as:

Minimize C∗(f) (4.18)

s.t.
∑

P∈Pi

zP = ri ∀i ∈ [k] (4.19)

fa =
∑

P∈P:a∈P

zP ∀a ∈ A (4.20)

fP > 0 ∀P ∈ P (4.21)

na =
∑

P∈P:a∈P

uP ∀a ∈ A (4.22)

uP ∈ {0, 1} ∀P ∈ P (4.23)

0 ≤ zP ≤ uP ∀P ∈ P (4.24)

fP + uP − 1 ≤ zP ≤ fP ∀P ∈ P (4.25)

By solving the new convex optimization problem, we achieve the lower bound for the

original optimal flow problem and hence derive the POA as follows. Sinceln(C(f)) ≥
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ln(N) + C∗(f)
N

, the lower bound ofC(f) with respect to the optimal flow,f ∗ could be

expressed asC(f ∗) ≥ N · eC∗(f∗)
N . Let (G,A,Ψ) be an instance of the selfish routing

game and assumef andf ∗ be a Nash flow and an Optimal flow, respectively. The upper

bound of the price of anarchy in our case is:

ρ(G, r,Ψ) =
C(f)

C(f∗)
(4.26)

≤ C(f)

N · eC∗(f∗)
N

(4.27)

4.2.3 Design of Penalty Functions

In the routing game, after the current link capacityUa exceedsUmax, we add

a sharp penalty to the metricΨa(f) such that selfish agents are aware of the TE

constraints. The moreUa exceedsUmax, the larger the penaltyΨa(f) will be. Ua =
f

Ca
,

whereCa is the link capacity andf is the current traffic on linka. Here we useadditive

operator to embed penalty functionζ(f) intoΨa(f), i.e.,Ψa(f) = (1−Sa) + ζ(f). We

keepζ(f) = 0 if Ua < Umax and makeζ(f) increase sharply ifUa ≥ Umax as follows:

ζ(f) =

{

0, if Ua < Umax;

(Ua − Umax) ·mζ , if Ua ≥ Umax;

and therefore

Ψa(f) =

{

(1− Sa) + 0, if f

C
< Umax;

(1− Sa) + ( f

C
− Umax) ·mζ , if f

C
≥ Umax

wheremζ controls the sharpness of the penalty. Usually with a largermζ , it will

have fewer TE-violations in the equilibrium state but with longer convergence time.

We find mζ = 106 provides a good trade-off between those two effects described

above. Section 4.4.2 compares the link utilization, convergence speed, and the effective

measuring gains with differentmζ values.

4.3 round-based equilibrium in IP network
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Up to this point, our traffic model is based on the assumption that agents at end

hosts have full control over their traffic and they can accessthe current TE cost value of

all paths. Obviously, none of these is true in the real-worldIP networks. In this section,

we study our Nash equilibrium model that both considers effective non-sampling rate

and TE-violation penalty in a dynamic/distributed, round-based variant.Suppose agents

at end hosts are activated everyTs seconds and are allowed to change their routes

simultaneously. Since they all intend to migrate traffic to apath with minimal cost

value, such global migration behavior will result in greatly increased congestion on

the optimal path (from measurement’s perspective) and leadto oscillations. Fischer

et al. proposed the so-called (α-β)-exploration-replication policy in [33] to avoid

traffic migration oscillation by using adaptive path-sampling methods. Although [33]

is designed for the cost model defined for latency, we apply itto our newly defined

non-sampling rate cost model.

In real IP networks, agents at the end points do not have the routing control over

the paths; it is the routers that are responsible for choosing the paths. A router can

only determine the next-hop nodes to the destination and decide their traffic split ratios.

In this section, we provide an overview of our distributed routing policy: how routers

propagate/gather cost information and determine the proper split ratios. The detailed

algorithms are deferred to the next subsection.

Consider an intermediate routerR on a pathS → R → D from S to D and

assume there are severalmultiple equal-costpaths betweenR to D. Applying our

Wardrop rerouting policy based on minimizing path non-sampling rate, routerR aims at

distributing the traffic fromS to D evenly among these paths, however,R only knows

the set of possible next hops of these multiple paths (denoted by N(R,D)) to each

destinationD. Therefore routerR needs to maintain a set of dynamically changeable

weightsw(R,D, Vi) for all possible next-hop routersVi ∈ N(R,D) to every destination

D and
∑

Vi∈N(R,D)

w(R,D, Vi) = 1. w(R,D, Vi) can be treated as the fraction of traffic

routed fromR toD via Vi.

