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Abstract

Noncommutative generalized Brownian motions with multiple processes

by

Adam Benjamin Merberg

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Dan-Virgil Voiculescu, Chair

This thesis compiles several results under the general theme of noncommutative generalized
Brownian motion with multiple processes.

In our introduction, Chapter 1, we motivate our results with some background mate-
rial. Specifically, we provide brief introductions to classical Brownian motion and noncom-
mutative probability theory, and then we connect these two subjects with a discussion of
noncommutative Brownian motions.

In Chapter 2, we expand upon the framework for generalized Brownian motions with
multiple processes established by Guţă [Guţ03]. In particular, we discuss symmetric Fock
spaces, colored pair partitions, and colored broken pair partitions. We then prove multidi-
mensional generalizations of some results which were proven by Guţă and Maassen [GM02a]
in the case of a single process.

In Chapter 3, we review Thoma’s Theorem on characters of the infinite symmetric group
S∞ and Vershik and Kerov’s factor representations of symmetric groups [VK82]. We then
recall Bożejko and Guţă’s work on generalized Brownian motions with one process associ-
ated to the infinite symmetric group [BG02], focusing on their formula for the joint moments
associated to these generalized Brownian motions. We then proceed to consider generalized
Brownian motions indexed by a two-element set arise from tensor products of factor rep-
resentations of the infinite symmetric group S∞, providing a simple formula for the joint
moments in this context.

In Chapter 4, we consider generalized Brownian motions connected to spherical represen-
tations of the pair (S∞× S∞, S∞). By defining a directed graph associated to a two-colored
pair partition, we state and prove a formula for the joint moments connected with these
generalized Brownian motion.

In Chapter 5, we continue the study of the generalized Brownian motions related to
spherical functions of infinite symmetric groups, specializing to a one-parameter family of
the spherical representations. In this setting, we show that the generalized Brownian motions
give bounded operators, and we investigate related von Neumann algebras.
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Finally, in Chapter 6, we generalize Guţă’s [Guţ03] q-product to a qij product, where i
and j range over an arbitrary index set I. We prove a central limit theorem in the spirit of
that proven by Guţă [Guţ03].
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Chapter 1

Introduction

1.1 Brownian motions

The study of classical Brownian motion has its origins in the world of physics. Einstein
introduced the concept to explain the random motion of small particles suspended in a fluid,
naming the phenomenon after the botanist Robert Brown, who had observed the motion of
grains of pollen in water under a microscope.

The probabilistic model of a one-dimensional Brownian motion, sometimes called a
Wiener process, is a real-valued stochastic process Bt having the following properties:

1. If t0 < t1 < . . . < tn then the increments B(t0), B(t1)−B(t0),. . . , B(tn)−B(tn−1) are
independent.

2. If s, t ≥ 0 then B(s+ t)− B(s) is a centered Gaussian random variable with variance
t.

3. The map t 7→ Bt is continuous with probability 1.

There is also a notion of multidimensional Brownian motion with independent processes
(Bj(t))j∈I indexed by a set I, with each individual process being a (one-dimensional) Brow-
nian motion.

Over the years, a number of realizations of classical Brownian motion have been devel-
oped. One construction, credited to Lévy [Lév40] and Ciesielski [Cie59] uses random series
with respect to an orthonormal basis in L2([0, 1]) to construct a Brownian motion on [0, 1].
Another construction uses an invariance theorem of Donsker [Don51] to construct Brownian
motion as a limit of linearly interpolated random walks. A detailed treatment of classi-
cal Brownian motion, including these and several additional constructions, can be found in
[SP12].
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1.2 Noncommutative probability theory

Noncommutative probability theory (c.f. [VDN92]) is an analog of classical probability
theory in which multiplication of random variables is not necessarily commutative. A non-
commutative probability space is a pair (A, ϕ) where A is a ∗-algebra and ϕ : A → C is
a positive unital linear functional. The elements a ∈ A are called random variables, and
the linear functional ϕ takes the place of the expectation functional of classical probability
theory.

Given a noncommutative probability space (A, φ), for elements X1, . . . , Xn ∈ A the
distribution µ of a finite family (fι)ι∈I is the linear functional on C 〈Xι, X

∗
ι |ι〉, the algebra of

noncommutative polynomials in the variables {Xι, X
∗
ι |ι ∈ I}, defined by µ(P ) = φ(h(P )).

Here h : C 〈Xι, X
∗
ι |ι〉 → A is the unique algebra homomorphism such that h(Xι) = fι and

h(X∗ι ) = f ∗ι . The values of µ on monomials are called the moments of the family.
It is common to study noncommutative probability with some additional assumptions on

the algebra A and the functional ϕ. For instance, A may be assumed to be a von Neumann
algebra, and ϕ weakly continuous, in which case the pair (A, ϕ) is called a W ∗ probability
space. The following example establishes classical probability spaces as a special case of
noncommutative probability spaces.

Example 1. Suppose that (Ω,F , P ) is a classical probability space, i.e. Ω is a set, F is
a σ-field (σ-algebra) on Ω, and P is a measure on the space (Ω,F) such that P (Ω) = 1.
Then L∞(Ω, P ) is a von Neumann algebra acting on the Hilbert space L2(Ω, P ) by pointwise
multiplication. Letting E denote expected value with respect to P , the pair (L∞(Ω), E)
is a W ∗-probability space. Moreover, the classical moments of a family (fι)ι∈I of bounded
random variables are the same as the moments in the noncommutative sense just described.

As should be clear from the example, we do not disallow the possibility that a noncom-
mutative probability space be commutative. That is, we use the word “noncommutative” to
mean “not necessarily commutative.”

The most important noncommutative probability theory is free probability, which was
initiated by Voiculescu in the 1980s. Free probability is the study of noncommutative prob-
ability theory with a notion of independence based on the free product. Many important
notions of classical probability theory, ranging from the central limit theorem to entropy find
counterparts in classical probability theory. We refer the reader to the book [VDN92] for an
excellent introduction to free probability theory.

1.3 Noncommutative generalized Brownian motions

Hudson and Parthasarathy in [HP84] constructed a “Boson quantum Brownian motion,”
an operator-valued process whose moments coincided with those of classical Brownian mo-
tion. The coincidence of moments ensures the existence of a unitary equivalence between
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the operator-valued process and the classical processes acting by pointwise multiplication on
a suitable L2 space.

The operator-valued processes of Hudson and Parthasarathy act on the Bosonic Fock
space of the complex Hilbert space L2(R+,C). The Boson quantum Brownian motion arises
as a sum of creation and annihilation operators associated to χ[0,t] on the Bosonic Fock
space. That is, if the creation and annihilation operators associated to f ∈ L2(R+,C) on the
Bosonic Fock space are denoted by a∗(f) and a(f), respectively, then the Boson quantum
Brownian motion is given by t 7→ a∗(χ[0,t]) + a(χ[0,t]).

The independence of increments in the operator-valued processes can be seen as a conse-
quence of the orthogonality of the characteristic functions on disjoint intervals. However, the
definition of continuity with probability 1 makes explicit reference to the underlying prob-
ability space, so it is not entirely clear how to translate this axiom to the operator setting.
One effort to define a notion of continuity for operator processes can be found in [ Luc08],
but we will not make use of it here.

The Hudson-Parthasarathy Boson quantum Brownian motion finds a natural analog in
the setting of free probability, with the full Fock space replacing the Bosonic Fock space.
Voiculescu showed in [Voi85] that the sum of creation and annihilation operators on the full
Fock space are distributed according to the Wigner semicircle law, which is the free analog
of the classical Gaussian distribution. Considering the sum of full Fock space creation and
annihilation operators associated to the characteristic function χ[0,t] gives a free analog of
classical Brownian motion.

Bożejko and Speicher initiated the study of noncommutative generalized Brownian mo-
tions, introducing operators satisfying an interpolation between Fermionic and Bosonic com-
mutation relations [BS91]. Specifically, for q ∈ [−1, 1] and a complex Hilbert space H, they
constructed a q-deformed Fock space Fq(H) with creation operators c∗(f) and annihilation
operators c(f) for f ∈ H satisfying the relations

c(f)c∗(g)− qc∗(g)c(f) = 〈f, g〉 · 1. (1.1)

The case q = 0 gives the creation and annihilation operators on the full Fock space and
the case q = 1 gives creation and annihilation operators on the Bosonic Fock space. Con-
sequently, one can view the sum of creation and annihilation operators on the q-Fock space
as a generalization of the classical and free Brownian motions. These q-Brownian motions
were investigated in detail in [BKS97].

Subsequently, Bożejko and Speicher in [BS96] developed a broader framework of gener-
alized Brownian motion which incorporated their q-Brownian motion. In this setting, one
considers the algebra obtained by applying the Gelfand-Naimark-Segal construction (c.f.
[Dav96, Theorem I.9.6]) to the free tensor algebra of a real Hilbert space H with certain
states, called Gaussian states, associated to a class of functions, called positive definite, on
pair partitions via a so-called pairing prescription.

Guţă and Maassen further explored this notion of generalized Brownian motion [GM02a,
GM02b]. They showed that Gaussian states ρt can be instead characterized by sequences of
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complex Hilbert spaces (Vn)∞n=1 with densely defined maps jn : Vn → Vn+1 and representa-
tions Un of the symmetric group Sn on Vn satisfying an intertwining relation, data which give
rise to a symmetric Fock space with creation and annihilation operators. They also provided
an algebraic characterization of the notion of positive definiteness for a function t on pair
partitions. Separately in [GM02b], they examined a class of Brownian motions arising from
the combinatorial notion of species of structure.

Bożejko and Guţă [BG02] considered a special case of the generalized Brownian motion
of Guţă and Maassen arising from II1-factor representations of the infinite symmetric group
S∞ constructed by Vershik and Kerov [VK82]. Lehner [Leh05] considered these generalized
Brownian motions in the context of exchangeability systems, which generalize various notions
of independence and give rise to cumulants analogous to the well-known free and classical
cumulants. Recent work of Avsec and Junge [Avs13] offers another point of view on the
subject of noncommutative Brownian motion.

In [Guţ03] Guţă extended the notion of generalized Brownian motion to multiple pro-
cesses indexed by some set I. He went on to define for −1 ≤ q ≤ 1 a q-product of generalized
Brownian motions interpolating between the graded tensor product previously considered by
Mingo and Nica [MN97] (q = −1), the reduced free product [Voi85] (q = 0) and the usual
tensor product (q = 1). He also showed that this q-product obeys a central limit theorem as
the size of the index set I grows.

In this thesis, we explore certain additional questions pertaining to the I-indexed gener-
alized Brownian motions. We will begin by establishing the basic notions, and, as a warmup,
considering a simple case of a generalized Brownian motion arising from a tensor product
of representations of the infinite symmetric group S∞. We compute the functions on pair
partitions associated to the Gaussian states in this context. We then proceed to consider
the generalized Brownian motions associated to spherical representations of the Gelfand pair
(S∞ × S∞, S∞). Here again we give a combinatorial formula for the function on pair parti-
tions arising from the associated Gaussian states. In the course of doing so we generalize the
notion, introduced by Bożejko and Guţă [BG02], of a cycle decomposition of a pair partition
to pair partitions with two colors. We then specialize to a specific case related to a countable
family of spherical representations of the Gelfand pair (S∞ × S∞, S∞) which gives bounded
operators. We conclude by generalizing Guţă’s q-product of generalized Brownian motions
to a qij product, where i, j ∈ I and showing that a central limit theorem holds when qij = qji
and the qij are periodic in both i and j.
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Chapter 2

Noncommutative generalized
Brownian motions with multiple
processes

We begin by establishing the notion of a noncommutative generalized Brownian motion
with multiple processes. Our framework for generalized Brownian motion with multiple
processes is slightly more general than that defined in [Guţ03]. However everything in this
chapter is in the spirit of results found in [Guţ03] and [GM02a].

Throughout the chapter, we assume that I is some fixed index set. In later chapters we
will specialize to specific index sets.

Notation 1. We will make extensive use of notations for integer intervals, which appear
frequently in the combinatorial literature:

[m,n] := {m,m+ 1, . . . , n− 1, n};
[n] := [1, n] = {1, 2, . . . , n− 1, n}.

(2.1)

for m,n ∈ Z.

Notation 2. For a real Hilbert space K, AI(K) will denote the quotient of the free unital
∗-algebra with generators ωi(h) for h ∈ K and i ∈ I by the relations

ωi(cf + dg) = cωi(f) + dωi(g), ωi(f) = ωi(f)∗ (2.2)

for all f, g ∈ K, i ∈ I and c, d ∈ R.

Notation 3. If H is a complex Hilbert space, CI(H) denotes the free unital ∗-algebra with
generators ai(h) and a∗i (h) for all h ∈ H and i ∈ I divided by the relations

a∗i (λf + µg) = λa∗i (f) + µa∗i (g), a∗i (f) = ai(f)∗, (2.3)
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Figure 2.1: The {−1, 1}-indexed pair partition (V , c) where V is the pair partition
{(1, 4), (2, 5), (3, 6)} and c(1, 4) = −1, c(3, 6) = −1 and c(2, 5) = 1. Solid lines represent the
color −1 and dotted lines denote the color 1.

for all f, g ∈ H, i ∈ I, and λ, µ ∈ C. We will also use the notations a1
i (h) := ai(h) and

a2
i (h) := a∗i (h).

Consistent with the notation used in [GM02a], we will assume that the inner product on
a complex Hilbert space is linear in the second variable and conjugate linear in the first.

Definition 1. If P is a finite ordered set, let P2(P ) be the set of pair partitions of P . That
is,

P2(P ) :=

{
{(l1, r1), . . . , (lm, rm)} : lk < rk,

n⋃
k=1

{lk, rk} = P, {lp, rp} ∩ {lq, rq} = ∅ if p 6= q

}
.

(2.4)
The set of I-indexed pair partitions, PI2 (P ) is the set of pairs (V , c) with V ∈ P2(P ) and
c : V → I. We will sometimes refer to the elements of I as colors and the function c as the
coloring function. If P ′ is another finite ordered set and α : P → P ′ is an order-preserving
bijection, then α induces a bijection PI2 (P ) → PI2 (P ′). Considering all order-preserving
bijections gives an equivalence relation on the union of PI2 (P ) over sets of cardinality 2m. Let
PI2 (2m) be the set of equivalence classes under this relation, and let PI2 (∞) :=

⋃∞
n=1PI2 (2m).

We can create a visual representation of an I-colored pair partition by connecting the
pairs (lj, rj) by a path and labeling that path with the color c(lj, rj). When the number of
colors is small, we may find it convenient to use different line styles to indicate colors, instead
of an explicit label. Figure 2.1 gives the diagram for a simple example with I = {−1, 1}.

It is clear that the coloring function c : V → I defines a function c : [2m]→ I. It should
not create confusion to refer to this function by the same name c. Note that c(l) = c(r) when
(l, r) ∈ V . We will use these two descriptions of the coloring function c interchangeably.

Definition 2. A Fock state on the algebra CI(H) is a positive unital linear functional
ρt : CI(H)→ C which for some t : PI2 (∞)→ C satisfies

ρt

(
m∏
k=1

aekik (fk)

)
=

∑
(V,c)∈PI2 (m)

t(V , c)
∏

(l,r)∈V

〈fl, fr〉 δilc(l,r)δir,c(l,r)Beler , (2.5)
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where for k ∈ [m], fk ∈ H the ek are chosen from {1, 2} and ik ∈ I.

B :=

(
0 1
0 0

)
. (2.6)

Definition 3. A Gaussian state onAI(K) is a positive unital linear function ρ̃t : AI(H)→ C
which for some t : PI2 (∞)→ C satisfies

ρ̃t

(
m∏
k=1

ωik(fk)

)
=

∑
(V,c)∈PI2 (m)

t(V , c)
∏

(l,r)∈V

〈fl, fr〉 δil,c(l,r)δir,c(l,r), (2.7)

any fk ∈ H (k ∈ [m]) and ik ∈ I.

Remark 1. If K is a real Hilbert space, then there is a canonical injection AI(K)→ CI(KC)
given by

ωi(h) 7→ ai(h) + a∗i (h), (2.8)

where KC denotes the complexification of K. Considering CI(KC) as a subalgebra of AI(K),
the restriction of a Fock state ρt on CI(KC) to AI(K) is a Gaussian state.

While we can use (2.7) and (2.5) to define linear functionals ρ̃t and ρt for any choice of
t : PI2 (∞)→ C, these linear functionals are not always positive. This leads to the following
definition.

Definition 4. A function t : PI2 (∞) → C is positive definite if ρt is a positive linear
functional on CI(K) for any complex Hilbert space K.

Remark 2. Our definition of a positive definite function t : PI2 (∞) → C is modeled after
the definition made for a single process in [GM02a] and is not obviously the same as the
definition in [Guţ03]. However, we will see in Theorem 3 that the definitions are equivalent.

Suppose that for each n : I → N ∪ {0}, Vn is a complex Hilbert space with unitary
representation Un of the direct product group

Sn :=
∏
b∈I

Sn(b), (2.9)

If H is a complex Hilbert space, then the Fock-like space is given by

FV (H) :=
⊕
n

1

n!
Vn ⊗s H⊗n. (2.10)

Here H⊗n means
H⊗n :=

⊗
b∈I

H⊗n(b), (2.11)
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and n! means
∏

b∈I n(b)!, and the factor 1
n!

modifies the inner product. Also, we set H⊗0 =
CΩ for some distinguished unit vector Ω. The notation ⊗s denotes the subspace of vectors
which are invariant under the action of Sn given by Un⊗ Ũn, where Ũn is the natural action
of Sn on H⊗n. That is, Ũn(π) permutes the vectors according to π. The projection onto the
subspace 1

n!
Vn ⊗s H⊗n is given by

Pn :=
1

n!

