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ABSTRACT OF THE DISSERTATION

Efficient Gain-Driven Routing-Assisted Mechanisms for Netvork-wide Traffic
Monitoring

by

Chia-Wei Chang
Doctor of Philosophy in Electrical Engineering (Commutica Theory and Systems)
University of California, San Diego, 2011

Professor Bill Lin, Chair

Network-wide traffic monitoring is of interest to network emators. With
constantly changing traffic characteristics and measunenobjectives, existing
techniques for traffic monitoring tend to be sub-optimal doepoor choice of
monitor deployment locations. Routing-assisted networnmoring mechanisms
have successfully catered to these needs and are able tonim@the overall traffic
monitoring utility of the network by strategically re-dating selected traffic sub-
populations over existing deployed monitoring devicesthBibe traffic measurement
gain of the network and the load-balancing of measuremerkloeads across distributed
monitoring devices are important performance metricsédbsign of efficient routing-
assisted traffic monitoring mechanisms. This thesis fozusethe design of gain-
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driven routing-assisted monitoring mechanisms where maxng the overall traffic
measurement gain is our primary design objective. Thislprobs tackled using two
different approaches. First, novel centralized optimal heuristic routing solutions
are proposed for jointly optimizing monitor placement anghamic routing strategy
to achieve maximum measurement gain of the network. Nextcomsider the load-
balancing problem about how to distribute the network mesmeant workload across
monitoring devices without compromising on the overallffitameasurement gain
of the network. Providing effective load-balancing is imjamt since previously-
placed monitoring devices may be easily overwhelmed withr-gwreasing link
rates and increasingly sophisticated measurement taslkesprégent an optimization
framework called LEISURE (Load- Equallzed meaSUREment) lémd-balancing
network measurement workloads across distributed manitdtinally, a distributed
measurement-aware traffic engineering protocol is prapbased on a game-theoretic
re-routing policy that attempts to optimally utilize exj monitor locations for
maximizing the traffic measurement gain of the network whilsuring that the traffic
load distribution across the network satisfies some trafigireeering constraint. It
guarantees not only a provable Nash equilibrium, but alseiekqconvergence without
significant oscillations to an equilibrium state in whicle ttneasurement utility of the
network is close to the maximum achievable gain using offlzentralized routing-
assisted network monitoring mechanisms. Both these deetlaand distributed
routing-assisted approaches improve the overall traffiasuement utility of the
network significantly while ensuring low computation coeaty.
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Chapter 1

Introduction

1.1 Network-Wide Traffic Monitoring

Comprehensive traffic monitoring is essential to a varietynetwork man-
agement tasks, including traffic engineering (TE), asagsperformance, capacity
planning, accounting, anomaly detection, and securitgrfsics. Many existing studies
focus on the design of improving traffic measurement teakescat a single monitor,
including adaptive sampling [61], data streaming [47], drehvy-hitter detection
mechanisms [30]. These solutions typically examine pabkeiders to determine if
any statistics need to be collected. While these aggregadtes tvolume statistics are
sufficient for TE purposes, there is an increasing need ferdimained flow level mea-
surements to perform accurate traffic classifications fousty purposes. For example,
deep packet inspection (DPI) allows post-mortem analyfsietwork events and helps
understand the payload properties of transiting Intenadtic. Network DVR [17], a
programmable application-aware triggered trace cobbectlystem, performs precisely
the function of packet content recording based on userdgg@signatures. This in turn
significantly reduces the number of memory copies for vatide collection,

But doing such fine-grained flow level measurements to argdgzrket payload
is often an expensive process that requires dedicated heed{®.g., TCAMSs [74]),
specialized algorithms, (e.g., Bloom Filters [25]), or va®rage capacity. Given the
fast-changing Internet traffic landscape and large tratflume, a single monitor is not
capable of accomplishing the measurement tasks from alicagipns of interest due



to its resource constraint. This calls for coordinated mesasent between multiple
distributed monitors. Recent work has demonstrated theflierof a network-wide
coordinated measurement for traffic engineering [31, 78]reatwork diagnosis [48, 49,
51]. CSAMP, a centralized coordinated measurement propo&6], can significantly
reduce management complexity and operating costs as [186]L4 Specifically,
network-wide traffic measurements provide essential datanétwork operation and
research. For example the strategy to obtain network irdtion through end-to-end
measurements, known as Internet tomography (e.g., manhppology discovery, or
link delay monitoring), is therefore of great interest te tiesearch community [35, 45,
70]. Moreover, network-wide traffic measurement at mudtiplonitors is also key to
uncovering global network behavior since a single monitdy @rovides partial views
and may not be sufficient or accurate. For examplglobal iceberg[40] may have
high aggregate volume across many different monitors, laytmot be detectable at any
single monitor. Discovering this type of event is importiorta number of applications
(e.g. detecting DDoS attacks, discovering worms, as wahasiring SLA compliance).

1.2 Motivation for gain-driven network monitoring

mechanisms design

This thesis focuses on the design of delivering high traffieasurement
gain/utility in network-wide traffic monitoring. In this sdon, we discuss the motivation
behind solving this problem. Network-wide traffic measuesatrcan be classified as two
categories: passive monitoring and active monitoring. passive approaches deploy
monitoring devices to the links in order to monitor the ti@ffihich passes through the
network while the active approaches generate explicitrobmiessages/packets in the
network for various measurement tasks. Active network mooimg has received much
more attention than passive monitoring in the literaturecdht researches show that
active network monitoring can be used to locate failuregimétworks [12, 38, 58]. In
fact, IP networks do not typically generate feedback packestate information and it
is the reason why active network monitoring is needed togperftraffic engineering.
Usually, active network monitoring implies additional olead traffic and therefore its



objectives are to (1) find the minimum number of beacons whrehused for emitting

probe packets to cover all the links in the network as [12,88] (2) compute the

smallest set of probe packets which has to send after thermiminumber of beacons
are chosen. Bejerano et al. [12] show that this problem i<biRplete. Nguyen et al.

propose a different approach to solve this problem by s@iftiom a set of possible
beacons in [58]. They reversely first compute an optimal §ptabe packets and then
try to find the minimal number of beacons which are needed heigde these probe
packets . They show that this beacon placement problemas\d#Pshard and propose
their greedy algorithm to solve it: in each iteration, theyest a beacon, remove its
corresponding set of probe packets (e.g., sent by this b¢actil the optimal probe

packets set cannot be covered.

On the other hand, passive network monitoring is the basisdtwork operators
to provide the robust, efficient, and secure operation of emodomputer networks.
Traditionally, passive network monitoring has been useadrétatively simple traffic
measurement task (e.g., gathering packet traces) fomaffanalysis. Now it becomes
vital for a wide class of more CPU and memory intensive nekwmeasurement
applications, such as accurate traffic categorizationr@&jource provisioning, network
dimensioning, Traffic Dispersion Graph (TDG) analysis [42]d Network Intrusion
Detection Systems (NIDS) [56, 64]. Chang et al. in [18, 1¥gent a simple priority-
tagging filtering mechanism, called SAP (Shrew Attack Rrtiv@), that protects well-
behaved TCP flows against low-rate TCP-targeted Shrewkattadn this passive
network monitoring scheme, routers maintain a simple sebahters and keeps track
of the drop rate for each potential victim. If the monitoredmrates are low, all packets
are treated as normal (e.qg., low-priority) and equally cetapgo be admitted to the
output queue and only dropped based on the AQM (Active Queargalglement) policy
when the output queue is (nearly) full. However, if the dragerfor a certain victim
becomes higher than some dynamically determined threqoaltéd fair drop rate),
the router treats packets for this victim as high-priosiyd these high-priority packets
are preferentially admitted to the output queue. SAP keaggimg victim packets as
high priority until their drop rate is below the fair drop eatBy preferentially dropping
normal packets to protect high-priority packets, SAP cav@nt low-rate TCP-targeted



Shrew attacks from causing a well-behaved TCP flow to loseiphellconsecutive
packets repeatedly. This simple strategy protects wélabed TCP flows away from
near zero throughput (due to slow start) under an attack. edevy this passive traffic
protection mechanism consume more CPU and memory overheads

Network DVR, a novel passive traffic monitoring system, isragpammable
application-aware triggered trace collection system Whi proposed in [17]. It
performs precisely the function of packet content recadiased on user-specified
trigger signatures. This in turn significantly reduces tlhwenber of memory copies
that the passive monitoring system has to consume for vaditetcollection, which
has been shown previously as a key indicator of system peé&fioce [23]. However it
introduces additional deployment and operation costs,(EBU and memory usage).
Another new passive monitoring methodology in [44] is tokéeacking both TCP’s
congestion window of the senders and their round trip timET)RN order to provide
a valuable diagnostic of end-user-perceived network pednce. It places passive
devices to monitor the traffic on the link and collect the usgfarts of packets with
their arrival time-stamps which also increases more omeratost. Mainly, network
operators have to deploy/operate specific tools or devicesonitor the network traffic
passively. In contrast to active network monitoring, passietwork monitoring does
not introduce additional traffic overhead in the network. fdJtunately, the devices
deployed in the links which monitor the network traffic udyahtroduce expensive
deployment/operation cost due to the requirements forgasing packets and storing
collected measured data. Therefore the main objectivessiy@network monitoring is
to minimize these costs (e.g., simply imply the number of iowimg devices) to cover
all of the targeted traffic in the network.

In all of the network monitoring methodologies listed abaveir key common
objective is to minimize their measurement overheads, imgeof the number of
active beacons and volume of additional probe packets fioreanetwork monitoring
or in terms of the deployment cost, as well as operation/g@mant cost for passive
network monitoring. However with the fast-changing Intriraffic landscape and
large traffic volume, monitors are not capable of accompigthe measurement tasks
from all applications of interest and monitoring all thegeted traffic in the network.



Also, collecting traffic data and analyzing such data fromier-I backbone core
network is real challenging since it is time-consuming axgesasive to deploy passive
monitoring/recording devices or active beacons in openali network. Moreover, the
range of traffic volume on the links is from 10 Mb/s on OC-3 to@Gb/s on OC-192
backbone links, which means the monitoring devices invplikacessing terabytes of
data. Sampling now is crucial since monitoring devices ateable to sustain a 100%
traffic measurement coverage on high speed links (e.g., ©&-192 or higher) due
to their resource constraints (e.g., the processing speenhory storage). Therefore
how to maximize the traffic measurement gain of the networlraffic monitoring
coverage within limited exploitation overheads (e.g.,ldgment and operation costs)
becomes an important issue in recent designs for netwadk-wiaffic monitoring
mechanisms.

1.3 Techniques for improving the traffic measurement

gain in network-wide traffic monitoring

Improving the traffic measurement gain in network-wideficahonitoring is a
hard problem that has attracted significant interest in iteeature. Several solutions
have been proposed for different contexts and their metbgds are categorized as
(1) deriving bettemonitor placement strategies across the network, (2) finding both
bettermonitor placement strategies and propeonfiguration decisionsof monitors,
(3) using disjoinflow sampling and (4) deriving bettetouting strategiesfor different
traffic sub-populations.

1. Monitor placement: Early work on network-wide traffic monitoring has focused
on the placement of monitors at appropriate locations teecall routing paths
using as few monitors as possible [12, 20, 38, 45, 58, 72]. 45], [the authors
focus on the placement of measurement devices for actifi&c traonitoring,
specifically for the construction of distance maps while 1r2,[38, 58], they
address the placement problem in an active monitoringstrinature to measure
delays and detect link failures. Chaudet et al. in [20] sttiiy problem of
minimizing the number of monitoring devices for passivéfitanonitoring and



finding optimal strategic locations of beacons for actiadfic monitoring. They

also present a combinatorial view of the problem, giving ts approximability

and complexity results, as well as efficient and versatilgddilnteger Program-
ming (MIP) formulations. Several greedy solutions are pssal by using this
modeling. Moreover, from this new model, they are able toveevIP even for

the minimization of the deployment and the exploitationta@sen maximizing

the total traffic measurement gain of the network. Suh et al[72] present

heuristics for placing passive monitoring devices in PORengheach of these
devices only captures a portion of the traffic carried by ithle [They also consider
how to maximize the volume of captured traffic under resogmestraints of the
monitoring devices where each of them has its own deploymedtoperational
costs.

. Monitor placement and corresponding configuration decisias: There are
extensions to the monitor-placement problem in [72] to rpooate with configu-
ration decisions of these monitors (e.g., packet sampéites). They consider the
problem of where to place monitoring devices in the netward bhow to control
their sampling rates. To address the tradeoff between measmt overheads
(e.g., deployment/operation costs) and traffic monitodogerage, they consider
both minimum cost and maximum coverage problems under wsrlmudget
constraints. Specifically, they consider three main pmoiste(1) minimizing the
deployment cost of monitoring devices to achieve a momtpobjective/task,
(2) minimizing both deployment and operation costs of mamig devices under
the same objective/task and (3) maximizing the fractiorPdtdws being sampled
(e.g., the traffic measurement gain) by addressing the @mobf placing monitors
in proper locations and setting their corresponding samgpiates. However they
show that all of these defined problems are NP-hard. Thelgdugropose a two
phase greedy heuristic approach to maximize the traffic uneagent gain where
they first find the links that should be deployed monitoringides and then run
a second optimization algorithm to adjust their samplinigsa They show that
this two-phase heuristic provides solution quite closéhtodptimal one through
experiments using synthetic and real network topologiexadiered by the



Rocketfuel utility and with generated traffic matrices. Gami et al. also consider
a similar problem in [15] but they reformulate the monitoaggment problem as
follows: given a network where all of the links are deployednitoring devices,
how to decide which devices should be activated and whatlaagrpte should be
adjusted on these monitoring devices in order to achievesmgneasurement task
with high accuracy (e.g., maximize the traffic measuremamt)gnd low resource
consumption? In contrast to [72], their optimization frameek can solve both
the selection of activated monitors and the configuratidtisear packet sampling
rates in one step.

. Flow sampling: As we mentioned before, modern traffic monitoring devices
cannot each record all packets of interest or flows that passigh due to
their technological and resource constraints (e.g., CRUna@mory resources).
Coupled with ever-increasing link rates (high traffic vokinthey rely on a
variety of sampling techniques to selectively record asynpatkets as their CPU
and memory resources allow. While sampling makes passiasuement tech-
nologically feasible (i.e., operate within the resourcastcaints of monitoring
resources), the overall fidelity of flow-level measureménteduced. The reason
is because in today’s networks, the monitoring devicesrcefftow measurements
completely independent to each other, thus leading to ghinrmeasurements
and inefficient use of device resources. Sekar et al. [66)yghat a centralized
system, Coordinated Sampling (CSAMP), that coordinatspidit monitoring
responsibilities across different monitoring devices sigmificantly improve the
flow monitoring capabilities (e.g., traffic coverage) of awmerk. Instead of
using traditional packet sampling, CSAMP uses not only flamngling (e.g.,
proposed by by Hohn et al. in [37]) to avoid the sampling lBasgainst small
flows but also a hash-based packet selection as a routérdewdtive (e.g.,
Trajectory Sampling in [26]) to eliminate duplicate flow nseeements in the
network to improve the traffic measurement gain of the ndtworhis allows
multiple monitoring devices to measure disjoint sets of §omithout requiring
explicit communication between routers, thus eliminatiegundant and possibly
ambiguous traffic measurements across the network. By tisisglisjoint flow



sampling model, CSAMP formulates an optimization framdwar specify its
network-wide monitoring objective as maximizing the tdtal-coverage across
all OD-pairs traffic subject to ensuring that the minimuncfranal coverage per
OD-pair can be achieved while respecting the resource i@nts of monitoring
device. The output of this optimization is then translatatb iper-monitor
sampling manifests that specify the set of flows that eachitorimg device is
required to measure. They evaluate the benefits of CSAMPawede range of
network topologies and show that it can observe more thacetas many flows
compared with traditional uniform packet sampling. Alsasimore effective to
achieve network-wide traffic monitoring goals.

. Routing strategies: Several past research efforts have focused on the optimal
deployment of monitoring devices in operational networkgnprove the traffic
measurement gain. Such deployment involves both mongatavice placement
as well as configuration decisions (e.g., packet samplitgsya The optimal
placement and configuration of monitoring devices for a gigemeasurement
task typically assumes a priori knowledge about the traff@racteristics. More-
over, these priori knowledge are typically performed agktime scales to allow
provisioning of required physical resources. Howeveffic@haracteristics and
measurement objectives may change dynamically, potgntedering a previ-
ously determined optimal placement suboptimal. It is nasiiele to dynamically
redeploy/reconfigure monitoring devices in the networkasfructure to cater
such evolving measurement requirements. Raza et al. p@pomuting-assisted
framework called MeasuRouting in [63] to address this probby strategically
re-directing traffic sub-populations of interest over 8rig deployed monitoring
devices to maximize the traffic measurement gain of the ntwdeasuRouting
takes deployment locations of monitoring devices as antiapd only decides
how to route network traffic/flows. Since routing decisiom &very packet is
made dynamically at every router, MeasuRouting can conedptadjust those
routing decisions to both evolving traffic patterns and edght measurement
tasks given by network operator to maximize the overall nooimg utility of the
network where the overall monitoring utility is defined as @ghted sum of the



traffic amount measured over all flows. The main challengedating-assisted
traffic monitoring mechanisms are to work within the constiaof existing intra-
domain traffic engineering (e.g., bandwidth resources, @iy of Service (QoS)
constraints). In general, intra-domain routing is oftereafied for aggregate
flows. MeasuRouting, can therefore, differentially routfic sub-populations
of an aggregate flows while ensuring that the aggregate plactis compliant
to original traffic engineering objectives. They define ehidasses of traffic
engineering objectives in [63] for routing-assisted traffionitoring mechanism,
each differing in the level of required conformity to theginal routing: 1) Least
TE Disruption MeasuRouting (LTD): The basic version of ingtassisted traffic
monitoring (MeasuRouting) problem and it requires onlyt tthe aggregate TE
policy is not violated. 2) No Routing Loops MeasuRouting (NRNRL is
proposed to ensure that the micro-flowsetuting is loop-free since the flow
conservation constraints in LTD do not guarantee the alesehloops. However,
depending upon the exact forwarding mechanisms and roptiogpcol, NRL
may still not be feasible. 3) Relaxed Sticky Routes MeasuiRgURSR): RSR
ensures that the new micro-flowset routing does not passdhra link that the
macro-flowsettraffic was not routed before in the original routing. It me&8R
guarantees feasible micro-flowset routing.

The work presented in this thesis focuses on the design ofgusiuting-assisted
mechanisms and monitor placement strategies as primargsteamprove the traffic
measurement gain in network-wide traffic monitoring. Thafguration decisions of
the monitoring devices are assumed unadjustable and givgn gacket sampling rates)
for all traffic flows. Disjoint flow sampling can be used in congtion with the ideas
proposed in this thesis to further improve the efficiencg.(esliminate measurement
redundancy) and monitoring ability (e.g., the traffic measwent gain) of the system.

LA macro-flowset (e.g., per origin-destination (OD)-paiaffic) may consist of multiple micro-
flowsets.

2A macro-flowset represents a set of flows for which an aggeswaiting placement is given and has
the same ingress and egress nodes.
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1.4 Problem statement and contributions

The problem solved in this thesis can be formally stated k®is:

How can we design efficient routing-assisted mechanismsdiaver the high traffic
measurement gain for network-wide traffic monitoring wieitesuring low deployment
cost, low operation cost and adhere to the intra-domairfic&ngineering constraints ?

In this thesis, the above problem is solved using three offthe different
approaches discussed in Section 1.3. First, novel cexgthloptimal and heuristic
routing solutions are proposed for jointly optimizing mimmiplacement and dynamic
routing strategy to achieve maximum measurement utilitthefnetwork where traffic
characteristics and monitor capacities are given as inpatgarticular, all proposed
heuristic routing algorithms can approach the maximum oreasent utility of the
optimal one but yet they require dramatically shorter cotapon times. Second,
in addition to their traffic measurement gain optimality, Wwether present a load-
balanced optimization framework to distribute the netwamkasurement workload
across participated monitoring devices without compramgion the overall traffic
measurement gain of the network by using disjoint flow sangpli Specifically,
we consider various load-balancing problems under diffeaptimization objectives
and study their extensions to support more realistic seeharNext, a distributed
measurement-aware traffic engineering protocol is prapbased on a game-theoretic
re-routing policy that attempts to optimally utilize exj monitor locations for
maximizing the traffic measurement gain of the network whilsuring that the traffic
load distribution across the network satisfies some traffgiresering constraint.

The main contributions of this thesis are as follows:

e Achieving Maximum Measurement Utility of the Network by Jointly
Optimizing Monitor Placement and Dynamic Routing Strategy. A new
Measurement-aware Monitor Placement and Routing frameWdMPR) that
jointly optimizes monitor placement and dynamic routingasdgy is proposed
to achieve maximum measurement utility of the network whitre overall
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measurement utility is quantified as how well each individloav is monitored
(e.g., how many bytes or packets are sampled), weightedbwmgortance. The
main challenge of MMPR is to decouple the relevant decisianables and
adhere to the intra-domain traffic engineering constrainfde formulate the
MMPR problem as an MIQP (Mixed Integer Quadratic Progranghjproblem,
and show how it could be reformulated as a standard MILP (MIxéger Linear
Programming) problem by decoupling the two key decisionaides (e.g.,
monitor-placement and traffic-routing decision variahlesn our framework,
the optimal routing strategy is determined for each flowastich is defined to
be any aggregation of flows sharing the same ingress/egrasss and having
the same routing decision. We strive to adhere to the egistitra-domain
traffic engineering (TE) constraints such that we maintamilar maximum
link utilization in the network as in default routing case. e\dlso attempt to
constrain measurement resources by activating no more &anonitors in
arbitrary links. We investigate several approximate sohg that can approach
the performance of the optimal MILP solution, but yet theguiee dramatically
shorter computation times. Our heuristic algorithms ideliK-Best, Successive
Selection, Greedy and Quasi-Greedy. We perform detailedlation studies
using real traces and topologies from Abilene [1], AS64&]],[and GEANT [3].
Our results show that the optimal MMPR solution can achieveasarement
gains up to a factor 1.76X better when compared to baselisesca.e., optimal
Placement-only or MR(MeasuRouting)-only). We also shoat thur heuristic
algorithms can achieve measurement utilities that ares quliitse to the optimal
solution, while reducing computation times by a factor oK28 Abilene, 246X
in AS6461, and 233X in GEANT, compared with the MILP (optinsblution.
The details of this work are discussed in Chapter 2.