In this model, the routing decision made at intermediate routerR only affects the

performance of the paths fromR to D while the performance betweenS to R is fixed

and unaffected. Note thatR can not explore the traffic information for downstream
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routers betweenVi andD. It needs to utilize the aggregated traffic information from

next-hop routersVi instead. This information exchange resembles a distance vector

routing protocol. The decision forR to route traffic viaVi depends on theexpected

non-sampling rateΨ(R,D, Vi) for the pathR → Vi 99K D. Each round, every router

Vi keepsR informed about theexpected non-sampling rateof its pathsVi 99K D. We

denote the set ofmultiple equal-costpaths between nodeVi andD asP(Vi, D) and

NP is the number of cascaded intermediate routers on each pathP ∈ P(Vi, D). The

expected non-sampling rateΨ(R,D, Vi) via Vi can be expressed as

Ψ(R,D, Vi) = Ψ(R,Vi) · (
∑

P∈P(Vi,D)

wP ·ΨP ) (4.28)

wP =

NP
∏

j=1

w(Vj ,D, Vj+1),∀P ∈ P(Vi,D) (4.29)

,whereΨ(R, Vi) is the measured non-sampling rate on linkR → Vi. ΨP is the non-

sampling rate on pathP , andwP is the traffic fraction on pathP . LetA(Vi, D) indicate

the information that routerVi feedback toR:

A(Vi, D) =
∑

P∈P(Vi,D)

wP ·ΨP (4.30)

Assume there are severalmultiple equal-costpaths betweenVi to D, and

N(Vi, D) denote the set of possible next-hop routers to destinationD, we can obtain

A(Vi,D) =
∑

Uj∈N(Vi,D)

w(Vi,D,Uj)
∑

P∈P(Uj ,D)

wP · (Ψ(Vi, Uj) ·ΨP )

=
∑

Uj∈N(Vi,D)

w(Vi,D,Uj)
∑

P∈P(Uj ,D)

wP ·ΨP ·Ψ(Vi, Uj)

=
∑

Uj∈N(Vi,D)

w(Vi,D,Uj)(
∑

P∈P(Uj ,D)

wP ·ΨP ) ·Ψ(Vi, Uj)

=
∑

Uj∈N(Vi,D)

w(Vi,D,Uj) ·Ψ(Vi,D,Uj) (4.31)

In summary, the value ofA(Vi, D) is computed at routerVi each round and sent back to

R based on the previous known information ofΨ(Vi, D, Uj). A(Vi, D) can be treated as

the condensed information ofexpected non-sampling ratebeyondVi. The routerR can

then updateΨ(R,D, Vi), theexpected non-sampling rateto destinationD via Vi, and
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computew(R,D, Vi) to adjust its split ratios.Here we assume synchronized routing-

updates of these link/path costs. The impacts of asynchronous update issue could be

solved similarly in [28] where we defer as our future work.

4.3.1 Distributed MeasuRouting Algorithm

In this section, we present our adaptive algorithm,Distributed MeasuRouting

(DisMR), which runs on each individual routers to make routing decisions on how

to adjust routing split ratios for each destination traffic.In order to do this, each

router first needs to measure the non-sampling rateΨ(R, Vi) for each link to next-

hop routersVi and exchanges information with other routers by usingDistributedΨ-

Propagation Algorithm. After receivingA(Vi, D), the expected average non-sampling

rate of the path to every destinationD via Vi from next-hop routers, each router can

computeΨ(R,D, Vi) locally and use this information to conduct theAdaptive Weight

Calculations. In summary, each routerR needs to maintain the following sets of

information for all possible next-hop routersVi ∈ N(R,D) to every destinationD:

1. Ψ(R, Vi): the non-sampling rate value that also includes the penaltyvalue to

reflect the current link utilization on linkR→ Vi.

2. A(Vi, D): the expected average non-sampling rate value to destinationD via Vi

(Vi 99K D) which is received periodically from neighbor routerVi.

3. w(R,D, Vi): current dynamically changeable weights for traffic routedfrom

current routerR to destinationD via Vi.

Algorithm 6 describes the distributedΨ-metric propagation procedure of DisMR

in details. EveryTs seconds, the set ofΨ(R,D, Vi) values are updated at each router by

using the information of currentΨ(R, Vi) and previousA(Vi, D) from neighbors (Line

7). Subsequently, the newA(R,D) values are re-calculated by using the current weights

w(R,D, Vi) and broadcast to all of the neighbor routers (Line 9-10). Meanwhile each

router will execute the Adaptive Weight Calculation procedure to reassign the weights

w(R,D, Vi) for all possible next-hop routersVi ∈ N(R,D) to every destinationD by

using updated information ofΨ(R,D, Vi) (Line 12).
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Algorithm 6 DistributedΨ-Propagation Algorithm

1: assume current node isR

2: while everyTs secsdo

3: initialize new update messageM(Ts)