∑
σ∈Sn

U(σ)⊗ Ũ(σ). (2.12)

For v ∈ Vn and f ∈ Hn we denote by v ⊗s f the vector Pn(v ⊗ f)
To define creation and annihilation operators on the Fock-like space, we will also require

densely defined operators jb : Vn → Vn+δb (where δb(b
′) = δb,b′) satisfying the following

intertwining relations:
jbUn(σ) = Un+δb(ι

(b)
n (σ))jb, (2.13)

where ι
(b)
n is the natural embedding of Sn into Sn+δb . Note that we have used the same

notation for the maps Vn → Vn+δb for different n, but the choice of n should be clear from
context so confusion should not result. We will call the maps jb the transition maps for our
Hilbert spaces Vn.

Given transition maps, we can define creation and annihilation operators on the Fock-like

space FV (H) for each b ∈ I and each h ∈ H. Let
(
r

(n)
b

)∗
(h) be the operator(

r
(n)
b

)∗
(h) : H⊗n → H⊗n+δb (2.14)

which acts as right creation operator on H⊗n(b) and identity on H⊗n(b′) for b′ 6= b. Let r
(n)
b (h)

be the adjoint of
(
r

(n)
b

)∗
(h). If n(b) 6= 0, then the annihilation operator aV,jb (f) is defined

on the level n component of the Fock-like space by

aV,jb (f) : Vn ⊗s H⊗n → Vn−δb ⊗s H⊗(n−δb)

aV,jb (f) : v ⊗s
⊗
b∈I

h
(b)
1 ⊗ · · · ⊗ h

(b)
n(b)

7→
n(b)∑
k=1

〈f, hk〉
n(b)

j∗b v ⊗s
⊗

b′∈I\{b}

(
h

(b′)
1 ⊗ · · · ⊗ h(b′)

n(b′)

)
⊗ h(b)

1 ⊗ · · · ⊗ ĥ
(b)
k ⊗ · · · ⊗ h

(b)
n(b)

.

(2.15)

If n(b) 6= 0, then aV,jb (f) (Vn ⊗s H⊗n) = 0.
The creation operator (aV,jb )∗(h) is the adjoint of aV,jb (h), and its action on a vector v⊗s f

is given by
(aV,jb )∗(h) (vn ⊗s f) = (n(b) + 1)(jbvn)⊗s (rnb )∗ (h)f . (2.16)
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We denote by CV,j(H) the ∗-algebra generated by the operators aV,jb (f) and (aV,jb )∗(f) for
f ∈ H, and b ∈ I.

There is a representation νV,j of CI(H) on the Fock-like space FV (H) satisfying

νV,j : ab(f) 7→ aV,jb (f) and a∗b(f) 7→ (aV,jb )∗(f) (2.17)

for all b ∈ I and f ∈ H. We will usually identify X ∈ CI(H) with its image νV,j(X).
We will sometimes write ab(f) and a∗b(f) for the annihilation and creation operators

aV,jb (f) and
(
aV,jb

)∗
(f). We will also use the notation aV,j,1b (f) or simply a1

b(f) for aV,jb (f)

and likewise aV,j,2b (f) or simply a2
b(f) for (aV,jb )∗(f).

The following is an I-indexed generalization of Theorem 2.6 of [GM02a].

Theorem 1. Let I be an index set and H a complex Hilbert space. Let (Un, Vn) be repre-
sentations of Sn with maps jb : Vn → Vn+δb satisfying the intertwining relation (2.13). Let
ξV ∈ V0 be a unit vector. The state ρV,j on CI(H) defined by

ρV,j(X) = 〈ξV ⊗s Ω, X(ξV ⊗s Ω)〉 (2.18)

is a Fock state. That is, there is a positive definite function t such that ρV,j = ρt.

The proof is very similar to the proof of Theorem 2.6 of [GM02a], but we include it for
completeness.

Proof. Let H be an infinite-dimensional complex Hilbert space, and let {fk}∞k=1 be an or-
thonormal basis for H. Also let V = {(lk, rk) : k ∈ [n]} with lk < rk for 1 ≤ k ≤ n and
lk < lk′ for k < k′.

Define

t((V , c)) = ρV,j

(
n∏
k=1

aekbk (fk)

)

=

〈
ξV ⊗s Ω,

(
n∏
k=1

aekbk (fk)

)
(ξV ⊗s Ω)

〉 (2.19)

where bk and ek are chosen as follows. Each k is an element of one pair (li, ri) ∈ V for some
i. If k = li, we let ek = 1, and if k = ri we let ek = 2. In either case, we let bk = c(li, ri).

For A ∈ B(H) and b ∈ I, define the operator dΓbV (A) on FV (H) by

dΓbV (A) :v ⊗s
⊗
b′∈I

hb′,1 ⊗ · · · ⊗ hb′,m′b 7→

mb∑
k=1

v ⊗s

(⊗
b′ 6=b

hb′,1 ⊗ · · · ⊗ hb′,mb′

)
⊗ (hb,1 ⊗ · · · ⊗ Ahb,k ⊗ · · · ⊗ hb,mb) .

(2.20)
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The operators dΓbV (A) satisfies the commutation relations[
ab′(f), dΓbV (A)

]
= δb,b′ab′(A

∗f) and
[
dΓbV (A), a∗b′(f)

]
= δb,b′a

∗
b′(Af). (2.21)

We write aeb,k for aV,j,eb (fk), and denote by |fi0〉〈fi| the rank-one operator X on H which
is 0 on the orthogonal complement of fi and such that Xfi = fi0 . Applying (2.21) with
A = |fi0〉〈fi|, we have when ik 6= i0[

dΓbV (|fi0〉〈fi|), a
ek
b,ik

]
= δik,i · δek,2 · a∗b,i0 (2.22)

Consider a vector of the form φ = ae1b1,i1 · · · a
en
bn,in

(ξV ⊗sΩ). Choose i0 different from i1, . . . , in,
so that ab,i0φ = 0 for any b ∈ I. Applying (2.22),

ab,iφ =
[
dΓbV (|fi0〉〈fi|), a

ek
b,ik

]
φ = ab,i0dΓbV (|fi0〉〈fi|)φ (2.23)

Applying (2.22) repeatedly now yields

ab,iφ =
n∑
k=1

δi,ikδek,2δb,bk · ab,i0

(
k−1∏
r=1

aerbr,ir

)
· a∗b,i0

(
n∏

r=k+1

aerbr,ir

)
(ξV ⊗s Ω) (2.24)

Considering a monomial in creation and annihilation operators
∏n

k=1 a
ek
bk,ik

, the theorem
follows by applying (2.24) for each annihilation operator in the product with a new index
i0.

There is also the following partial converse.

Theorem 2. Let H be a separable, infinite-dimensional complex Hilbert space, and let I be a
countable index set. Let t be a positive definite function on I-indexed pair partitions. Then
there exist Hilbert spaces Vn with representations Un of Sn and densely defined transition
maps jb : Vn → Vn+δb for b ∈ I satisfying (2.13) and a unit vector ξV ∈ V0 such that the
GNS representation of (CI(H), ρt) is unitarily equivalent to (FV (H), CV,j(H), ξV ⊗s Ω).

Remark 3. If we are given complex Hilbert spaces Vn with representations Un of Sn and
maps jb : Vn → Vn+δb , then Theorem 1 gives a corresponding positive definite function
t : PI2 (∞)→ C. Applying Theorem 2 gives complex Hilbert spaces V ′n with representations
U ′n of Sn and transition maps j′b : V ′n → V ′n+δb

. We will see in Example 2 that the Hilbert
spaces V ′n need not be the same as the original Hilbert spaces Vn.

The proof of Theorem 2 is very similar to the proof of Theorem 2.7 in [GM02a] (though
we are only able to prove it for infinite-dimensional H). Regardless, we will include the proof
of the I-indexed theorem here for the sake of completeness.

Proof of Theorem 2. Choose an orthonormal basis {fk,b}k∈N,b∈I for H. Let Ft(H), Ct(H),
and Ωt be the complex Hilbert space, operator algebra, and distinguished unit vector of the
GNS construction of CI(H) with respect to the state ρt. We denote the image of ab(f) in
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Ct(H) by atb(f) and the image of a∗b(f) in Ct(H) by (atb)
∗(f). We will use the notation at,eb (f)

to mean (at)
∗
b (f) for e = 2 and atb(f) for e = 1. We will construct the complex Hilbert

spaces Vn as subspaces of Ft(H).
Suppose that for each function n : I → N∪{0} which is 0 at all but finitely many points

in I and each i ∈ I, we have an injective function αn,i : [n(i)]→ N and that αn,i(j) = αn′,i(j)
when j < n(i),n′(i).

Denote by Rα
n the set of the vectors of the form

at,e1b1
(fb1,i1) · · · a

t,e2p+|n|
b2p+|n|

(fb2p+|n|,i2p+|n|)Ωt, (2.25)

where |n| =
∑

b∈I n(b) satisfying the following conditions:

1. In the product at,e1b1
(fb1,i1) · · · a

t,e2p+|n|
b2p+|n|

(fb2p+|n|,i2p+|n|), a creation operator at,2b (fb,αb(j))

appears exactly once provided that 1 ≤ j ≤ n(b).

2. Among the remaining 2p operators in the product, there are p creation operators
(at,2bq (fbq ,lq))

p
q=1 and p annihilation operators (at,1bq (fbq ,lq))

p
q=1. Moreover, each annihila-

tion operator appears to the left of the corresponding creation operator in the product.

We also let V α
n be the span of the vectors in Rα

n. We define the map jαb′ : V α
n → V α

n+δb′
by

restricting the creation operator at,2b′ (fb′,αn,b′ (n(b′))) to the subspace V α
n of Ft(H). It follows

immediately from the definition of V α
n that the image of this restriction lies in V α

n+δb′
.

We define a unitary representation Uα
n of Sn on V α

n . Since ρt is a Fock state, it is invariant
under unitary transformations U on H in the sense that

ρt

(
n∏
k=1

aekbk (fbk,ik)

)
= ρt

(
n∏
k=1

aekbk (Ufbk,ik)

)
. (2.26)

Therefore, there is a unitary map Ft(U) given by

Ft(U) :
n∏
k=1

at,ekbk
(fbk,ik)Ωt 7→

n∏
k=1

aekbk (Ufbk,ik)Ωt. (2.27)

The map Ft(U) induces an automorphism on the algebra of creation and annihilation oper-
ators by

Ft(U)at,ekbk
(h)Ft(U

∗) = at,ekbk
(Uh). (2.28)

For σ ∈ Sn, let Uα
σ be the unitary operator on H which for each b ∈ I acts by permuting

{fb,αn,b(1), . . . , fb,αn,b(n(b))} according to σ and fixes fb,r when r > n(b). The map Uα
n : σ 7→ Uα

σ

is a unitary representation of Sn on V α
n .

Define ιn,i : [n(i)] → N by ιn,i(j) = j, and let Rn := Rι
n, Vn := V ι

n, jb := jιb, and let
Un := Uα

n . It follows from the definitions that these data satisfy the intertwining property
(2.13). We also define ξV := Ωt ∈ V0.
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We now show that (FV (H), CV,j(H), ξV ⊗s Ω) is unitarily equivalent to the GNS repre-
sentation of (CI(H), ρt). We will begin by showing that ρt = ρV,j. By Theorem 1, ρV,j is a
Fock state associated to some positive definite function t′ : PI2 (∞)→ C, so it will suffice to
show that t′ = t.

For the proof, we will also need to define for a unitary map U on H,

FV (U) : FV (H)→ FV (H)

v ⊗s

(⊗
b∈I

hb,1 ⊗ · · · ⊗ hb,n(b)

)
7→ v ⊗s

(⊗
b∈I

Uhb,1 ⊗ · · · ⊗ Uhb,n(b)

)
, (2.29)

for all v ∈ Vn. This induces an action on the creation and annihilation operators satisfying

FV (U)aeV,j(f)FV (U∗) = aeV,j(Uf) (2.30)

For αn,i as before, define

Ṽ α
n := span{v ⊗s

⊗
b∈I

fb,α(1) ⊗ · · · ⊗ fb,α(n(b))}. (2.31)

Define an isometry Tn : Vn → FV,j(H) by

v 7→ v ⊗s
⊗
b∈I

fb,1 ⊗ · · · ⊗ fb,n(b). (2.32)

Let Uα,n be a unitary map on H which permutes the basis vectors fb,j such that Uαfn,j =
fn,α(j) whenever 1 ≤ j ≤ n(b). Define a map Tαn : V α

n → Ṽ α
n by

Tαn := FV(Uα,n)TnFt(U
∗
α,n). (2.33)

This map does not depend on the choice of Uα,n permuting the basis vectors according to α.
It follows immediately from the definitions that the diagram

Vn
Tn−−−→ Ṽnyjb y(aV,jb )∗(fb,n(b)+1)

Vn+δb

Tn+δb−−−→ Ṽn+δb

(2.34)

is commutative, whence the diagram

V α
n

Tαn−−−→ Ṽnαyjαb y(aV,jb )∗(fb,αn,b(n(b)+1))

V α
n+δb

Tαn+δb−−−→ Ṽn+δb

(2.35)
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also commutes. A similar argument gives a corresponding commutative diagram for the
annihilation operators, and this implies the equality of the states ρt and ρV,j, which implies
t = t̃.

Finally, we must prove that the vacuum vector ΩV := ξV ⊗ Ω is cyclic for CI(H). It will
suffice to show that for any n, any v ∈ Rn and any vectors h1, . . . , hn ∈ H, there is some
X ∈ CI(H) with

XΩV = v ⊗s
⊗
b∈I

hb,1 ⊗ · · · ⊗ hb,n(b). (2.36)

By the definition of Rn, we can write

v =

2p+|n|∏
k=1

at,ekbk
(fbk,ik)

Ωt (2.37)

where a creation operator at,2b (fb,j) appears exactly once for 1 ≤ j ≤ n(b), and among the
remaining 2p operators in the product, there are p creation operators (at,2bq (fbq ,lq))

p
q=1 and p

annihilation operators at,1bq (fbq ,lq)
p
q=1, with each annihilation operator appearing to the left of

the corresponding creation operator in the product. We need simply choose X of the form

X :=
1

n!
·

2p+|n|∏
k=1

aekbk (gk), (2.38)

where the gk satisfy:

gk :=

{
hbk,rk , if 1 ≤ ik ≤ n(bk)

h′lk , otherwise
, (2.39)

where rk is defined so that k is the rk-th smallest element of the set {u : bu = bk, 1 ≤ u ≤
n(bk)}, the (h′i)

∞
i=1 are an orthonormal sequence of vectors which are orthogonal to each hb,k,

and lk = l′k if and only if bk = bk′ and ik = ik′ . It follows from the definitions that this X
satisfies (2.36), so the proof is complete.

We now pursue an algebraic characterization of positive definiteness for functions on
I-indexed pair partitions. This will involve Guţă’s ∗-semigroup of I-indexed broken pair
partitions [Guţ03].

Definition 5. Let X be an arbitrary finite ordered set and (La, Pa, Ra)a∈I a disjoint partition
of X into triples of subsets indexed by elements of I. Suppose that for each a ∈ I, we have
a triple (Va, f (l)

a , f
(r)
a ) where Va ∈ P2(Pa) and

f (l)
a : La → {1, . . . , |La|} and f (r)

a : Ra → {1, . . . , |Ra|} (2.40)

are bijective. An order preserving bijection α : X → Y induces a map

αa : (Va, f (l)
a , f (r)

a )→ (α ◦ Va, f (l)
a ◦ α−1, f (r)

a ◦ α−1) (2.41)
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1

2

2

1

3

1

4

1

d =

1 42

1

3 65

1

d̄ =

Figure 2.2: The diagram of the {−1, 1}-colored broken pair partitions d and d̄. Here d =

{Va, f (l)
a , f

(r)
a }a∈{−1,1} and d̄ = {V̄a, f̄ (l)

a , f̄
(r)
a }a∈{−1,1}, with the following definitions. For d,

V−1 = V1 is the unique pair partition on the empty set and the right and left leg functions are

defined by f
(l)
−1 : ∅ → ∅,f (l)

1 : {2} → {1} given by f
(l)
1 (2) = 1, f

(r)
−1 : {1, 3} → {1, 2} given by

f
(r)
−1 (1) = 2 and f

(r)
−1 (3) = 1, and f

(r)
1 : {4} → {1} given by f

(r)
1 (4) = 1. For d̄, V̄2 = {(1, 4)},

V̄1 = {(3, 6)} and the right and left leg functions are defined by f̄
(l)
−1 : {2} → {1} with

f̄
(l)
−1(2) = 1, f̄

(l)
1 : ∅ → ∅, f̄ (r)

1 : ∅ → ∅, and f̄
(r)
1 : {5} → {1} given by f̄

(r)
1 (5) = 1. The solid

lines represent the “color” −1 and the dotted lines represent the “color” 1.

where α ◦ V := {(α(i), α(j)) : (i, j) ∈ V}. This determines an equivalence relation on the set
of such I-indexed triples, and we call an equivalence class under this relation an I-indexed
broken pair partition. We denote the set of all I-indexed broken pair partition by BPI2 (∞).

There is a convenient diagrammatic representation of a broken pair partition. Given a
broken pair partition as just defined, we write the elements of the base set X in order. For
each pair (x, x′) ∈ Va, we connect x and x′ by a piecewise-linear path and label that path
with the index a. For each index a ∈ I such that La 6= ∅, we write the numbers 1, . . . , |La|
in order on the left side and connect each y ∈ La to the number f

(l)
a (y). Likewise, for each

color a ∈ I such that Ra 6= ∅, we write the numbers 1, . . . , |Ra| in order on the left side and

connect each y ∈ Ra to the number f
(l)
a (y). When |I| is small, we may also use different line

styles (e.g. dotted and solid lines) to indicate the different colors a ∈ I. Figure 2.2 gives
two examples of these diagrams.

The diagrammatic representations of the I-colored broken pair partitions inspires some
additional terminology. Namely, we call the functions f

(l)
a and f

(r)
a the left and right leg

functions for the color a. Moreover, we call the piecewise-linear paths from the domains of
f

(l)
a and f

(r)
a to the numbers f

(l)
a (y) and f

(r)
a (y) the left and right legs of the I-colored broken

pair partitions. This terminology will be useful in describing the semigroup structure on
BPI2 (∞).