Presenting Load-Balanced Network-Wide Traffic Measuremeh without
Compromising on the Overall Maximum Measurement Utility of the
Network: A new centralized optimization framework called LEISUREoéd-
Equallzed meaSUREment) is proposed to address the netwedsurement
load-balancing problem on various realistic scenarioslevbnsuring that the
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maximum measurement utility of the network is achieved. RIHRE distributes
traffic measurement tasks evenly across coordinated nmogtdevices subject
to ensuring that the required fractional coverage of th@sks (e.g., given
from MMPR) can be achieved. It takes a) routing matrix, b) tihgology and
monitoring infrastructure deployment and c¢) measurememiirements of tasks
as inputs, and decides which available monitoring devibesilsl participate in
each specific measurement task and how much they need to raéasyptimize
the load-balancing objectives. The load-balancing objecin this thesis is
mainly defined as two terms: 1) minimizing the variance of kl@ads across all
monitors or 2) minimizing the maximum workload among themheToptimal
outputs/solutions are translated into the disjoint seteqtiired-measured flows
that each monitor is assigned to measure. We also propog®esimuristic
solutions to compare with the optimal one and extend LEISUW&Ecorporate
practical scenarios (constraints), i.e., (a) with limiteeasuring resources at
monitors, (b) with limited number of deployed monitors, (@)th multiple
routing paths (e.g., ECMP) for each origin-destination j@@ir traffic. As
proof of concept, we perform detailed simulation studieselolaon Abilene [1]
and GEANT [3] network topologies and traces. Our resultswsiioat the
significant load-balancing improvement (e.g., 4.75X serathaximum workload
and 70X smaller variance in workloads) is achieved by usiijSURE to
optimally distribute the measurement tasks across all dioated monitors
when compared with the naive uniform assignments. We alesepit detailed
performance comparison of our proposed heuristic algosttbelonging to
two categories: LB-Greedy and LB-Successive Selection arildle monitor
deployment scenario. We show that our proposed heuridiitieos can achieve
load-balancing performance that are quite close to themgptsolutions, while
reducing the computation times by a factor up to 22.5X in &td and 800X in
GEANT. We extend LEISURE and simulation studies to perfotimizations
and sensitivity analysis with respect to multiple measueintasks that exhibit
different importance and incur different costs. We show LHEISURE is flexible
enough to assign the correct set of measurement tasks fatinated monitors
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to optimize measurement utility given limited measuringawrces. The design,
implementation, and evaluation of LEISURE is described a@er 3.

Developing Distributed Measurement-Aware Traffic Engineeing Protocol
to Achieve Maximum Measurement Utility of the Network: A distributed
measurement-aware traffic engineering protocol, DistethuMeasuRouting
(DisMR), is proposed based on a game-theoretic re-routaligypthat attempts
to optimally utilize existing monitor locations for maximing the traffic
measurement gain of the network while ensuring that th&draad distribution
across the network satisfies some traffic engineering @ingdr DisMR takes
advantage of alternative paths in a network (e.g., equdlroodti-path routing
(ECMP)). It maximizes the traffic measurement gain by adjgsthe traffic
split ratios among these paths to the same destination. tualc operates on
top of an existing multiple-path routing infrastructuregie ECMP). DisMR
is derived from a game-theoretic re-routing policy thattoegs the dynamic
decision-making process and interactions among disgtbubuters. We
introduce a novel cost function on each link that reflecthlibe measurement
capabilities (gain) and the traffic engineering (TE) coenstr (i.e., links with
larger measurement resources have a smaller cost but littkkavarger TE score
(e.g., link utilization) have a larger cost). The cost funictis designed such that
flows are attracted to links with better measurement caipiabilwhile avoiding
TE violations. Routers compete with each other in a gamer#ie manner in
order to minimize their own costs for the downstream paths DisMR, each
router periodically gathers/propagates its sub-pathiofstmation for upstream
routers and use it to locally decide how to adjust traffic tsgdtios for each
destination to the next-hop routers among these multiplelecpst paths. Our
routing policy guarantees not only a provable Nash equulibr but also a quick
convergence without significant oscillations to an equiililm state in which the
measurement gain of the network is close to the maximum eahlie gain using
offline, centralized MeasuRouting. We evaluate DisMR viadations using
both synthetic and real traces/topologies from Abilene f$6461 [70], and
GEANT [3]. The simulation results show fast convergencesfgsected from the
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theoretical results), improved measurement gains (e2% higher) and much
lower TE-violations (e.g., up to 100X smaller) compared tatis, centralized
MeasuRouting in dynamic traffic scenario. The DisMR measerg-aware
traffic engineering protocol is described in Chapter 4.



Chapter 2

Measurement-aware Monitor
Placement and Routing: A Joint
Optimization Approach for
Network-Wide Measurements

2.1 Introduction

Given the sheer size and complexity of the Internet todayienishcreasingly
important role in modern-day society, there is a growingdnfee high-quality network
traffic measurements to better understand and manage therketObtaining accurate
network-wide traffic measurement in an efficient manner ianting task given the
multi-faceted challenges. First, there is an inherent lafckne-grained measurement
capabilities in the Internet architecture. Second, thaltgmcreasing link speeds make
it impossible for every router to capture, process, andestiatailed packet information.
Earlier work on traffic monitoring has focused on improvitggée-point measurement
techniques, such as sampling approaches [22, 37], estimaitiheavy-hitters [30], and
methods to channel monitoring resources on traffic sub4atipus [62, 75]. To achieve
network-wide coverage, previous studies have focused emptimal deployment of
monitors across the network to maximize the monitoringtyt{es determined by the

15
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network operator) with given traffic routing [15, 20, 72]. &bptimal placement for a
specific measurement objective typically assumes a primyiwkedge about the traffic
characteristics. However, both traffic characteristicd areasurement objectives can
dynamically change over time, potentially rendering a fesly optimal placement
of monitors suboptimal. For instance, a flow of interest caoichdetection by not
traversing the deployed monitoring boxes. The optimal toordeployment for one
measurement task might become suboptimal once the olgettanges.

To address the limitation mentioned above, MeasuRoutidj s recently
proposed to strategically/dynamically route importaaffic over fixed monitors such
that it could be best measured. Using intelligent routihgan cope with the changes
of traffic patterns or measurement objectives to maximizasueement utility while
meeting existing intra-domain traffic engineering (TE) stpaints, e.g., achieving even
load distribution across the network, or meeting Qualitysefvice (QoS) constraints.
It is oblivious of the monitor placement problem. The keyads that the routes
of important and unimportant flows can be exchanged to aehieiter measurement
and load balancing. However, MeasuRouting is based on therggtion that monitor
locations have already been decided a priori and fixed. & doeconsider the flexibility
of deploying new monitors and replacing old ones, or altetime existing monitor
placement strategies.

In practice, current routers deployed in operational netwoare already
equipped with monitoring capabilities (e.g., Netflow [7]pénflow [59]). Network
operators would not turn on all these functionalities beeaof their associated
expensive operation cost [15, 20, 72] and measurement dadgy [66], and hence
there are potentially hundreds of monitoring points to cd®fvom to achieve network-
wide measurements. Given routing could be changed dynéynicaid measurement,
the optimal monitor selection/placement strategies mag ehange to take advantage
of this new degree of freedom. Therefore, previous appemdthat treat monitor
placement and routing as two separate problems may be sirbabpas demonstrated
in Section 2.2 with an example scenario). This naturallgléeto the following open
guestion: Given a network where all links can be monitored, which nwaishould
be activated and how to strategically route traffic sub-gdapans over those planned
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monitors such that both the measurement gain is maximizeédrenlimited resources
is best utilized

In this chapter, we propose an MMPR (Measurement-aware tgioRlacement
and Routing) framework that jointly optimizes monitor patent and traffic routing
strategy, given traffic characteristics and monitor cajescas inputs. In our framework,
the optimal routing strategy is determined for each flowsdtich is defined to be
any aggregation of flows which share the same ingress/egoessrs and have the
same routing decision. The goal is to maximize the overalasueement utility,
which quantifies how well each individual flow is monitoredgie how many bytes
or packets are sampled), weighted by its importance. Weedimiadhere to the existing
intra-domain traffic engineering (TE) constraints sucht tha maintain similar load
distributions in the network (e.g., maximum link utilizai) as in default routing case.
We also attempt to constrain measurement resources bya@egvno more thank
monitors in arbitrary links.

The properties of monitors and importance of flows in thisptbaare modeled
in a very generic form such that our framework can be appled tvide variety of
measurement scenarios. We assume that the dynamic traffisitmement changes will
stay for long enough time for us to re-optimize monitor praeat and flowset routing.
Implementation issues for continuous measurement aresfied in Section 2.7 or left
as future work. We highlight our contributions as follows:

e We formulate the MMPR problem as an MIQP (Mixed Integer Qa#drProgram-
ming) problem, and show how it could be reformulated as adstahMILP (Mixed
Integer Linear Programming) problem by decoupling the texpdtecision variables.

e We investigate several approximate solutions that canoggprthe performance of
the optimal MILP solution, but yet they require dramatigahorter computation
times. Our heuristic algorithms include K-Best, Succes$election, Greedy and
Quasi-Greedy.

e We perform detailed simulation studies using real traces tmpologies from
Abilene [1], AS6461 [69], and GEANT [3]. Our results show tthhe optimal
MMPR solution can achieve measurement gains up to a fact@xlbetter when
compared to baseline cases (i.e., optimal Placement-aniR{(MeasuRouting)-
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only). We also show that our heuristic algorithms can aahieeasurement utilities
that are quite close to the optimal solution, while redua@ongputation times by a
factor of 23X in Abilene, 246X in AS6461, and 233X in GEANT,mpared with
the MILP (optimal) solution.

The rest of this chapter is organized as follows. Sectionl2&rates through a
motivating example the benefits of a joint optimization agwh that considers both
monitor placement and traffic routing together. Section fBrBnulates the MMPR
problem, and Section 2.4 presents our heuristic solutiSastion 2.5 presents detailed
experimental results using our proposed methods, anddBe2t6 outlines related
work. Finally, Section 2.7 discusses practical implemgotassues and concludes this
chapter.

2.2 Motivating Example

In this section, we showcase the importance of both monikacgment and
traffic routing through an illustration. Consider the tapgy in Figure 2.1. We define a
flow based on the five tuple srcip, dstip, srept, dstpt, proto >. We assume that due
to budget considerations, only one monitor is allowed tody@aled in any one of the 12
links. The network operator wants to identify both the beshitor deployment location
and the best routing strategy for “important” flows, to aghimaximum measurement
gain, i.e., measuring as many important flows as possiblthe®¢ame time, the operator
wants to ensure that the monitor placement and any routiaggds have least impact
on existing QoS metric, which is defined as the “average patgth” of every flow.

o \CG/ ® ;{J

Figure 2.1 MMPR Motivational Example
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Initially there are two important flows, flow 1 and 2, with thdiefault routing
show in Figure 2.1. Obviously the optimal monitor deploytienation is on linkC' —
D where the two important flows traverse. There are many othienportant flows (not
shown in the figure) from each OD (origin-destination) paill. of the N unimportant
flows (including flow 3) use shortest path routing. Suppos# verage path length is
C.

Suppose now flow 3 becomes important over time, with its defaute A —
F — G — H. With the current monitor placement (previously deterrdine be
optimal), flow 3 will not be monitored at all. In order to capguhis flow, a second
monitor (additional resources) will be needed along thénpat— F — G — H
if the routing remain unchanged. Alternatively, a dynamiciting approach like
MeasuRouting would redirect flow 3 through lidk— D (assuming the resulting link
utilization is below a desired threshold). However, thitode increases path length for

flow 3 from 3 to 4. Since every other flow uses shortest path routing, the gegrath

NC+7
N+2 !

length increases fro Cjzﬁ to which clearly has a negative impact on the QoS
metric.

Instead, it would be better to move the monitor freim— D to link G — H,
and redirect the flow 1 and 2 both through liGk— H. The new routes for flow 1 and
2canbeB - F' - G — HandC — G — H — I, respectively. As such, no flow
has increased its path length, i.e. average path Iengthmelﬁ%. All flows can be
monitored with only one monitor (without additional resces).

One other practical concern is that the redirection of flomd 2 may overload
link G — H. This can be simply avoided by switching flow 2 with anothemyportant
flow from B to H, as long as that flow has equal traffic amount and was originalited
throughB — F' — G — H. Flow 3 can be similarly treated by switching with a flow
originally routed ag” — G — H — I. MeasuRouting [63] has already shown ways
to switch flows for better measurement. In our situation, Witching flow 1 and 2
with other unimportant flows, both average path length amklllbad can be preserved
at initial conditions. The same scenario may lead to diffeptimal solutions (the
new placement location and new routes) with other TE megfmdions. The problem
becomes more complicated with more important flows, largeotogy and different TE
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metrics.

The example above reveals that MeasuRouting without ceriaigl changing
monitor placement (referred to as MeasuRouting- or MR-pmigty become suboptimal.
Similarly, changing the optimal monitor placement aloreddrred to as Placement-only)
without the flexibility in re-routing may be infeasible waht introducing additional
measurement resources (e.g., adding a second monitorsrexiaimple). A better
monitor placement combined with strategic routing can eahioptimal solution
(maximum measurement gain) while meeting both the QoS or dnsteaints. This
motivates us to formulate the joint optimization problenboth monitor placement and
traffic routing under the MMPR framework and propose optiswltions that achieve
best measurement utility with limited monitor resourcese Will later compare the
performance of optimal MMPR solution with MR-only and Plaent-only in Figure
2.2. In the example above, Placement-only strategy wilkrfiev 3 completely. Both
MR-only and MMPR can monitor all flows. However, MR-only ieases the average

path length (QoS metric) té]f,ﬂri, which is undesirable, while MMPR reduces it to

NC+6
N+2 "

The main focus on this chapter is to providehaoreticalframework for MMPR
problem and examine the cost/performance trade-offs ferogtimal solution and a
variety of heuristic approaches. There are several peddsues which remain to be
addressed in order to realize MMPR solutions. For examplglPR assumes prior
knowledge of traffic importance, which is usually inaccarit practice. All the related
implementation issues will be discussed in Section 2.7.

2.3 MMPR FRAMEWORK

We now present a formal framework for MMPR in the context okatcalized
architecture, which jointly optimizes monitor placementaraffic routing assuming it
has global knowledge af) the network topologyh) the size and importance of traffic
sub-populations;) the monitor capability, and) the TE policy.
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2.3.1 Definition

G(V, E) represents our network, whetéis the set of nodes and is the set
of directed links. M/ = |V] is the total number of links. An OD pair represents a set
of flows between the same pair of ingress/egress nodes fahvaini aggregated routing
placement is given. The set of all| x |V — 1| OD pairs is given byo. I'{; denotes
the fraction (0, 1]) of the traffic demand belonging to OD paiplaced along linki, ).
{T ﬁej@eE is an input to the MMPR problem and represents atginal routing. We
assume{l'} 2€9_is avalid routing, i.e. flow conservation constraints are not vialate

i,j)EE
anditis com:ollant with the network TE policy.

An OD pair may consist of multiple flows where some of them hhigher
measuring importance than others. The purpose of traffisurement is to capture
those important flows as much as possible. However, it is actgral to enforce
individual routing decision for each flow. On the other haflolws are aggregated as
flowsets according to flow semantics, e.g: prefix based rgutmthis paper, we define
flowset to be any aggregation of flows which share the samessfggress routers and
have the same routing decision. We tise denote the set of mutually exclusive flowsets
andT, to denote the set of flowsets that belongs to the ODpditach flow is assigned
to one flowset ird.

We denote the fraction of traffic demand of flowgeplaced along link (i,))
as %y] {q}fff < represents our flowset routing and is the set of decisiorabtas
of the MMPR problem. According to this definition, flows befimg to the same
flowsety should have the same routing. We denptg ,co and{¢},c to be the traffic
demands (e.g., the sizes) for the OD paiand flowset), respectively. It follows that
D, = > ,cr, ¥y Lyeo denotes the measurement utility of the flowset This is a
generic metric that defines the importance of measuring aségwvhich is related to
the importance of its individual flows.

In this chapter, we assume traffic measurements are comdantéinks. We
define our measurement infrastructure and measurementegggnt in abstract terms.
{S}a,jee denotes the measurement characteristic of all links, he.ability of a link
to measure traffic. For exampl§(; ;) can be equal tg;;, the sampling rate of link

(1, 7). Since packet sampling is the de facto deployed measurenmethbd, we will use
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Table 2.1 Summarization of Notations

Notation Description
x OD pair
Y flowset
O set of OD pairs
10) set of flowsets
D, traffic demands of the OD pair
by traffic demands of the flowset
Iy original routing for OD pait:
Si.j), Pay) | measurement characteristic of link (i)
7, measurement utility of the flowset
T, measurement gain of flowset
Vz-,j) routing decision variable for flowsegt
Ui 5) monitor placement variable for link, ;)
optimization objective

pi; and{S};; interchangeably to denote the measurement ability of dakhadnd we
discuss other possible measurement functions in Sect®8.2n summary{ S} jce
andZ,cy are inputs given to our MMPR problem.

Another input to the MMPR problem i&, the maximum number of monitors
that would be turned on inside the network. In this paper, itboscan be turned on
any of the) links. The (0,1) boolean variable;; is used to denote the placement
strategy. Finally, we use measurement resolution functiqp) to characterize the
overall performance of traffic measurement. assigns a real number representing
the monitoring effectiveness of flowset routing, flowsetitytiand monitor placement
strategy for given measurement characteristics. The twgeaf MMPR is to maximize

(. Notations are summarized in Table 2.1.

B ({7}3(/2‘,3‘)7 {S}(i,j)v {I}yvu(i,j)) - R (2.1)

2.3.2 Formulation

In our problem, we can formulate the measurement gain thrdug kinds
of popular reward models [72]. Let utility functiofi, denote the benefit gained by
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monitoring flowsetl. We assume that there is no additional benefit gained by tegiiga
monitoring the same traffic. Thi, can be expressed in either of two ways:

(i,9)eE
T,= > piuiy (2.3)
(i,))eE

Equation (2.3) approximates Equation (2.2)9;)‘%-]-7% is very small. This is
true for most core-networks since the sheer traffic volupesdd prohibits high rate
measurement. Equation (2.2) models the case where momtgpendently sample
flows, while in Equation (2.3), monitors measure non-oygriag traffic. This can be
achieved by CSamp [66] likely methods, in which disjointlinéssed filters are placed
before flows get sampled. In this chapter, we use the latearcemodel since it is linear,
allowing us to better compare the various MMPR solutions.

Maxi m ze [ (2.4)
b= ZIyTy (2.5)
yebh
= Z Z Iypzjuiﬂ% (2.6)
yeo (i,j)eE
v, > 0,Vy€0,(i,j) € E (2.7)
Usj S {07 1},V(l,j) el (28)

In our model, T, is the summation of the product pfj, ~;;, andu,;. Therefore
the objective functiors is related to the product of two decision variablesand~;;,
and the optimization problem falls into the MIQP (Mix Integ@uadratic Programming)
category. In order to avoid quadratic programming, we ghiez;; to decouples;; x;;
by Equations (2.10) and (2.11). Itis easy to see their etgrica. When;; = 0, 2}, = 0
from (2.10); and whenm;; = 1, 2, = +;; from (2.11).

zf’j = Vf’j X U (2.9)

v ug — 1< 2l <A (2.11)
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After we substitute Equation (2.10)-(2.11) to Equatior6}2the formulation
becomes MILP (Mixed Integer Linear Programming) insteaMtP:

Maxi m ze f3 (2.12)
B=>"Y" Iy (2.13)
yel (i,j)eE
v > 0,Vy €0,(i,j) € & (2.16)
w;; € {0,1},V(4,j) € £ (2.17)

We set the maximum number of allowed monitors to be no monme fha
> uy <K (2.18)
(i,5)EE

After introducing MMPR, the new routing should not violate(TE metric (e.g.,
maximum link utilization) by more than a certain threshad,compared with original
routing. We uses' ando” to denote TE metric of original routing and new routing,
respectively. We introduce a threshe|dvhich bounds the violation of TE metric.

o7 < (1+eo" (2.19)

The traffic constraints can be formulated as follows:

Z Vi — Z Vi =0 y € 0,j #iny, out, (2.20)
i:(i,7)ER k:(4,k)EE

D= D e=- yeo,j=in,  (221)
i:(i,j)€E k:(j,k)eE

Z Vi~ Z Vi =1 y €0,j = out, (2.22)
i:(i,j)EE k:(j,k)€EE

In MMPR, to maximizeg, important flowsets might get repeatedly routed
through monitors. In reality, loop-free routing is desimlio avoid huge delays.
MeasuRouting [63] proposed two methods (RSR and NRL) toigeovandidate routes
which are loop-free. They pre-calculate allowable acyphths for each OD pair. The
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optimization problem then selects the best routes frometbaadidates. In this chapter,
we borrow the idea of NRL (No Routing Loops MeasuRouting J63t allows us to
select paths other than original routifig, by introducing¥ .., :

Equation (2.23) states that only links includediin, <y, may be used for routing
flowsety. We use the heuristic algorithm in [63] to construct thedbgaFor each OD
pair, it iteratively adds new link t&,.,cv, in decreasing order of sampling rate, as long
as it does not introduce any loop.