4: for each destinationD in routing tabledo

5: for every next-hop nodesVi ∈ N(R,D) do

6: measureΨ(R, Vi)

7: Ψ(R,D, Vi) = Ψ(R, Vi) · A(Vi, D)

8: end for

9: A(R,D) =
∑

Vi∈N(R,D)

w(R,D, Vi) ·Ψ(R,D, Vi)

10: AppendA(R,D) in M(Ts)

11: end for

12: Execute one of theAdaptive-Weights calculations

13: SendM(Ts) to all neighbor nodes

14: After receivingM(Ts) from neighbor nodeUi

15: for eachA(Ui, D) in M(Ts) do

16: if Ui ∈ N(R,D) then

17: UpdateA(Ui, D) from M(Ts)

18: end if

19: end for

20: end while

Algorithm 7 presents the Adaptive Weight Calculation procedure of DisMR. For

every pair of next-hop routers (e.g., sayV1, V2), it first compares their cost metric

Ψ(R,D, Vi), i = 1, 2 and conducts the migration procedure if the difference of their

cost values is more than themigration threshold(ǫ ×mζ) (Line 7). Otherwise, DisMR

will not change the weights ofV1 andV2.

Subsequently, it computes the migration probability (Line7-9) and the adaptive

migration amount (Line 10-14) according to the (α-β)-exploration-replication pol-

icy [33]. For every pair of next-hop nodes in each round (Line3), we denoteV1 to

be the node with larger cost value,Ψ(.) andV2 to be the alternate node. From statistic
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Algorithm 7 Adaptive Weight Calculation

1: afterΨ(R,D, Vi) information is updated

2: for each destinationD in routing tabledo

3: for every next-hop nodeVi ∈ N(R,D) do

4: wnew(R,D, Vi) = w(R,D, Vi)

5: end for

6: for every pair of next-hop nodesV1, V2 ∈ N(R,D) do

7: if Ψ(R,D, V1) > Ψ(R,D, V2) + ǫ×mζ then

8: CalculatePM = Ψ(R,D,V1)−Ψ(R,D,V2)
Ψ(R,D,V1)+α

9: if with probabilityPM then

10: if w(R,D, V2) 6= 0 then

11: ∆ = (1− β) · w(R,D, V2) ·∆fix

12: else

13: ∆ = β

N(R,D)
·∆fix

14: end if

15: wnew(R,D, V1) = w(R,D, V1)−∆

16: wnew(R,D, V2) = w(R,D, V2) + ∆

17: end if

18: end if

19: end for

20: Usewnew(R,D, Vi) to distribute the traffic

21: end for

point of view, the adaptive migration amount∆ should be calculated depending on node

V2. If V2 is already used (e.g.,w(R,D, V2) 6= 0), then∆ = (1− β) ·w(R,D, V2) ·∆fix

from proportional samplingperspective. IfV2 is unused (e.g.,w(R,D, V2) = 0), then

∆ = β

N(R,D)
·∆fix from uniform samplingperspective where∆fix is the unit of weight

shifted in one round. The migration probability is decided asPM = Ψ(R,D,V1)−Ψ(R,D,V2)
Ψ(R,D,V1)+α

based on [33] in order to avoid oscillations from global synchronized migrations (Line

8). This adaptive migration policy ensures that smaller non-sampling rate gains,

∆Ψ = ΨP − ΨQ, only cause a smaller migration possibility and avoid oscillation. The

implementation of distributing traffic according toW (R,D, Vi) for each router can use
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the hashing methods described in [28, 32, 46].If W (R,D, Vi) are constant, there is no

packet reordering occurred. However onceW (R,D, Vi) are shifted, a fraction of the

traffic needs to be rerouted and probably causes packet reordering. The solution is to

make the time interval whenW (R,D, Vi) shifts occur not smaller than the time TCP

needs to recover from packet losses in [32]. We summarize the static parameters used

in DisMR as follows.

• Update intervalTs: it controls how often the participated routers update their

traffic split ratios.

• Migration thresholdǫ × mζ : it controls the granularity of equilibrium DisMR

wants to achieve wheremζ is the severeness of the penalty andǫ is the inaccurate-

rate we can tolerate.

• Virtual non-sampling rate offsetα and Exploration-replication factorβ: They

are used to control (α-β)-exploration-replication policy to avoid traffic migration

oscillation (details are in [33]).

• Migration rate ∆fix: the unit of weight shifted in one round. It controls the

convergence speed of DisMR (details are discussed in Section 4.4.2).