In the case that |I| = 1, we recover the (uncolored) broken pair partitions of Guţă and
Maassen [GM02a]. Moreover, each d ∈ BPI2 (∞) gives for each a ∈ I a broken pair partition
da in the sense of [GM02a]. However, all but finitely many of the da are the unique broken
pair partition on the empty set.

The space BPI2 (∞) can be given the structure of a semigroup with involution, similar to
the ∗-semigroup of broken pair partitions of [GM02a]. In terms of the diagrams, multiplica-
tion of two I-colored broken pair partitions corresponds to concatenation of diagrams. Right



15

legs of the first diagram are joined with left legs of the second diagram of the same color to
form pairs. In the event that the second diagram has more left legs of some color a than the
first diagram has right legs of color a, we join the right legs of the first diagram with the
largest-numbered left legs of the second diagram, and the remaining left legs of the second
diagram are extended to become low-numbered left legs in the product. An analogous rule
is used when the first diagram has more right legs of some color a than the second diagram
has left legs of color a.

The precise definition of the product on BPI2 (∞) is as follows. For i = 1, 2, let di =

(Va,i, f (l)
a,i , f

(r)
a,i )a∈I be an I-colored broken pair partition on the ordered base set Xi. The

product is a broken pair partition on the base setX := X1

∐
X2 with the order relation x < x′

if either x < x′ in Xi or x ∈ X1 and x ∈ X2. For each a ∈ I, define Ma = min(|Ra,1|, |La,2|).
Following [Guţ03], we define

d1 · d2 = (Va, f (l)
a , f (r)

a )a∈I , (2.42)

where

Va = Va,1 ∪ Va,2 ∪
{(

(f
(r)
a,1)−1([|Ra,1| − j]), (f (l)

a,2)−1([|La,2| − j])
)

: j ∈ [Ma]
}

(2.43)

and f
(l)
a is defined on the disjoint union of La,1 and (f

(l)
a,2)−1([|La,2| −Ma]) by

f (l)
a (i) =

{
f

(l)
a,1(i), if i ∈ La,1
f

(l)
a,2(i) + |La,1| −Ma, if i ∈ (f

(l)
a,2)−1([|La,2| −Ma])

. (2.44)

The function of right legs, f
(r)
a is defined on the disjoint union of Ra,2 and (f

(r)
a,1)−1([|Ra,1| −

Ma]) by

f (r)
a (i) =

{
f

(r)
a,2(i), if i ∈ Ra,2

f
(r)
a,1(i) + |Ra,2| −Ma, if i ∈ (f

(r)
a,1)−1([|Ra,1| −Ma])

. (2.45)

An example of multiplication of I-colored broken pair partitions is illustrated in Figure 2.3.1

The involution is given by mirror reflection of the I-colored broken pair partitions. For-
mally, if d = (Va, f (l)

a , f
(r)
a )a∈I with underlying set X then d∗ = (V∗a , f

(r)
a , f

(l)
a )a∈I is an

I-colored broken pair partition with underlying set X∗, the same as X but with the order
reversed, where V∗a = {(i, j) : (j, i) ∈ Va}. The involution is illustrated in Figure 2.4.

For each function n : I → N which is zero except on finitely many elements of I, let
BPI2 (n,0) be the subset of BPI2 (∞) consisting of elements having exactly n(a) left legs of
color a and no right legs.

1The multiplication for BPI
2 (∞) stated here differs slightly from that stated in [Guţ03]. We believe that

the rule stated here is the one intended by the author of that work, as it ensures that condition (2.13) is
satisfied. However, we do not believe that this discrepancy is consequential for Guţă’s results.
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1
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2

1

3

1

4

1

·
1 42

1

3 65

1

=
1 62

1

3

1

4

2

5 87 109

1

Figure 2.3: The multiplication d · d̄ of the {−1, 1}-colored broken pair partitions defined in
Figure 2.2.

63 5

1

41 2

1

d̄∗ =

Figure 2.4: The involution of the {−1, 1}-colored broken pair partition d̄ depicted in Figure
2.1.

1 52 83 64 107 9

Figure 2.5: The standard form of the pair partition (V , c) ∈ PI2 (10) with I = {−1, 1}
and V = {(1, 5), (2, 8), (3, 6), (4, 10), (7, 9)} and c((1, 5)) = c((2, 8)) = c((7, 9)) = −1 and
c((3, 6)) = c((4, 10)) = 1. The solid lines represent the “color” −1 and the dotted lines
represent the “color” 1.

Let da be the unique element of BPI2 (∞) with no right legs, no pairs, and only one left
leg, colored a ∈ I. We call da the a-colored left hook and d∗a the a-colored right hook.

An I-colored broken-pair partition can be written as a sequence of left hooks, followed by
permutations acting on the legs of the same color, followed by right hooks connecting with left
legs of the same index, possibly followed by additional sequences of left hooks, permutations,
and right hooks. The “standard form” of an element of PI2 (∞) is the sequence of this form
such that if two like-colored pairs cross, they do so in the rightmost permutation possible.
Figure 2.5 depicts the standard form of one example.

As in [Guţ03], we can use the standard form of (V , c) for V ∈ P2(2m) to compute the
value of t((V , c)) as follows. Consider c as a function [2m] → I taking the same value on

points belonging to the same pair of V . Partition [2m] into 2t blocks B
(r)
i , B

(l)
i for i = 1, . . . , t

such that the B
(l)
i contain left legs of the pairs of V and the B

(r)
i contain right legs of the
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pairs of V . Write B
(r)
i := {ki−1, . . . , pi} and B

(l)
j := {pi+1, . . . , ki} with k0 = 1 and kr = 2m.

Then there are permutations πj such that

(V , c) =

p1∏
l=1

d∗c(l)Un1(π1)

k1∏
l=p1+1

dc(l) · · ·Unr(πr)
2m∏

l=pt+1

dc(l) (2.46)

The function on pair partitions can then be calculated as

tV,j((V , c)) =

〈
ξV ,

p1∏
l=1

j∗c(l)Un1(π1)

k1∏
l=p1+1

jc(l) · · ·Unr(πr)
2m∏

l=pt+1

jc(l)ξV

〉
. (2.47)

An I-colored pair partition V can be considered as an element of BPI2 (∞) having no
left or right legs in the obvious way. A function t : PI2 (∞)→ C thus extends to a function
t̂ : BPI2 (∞)→ C by

t̂(d) =

{
t(d), if d ∈ PI2 (∞),

0, otherwise
. (2.48)

The following is an I-indexed generalization of Theorem 3.2 of [GM02a].

Theorem 3. A function t : PI2 (∞) → C is positive definite if t̂ : BPI2 (∞) → C is posi-
tive definite in the usual sense of positive definiteness for a function on a semigroup with
involution.

The proof is very similar to the proof of Theorem 3.2 of [GM02a], but we include it for
completeness.

Proof. Suppose that t̂ is positive definite on the ∗-semigroup BPI2 (∞). Then there is a
representation χ of BPI2 (∞) on a complex Hilbert space V having cyclic vector ξ ∈ V such
that

〈ξ, χ(d)ξ〉 = t̂(d) (2.49)

for all d ∈ BPI2 (∞).
The complex Hilbert space V is expressible as a direct sum

V =
⊕
n

Vn, (2.50)

where the sum is over functions n : I → N with only finitely many nonzero values and

Vn = span{χt(d)ξ : d ∈ BPI2 (n,0)}. (2.51)

The action of Sn on BPI2 (n,0) (by permutation of the left legs) gives a unitary representation
Un of Sn on Vn. Restriction of jb := χ(db) (where, as before db is the b-colored left hook)
gives a map jb : Vn → Vn+δb satisfying (2.13). Choose a unit vector ξV ∈ V0.
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Let H be an infinite-dimensional complex Hilbert space. Using the Un, Vn and jb, we
can construct the Fock space FV (H) and the algebra CV,j(H) with vacuum vector ΩV . By
Theorem 1, the vacuum state is a Fock state arising from some positive definite function
t′ : BPI2 (∞)→ C. It will suffice to show that t′ = t, whence it will follow that t is positive
definite. In fact, this follows from Theorem 2.3 of [Guţ03], but we also provide a proof for
completeness.

Given an I-indexed pair partition (V , c) ∈ PI2 (2m) with V = {(l1, r1), . . . , (lm, rm)}, let
the standard form of (V , c) be

(V , c) =

p1∏
l=1

d∗c(l)Un1(π1)

k1∏
l=p1+1

dc(l) · · ·Unr(πr)
2m∏

l=pt+1

dc(l). (2.52)

Let H = `2(Z) have an orthonormal basis (fk)
∞
k=1, and choose a monomial

M :=
2m∏
k=1

aekbk (fik), (2.53)

where ik is chosen such that either k = lik or k = rik , and bk = c(lik , rik), and ek = 1 if
k = lik and ek = 2 if k = rik . From the definition of a Fock state,

t′(V , c) = 〈ΩV ,MΩV 〉 . (2.54)

Using the definition of the creation operator and (2.13), we get

t′(V , c) =

p1∏
l=1

d∗c(l)Un1(π1)

k1∏
l=p1+1

dc(l) · · ·Unr(πr)
2m∏

l=pt+1

dc(l)

= t̂(V , c)
= t(V , c).

(2.55)

This completes the proof that t : PI2 (∞)→ C is positive definite.
Suppose now that t : PI2 (∞) → C is positive definite. Applying Theorem 2 we get

complex Hilbert spaces Vn with representations Un of Sn and densely defined maps jb :
Vn → Vn+δb satisfying the intertwining relation (2.13). Let

V =
⊕
n

Vn. (2.56)

Since the left hooks {db : b ∈ I} and the actions λn of the symmetric groups Sn on BPI2 (n,0)
generate BPI2 (∞), we have a representation χ of BPI2 (∞), and it is easily verified that
〈ξ, χ(d)ξ〉 = t̂(d) for any unit vector ξ ∈ V0 and any d ∈ BPI2 (∞), whence t̂ is positive
definite.
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Guţă [Guţ03] considered the case in which the Vn and the ja are defined as follows.
Let t : PI2 (∞) → C be a positive definite function. As before, denote by BPI2 (n,0) the
set of d ∈ BPI2 (∞) having |Ra| = 0 and |La| = n(a) for each a ∈ I. Consider the GNS
representation (χt, V, ξt) of BPI2 (n,0) with respect to t̂, characterized by

〈χt(d1)ξt, χt(d2)ξt〉V = t̂(d∗1d2). (2.57)

The complex Hilbert space V is given by

V :=
⊕
n

Vn where Vn = span{χt(d)ξt : d ∈ BPI2 (n,0)}. (2.58)

Each Vn has a representation of Sn with Sn(a) acting by permuting the left legs of BPI2 (n,0)

of color a. That is for π = (πa)a∈I ∈ Sn and (Va, f (l)
a , f

(r)
a )a∈I ∈ BPI2 (n,0),

Un(π)(Va, f (l)
a , f (r)

a )a∈I = (Va, π−1
a ◦ f (l)

a , f (r)
a )a∈I . (2.59)

We denote by Ft(H) the Fock-like space arising from using these Vn in (2.10)

Ft(H) :=
⊕
n

1

n!
Vn ⊗s

⊗
H⊗n. (2.60)

The creation and annihilation operators on Ft(H) will be assumed to be those associated
to the following operators ja. For a ∈ I, denote by ja the operator χt(da), where da is the
broken pair partition with no pairs, no right legs, and one a-colored left leg.

We can now state the following theorem of Guţă [Guţ03].

Theorem 4. Let f1, . . . , fn be vectors in a complex Hilbert space H. Then the expectation
values with respect to the vacuum state ρt of the monomials in creation and annihilation
operators on the Fock space Ft(H) have the expression

ρt

(
m∏
i=1

aeibi(fi)

)
=

∑
(V,c)∈PI2 (n)

t(V , c)
∏

(i,j)∈V

〈fi, fj〉 δbi,bjBeiej , (2.61)

where the ei are chosen from {1, 2} and

B :=

(
0 1
0 0

)
. (2.62)
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Chapter 3

Factor representations of S∞

In Chapter 4, we will take an interest in noncommutative generalized Brownian motions
which are related to factor representations of the group S∞ of permutations of N which fix
all but finitely many points. Here we briefly recall some relevant background information
pertaining to those representations.

The finite factor representations of a group are determined by the group’s characters,
that is, the positive, normalized indecomposable functions which are constant on conjugacy
classes. In the case of S∞, the characters are given by the following famous result.

Theorem 5 (Thoma’s Theorem [Tho64]). The normalized finite characters of S∞ are given
by the formula

φα,β(σ) =
∏
m≥2

(
∞∑
i=1

αmi + (−1)m+1

∞∑
i=1

βmi

)ρm(σ)

(3.1)

where ρm(σ) is the number of cycles of length m in the permutation σ, and (αi)
∞
i=1 and (βi)

∞
i=1

are decreasing sequences of positive real numbers such that
∑

i αi +
∑

i βi ≤ 1.

The pairs of sequences (αi)
∞
i=1 and (βi)

∞
i=1 satisfying the conditions in Theorem 5 are

commonly called Thoma parameters.
We now recall Vershik and Kerov’s representation of the symmetric group Sn (for n ∈

{0, 1, 2, . . . ,∞}) [VK82].

Notation 4. Fix sequences (αi)
∞
i=1 and (βi)

∞
i=1, and let γ = 1−

∑
i αi−

∑
i βi and let N+ and

N− be two copies of the set N = {1, 2, . . .}. Let Q := N+∪N−∪[0, γ], and define a measure µ
on Q to be the Lebesgue measure on [0, γ] and such that µ(i) = αi for i ∈ N+ and µ(j) = βj
for j ∈ N−. Let Xn denote the n-fold Cartesian product of Q with the product measure
mn =

∏n
1 µ, and let Sn act on Xn by σ(x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n)). For x, y ∈ Xn,

say that x ∼ y if there exists σ ∈ Sn such that x = σy. Let X̃n = {(x, y) ∈ Xn×Xn : x ∼ y}.
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The complex Hilbert space V
(α,β)
n defined by

V (α,β)
n :=

{
f : X̃n → C|∞ > ‖f‖2 =

∫
Xn

∑
y∼x

|f(x, y)|2dm(α,β)
n (x)

}
(3.2)

carries a unitary representation U
(α,β)
n of S(n) given by

(U (α,β)
n (σ)h)(x, y) = (−1)i(σ,x)h(σ−1x, y), (3.3)

where i(σ, x) is the number of inversions in the sequence (σi1(x), σi2(x), . . .) of indices ir(x)
for which σxi ∈ N−. Denote by 1n the indicator function of the diagonal {(x, x)} ⊂ X̃n.

Vershik and Kerov showed the following.

Theorem 6 ([VK82]). On V
(α,β)
n ,〈

U (α,β)
n (σ)1n,1n

〉
= φα,β(σ). (3.4)

For n =∞ we get the representation of S∞ associated to φα,β in the convex hull of 1∞.

There is an isometry jn : V
(α,β)
n → V

(α,β)
n+1 defined by

(jnh)(x, y) = δxn+1,yn+1h((x1, . . . , xn), (y1, . . . , yn)) (3.5)

3.1 Generalized Brownian motions arising from factor

representations of S∞

Before considering multi-dimensional noncommutative generalized Brownian motions as-
sociated to representations associated to infinite symmetric groups, we review some of the
work of [BG02] on Brownian motions connected with representations of S∞ with one pro-
cess. The Vershik-Kerov factor representations of the symmetric groups Sn give all the data
needed for a 1-dimensional generalized Brownian motion. Bożejko and Guţă [BG02] were
able to characterize the function on pair partitions arising from Theorem 2.6 of [GM02a] (the
one-dimensional version of Theorem 1). Their result depends on the following terminology.

Definition 6 ([BG02]). Let V ∈ P2(2m), and denote by V̂ the unique noncrossing pair
partition such that the set of left points of V and V̂ coincide. A cycle in V is a sequence
of pairs ((l1, r1), . . . , (lm, rm)) of V such that the pairs (l1, r2), (l2, r3), . . . , (lm, r1) belong to
V̂ . (In the case that m = 1 we interpret this condition as (l1, r1) ∈ V̂ .) The number m is
called the length of the cycle. Denote by ρm(V) the number of cycles of length m in the pair
partition V .

Bożejko and Guţă’s formula is as follows.
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Theorem 7 ([BG02]). Let (αi)
∞
i=1 and (βi)

∞
i=1 be decreasing sequences of positive real numbers

such that
∑

i αi +
∑

i βi ≤ 1. Let V
(α,β)
n be the complex Hilbert space of the Vershik-Kerov

representation of Sn, and let jn : V
(α,β)
n → V

(α,β)
n+1 be the natural isometry. Let ξV (α,β) = 10.

Denote by tα,β the function on P2(∞) associated to these representations by Theorem 1.
Then

tα,β(V) =
∏
m≥2

(
∞∑
i=1

αmi + (−1)m+1

∞∑
i=1

βmi

)ρm(V)

. (3.6)

Remark 4. There is another equivalent characterization of the cycle decomposition of a
pair partition. As in Definition 6, let V = {(a1, z1), . . . , (an, zn)} ∈ P2(2m) and let V̂ be
the noncrossing pair partition whose left points coincide with those of V . Let σ ∈ Sn
be the permutation such that V̂ = {(a1, zσ−1(1)), . . . , (an, zσ−1(n))}. If the cycles of σ are
τi = (bi1 · · · biri) ∈ Sn (1 ≤ i ≤ m), then the cycles of V are {(abi1 , zbi1), . . . , (abiri , zbiri )}.
Moreover, Theorem 7 says that tα,β(V) = φα,β(σ).