2.3.3 Extensions

In this section, we extend our formulation and discuss s@ataad issues. First,
our formulation only introduces parameft&rto bound the number of monitors, without
formulating any detailed cost functions. In reality, theeggdion cost of monitors also
depend on their sampling rates. Lgf(andg;;) denote the unit monitor deployment
(and operation) cost at link, j), and B(and C') represents the maximum budget for
deployment (and operation) cost. We could add these twareonts as follows:

(1,9)eE
Z Z PijUigViy X gij X ¢y < C (2.25)

yeb (i,j)eE

We can also treat the sampling rate,;, as another decision variable if the
operator tends to better configure the operation cost of to@i The new problem
becomes complicated since both the optimization objec@vEe3) and the constraint
(2.25) become quadratic. In reality, it is difficult to com@and tune the settings for
different measurements. It is impractical to mathemadticadmpare these costs with
measurement gains. Instead, we formulate the fundametuatisn where the cost is
only related to the number of monitors, and each monitor Ixasl ftonfiguration. It is
equivalent to the case wheyg is identical to all of the monitors.

Second, our formulation is based on “uniform” measuremehhbat means,
each monitor will treat any traffic that traverse it equallyhe objective function then
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becomes linear. In reality, more sophisticated measurehoam intelligently adapt to
different flows [62, 75]. Because of this, the measuremaeintfgaction 5 might become
nonlinear, or, other parameters are needed to reflect theratite in how flows are
measured by the same monitor. We will explore different mesment methods (e.g.:
flow sampling, flexsample [62], etc) in our future work. Ourreunt formulation applies
to any measurement scheme where all packets are treatdtlydgudne same monitor.
For example, DPI (deep packet inspection) can be simplyedesgp,;; = 1.

Finally, our formulation can be easily extended to Placeroaty problem. Itis
defined to maximize with respect to the decision variahlg only, while flowsets are
routed along their original routes:

Maxim ze f3 (2.26)
B=3"3" LpyuyTier, (2.27)

yeod (i,j)€E
u;; € {0,1},V(i,5) € B (2.28)

2.4 MMPR Solutions

In this section, we first describe the optimal MMPR solutiondwmlving the
associated MILP problem in Section 2.4.1. Since the timmagexity of MILP is
generally NP-hard, we propose several heuristic solutioregpproximate the optimal
performance: “K-Best", “Successive Selection”, “Greedy “Quasi-Greedy". It is
easy to see that MMPR becomes a LP (Linear Programming) garolilthe monitor
placement strategy is given (i.e., with fixegd). Therefore, all of our heuristic solutions
tend to decide the monitor locations first. They all startrfran initial configuration in
which all M monitors are fully deployed. We refer to this initial configtion as the
“All-On" stage.

In particular, we first propose K-Best (Section 2.4.2), thesmlightweight
algorithm among our heuristic methods. It directly disaldlé — K monitors according
to their performance in the All-On case, based on some rgnkiatrics (e.g., traffic
amount, topology, link capacity, etc). We then propose isdvacreasingly complex
algorithms, “Successive Selection”, “Greedy”, and “Qi@seedy", that iteratively
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select monitors to disable, based on the planned monitaepiant strategy decided
from the previous iteration. This process is repeated ontil X' monitors are left. The
Successive Selection algorithm (Section 2.4.3) uses time $geuristic metrics as K-
Best to successively disable monitors at each iteratiore Greedy and Quasi-Greedy
(Section 2.4.4) algorithms are the most complex since tecsmonitors to disable in
each iteration by testing them.

All the proposed heuristics seek the least important mosifm accordance
to some metric) to disable and then maximize the measuregants. They all
start from the All-On stage and gradually exclude monitonsilukx™ are left. Our
approach is complementary to previous work on monitor preasd [20, 72] that starts
with zero monitors and gradually add new monitors until ¢hare X' of them. The
reason for our design is the following: whenever monitoes@rosen, the best routing
for the flowsets needs to be re-calculated, which may chaungstantially after new
monitors are introduced. Instead of testing possible pherd and flowset routing, it is
more straightforward to disable unimportant monitors frarstage with more enabled
monitors. We therefore propose algorithms that start frieenAll-On stage.

2.4.1 Optimal Solution

The optimal solution searches for the bg$tandu;; assignments for the MMPR
problem. The MMPR formulation is an MILP problem sineg is a binary decision
variable andy;; is a continuous decision variable. There is a variety ofrojztation
tools that we can leverage. In particular, the optimal sotutan be found using an
MILP solver (e.g., CPLEX [4]). We refer to this solution asgtmal”. For small to
medium size networks, the optimal MMPR solution can be iggddund. However,
given that MILP problems are in general NP-hard, the solaeesnot fast enough for
large networks.

2.4.2 K-Best Algorithm

The K-best algorithm disable® — K monitors in a single step, based on their
performance in the All-On stage. It starts from the All-Omfiguration and calculates



28

the maximum achievable and optimal traffic assignment;. It then ranks all monitors
in ascending order using one of the following metrics andatly disables the top/ —
K monitors:

e Least-utility (Zypiﬂf’jly). We disable the monitors with the least measurement
utilities. Since measurement utility is the same as oumoighition objective, we
expect this metric will achieve the best

e Least-traffic (Zy 7i;6y)- The intuition behind this metric is that the monitors with
the least amount of traffic passing through them are alsoctegeo have the least
contribution to the overall measurement utility.

e Least-importance Ey 7vi;1,). This metric only considers the flowset importance,
regardless of the sampling rate. It treats all flowset withdame traffic demand and
all monitors with the same sampling rate.

e Least-rate p;;). We disable monitors with the least sampling rates sincgahethe
least capable.

e Least-neighbor (b ;. cnl + D opjrer 1)- From a topology perspective, the
monitors that are the least connected are also likely toigeothe least amount
of freedom to MMPR for routing optimization.

The K-Best algorithm greatly saves computation time sinog/ awo LP
problems are involved. The first LP decides tffefor the All-On stage. Ranked in
ascending order using one of the above metrics, thelfop K monitors are disabled.
Then, with thesé/ — K monitors turned off, a second LP is solved to maxintiaesing
MeasuRouting [63]. However, since K-Best ranks the impuréeof each monitor based
on metrics evaluated from the initial All-On stage, the meament gain is predicted to
diverge from the optimal.

2.4.3 Successive Selection Algorithm

The Successive Selection algorithm also starts from th@liill-On configu-
ration with all M monitors and iteratively choosé% monitors to disable. Here, we use
the same five metrics introduced in Section 2.4.2. The seteof which D monitors to
disable is based on the ranking of remaining monifarsising one of the five metrics.
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Algorithm 1 Successive Selection Algorithm
1: while More thanK monitors are leftlo

2.  Maximizef by using all remaining monitors
find the corresponding;
for Each remaining monitd(i, j) € M do

end for

3
4
5: Calculate its performance metric for one of the five prinegplvith~;;
6
7. DisableD monitors with least performance-metric

8

- end while

In particular, it disable® monitors based on their ranking calculated from the previou
iteration (Line 7). This means we use the information from pinevious iteration (i.e.,
planned routes;;, etc.) to calculate the metric for each monitor in the curitamation
(Line 5).

Note that if the metric used is either the “least-rate” or tleast-neighbor"
metric, both Successive Selection and K-Best will have #messelection of monitors
and measurement gain since the metrics do not invgﬂve

2.4.4 Greedy Algorithm

Similar to Successive Selection, the Greedy algorithm dilsablesD monitors
in each iteration, untilX’ monitors are left. However, it is more complicated since
it tests all remaining monitord/ in each iteration. In order to test a monitor, it re-
computes the maximized after turning it off (Line 2-7), which essentially involves
using MeasuRouting [63] (Line 4). Based on the testing ofyevemaining monitor, it
disablesD of them that have least impact gn(Line 8).

Since the Greedy algorithm exhaustively tests individuanitors at each
iteration, its performance is hypothesized to be close &dptimal solution. It is
still suboptimal since it tests individual monitors ingddez every possible combination.
However, the algorithm remains computationally costlgcsi it testsO(M ) monitors
with O(M) LP problems in each iteration. For a moderate sized topolagyMILP
solver can sometimes work faster than this greedy apprdacteduce the computation
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Algorithm 2 Greedy Algorithm
1: while More thanK monitors are leftlo

2. for Each remaining monitafi, j) € M do
Disable the monitor
Maximize 5 based on remaining monitors
Storep
Enable the monitor

end for

© N @ g kK W

Find D monitors with largest € M when they are disabled
o N « N/{(i,j) € D}
10: end while

time, we propose a less heavy-weighted algorithm calleda®@Greedy", which is a
derivation of the Greedy algorithm. In Quasi-Greedy, iadtef testing every remaining
monitor, it only tests\ fraction candidates, whei® < A\ < 1. We useC to denote
candidate sets.

The candidateg’ are chosen based on the least-utility metric (Line 4), where
utility is defined aszy pijvily- It benchmarks how much utility a monitor measures
(Line 3). In each iteration, the Quasi-Greedy algorithncoeaputes all the correspond-
ing 3 by turning off one-by-one the remaining monitorgirto find the least important
D monitor to disable (Line 5-11). It then disables these cha®emonitors from
the remaining monitor sef)/ (Line 12). Besides least-utility, candidates can also be
identified by using other heuristic metrics defined for th8&st algorithm (Line 3).

2.4.5 Algorithm Examples

Suppose we havéd/ = 32, K = 24 andD = 4. The K-Best algorithm
directly disables8 = 32 — 24 monitors in a single step. On the other hand, the
Successive Selection algorithm involves two iterations. e&ch iteration,D = 4
monitors are selected for exclusion based on their perfocean the previous iteration,
in accordance to one of the metrics defined in Section 2.8 Greedy (Quasi-Greedy)
algorithm also disable® = 4 monitors in each iteration. However, it selects the least
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Algorithm 3 Quasi-Greedy AlgorithmX)
1: while More thanK monitors are leftlo

2.  Maximizef by using all remaining monitors
Calculate measurement utility of each monitarj) € M
ChooseC'=) fraction remaining monitofi, j) € M as candidates
for Each candidate monitar C' do

Disable the monitor

Maximize 5 based on remaining monitors

Storep

Enable the monitor

© o N 2 a k&~ w

10:  end for

11:  Find D monitorse C' with largests when they are disabled
12. M« M/{(i,j) € D}

13: end while

importantd monitors based on testing every (candidate) monitor onerdgyand solving
the corresponding LP problem in each iteration, which iy ¥@ne consuming. For the
Greedy algorithm, it involves solving2 and 28 LP problems in the first and second
iteration, respectively. For the Quasi-Greedy algorititrmvolves solving32 x A and
28 x A LP problems in the first and second iteration, respectively.

2.5 Evaluation

In this section, we evaluate the performance of MMPR. TheBrgent settings
are described in Section 2.5.1. Section 2.5.2 presentsrédvest and the metrics
of performance/cost to benchmark MMPR solutions. Sectidh32discusses our

evaluation results in detail.

2.5.1 Experiment Settings

We first define the settings for individual flows. We denoteséeof flows asF,
the traffic demand of flowf asb,, and the importance of sampling itgs We usev, < to
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represent the set of flows that belong to the flowsdior our evaluation, we specify the
measurement utility function of each flowset to be the follwZ ey = >, isb;-

The importance of a flow, i, can be viewed as points we earn if a byte of it is
sampled. The optimization objective of MMPR is to maximiizdt is easy to see that
can be expressed in another way:; . isb;T,-1(s), Which is exactly the total number
of points earned by MMPR. Here ! ( f) denotes the flowset to which floyvbelongs.

Most IP networks use link-state protocols such as OSPF [6@] 8-S [43] for
intra-domain routing. In such networks, every link is asgigja cost and traffic between
any two nodes is routed along minimum cost paths. In this pape use the popular
local search meta-heuristic in [34] to optimize link weiglhtith respect to our aggregate
traffic demands. The optimized link weights are then usecttve our original routing
{F}@fﬁeE. To avoid randomness in [34], we conduct experiments foistrae setting
five times, and only show the average results.

We have the greatest degree of freedom if each flow is assignadunique
flowset. However, this is not scalable from both a computasind an implementation
perspective. Therefore, we haydlowsets per OD pair. We also have> ¢ flows for
each OD pair. Each of the flows in F belonging to a particular OD pair is assigned to
one of the flowsets. There can be multiple ways of making sachsaignment. In this
paper, we randomly assign an equal number of flows to eacleqfftbwsets.

Table 2.1 lists the values for the MMPR parameters used fthelkxperiments
in Section 2.5.3. We generate sampling rates for each limgusiform distribution
between 0 and 0.1. For one realization of link sampling rate @affic demand,
we repeat the experiment$ times with different flow importancé; generated from
the Pareto distribution. We present the average measutegaén unless specified
otherwise. We use CPLEX [4] to find optimal solutions for tHe &and MILP problems.
For all the heuristic algorithms, we chooge = 4 and D = 8 in Abilene and
AS6461/GEANT network, respectively. The algorithms witkagger D disable more
monitors in each iteration. However, our evaluation ressiliggest that the performance
is actually insensitive to the value éf, and the results are omitted here.



Table 2.2 Default Experimental Parameters

Parameter

Description

Value/Distribution

q
€

iy

Flowsets per OD pair
TE violation threshold

Flow importance

10
0.1
Pareto f = 2)

2.5.2 Traces and Performance Metrics

We use these three topologies in our experiments:

33

e Abilene It is a public academic network in the U.S. with 11 nodesricdanected

by 28 OC192 (10 Gbps) links. The traces used were from Apr2@22004 [1].

e AS6461 It is a RocketFuel [69] topology with 19 nodes and 68 links. generate
artificial traces, we first generate aggregate traffic demé&mdeach OD pair using a
Gravity Model [55]. The traffic demand of flo, b, is then set equal to the traffic

demand of its corresponding OD pair divided bywhereL = 3000.

e GEANT It connects a variety of European research and educatiovores. Our

experiments are based on the December 2004 snapshot [3]h wbnsists of 23

nodes and 74 links ranging from 155 Mbps to 10 Gbps.

In our experiments, besides the measurement gaand the TE metric in

terms of MLU (maximum link utilization), we are also inteted in the following four

performance metrics:

e Computation Time In our experiment, we only collect computation time for the

LP or MILP solver. These parts usually take longer time thamral numerical

computation, and are therefore the dominant part for owtismis. Meanwhile, the

computation time for LP or MILP may vary for different solgerWe therefore do

not mix them with other numerical computation.

e F&T TE metric We use MLU as the TE metric in Equation (19). Besides MLU, we
are also interested in the F&T metric [34], which is definedvagghted summation

of link utilization of all the links. F&T characterizes theegjormance of entire

network.
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e APLI(Average Path Length Inflation) It is defined as the ratio of
Doy 2ipen Van®y and 3o > hep Ll ¢y APLI reflects how flows get
detoured. We expect important flows to have large path ioflasince they are
re-routed towards monitors.

e Monitor Selection Overlap: It is defined as a ratio. The numerator is the number
of monitors that are both selected by the heuristic and @dtisolution. The
denominator is the total number of selected monitors. A kagt pf the MMPR
problem is to select the best monitor locations. Thmetric reflects how heuristics
select monitors.

2.5.3 Evaluation Results

In this section, we first compare Optimal MMPR with two baselcases in
Section 2.5.3 and show that MMPR can have better measureyaentip to 1.17X and
2.6X when compared to Placement-only and MR-only, respagtifor Abilene, 1.71X
and 6X for AS6461, and 1.14X and 6.6X for GEANT. Section 2 &sents detailed
performance comparison of our proposed heuristic algosttbelonging to three
different categories: K-Best, Successive Selection ands@@reedy. Section 2.5.3
shows that all our proposed heuristic algorithms in eachgmat perform very close
to the Optimal MMPR solution and can reduce the computatioa Eactor of 23X in
Abilene, 246X in AS6461, and 233X in GEANT.

In all the figures below, we use “KB", “SS", and “QG" to denoteBiést,
Successive Selection and Quasi-Greedy, respectivelyexample, “KB/utility" means
K-Best algorithm with the least-utility ranking metric. @mpal MMPR is denoted as
“Optimal” for short. For all the figures on computation tintfee unit is second.

Optimal Solution vs. Default Cases

We first compare the optimal solution of MMPR with MR-only aRthcement-
only, using the same experimental settings (Section 2.Blafement-only was defined
and formulated in Section 2.2. MR-only, on the other hangf fiandomly select#
monitors, and then finds the optimal routing using MeasuRouting [63]. As shown
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in Figure 2.2. We see that optimal MMPR can have better measemt gain up to
1.17X(%) and 2.6X(f—5) compared to Placement-only and MR-only, respectively, fo
Abilene, 1.71X¢2-) and 6X(5) for AS6461, and 1.14X%(1) and 6.6X(2;) for GEANT.

We also present the performance of another baseline cale&)A, in which
every monitor is on and flowsets are routed by the defaultirlglItfi’j). As shown in
Figure 2.2, the optimab of MMPR is better than the “All-On" case, even with only a
small fraction of monitors turned on. Without strategicting, even deploying monitors
everywhere does not guarantee a comparable performanteagapared with MMPR
with a small number of monitors. As shown in these figures, NR\tRan achieve the
same measurement gain as the “All-On" case, but it can saw284.2), 56(=68-12),
and 54(=74-20) monitors in the case of Abilene, AS6461, aBd\IST, respectively.
Meanwhile, the computation time for optimal solution igfigiong (around 4 minutes)
for AS6461, and increases to around 6 minutes for the GEANWaor&.

Sensitivity Analysis of Heuristic Algorithms

Due to the potentially long computation times required tivesdor the optimal
MMPR, we propose several heuristic algorithms to reduce abputation time
complexity. They are categorized as “K-Best", “SuccesSe&ection”, “Greedy" and
“Quasi-Greedy". We omit performance results for Greedgesiih is computationally
too costly.

We first compare K-Best algorithms (using different medriwith the optimal
solution in Figure 2.3. As expected, using the least-ytititetric achieves the best
5 (very close to optimal) in all three topologies. It achie\/?;§6x(%) higher
measurement gain compared to using the least-importantrecyi®it only increases
1.1X(422) in computation time in AS6461.

As mentioned earlier, the computation time is only collddte the LP or MILP
solver. Results in Figure 2.4 show that using different nagkmetrics lead to very
similar computation times. From the perspective of an LResphn unsuitable monitor
placement means either more steps are needed to achievyaithalg (which is more
time consuming), or there is no way to achieve very lasgévhich means shorter
solving time). If we also consider other numerical compote (i.e: computation of
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each metric, ranking monitors based on metric values)stiatlity”, “least-traffic”,
and “least-importance” definitely take longer, since tHeuwdation of these three metrics
involve all flows and monitors. In contrast, “least-ratetidteast-neighbor" only need
topology information.

Figure 2.5 compares the MMPR performance of Successivet®elalgorithms
with different ranking metrics, and the same trend is obsgim Abilene, AS6461, and
GEANT networks. We omit “least-rate” and “least-neighbodses since they have
similar measurement gain as in the corresponding K-Bed. c8siccessive Selection
with the least-utility metric also achieves the best penfance. Similar to Figure 2.4,
the three metrics share very close computation time (ehgws in Figure 2.6). It
mostly depends on the number of iterations, which is ling#in vespect to the number
of monitors in the Successive Selection algorithm.

Finally, we compare the Quasi-Greedy algorithm (with ddfg \ values)
against the optimal solution in Figure 2.7. Since Quasie@yss still computationally
intensive, we only present results for AS6461. Note thateth@e no obvious
improvements on measurement gain for larg&s:. However, the computation time
increases substantially with larg&is. This implies that even with a smaller number
of candidates, the Quasi-Greedy algorithm can perform glarye to the optimal and
saves computation time.

Comparing K-Best, SS, and QG

In this section, we compare all three heuristic algorithm#hwhe optimal
MMPR solution. Results from the previous section show thedst-utility” is the most
effective metric for ranking the importance of monitors. Wierefore adopt “least-
utility” metric as a basis for comparing the K-Best, Sucoes$Selection, and Quasi-
Greedy methods.

For the Quasi-Greedy algorithm, we present results using 0.15. It tests
0.15M monitors in each iteration to choode monitors to disable. Figure 2.8 and
Figure 2.9 show the achieved measurement gaand computation time for all the
algorithms for all three topologies. In addition, we prege&T metric, APLI (Average
Path Length Inflation), angl (Monitor Selection Overlap) in Figure 2.10. Only results
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for AS6461 are shown, but the same trends are observed fathlee two topologies.
We make the following observations based on our results:

e The maximumg’s are very close for all algorithms. Both K-Best and Suciess
Selection algorithms are practical for large networksjrthemputation times are
much less than the optimal case. Their best metric is “le@lty". Although K-
Best is slightly worse than Successive Selection for Alaileéheir achievablg’s are
almost the same for a large network like GEANT.

e Quasi-Greedy approach is very costly. However, its measeine gains are not
noticeably better than the other heuristics. Thereforeetis no need to iteratively
test monitors one-by-one to decide which ones to disablecalgust simply disable
monitors based on their performance metrics in the previeustion.

e As shown in Figure 2.8, K-Best achieves almost the same measmt gain as
MMPR optimal, but reduces computation times by a factor O((?.%%), 246X(% ,
and 233X%) for Abilene, AS6461, and GEANT, respectively, while Sussige
Selection reduces computation times by a factor of JBQ%()( 64X(3—§°), and
66X(%) for Abilene, AS6461, and GEANT, respectively. Quasi-@healso saves
computation times by a factor of 3%@) for AS6461. In practice, K-Best is the best
choice since it greatly reduces computation time with mesament gains that are
very close to the optimal.

e Values for F&T metric and APLI both increase with larger nienbf monitors. With

more monitors, MMPR will put more weight on improving measuent gains, at
a cost to the traffic engineering and packet forwarding perémce. For example,
because the same thresheld 0.1 is used to bound TE violation in Equation (2.19),
all algorithms finally achieve the same MLU in every casefjpssare omitted here).
However, both F&T metric and APLI increase with more morstoFor example,
the 20% increase in APLI implies longer end-to-end forwagdilelay, which may
be acceptable for non-real-time traffic. To meet more séim@oS requirements,
they can be introduced as constraints in the MMPR formutatio

e The optimal solution does not necessarily achieve the b&$tdr APLI results,
since the optimal solution only optimizes for measuremeaxihg with bounded
violation of MLU. Some of the heuristics work better in preseg the overall
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network performance.

e 1 (Monitor Selection Overlap) shown in Figure 2.10 for AS648dvides insights
into why the performance of different algorithms are so elts the optimal. All
the heuristic algorithms select almost the same set of molaitations (e.g., 92%-
100%) as the optimal solution, with the ratio approaching as the number of
available monitors increases. The same trend is observekbitene and GEANT
topologies (results not shown here).