4.4 Performance Evaluation

In this section, we evaluate DisMR using both synthetic and real traces. We

consider various topologies ranging from a simple 4 node topology, Abilene [1],

GEANT [3] (with 23 nodes and 74 links) to AS6461 topology obtained using Rock-

etFuel (with 19 nodes and 68 links) [69].In each set of topology, we first calculate

multiple paths for every OD (origin-destination) pair nodes to simulate the (ECMP)-

like algorithm in practical scenarios, and run DisMR on those multiple paths. Our

simulations have three goals: (1) determine good parameters for the algorithm to

quickly reach equilibrium state without significant oscillations; (2) show that the

measurement gain of the network at equilibrium state is close to the offline maximum

achievable gain calculated by static centralized MeasuRouting; (3) show that it indeed
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improves measurement gain in dynamic traffic scenario compared to static centralized

MeasuRouting.

4.4.1 Traces and Performance Metrics

We use the following four topologies in our experiments and assume there are

only one class of traffic in this chapter.

• Simple 4-node topology: As shown in Figure 4.1, all links have 10Gbps link

capacity and the TE-constraint (maximum link-utilization) is Umax=0.9. The

traffic demand is 15Gbps from SF→NY with two multiple paths. Two links are

equipped with monitors as sampling rate:PSF→A = 0.5 andPSF→B = 0.7,

respectively.

• Abilene: This is a public academic network in the U.S. with 11nodes intercon-

nected by 28 OC192 (10 Gbps) links. The traces we use were collected from April

22-26, 2004 [1].

• AS6461: This is a RocketFuel [69] topology with 19 nodes and 68 links. We

generate aggregate traffic demands for each OD pair using theGravity Model [55].

• GEANT: GEANT connects a variety of European research and education net-

works. Our experiments are based on the December 2004 snapshot available

at [3], which consists of 23 nodes and 74 links varied from 155Mbps to 10 Gbps.

The traces we use were collected from April 11-15, 2004.

In our experiments, we are interested in the following four performance metrics2:

1. Convergence Time: It is defined as the number of iterationsthe algorithm takes

to reach equilibrium state. Note that the actual convergence time should be the

product ofTs and the number of iterations.

2. Measurement Gain: It is defined as the sum of sampling utilities (SP (f)) of flows

weighted by the flow sizes (fP ) along the paths,G =
∑

P∈P

SP (f) · fP .

2Note that path inflation (additional delays) is reasonable with DisMR and for delay-sensitive traffic,
it can be included as a constraint as well to limit the additional hop/delay. Due to the space limit, we omit
those performance comparisons.
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A

B

SF

pSF→A = 0.5

pSF→B = 0.7

NY

15 Gb/s

Figure 4.1: Simple 4-node topology: link-capacity=10Gbps,Umax=0.9, traffic

demand=15Gbps from SF→NY with two multiple paths. Two links are equipped with

monitors as sampling rate:PSF→A = 0.5 andPSF→B = 0.7.

3. Link Utilization: This metric reflects TE constraints.

4. Sum of Weights Changes: It is defined as the sum of all weights changes for all

routers and quantifies the oscillations observed in the system. .

4.4.2 Sensitivity Analysis and Parameter Tuning

Our simulation results show that our performance is largelyindependent ofα and

β. We findα = β = 10−5 offers a good trade-off between the consequences discussed

in [33] and we use them for all of our evaluations. The more sensitive parameters

are mostlymigration threshold, ǫ × mζ andmigration rate, ∆fix. We explore these

parameters in the following sections.

Choosing the migration threshold

The migration thresholdis defined as the product ofǫ andmζ . It controls the

granularity of equilibrium DisMR wants to achieve. We startwith the simple 4-node

topology depicted in Figure 4.1 to explore these two parameters. WithUmax = 0.9,

the optimal split-ratios arew(SF,NY,A) = 6
15

andw(SF,NY,B) = 9
15

with link

utilizationUA = 6
10

< Umax andUB = 9
10
≤ Umax. The offline maximum achievable

gain calculated by centralized MeasuRouting is6 × 0.5 + 9 × 0.7 = 9.3 without TE-

violation. Table 4.1 shows that the performance of our proposed DisMR algorithm is
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108

0.35

0.4

0.45

0.5

0.55

0.6

0.65

1 10 100 1000 10000 100000

W
e

ig
h

t
s

iterations 

w(A)-Δfix-0.1

w(B)-Δfix-0.1

w(A)-Δfix-0.01

w(B)-Δfix-0.01

w(A)-Δfix-0.001

w(B)-Δfix-0.001

w(A)-Δfix-e-04

w(B)-Δfix-e-04

w(A)-Δfix-e-05

(a) Weights Distribution (∆fix-variations)

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 10 100 1000 10000

S
u

m
 o

f 
w

e
ig

h
ts

-c
h

a
n

g
e

s

iterations

Δfix-0.1

Δfix-0.01

Δfix-0.001

Δfix-e-04

Δfix-e-05

(b) Sum of Weights Changes (∆fix-variations)