We are now in a position to show that the framework for multi-dimensional generalized
Brownian motion presented here is more general than that presented in [Guţ03]. More
precisely, we will exhibit complex Hilbert spaces Vn with representations Un of Sn and
transition maps jb : Vn → Vn+δb and V ′n with representations U ′n of Sn and maps jb : V ′n →
V ′n+δb

such that both sets of data give rise to the same function on pair partitions according
to Theorem 1.

Example 2. We work with the index set I = {1}, which places us in the setting of the
generalized Brownian motion with only one process, developed by Guţă and Maassen in
[GM02a]. Fix an integer N with |N | > 1 and let H be a complex Hilbert space. We will
consider generalized Brownian motions associated to the character φN of S∞ given by the
sequences

αn =

{
1
N
, if 1 ≤ n ≤ N

0, otherwise
and βn =

{
1
N
, if 1 ≤ n ≤ −N

0, otherwise
(3.7)

For each n, let V
(N)
n be the complex Hilbert space of the Vershik-Kerov representation of Sn,

and let j(N) : V
(N)
n → V

(N)
n+1 be the natural isometry. Let ξV (N) = 10 be the indicator function

of the diagonal. Denote by tN the function on P2(∞) associated to these representations by
Theorem 1. It was shown in [BG02] that

tN(V) =

(
1

N

)n−ρ(V)

. (3.8)

We will exhibit another sequence of complex Hilbert spaces V̂
(N)
n with unitary represen-

tations Û
(N)
n which gives rise to the same positive function on pair partitions. Since the

character φN : S∞ → C restricts to a positive definite function on Sn, there is a representa-
tion Û

(N)
n of Sn on a complex Hilbert space V̂

(N)
n with a cyclic vector ξn such that〈

ξn, Û
(N)
n (π)ξn

〉
= φN(π). (3.9)
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for every π ∈ Sn. There is also a natural inclusion ĵ(N) : V̂
(N)
n → V̂

(N)
n+1 satisfying

ĵ(Û (N)
n (π)ξn) = Û

(N)
n+1(ιnπ)ξn+1, (3.10)

where ιn is the inclusion Sn → Sn+1 induced by the natural inclusion [n] ⊂ [n+ 1]. By con-

struction, the maps ĵ(N) and representations V̂
(N)
n satisfy the intertwining relation (2.13),

so we can construct the Fock space FV̂ (N),ĵ(N) with creation and annihilation operators
a∗
V̂ (N),ĵ(N)(f) and aV̂ (N),ĵ(N)(f).

The action of the algebra CV̂ (N),ĵ(N)(H) on FV̂ (N),ĵ(N)(H) is unitarily equivalent to the
action of the algebra creation and annihilation operators on the following deformed Fock
space. Let F (alg)(H) =

⊕
nH⊗n. Define a sesquilinear form on F (alg)(H) by sesquilinear

extension of

〈f1 ⊗ · · · fn, g1 ⊗ · · · gm〉N = δmn
∑
π∈Sn

φN(π)
〈
f1, gπ(1)

〉
· · ·
〈
fn, gπ(n)

〉
. (3.11)

This form is positive definite and thus gives an inner product on F (alg)(H). Let FN(H) be
the completion of F (alg)(H) with respect to the inner product 〈·, ·〉N . Let DN be the operator
in F (alg)(H) whose restriction to H⊗n is given by

D
(n)
N :=

{
1 + 1

N

∑n
k=2 Ũn(τ1,k), if n > 0

1, otherwise,
(3.12)

where τi,k ∈ Sn is the permutation transposing i and k and fixing all other elements of [n]
and Ũn is the representation of Sn such that Ũn(π) permutes the tensors in H⊗n according
to π. For f ∈ H let l(f) and l∗(f) denote the left annihilation and creation (respectively)
operators on the free Fock space over H. We define annihilation and creation operators on
F (alg)(H) by

aN(f) = l(f)DN

a∗N(f) = l∗(f).
(3.13)

It was shown in [BG02] that these operators are bounded with respect to 〈·, ·〉N and thus
extend to bounded linear operators on FN(H).

The map

FN(H)→ FV̂N (H)

v1 ⊗ · · · vn 7→ ξn ⊗s vn ⊗ · · · ⊗ v1

(3.14)

is unitary. It was shown in [BG02] that the vacuum state on the algebra of creation and anni-

hilation operators on FN(H) is the Fock state associated to the function tN(V) =
(

1
N

)n−ρ(V)
.

This shows that tV (N),j(N) = tV̂ (N),ĵ(N) even though dimV
(N)
n < dim V̂

(N)
n for n ≥ 1.
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3.2 Generalized Brownian motions associated to

tensor products of representations of S∞

In this section, we are interested in the case where I = {−1, 1} and the Vn arise from
unitary representations of the group S∞ of permutations of N fixing all but finitely many
points.

fn(x) =

{
1, if x = qi for 1 ≤ i ≤ n

0, otherwise
(3.15)

Notation 5. When I = {1,−1}, we will represent a function n : I → N by the pair
n(−1),n(1), so we write Vr,s for Vn where n(−1) = r and n(1) = s. We will also represent
an element (V , c) of PI2 (∞) as (V−1,V1), where Vb = c−1(b).

One of the simplest such cases is that arising from the tensor product of two unitary
representations of S∞. In this setting, we can prove the following.

Proposition 1. Let (U (i), V (i)) be unitary representations of S∞ for i ∈ I. Suppose that each

V
(i)
n is a subspace of V (i) carrying a unitary representation U

(i)
n of Sn with j

(i)
n : V

(i)
n → V

(i)
n+1

an isometry. Assume that we have distinguished unit vectors ξV (i) ∈ V
(i)

0 and let ξV =

ξV (−1) ⊗ ξV (1). Let Vm,n = V
(−1)
m ⊗ V (1)

n , j−1 = j(−1) ⊗ 1, and j1 = 1⊗ j(1). Then

tV,j(V , c) = tV (−1),j(−1)(V−1) · tV (1),j(1)(V1). (3.16)

Proof. From the definitions, it is clear that for any v1 ∈ V (−1)
m and v2 ∈ V (1)

n ,

j1j−1(v1 ⊗ v2) = j−1j1(v1 ⊗ v2)

j∗1j
∗
−1(v1 ⊗ v2) = j∗−1j

∗
1(v1 ⊗ v2)

j∗1j−1(v1 ⊗ v2) = j−1j
∗
1(v1 ⊗ v2)

j1j
∗
−1(v1 ⊗ v2) = j∗−1j1(v1 ⊗ v2).

(3.17)

Consequently, if b 6= b′ the operators aV,j,eb (f) and aV,j,e
′

b′ (f ′) commute for all e, e′ ∈ {1, 2}
and all f, f ′ ∈ H.

Assume that V := {(l1, r1), . . . , (lm, rm)} with lk < rk and lk < lk+1 for all k. Let H be
`2(N) with orthonormal basis (hk)

∞
k=1 We can compute tV,j(V , c) as

tV,j(V , c) =

〈(
2m∏
p=1

a
V,j,ep
c(p) (hkp)

)
ξV ⊗s Ω, ξV ⊗s Ω

〉
(3.18)

where kp is the unique k ∈ [n] such that p is an element of the k-th pair of V and ep = 2 if
p is a right point in V and ep = 1 if p is a right point.
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Now, using the fact that aerc(p)(hkp) commutes with a
ep′

c(p′)(hkp′ ) when c(p) 6= c(p′), we have

tV,j(V , c) =

〈 ∏
c(p)=−1

a
V,j,ep
−1 (hkp)

 ∏
c(p)=1

a
V,j,ep
1 (hkp)

 ξV ⊗s Ω, ξV ⊗s Ω

〉

=
∏
b∈I

〈 ∏
c(p)=b

a
V (b),j(b),ep
b (hkp)ξV (b) ⊗s Ω, ξV (b) ⊗s Ω

〉
= tV (−1),j(−1)(V1) · tV (1),j(1)(V2).

(3.19)

This completes the proof.

Combining Theorem 7 with our Proposition 1 immediately gives the following.

Corollary 1. Let I = {1, 2}. Fix (αi)
∞
i=1 and (βi)

∞
i=1 decreasing sequences of positive real

numbers such that
∑

i αi +
∑

i βi ≤ 1 and let V
(1)
n = V

(2)
n = V

(α,β)
n with the Vershik-Kerov

representation of Sn. For i ∈ {1, 2}, let j(i) : V
(i)
n → V

(i)
n+1 be the natural isometry. Let

ξV (i) = 10 and let ξV = ξV (1) ⊗ ξV (2). Let Vm,n = V
(−1)
m ⊗ V

(1)
n , j−1 = j(−1) ⊗ 1, and

j1 = 1⊗ j(1). Then for (V , c) ∈ PI2 (∞),

tV,j(V , c) =
∏
m≥2

(
∞∑
i=1

αmi + (−1)m+1

∞∑
i=1

βmi

)ρm(V1)+ρm(V2)

(3.20)
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Chapter 4

Generalized Brownian motions
associated to spherical representations
of (S∞ × S∞, S∞)

In this chapter, we again use the index set I = {−1, 1}. Of course, we could have taken
I to be any two-element set, but we have chosen {−1, 1} for the reason that if b ∈ I then
we can concisely refer to the other index as −b ∈ I.

Notation 6. With I = {−1, 1}, we will represent a function n : I → N by the pair
n(−1),n(1), so we write Vr,s for Vn where n(−1) = r and n(1) = s.

G. Olshanski initiated the study of a broad class of representations of infinite symmetric
groups [Ols90], and this study has been further developed by Okounkov [Oko97]. In this
framework, one considers unitary representations of a pair of groups K ⊂ G forming a
Gelfand pair. Two groups (G,K) form a Gelfand pair if for every unitary representation
(T,H) of G, the operators PKT (g)PK commute with each other as g ranges over G. Here
PK denotes the orthogonal projection of H onto the subspace of K-invariant vectors for the
representation T .

Of interest to us are the spherical representations, which are defined as irreducible unitary
representations of G with a nonzero K-fixed vector ξ. If T is such a representation of the
pair (G,K), then the function g 7→ 〈ξ, T (g)ξ〉 is called a spherical function of (G,K). Here
we consider the case where G = S∞ × S∞ and K = S∞ is the diagonal subgroup. It is
well-known (c.f. [Ols90]) that the finite factor representations of a discrete group G are in
bijective correspondence with the spherical representations of the Gelfand pair (G×G,G),
where G is a subgroup of G×G by the diagonal embedding.

In light of Thoma’s Theorem (Theorem 5) this means that the spherical functions of
(S∞ × S∞, S∞) are parametrized by the Thoma parameters and that the spherical function
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associated to the pairs (αi)
∞
i=1 and (βi)

∞
i=1 is given by the formula

χα,β (π, π′) = φα,β
(
π′π−1

)
=
∏
m≥2

(
∞∑
i=1

αmi + (−1)m+1

∞∑
i=1

βmi

)ρm(π′π−1)

. (4.1)

For the generalized Brownian motion construction, we can consider the following data.
Let (αi)

∞
i=1 and (βi)

∞
i=1 be a Thoma parameter. That is, let (αi)

∞
i=1 and (βi)

∞
i=1 be decreasing

sequences of positive real numbers such that
∑

i αi +
∑

i βi ≤ 1. Given n−1, n1 ∈ N∪{0} let
n = max(n−1, n1) and define

Vn−1,n1 = V (α,β)
n , (4.2)

where V
(α,β)
n is as in (3.2). Then Vn−1,n1 carries a natural representation of Sn × Sn defined

by
(U (α,β)

n (σ, π)h)(x, y) = (−1)i(σ,x)+i(π,y)h(σ−1x, π−1y), (4.3)

and thus a representation of Sn−1×Sn1 considering Sn−1×Sn1 as a subgroup of Sn×Sn. For
n−1 = n1, it is easy to see that the indicator function of the diagonal is fixed by the diagonal
subgroup.

Moreover, we define the map j−1 : Vn−1,n1 → Vn−1+1,n1 to be the natural embedding.
When

∑
αi +

∑
βi = 1, this means that j−1 is given by

j−1δ(x(−1),x(1)) =

{
δ(x(−1),x(1)), if n1 > n−1,∑

z∈Q δ((x
(−1)
1 ,...,x

(−1)
n ,z),(x

(1)
1 ,...,x

(1)
n ,z))

, otherwise.
(4.4)

Likewise, we define the map j1 : Vn−1,n1 → Vn−1,n1+1 to be the natural embedding.
We will also need to make use of the maps j∗b for b ∈ I. The map j∗−1 is given by

j∗−1δ(x(−1),x(1)) =

δ(x(−1),x(1)), if n1 ≥ n−1,

µ
(
x

(−1)
n

)
δ
x
(−1)
n ,x

(1)
n
δ((

x
(−1)
1 ,...,x

(−1)
n−1

)
,
(
x
(1)
1 ,...,x

(1)
n−1

)), otherwise.
(4.5)

Here x(n−1) refers to the first n− 1 terms of the n-tuple (x1, . . . , xn−1−1) and the measure µ
is as in Notation 4. The maps j∗1 are defined analogously.

To motivate our results in the 2-colored case, we will consider another interpretation of
the cycle decomposition of a pair partition. This interpretation involves some graph theory.
We assume that a reader is familiar with the notion of a directed graph, a subgraph of a
directed graph, and a cycle in a directed graph. These definitions can be found, for instance,
in [BJG09]. For a subgraph H of G, we write V (H) to mean the vertex set of H and A(H)
to mean the arc set of H.

Given a pair partition V ∈ P2(2m), we define a directed graph GV with vertex set [2m].
For each (l, r) ∈ V with l < r, we add an arc (l, r) to GV . For each (l′, r′) ∈ V̂ (as defined in
Definition 6) with l′ < r′, we add an arc (r′, l′) to GV .
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The directed graph GV is the union of vertex-disjoint cycles, and the cycles of the graph
GV give the cycles of the pair partition V . More precisely, if C is a cycle of GV then A(C)∩V
is a cycle of V . In particular, this means that ρm(V) is the number of cycles of GV of length
2m.

Definition 7. For a directed graph G whose vertex set V has a total order <, an increasing
path P in G is a sequence of arcs (s1, s2), (s2, s3), . . . , (sr, sr+1) of G such that s1 < s2 <
· · · < sr+1. We call r the length of P . A maximal increasing path in G is an increasing path
which is not contained in any increasing path in G of greater length. We define the notions
of decreasing paths and maximal decreasing paths in G analogously. A monotone path is a
path which is either increasing or decreasing, and a maximal monotone path is a monotone
path which is not contained in any longer monotone path.

In the directed graph GV , each arc is a maximal monotone path, so the length of a cycle
is the same as the number of maximal increasing paths in that cycle.

Combining with Theorem 7,

tα,β(V) =
∏
m≥2

(
∞∑
i=1

αmi + (−1)m+1

∞∑
i=1

βmi

)γm(GV )

. (4.6)

where γm(GV) denotes the number of cycles of GV having m maximal increasing paths.
The case of a 2-colored pair partition is naturally more complicated. As in the uncolored

case, our function on 2-colored pair partitions (V , c) will be calculated with the aid of the
cycle decomposition of a directed graph (denoted GV,c), but the construction of a graph
from a 2-colored pair partition will be rather more involved. However, in the case that the
coloring function is the constant function c(l, r) = 1, the graph GV,c will be identical to the
graph GV just described.

Before defining the graph GV,c we fix some notation.

Notation 7. For (V , c) ∈ PI2 (∞) with V = {(l1, r1), · · · , (lm, rm)}, let LV := {l1, . . . , ln} be
the set of left points and RV := {r1, . . . , rn} denote the set of right points. If c : V → {−1, 1}
is a coloring function, define for b ∈ I the functions

pbV,c : [0, 2m+ 1]→ N ∪ {0}
pbV,c(u) = |{j ∈ [n] : lj ≤ u ≤ rj, c(lj, rj) = b}|

(4.7)

Also define
pV,c(u) = max{p−1

V,c(u), p1
V,c(u)} and rV,c(u) = p

c(u)
V,c (u). (4.8)

Remark 5. In terms of the diagrams (e.g. Figure 2.1), pbV,c(m) is the number of b-colored
paths intersecting the vertical line drawn through m (provided that the diagrams are drawn
so as to minimize this quantity). Furthermore, rV,c(m) is the number of paths of the same
color as m which intersect the vertical line drawn through m (provided that the diagrams
are drawn so as to minimize this quantity).
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The following properties are immediate consequences of the definitions and will be used
frequently.

Proposition 2. Suppose that (V , c) ∈ BPI2 (∞), V = {(l1, r1), . . . , (lm, rm)} and b ∈ I =
{−1, 1}.

1. If k ∈ [2m] and pbV,c(k) > pbV,c(k − 1) then c(k) = b and k ∈ LV .

2. If k ∈ [2m] and pbV,c(k + 1) < pbV,c(k) then c(k) = b and k ∈ RV .

3. If k ∈ [2m+ 1] then pbV,c(k)− pbV,c(k − 1) ∈ {−1, 0, 1}.

4. If k, k′ ∈ [0, 2m + 1] with k < k′, pbV,c(k) < pbV,c(k
′) and u ∈ [pbV,c(k), pbV,c(k

′)], then
there is some l ∈ [k, k′] such that pbV,c(l) = u.

5. If k, k′ ∈ [0, 2m + 1] with k < k′, pbV,c(k) > pbV,c(k
′) and u ∈ [pbV,c(k

′), pbV,c(k)], then
there is some l ∈ [k, k′] such that pbV,c(l) = u.

6. If k ∈ LV and k ∈ [2m] then rV,c(k) ≥ p
c(k)
V,c (k − 1) and pbV,c(k) ≥ pbV,c(k + 1) for b ∈ I.

7. If k ∈ RV and k ∈ [2m] then rV,c(k) ≥ p
c(k)
V,c (k + 1) and pbV,c(k) ≥ pbV,c(k − 1) for b ∈ I.

We need some additional notation.

Notation 8. For an I-indexed pair partition (V , c), define

DV,c = {k ∈ [2m] : rV,c(k) > p
−c(k)
V,c (k)}

SV,c = [2m] \ DV,c.
(4.9)

The next remark should clarify the importance of these terms.