2.6 Related Work

Previous work mostly studied traffic measurement on a singlaitor. They
either infer traffic characteristics from sampled data 2129, 37, 54] or use measure-
ment schemes other than sampling for special traffic sulbHptpns [30, 50, 52,53, 62,
75].

Recently, researchers have begun investigating netwat&-waffic measure-
ment problems. Existing approaches [15, 20, 72] generadfind and solve some
monitor placement problem for fixed traffic characterisdesl monitoring objectives.
[20] defines utility functions for the sampled traffic. Theoplem is to maximize
the overall utility with bounded measurement operatioplofgment cost. It models
variations of this problem, proves their complexities, anoposes heuristic algorithms.
[15] improves upon [20] by performing a more rigorous analy® indicate the
convergence of any heuristic solution. Most recently, [pB)poses Successive c-
Optimal design to optimize the deployment and sampling ohtlarge IP networks.
However, their measurement goal is traffic matrix estinmatitn contrast, MMPR is
not restricted to any special measurement goal. None of #rerauitable for changing
traffic conditions or monitoring objectives.

Our work builds upon the recently proposed MeasuRoutingagigm [63],
which proposes to assist traffic monitoring by intelliggntiouting traffic sub-
populations over the corresponding monitors. It assumesl fand random monitor
placement, and routes flowsets based on their different une@ent importance. It
maximizes the overall measurement gairunder the constraint that is preserved



48

at decent levels. With the freedom of intelligent routingws can better utilize the
existing monitor infrastructure. Our work extends thisriework by carefully choosing
monitor locations. Our formulation also builds upon CSar6f][like methods, to

ensure non-overlapping measurement across monitorss@@édistinct hash filters on
each monitor such that they capture different traffic supegetions.

2.7 Discussion and Conclusions

In this chapter, we presented MMPR, a theoretical framewbdt jointly
optimizes monitor placement and dynamic routing strategyathieve maximum
measurement utility, with limited monitoring resourcese Wrmulated optimal MMPR
as an MILP problem and proposed four heuristic algorithm®tluce the computation
complexity: “K-Best", “Successive Selection”, “Greedytica“Quasi-Greedy". We
performed detailed comparative study of these algorithmshoee topologies, using
both real traces and synthetic data. Our results suggeashthaimplest algorithm, “K-
Best", is actually the best choice in practice. It achievesasnrement gains that are
quite close to the optimal solutions, but it reduces the adatpn time by a factor of
246X in the best case in our experiments.

The theoretical study of MMPR framework can be extended tgoducing
other constraints or variations. For instance, as discussglier, measurement
deployment/operation cost can be formulated in more coméoems. Meanwhile, how
to decide the proper flow utility function and measuremenedctive function remain
open problems across different measurement applicatibosthermore, it would be
interesting to treat sampling rate as another degree addrad15, 20], to let monitors
dynamically adjust their monitoring capability. All thesesues will be explored in
future work.

MMPR, as well as MeasuRouting, require the prior knowleddetraffic
importance in order to route flowsets differently. Such infation need not be accurate
in practice. Real measurements usually conduct hypothesigrocedures [71, 75].
They first obtain some global knowledge of the traffic, andmadoto the suspected
traffic sub-population for more detailed analysis. Consideeasuring flow size
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distribution for small/medium flows as our target, MMPR/MeRouting can depend
on external modules to first estimate large flow identitiedMRR/MeasuRouting then
directs the large flows away from measurement boxes, whieldavised with many
small-sized counters such that small/medium flows can berbetaintained. In this
example, there is no need to accurately measure flow sizhs first step.

There are also many implementation issues of MMPR that reebd addressed.
One important issue is to determine which exact routingquais are used. A routing
protocol that strictly routes traffic between an OD pair glamly the shortest paths
may provide less opportunities to ‘re-route’ important fi@ts through monitors. A
centralized routing controller, e.g. [59], is able to detows away from the shortest
path. Meanwhile, MMPR requires that the traffic be dynantyaaluted/rerouted. Such
dynamic forwarding mechanism can be implemented usingrarogable routers [13,
57,59]. Besides this, two other dynamics issues are alsortiapt: how to estimate
flow importance dynamically and how configure routing tabigries dynamically.
Recent work in [41] summarizes these challenges for Meastiip and proposes
corresponding solutions for one measurement applicagjlmal iceberg detection and
capture. The solutions are also applicable to MMPR, whiglibwpon MeasuRouting.
MMPR extends MeasuRouting by introducing the opportundgytirn on and off
monitors. In reality, operators should avoid frequentlyitshing monitor status. We
plan to implement MMPR in OpenFlow [59] or other programneatduting platforms
in future work.

Chapter 2, in full, is a reprint of the material as it appeardE=5EE Transactions
on Network and Service Management (TNSM) 2011, Guanyao glu&hia-Wei
Chang, Chen-Nee Chuah and Bill Lin, “Measurement-aware iddolacement and
Routing: A Joint Optimization Approach for Network-Wide &urements”. The
dissertation author was the primary investigator and sg¢teoithor of the paper.



Chapter 3

LEISURE: A Framework for
Load-Balanced Network-Wide Traffic

Measurement

3.1 Introduction

Accurate traffic measurement is essential to a variety oot management
tasks, including traffic engineering (TE), capacity plangi accounting, anomaly
detection, and security forensics. Many existing studasi$ on improving traffic
measurement techniques at a single monitor, including tagapampling [61], data
streaming [47], and heavy-hitter detection mechanismg [BBese solutions typically
examine packet headers to determine if any statistics reelee tollected. While these
aggregate traffic volume statistics are sufficient for TEppses, there is an increasing
need for fine-grained flow level measurements to performratedraffic classifications
for security purposes. For example, deep packet inspe(@ibh) allows post-mortem
analysis of network events and helps understand the paylogzkrties of transiting
Internet traffic. Another solution, Network DVR [17], perfos selective flow-based
trace collection by matching packets against applicasipeeific signatures.

However, doing fine-grained flow level measurements (er@lyaing payload)
is often an expensive process that requires dedicated heed{®.g., TCAMSs [74]),

50
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specialized algorithms, (e.g., Bloom Filters [25]), or varage capacity. Given the
fast-changing Internet traffic landscape and large tratflame, a single monitor is not
capable of accomplishing the measurement tasks from alicagipns of interest due
to its resource constraint. This calls for coordinated mesasent between multiple
distributed monitors. Moreover, network-wide traffic me@sment at multiple monitors
is also key to uncovering global network behavior sincefitaheasured at a single
monitor only provides partial views and may not be sufficemaccurate. For example,
aglobal iceberg40] may have high aggregate volume across many differemitors,
but may not be detectable at any single monitor. Discovetimg) type of event is
important for a number of applications (e.g. detecting DDaifhcks, discovering
worms, as well as ensuring SLA compliance).

To perform effective network-wide traffic measurement asronultiple dis-
tributed monitors, a centralized framework that coorddsaneasurement responsibili-
ties across different monitors is needed. In today’s netynaeployed monitors measure
traffic completely independently to each other, leadingttundant flow measurements
and inefficient use of routers’ measurement resources. rSakal. [66] proposed
CSAMP (Coordinated Sampling), a centralized hash-basekbpaelection system as a
router-level primitive, to allow distributed monitors toeasure disjoint sets of traffic
without requiring explicit communications, thus elimimaf redundant and possibly
ambiguous measurements across the network. CSAMP uses$iiaizagion framework
to specify the set of flows that each monitor is required tom@ty considering a hybrid
measurement objective that maximizes the total flow-c@egubject to ensuring that
the optimal minimum fractional coverage of the task can beiesed. However,
both traffic characteristics and measurement tasks camugally change over time,
coupled with ever-increasing link rates (high traffic vokinand out of consideration
to distribute multiple measurement tasks jointly, renagmpreviously-placed monitors
easily overwhelmed if the measurement tasks are not jusstydoad-balanced across
them, thus leading to entire coordinated measurementsdasind wastage of routers’
measurement resources. In addition, existing framewaks,(CSAMP) are agnostic
to differentiation in the importance of traffic sub-popidat or the cost of individual
measurement tasks.
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We present a new centralized optimization framework cdlEtSURE(L oad-
Equal zed me&UREmMent) to address the network measurement load-balancatyy pr
lem on various realistic scenarios while ensuring that thgimum traffic measurement
utility of the network is achieved. In contrast to CSAMP, ISEIRE distributes traffic
measurement tasks evenly across coordinated monitorecsuioj ensuring that the
required fractional coverage of those tasks (e.g., the maxi traffic measurement
gain from MeasuRouting [63], MMPR [39]) can be achieved. dkds a) routing
matrix, b) the topology and monitoring infrastructure dgphent and c) measurement
requirements of tasks as inputs, and decides which avaitabhitors should participate
in each specific measurement task and how much they need wuree@ optimize
the load-balancing objectives. Ideally tload-balancing objectivés to have identical
workload for all monitors where workload denotes the noineal traffic amount that
each monitor measures. In this work, tbad-balancing objectives mainly defined as
two terms: 1) minimizing the variance of workloads acro$swalnitors or 2) minimizing
the maximum workload among them. We summarize our contabstas follows:

e We present LEISURE and formulate the optimization probldarsnetwork-
wide traffic measurements by considering different loald@ng objectives
without compromising on the overall maximum traffic measueat gain of the
network. The optimal solutions are translated into theoiligjsets of required-
measured flows that each monitor is assigned to measure.sd/pralpose simple
heuristic solutions to compare with and extend LEISURE twmiporate practical
scenarios (constraints), i.e., (a) with limited measurggpurces at monitors, (b)
with limited number of deployed monitors, (c) with multipleuting paths (e.g.,
ECMP) for each origin-destination (OD)-pair traffic.

e As proof of concept, we perform detailed simulation stuthi@sed on Abilene [16]
and GEANT [73] network topologies and traces. Our resulgwsithat the
significant load-balancing improvement (e.g., 4.75X seratiaximum workload
and 70X smaller variance in workloads) is achieved by usiijSURE to
optimally distribute the measurement tasks across alldinated monitors when
compared with the naive uniform assignments.
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e We also present detailed performance comparison of ourogemp heuristic
algorithms belonging to two categories: LB-Greedy and L& ssive Selection
in flexible monitor deployment scenario. We show that oumpps®d heuristic
solutions can achieve load-balancing performance thatgare close to the
optimal solutions, while reducing the computation timesalfactor up to 22.5X
in Abilene and 800X in GEANT.

e We extend LEISURE and simulation studies to perform optatans and
sensitivity analysis with respect to multiple measuremiasks that exhibit
different importance and incur different costs. We show LEESURE is flexible
enough to assign the correct set of measurement tasks fatiocated monitors to
optimize measurement utility given limited measuring rgses.

This chapter is structured as follows. Section 3.2 outlinglated work.
Section 3.3 motivates our load-balancing problem by shgwiow measurement
tasks can be distributed to several coordinated monitargywdiversity of intuitions.
We present detailed optimization formulations, soluticarsd implementations in
Section 3.4, followed by the discussion of extensions intiBec3.5. Section 3.6
describes our simulation setup and evaluation results,Saution 3.7 concludes this
chapter.

3.2 Related Work

Traffic measurement might involve single point or multiplemtors. Earlier
work on traffic measurement has focused on improving sipgiet measurement
techniques, such as sampling approaches [22, 37], estimaitheavy-hitters [30], and
methods to channel monitoring resources on traffic subdatipas [62, 75]. Recently,
researchers are interested in investigating network-waféc measurement problems.
In particular, they have demonstrated the benefits of a mktwade approach for traffic
engineering [76] and network diagnosis [48].

Network-wide traffic measurement presents more challendgrevious work
on network-wide measurement mostly studied the problemlaimg monitors at
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proper locations to cover all measurement task (routingg)atsing as few monitors as
possible [20,67,72]. Suh et al. [72] first defined utility &tions for the sampled traffic
and maximized the overall utility with bounded measurenmperation/deployment
cost. They proposed a two phase approach where they firdstfiddrthe links that
should be monitored and then run a optimization algorithreebthe sampling rates.
Cantieni et al. in [15] argue that most ISPs already deployers which are equipped
with monitoring capabilities (e.g., Netflow [7], Openflowdp and these monitoring
tools can give greater visibility on the network-wide traffiNetwork operators hence
can decide whether to turn on these capabilities, and therpatentially hundreds of
monitoring points to choose from to achieve network-widesuements. Based on this
assumption, they reformulate the placement problem taddeshich monitors should
be activated and what sampling rate should be adjusted teva&ca given measurement
task with high accuracy and low resource consumption. Ifopers more rigorous
analysis on the convergence of heuristic solutions.

Upon this assumption, our design of LEISURE as a centraliegd/ork-wide
measurement framework is also encouraged by recent trantstwork management.
[10, 14] suggest that a centralized network managementoapprcan significantly
reduce management complexity and operating costs. [66ycdses that a centralized
system that coordinates monitoring responsibilities ssmultiple routers can signifi-
cantly increase the flow monitoring capabilities of a netwdrhe global measurement
coverage can therefore be improved. In contrast, LEISURHrass the measurement
task can be fulfilled by a given set of numerous monitoringhfsiand its goal is to
optimize the load-balancing objectives by determiningahitavailable monitors should
participate in each specific measurement task and how mhrtbed to measure
instead of solving only coverage optimization problem.cAt®ne of the previous work
ever considered possible large measurement traffic, neilti@asurement tasks with
different costs and differentiation in the importance affic sub-populations, let alone
load balancing among distributed monitors.
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Figure 3.1 Different load-balancing approaches for our toy examplach includes

three OD-pair traffic as our measurement task (i.e-»8F, LA — Seattle, and

Chicage—~Atlanta, each with 120 units of traffic).
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3.3 Motivating Example

We first consider the toy example with traffic demands frone¢h©D-pairs:
SF—NY, LA —Seattle, and ChicageAtlanta, each with 120 units of traffic (IP flows)
in Figure 3.1. Suppose the measurement task imposed by tiverkeoperator is to
measure all the traffic from these three OD-pairs, one ngupeceach is to simply always
measure the traffic for each OD-pair at the ingress routen@srsin Figure 3.1(b). The
monitors then only need to be placed in SF, LA, and Chicagh mi¢asurement traffic
as 120 units. Similar to this approach, the traffic for each-2d can be measured
at the egress router as Figure 3.1(c) shown. The monitasadsieed to be placed in
NY, Seattle, and Atlanta with the same measurement traffoth Bf these approaches
only need 3 monitors to accomplish the assigned measureasnbut with 120 unit
measurement traffic.

On the other hand, assume all of these routers are equippleadnenitors that
are capable of performing the measurement task, our goalreduce their maximum
measurement traffic by determiningfraction of the required measurement traffic to
each of these monitors. One simple strategy isindormly distribute the required
measurement traffic of each OD-pair to the monitors alon@iiting path as depicted in
Figure 3.1(d). For example, the 120 units of traffic foSRY is measured uniformly
across monitors placed in SF, Denver, Kansas City, Indigiisaand NY. Each of
them takes the measurement responsibility as 24 units.|&lyithe monitors in LA,
Denver, Seattle and Chicago, Indianapolis, Atlanta takenteasurement responsibility
as 40 units for LA»Seattle, and ChicageAtlanta traffic respectively. The maximum
measurement traffic therefore is most likely be the routén thie largest number of OD-
pairs passing through it (e.g., 64 units of measuremeriidiafDenver/Indianapolis).

The other intuitive method distributes the required meament traffic of
each OD-pair to the monitors inverse-proportion-to théfitrgpassing through them
as shown in Figure 3.1(e). For example, the traffic passimgutdh SF, Denver,
Kansas City, Indianapolis and NY is 120, 240, 120, 240 andr&2pectively. Based
on its calculation, SF, Kansas City and NY should measure r8t wf traffic for

SF—NY (120,1+240,1+}§8j+240,1+120,1 x 120) while Denver and Indianapolis is 15

units. Similarly, the monitors in LA, Seattle, Chicago, #&ita and Denver, Indianapolis
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should take the measurement responsibility as 48, 24 writhé traffic LA—Seattle,
and Chicage~Atlanta respectively.

Although these two methods achieve significant reductioh& maximum
measurement traffic compared to the naive approaches (€08-64,120-48), it
actually can be further reduced to 40 units as shown in Figur) by using LEISURE
to solve the global load-balancing optimization problem.tHis optimal solution, the
SF—NY traffic is measured uniformly by onlthree monitors (SF, Kansas City, and
NY) instead of five, each with 40 units of traffic while Denveardalndianapolis are
notinvolved in the measurement of the SINY traffic. This in turn allows the equal
splitting of the LA—Seattle traffic and the ChicageAtlanta traffic across all three
routers in each of its respective path, which results in ahitors having the same
perfectly load-balanced measurement traffic as 40 units.

It is important to see that the routing path for each OD-palffit must overlap,
such that the shared monitors can be best utilized by LEISWRIptimally minimize
their maximum measurement traffic. If the monitors for meagueach OD-pair traffic
are disjoint, there is no opportunity for LEISURE to glolyatloordinate the overall
measurement task since it can only balance the monitors goh ©D-pair traffic
separately. Therefore the performance of LEISURE in thie @egrades as the simple
uniform assignments. Next, we are in general interestedntirfg globally optimal
load-balancing solutions by using LEISURE under differeetwork conditions (e.g.,
topology, traffic demand, routing matrix, etc), measurenuodjectives (e.g., minimize
maximum workload, maximize measurement utility, etc), esgburce constraints (e.g.,
subset of routers are capable of monitoring, some monitaors lower capacities, etc).

3.4 Leisure framework

We now present a load-balanced optimization framework teecmetwork-
wide traffic monitoring objectives while respecting routesource constraints. ISPs
typically specify their network-wide measurement taskamts of OD-pairs. To cover
these measurement assignments, LEISURE needs both the dexhand and routing
information, which are readily available to network operatin [76]. In general,
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LEISURE is a centralized architecture to allocate disjegts of required-measurement
flows in OD-pairs for each router by given global network-gvidformation: a) network
topology, monitoring infrastructure deployment, b) traifiemand, routing matrix and
c) measurement requirements and the associated cost formesasurement tasK.he
problem formulation builds up from the simplest case in whice assume: 1) the
traffic matrix and routing information for the network aregn exactly and they change
infrequently; 2) all the routers are deployed with monitamnsl capable of measurement;
3) flows of each OD-pair follow a single router-level path bEF; and 4) there is only
one measurement task for every monitor. These constraiatgradually relaxed in
Section 3.5.

3.4.1 Basic Model

Let G(V,E) represent our network topology, whe¥é is the set of routers
(monitors) andE is the set of directed links. Each routér (: = 1... M) has two
factors to limit its measurement ability: memory and bardtivi We abstract them into
asingle resource constraifif, (i = 1... M), the number of flows routér; can measure
in a given measurement interval.

An OD-pair, OD,, represents a set of flows between the same pair of
ingress/egress routers for which an aggregated routingemiant is given. The set of
all [V| x |V — 1| OD-pairs is given byo: OD,,z € ©. &, characterizes the traffic
demand (IP flows) of the OD-paivD,., = € © in a given measurement interval (e.g., 5
minutes). P, represents the given routing strategy (router-level plath¢very OD-pair
OD,,x € O.

a, denotes the desired coverage fraction of IP flows)dd, that is required
to measure, which is imposed by the network operator. Toerehe total required
measurement traffic (number of flows}, introduced to all routers is simply a

summation of traffic demand per OD-pair timgsasf = > _o ®. X a,.

IS
Let d7 denote the fraction of traffic demand (IP flows) @D, that routerV;

samples/measures (i.g/;=measuedlowsi0.) while [,; denotes the total traffic (number

of IP flows) that route#; measures for all OD-pair§) D,., x € © normalized by3. The



59

Table 3.1 Notations

Notation Description
OD, represent a set of flows between the same pair of ingressgegraters
the set of al|V'| x |V — 1| OD-pairs:OD,,z € ©
characterizes the traffic demand (IP flows) of OD-gaip,, x € ©
represents the given routing strategy for OD-gaip,, x € ©
the fraction of®, (IP flows) of O D, that is required to measure
the fraction of®,, (IP flows) of O D, that router/; measures
the total required measurement traffic (number of IP flows)
the total traffic (number of IP flows) th& measured normalized by
load-balancing objective

|| w| &8 | L o

summation ofZ; for all routersV; (: = 1... M) then equals 1. We have:

€O
1

Li = - Y dix® Vi (3.2)
5 z:V,€EP;

S (3.3)

Our decision variable ig?. The first constraint ofi? is that the value ofi? is
bounded between 0 and 1 as Equation (3.4). The second dahsttaat the summation
of d} along the pattP; for each OD-paiOD,, z € © is a,, as Equation (3.5). If router
V; is not in the routing patt®, of OD-pairOD,,z € © (V; ¢ P,), df is inherently0.
The third constraint is that the measured fractionfdbr each monitol; should not
exceed its measurement ability (resource constraiptas Equation (3.6). Notations
are also summarized in Table I.