Figure 4.3: System performance comparison with∆fix variation



109

Table 4.1: mζ variations withǫ = 10−3, ∆fix = 10−2 in 4-node topology

mζ 103 104 105 106 107

iterations 249 54 49 66 34
UA 0.5993 0.5999 0.5999 0.5999 0.5999
UB 0.9007 0.9001 0.9001 0.9001 0.9001
CA 0.5 0.5 0.5 0.5 0.5
CB 1.0281 1.7087 14.387 141.17 1408.9
ǫ×mζ 1 10 100 1000 10000
WA 0.3995 0.3999 0.3999 0.3999 0.3999
WB 0.6005 0.6001 0.6001 0.6001 0.6001
Gain 9.3006 9.3003 9.3003 9.3003 9.3003

Table 4.2: ǫ variations withmζ = 106, ∆fix = 10−2 in 4-node topology

ǫ 10−1 10−2 10−3 10−4 10−5 Theo.-Equil.
iterations 45 63 43 551 5625 ∞
UA 0.5939 0.5939 0.5998 0.59995 0.599993 0.5999998
UB 0.90608 0.90608 0.9002 0.90005 0.900006 0.9000002
CA 0.5 0.5 0.5 0.5 0.5 0.5
CB 6080.308 6080.308 141.1678 55.1099 6.6940 0.5
ǫ×mζ 100000 10000 1000 100 10 0
WA 0.39594 0.39594 0.399906 0.399963 0.3999957 0.39999987
WB 0.60406 0.60406 0.600093 0.600036 0.6000042 0.60000013
Gain 9.31216 9.31216 9.30028 9.300109 9.3000127 9.3000004

less sensitive to the sharpness of the penalty,mζ and it has similar gain as centralized

MeasuRouting only with subtle TE-violation (e.g., only0.0001
0.9

= 0.001) exceptmζ =

103. We usemζ = 106 for the following simulations.

With mζ = 106 andUmax = 0.9, the theoretical equilibrium (e.g., denoted

as “Theo.-Equil." in Table 4.2)will occur in both of the cost metricΨ(SF,NY,A) =

(1−0.5)+0 = Ψ(SF,NY,B) = (1−0.7)+(9.000002
10
−0.9)·106 = 0.3+0.2 = 0.5 where

the weight split-ratios arew(SF,NY,A) = 5.999998
15

andw(SF,NY,B) = 9.000002
15

with

link utilization UA = 5.999998
10

< Umax andUB = 9.000002
10

> Umax. Therefore the

theoretical measurement gain will be5.999998 × 0.5 + 9.000002 × 0.7 = 9.3000004

with negligible TE-violation (e.g., only0.0000002
0.9

= 2.2 · 10−7). However, it requires the

finest traffic-migration granularity (e.g., infinitesimal∆fix) which takes large number

of iteration times to converge. Table 4.2 compares the performance ofDisMR with
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Table 4.3: ∆fix variations withmζ = 106, ǫ = 0.001 in 4-node topology

∆fix 10−1 10−2 10−3 10−4 10−5 Theo.-Equil.
iterations 195 48 498 4424 46079 ∞
UA 0.59969 0.59986 0.59947 0.59994 0.59999 0.5999998
UB 0.90030 0.90014 0.90053 0.90006 0.90001 0.9000002
CA 0.5 0.5 0.5 0.5 0.5 0.5
CB 300.4599 141.1678 527.1125 61.0521 5.437467 0.5
ǫ×mζ 1000 1000 1000 1000 1000 0
WA 0.39979 0.39991 0.399648 0.3999594 0.3999965 0.39999987
WB 0.60020 0.600093 0.600351 0.6000405 0.60000342 0.60000013
Gain 9.3006 9.30028 9.30105 9.300122 9.30001027 9.3000004

different choices ofǫ. With smallerǫ, DisMR has less TE-violation but with longer

convergence time and more oscillations (e.g.,UB = 0.900006 ≈ Umax whenǫ = 10−5

but with 5625 iterations). On the other hand, with largerǫ, it has more TE-violation but

with shorter convergence time and less oscillations (e.g.,UB = 0.90608 > Umax when

ǫ = 10−1 but with 45 iterations). Therefore, choosing the rightǫ is a tradeoff between

convergence speed and TE-violations. We suggest usingǫ = 10−3.

Choosing the migration rate

Table 4.3 shows the performance of DisMR with different choices of migration

rate,∆fix. With smaller∆fix, it has less TE violation but with longer convergence

time (e.g.,UB = 0.90001 ≈ Umax when∆fix = 10−5 but with 46079 iterations).