Remark 6. If (V , c) ∈ PI2 (2n) then by (2.5), tα,β(V , c) can be computed by evaluating the
vacuum state at a word in creation and annihilation operators. More precisely, we can write

tα,β(V , c) = 〈ξV α,β ⊗ Ω, A1 · · ·A2n (ξV α,β ⊗ Ω)〉 (4.10)

where Ak is a creation operator if k ∈ RV,c and an annihilation operator if k ∈ LV,c. In
either case, the color of the operator Ak is c(k). One can characterize these operators more
precisely, but we will not need to do so at this point.

For any k ∈ [2n], the vector (Ak+1 · · · · · A2n) ξV α,β ⊗ Ω lies in the space V α,β
nk
⊗H⊗nk for

some function nk : I → Z. A c(k)-colored creation operator maps the space V α,β
nk
⊗H⊗nk to

V α,β
nk+δc(k)

⊗H⊗nk+δc(k) . If k ∈ RV , then k ∈ SV,c if and only if the transition map

jc(k) : V α,β
nk
→ V α,β

nk+δc(k)
(4.11)

is the identity map on V α,β
nk

, where nk = max{nk(b) : b ∈ I}. The analogous statement also
holds for k ∈ LV .
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We will make use of the following equivalence relation on [2m].

Notation 9. For k, k′ ∈ [2m], say that k
V,c∼ k′ if rV,c(k) = rV,c(k

′).

Proposition 3. If k ∈ LV then {k′ > k : k′
V,c∼ k} 6= ∅. If k ∈ RV then {k′ < k : k′

V,c∼ k} 6= ∅.

Proof. We will consider the case in which k ∈ LV . By Proposition 2 (item 6), p
c(k)
V,c (k + 1) ≥

p
c(k)
V,c (k). Let

r = max{k′ > k : p
c(k)
V,c (k′) ≥ rV,c(k)}, (4.12)

so that p
c(k)
V,c (r + 1) < rV,c(k) By Proposition 2 (item 3), p

c(k)
V,c (r) − p

c(k)
V,c (r + 1) = 1, so it

must be the case that p
c(k)
V,c (r) = rV,c(k). By Proposition 2 (item 2), c(r) = c(k) whence

rV,c(r) = rV,c(k) and k
V,c∼ r.

In defining the graph GV,c, the following function will be very important.

Definition 8. Define a map ZV,c(k) : [2m]→ [2m] by

ZV,c(k) :=


min{k′ > k : k′

V,c∼ k}, if k ∈ LV and k ∈ DV,c;
max{k′ < k : k′

V,c∼ k}, if k ∈ RV and k ∈ DV,c;
max{k′ < k : k′

V,c∼ k}, if k ∈ LV and k ∈ SV,c;
min{k′ > k : k′

V,c∼ k}, if k ∈ RV and k ∈ SV,c.

(4.13)

Notation 10. For k ∈ [2m], let IV,c(k) be the interval

IV,c(k) :=

{
[k + 1, ZV,c(k)− 1], if ZV,c(k) > k

[ZV,c(k) + 1, k − 1], if ZV,c(k) < k.
(4.14)

Proposition 4. Suppose that k ∈ DV,c and k′ ∈ IV,c(k). Then

p
−c(k)
V,c (k′) < rV,c(k) ≤ p

c(k)
V,c (k′) (4.15)

Proof. We will assume that k ∈ LV since the case of k ∈ RV is similar. Suppose that
k′ ∈ IV,c(k) satisfies p

c(k)
V,c (k′) < p

c(k)
V,c (k). We can assume that k′ is the smallest element of

IV,c(k) satisfying this inequality, so that by Proposition 2 , p
c(k)
V,c (k′ − 1) = p

c(k)
V,c (k) (by item

3) and c(k′ − 1) = c(k) (by item 2). Thus, k′ − 1
V,c∼ k, which contradicts the definition of

IV,c(k).

Now suppose that p
−c(k)
V,c (k′) ≥ p

c(k)
V,c (k). Assume that k′ is the smallest element of IV,c(k)

satisfying this condition so that p
−c(k)
V,c (k′ − 1) < p

c(k)
V,c (k) (again it is straightforward to rule

out the possibility that k′ = k + 1). By Proposition 2, p
−c(k)
V,c (k′ − 1) − p

−c(k)
V,c (k′) = −1 (by

item 3) and c(k′−1) = −c(k) (by item 6). Thus, p
−c(k)
V,c (k′−1) = p

c(k)
V,c (k) whence k′−1

V,c∼ k,
contradicting the definition of IV,c(k).
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Proposition 5. If k ∈ SV,c and k′ ∈ IV,c(k) then

p
c(k)
V,c (k′) < p

−c(k)
V,c (k) ≤ p

−c(k)
V,c (k′). (4.16)

Proof. We will again assume that k ∈ LV as the case of k ∈ RV is similar. Suppose that
k′ ∈ IV,c(k) is such that p

c(k)
V,c (k′) ≥ p

−c(k)
V,c (k). Assume that k′ is the largest element of IV,c(k)

satisfying this inequality. One can check that if k′ = k − 1 then k − 1
V,c∼ k and IV,c(k) = ∅,

so we assume that k′ + 1 ∈ IV,c(k) and thus p
c(k)
V,c (k′ + 1) < p

−c(k)
V,c (k). By Proposition 2, it

follows that p
c(k)
V,c (k′ + 1) − p

c(k)
V,c (k′) = −1 and c(k′ + 1) = c(k). Thus, k′ + 1

V,c∼ k, which
contradicts the definition of IV,c(k).

Now suppose that there is some k′ ∈ IV,c(k) such that p
−c(k)
V,c (k′) < p

−c(k)
V,c (k). Again

assume that k′ is the largest element of IV,c(k) satisfying this inequality. Since p
−c(k)
V,c (k−1) ≥

p
−c(k)
V,c (k), we must have k 6= k − 1, so that k′ ∈ IV,c(k) and p

−c(k)
V,c (k′ + 1) > p

−c(k)
V,c (k). By

Proposition 2, p
−c(k)
V,c (k′ + 1)− p

−c(k)
V,c (k) = 1 and c(k′ + 1) = −c(k). But also p

−c(k)
V,c (k′ + 1) =

p
c(k)
V,c (k) whence k′ + 1

V,c∼ k, contradicting the definition of IV,c(k).

Proposition 6. Suppose that (V , c) ∈ PI2 (2m) and k ∈ [2m]. Then the following hold:

1. If k ∈ DV,c then ZV,c(k) ∈ DV,c if and only if c(k) = c(ZV,c(k));

2. If k ∈ SV,c then ZV,c(k) ∈ SV,c if and only if c(k) = c(ZV,c(k));

3. If k ∈ LV then ZV,c(k) ∈ LV if and only if c(ZV,c(k)) = −c(k);

4. If k ∈ RV then ZV,c(k) ∈ RV if and only if c(ZV,c(k)) = −c(k);

5. ZV,c(ZV,c(k)) = k.

Proof. We fix an I-indexed pair partition (V , c). For compactness and readability, we will
abbreviate ZV,c(k) by k∗.

If k ∈ LV ∩ DV,c then by definition k∗ > k. By Proposition 4,

p
−c(k)
V,c (k∗ − 1) < rV,c(k) < p

c(k)
V,c (k∗ − 1). (4.17)

Using the fact that k∗
V,c∼ k and applying Proposition 2, it follows that if c(k∗) = c(k) then

k∗ ∈ RV and k∗ ∈ DV,c whereas if c(k∗) = c(−k) then k∗ ∈ LV and k∗ ∈ SV , c.
If k ∈ LV ∩ SV,c then by definition k∗ < k. By Proposition 5,

p
c(k)
V,c (k∗ + 1) < p

−c(k)
V,c (k) < p

−c(k)
V,c (k∗ + 1). (4.18)

Using the fact that k∗
V,c∼ k and applying Proposition 2, it follows that if c(k∗) = c(k) then

k∗ ∈ RV and k∗ ∈ SV,c whereas if c(k∗) = c(−k) then k∗ ∈ LV and k∗ ∈ DV,c.
Collecting all of these cases, as well as the analogous statements for k ∈ RV gives items

1, 2, 3, and 4. Making use of the definition of ZV,c, it follows that (k∗)∗ < k∗ if and only if
k < k∗, whence k = (k∗)∗.
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Corollary 2. If (V , c) ∈ PI2 (2m) then the function ZV,c : [2m] → [2m] defines a pair
partition V̄(c) ∈ PI2 (2m) by

V̄(c) := {(k, ZV,c(k)) : k < ZV,c(k)} . (4.19)

We define a coloring function on V̄(c) by:

c̄ (k, ZV,c(k)) =

{
c(k), if k ∈ SV,c
−c(k), if k ∈ DV,c.

(4.20)

Remark 7. This definition of c̄ (k, ZV,c(k)) does not depend on which point of a pair is chosen
as k because c(k) = c(ZV,c(k)) if and only if k and ZV,c(k) are either both in SV,c or both in
DV,c.

Notation 11. Define a map (·, ·)(−1) on [2m] × [2m] by (u, v)(−1) = (v, u). Also let (·, ·)(1)

be the identity map on [2m]× [2m].

We are now ready to define the graph GV,c.

Definition 9. If (V , c) ∈ PI2 (2m), then GV,c is the directed graph with vertices [2m] and
arcs defined as follows. Let

FV,c = {(l, r)(c(l,r)) : (l, r) ∈ V}
F̄V,c = {(k, k′)(c̄(k,k′)) : (k, k′) ∈ V̄(c)}.

(4.21)

The graph GV,c has arc set
AV,c := FV,c ∪ F̄V,c (4.22)

Proposition 7. The sets FV,c and F̄V,c have empty intersection.

Proof. We need only show that if (l, r) ∈ V with ZV,c(l) = r then c(l, r) = −c̄(l, r). By the
definition of c̄, it will suffice to show that l ∈ DV,c. Since l < ZV,c(l), ZV,c(l) = r ∈ RV and
c(l) = c(ZV,c(l)), this follows from Proposition 6 and the definition of ZV,c.

Example 3. We consider the example of the graph GV,c for the I-indexed pair partition
(V , c) with

V = {(1, 5), (2, 10), (3, 8), (6, 7), (4, 12), (9, 11)};
c(1, 5) = c(2, 9) = c(8, 10) = c(6, 7) = −1;

c(3, 8) = c(4, 12) = 1.

(4.23)

The I-indexed pair partition (V , c) is depicted in Figure 4.1.
We can determine the values of p−1

V,c(k) and p1
V,c(k) by drawing a vertical line through the

diagram at k and counting the intersections with paths of the respective colors. For instance,
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1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.1: The {−1, 1}-indexed pair partition (V , c) given in (4.23).

1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.2: The I-indexed pair partition (V̄(c), c̄) where (V , c) is the pair partition depicted
in the Figure 4.1.

a vertical line through k = 3 intersects 2 solid paths and 1 dotted path (at the endpoint),

so p
(1)
V,c(3) = 1 and p

(−1)
V,c (3) = −1. Since c(3) = 1, this means that 3 ∈ SV,c.

Repeating the process for the other elements of [12] we can fill in the first few rows of

Table 4.1. From the data, one sees that the equivalence class of 3 under
V,c∼ is {1, 3, 11, 12}

whence
ZV,c(3) = 1. (4.24)

Continuing in this way for other elements of 2m, the pair partition V̄(c) is given by

V̄(c) := {(1, 3), (2, 4), (5, 6), (7, 8), (9, 10), (11, 12)} (4.25)

and the color function c̄ : V̄(c) → I is given by

c̄(5, 6) = c̄(7, 8)) = c̄(11, 12) = −1;

c̄(1, 3) = c̄(2, 4)) = c̄(9, 10) = 1.
(4.26)

This I-indexed broken pair partition is depicted in Figure 4.2.
Accordingly, the sets FV,c and F̄V,c are given by

FV,c = {(5, 1), (10, 2), (3, 8), (4, 12), (7, 6), (11, 9)}
F̄V,c = {(6, 5), (12, 11), (1, 3), (2, 4), (7, 8), (9, 10)}

(4.27)

The directed graph GV,c is depicted in Figure 4.3.

Proposition 8. Let (V , c) ∈ PI2 (∞) be a {−1, 1}-colored pair partition. Then the graph
GV,c is the union of vertex-disjoint directed cycles.

Proof. Let m = |V|. It is an immediate consequence of the definition of GV,c that for each
k ∈ [2m] there are exactly two arcs having k as either the start point or the end point. We
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k c(k) r(V,c)(k) p
−c(k)
(V,c) (k) DV,c or SV,c Z(V,c)(k)

1 -1 1 0 DV,c 3
2 -1 2 0 DV,c 4
3 1 1 2 SV,c 1
4 1 2 2 SV,c 2
5 -1 2 2 SV,c 6
6 -1 2 2 SV,c 7
7 -1 2 2 SV,c 8
8 1 2 1 DV,c 7
9 -1 2 1 DV,c 10
10 -1 2 1 DV,c 9
11 -1 1 1 SV,c 12
12 -1 1 1 DV,c 11

Table 4.1: Data pertaining to the I-indexed pair partition depicted in Figure 2.5.

1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.3: The directed graph GV,c for the {−1, 1}-colored pair partition depicted in Figure
4.1. The graph GV,c has 2 cycles, one with vertex set {1, 3, 8, 7, 6, 5} and one with vertex set
{2, 4, 12, 11, 9, 10}. The former cycle has one maximal increasing path, and the latter has 2
maximal increasing paths.

must show that each vertex k ∈ [2m] is the starting point of one edge and the end point of
another edge.

We will assume k ∈ LV , so that (k, r) ∈ V for some r ∈ [2m]. If k ∈ DV,c then
ZV,c(k) > k, so (k, ZV,c(k)) ∈ V̄(c). Since c(k, r) = −c̄(k, ZV,c(k)), k is the starting point of
exactly one of these arcs. If k ∈ SV,c then ZV,c(k) < k, so (ZV,c(k), k) ∈ V̄(c). Furthermore,
c(k, r) = c̄(ZV,c(k), k), whence k is again the starting point of exactly one of the arcs.

Remark 8. If c(d) = 1 ∈ I for every d ∈ V then every DV,c = [2m] and V̄(c) = V̂ (where V̂ is
as in Definition 6) with c̄(d) = −1 for all d ∈ V̄(c). Thus GV,c = GV .

A cycle C in the graph GV,c can be decomposed into maximal monotone paths (Definition
7). That is, there are maximal monotone paths P1, . . . , Ps such that each arc of C lies along
exactly one of the Pj.
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Notation 12. For a directed graph G on a totally ordered vertex set, we denote by γm(G) the
number of cycles of G having exactly m maximal increasing paths (equivalently, m maximal
decreasing paths).

With this established, we are able to state the main result of this section.

Theorem 8. Let (αi)
∞
i=1 and (βi)

∞
i=1 be decreasing sequences of positive real numbers such

that
∑

i αi +
∑

i βi ≤ 1. Let V
(α,β)
n−1,n1 be the complex Hilbert space of the Vershik-Kerov

representation of Smax(n−1,n1) endowed with the representation of (4.3), and let

j−1
n : V (α,β)

n−1,n1
→ V

(α,β)
n−1+1,n1

and j1
n : V (α,β)

n−1,n1
→ V

(α,β)
n−1,n1+1 (4.28)

be the natural embedding. Let ξV (α,β) = 10 be the indicator function of the diagonal. Denote
by tα,β the function on PI2 (∞) associated to this sequence of representations by Theorem 1.

Let (V , c) be a {−1, 1}-colored pair partition. Then

tα,β(V , c) =
∏
m≥2

(
∞∑
i=1

αmi + (−1)m+1

∞∑
i=1

βmi

)γm(GV,c)

. (4.29)

We will present the proof of Theorem 8 in the case that
∑

n αn = 1. This case will
contain the key ideas of the more general argument, but will simplify notation considerably
and allow us to consider discrete sums instead of integrals.

Notation 13. For (V , c) ∈ PI2 (2m), define

RD
V,c := {k ∈ RV : k ∈ DV,c}

LDV,c := {k ∈ LV : k ∈ DV,c}.
(4.30)

Proposition 9. Let I = {−1, 1} and let (V , c) ∈ PI2 (2m). Every maximal increasing path in
(V , c) has its starting point in LDV,c and its terminal point in RD

V,c. Every maximal decreasing
path in (V , c) has its starting point in RD

V,c and its terminal point in LDV,c.

Proof. This follows immediately from the definitions of the map ZV,c and the graph GV,c. A
left point l ∈ LDV,c, is adjacent to vertices u, v with l < u and l < v whereas if l ∈ LV ∈ SV,c,
l is adjacent to one vertex u′ with u′ < l and another vertex v′ with l < v′.

The proof of Theorem 8 will be aided by some additional terminology.

Definition 10. Let H be an infinite-dimensional complex Hilbert space with orthonormal
basis B := {hi}∞i=1. We will say that a vector η ∈ FV (H) is B-elementary if there is a
constant C, and some n−1, n1 such that there is a pair of tuples x(−1), x(1) ∈ Xn of length
n := max(n−1, n1) with x(−1) ∼ x(1) (where Xn and the relation ∼ are as in Notation 4) and

indices i
(−1)
1 , . . . , i

(−1)
n−1 ∈ N and i

(1)
1 , . . . , i

(1)
n1 ∈ N all distinct such that

η = C · δ(x(−1),x(1)) ⊗s hi(−1)
1
⊗ · · · ⊗ h

i
(−1)
n−1

⊗ h
i
(1)
1
⊗ · · · ⊗ h

i
(1)
n1

. (4.31)

Denote by EBV (H) the set of all B-elementary vectors in FV (H).
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Notation 14. For the remainder of this section, we assume that H is an infinite-dimensional
complex Hilbert space with orthonormal basis B := {hi}∞i=1. For a nonzero B-elementary
vector η ∈ Vn−1,n1 ⊗s H⊗n−1 ⊗H⊗n1 ⊂ FV (H), define nη : I → N by nη(b) = nb.