0<d® <1 Va,i (3.4)
& =a, VreO (3.5)
©:V;EP,

Y dixe, <C, Vi (3.6)

z:V,eEP,
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Table 3.2 d7 for each approach with the toy example shown in Figure 3.1

dy | dy | di | di | db | df | di | di | ds | di| dg
LB(ingress) 1,0, 0]0]0|]O0O}]O0O}1|1]|]0]0O
LB(egress) ojojo,0}141,0|]0]0|0]1
LB(uniform) | 1/5|1/5|1/5|1/5|1/5|1/3|1/3|1/3|1/3|1/3|1/3
LB(weighted)| 1/4 | 1/8 | 1/4| 1/8 | 1/4 | 2/5| 1/5| 2/5| 2/5| 1/5 | 2/5
LB(optimal) | 1/3| 0 [1/3| O |1/3|1/3|1/3|1/3|1/3|1/3|1/3

MAX(L;) | VAR(L;) | # of monitors| Decision
LB(ingress) 120/360 0.025 3 local
LB(egress) 120/360 0.025 3 local
LB(uniform) 64/360 0.00167 9 local
LB(weighted)| 48/360 | 0.000484 9 global
LB(optimal) 40/360 0 9 global

3.4.2 Problem Formulation

We define our load-balancing objective in abstract farpmwhich can be any
term as long as it captures load-balancing performance {dentical workload for
all monitors). The overall optimization objective of LEIRE is to minimizea that
each router operates within its resource constraint byngbggameter.,, the required
fractional coverage per OD-pair imposed by the network ajper In this section,
we formulate and study three different optimization protdethat correspond to three
different load-balancing objective min-VAR min-MAXandmin-VAR-given-MAX

Minimize Variance Problem (min-VAR)

In this problem, we denote as the variance of.; across all participating
routers. The intuition is that with more even worklodd for all routers, the variance
is smaller (e.g., variance=0 stands for ideal load-baftanobjective wherd.; = ﬁ for

'We use “population variance" instead of “sample variansaa objective function since we already
know the number of monitons..
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all M routers). We have:

> (Li- L)
= VAR(L;)) = =2— 7
o =VAR(L) i (3.7)
1 ¥ 1
L:M;L::M& (3.8)
This optimization problem is formulated as:
minimizea=V AR(L;)
subject to
1 )
3 Yo drx, =L Vi (3.9)
z:Vi€Py
Y dl=a, Vre® (3.10)
©:V;€EPy
d drxe,<C, Vi (3.11)
z:Vi€P;y
0<d? <1 Va1 (3.12)

Minimize Maximum Problem (min-MAX)

In this problem, we denote as the maximum value df; across all routers:
a=MAX(L) i=1...M (3.13)

The intuition is that when LEISURE keeps minimizing the nmaxim value ofZ; for all
monitors by adjusting decision variablé®, other smaller; will increase, eventually
they will reach some equilibrium state that no more adjustsé& can do to lower the
MAX (L;) without increasing othef; above M AX(L;). The problem formulation
shares the same constraints as min-VAR problem, EquatiOn {3 (3.12), except that
the objective function is different: minimize = M AX(L;),i =1... M.

Minimize Variance with Max-Constraint Problem (min-VAR-g iven-MAX)

This problem involves two phases. In the first step, we foateuthemin-MAX
problem given in Section 3.4.2 to find the minimum achievab&imum valueL,,, .
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(Limaz= minimized M AX (L;),i = 1... M) for all routers to cover the total required-
measurement IP flowg,. Then we seek for any opportunity to further re-distribite t
measurement task (workload) evenly within this constraifiherefore in the second
step, we introduce additional constraints to thi@-VARproblem given in Section 3.4.2
to limit the L, for each route#¥; to be at most,,,,,... We then minimize the variance of
L; across all routers. Specifically, we only need to introdiesfollowing constraint to

themin-VARproblem:

1

Li:
B

> A x Dy < L Vi (3.14)
z:V,eEP,
Therefore thanin-VAR-given-MAXroblem actually combines thain-VARand min-
MAX problems.

3.4.3 Optimal/Heuristic Solutions

We seek for the optimal? assignments for the above three problems. There is a
variety of optimization tools that we can leverage. Spealificthe optimal solutions can
be found by using a Quadratic Programming (QP) formulatiwntfemin-VARproblem
and a Linear Programming (LP) formulation for tiien-MAXproblem. The combined
problem,min-VAR-given-MAXcan be solved in a two-phase manner by using LP first
and QP follows. We refer these three optimal solutions ofSIHRE as LB(min-VAR),
LB(min-MAX), and LB(min-VAR-given-MAX), respectively.

Besides the optimal solutions, we introduce one simpleisgzimethod called
LB(weighted) under the assumption that routers can alwalfsl fissigned measured
tasks (e.g., no resource constraints for all routers in &gug3.6)). LB(weighted)
calculatesd? in inverse-proportion to the total required-measuremeaftic amount
(IP flows) passing through routdr;. The rationale behind it is that routers with
larger required-measurement IP flows passing through dhimubssigned with less IP
flows to measure in order to achieve load-balancing objecti\et 5; denote the total
required measurement traffic passing through routewhich can be calculated using
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Equation (3.15). The? assignment for LB(weighted) is formulated as:

Bi= > ®-a VieV (3.15)
z:V;EP;
1
4 = ﬁil X Vi (3.16)
iViEP, Bi

Although LB(weighted) does not necessarily lead to thematisolution, its compu-
tation time is very fast comapred to the time required tos@\P or LP optimization
problems for LB(min-VAR), LB(min-MAX), and LB(min-VAR-gren-MAX). In Sec-
tion 3.6, we compare their load-balacning performances aith the following three

simple naive strategies:

1. LB(ingress): the required measurement trafbic; a,, for each OD-paiOD,, x €
O, is only measured at ingress routers.

2. LB(egress): the required measurement tradfic; a, for each OD-paiOD,, x €
0, is only measured only at egress routers.

3. LB(uniform): the required measurement traffic, a, for each OD-paiO D,z €
O, is measured evenly across the routers on its routing Bath

Table 3.2 summarizes the correspondiffgfor each approach with the toy
example presented in Figure 3.1. In this example, LB(mirRYALB(min-MAX),
and LB(min-VAR-given-MAX) all have the same optimal loadtancing performance
(i.e., MAX(L;) = % and VAR(L;) = 0), which we denote as LB(optimal). In
comparison, LB(ingress) and LB(egress) have poorest b@daicing performance but
with least number of deployed monitors. LB(uniform) oufpems them but needs
more monitors (e.g., 9 instead of 3 monitors in our toy exanplLB(weighted) and
LB(optimal) which consider global required measuremegifitr can have better load-
balancing performance compared to the local approachgs (&(ingress), LB(egress)
and LB(uniform)), where LB(optimal) has the optimal loaalmncing performance but

needs much more computation time.
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3.4.4 Implementation of LEISURE

The disjoint sets of required-measurement flows for eackerdn LEISURE
could be implemented by usiftash-based packet selection[66] as CSAMP used,
a router-level primitive suggested in Trajectory Sampljag]. Trajectory Sampling
assigns all routers in the network a common hash range ahdreater in the network
records the passage for all packets that fall in this comnamh hange for applications
such as fault diagnosis. In contrast, we use hash-basedtsmt&ction to assign disjoint
hash ranges across multiple routers to ensure the nonappéng measurement of traffic
among monitors as CSAMP. The implementation cost of hasképacket selection in
routers could be found in [66]. Note that both LEISURE and ®@BAuse the same
hash-based coordination between monitors to implemejttiniisd flow-measurement.
However, our disjoint sets of required-measurement flowsdch router are the optimal
result which distributes traffic measurement tasks eventpss coordinated routers
while in CSAMP, their disjoint flow sets are derived from theut of an optimization
framework which aims to maximize the flow-coverage objexgiv

3.5 Extensions

In this section, we extend previous formulations to covemeopractical
scenarios, including 1) only a subset of fixed routers aréoged with monitors and
capable of measurement; 2) these limited monitors are feexgbdeploy in any subset
of routers 3) traffic from each OD-pair follows multiple patte.g., ECMP: equal cost
multiple path); and 4) multiple measurement tasks withedéght measurement costs and
importance factors.

3.5.1 Measurement with Limited Monitors Scenario

In practice, not every router is equipped with monitor anpatde of measure-
ment. Suppose onlix out of theM routers are deployed with monitors and thus have
measurement capability. We assume each OD<alr, x € © has at least one router
on its routing pathP, which is capable of measurement to fulfill the measurement
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tasks imposed by the network operator. Our formulationuides two problems: 1)
measurement with fixed monitor deployment problem and 2)suneament with flexible
monitor deployment problem.

Fixed Monitor Deployment Problem

In the first case, we assume that théSenonitors have been deployed in routers
and fixed. Our goal is to distribute required measuremerkstés these limitedi’
routers. It can be simply solved by changing the routingxnéleas follows: we exclude
routerV; from P, if V; is not equipped with monitor and unable to measure (€8~
P, — {V;} for all OD-pairOD,, z € ©). Variance calculation should also be modified
accordingly since we now only havé monitors instead of\/. All constraints remain
the same except th&t, are replaced by’ in Equation (3.17)-(3.19).

P = P, — {V;},if V; is not deployed with monitor (3.17)
K
> (Li— L)
=1
VAR(L;) = e (3.18)
I 1

Flexible Monitor Deployment Problem

In the second case, the location@fmonitors have not been decided and they
are flexible to be deployed in any router. This problem inekidot only thelistribution
of measurement tasks, but also fflacemenf monitors. To formulate this problem,
we introduce additional decision variables wherew, = 1 if router V; is selected
to deploy a monitor, and; = 0 otherwise. The summation af; is therefore to be
K. We assume every monitor has identical limited measurewcegdbility (resource
constraint) ag”,,. The problem is formulated below with load-balancing obyecas
a = MAX(L;). Note that it is no longer an LP/QP problem singei € V' are Boolean
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variables.
minimize «
subject to
1
3 S A x Py x ;=L Vi (3.20)
z:V,eEP,
> di xu;=a, Vi € © (3.21)
i:V,EP,
> dfx Dy xu; < Cy Vi (3.22)
z:V,EP,
M
dui=K (3.23)
=1
0<d® <1 Yz, i (3.24)
u; €{0,1} Vi (3.25)

In this model,L; is the summation of the product &f,, d andu;. Therefore the
objective functionx is related to the product of two decision variablesandd?, and
the optimization problem falls into the MIQP (Mix Integer &iratic Programming)
category. In order to avoid quadratic programming, we cauficbducez;” to decouple
d?¥ x u; by using Equations (3.26) to (3.28). It is easy to see thaivatence. When
u; =0, zF = 0from (3.27); and when, = 1, 27 = d7 from (3.28).

Zzyj = %yj X Ujj (3.26)
v — 1< 2 <A (3.28)

Although we could reduce the MIQP problem to the MILP (Mixdger Linear
Programming) problem by introducing , the new MILP problem actually has doubled
number of decision variables. This is because the cartinailiv; < the cardinality
of d7 in practice. Fortunately, the decision variakle (for distributing measurement
tasks) is highly dependent on the decision variablgor monitor placement). I, = 0
(i.e., routerV; is not selected to deploy a monitor), routércannot participate in any
specific measurement task. It meatisthe fraction of®, (IP flows) for each OD-pair,
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OD,,z € © that routerV; measures should be zero (i.¢7, = 0). On the other hand
whenu; = 1 (i.e., routerV; is selected to deploy a monitor and capable of measurement),
d? could be any decimal bounded between 0 and 1. Therefore walicactly use

d? to substituted? x wu,; to avoid quadratic programming but with a new constraint,
0 < d? < u;. Itis easy to see their equivalence. The formulation novwobexs MILP

and keeps the original number of decision variables:

minimize «
subject to
1 .
3 Y dix®, =L Vi (3.29)
z:V,€P;
Y & =a, Ve € © (3.30)
©:V;EPy
d A x @, <Cp Vi (3.31)
z:V;EPy
M
> u=K (3.32)
i=1
0<d® <uy Vv, i (3.33)
u; €{0,1} Vi (3.34)

Optimal MILP/ Heuristic Solutions

The optimal solution searches for the bé&stindu; assignments for the hybrid
load-balancing and placement problem under the assumgitissing limited flexiblei
monitors instead of\/ to minimize the maximum measurement workload across them
(e.g., minimizeM AX (L;), i = 1...K). The simplified formulation is MILP problem
sinceu; is a binary decision variable anfj is a continuous decision variable. There is a
variety of optimization tools that we can leverage. In mautér, we use an MILP solver
(e.g., CPLEX [4]) to find the optimal solution. We refer todtsolution as “Optimal”.
For small to medium size networks, the optimal load-balagevith placement solution
can be readily found. However, given that the time-compyeai MILP problems are
in general NP-hard, the solvers are not fast enough for laeygorks.
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It is easy to see that the hybrid load-balancing and placepreblem becomes a
LP (Linear Programming) problem if the monitor placemerdtggy is given (i.e., with
fixed u;;). Therefore, all of our proposed heuristic solutions temdécide the monitor
locations first. In this section, we propose two heuristilugons to approximate the
optimal performance: “LB-Successive Selection” and “LBe&ly". Both of them
iteratively select monitors to disable, based on the difieplanned monitor placement
strategy decided from the previous iteration. They alltgtam an initial configuration
under the assumption that alf routers are fully deployed with monitors. We refer to
this initial configuration as the “All-On" stage. The monitdisable process is repeated
until only K out of M monitors are left.

Algorithm 4 LB-Successive Selection Algorithm
1: while More thank monitors are lefdo

2. Minimize « by using all remaining monitors

3:  find the corresponding’

4.  for Each remaining monitoyr; € M do

5 CalculateL; for each remaining monitor witt!
6: Calculate one of the three metrics with

7. end for

8 Find monitor with minimumZ;

9:  if only one monitor has minimur; then

10: Disable that monitor

11: else

12: Disable the monitor with minimunh; and least performance-metric
13:  endif

14: end while

LB-Successive Selectianit starts from the initial All-On configuration where
all M routers are assumed to be fully deployed with monitors, &rdtively chooses
one monitor to disable after optimization process (i.e.nimize M AX(L;)) until
only K out of M monitors are left. The selection of which monitor to disalse
based on their ranking of measurement workload (elg), We choose the one
having least measurement workload across all remainingitorene.g.V;=min(L;),



69

i=1...M), where)M stands for the set of remaining routers deployed with mosiito
The intuition is that the monitors with higher measuremenrtiloads after optimization
process (i.e., minimize MAX;),vi, the maximum workload across all monitors) take
more measurement responsibility for the traffic from some@2ds which have few
monitors deployed in their routing paths. Therefore, thosaitors can not be disabled,
otherwise their assigned measurement task can not be fugtistributed. If more
than two routers have the same minimum measurement workiazath iteration, LB-
Successive Selection calculates one of the following thretrics which are served as

tie-breaker and disables the one with least value:

e Least-traffic (3 .., .p ®.). The intuition is that the monitors with the least
amount of traffic passing through them have less freedom dd-bmlance the

measurement tasks for each OD-pair traffic.

e Least-LB(uniform) We use LB(uniform) heuristic mentioned in Section 3.4.3 to
find corresponding measurement workload across all rengimonitors to serve
as our second-stage tie-breaker.

e Least-LB(weighted) We use LB(weighted) heuristic to find corresponding
measurement workload across all remaining monitors teseswur second-stage

tie-breaker.

In particular, it disables monitor based on their rankintg@iated from the previous
iteration (Line 12). This means we use the information froma previous iteration (i.e.,
planned measurement fractidf) to calculate the metric for each monitor in the current
iteration (Line 5-6).

LB-Greedy Algorithm : similar to LB-Successive Selection, the LB-Greedy
algorithm also disables one monitor in each iteration, luiti monitors are left.
However, it is more time-consuming since it tests all renmgmmonitors one-by-one
in each iteration. To test the importance of each monitorGuBedy re-computes the
minimized « after turning off each monitor alternately (Line 2-7), wihiessentially
involves numerous optimization procedure (Line 4) mergtbim Section 3.4.3. Based
on the testing of every remaining monitor, it disables the thrat has least impact en
(Line 8).
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Since the LB-Greedy algorithm exhaustively tests indiaidononitor in each
iteration, its performance is expected to be close to thengbMILP solution. However
it is still suboptimal since LB-Greedy only tests individumaonitor instead of every
possible combination. Besides, the algorithm remains caatipnally costly, since it
testsO (M) monitors withO (M) LP problems in each iteration. For a moderate sized
topology, an MILP solver can sometimes work faster than tdsGreedy approach.
Details are shown in Section 3.6.3.

Algorithm 5 LB-Greedy Algorithm
1: while More thanK monitors are leftlo

2. for Each remaining monitdr; € M do
Disable the monitory;
Minimize o« based on remaining monitors

3

4

5: Storea
6 Enable the monitofy;

7. end for

8 Find monitor,V;, with smallestx € M when they are disabled
N « N /{Vi}

10: end while

©

3.5.2 Multi-Path Routing Scenario

All the sections above have assumed single-path routimg, (@SPF). In this
section, we extend our work to support “load-balancing” adasurement tasks in
the case of multi-path routing (e.g., ECMP). Since ECMP &wabouters to make
forwarding decisions on a per IP-flow basis rather than onrgpeket basis, packets
for a single flow will still follow one path.

Our formulation treats each of the different paths as ardistrirtual OD-pair
with different portions of the origin traffic demand. Supp@&ach OD-pai©D,,x € O
has/V, routing paths, denoted &%, (h = 1...N,) with total traffic demandb,. We
create virtual OD-pair® D,,, for each pathP,, (h =1...N,) of OD-pairOD,,x € ©
with traffic demandb,,, wherezgil d,, = &, V. We also leta,,, denote the given
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fraction of &, that is required to be measured for each virtual OD-pair,;, where
Zﬁ;l a.n = ag, V. d*" denotes the fraction ob,, that routerl; measures for each
virtual OD-pairOD,,,. The problem can be formulated below. In this formulatidt,
are the decision variabled.; anda,;, can in turn be calculated as functionsdsf. o
can still be defined according to different optimizatioriemia.

minimize «
subject to
N
SN B X agn = (3.35)
€O h=1
1 N
3 SN d x 0y = L Vi (3.36)
x:V;EPyp h=1
> A" =ag, Vh, x (3.37)
:V;€Pyp,
Ny
Yoy dtx e, <, Vi (3.38)
z:V;€Pyp h=1
0<di" <1 Vh,z,i (3.39)

3.5.3 Measurement with Multiple Tasks Scenario

Until now, we have assumed a single measurement task/eumwatith identical
unit cost at every router. In practice, traffic measuremeay mvolve multiple tasks
with different measurement cost factors (e.g., DPI is muohemnesource-intensive than
say counting). Itis important that we evenly distribute sw@a@ment tasks to monitors
in this setting. Meanwhile, in some fringe cases, differapasurements might compete
for limited resources. It is also important to study how tlkkepperate to achieve better
global measurement.

Therefore we have two optimization objectives: 1) minintlzemaximum value
of L; for all routers { = 1... M) from load-balancing perspective; 2) maximize the
aggregated measurement utility across all measuremesst ta$is joint optimization
problem involves two phases. In the first step, we usetileMAXproblem formulation
given in Section 3.4.2 to find the minimum achievable maxinuatue L, to fulfill



72

every requested measurement task for all routers by temlyorgnoring routers’
measurement capabilities (resource constraints). Indbersl step, we introducg to
reflect the resource constraints for all routers by limitimgir L; to not exceed; x L,
asl; < 0; X Ly, = 1...M where0 < 6, < 1. The more severe the resource
constraint is (i.e., with smallet'y;), the lower thed; will be while §; = 1 means no
resource constraint for routéf,. We then maximize the measurement utility for all
tasks under limited resource constraints and load-balgreonditions.

We assume there are in totalmeasurement tasks. Each task, denoted as
(t = 1...¢), is characterized by its measurement a0&t Let a,; denote the given
fraction of &, that is required to be measured for each measurement fask1...()
per OD-pairOD,,z € ©. We assume single path routing for every OD-paie ©
and all routers are capable of processing every measurd¢astniOur first optimization
problem is to evenly distribute the measurement tasks@asoss all routers where the
measurement capabilities (resource constraints) of atkre are temporarily ignored.
We choose the load-balancing objectivexasMAX( L;) and the problem is formulated
below.

minimizea =MAX( L;)

subject to
q
D e x Y an xC' =8 (3.40)
€O t=1
1 ¢
3 Yo B x> &' xC' =L Vi (3.41)
z:V,eP, t=1
Y dl'=ay Ve, t (3.42)
©:V,EP,
0<di* <1 Y, t,i (3.43)

After the optimal minimum achievable maximum workloag,,. is found for
every router (with no resource constraint) to cover all meament tasks (.=
minimized M AX(L;),i = 1...M), we next consider that routers have their own
resource constrairy,, which may make theif,; < L,,,, and fail partial measurement
tasks. Let; denote the fraction of ... to reflect the resource constradi{, for router
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Vi@ =1...M)ast, = min(L:aV;ﬂ,l) where(0 < 6; < 12 We introduce a new

constraint for all routers to bound théif by ; x L,,.. as"
L; < 0; X Loz Vi (3.44)

Under this constraint, we study how different measuremasikg are assigned
with proper portion of resources such that the overall mesmsant utility is maximized.
Let I denote the importance factor for each measurementttésk= 1...¢) andG
denote the ideal aggregated measurement utility weighgeff fior all measurement
tasks without considering resource constraints at routgrs= > o ®, x S
G, denotes the total measurement utility that roitegets for all measurement tasks
normalized byG, G; = £ 32 1. cp. @, x 3¢, d2* x I'. The optimization problem can
be formulated as follows, witti!* as the decision variables:

M
maximizez G;
i=1
subject to
q
D e x Y ay xC'=p (3.45)
€O t=1
1 ¢
5 Y B x> di'xC' =L Vi (3.46)
z:V,€EP; t=1
0; X Lyaz > L Vi (3.47)
> & < ay Vi, t (3.48)
i:V,EP,
0<di* <1 Y, t,i (3.49)

The value of normalized objective functiop, | G, is always in the range as
0 < M G, < 1. For the case whet,=1Vi, >V G, = 1, which means all the
required measurement tasks can be satisﬁje%e P d**=a,, Vz,t) and the aggregated
measurement utility is maximum since there is no resourcstcaints on all routers.