With larger∆fix, it has more TE violation but with shorter convergence time (e.g.,

UB = 0.90030 > Umax when∆fix = 10−1 but with 195 iterations). Figure 4.3(a)

shows how our algorithm adjusts the weights at SF during the evaluation period with

∆fix variation. For∆fix = 10−5, it converges to the optimal weights smoothly, but

rather slowly. On the contrary, for∆fix = 10−1, it converges to the optimal weights

quickly, but rather unevenly. Figure 4.2 and 4.3 compares how our algorithm adjusts

the weights at SF during the evaluation period with∆fix andǫ variations. As shown

in Figure 4.2(b), for smallerǫ, the system has frequently oscillations. Different fromǫ,

for smaller∆fix, it has smooth oscillation behavior as in Figure 4.3(b). Choosing the

right∆fix is a tradeoff between convergence speed and TE-violations.We suggest using



111

Table 4.4: ∆fix variations withmζ = 106, ǫ = 0.001 in Abilene

∆fix 10−1 5 · 10−2 10−2 5 · 10−3 10−3

iterations 322 440 3416 7965 23068
TE-violation 3.524 · 10−5 1.062 · 10−5 9.236 · 10−6 1.33 · 10−6 1.10 · 10−6

Gain(DisMR) 2671.9 2671.72 2671.57 2671.54 2671.537
Gain(Static−MR) 2671.8 2671.8 2671.8 2671.8 2671.8

Table 4.5: ∆fix variations withmζ = 106, ǫ = 0.001 in AS6461

∆fix 10−1 5 · 10−2 10−2 5 · 10−3 10−3

iterations 87 119 573 1394 6145
TE-violation 0 0 0 0 0
Gain(DisMR) 9648.53 9648.53 9648.53 9648.53 9648.53
Gain(Static−MR) 9648.53 9648.53 9648.53 9648.53 9648.53

∆fix = 10−2.

4.4.3 Applied in Realistic Topologies

In this section, we evaluate the performance of DisMR in three realistic

topologies, Abilene, GEANT and AS6461. For each topology, we use an Equal Cost

Multipath Routing (ECMP)-like algorithm to calculate multi-path routing for all OD

pairs. In order to accentuate DisMR’s performance, we only consider the traffic traces

of the OD pairs with at least two multiple paths. Table 4.4 and4.5 compares the

performance of DisMR with different choices of migration rate, ∆fix in Abilene and

AS6461 topologies/traces, where the fixed migration threshold used in this section is

1000 (ǫ = 10−3, mζ = 106) and the TE-constraint isUmax = 0.9. Consistent with

4-node topology, DisMR with smaller∆fix incurs less TE-violation but with longer

convergence time, while DisMR with larger∆fix incurs more TE-violation but with

shorter convergence time. The same property could be observed in GEANT network

topology.

Figure 4.4 shows the real-time TE-violation and sum of the weights changes of

DisMR using GEANT network/trace. The TE-violation value isdefined as the absolute

value aboveUmax. For∆fix = 10−3, DisMR has nearly zero TE-violation but converges

to the equilibrium state slowly (e.g., 5083 iterations). Also the system oscillation (sum
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of the weights changes) is quite low (e.g., see Figure 4.4(b)). On the contrary, for

∆fix = 5 · 10−2, DisMR has more TE-violation and higher system oscillationbut

faster converge time (e.g., 1480 iterations). To conclude,all the simulation results using

realistic topologies/traces show that the measurement gain of DisMR is close to the

maximum achievable gain using offline, centralized MeasuRouting which is denoted as

“Static-MR" in the tables.

4.4.4 Applied in Dynamic Traffic Scenario

In this section, we compare the performance of DisMR with static centralized

MeasuRouting in dynamic traffic scenario. We conducted these experiments using

GEANT topology with the traffic snapshots on Apirl 11 and we change the traffic

patterns in every 30 minutes based on the traces in [3]. Here Static-MR consistently

uses the same traffic splitting strategy based on the initialtraffic snapshot (00:30), while

DisMR will adaptively adjust its traffic splitting policy with the new traffic pattern.

Figure 4.5 shows the real-timemax TE-violations and the changes of measurement gain

for DisMR and Static-MR in GEANT network/trace. Initially,DisMR has similar gain

as Static-MR after it reaches equilibrium state (00:38) in Figure 4.5(a). We observed that

the measurement gain of Static-MR decreases a lot when traffic pattern changed. When

the time interval increases (03:30), the degradation becomes severe but DisMR can still

outperform Static-MR(e.g.,1.9−1.7
1.7

≈ 11.7%). In Figure 4.5(b), both DisMR and Static-

MR have large TE-violation when the traffic suddenly changesbut DisMR can quickly

improve its TE-violation in short period of timecompared to Static-MR (e.g., up to
0.35
0.003

≈ 100X at time (03:00)). In brief, DisMR has improved higher measurement

gains and much lower TE-violations compared to static, centralized MeasuRouting in

dynamic traffic scenario.