The next proposition says that, up to permutations, a nonzero B-elementary vector can
be expressed uniquely in the form (4.31). It follows immediately from the definition of the
symmetric tensor product ⊗s.

Proposition 10. Suppose that a nonzero B-elementary vector η has two expressions of the
form (4.31),

η = C · δ(x(−1),x(1)) ⊗s hi(−1)
1
⊗ · · · ⊗ h

i
(−1)
n−1

⊗ h
i
(1)
1
⊗ · · · ⊗ h

i
(1)
n1

= C̃ · δ(x̃(−1),x̃(1)) ⊗s hĩ(−1)
1
⊗ · · · ⊗ h

ĩ
(−1)
n−1

⊗ h
ĩ
(1)
1
⊗ · · · ⊗ h

ĩ
(1)
n1

(4.32)

where for b ∈ I, x(b), x̃(b) ∈ Xn and n := max(n−1, n1). Then there is some (π−1, π1) ∈
Sn−1 × Sn1 such that for each b ∈ I = {−1, 1}, is̃ = iπ−1

b s for s ∈ [nb] and x̃(b) = (ιnbn πb)x
(b),

where ιnbn denotes the natural inclusion from Snb → Sn.

Proposition 10 invites the following.

Corollary 3. Let H be an infinite-dimensional complex Hilbert space with orthonormal basis
B := {hi}∞i=1. Let η ∈ FV (H) be a B-elementary vector. Fix some expression for η of the
form (4.31).

1. If η 6= 0 then the sets

J (b)(η) := {i(b)1 , . . . , i
(b)
nη(b)} (b ∈ I) and J (η) := J (−1)(η) ∪ J (1)(η) (4.33)

do not depend on the choice of the expression for η in the form (4.31).

2. If η 6= 0 and b ∈ I, the function Sbη : J (η)→ Q (with Q as in Notation 4) given by

Sη(i
(b)
u ) := x(b)

u (4.34)

does not depend on the choice of the expression for η in the form (4.31).

3. If η 6= 0 and b ∈ I is such that nη(b) > nη(−b) then the function

xη : [nη(−b) + 1,nη(b)]→ Q (4.35)

given by
xη(k) = x

(−b)
k (4.36)

does not depend on the choice of the expression for η in the form (4.31).



37

4. Moreover,

D(η) =

{
0, if η = 0

C, if η 6= 0 is expressed in the form (4.31)
(4.37)

does not depend on the choice of the expression for η in the form (4.31).

We can now characterize the effect of an annihilation operator on a B-elementary vector.
In doing so, it will be convenient to fix the Hilbert spaces Vn and the transition maps jb
and omit the superscripts V and j. The next two propositions follow immediately from the
definition of the annihilation operators.

Proposition 11. If η ∈ FV (H) is a B-elementary vector and b ∈ I is such that nη(b) >

nη(−b) and i ∈ J (b)
η , then ab(hi)η is also a B-elementary vector and

D(ab(hi)η) =
δxη(nη(b)),Sη(i) · µ(Sη(i))

nη(b)
·D(η). (4.38)

Furthermore if ab(hi)η 6= 0, then the following hold:

1. J (b)(ab(hi)η) = J (b)(η) \ {i};

2. J (−b)(ab(hi)η) = J (−b)(η);

3. For i′ ∈ [nη(−b) + 1,nη(b)− 1], xab(hi)η(nη(b)) = xη(nη(b));

4. For any i′ ∈ J (ab(hi)η) = J (η) \ {i}, Sab(hi)η(i′) = Sη(i
′).

Proposition 12. Let η ∈ FV (H) be a nonzero B-elementary vector. Fix i ∈ Jη, and let
b ∈ I be such that nη(b) ≤ nη(−b). Then ab(hi)η is a B-elementary vector and

D(ab(hi)η) =
1

nη(b)
·D(η). (4.39)

If ab(hi)η 6= 0 then the following also hold:

1. J (b)(ab(hi)η) = J (b)(η) \ {i};

2. J (−b)(ab(hi)η) = J (−b)(η);

3. For i′ ∈ [nη(b) + 1,nη(b)], xab(hi)η(nη(b)) = xη(nη(b));

4. xab(hi)η(nη(b)) = Sη(i);

5. For any i′ ∈ J (ab(hi)η) = J (η) \ {i}, Sab(hi)η(i′) = Sη(i
′).

A creation operator need not take a B-elementary vector to another B-elementary vector.
However, we can express a creation operator as a sum of operators which preserve the B-
elementary property.
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Notation 15. For z ∈ Q = N, let εz : Vn → Vn+1 to be the linear map such that εzδ(x,y) =
δ((x,z),(y,z)). If h ∈ H and n−1 ≥ n1 define an operator

a∗−1,z(hr) : Vn−1 ⊗s H⊗n−1 ⊗H⊗n1 → Vn−1+1 ⊗s H⊗n−1+1 ⊗H⊗n1 (4.40)

by
a∗−1,z(hr)η = (nη(b)εz ⊗ r−1(h)) η. (4.41)

Define a∗1,z(hr) similarly for n1 ≥ n−1.

Remark 9. In the case that
∑
αi = 1 (and thus βi = 0 and γ = 0), we have∑

z∈Q

a∗b,z(h)η = a∗b(h)η (4.42)

for a B-elementary vector η ∈ F(V ) with nη(b) > nη(−b).
The following two propositions follow directly from the definition of the respective oper-

ators.

Proposition 13. If η ∈ FV (H) is a B-elementary vector, b ∈ I is such that nη(b) ≥ nη(−b),
and i ∈ N\J (η) then for any z ∈ Q, the vector a∗b,z(hi)η is also B-elementary. Furthermore,
the following hold:

1. If η 6= 0 then J (b)(a∗b,z(hi)η) = J (b)(η) ∪ {i};

2. If η 6= 0 then J (−b)(a∗−b,z(hi)η) = J (−b)(η);

3. For any i′ ∈ J (η), Sa∗b,z(hi)η(i
′) = Sη(i

′);

4. Sa∗b,z(hi)η(i) = z;

5. D(a∗b,z(hi)η) = (nη(b) + 1) ·D(η).

Proposition 14. If η ∈ FV (H) is a B-elementary vector, b ∈ B is such that nη(−b) > nη(b),
and i ∈ N \ Jη then the vector a∗b(hi)η is also B-elementary. Furthermore,

1. If η 6= 0 then J (b)(a∗b(hi)η) = J (b)(η) ∪ {i};

2. If η 6= 0 then J (−b)(a∗−b(hi)η) = J (−b)(η);

3. For any i′ ∈ J (η), Sa∗b,z(hi)η(i
′) = Sη(i

′);

4. If η 6= 0 then Sa∗b (hi)η(i) = xη(nη(b)).

5. D(a∗b(hi)η) = (nη(b) + 1)D(η).

We are now ready to prove the main theorem.
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Proof of Theorem 8. We reiterate that we are focusing on the case
∑
αi = 1 for simplicity.

The key ideas of the more general case
∑
αi +

∑
βi ≤ 1 are in this case, but this case

is slightly more straightforward in that it allows us to work with discrete sums instead of
integrals. In this case, we can assume that Q = N.

Let n = |V| and let H be an infinite-dimensional complex Hilbert space with an orthonor-
mal basis B := {hi}∞i=1. By Theorem 1, we can compute tV,j(V , c) as

tV,j(V , c) =
〈
ae1c(1)(hk1) · · · a

en
c(n)(hkn) (10 ⊗s Ω) ,10 ⊗s Ω

〉
, (4.43)

where i is an element of the ki-th pair of V , and ei = 2 if i ∈ RV and ei = 1 if i ∈ LV . For
each k ∈ [2m] define

Ai :=

{
a∗c(i)(hki), if i ∈ RV
ac(i)(hki), if i ∈ LV ,

(4.44)

so that
tV,j(V , c) = 〈(A1 · · ·A2m) 10 ⊗s Ω,10 ⊗s Ω〉 , (4.45)

Denote by ΛV,c the space of functions λ : RD
V,c → Q. For λ ∈ ΛV,c and i ∈ [2m], define

Aλ,i :=

{
a∗c(i),λ(i)(hki), if i ∈ RD

V,c

Ai, otherwise.
(4.46)

We define
A

(k)
λ := Aλ,k · · ·Aλ,2m (4.47)

for 1 ≤ k ≤ 2m. For convenience, we also set A
(2m+1)
λ = 1. It follows immediately from the

definitions and (4.45) that

tV,j(V , c) =
∑
λ∈ΛV,c

〈
A

(1)
λ 10 ⊗s Ω,10 ⊗s Ω

〉
(4.48)

Also define
ηλ,k := A

(k)
λ 10 ⊗s Ω. (4.49)

It can be seen from the definition of pbV,c that if ηλ,k 6= 0 then

nηλ,k(b) =

{
p

(b)
V,c(k)− 1, if k ∈ LV and c(k) = b,

p
(b)
V,c(k), otherwise.

(4.50)

for b ∈ I.
It follows from Propositions 11, 12, 13 and 14 that ηλ,k is B-elementary for 1 ≤ k ≤ 2m+1.

Since ηλ,1 ∈ C10 ⊗s Ω, it is determined by the constant D(ηλ,1). For k ∈ [2m], define

Bλ,k :=

{
δxηλ,k+1

(nηλ,k+1
(b)),Sηλ,k+1

(i) · µ(Sηλ,k+1
(i)) if k ∈ LDV,c

1, otherwise,
(4.51)
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so that

D(ηλ,1) =
2m∏
k=1

Bλ,k =
∏

k∈LDV,c

Bλ,k. (4.52)

For a maximal increasing path P of GV,c from ls to rt with ls < rt, define a function
HP,λ : [ls + 1, rt] → Q as follows. If u ∈ [ls + 1, rt], denote by fu = (au, zu) the unique arc
along the path P such that au < u ≤ zu. Then we define

HP,λ(u) :=

{
xηλ,u(rV,c(au)), if fu = (au, zu) ∈ V̄c

Sηλ,u(i), if fu = (li, ri) ∈ V .
(4.53)

It can be verified using (4.50) that if b ∈ I is such that pc(b)(au) > pc(−b)(au) and fu ∈ F̄V,c
then nηλ,u(b) < rV,c(au) ≤ nηλ,u(−b), so that rV,c(au) is indeed in the domain of xηλ,u .

We will show that HP,λ(u) = λ(ls) for all u ∈ [ls + 1, rt]. By definition,

ηλ,rt = Aλ,rtηλ,rt+1 = a∗c(rt),λ(rt)(ht)ηλ,rt+1. (4.54)

As an endpoint of a maximal monotone path, rt ∈ DV,c, and p
c(rt)
V,c (rt) > p

−c(rt)
V,c (rt) implies

that nηλ,rt−1
(c(rt)) > nηλ,rt+1

(−c(rt)). If frt ∈ F̄V,c then by Proposition 13,

HP,λ(rt) = xa∗
c(rt),λ(rt)

(ht)ηλ,rt+1
(rV,c(c(rt))) = λ(rt). (4.55)

If, on the other hand, fu = (lt, rt) ∈ V then

HP,λ(rt) = Sa∗
c(rt),λ(rt)

(ht)ηλ,rt+1
(t) = λ(rt), (4.56)

where we have again applied Proposition 13.
To show that HP,λ(u) = λ(rt) for all u, it will now suffice to show that HP,λ(u) =

HP,λ(u+1) for u ∈ [ls+1, rt−1]. For u such that fu = fu+1 this is an immediate consequence
of the definition ofHP,λ(u). Otherwise, u is a vertex along the path P and u ∈ SV,c. If u ∈ LV ,
say u = li, then (au, zu) = (u, zu) ∈ F̄V,c, thus

HP,λ(u) = xηλ,u(rV,c(c(au)))

= xac(u)(hi)ηλ,u+1
(rV,c(c(au)))

= Sηλ,u+1
(i)

= HP,λ(u+ 1).

(4.57)

Here we have made use of Proposition 12.
If instead u ∈ RV , say u = ri, then (au, zu) = (li, ri) ∈ V , so

HP,λ(u) = Sηλ,u(i)

= Sa∗
c(u)

(hi)ηλ,u+1
(i)

= xηλ,u+1
(nηλ,u+1

(c(u)))

= xηλ,u+1
(rV,c(ri))

= HP,λ(u+ 1),

(4.58)
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where we have used Proposition 14.
Thus, HP,λ(u) = λ(rt) for all u ∈ [ls + 1, rt]. In particular, taking u = ls + 1 shows that

xηλ,ls+1
(rV,c(ls)) = λ(rt) if the initial arc of P is in F̄V,c and Sηλ,ls+1

(i) = λ(rt) if the initial arc
is (li, ri) ∈ V . By a similar argument, if P ′ is a maximal decreasing path from some rt′ ∈ RD

V,c
to ls then xηλ,ls+1

(rV,c(ls)) = λ(rt) if the final arc of P ′ is in F̄V,c and Sηλ,ls+1
(i′) = λ(rt) if the

final arc of P ′ is (li′ , ri′) ∈ V . Thus,

Bλ,ls = δxηλ,k+1
(nηλ,k+1

(b)),Sηλ,k+1
(i) · µ(Sηλ,k+1

(i)) = δλ(rt),λ(rt′ )
· µ(λ(rt)). (4.59)

Therefore, if A : LDV,c → RD
V,c is the function taking l ∈ LDV,c to the starting point of the

maximal decreasing path terminating at l and D : LDV,c → RD
V,c is the function l to the

endpoint of the maximal increasing path starting at l then

D(ηλ,1) =
∏

k∈LDV,c

Bλ,k =
∏
l∈LDV,c

δλ(D(l)),λ(A(l)) · µ(D(l)). (4.60)

This means that D(ηλ,1) = 0 unless λ(r) = λ(r′) whenever there is some l ∈ LDV,c such that
there are maximal monotone paths from l to r and r to l′. But this condition holds only if
λ(r) = λ(r′) whenever r and r′ lie along the same cycle of GV,c. Denote by ΛC

V,c the set of
functions in ΛV,c satisfying this condition. For λ ∈ ΛC

V,c and a cycle K of GV,c we write λ(K)
for the common value λ(r) for any r ∈ RD

V,c along the cycle K.
Denoting the set of cycles of GV,c by C(GV,c) and the number of maximal increasing

paths of a cycle K by M(K) we deduce that

D(ηλ,1) =

{∏
K∈C(GV,c)

µ(λ(K))M(K), if λ ∈ ΛC
V,c,

0, otherwise.
(4.61)

Finally,

tα,β(V , c) =
∑
λ∈ΛV,c

〈
A

(1)
λ 10 ⊗s Ω,10 ⊗s Ω

〉
=
∑
λ∈ΛV,c

D(ηλ,1)

=
∑
λ∈ΛCV,c

∏
K∈C(GV,c)

µ(λ(K))M(K)

=
∏
m≥2

(
∞∑
i=1

αmi

)γm(GV,c)

.

(4.62)
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Chapter 5

A special case of the generalized
Brownian motions associated to
spherical representations of
(S∞ × S∞, S∞)

In this chapter, we specialize the investigation begun in Chapter 4 to a countable class
of Thoma parameters which were also considered in [BG02]. Namely, for N ∈ Z \ {0} we
will consider the spherical function ϕN of the Gelfand pair (S∞ × S∞, S∞) arising from the
Thoma parameters with

αn =

{
1/N, N > 0 and 1 ≤ n ≤ N ;

0, otherwise.
and βn =

{
1/N, N < 0 and 1 ≤ n ≤ |N |;
0, otherwise.

(5.1)

The character ϕN on S∞ is given by

ϕN(π) =

(
1

N

)m−γ(m)(π)

(5.2)

where m is large enough so that σ(k) = k for k > m and γ(m) (σ) is the number of cycles
in the permutation σ ∈ S∞ when σ is considered as an element of Sm. Although γ(m) (σ)
depends on the choice of m, the quantity m− γ(m) (σ) does not.

We denote by ψN the associated spherical function on the Gelfand pair (S∞ × S∞, S∞).
That is,

ψN(π−1, π1) = ϕN(π−1
1 π−1) =

(
1

N

)m−γ(m)(π−1
1 π−1)

, (5.3)

where (π−1, π1) ∈ S∞ × S∞.
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The function on {−1, 1}-indexed pair partitions associated to ψN by Theorem 8 is given
by

tN(V , c) =

(
1

N

)m(GV,c)−γ(GV,c)

, (5.4)

where m(GV,c) and γ(GV,c) denote the number of maximal increasing paths and number of
cycles of the graph GV,c defined in Chapter 4, respectively.

For a complex Hilbert space H, the function tN gives rise to a Fock state ρN on the
algebra CI(H). We denote by FIN(H), ΩN , and CIN(H) the Hilbert space, distinguished
cyclic vector, and algebra of operators of the GNS construction for this pair. We will see
that for N < 0, the field operators on FN(H) are bounded operators which generate a von
Neumann algebra containing the projection onto vacuum vector.

Notation 16. Fix an integer N 6= 0 and an infinite-dimensional complex Hilbert space H
with orthonormal basis B := {hn : n ∈ N}. Denote by a∗b,i the creation operator a∗tN ,b(hi)
and by ab,i the annihilation operator atN ,b(hi). As we have done before, we will write aeb,i for
either a creation (e = 2) or annihilation operator (e = 1) and let ωb,i = ab,i+a∗b,i. Let ΓIN(H)
be the von Neumann algebra generated by the spectral projections of the ωb,i (b ∈ I, i ∈ N).