29,=1 implied that there is no resource constraint on routesince the traffic amount it measured is
less than its resource constraift: X 5 < Lye. X 8 < Cy;,.

3By substituting§;=min( vy 1) with Equation 3.41 into Equation 3.44, the traffic amount,

LomazB’
Yeviep, Po X Zle d** x C*, that router; measured is always less than its resource consti@inj.(
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However, with the resource constraints (lecreases), only a subset of measurement
tasks can be fulfilled, and the goal of the above formulatstoimaximize the global
measurement utility and maintain the load-balancing dooms simultaneously.

3.6 Performance Evaluation

We evaluated the performance of LEISURE with three optin@utgons,
LB(min-VAR), LB(min-MAX) and LB(min-VAR-given-MAX), for different load-
balancing objectives in various realistic scenarios on $@parate real, large point-
of-presence(PoP)-level backbone networks: Abilene [h@] @EANT [73]. We also
compare them with several simple naive approaches, naniindgress), LB(egress),
LB(uniform), and LB(weighted). Our starting point is to chrct a preliminary
evaluation on the basic model in Section 3.6.2 based on #ssenptions: (1) all routers
are equipped with monitors that are capable of performimgnieasurement task, (2)
traffic from each OD-pair has a single router-level path byr®%nd (3) there is only
one measurement task. We relax these assumptions in S8dsi@and Section 3.6.4
to show our load-balancing ability and computation time ptexity. Section 3.6.5
presents our load-balancing and measurement utility maiigresults for the scenario
of multiple measurement tasks with different cost and irtgoare factors.

3.6.1 Experimental Setup and Performance Metrics

We use two real datasets from the Abilene [16] and GEANT nektw/fy 3], both
of which have been studied and discussed in the researddtlite. Their data sets are
publicly available, including network topology, routingformation. Based on these
available data sets, we implemented a flow-based tracerdsimulation to conduct
our evaluations. For both networks, we use the real traffitiogs provided by a third
party [5]. The traffic matrix data sets for the Abilene netivare available at [2], and
the traffic matrix data sets of the GEANT network are avadail[6].

Abilene: A public academic network in the U.S. with 11 nodes intercmed
by OC192, 10 Gbits/s links. The traces we use were collectad April 22-26, 2004.
The routers in ATLA, CHIN, DENV, HSTN, IPLS, KSCY, LOSA, NYCMSNVA,
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STTL and WASH are denoted &%, R, - - - , Ry respectively.

GEANT: It connects a variety of European research and educatiavorie.
Our experiments were based on the December 2004 snapshiabbvat [3], which
consists of 23 nodes and 74 links varied from 155 Mbits/s t&b@s/s. The traces we
use were collected from April 11-15, 2004.

The traffic matrix we use consists of demands for every ODpiinin a certain
time interval (5 mins for Abilene and 15 mins for GEANT). Wenstruct OD-pairs by
considering all possible pairs of PoPs and calculate tiirtest-path routes. In brief,
these traffic matrices are derived from flow information ecléd at key locations of the
network, and is transformed into the demand rate for eaclp@bbased on the control
plane information.

In the following sections, we assume our target is to meaallrgaffic (i.e.,
a, = 1,Vx € ). Therefore the workload,; for routerR; (¢ = 1... M) is defined
as the traffic amount that routét; measured normalized by the total traffic demand.
Theoretically, the ideal load-balancing workloag for A/ monitors isﬁ However,
it might be unachievable due to routing limitations from TiEr@source constraints on
monitors. In our experiments, we are interested in the following thpeeformance
metrics:

¢ Maximum WorkloadWe use the maximum value of each monitor’'s measurement
workload in the entire network to serve as our load-balapperformance metric
mainly (e.g., MAX(L;),i=1 ... M).

e Variance of WorkloadThe other load-balancing performance metric used in this
paper is the variance of workloads across all monitors,(®AR(L;)).

e Computation Time In our experiment, we only collect computation time for
the LP or MILP solver since they usually take much longer ticoenpared to
normal numerical computation, and therefore dominate thelevcomputation
time of LEISURE. Meanwhile, the computation time for LP or I\ may
vary for different solvers. We therefore do not mix them wattmer numerical
computations.
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Table 3.3 Comparisons on Maximum value &f

Naive Approaches Heuristic Approaches
Network | ingress egressuniform weighted
Abilene | 19.16% 29.59% 21.67% 12.12%
GEANT | 28.79% 13.19% 13.73% 10.67%

Optimal Load-Balancing
Network | min-VAR min-MAX min-VAR given MAX
Abilene 10.11% 9.45% 9.45%
GEANT 6.15% 6.06% 6.06%

Table 3.4 Comparisons on Variance &f

Naive Approaches  Heuristic Approaches
Network | ingress egress uniform  weighted
Abilene | 0.004107 0.0073660.003158 0.000602
GEANT | 0.003978 0.0016260.001594 0.000662

Optimal Load-Balancing
Network | min-VAR min-MAX min-VAR given MAX
Abilene | 0.000105 0.000131 0.000105
GEANT | 0.000378 0.000495 0.000378

3.6.2 Basic Load-Balancing Comparison

In this section, we compare the load-balancing performafil approaches
based on two assumptions (ubiquitous monitors and single noaiting). Table 3.3
compares MAX(;) of all monitors for different approaches. For GEANT, outioyal

load-balancing solutions can reduce MAX) by a factor of 4.75X(2:%%) when

compared to the naive approach of LB(ingress) and 2.23@@%) when compared
to LB(uniform). Similar gains can be seen in the results foildne as well. Figure 3.2
and Figure 3.3 plot in more details the values of 11 monitors and 23 monitors for
different load-balancing approaches in Abilene and GEAM@works respectively.

Another relative performance measure is to see how closemtheimum

1

workloads are in comparison to the ideal load-balancing afs. = 27+ as given
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by Eq.(3.8). For Abilene and GEANT, the idealis 9.09%(=:) and 4.35%(3;),
respectively. However, the MAX() of LB(ingress) for Abilene and GEANT are
19.16% and 28.79%, respectively, which are 2.11X and 6.62xsa than the ideal
case. For simple heuristic approaches, they still have IMM§X(L;) values compared
to the ideal case: e.g., 21.67% (2.3X worse) for LB(uniformpAbilene and 10.67%
(2.4X worse) for LB(weighted) in GEANT. On the other handr thuree optimal load-
balancing solutions presented in Figure 3.4 and Table 3fdnoe very close to the
theoretical ideal case: 10.11%, 9.45%, and 9.45% for LB{WAR), LB(min-MAX),
and LB(min-VAR given MAX), respectively, as compared to ideal case of 9.09%
for Abilene. Similarly, our three optimal solutions are &4, 6.06%, and 6.06%,
respectively, as compared to the ideal case of 4.35% for GEAN

Table 3.4 compares VAR() across all monitors for different approaches.
For Abilene, our optimal load-balancing solutions can WAR(L;) by a factor

of 70X(=3:00%5%) when compared to the naive approach of LB(egress), and over

30X(=3:00158) when compared to LB(uniform). Similar improvements iniaace can

be seen for GEANT as well.

To better understand why our optimal solutions can achiewgenevenly
distributed measurement load, we use traffic from only five-@ids in Abilené to
show the detailed load assignment in Figure 3.4 (WAS-DNV,GNMST, DNV-IPL,
CHI-LOS and ATL-STT with 66.5 MB, 44.9 MB, 44.6 MB, 19.8 MB arid..7 MB,
respectively). In Figure 3.4(a), although LB(uniform)tdisutes each OD-pair traffic
to all monitors in the path uniformly (e.g., WAS-DNV with 6 mitors), the aggregated
workload for overall measurement task in each monitor Iswstbalanced (e.g..; for
all routersR; ( = 1...10) are distributed between 1% to 17%). LB(weighted) in
Figure 3.4(b) improves the load-balancing performancetduée global view it has
but still load-balanced poorly (e.gL; distributed between 4% to 14%). In contrast,
the optimal solutions can achieve much better load-batgnperformance (e.g.;
distributed between 5.5% to 10.5%) by excluding some masftom measuring certain
OD-pair traffic (e.g., R4 and R5 do not measure traffic for WAISY OD-pair in
Figure 3.4(d)).

4The notations of these OD-pairs and their routing infororatiould be found in [16], [2].
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3.6.3 Limited number of Monitors

In this section, we relax our first assumption to the case ¢nét a subset
of routers are deployed monitors and capable of measurem&ietfurther evaluate
LEISURE in the following two scenarios: 1) measurement Mited monitor deploy-
ment scenario and 2) measurement with flexible monitor gepémt scenario.

Fixed Monitor Deployment Scenario

In the first case, we assume there Are-= 7 out of M = 11 routers are deployed
with fixed monitors in Abilene. The routers which are excldde deployed monitors
areRy, Rs, R; andRg°. Therefore LEISURE can only distribute the measuremeht tas
to the remaining 7 monitors. We omit naive approaches andsfen heuristic (i.e.,
LB(weighted)) and optimal approaches in Figure 3.5. Comgavith ubiquitous case
in Figure 3.2(a), the ideal load-balancing workload is @ased from 9.09% to 14.29%.
For LB(min-VAR), LB(min-MAX) and LB(min-VAR given MAX), the MAX(L,) is

5The reason to choose those 4 excluded routers is to maihtafadt that at least one capable monitor
in each OD-pair’s route to fulfill the measurement tasks isgubby the network operator.
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Figure 3.6. Measurement load distribution for different approache&hiiene with

limited K flexible deployed monitor
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only increased from 9.67% to 17.61%. However, for heurespiproach, LB(weighted),
MAX( L;) increased from 12.12% to 23.33%. We observe that LEISURE thiese
three optimal solutions for different load-balancing albides only increased 7.94%
workload for MAX(L;), which are close to 5.2% for the theoretical ideal case aed a
much better than 11.21% for LB(weighted).

Flexible Monitor Deployment Scenario

In the second case, we assume there are limitedut of M = 11 routers
are deployed with flexible monitors in Abilene (e.gg=11, 10, 9, 8, 7 and 6).
Therefore LEISURE can only distribute the measurement tagkese/Xx” monitors.
Figure 3.6 plots the detailel, (hormalized measurement workload) values of monitors
for different load-balancing approaches in Abilene. Corapa the ideal load-balancing
case ofL = -, as given by Eq.(3.8) wher& is the limited number of deployed
monitors, our optimal MILP solution (e.g., LB(Optimal)) fierms almost the same
as the ideal case. As shown in Figure 3.6(a),Acrll, 10, 9, 8, 7 and 6 in Abilene,
the L,,0: (Lmaz=minimized MAX(L;), i = 1... M) of LB(Optimal) is 9.43%, 10.0%,
11.11%, 12.5%, 14.29% and 16.96%, respectively while tiealid is 9.09%(=%),
10.0%(=5), 11.11%(=;), 12.5%(=), 14.29%(=) and 16.67%(z).

Due to the potentially long computation time required toveoffor the
LB(Optimal), we propose several heuristic algorithms toduee the computation
time complexity. They are categorized as “Greedy" and “Sssive Selection”. We
first show that they all have nearly equivalent load-balaggerformancel,, .., as
LB(Optimal). In Figure 3.6(b), thé.,,.., for K=11, 10, 9, 8, 7 and 6 in LB-Greedy is
9.45%, 10.0%, 11.11%, 12.5%, 14.29% and 16.96% respectiveich is nearly the
same as 9.43%, 10.0%, 11.11%, 12.5%, 14.29% and 16.96% @ptBgal) although
their deployment of monitors might be different. The samaevbation could be
also found in LB-Successive Selection(traffic)/LB-Susbes Selection(uniform), and
LB-Successive Selection(weighted) (e.g., see FigurecB&{d 3.6(d)). We omit the
result of LB-Successive Selection(uniform) since it perfe close to LB-Successive
Selection(traffic).

Next we compare their computation time complexity with L{al). As
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shown in Figure 3.7(a), LB-Greedy reduces computationgibyea factor of 3.6)@%)
compared to LB(Optimal) withX' = 8 in Abilene but still achieves almost the
same load-balancing performance as LB(Optimal) while LB¢®ssive Selection could
further reduce computation times by a factor of 22%%@ without losing load-
balancing performance. As mentioned earlier, the comjmutaime is only collected
for the LP or MILP solver since they usually take much longretcompared to normal
numerical computations. The results show that using diffetie-breaker metrics
(e.g., least-traffic, uniform, weighted) in LB-Success8alection lead to very similar
computation times.

Since the LB-Greedy algorithm exhaustively tests everyiddal monitor in
each iteration and disables the least-impact one, its bad@Acing performance is
expected to be close to the optimal MILP solution. Howevetight not find the feasible
solution whenk is small since LB-Greedy only tests individual monitor gesd of every
possible combination. For example, LB-Greedy cannot findfeasible load-balancing
solution whenk'=13 or 12 in GEANT since it disables the un-replaceable nathin
the previous iterations as shown in Figure 3.7(b). The samelthck could be observed
in LB-Successive Selection.

Note that LB-Greedy algorithm remains computationallytiyosince it tests
O(M) monitors withO (M) LP problems in each iteration. In GEANT with'=23,
22,21, 20 and 19, the LB-Greedy approach even works slighthyer than the MILP
solver, LB(Optimal). However for moderate size of limitesmitors (e.g.,K=14 to
19 out of M=23) in GEANT, LB-Greedy still can reduce computation timeabfactor
up to 65.8X%) compared to LB(Optimal) whe'=16 and achieves almost the
same load-balancing performance. Furthermore, LB-SsoeeSelection could reduce
computation times up to 800)9(%2%) compared to LB(Optimal) without losing load-
balancing performance in GEANT.

SIn order to fulfill the measurement tasks imposed by the nekveperator, at least one capable
monitor is needed in each OD-pair’s routing path. If thereriy one monitor left in its route, we denote
it as un-replaceable monitor.
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3.6.4 Multiple Paths per OD-pair

Here we relax our second assumption to allow multi-pathingute.g,. ECMP)
for each OD-pair in Abilene network. In Figure 3.8, our prepd optimal solutions
and heuristic approaches all have better load-balancingrpgance when applied in
multi-path routing case compared to the single path routiftge rationale behind this
is that with more overlaps in monitors/paths, LEISURE hasenfieedom (e.g4%" in
Eq. (3.39)) to optimally load-balance the workloads actbgsparticipating monitors.
The VAR(L;) in multi-path case for LB(min-VAR), LB(min-MAX) and LB(nm-VAR-
given-MAX) is 0.0000917, 0.0000982 and 0.0000917, respagtwhile in the single
path case is 0.000105, 0.000131 and 0.000105 in Figure 3.3.

3.6.5 Multiple Measurement Tasks

In this section, we examine our two-phase solution to thentdated joint
optimization problem described in Section 3.5.3. Assumehasxe two measurement
tasks with cost factor rati@'*:C? and importance factor ratib': /2. Let @ reflect the
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Figure 3.9 Two measurement tasks with different cost ratio and fixegplartance ratio
as 1:10.

identical resource constraint,, for all routersV; (: = 1... M) and represented as the

fraction of L,,,.., the maximum workload routers can achieve derived from E¢40) to
(3.43) where) < 0 < 1. Figure 3.9 presents the result of our normalized measureme
utility under different setup of*:C? (e.g., from 100:1 to 1:100) and fixdd: /?=1:10 by
changing resource constrathfrom 100% to 0%. Note that without resource constraint
(i.e.,0 = 100%), the normalized measurement utility LEISURE can achisvaways
1.0 (cover all measurement tasks).

As observed, itC1:C? is directly proportional ta'!:7%, the measurement utility
decreases linearly when the resource constraint becomeede.g., lowep). On the
other hand, ifC!:C? is inversely proportional td': 1%, the measurement utility will not
drop significantly untib is extremely low (e.g.C':C?=100:1 withI*:7?=1:10). This is
because the optimal solution for Eq. (3.45) to (3.48) willtenitors always first fulfill
the measurement request from the task with lower cost afgthigmportance. The other

observation is that whefi':C?=1:1 and/*:7°=1:10, LEISURE can still remain 90% of
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the measurement utility as in ideal case (i.e., withoutues®constraint) by using only
half of the routers’ resources (e.g.drops to 50%(=1/(1+1))). These results suggest that
our framework can intelligently distribute measuremegksafor better load-balancing
under resource constraints, while the overall measurentgity can still be preserved

at a high level.

3.7 Conclusion

In this chapter, we proposed an optimization framework fmadtbalancing
network-wide traffic measurements across coordinated torsnin the network while
ensuring that the maximum traffic measurement utility ofriewvork is achieved. This
is an important problem because individual monitors arecaptble of accomplishing
the measurement tasks for all applications of interest duiéstresource constraint,
particularly resource-intensive measurement tasks ssithase requiring deep packet
inspection. Further, to uncover global network behavioeré is an inherent need to
coordinate measurements among monitors distributed si¢hes networks since the
visibility of each monitor is only limited to the traffic thalasses through it. Therefore,
these distributed monitors can be coordinated for bothremeeand optimized resource
utilization. Based on our simulation measurement studi&aguthe Abilene and
GEANT networks, we found that our load-balancing optim@matramework LEISURE
can achieve up to 4.75X smaller maximum measurement waikdoa 70X smaller
variance in workloads across all coordinated monit@s.also show that our proposed
heuristic solutions could achieve almost the same loadAgalg performance as the
optimal solution, while reducing the computation times byaator up to 22.5X in
Abilene and 800X in GEANT under flexible monitor deploymemwresario. The
distributed LEISURE algorithm for load balancing problesndieferred as our future
work.

Chapter 3, in part, is a reprint of the material as it appeartheé following
publications:

e Chia-Wei Chang, Guanyao Huang, Bill Lin and Chen-Nee ChtlaB|SURE:
A Framework for Load-Balanced Network-Wide Traffic Measoemts”,
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ACM/IEEE Symposium on Architectures for Networking and @anications
Systems (ANCIrooklyn, NY, October 3-4, 2011.

Chapter 3, in full, has been submitted for publication ofenial as it may appear
in IEEE Transactions on Network and Service Management (IN&hia-Wei Chang,
Guanyao Huang, Bill Lin and Chen-Nee Chuah, “A Joint Optitian Approach for
Load-Balanced Network-Wide Traffic Measurements and Mwnitlacement”. The

dissertation author was the primary investigator and auththe papers.



Chapter 4

Distributed Measurement-Aware
Routing: Striking a Balance between
Measurement and Traffic Engineering

4.1 Introduction

Achieving accurate and efficient network-wide traffic measuwent is often
plagued with multi-faceted challenges. While packet ana Bampling mechanisms
are widely deployed (e.g, NetFlow) [29], detailed packegitaee and analysis (e.g.,
deep packet inspection [25]) is computationally expensitgence, typically only a
subset of nodes are equipped with such high-fidelity momigorapabilities. To reap the
maximum measurement benefits without incurring huge depémy costs, these high-
fidelity monitors need to be configured properly and strataty placed across the net-
work. Most previous work on the latter domain focused onwlegi the optimal monitor
placement that maximizes the monitoring utility for a giveniting and traffic profile.
They are typically intended for longer time-scales and mEs& priori knowledge
about the traffic characteristics. However, both trafficrabteristics and measurement
objectives can dynamically change over time, renderingefally designed placement
of monitors sub-optimal. To address these limitations, asueement-aware routing
framework, MeasuRouting, was recently proposed to agsiffict measurement [63].

90
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It introduces routing as another degree of freedom andligeelly routes traffic sub-
populations over pre-deployed monitaie maximize the traffic measurement gain
However, MeasuRouting requires the existence of some alesetd controller and
offline analysis to find the optimal routing strategies foemwouter, which is unrealistic
in production IP networks. It can therefore only be intetpdeas the best-case bounds
for routing-assisted measurement.

In order to gain comparable measurement improvement as éhtratized
approach, ae-centralized (distributedheasurement-aware routing solution faces two
main challenges. First, individual nodes (being selfishfite®o compete unknowingly
for the limited monitoring resources. A natural solutionstech problem is to design
a game-theory based distributed algorithm to achieve saynéitium point. The
solution should not only guarantee the existence of aniequihm point, but also provide
fast convergence. While similar in spirit, existing work ealfish routing tends to
minimize a singleTE cost function of the network, e.g., path delay or averagk lin
utilization [28,32,46]. Distributed measurement-awasating, on the other hand,
needs to maximize measurement gains while adhering tacteaffjineering constraints,
which cannot be achieved easily with existing approachexo®, individual nodes
need to make local routing decisions based on local (ppnialv of the network
conditions, including the “possible” measurement gain kamd congestions. A light-
weight protocol is needed to distribute accurate measureed load information
across the network.

In this chapter, we presemistributed MeasuRouting (DisMRa new traffic
engineering protocol that attempts to optimally utilizeséixg monitor locationdor
maximizing the traffic measurement gavhile distributing the traffic load evenly across
the network. DisMR takes advantage of alternative paths in a network,(EGMP
multipaths). It maximizes the traffic measurement gain bystthg the traffic split
ratios among these paths to the same destination. It actopérates on top of an
existing ECMP infrastructure.DisMR is derived from a game-theoretic re-routing
policy that captures the dynamic decision-making process iateractions among
distributed routers. In our model, we design a cost functinoreach link that reflects
both the measurement capability and TE constraint, irkslwith larger measurement
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resources have a smaller cost but links with a larger TE s@tg, link utilization)
have a larger cost. The cost function is designed such thas ffwe attracted to links
with better measurement capabilities while avoiding THations. Routers compete
with each other in a game-theoretic manner in order to mirentheir own costs for
the downstream paths. In DisMR, every router periodicadiihgrs/propagates sub-path
cost information for upstream routers. Based on this infdrom, each router makes
local decisions on how to adjust routing split ratfos each destination traffic to the
next-hop routers among these multiple equal-cost p&das.routing policy guarantees
not only a provable Nash equilibrium but also a fast conuecgewithout significant
oscillations. Meanwhile, the measurement gain of the netved the equilibrium
state is close to the maximum achievable gain calculatedgusifline, centralized
MeasuRouting. We outline our contributions as follows:

e \We de-centralizeMleasuRouting in a game-theoretic setting and propose d nove
cost function that balances the potentially contradictmegasurement and traffic
engineering objectives. The cost function is designed tmerage flows to be
routed through monitors with abundant resources whiledangi TE violation.