4.5 Related Work

Previous work on network-wide traffic measurement mostly focused on solving

monitor placement problem for fixed traffic characteristics/monitoring objectives [15,

20, 72]. [20] defines utility functions for the sampled traffic, and maximize the overall



114

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00
1.5

1.6

1.7

1.8

1.9

2

x 10
4

G
a
in

s

Time

 

 

DisMR

Static-MR

(a) Measurement Gain Comparison

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time

M
a
x

. 
T

E
−

V
io

la
ti

o
n

 

 

DisMR

 Static-MR

(b) Max. TE-violation Comparison

Figure 4.5: Dynamic traffic scenario



115

utility with limited operation/deployment cost. [15] improves upon [20] by performing

a more rigorous analysis to indicate the convergence of any heuristic solution. Research

efforts also exist that implicitly involve distributed monitor placement, so as to detect

cases such as DDoS [9], SLA [68] and global iceberg [77]. [65]proposes Successive

c-Optimal design to optimize the deployment and sampling rate of large IP networks, in

order to better estimate traffic matrix.

Most recently, MeasuRouting paradigm [63] was proposed to assist traffic

monitoringfor dynamically-changing traffic characteristics by intelligently re-routing

interested traffic sub-populations over the pre-deployed monitors. However it is

modeled as linear programming problem, andit requires the existence of centralized

controller and offline analysis to find the optimal re-routing strategies for every

router, which is unpractical in production IP networks.We introduce selfish routing

into MeasuRoutingproblem and define a new routing game based on a novel cost

function tode-centralize MeasuRouting. Previously, REPLEX [32], TeXCP [46] and

MATE [28] have been proposed as dynamic TE solutions to minimize the path latency

or the link utilizationby adjusting the split ratios of traffic among the paths with the

same ingress/egress nodes. These algorithms take advantage of multiple paths in a

network (e.g., MPLS/ECMP multiple paths). In contrast to them, our introduced link

cost function is a novel combination of link measurement ability and TE constraint.

Moreover our path cost is defined as the product of link costs instead of traditional

summation operation.

4.6 Conclusion and Future Work

In this chapter we propose a distributed measurement-awaretraffic engineering

protocol, DisMR, based on game-theoretic rerouting policy. It achieves the decent

balance between measurement-aware routing and traffic engineering objectives by the

introduction of a new routing game and distributed routing control. We show that

DisMR guarantees both a provable Nash equilibrium and a fastconvergence without

significant oscillations. The measurement gain of DisMR at the equilibrium state is

close to the maximum achievable gain calculated by offline/centralized MeasuRouting
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in static traffic case. DisMR also improves the measurement gain and TE-violationsof

MeasuRouting in dynamic traffic scenario.We plan to perform further simulation-based

analysis on other large networks topologies since the propagation delay of sub-path

cost information might influence the convergence of DisMR. We also tend to explore

different kinds of penalty functions in DisMR to minimize the POA in theory. We would

like to study the impacts of asynchronous routing-updates of link/path costs which could

be solved similarly as in [28]. Future work also involves extending DisMR to support

flows with different measurement/sampling importance.

Chapter 4, in part, is a reprint of the material as it appears in in the following

publications:

• Chia-Wei Chang, Han Liu, Guanyao Huang, Bill Lin, and Chen-Nee Chuah,

“Distributed Measurement-Aware Routing: Striking a Balance between Measure-

ment and Traffic Engineering”,IEEE 31st International Conference on Computer

Communications (INFOCOM), Orlando, Florida, March 25-30, 2012.

Chapter 4, in full, has been submitted for publication of material as it may appear

in IEEE Transactions on Networking (ToM), Chia-Wei Chang, Han Liu, Guanyao

Huang, Bill Lin and Chen-Nee Chuah, “ Distributed Measurement-Aware Routing for

Multiple Classes of Flows”. The dissertation author was theprimary investigator and

author of the papers.



Chapter 5

Conclusion and Future Work

The network-wide traffic monitoring era has reached a phase where efficient

gain-driven routing-assisted monitoring mechanisms are inevitable for network op-

erators to facilitate fine-grained flow-level measurements(e.g., [17–19, 23]), coupled

with the fast-changing Internet traffic landscape and largetraffic volume. This

dissertation tackles the critical problem of gain-driven routing-assisted monitoring

mechanisms design especially suited for network-wide traffic monitoring applications

where maximizing the overall traffic monitoring utility is our primary design objective.