Let P(H,B) be the set of finite words in the aeb,i. Each word in P(H,B) can be considered
a (possibly unbounded) operator on FIN(H) simply by regarding it as a product of the
creation and annihilation operators that comprise the word. The set P(H,B) inherits the
involution ∗ from CI(H). For A ∈ P(H,B), b ∈ I and i ∈ N, let cb,i(A) be the number of
occurrences of the creation operator a∗b,i in the word A and ab,i(A) the number of occurrences
of the annihilation operator ab,i in the word A. For b ∈ I, define wA

b : N→ Z by

wA
b (n) = cb,n(A)− ab,n(A). (5.5)

Given a function wb : N → Z for each b ∈ I taking only finitely many nonzero values,
define

Pw(H,B) :=
{
A ∈ P(H,B) : wA = w

}
. (5.6)

Denote by Hw(H,B) the space

Hw(H,B) := span{AΩN : A ∈ Pw(H,B)}. (5.7)

For a function wb : N → Z which is 0 at all but finitely many points, we define |wb| =∑∞
n=1 wb(n).

Remark 10. If wb(n) < 0 for some b ∈ I and some n ∈ N then Hw(H,B) = 0.

Definition 11. Suppose that A ∈ P(H,B) and the terms in the product A are indexed by
some ordered set S,

A =
∏
k∈S

aekbk,ik . (5.8)
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We will say that (V , c) ∈ PI2 (S) is compatible with A if∏
(l,r)∈V

δel,1δer,2δc(l,r),blδc(l,r),brδil,ir = 1. (5.9)

Denote by C(A) the set of all (V , c) ∈ PI2 (S) which are compatible with A.

Remark 11. The motivation for Definition 11 is that (2.5), for A ∈ P(H,B),

ρN(A) =
∑

(V,c)∈C(A)

tN(V , c). (5.10)

Remark 12. The condition (V , c) ∈ C(A) uniquely determines (V̄(c), c̄). This is because once
we know that (V , c) ∈ C(A), we can immediately determine the color function c and which
points are left points of V and which are right points of V . This, in turn, determines the
index function V̄(c) and the involution ZV,c, which gives V̄(c).

Notation 17. For T ⊆ S, we denote by A|T the product of those elements in the word A
which are indexed by elements of T .

The next proposition is an immediate consequence of the definitions.

Proposition 15. Suppose that A ∈ Pw(H,B) is given by

A =
r∏

k=1

aekbk,ik . (5.11)

and let (V , c) ∈ C(A). For each s ∈ [r] denote by As the product As =
∏r

k=s+1 a
ek
bk,ik

. Then
s ∈ DV,c if and only if one of the following holds:

1. s ∈ RV and
∣∣∣wAs

c(s)

∣∣∣ ≥ ∣∣∣wAs
−c(s)

∣∣∣;
2. s ∈ LV and

∣∣∣wAs
c(s)

∣∣∣ > ∣∣∣wAs
−c(s)

∣∣∣.
The definition (2.5) of the Fock state ρN and the definition of wA

b give the following.

Proposition 16. Suppose that w−1,w1,w
′
−1,w

′
1 : N → Z are zero except at finitely many

points. The spaces Hw(H,B) and Hw′(H,B) are orthogonal unless wb = w′b for b ∈ I.

This enables us to make the following definition.

Definition 12. Let Nb,n be the operator defined on the dense subspace ⊕wHw(H,B) of
FIN(H) by linear extension of

η 7→ wb(n) · η for η ∈ Hw(H,B). (5.12)
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The next proposition is an exclusion principle analogous to that proven in [BG02].

Lemma 1. If N < 0 and there is some b ∈ I and some n ∈ N such that if wb(n) > |N |,
then Hw(H,B) = 0.

Corollary 4. If N < 0 then Nb,n is bounded for all b ∈ I and n ∈ N. Moreover, ‖Nb,n‖ =
|N |.

Our proof of Lemma 1 will make use of some basic combinatorics, which we now recall.

Notation 18. Denote by |s(n, k)| the number of permutations in the symmetric group Sn
which can be written as the product of k disjoint cycles.

The numbers |s(n, k)| are known as the unsigned Stirling number of the first kind. It
is well-known (c.f. [Sta12]) that the unsigned Stirling numbers of the first kind satisfy the
relation

x(x+ 1) · · · (x+ n− 1) =
n∑
k=0

|s(n, k)|xk. (5.13)

Proposition 17. If N ∈ N and N < 0 then∑
σ∈S|N|+1

N c(σ) = 0 (5.14)

Proof. This follows immediately from (5.13):

∑
σ∈S|N|+1

N c(σ) =

|N |+1∑
k=0

|s(|N |+ 1, k)|Nk = N(N + 1) · · · (N + (|N |+ 1)− 1) = 0. (5.15)

To prove Lemma 1, we will need the following proposition, which is proven by applying
the definitions.

Proposition 18. Suppose that A,B ∈ P(H,B) are words of length `A and `B, respectively.
Assume that A can be expressed as a product

A = ae1b1,i1 · · · a
e`A
b`A ,i`A

(5.16)

and that B∗ can be expressed as

B∗ = a
e−`B
b−`B ,i−`B

· · · ab−1,i
e−1
−1

(5.17)

If (V , c) ∈ C(B∗A) then for any i ∈ N, there is a unique subset Y+,b,i
A,B (V , c) ⊂ [`A] and a

unique subset Y−,b,iA,B (V , c) ⊂ −[`B] such that the following conditions are satisfied:
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1. |Y+,b,i
A,B (V , c)| = |Y−,b,iA,B (V , c)| = wA

b (i);

2. If k ∈ Y+,b,i
A,B (V , c) then ek = 2, c(k) = b, and ik = i;

3. If k ∈ Y−,b,iA,B (V , c) then ek = 1, c(k) = b, and ik = i;

4. If k ∈ Y+,b,i
A,B (V , c) then πV(k) ∈ Y−,b,iA,B (V , c);

5. If k ∈ Y−,b,iA,B (V , c) then πV(k) ∈ Y+,b,i
A,B (V , c).

Here πV is the permutation obtained by regarding the pairs of V as transpositions.

Remark 13. The sets Y+,b,i
A,B (V , c) and Y−,b,iA,B (V , c) may depend on the choice of (V , c) ∈

C(B∗A), but they are uniquely determined by this choice.

Proof of Lemma 1. It will suffice to consider the case wb(i) = |N | + 1, and we will further
assume that b = 1. Consider a word A ∈ P(H,B) containing r ≥ |N |+ 1 creation operators
a∗b,i and r − |N | − 1 annihilation operators ab,i, say

A = ae1b1,i1 · · · a
es
bs,is

(5.18)

We need to show that ρN(A∗A) = 0. It will be convenient to view the word A∗A as a product
of operators whose terms are indexed by the set J := {−s,−s + 1, . . . ,−1, 1, . . . , s − 1, s}.
Thus bk = b−k, ek 6= e−k, and ik = i−k for k ∈ J . By (5.10),

ρN(A∗A) =
∑

(V,c)∈C(A∗A)

tN(V , c) (5.19)

For (V , C) ∈ C(A∗A), consider the sets Y+,b,i
A,A (V , c) and Y−,b,iA,A (V , c) provided by Propo-

sition 18, and denote these simply by Y+(V , c) and Y−(V , c). These sets have cardinal-
ity wA

b (i) = N + 1. The I-indexed pair partition (V , c) can be seen as a pair partition
WV,c ∈ C(A∗A|J\(Y+(V,c)∪Y−(V,c))) together with a bijection ιV,c : Y+(V , c)→ Y−(V , c).

It will suffice to show that for any F+, F− ⊂ J with |F+| = |F−| = |N | + 1 and any
W ∈ C(A∗A|J\(F+∪F−)), ∑

(V,c)∈C(A∗A)
WV,c=W

tN(V , c) = 0. (5.20)

If the sum is empty, there is nothing to show. Otherwise, define a directed graph ĜF−,F+

whose vertices are the elements of the index set J , and whose arc set is{
(k, k′)cA∗A(k) : (k, k′) ∈ W

}
∪
{

(k, k′)c̄A∗A(k,k′) : (k, k′) ∈ V̄A∗A
}
, (5.21)

where (k, k′)(b) is as in Notation 11. A vertex k ∈ J \ (F+ ∪F−) of ĜF−,F+ is the start point
and end point of exactly one arc. A vertex k ∈ F+ is the start point of 1 arc and is not the
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end point of any arc. A vertex k ∈ F− is the end point of 1 arc and is not the start point of
any arc. Therefore, each vertex k ∈ F+ of ĜF−,F+ is the starting point of a maximal path
which ends at some vertex k′ ∈ F−. This gives a bijection ε : F+ → F−. (To clarify these
notions, we consider a specific case, including diagrams in Example 4.)

A term in the sum in (5.20) can be characterized by the bijection ιV,c : F+ → F−. The

graph GV,c can be formed from ĜF−,F+ by adding the edges arising from ιV,c. The number of
maximal increasing paths m(GV,c) does not depend on the choice of ιV,c, and we denote the

common value by m. Furthermore γ(GV,c) = γ(F̂ )+γ(ιV,cε
−1) where γ(ιV,cε

−1) is the number
of cycles of ιV,cε

−1 as a permutation on F−. As ιV,c ranges over all bijections F+ → F−, the
permutation ιV,cε

−1 ranges over the symmetric group, whence

∑
(V,c)∈C(A∗A)
WV,c=W

G±(V,c)=F±

tN(V , c) =
∑

σ∈SN+1

(
1

N

)m−(γ(F̂ )+γ(σ))

=

(
1

N

)m−γ(F̂ ) ∑
σ∈SN+1

Nγ(σ)

= 0.

(5.22)

Example 4. We consider a simple example, with a diagram, to clarify some of the ideas
in the proof of Lemma 1. Let N = −1, let a = a1,1 and a∗ = a∗1,1 and define A := a∗aa∗a∗

so that wA(1) = 3 − 1 = 2 > |N | = 1. If (V , c) ∈ C(A∗A) then the sets Y+,1,1
A,A (V , c) and

Y−,1,1A,A (V , c) have cardinality wA(1) = 2. As usual, we refer to these sets by Y+(V , c) and
Y−(V , c). Indexing the product on [−4, 4] \ {0}, we will consider the (V , c) ∈ C(A∗A) having
Y+(V , c) = {1, 4} and Y−(V , c) = {−3,−1}. There are two such (V , c), with pair partitions

V1 = {(−4,−2), (−3,−1), (−1, 4), (2, 3)} and V2 = {(−4,−2), (−3, 4), (−1, 1), (2, 3)}
(5.23)

and with color functions c1 and c2 defined to be 1 on all pairs of their respective pair
partitions.

The graph Ĝ{−3,−1},{1,4} is depicted in Figure 5.1. This graph, whose name we abbreviate

by Ĝ, can be completed to either of the graphs G(V1,c1) or G(V2,c2) by adding the appropriate
arcs. The former arises from the map ι1 : {1, 4} → {−3,−1} given by 1 7→ −3 and 4 7→ −1
and the latter arises from ι2 with 4 7→ −3 and 1 7→ −1. Following the maximal paths of the
graph, one sees that the bijection ε is given by 4 7→ −3 and 1 7→ −1. Thus, the bijection
ι2ε
−1 is the identity permutation on {−3,−1} and ι1ε

−1 is the 2-cycle on the set {−3,−1}.
Both of the graphs GV1,c1 and GV2,c2 have 4 maximal increasing paths, and these graphs have

2 and 3 cycles, respectively. The graph Ĝ has exactly 1 cycle.

The following is a partial analog of Lemma 5.1 of [BG02].
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-4 -3 -2 -1 1 2 3 4

Figure 5.1: The directed graph Ĝ{−1,−3},{1,4} for the word considered in Example 4.

Proposition 19. Suppose that A ∈ Pw(H,B) and b ∈ I with |wb| ≥ |w−b|. Then for i ∈ N,

ab,ia
∗
b,iAΩN =

(
1 +

1

N
Nb,i

)
AΩN . (5.24)

Proof. It will suffice to show that if B ∈ Pw(H,B) then

ρN(B∗ab,ia
∗
b,iA) =

(
1 +

wA
b (i)

N

)
ρN(B∗A). (5.25)

To save space, we define X := B∗ab,ia
∗
b,iA. We will assume that b = 1 as the case b = −1 is

similar. Let `A be the length of the word A and `B the length of the word B, so that X is a
word of length `A + `B + 2. It will be convenient to choose J = [`A + `B + 2] as our index
set for the product X = B∗ab,ia

∗
b,iA and K = J \ {`B + 1, `B + 2} as the index set for the

product B∗A. These choices allow us to write the products X and B∗A as

X =
∏
k∈J

aekbk,ik and B∗A =
∏
k∈K

aekbk,ik (5.26)

for some choices of bk, ik, and ek.
Using the assumption that |wb| ≥ |w−b|, if (V , c) ∈ C(X) then Proposition 15 implies

that `B + 1 ∈ DV,c, which means that ZV,c(`B + 1) = `B + 2, whence (`B + 1, `B + 2) ∈ V̄(c).
Then

ρN(X) =
∑

(V,c)∈C(X)
(`B+1,`B+2)∈V

tN(V , c) +
∑

(V,c)∈C(X)
(`B+1,`B+2)6∈V

tN(V , c). (5.27)

If (V , c) ∈ C(X) with (`B + 1, `B + 2) ∈ V then (W , d) ∈ C(B∗A), where W = V \ {(`B +
1, `B + 2)} and d is the restriction c|W . Furthermore, W̄(d) = V̄(c) \ {(`B + 1, `B + 2)} and
d̄ = c̄|W̄ . Thus the graph GV,c can be formed from the graph GW,d by adding the two
vertices (`B + 1, `B + 2) and 1 arc between these vertices in each direction. This means that
γ(GV,c) = γ(GW,d) + 1 and m(GV,c) = m(GW,d) + 1, whence tN(V , c) = tN(W , d), and∑

(V,c)∈C(X)
(`B+1,`B+2)∈V

tN(V , c) =
∑

(W,d)∈C(B∗A)

tN(W , d) = ρN(B∗A). (5.28)
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Now suppose that (V , c) ∈ C(X) with (`B + 1, `B + 2) 6∈ V . We will need the sets
Y+,b,i
a∗b,iA,a

∗
b,iB

(V , c) and Y−,b,ia∗b,iA,a
∗
b,iB

(V , c) given by Proposition 18, and we denote them simply by

Y+(V , c) and Y−(V , c). Since we have chosen a different index set than in the statement of
Proposition 18, we have in this case Y+(V , c) ⊂ [`B + 2, `A + `B + 2] and Y−(V , c) ⊂ [`B + 1].

The assumption (`B + 1, `B + 2) 6∈ V implies that πV(`B + 2) ∈ Y+(V , c) and πV(`B +
1) ∈ Y−(V , c). In particular, πV(`B + 2) ∈ Y−(V , c) and πV(`B + 1) ∈ Y+(V , c). If W =
V \ {(πV(`B + 2), `B + 2), (`B + 1, πV(`B + 1))} ∪ {(πV(`B + 2), πV(`B + 1))} and d :W → I
is given by d(p) = c(p) for p ∈ V and d(πV(`B + 2), πV(`B + 1)) = c(`B + 2) = c(`B + 1) then
(W , d) ∈ C(B∗A). The graphs GV,c and GW,d have the same number of cycles, but GV,c has
one more maximal increasing path than GW,d, whence tN(W , c) = 1

N
tN(W , d).

The correspondence (V , c) 7→ (W , d) is not injective. Given (W , d) ∈ C(B∗A), one can

replace any of the w
(A)
1 (i) pairs (k, k′) with k ∈ Y−(V , c) and k′ ∈ Y+(V , c) with the pairs

(k, `B + 2) and (`A + 2, k′) to get an element of C(X). We have thus shown that

∑
(V,c)∈C(X)

(`B+1,`B+2)6∈V

tN(V , c) = w
(A)
1 (i)

∑
(W,d)∈C(B∗A)

1

N
tN(W , d) =

w
(A)
1 (i)

N
ρN(B∗A). (5.29)

This proves (5.25).

Lemma 2. For all b ∈ I and all i ∈ N, the creation operator a∗b,i is bounded.

Proof. Let

F< =
⊕

|wb|<|w−b|

Hw(H,B) and F≤ =
⊕

|wb|≤|w−b|

Hw(H,B), (5.30)

and define F≥ and F> analogously. Then we have two decompositions of FIN(H):

FIN(H) = F≤ ⊕F> = F< ⊕F≥. (5.31)

Using these decompositions, we can write a creation operator a∗b,i as

a∗b,i = a∗b,i,< ⊕ a∗b,i,≥ (5.32)

where a∗b,i,< : F< → F≤ and a∗b,i,< : F≥ → F> are the restrictions of a∗b,i. It will suffice to
show that a∗b,i,< and a∗b,i,≥ are bounded operators.

Boundedness of the operator a∗b,i,≥ is an immediate consequence of Proposition 19, so
we need only show that a∗b,i,< is bounded. This will follow from boundedness of its adjoint,
which we denote by ab,i,<. We will find an upper bound for

ρN
(
B∗a∗b,iab,iA

)
(5.33)

with A,B ∈ Pw(H,B) having norm 1 and |wb| ≤ |w−b|. By Lemma 1, we can assume that
0 ≤ wb(i) ≤ |N |.
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Denote by `A the length of the word A and by `B the length of the word B. Let X =
B∗ab,ia

∗
b,iA so that X has length `A+`B+2. Index the product X on the set J = [`A+`B+2]

and let K = J \ {`B + 1, `B + 2} as the index set for the product B∗A. These choices permit
us to write the products X and B∗A as

X =
∏
k∈J

aekbk,ik and B∗A =
∏
k∈K

aekbk,ik (5.34)

for some choices of bk, ik, and ek.
Suppose that (V , c) ∈ C(X). We will assume here that b = 1, as the case b = −1 is

very similar. By the assumption |wb| ≤ |w−b| and Proposition 15, `B + 1, `B + 2 ∈ SV,c.
Thus (`B + 1, `B + 2) ∈ (V̄ , c̄). Letting πV be the permutation arrived at by treating V
as a product of transpositions, πV(`B + 1) ∈ [`B] and πV(`B + 2) ∈ [`B + 3, `A + `B + 2],.
Thus, there exists an increasing path in GV,c, πV(`B + 1)→ `B + 1→ `B + 2→ πV(`B + 2).
Replacing this path with a single edge, (πV(`B + 1), πV(`B + 2)) gives the graph GW,d for
W = V \ {(`B + 1, `B + 2)} ∪ (πV(`B + 1), πV(`B + 2)) and d(p) = c(p) for p ∈ V and
d(`B + 1, `B + 2) = c(πV(`B + 1), `B + 1). The graphs GW,d and GV,c have the same numbers
of cycles and maximal increasing paths, and the correspondence (V , c) 7→ (W , d) is wb(i)-to-1.
Since 0 ≤ wb(i) < |N |, it follows that ρN

(
B∗a∗b,iab,iA

)
≤ |N |, whence

∥∥a∗b,i,<∥∥ <√|N |.
Proposition 20. For M ∈ B(FIN(H)), b ∈ I and n ∈ N define

Φb,n(M) := ωb,2n · · ·ωb,n+1Mωb,n+1 · · ·ωb,2n. (5.35)

The following limiting relations hold:

1. w-limn→∞Φb,n(a∗b,ia
∗
b,i) = 0;

2. w-limn→∞Φb,n(ab,iab,i) = 0;

3. w-limn→∞Φb,n(ab,ia
∗
b,i) = 1 + 1

N
Nb,i;

4. w-limn→∞Φb,n(a∗b,iab,i) = 1
N2 Nb,i;

5. w-limn→∞Φb,n(1) = 1;

6. w-limn→∞Φb,n(Nb,i) = Nb,i.