We prove the existence of Nash equilibrium and derive bounrdthe price of
anarchy (POA) for the game.

e We design a new traffic engineering protocddistributed MeasuRouting
(DisMR), based on the routing game. DisMR converges fast to equitibpoint
and achieves comparable measurement gain with centrallisaduRoutingn
static traffic scenario

e We evaluate DisMR via simulations using both synthetic anebl r
traces/topologies from Abilene [1], AS6461 [69], and GEANd]). The
simulation results show fast convergence (as expected fitmmtheoretical
results), improved measurement gains (e.g., 12 % highet) mnch lower
TE-violations (e.g., up to 100X smaller) compared to statientralized
MeasuRouting in dynamic traffic scenario.

The rest of this chapter is organized as follows: We first prthe existence
of equilibrium on the new cost function in Section 4.2. We ting&xdy the rerouting
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policies in a “dynamic round-based” variant of equilibriuimSection 4.3. We present
practicalDistributed MeasuRoutinglgorithm in Section 4.3.1 and prove it to be stable
and converge quickly in a game-theoretic model under t@atisnditions. Section 4.4
presents detailed performance evaluation of our proposgatithm. Section 4.5
discusses related work and Section 4.6 concludes thisahapt

4.2 Adaptive traffic measurement problem

In this section, we formulate the Distributed MeasuRoupngblem in a game-
theoretic setting. It strikes the balance between measneand TE constraints by
introducing two novel definitions¥ (effective non-sampling rate) arid(link penalty
function). We present theoretical results regarding tagcstonvergence of the game.
Note that our work differs fundamentally from Beckmann’sriwim that our introduced
link cost function is a novel combination of link measurertrednility and TE constraint.
Moreover, the path cost is defined as the product of link ¢cegtich makes the proofs
of existence of Nash Equilibrium and POA different from [1The dynamic behavior
of this game and its distributed implementation are preskimt next section.

We consider a measurement objective of maximizihgsampling resolution
function, which characterizes the overall measurement utilityhefwhole networlas
MeasuRouting used [63]. In contrast to MeasuRoutivgassume independent uniform
sampling across every link, the de-facto implemented ntethaurrent Internet. Let
S, be the given fixed sampling rate at every are A. The total effective sampling
rate of a path? € P with respect to flow set|f] = {fp, P € P} is defined as:
Sp(fp) =1— 1] (1 —=5,). ThereforeG(f) = >. Sp(fp)- fr. We define¥, to be
the effective naoen}isampling rate at arce A: \Dfi 1 — S,. The total non-sampling
rate of a pathP? € P with respect tof» is then the product of the non-sampling rate of
the arcs on that patht p(fp) = [[ Y.(fp), P € P. Therefore the total non-sampled

acP
amount is defined aS(f) = >_ Vp(f)- fp. Given fixed traffic demand, maximizing
Pep

G(f) could be equivalent to minimize the cost functionf).
Our goal is to let the flow sets at each end point route theffidraelfishly
to better learn a Nash equilibrium of non-sampling ratkile adhering to traffic
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engineering constraintslowever, in a distributed environment, flow sets will albdse
the best paths with minimun¥ »(f) and may overload some specific arcs. This is
becausel, at every arcu € A is constant (e.g., sampling rates do not adapt to the
traffic amount). In order to reflect TE constraints, we addgitgrfunction((f) to ¥,,,
e, ¥, (f) = ¥, + ¢(f) for each arax € A. We design the (f) such that its value
increases sharply when the traffic amount is above the TEt@int (e.g., maximum
link utilization), otherwise it will stay at zero. Therefar,(f) becomes a function of
traffic for every ara: € A (i.e., a non-decreasing and continuous function).

Suppose every flow set tends to minimize its own co%tfr) = Yp(fp) - fp,
we prove the existence of static Nash equilibrium for thisigan Section 4.2.1 and the
optimal flow in Section 4.2.2. The details about how to designpenalty function are
discussed in Section 4.2.3.

4.2.1 The Existence of Nash Equilibrium

We consider a model for selfish routing where each of an iefipdgpulation
of agents wants to send an infinitesimal amount of traffic @otrough a network
G = (V,A) with vertex setV/, arc setA, andk source-to-destination vertex pairs,
{si,t;},i € [k] = {1,..., k} with flow demandr;. Each agent belongs to one of the
{si,t;},1 € [k]. Let’P; denotes the set ahultiple equal-cost routing patheom s, to
t; in G andP = |, P;, the set of all possible routing paths. The flow getP € P is
feasible if for alli € [k], Epepi fp = r;. For a given flow sefp, P € P, we define
the aggregated flows on aice A asf, = Y pep..ep fp- The non-sampling rate of a
pathP € Pis¥p(f) = I_L‘I’a(f) whereV,(f) = ¥, + ((f) for each ara: € A. We

ac

are interested in flow assignments that are stable in thedkasno agent can improve
their U5 ( f) by changing their paths selfishly.

Definition 1. A feasible flow sefp, P € P is at a Wardrop (Nash) equilibrium if for
eachi € [k] and every pattP, R € P; with fp > 0, it holds thatV 5 (f) < V(f).

To prove that the Nash flows always exist in our non-samplitg case and the
achieved cost is unique, we use the Karush-Kuhn-Tuckematity conditions as in the
studies by Beckmann et al. [11] and Dafermos et al. [24]. Qgtr) = In(¥,(x)) for
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every arca € A (i.e., also non-decreasing and continuous). Simddgd 1] and [24],
we construct a convex program (CP) as following With contumly differentiable and

convex functiongh, ).c.4, Which is defined as,(f,) = an

M nimze Y he(fa) (4.1)
acA
st. Y fp=r; Vi € [k] (4.2)
PeP;
> fe Ya € A (4.3)
PeP:acP
fp>0 VPcP (4.4)
fa
ha(fa) = /Qa(ac)dw (4.5)

0

Based on the Karush-Kuhn-Tucker optimality conditionseasfble flow set
fp, P € P is an optimal solution for this convex program if and only if

Vi € [k],YP,R € P;, fp >0 (4.6)
=Y ho(fa) <D holfa) = BR(F), (4.7)
a€P a€ER

whereh, (x) refers to the first derivative df, (z). Therefore

= Z h:z(fa) = Z Qa(fa) = Z ln(\I’a(fa)) (48)
acP a€P aceP
=In(J] Pa(fa)) = n(¥p(f)) (4.9)
a€eP
<D T(fa) =Y Qalfa) = n(Ta(fa)) (4.10)
aER aER a€ER
=In(]] Ya(fa) = In(Tr(f)) (4.11)
a€ER

It meansin(Vp(f,)) < In(Yg(f.)), which impliesVp(f,) < Vg(f,) for Vi €
[k],¥YP, R € P;, fp > 0. The optimality condition of the convex problem coincidatw
the condition of the Nash equilibrium.
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4.2.2 The Existence of Optimal Flow

An optimal flow is defined as a feasible flow 9¢i = {fp, P € P} that
minimizes the total system coét(f) instead of letting all agents selfishly minimize
their own costC(f»)!. Recall that the total cost with respectftas defined as:

H=>"9p(f)fr =D (J] Talfa))fr (4.12)

PeP PeP acP

=S (I wal > fense (4.13)

PeEP acP PeP:acP

If we replace the objective function in Equation (4.1) to imiize C'(f) instead, the
optimal solution,fp, P € P, to this new problem becomes the optimal flow. In our
case,C(f) is the summation of product of numerous decision variabteEguation
(4.13), which can not be easily solved.

By applyingInequality of Arithmetic and Geometric Meange give the lower
bounds ofC'(f) as follows. We first take natural log of the total coét(f), and
In (C(f)) could be simplified as following by using(a; + as + ...+ ay) > In(N) +
Wla) a2 b Anlon) gincg@tartatay > NG~y ay if ar,as,...,ay > 0and

N
N eN.

In (Zmp ) hl(ZHW (fa) - )

PeP PEP acP

> In(N % (ZmH\IJ (fa) fp>
pPeP acP
HEEIDS ( (> In(w, +1n(fp))>
PEP acP
% (ZZIH 1+Zlnfp>
PEP acP PeP
N)+ 5 (Zna. (f2) +Zlnfp>
aceA PeP
% (Zln na—i-Zlnfp)
acA PeP
1
=In(N N (cr

!Theratio between the total cost at Nash equilibrium and optimal flousisally called POA (Price of
Anarchy) in [27]
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where N is the number of pati® € P andn, = > 1, is the number of
PeP,fp>0:acP

effectivepaths passing through arcwith traffic fp > 0, P € P. We use boolean
variable,up, to indicate whether the routing policy uses p&th.e.,up = 1if using path
P e P (fp > 0), otherwiseup = 0 if (fp = 0). Thereforepn, = > up,Vae A

. . PeP:acP
and the constraints Equation (4.2)-(4.3) become:
> fpoup=r Vi € [k] (4.14)
PeP;
fa= > fp-up Va € A (4.15)

PeP:aeP

Since N is constant given by the network topology, the lower boungctive

function could be equivalent to minimize*(f) whereC*(f) = >  In(V,(f.)) - na +
acA
> In(fp). In order to avoid quadratic programming, we introduge= fp - up to

Pep
decouplefp - up in Equation (4.16)-(4.17). It is easy to see their equivedenWhen

up = 0, zp = 0 from Equation (4.16); and whery = 1,zp = fp from Equation (4.17).
0<zp<up (4.16)
fprup—1<zp<fp (4.17)

After we substitutezp to Equation (4.14)-(4.15), the convex program could be
simplified as:

Mnimze C*(f) (4.18)
sty zp=r Vi € [k] (4.19)
PeP;
Ja= Z zp Va € A (4.20)
PeP:acP
fp>0 VP eP (4.21)
na= Y up Va e A (4.22)
PeP:aeP
up € {0,1} VP eP (4.23)
0<zp<up VP eP (4.24)
fptup—1<zp<fp VP eP (4.25)

By solving the new convex optimization problem, we achidwelbwer bound for the
original optimal flow problem and hence derive the POA asfedl. Sincdn(C(f)) >



98

In(N) + CT(” the lower bound of”( f) with respect to the optimal flow;* could be
expressed aS'(f*) > N - SN, Let (G, A, V) be an instance of the selfish routing

game and assumgeand f* be a Nash flow and an Optimal flow, respectively. The upper
bound of the price of anarchy in our case is:

p(G,r,U) = g((}f*)) (4.26)
C(f)
TN T @20

4.2.3 Design of Penalty Functions

In the routing game, after the current link capadity exceedd/,,,.., we add
a sharp penalty to the metrig,(f) such that selfish agents are aware of the TE
constraints. The mor€, exceedd/,,.., the larger the penalty,(f) will be. U, = Cia
where(, is the link capacity and is the current traffic on link. Here we usadditive
operator to embed penalty functigtf) into W, (f),i.e., V. (f) = (1—S,) +¢(f). We
keep((f) =0if U, < U, and make( f) increase sharply i/, > U, as follows:

0, if U, < Upaz;
C(f) = .
(Ua - Umax) : mCa if Ua Z Umaa:;
and therefore
W.(f) = (1—S,)+0, if £ < U
‘ (1_5(1)_"(% _Umaa:)'mﬁa 1f% Z Umaq:

where m, controls the sharpness of the penalty. Usually with a larger it will
have fewer TE-violations in the equilibrium state but witnger convergence time.
We find m¢ = 10° provides a good trade-off between those two effects destrib
above. Section 4.4.2 compares the link utilization, cogeace speed, and the effective
measuring gains with differemt. values.

4.3 round-based equilibrium in IP network
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Up to this point, our traffic model is based on the assumptiah agents at end
hosts have full control over their traffic and they can actleeurrent TE cost value of
all paths. Obviously, none of these is true in the real-wtldetworks In this section,
we study our Nash equilibrium model that both considerscéffe non-sampling rate
and TE-violation penalty in a dynamic/distributed, rouraised variantSuppose agents
at end hosts are activated every seconds and are allowed to change their routes
simultaneously. Since they all intend to migrate traffic tpaah with minimal cost
value, such global migration behavior will result in greatly inased congestion on
the optimal path (from measurement’s perspective) and teakcillations. Fischer
et al. proposed the so-called-(3)-exploration-replication policy in [33] to avoid
traffic migration oscillation by using adaptive path-samglmethods. Although [33]
is designed for the cost model defined for latency, we apptg bur newly defined
non-sampling rate cost model.

In real IP networks, agents at the end points do not have thiegpcontrol over
the paths; it is the routers that are responsible for chgosie paths. A router can
only determine the next-hop nodes to the destination andeléueir traffic split ratios.
In this section, we provide an overview of our distributedtinog policy: how routers
propagate/gather cost information and determine the prepé ratios. The detailed
algorithms are deferred to the next subsection.

Consider an intermediate rout&on a pathS — R — D from S to D and
assume there are severalltiple equal-cospaths betweerz to D. Applying our
Wardrop rerouting policy based on minimizing path non-stamgprate, router? aims at
distributing the traffic fromS to D evenly among these paths, howeuverpnly knows
the set of possible next hops of these multiple paths (ddnloyeN (R, D)) to each
destinationD. Therefore routei? needs to maintain a set of dynamically changeable
weightsw (R, D, V;) for all possible next-hop routei§ € N (R, D) to every destination

Dand > w(R,D,V;) = 1. w(R,D,V;) can be treated as the fraction of traffic
VieN(R,D)
routed fromR to D via V.

In this model, the routing decision made at intermediatéenaid only affects the
performance of the paths from to D while the performance betweéhto R is fixed
and unaffected. Note thd® can not explore the traffic information for downstream
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routers betweery; and D. It needs to utilize the aggregated traffic information from
next-hop routerd/; instead. This information exchange resembles a distanceve
routing protocol. The decision foR to route traffic vial; depends on thexpected
non-sampling ratel (R, D, V;) for the pathR — V; --» D. Each round, every router
V; keepsk informed about thexpected non-sampling raté its pathsV; --» D. We
denote the set afmultiple equal-cospaths between nodg and D asP(V;, D) and
Np is the number of cascaded intermediate routers on eachipahP(V;, D). The
expected non-sampling rafe( R, D, V;) via V; can be expressed as

U(R,D,V;)) =W(R,Vi))-( > wp-V¥p) (4.28)
PeP(V;,D)
Np
wp = [[w(Vj, D, Vj1),¥P € P(V;, D) (4.29)

j=1
\whereV (R, V;) is the measured non-sampling rate on likk— V;. ¥ is the non-
sampling rate on patk, andwp is the traffic fraction on pati®. Let A(V;, D) indicate
the information that router; feedback tak:

AWV, D)= > wp-Up (4.30)

PeP(V;,D)

Assume there are severaiultiple equal-costpaths betweerl; to D, and
N(V;, D) denote the set of possible next-hop routers to destindliome can obtain

AVi, D)= > wliDU) Y wp-(¥(V;,U;)-Up)

U;eN(V;,D) PeP(U;,D)

= Z w(Vi,D,Uj) Z wP'\I’P‘\I’(Vian)
U;EN(V;,D) PeP(U;,D)

= > wViDU)( Y. wp-Tp)-W(V,U;)
U;eN(V;,D) PeP(U;,D)
U;eN(V;,D)

In summary, the value od(V;, D) is computed at routdr; each round and sent back to
R based on the previous known informationlofV;, D, U;). A(V;, D) can be treated as
the condensed information ekpected non-sampling rabeyondV;. The routerk can
then updatel (R, D, V;), the expected non-sampling rate destinationD via V;, and
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computew(R, D, V;) to adjust its split ratiosHere we assume synchronized routing-
updates of these link/path costs. The impacts of asynchsuopdate issue could be
solved similarly in [28] where we defer as our future work

4.3.1 Distributed MeasuRouting Algorithm

In this section, we present our adaptive algoritidistributed MeasuRouting
(DisMR), which runs on each individual routers to make routing denson how
to adjust routing split ratios for each destination traffim order to do this, each
router first needs to measure the non-sampling ¥at&, V;) for each link to next-
hop routersV; and exchanges information with other routers by udbistributed W-
Propagation Algorithm After receivingA(V;, D), the expected average non-sampling
rate of the path to every destinatiol via V; from next-hop routers, each router can
computeV (R, D, V;) locally and use this information to conduct tAdaptive Weight
Calculations In summary, each routeR needs to maintain the following sets of
information for all possible next-hop routers € N (R, D) to every destinatiom:

1. U(R,V;): the non-sampling rate value that also includes the penallye to
reflect the current link utilization on link — V.

2. A(V;, D): the expected average non-sampling rate value to destmAtivia V;
(Vi --» D) which is received periodically from neighbor routér

3. w(R,D,V;): current dynamically changeable weights for traffic roufemn
current routerR to destinationD via V.

Algorithm 6 describes the distributddmetric propagation procedure of DisSMR
in details. Everyl; seconds, the set df(R, D, V;) values are updated at each router by
using the information of currenk (R, V;) and previousA(V;, D) from neighbors (Line
7). Subsequently, the ned( R, D) values are re-calculated by using the current weights
w(R, D,V;) and broadcast to all of the neighbor routers (Line 9-10). hédle each
router will execute the Adaptive Weight Calculation progeslto reassign the weights
w(R, D,V;) for all possible next-hop routelig € N(R, D) to every destinatioD by
using updated information of (R, D, V;) (Line 12).
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Algorithm 6 DistributedW-Propagation Algorithm
1: assume current node i

2: while everyT, secsdo

3: initialize new update messagé(Ty)

4.  for each destinatio® in routing tabledo

5 for every next-hop nodels; € N(R, D) do

6: measurel (R, V;)

7 (R, D,Vi) = W(R, V) - A(V;, D)

8 end for

9 AR, D)= >, w(R,D,V;)-VY(R,D,V;)
V;eN(R,D)

10: AppendA(R, D) in M (Ty)

11:  end for

12:  Execute one of th&daptive-Weights calculations

13:  SendM (T5) to all neighbor nodes

14:  After receivingM (7) from neighbor nodé’;

15:  for eachA(U;, D) in M(T;) do

16: if U; € N(R, D) then

17: UpdateA(U;, D) from M (T5)
18: end if
19:  end for

20: end while

Algorithm 7 presents the Adaptive Weight Calculation pahae of DisMR. For
every pair of next-hop routers (e.g., s&y, V%), it first compares their cost metric
V(R,D,V;),i = 1,2 and conducts the migration procedure if the difference efrth
cost values is more than tmeigration thresholde x m) (Line 7). Otherwise, DisMR
will not change the weights df; and V5.

Subsequently, it computes the migration probability (La®) and the adaptive
migration amount (Line 10-14) according to the-()-exploration-replication pol-
icy [33]. For every pair of next-hop nodes in each round (L®)ewe denotd/; to
be the node with larger cost valug(.) andV; to be the alternate node. From statistic
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Algorithm 7 Adaptive Weight Calculation
1: afterU(R, D,V;) information is updated

2: for each destinatio® in routing tabledo
3. for every next-hop nod®; € N(R, D) do

4: Whew(R, D, V;) = w(R, D, V;)

5. end for

6: for every pair of next-hop nodég, V; € N(R, D) do
7: if W(R,D,V;) > V(R, D, V,)+ € x m¢ then
8: CalculateP,; = W(R’q]i){;ﬁ)—,z(ﬁ’f A%)

9: if with probability Py, then

10: if w(R,D,V,) # 0then

11: A=(1-75) w(R,D,V3) - Apy

12: else

13: A= % WA

14: end if

15: Whew(R, D, V1) = w(R, D, V}) — A

16: Wpew(R, D, V3) = w(R, D, V3) + A

17: end if

18: end if

19:  end for

20:  Usew,.,(R, D,V;) to distribute the traffic

21: end for

point of view, the adaptive migration amouhtshould be calculated depending on node
V. If Va is already used (e.gu(R, D, V) # 0), thenA = (1 — 3) - w(R, D, V3) - Ay
from proportional samplingoerspective. Ifl; is unused (e.gw(R, D, V3) = 0), then

A= % - A, from uniform samplingperspective wherg 4, is the unit of weight
shifted in one round. The migration probability is decided’s, = ‘I’(R’f(’gfgi(ﬁ’f"@)

based on [33] in order to avoid oscillations from global dyienized migrations (Line
8). This adaptive migration policy ensures that smaller-sampling rate gains,
Ay = Up — Uy, only cause a smaller migration possibility and avoid dastdn. The

implementation of distributing traffic according Yo (R, D, V;) for each router can use
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the hashing methods described in [28, 32,46]W (R, D, V;) are constant, there is no
packet reordering occurred. However ori¢g R, D, V;) are shifted, a fraction of the
traffic needs to be rerouted and probably causes packeter@dagd The solution is to
make the time interval wheW (R, D, V;) shifts occur not smaller than the time TCP
needs to recover from packet losses in [3&je summarize the static parameters used
in DisMR as follows.

e Update intervalTy: it controls how often the participated routers updaterthei
traffic split ratios.

e Migration thresholde x m: it controls the granularity of equilibrium DisMR
wants to achieve where, is the severeness of the penalty anglthe inaccurate-
rate we can tolerate.