We propose two different approaches to achieve this goal, first, the centralized approach,

by solving two-step optimization problems to find the best monitor placement and

dynamic routing strategy to achieve maximum measurement utility of the network

and then distribute the measurement workload across participated monitors without

compromising on the overall traffic measurement gain of the network by using disjoint

flow sampling. Second, the distributed method, by proposinga measurement-aware

traffic engineering protocol based on a game-theoretic re-routing policy that attempts

to optimally utilize existing monitor locations for maximizing the traffic measurement

gain of the network while ensuring that the traffic load distribution across the network

satisfies some traffic engineering constraint. A novel cost function that reflects both

the measurement capabilities of monitors (e.g., packet sampling rates) and the traffic

engineering (TE) constraint on each link is applied. Both these approaches provide

substantial improvements in traffic measurement gain of thenetwork and load-balanced

measurement capability across monitors over existing solutions.

117
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A key challenge in exploring and evaluating our proposed routing-assisted

monitoring mechanisms is to accurately model the traffic that needs to be measured by

the network operator. The traffic is further divided into sub-populations (e.g., flowset)

and we need to differentially route them for measurement purpose based on their relative

importance and the measurement capabilities (e.g., packetsampling rates) of monitoring

devices deployed on the links. We study our routing-assisted monitoring mechanisms

with flows whose sampling importance and sizes are synthetically generated. Each flow

is assigned to a flowset and all flows within the same flowset have the identical routing

strategy (i.e, same routes). If each flow is assigned to a unique flowset, we can have the

greatest degree of freedom to differentially route the traffic in finest granularity. This

will allow each flow to be routed independently to maximize the measurement gain of

the network. However, it is not scalable from both computational and implementation

perspectives. In this thesis, we only haveq flowsets per OD-pair traffic. Assume each

OD-pair traffic hasL flows whereL>q and thus each flow is assigned to one of itsq

flowsets. There can be multiple ways of making such an assignment. Here we assign

an equal number of flows to each of theq flowsets per OD-pair. For the traffic demand

(size) of each flowset, we first generate aggregate traffic demand for each OD-pair by

using Gravity Model [55] and then divided byq. It was observed that the way traffic

aggregates (e.g., OD-pair traffic) are decomposed into several traffic sub-populations

(e.g., flowsets) has an impact on the performance of routing-assisted traffic measurement

mechanisms. The same observation could be also found in [63].

The properties of flow importance for each flowset in this thesis are modeled

in a very generic way such that our framework can be applied toa wide variety of

measurement scenarios. We assume that the dynamic traffic/measurement changes will

stay for long time enough for us to re-optimize monitor placement and flowset routing

in centralized MMPR case1. Therefore we manipulate the flow importance in flowset

i to be greater than the flowseti+1 per OD-pair traffic wherei = 1 · · · (q-1). We

also observed that the diversity of flow importance per OD-pair has a relation to the

performance of our proposed centralized MMPR framework: the measurement gain

increases tremendously if the diversity of flow importance also increases. We plan to

1We later relax this assumption in distributed routing-assisted monitoring mechanism case.
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explore such phenomenon in much greater detail. Meanwhile,how to define proper

measurement gain function to reflect different measurementtasks/applications remains

open problem (i.e., here we simply use flow importance factor× flow size) .

The other important factor to affect the performance of our proposed routing-

assisted traffic monitoring mechanisms is the routing strategy/protocol determined to

use. For example, a routing protocol that strictly routes traffic between an OD-pair

traffic along only with the equal cost multi-path (ECMP) may provide less opportunities

to re-route important flows through monitors and resulted inpoor measurement gain

improvement. In our centralized routing-assisted approach (MMPR), the centralized

routing controller, is able to detour flows away from the shortest path as long as it works

within the constraints of existing intra-domain traffic engineering (TE) operations. Such

dynamic forwarding mechanism can be implemented using programmable routers [13,

57, 59]. Besides this, how to dynamically configure routing table entries is also

important. For our distributed approach (DisMR), we assumesynchronized routing-

updates of link/path cost information. This information exchange resembles a distance

vector routing protocol. The impacts of asynchronous update issue could be solved

similarly in [28] where we defer as our future work. Furthermore, it would be interesting

to treat sampling rate as another degree of freedom (e.g., asproposed in [15, 20]),

to let monitors dynamically adjust them depending on the amount of traffic passing

through. For the distributed approach, these information can be reflected in our proposed

novel cost function to drive flows to be attracted to the linkswith better measurement

capabilities (e.g., higher packet sampling rates) while avoiding TE violations. We

also tend to explore different kinds of penalty functions which are used to reflect TE

violations to get more similar traffic measurement gain of the network as centralized

MeasuRouting approach (i.e., minimize the price of anarchy(POA) in theory). Finally,

the implementation of both our proposed centralized and distributed routing-assisted

traffic monitoring mechanisms can be leveraged by using OpenFlow [59] or any other

programmable routing platform.
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