Proof. Items 5 and 6 are straightforward, and item 3 follows from Proposition 19 together
with items 5 and 6. Item 2 will follow immediately from 1 and continuity of the map X 7→ X∗

in the weak operator topology. It will therefore suffice to prove items 1 and 4. We will assume
that b = 1 as the case b = −1 is similar.

For the proof of 1, fix words A,B ∈ P(H,B), and let `A be the length of the word A and
`B the length of the word B. We index the terms in

Xn := B∗ab,2n · · · ab,n+1a
∗
b,ia
∗
b,ia
∗
b,n+1 · · · a∗b,2nA, (5.36)
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considered as a product of the operators aeb,k, with the set

Jn := [−`B − n− 1, `A + n+ 1] \ {0}. (5.37)

We write the word Xn as a product

Xn :=
∏
k∈Jn

aekbk,ik . (5.38)

By the definition of Xn, bk = 1 for k ∈ [−n−1, n+1]\{0}, ek = 1 for k ∈ −[2, n+1], ek = 2
for k ∈ [n + 1] ∪ {−1} and ik = n + |k| − 1 for k ∈ [−n + 1, n + 1] \ {−1, 0, 1}. Moreover
i1 = i−1 = i.

Since for k ∈ [2, n + 1], k and −k are the only indices for which an operator aen+k−1

appears in the product Xn, if (V , c) ∈ C(Xn) then (k,−k) ∈ V for k ∈ [2, n]. Assume that n
is large enough that n+ |wA

1 | − |wA
−1| > 2r for some fixed r ∈ N. Together with Proposition

15, this condition ensures that k ∈ DV,c for all k ∈ [2r]. One can check that

−1
V,c∼ −2, 1

V,c∼ −3, 2
V,c∼ −4, · · · , 2r V,c∼ −2r − 2, (5.39)

whence (−2,−1), (−3, 1), (−4, 2), · · · , (−r − 2, r) ∈ V . This means that the graph GV,c has
a path

−2→ 2→ −4→ 4→ −6→ 6→ · · · → −2r → 2r. (5.40)

Each arc (−k, k) for k ∈ [r] is a maximal increasing path, so the cycle containing this path
has at least r maximal increasing paths, whence tN(V , c) ≤ N1−r. Since the cardinality
|C(Xn)| does not depend on n, it follows that

ρN(Xn) =
∑

(V,c)∈C(Xn)

tN(V , c) ≤ CN1−r (5.41)

for some constant C, whence Φn(a∗b,ia
∗
b,i)→ 0 weakly.

We now move on to proving item 4. Fix words A,B ∈ P(H,B) of length `A and `B with
|wA| = |wB|. It will suffice to show that

ρN(B∗ab,2n · · · ab,n+1a
∗
b,iab,ia

∗
b,n+1 · · · a∗b,2nA) =

wA
1 (i)

N2
ρN(B∗A) (5.42)

for n sufficiently large.
We assume that n is large enough that n + |wA

1 | > |wA
−1| and that no aeb,m with m > n

appears in either word A or B. We let

Xn := B∗ab,2n · · · ab,n+1a
∗
b,iab,ia

∗
b,n+1 · · · a∗b,2nA, (5.43)

and write this product as

Xn :=
∏
k∈Kn

aekbk,ik . (5.44)
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Figure 5.2: Part of the directed graph ĜV,c considered in the proof of item 1 of 20.

where Kn :=
⋃
l∈{−1,0,1}K

(l)
n with

K(−1)
n = −[`B], K0

n =
{
−n− 1, . . . ,−1, 1, · · · , n+ 1

}
, K(1)

n = [`A], (5.45)

where for k denotes a distinct copy of the integer k ∈ Z. We order Kn by imposing the

usual order on Z on each K
(l)
n and for k ∈ K(l)

n and k′ ∈ K(l′)
n with l < l′ set k < k′. Setting

K ′n := K
(−1)
n ∪K(1)

n ,

B∗A =
∏
k∈K′n

aekbk,ik . (5.46)

If (V , c) ∈ C(Xn) then as in the proof of item 1, (−k, k) ∈ V for k ∈ [2, n + 1]. Let
k+, k− ∈ K ′n be such that (k−,−1), (1, k+) ∈ V . Let

W := V \ {(−k, k) : k ∈ [2, n]} ∪ {(k−, k+)} (5.47)

and define d :W → I by d(p) = c(p) for c ∈ V\{(−k, k) : k ∈ [2, n]} and d(k−, k+) = c(k−) =
c(k+). Then (W , d) ∈ C(B∗A), and rV,c(k) = rW,d(k) for any k ∈ K ′n. By Proposition 15,

−1, 1 ∈ DV,c with −1
V,c∼ −2 and 1

V,c∼ 2 so that (−2,−1), (1, 2) ∈ V̄(c). If k ∈ [2, n] and k ∈
DV,c then (−k, k) ∈ V̄(c) so that −k and k are on a cycle with exactly 1 maximal increasing
path. If instead k ∈ [2, n] with k ∈ SV,c then ZV,c(k) = ZW,d(−k) and ZV,c(−k) = ZW,d(k).
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This shows that the correspondence (V , c) 7→ (W , d) preserves the cycle structure of the
corresponding graph except that it removes some number of cycles with exactly 1 maximal
increasing path and reduces by 2 the number of maximal increasing paths in the cycle through
k+ and k−. As such, tN(V , c) = 1

N2 tN(W , d). Similar to the proof of Proposition 19, there

are w
(A)
1 pairs (V , c) mapped to of each (W , d) by the correspondence just described, so

(5.42) follows.

Proposition 21. Let 0b : N → Z be the constant function 0b(n) = 0 for b ∈ I. Then
H0(H) = CΩN .

Proof. It is sufficient to show that for any A ∈ P0,

‖ρN(A)ΩN − AΩN‖N = 0. (5.48)

This follows from the fact that (V , c) ∈ C(A∗A) cannot have any pairs (k, k′) with k ≤ `A
and k′ > `A, where `A is the length of the word A.

The following is a partial

Proposition 22. If N < 0 and H is an infinite dimensional real Hilbert space, then ΓIN(H)
contains the projection onto the vacuum vector ΩN .

Proof. By Proposition 20,

w-limn→∞Φn(ω2
b,i) = 1 +

N + 1

N2
Nb,i. (5.49)

In particular, Nb,i ∈ ΓIN(H).
It is a consequence of the definitions of the operators Nb,i that

ker Nb,i =
⊕

wb(i)=0

Hw(H,B). (5.50)

If Pb,i is the projection onto ker Nb,i and PΩN is the projection onto the vacuum vector then
by Proposition 21,

PΩN = inf{Pb,i : b ∈ I, i ∈ N}, (5.51)

whence PΩN ∈ ΓIN(H).

In [BG02], Bożejko and Guţă used a result analogous to Proposition 22 to show that a
von Neumann algebra under consideration was in fact the whole space of bounded operators.
However, they worked in a setting with a cyclic vacuum vector. We do not yet know whether
the vacuum vector is cyclic in our context. Accordingly, the best that we can prove is the
following.

Proposition 23. Let F̂IN(H) := ΓIN(H)ΩN , and define Γ̂IN(H) =
{
X|F̂IN (H) : X ∈ ΓIN(H)

}
.

Then Γ̂IN(H) = B(F̂IN(H)).
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Proof. Suppose that Q is a nonzero projection in Γ̂IN(H)′. For X ∈ Γ̂IN(H),

QXΩN = X(QΩN) = XΩN . (5.52)

In arriving at the second equality, we use the assumption that Q commutes with PΩN ∈
Γ̂IN(H), the projection onto the vacuum. Since ΩN is cyclic for the action of Γ̂IN(H) on
F̂IN(H), it follows that Q = 1, whence Γ̂IN(H)′ = C.
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Chapter 6

The qij-product of generalized
Brownian motions

In this chapter, we present a generalization of Guţă’s q-product of noncommutative gen-
eralized Brownian motions.

Definition 13. For V ∈ P2(∞), define the set of crossings of V by

cr(V) = {((a1, z1), (a2, z2)) ∈ V × V : a1 < a2 < z1 < z2}. (6.1)

If (V , c) ∈ PI2 (∞), we also define cr(V , c) = cr(V). Suppose that for each i ∈ I, a positive-
definite function ti : P2(∞) → C is given, and that we have a (possibly infinite) matrix
Q = (qij)i,j∈I with qij = qji and qij ∈ [−1, 1]. Then we define the Q-product of the ti to be
the function on PI2 (∞) given by(

∗QbnItb
)

(V , c) :=
∏

(p,p′)∈cr(V)

qc(p),c(p′)
∏
b∈I

tb(c
−1(b)). (6.2)

Definition 14. A function t : PI2 (∞)→ C is said to be multiplicative if for every k, l, n ∈ N
with 1 ≤ k ≤ l ≤ n and any I-colored pair partitions V1 ∈ PI2 (∞)({1, . . . , k, l, . . . , n}) and
V2 ∈ PI2 (∞)({k + 1, . . . , l − 1}), we have t(V1 ∪ V2) = t(V1) · t(V2).

Proposition 24. Suppose that tb : P2(∞) → C (b ∈ I) are multiplicative positive definite
functions such that t(V , c) = 1 whenever V is the element of P2(∞) with only one pair.
Suppose also that for each i, j ∈ I, some symmetric Q = (qij)i,j∈I with qij ∈ [−1, 1] is given.

Then
(
∗Qa∈Itb

)
(V , c) is a positive definite function on PI2 (∞).

Remark 14. In [Guţ03], the number of crossings between pairs of different colors was used
instead of all crossings. Of course, if we wish to impose this restriction in our framework,
we can assume qbb = 1 for all b ∈ I.

The proof is essentially the same as the proof of positive definiteness of the q-product in
[Guţ03] but we present the argument again here for completeness.
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Proof. As a first step, we show that for each n : I → N, the kernel kn defined on BPI2 (n,0)
by

kn(d1,d2) =
(
∗Qb∈Itb

)
(d∗1 · d2). (6.3)

is positive definite. Using the definition of the Q product,

kn(d1,d2) =
∏

(p,p′)∈cr(d∗1·d2)
p∈(d∗1·d2)b
p′∈(d∗1·d2)b′

qb,b′
∏
b∈I

tb((d
∗
1 · d2)b), (6.4)

where the subscript b refers to the b-colored pair partition. Since the tb are positive definite
and the pointwise product of positive definite kernels is positive definite, if we can show that

k′n(d1,d2) =
∏

(p,p′)∈cr(d∗1·d2)
p∈(d∗1·d2)b
p′∈(d∗1·d2)b′

qb,b′ (6.5)

then positive definiteness of kn will follow. However, positive definiteness of k′n follows from
positivity of the vacuum state on a ∗-algebra generated by annihilation operators ab,i for
i = 1, . . . ,n(b) satisfying the commutation relation

ab,ia
∗
c,j − qb,ca∗c,jab,i = δb,cδi,j. (6.6)

Positivity of that state has already been proven by Bożejko and Speicher in [BS94].
For each n denote the complex Hilbert space generated by the positive definite kernel kn

by Vn and let λn : BPI2 (n,0) → Vn be the Gelfand map, i.e. 〈λn(d1), λn(d2)〉 = kn(d1,d2).
The natural action of the symmetric group S(n) on BPI2 (n,0) preserves kn, and thus gives
rise to a unitary representation Un on Vn. On V :=

⊕
n Vn, define the operators jb (for

a ∈ I) by jbλn(d1) = λn+δb(db,0 · d1). By multiplicativity of tb (b ∈ I),

kn(db,0 · d1,db,0 · d2) = kn(d1,d2), (6.7)

which shows that the definition of jb makes sense. Since jb also satisfies the requisite inter-
twining property, we have a representation of the ∗-semigroup BPI2 (∞) on V with respect

to the extension of
(
∗Qb∈Itb

)
to the broken pair partitions.

As in the case of [Guţ03], we can use this construction to define new positive definite
functions on pair partitions provided that our index set I is finite. Assume that I is finite
and tb is a multiplicative positive definite function for each b ∈ I. On the Fock-like space
F(∗Qb∈Itb)

(K), we can define creation operators

a∗(f) :=
1√
|I|

∑
b∈I

a∗b(f) (6.8)
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for f ∈ K. The restriction of the vacuum state to the ∗-algebra generated by the a∗(f) is a

Fock state, and we denote the associated positive definite function on BP2(∞) by
(
∗Qb∈Itb

)(r)

.

Explicitly, this function is given by(
∗Qb∈Itb

)(r)

(V) =
1

|I||V|
∑
c:V→I

∏
(p,p′)∈cr(V)

qc(p),c(p′)
∏
b∈I

tb(c
−1(b)). (6.9)

In the case that the functions tb are all the same, tb = t for all b ∈ I, we write t∗IQ for(
∗Qb∈It

)(r)

, and in the case I = [n] := {1, . . . , n}, we write t∗nQ .

Remark 15. One can ask the question of whether a central limit theorem may be found in
this context, similar to the Central Limit Theorem of [Guţ03]. The Central Limit Theorem
of Guţă concerns the q-product of n copies of a function t : P2(∞)→ C. By definition, the
q-product is a function on PI2 (∞) for some set I of cardinality n. However, we can define
a function on (uncolored) pair partitions by taking a normalized sum over all colorings.
The content of Guţă’s Central Limit Theorem is that this normalized sum converges to the
positive definite function arising from the algebra of q-commutation relations, tq(V) = qcr(V).

An analogous result in the qij setting will at least require additional assumptions on the
qij. One can assume, for instance, that qij → q as i, j → ∞. In this case, the argument of
Guţă [Guţ03] can be extended to show an analogous result. We prefer to pursue a different
line of inquiry, namely the case in which the qij are periodic in the indices i and j.

Theorem 9 (Central Limit Theorem). Let Q ∈MN(R) be an N×N real symmetric matrix.
Let Qn be the n × n symmetric matrix with entries q̃ij where q̃ij = qīj̄ for ī, j̄ such that
1 ≤ ī, j̄ ≤ n and i ≡ ī (mod N), j ≡ j̄ (mod N). Let t : P2 → C be a positive definite
multiplicative function such that t(V1) = 1 where V1 is the pair partition consisting of a
single pair. Then t∗nQn converges pointwise to tQ, where

tQ(V) = N−|V|
∑

d:V→[N ]

∏
(p,p′)∈cr(V)

qd(p)d(p′). (6.10)

Proof. Fix a pair partition V ∈ P2(∞). For a function c : V → [N ] denote by P (c) the
partition of V such that two pairs p and p′ are in the same block if and only if c(p) = c(p′).
Then

t∗nQn(V) = n−|V|
∑

c:V→[N ]

∏
(p,p′)∈cr(V)

q̃c(p),c(p′)
∏
b∈[n]

t(c−1(b))

=
∑

π∈Π(V)

n−|V|
∑

c:V→[n]
P (c)=π

∏
(p,p′)∈cr(V)

q̃c(p),c(p′)
∏
b∈[n]

t(c−1(b)),
(6.11)

where Π(V) is the set of all partitions of V . We will consider the contribution of the various
π ∈ Π(V) to the sum as n→∞.
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First consider the partition π1 of V into |V| blocks of size 1, corresponding (for fixed n)
to injective functions c : V → [n]. For each such c and a ∈ [n], the pair partition c−1(b) is
empty or a single pair, whence

∏
b∈[n] t(c−1(b)) = 1. Furthermore, for each c,∏

(p,p′)∈cr(V)

q̃c(p),c(p′) =
∏

(p,p′)∈cr(V)

qc̃(p),c̃(p′), (6.12)

where c̃ : V → [N ] is the map such that c(p) ≡ c̃(p) (mod N) for all p ∈ V . If M is the
natural number such that MN < n ≤ (M + 1)N , then for each function d : V → [N ], the
numbermn of injective maps c : V → [n] such that c̃ = d is betweenM(M−1) · · · (M−|V|+1)
and (M + 1)(M) · · · (M − |V|). In particular mn/n

|V| → N−|V| as n→∞. Thus, as n→∞
the contribution to the sum in (6.11) by the term corresponding to P1 converges to

1

N |V|

∑
d:V→[N ]

∏
(p,p′)∈cr(V)

q̃d(p),d(p′) = tQ(V). (6.13)

Now we will show that any other partition π 6= π1 contributes 0 to the sum in (6.11)
in the limit as n → ∞. Such a partition π has at most |V| − 1 blocks. For a given n, the
number of maps c : V → [n] with P (c) = π is

n(n− 1) · · · (n− |P |+ 1) ≤ n(n− 1) · · · (n− |V|+ 2) < n|V|−1. (6.14)

Thus, the contribution of the term indexed by P is indeed 0 in the limit.
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