¢ Virtual non-sampling rate offset and Exploration-replication factors: They
are used to controh(-3)-exploration-replication policy to avoid traffic migrati
oscillation (details are in [33]).

e Migration rate Ay,,: the unit of weight shifted in one round. It controls the
convergence speed of DisMR (details are discussed in $et#o02).

4.4 Performance Evaluation

In this section, we evaluate DisMR using both synthetic aeal traces. We
consider various topologies ranging from a simple 4 nodeltayy, Abilene [1],
GEANT [3] (with 23 nodes and 74 links) to AS6461 topology abé&al using Rock-
etFuel (with 19 nodes and 68 links) [69]n each set of topology, we first calculate
multiple paths for every OD (origin-destination) pair nede simulate the (ECMP)-
like algorithm in practical scenarios, and run DisSMR on #haesultiple paths Our
simulations have three goals: (1) determine good paramdterthe algorithm to
quickly reach equilibrium state without significant osaiibns; (2) show that the
measurement gain of the network at equilibrium state isectoghe offline maximum

achievable gain calculated by static centralized MeastiRgu(3) show that it indeed
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improves measurement gain in dynamic traffic scenario coedpt static centralized
MeasuRouting.

4.4.1 Traces and Performance Metrics

We use the following four topologies in our experiments assuae there are
only one class of traffic in this chapter.

e Simple 4-node topology: As shown in Figure 4.1, all links &@aMGbps link
capacity and the TE-constraint (maximum link-utilizafiaa U,,,,.=0.9. The
traffic demand is 15Gbps from SFENY with two multiple paths. Two links are
equipped with monitors as sampling rat€sr ., = 0.5 and Psp_,p = 0.7,
respectively.

e Abilene: This is a public academic network in the U.S. withriddes intercon-
nected by 28 OC192 (10 Gbps) links. The traces we use welcted from April
22-26, 2004 [1].

e AS6461: This is a RocketFuel [69] topology with 19 nodes aBdiBks. We
generate aggregate traffic demands for each OD pair usirgythwity Model [55].

e GEANT: GEANT connects a variety of European research anatathn net-
works. Our experiments are based on the December 2004 siagsdilable
at [3], which consists of 23 nodes and 74 links varied from [Wifps to 10 Gbps.
The traces we use were collected from April 11-15, 2004.

In our experiments, we are interested in the following foenfprmance metriés

1. Convergence Time: It is defined as the number of iteratibesalgorithm takes
to reach equilibrium state. Note that the actual convergeime should be the
product of7, and the number of iterations.

2. Measurement Gain: It is defined as the sum of samplingiesi{S-(f)) of flows
weighted by the flow sizesf) along the pathsiz = >~ Sp(f) - fp.

pPeP

2Note that path inflation (additional delays) is reasonabita ®isMR and for delay-sensitive traffic,
it can be included as a constraint as well to limit the addaidop/delay. Due to the space limit, we omit
those performance comparisons.
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Figure 4.1 Simple 4-node topology: link-capacity=10Gbp5,,,=0.9, traffic
demand=15Gbps from SENY with two multiple paths. Two links are equipped with
monitors as sampling ratésx_,» = 0.5 andPsr_,z = 0.7.

3. Link Utilization: This metric reflects TE constraints.

4. Sum of Weights Changes: It is defined as the sum of all weighanges for all
routers and quantifies the oscillations observed in thesgyst

4.4.2 Sensitivity Analysis and Parameter Tuning

Our simulation results show that our performance is largelgpendent oft and
B. We finda = 8 = 107 offers a good trade-off between the consequences discussed
in [33] and we use them for all of our evaluations. The moresgme parameters
are mostlymigration thresholde x m, and migration rate Ay,. We explore these
parameters in the following sections.

Choosing the migration threshold

The migration thresholds defined as the product efandm,. It controls the
granularity of equilibrium DisMR wants to achieve. We staith the simple 4-node
topology depicted in Figure 4.1 to explore these two paramsetWithU,,.., = 0.9,
the optimal split-ratios arev(SF, NY, A) = & andw(SF,NY,B) = <t with link
utilization Uy = 5 < Upae andUp = % < Upee. The offline maximum achievable
gain calculated by centralized MeasuRouting is 0.5 + 9 x 0.7 = 9.3 without TE-
violation. Table 4.1 shows that the performance of our psepoDisMR algorithm is
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Table 4.1 m, variations withe = 107%, A;, = 102 in 4-node topology

me 10° 10* 10° 109 107
iterations 249 54 49 66 34
Ua 0.5993| 0.5999| 0.5999| 0.5999| 0.5999
Ug 0.9007| 0.9001| 0.9001| 0.9001| 0.9001
Cy 0.5 0.5 0.5 0.5 0.5
Cp 1.0281| 1.7087| 14.387| 141.17| 1408.9
€ X My 1 10| 100| 1000| 10000
Wy 0.3995| 0.3999| 0.3999| 0.3999| 0.3999
Wp 0.6005| 0.6001| 0.6001| 0.6001| 0.6001
Gain 9.3006| 9.3003| 9.3003| 9.3003| 9.3003

Table 4.2 ¢ variations withm, = 10%, A, = 102 in 4-node topology

€ 107! 1072 1073 1074 107° | Theo.-Equil.
iterations 45 63 43 551 5625 o0
Ua 0.5939| 0.5939| 0.5998| 0.59995| 0.599993 0.5999998
Ug 0.90608| 0.90608| 0.9002| 0.90005| 0.900006| 0.9000002
Cy 0.5 0.5 0.5 0.5 0.5 0.5
Cg 6080.308| 6080.308| 141.1678| 55.1099 6.6940 0.5
€ X Mg 100000 10000 1000 100 10 0
Wa 0.39594| 0.39594| 0.399906| 0.399963| 0.3999957 0.39999987
Wg 0.60406| 0.60406| 0.600093| 0.600036| 0.6000042 0.60000013
Gain 9.31216| 9.31216| 9.30028| 9.300109| 9.3000127, 9.3000004

less sensitive to the sharpness of the penattyand it has similar gain as centralized
MeasuRouting only with subtle TE-violation (e.qg., orﬂ%ﬂ = 0.001) exceptm, =
10*. We usem, = 10° for the following simulations.

With m, = 10° and U,,.. = 0.9, the theoretical equilibrium (e.g., denoted
as “Theo.-Equil." in Table 4.2)ill occur in both of the cost metrid(SF, NY, A) =
(1-0.5)+0 = U(SF,NY, B) = (1—0.7)+ (222 —0.9)-10° = 0.3+0.2 = 0.5 where
the weight split-ratios are/(SF, NY, A) = 29998 andw(SF, NY, B) = 2090002 with
2IB < Upge and U = 20002 > [/, Therefore the
theoretical measurement gain will Be999998 x 0.5 + 9.000002 x 0.7 = 9.3000004
with negligible TE-violation (e.g., onlw =2.2-1077). However, it requires the
finest traffic-migration granularity (e.g., infinitesimaly;,) which takes large number
of iteration times to converge. Table 4.2 compares the padace ofDisSMR with

link utilization Uy =
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Table 4.3 Ay, variations withm,; = 10°, ¢ = 0.001 in 4-node topology

Avyip 107! 1072 1073 1074 10~° | Theo.-Equil.
iterations 195 48 498 4424 46079 o0
Ua 0.59969| 0.59986| 0.59947| 0.59994 0.59999| 0.5999998
Ugp 0.90030[ 0.90014| 0.90053| 0.90006 0.90001| 0.9000002
Ca 0.5 0.5 0.5 0.5 0.5 0.5
Cg 300.4599| 141.1678| 527.1125| 61.0521| 5.437467 0.5
€ X me 1000 1000 1000 1000 1000 0
Wy 0.39979| 0.39991| 0.399648| 0.3999594f 0.3999965 0.39999987
Wg 0.60020| 0.600093| 0.600351| 0.6000405| 0.60000342 0.60000013
Gain 9.3006| 9.30028| 9.30105| 9.300122| 9.30001027 9.3000004

different choices ot. With smallere, DisSMR has less TE-violation but with longer
convergence time and more oscillations (elg;,= 0.900006 ~ U, ., Whene = 107°
but with 5625 iterations). On the other hand, with largat has more TE-violation but
with shorter convergence time and less oscillations (€.g.= 0.90608 > U,,.. when

e = 107! but with 45 iterations). Therefore, choosing the rigls a tradeoff between
convergence speed and TE-violations. We suggest using0 2.

Choosing the migration rate

Table 4.3 shows the performance of DisMR with different clesiof migration
rate, Ay;,,. With smallerAy;,, it has less TE violation but with longer convergence
time (e.9.,Up = 0.90001 =~ Uy WhenAy,, = 10~° but with 46079 iterations).
With larger Ay;,, it has more TE violation but with shorter convergence tirag (
Up = 0.90030 > U, WhenAy,, = 107! but with 195 iterations). Figure 4.3(a)
shows how our algorithm adjusts the weights at SF during viaéuation period with
Ay, variation. ForAy, = 107, it converges to the optimal weights smoothly, but
rather slowly. On the contrary, fak,;, = 107, it converges to the optimal weights
quickly, but rather unevenly. Figure 4.2 and 4.3 compareg tiar algorithm adjusts
the weights at SF during the evaluation period wih;, ande variations. As shown
in Figure 4.2(b), for smallet, the system has frequently oscillations. Different frem
for smallerAy,,, it has smooth oscillation behavior as in Figure 4.3(b). @og the
right Ay, is a tradeoff between convergence speed and TE-violatiWasuggest using
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Table 4.4 Ay, variations withm, = 10°, e = 0.001 in Abilene

Ayiy 107! 51072 1072 5-1073 1073
iterations 322 440 3416 7965 23068
TE-violation 3.524-107° | 1.062-107° [ 9.236-107% ] 1.33-107° | 1.10-107°
Gain(DisMR) 2671.9 2671.72 2671.57 2671.54| 2671.537
Gain(Static — M R) 2671.8 2671.8 2671.8 2671.8 2671.8

Table 4.5 Ay, variations withm, = 10%, ¢ = 0.001 in AS6461

Ay 107t | 5-1072 1072 ] 5.-1073 1073
iterations 87 119 573 1394 6145
TE-violation 0 0 0 0 0
Gain(DisMR) 9648.53| 9648.53| 9648.53| 9648.53| 9648.53
Gain(Static — M R) | 9648.53| 9648.53| 9648.53| 9648.53| 9648.53

Afim = 1072,

4.4.3 Applied in Realistic Topologies

In this section, we evaluate the performance of DisMR in ghrealistic
topologies, Abilene, GEANT and AS6461. For each topology,use an Equal Cost
Multipath Routing (ECMP)-like algorithm to calculate myiath routing for all OD
pairs. In order to accentuate DisMR’s performance, we oahysder the traffic traces
of the OD pairs with at least two multiple paths. Table 4.4 dnsl compares the
performance of DisMR with different choices of migratiorieaA ;;,, in Abilene and
AS6461 topologies/traces, where the fixed migration ttokeshsed in this section is
1000 (¢ = 1073, m = 10°) and the TE-constraint i&,,,, = 0.9. Consistent with
4-node topology, DisMR with smalled ;;, incurs less TE-violation but with longer
convergence time, while DisMR with largex;, incurs more TE-violation but with
shorter convergence time. The same property could be asenvGEANT network
topology.

Figure 4.4 shows the real-time TE-violation and sum of theyhts changes of
DisMR using GEANT network/trace. The TE-violation valualsfined as the absolute
value abové/,,.,. ForA;,, = 1073, DisMR has nearly zero TE-violation but converges
to the equilibrium state slowly (e.g., 5083 iterations)s@dthe system oscillation (sum
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of the weights changes) is quite low (e.g., see Figure 4.4(®n the contrary, for
Ay, = 5 - 1072, DisMR has more TE-violation and higher system oscillatimr
faster converge time (e.g., 1480 iterations). To conclati¢he simulation results using
realistic topologies/traces show that the measurement gfaDisMR is close to the
maximum achievable gain using offline, centralized MeasuiRg which is denoted as
“Static-MR" in the tables.

4.4.4 Applied in Dynamic Traffic Scenario

In this section, we compare the performance of DisMR withisi@entralized
MeasuRouting in dynamic traffic scenario. We conductedeh®geriments using
GEANT topology with the traffic snapshots on Apirl 11 and weawhe the traffic
patterns in every 30 minutes based on the traces in [3]. HetacSIR consistently
uses the same traffic splitting strategy based on the itiéitiic snapshot (00:30), while
DisMR will adaptively adjust its traffic splitting policy wh the new traffic pattern.
Figure 4.5 shows the real-timeax TE-violations and the changes of measurement gain
for DisMR and Static-MR in GEANT network/trace. InitialligisMR has similar gain
as Static-MR after it reaches equilibrium state (00:38)iguFe 4.5(a). We observed that
the measurement gain of Static-MR decreases a lot wherctpaffiern changed. When
the time interval increases (03:30), the degradation besmavere but DisMR can still
outperform Static-MRe.qg.,2==" =~ 11.7%). In Figure 4.5(b), both DisMR and Static-

1.

MR have large TE-violation when the traffic suddenly chang&sDisMR can quickly

improve its TE-violation in short period of timeompared to Static-MR (e.g., up to
% ~ 100X at time (03:00)) In brief, DisMR has improved higher measurement
gains and much lower TE-violations compared to static, reéimeéd MeasuRouting in

dynamic traffic scenario.

4.5 Related Work

Previous work on network-wide traffic measurement mosttyig®d on solving
monitor placement problem for fixed traffic characterigtiusnitoring objectives [15,
20, 72]. [20] defines utility functions for the sampled traffand maximize the overall
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utility with limited operation/deployment cost. [15] impres upon [20] by performing
a more rigorous analysis to indicate the convergence of aayistic solution. Research
efforts also exist that implicitly involve distributed mior placement, so as to detect
cases such as DDoS [9], SLA [68] and global iceberg [77]. j®jposes Successive
c-Optimal design to optimize the deployment and samplitg oélarge IP networks, in
order to better estimate traffic matrix.

Most recently, MeasuRouting paradigm [63] was proposed sisa traffic
monitoring for dynamically-changing traffic characteristics by ifiggntly re-routing
interested traffic sub-populations over the pre-deployezhitars However it is
modeled as linear programming problem, ancequires the existence of centralized
controller and offline analysis to find the optimal re-rogtistrategies for every
router, which is unpractical in production IP networkél/e introduce selfish routing
into MeasuRoutingproblem and define a new routing game based on a novel cost
function tode-centralize MeasuRoutingPreviously, REPLEX [32], TeXCP [46] and
MATE [28] have been proposed as dynamic TE solutions to mizerthe path latency
or the link utilizationby adjusting the split ratios of traffic among the paths with t
same ingress/egress nodeshese algorithms take advantage of multiple paths in a
network (e.g., MPLS/ECMP multiple paths). In contrast terth our introduced link
cost function is a novel combination of link measurementitgbéind TE constraint.
Moreover our path cost is defined as the product of link casttead of traditional

summation operation.

4.6 Conclusion and Future Work

In this chapter we propose a distributed measurement-avaifie engineering
protocol, DisMR, based on game-theoretic rerouting politly achieves the decent
balance between measurement-aware routing and traffio@grgng objectives by the
introduction of a new routing game and distributed routimgteol. We show that
DisMR guarantees both a provable Nash equilibrium and acastergence without
significant oscillations. The measurement gain of DisMRhat ¢quilibrium state is
close to the maximum achievable gain calculated by offlef@alized MeasuRouting
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in static traffic case. DisMR also improves the measuremaintand TE-violationof
MeasuRouting in dynamic traffic scenar\e plan to perform further simulation-based
analysis on other large networks topologies since the gragpan delay of sub-path
cost information might influence the convergence of DisMRe &0 tend to explore
different kinds of penalty functions in DisSMR to minimizeglPOA in theory. We would
like to study the impacts of asynchronous routing-updatéskdpath costs which could
be solved similarly as in [28]. Future work also involvesemding DisMR to support
flows with different measurement/sampling importance.

Chapter 4, in part, is a reprint of the material as it appeaais the following
publications:

e Chia-Wei Chang, Han Liu, Guanyao Huang, Bill Lin, and ChezeNChuah,
“Distributed Measurement-Aware Routing: Striking a Balaietween Measure-
ment and Traffic EngineeringlEEE 31st International Conference on Computer
Communications (INFOCOMPrlando, Florida, March 25-30, 2012.

Chapter 4, in full, has been submitted for publication ofenial as it may appear
in IEEE Transactions on Networking (ToM), Chia-Wei ChanganHLiu, Guanyao
Huang, Bill Lin and Chen-Nee Chuah, “ Distributed Measuratm@vare Routing for
Multiple Classes of Flows”. The dissertation author wasghmary investigator and
author of the papers.



Chapter 5
Conclusion and Future Work

The network-wide traffic monitoring era has reached a phdserevefficient
gain-driven routing-assisted monitoring mechanisms asviiable for network op-
erators to facilitate fine-grained flow-level measuremédatg., [17-19, 23]), coupled
with the fast-changing Internet traffic landscape and largédfic volume. This
dissertation tackles the critical problem of gain-drivesuting-assisted monitoring
mechanisms design especially suited for network-widdi¢raionitoring applications
where maximizing the overall traffic monitoring utility isioprimary design objective.
We propose two different approaches to achieve this gostl, five centralized approach,
by solving two-step optimization problems to find the bestnitay placement and
dynamic routing strategy to achieve maximum measuremality utf the network
and then distribute the measurement workload across ipatic monitors without
compromising on the overall traffic measurement gain of #tevark by using disjoint
flow sampling. Second, the distributed method, by proposingeasurement-aware
traffic engineering protocol based on a game-theoretiouég policy that attempts
to optimally utilize existing monitor locations for maximing the traffic measurement
gain of the network while ensuring that the traffic load digttion across the network
satisfies some traffic engineering constraint. A novel costtion that reflects both
the measurement capabilities of monitors (e.g., packepbagirates) and the traffic
engineering (TE) constraint on each link is applied. Botésthapproaches provide
substantial improvements in traffic measurement gain ohéteork and load-balanced
measurement capability across monitors over existingisolst

117



118

A key challenge in exploring and evaluating our proposedingdassisted
monitoring mechanisms is to accurately model the traffit tieds to be measured by
the network operator. The traffic is further divided into adpulations (e.g., flowset)
and we need to differentially route them for measurememiq@se based on their relative
importance and the measurement capabilities (e.g., paakgtling rates) of monitoring
devices deployed on the links. We study our routing-assistenitoring mechanisms
with flows whose sampling importance and sizes are syntibtigenerated. Each flow
is assigned to a flowset and all flows within the same flowset @& identical routing
strategy (i.e, same routes). If each flow is assigned to auerflqwset, we can have the
greatest degree of freedom to differentially route thefitram finest granularity. This
will allow each flow to be routed independently to maximize theasurement gain of
the network. However, it is not scalable from both compotai and implementation
perspectives. In this thesis, we only hayBowsets per OD-pair traffic. Assume each
OD-pair traffic hasL flows whereL>q and thus each flow is assigned to one ofgits
flowsets. There can be multiple ways of making such an asgghnHere we assign
an equal number of flows to each of théowsets per OD-pair. For the traffic demand
(size) of each flowset, we first generate aggregate traffiadéenfor each OD-pair by
using Gravity Model [55] and then divided ky It was observed that the way traffic
aggregates (e.g., OD-pair traffic) are decomposed intoraktraffic sub-populations
(e.g., flowsets) has an impact on the performance of rowgsgsted traffic measurement
mechanisms. The same observation could be also found in [63]

The properties of flow importance for each flowset in this ihe@se modeled
in a very generic way such that our framework can be applied tade variety of
measurement scenarios. We assume that the dynamic traffisitmement changes will
stay for long time enough for us to re-optimize monitor ptaeat and flowset routing
in centralized MMPR case Therefore we manipulate the flow importance in flowset
1 to be greater than the flowseétl per OD-pair traffic wheré = 1---(¢-1). We
also observed that the diversity of flow importance per OD-pas a relation to the
performance of our proposed centralized MMPR frameworle riieasurement gain
increases tremendously if the diversity of flow importants® ancreases. We plan to

'We later relax this assumption in distributed routing-stesl monitoring mechanism case.
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explore such phenomenon in much greater detail. Meanwhde, to define proper
measurement gain function to reflect different measurentasks/applications remains
open problem (i.e., here we simply use flow importance fagtfiow size) .

The other important factor to affect the performance of awppsed routing-
assisted traffic monitoring mechanisms is the routing erdprotocol determined to
use. For example, a routing protocol that strictly routedfitr between an OD-pair
traffic along only with the equal cost multi-path (ECMP) mag\yide less opportunities
to re-route important flows through monitors and resultegaor measurement gain
improvement. In our centralized routing-assisted apgrqdMPR), the centralized
routing controller, is able to detour flows away from the séstrpath as long as it works
within the constraints of existing intra-domain traffic @mggring (TE) operations. Such
dynamic forwarding mechanism can be implemented usingrarogable routers [13,
57,59]. Besides this, how to dynamically configure routiadplé entries is also
important. For our distributed approach (DisMR), we asswwyrechronized routing-
updates of link/path cost information. This informatiorckange resembles a distance
vector routing protocol. The impacts of asynchronous updsgue could be solved
similarly in [28] where we defer as our future work. Furthene, it would be interesting
to treat sampling rate as another degree of freedom (e.goragmsed in [15, 20]),
to let monitors dynamically adjust them depending on the amof traffic passing
through. For the distributed approach, these informatsmbe reflected in our proposed
novel cost function to drive flows to be attracted to the limkth better measurement
capabilities (e.g., higher packet sampling rates) whileidimg TE violations. We
also tend to explore different kinds of penalty functionsickhare used to reflect TE
violations to get more similar traffic measurement gain & tietwork as centralized
MeasuRouting approach (i.e., minimize the price of angife®A) in theory). Finally,
the implementation of both our proposed centralized anttilliged routing-assisted
traffic monitoring mechanisms can be leveraged by using Bljpgn[59] or any other
programmable routing platform.
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