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Multiobjective calibration and sensitivity of a distributed 
land surface water and energy balance model 

Paul R. Houser, 1 Hoshin V. Gupta, and W. James Shuttleworth 
Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona 

James S. Famiglietti 
Department of Earth System Science, University of California, Irvine, California 

Abstract. The feasibility of using spatially distributed information to improve the predictive 
ability of a spatially distributed land surface water and energy balance model (LSM) was 
explored at the U.S. Department of Agriculture Agricultural Research Service (USDA-ARS) 
Walnut Gulch Experimental Watershed in southeastern Arizona. The inclusion of spatially 
variable soil and vegetation information produced unrealistic simulations that were 
inconsistent with observations, which was likely an artifact of both discretely assigning a 
single set of parameters to a given area and inadequate knowledge of spatially varying 
parameter values. Because some of the model parameters were not measured or are abstract 
quantities a multiobjective least squares strategy was used to find catchment averaged 
parameter values that minimize the prediction error of latent heat flux, soil heat flux, and 
surface soil moisture. This resulted in a substantial improvement in the model's spatially 
distributed performance and yielded valuable insights into the interaction and optimal 
selection of model parameters. 

1. Introduction 

A land surface water and energy-balance model (LSM) 
[Famiglietti and Wood, 1994] was used to simulate the 
spatially distributed behavior of the U.S. Department of 
Agriculture Agricultural Research Service (USDA-ARS) 
Walnut Gulch Experimental Watershed (WGEW). This type 
of model generally has a large number of parameters that 
describe surface vegetation and soils that must be correctly 
specified to produce accurate water and energy balance 
simulations. Many of these parameters are physically realistic 
and observable; that is, they are dimensions or capacities 
which can be measured reliably. For these parameters, 
observed values can be used when available. Other parameters 
are not observable or are not physically realistic. Such 
parameters may well be conceptual representations of abstract 
watershed characteristics or empirical constants that can be 
used to optimize the simulation results on a trial-and-error 
basis to match the simulations to observations. 

Two aspects add complexity to the problem of parameter 
specification in this study. First, because the surface 
conditions are spatially variable, the parameters might also be 
expected to vary spatially. Se•nd, because the performance 
of the model is to be judged in terms of its ability to 
simultaneously predict the soil moisture states and the latent, 
sensible, and soil heat fluxes, the specification of parameters is 
a multiobjective calibration and evaluation process. 

1Now at Hydrological Sciences Branch, NASA/GSFC, Greenbelt, 
Maryland. 
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Many aspects of LSM calibration have been explored in 
other investigations. For example, Sellers et al. [1989] 
employed manual calibration of nine parameters in the simple 
biosphere (SiB) model to improve its comparison with field 
observations. Franks and Beven [1997] use a generalized 
likelihood uncertainty estimation approach to reduce the output 
uncertainty for the TOPUP model using First International 
Satellite Land Surface Climatology Project Field Experiment 
(FIFE) and Anglo-Brazilian Climate Observation Study 
(ABRACOS) observations. Lettenmaier et al. [1996] reported 
that in an intercomparison of various LSMs, those whose 
parameters were calibrated performed better than those without 
parameter calibration. For a review of conceptual hydrologic 
model calibration to observed data, see Gupta et al. [ 1998]. 

Automatic spatially distributed LSM calibration has been 
severely limited by the absence of adequate spatially variable 
hydrologic calibration data. Automatic calibration methods 
adjust LSM parameters to obtain a best fit of LSM predictions 
with observations. Therefore, to automatically obtain spatially 
distributed LSM parameters, spatially distributed observations 
of LSM predictions, such as soil moisture, surface heat fluxes, 
and runoff, must be available. Currently, distributed 
observations of LSM predictions are scarce, and when 
available, have relatively high uncertainty [Franks et al., 
1998]. Therefore spatially distributed LSM calibration has 
generally been limited to (1) specification of spatially variable 
parameters from soil, vegetation, or topographic maps derived 
from field surveys or remote sensing or (2) lumped or area- 
averaged calibration, where parameters are assumed to be 
constant over an area and are adjusted coincidentally to 
minimize error in streamflow [e.g. Storck et al. 1998]. An 
exception is a study by Franks et al. [1998], where distributed 
model parameterizations were first conditioned on lumped 
discharges and then further conditioned on distributed 
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estimates of saturated areas estimated from remote sensing and 
topography using the weighting of estimates in a fuzzy set 
framework. 

This paper consists of six sections. Section 2 describes the 
study site and the data set. Section 3 provides an overview of 
the LSM. The fourth section explores the hypothesis that the 
use of spatially distributed soils and vegetation information can 
help to improve the predictive ability of the LSM. Section 5 
explores the hypothesis that a multiobjective parameter 
calibration method can be used to improve the estimates of 
nonobserved model parameters. The last section presents the 
conclusions and some final remarks. 

energy fluxes at the land surface and local vertical recharge to 
the water table. It incorporates simple representations of 
atmospheric forcing, vertical soil moisture transport, 
plant-controlled transpiration, interception, evaporation, 
infiltration, surface runoff, and sensible and ground heat 
fluxes. The LSM incorporates a diurnal cycle and is driven 
with standard meteorological data with an hourly time step, 
this being considered sufficient to resolve the dynamics of the 
land-atmosphere interaction. 

4. Use of Spatially Distributed Soils and 
Vegetation Information 

2. Walnut Gulch and Monsoon '90 Observations 

The Walnut Gulch Experimental Watershed (WGEW) is 
operated by the Southwest Watershed Research Center 
(SWRC) of the Agricultural Research Service, U.S. 
Department of Agriculture. The study catchment is a heavily 
instrumented area comprising the upper 148 km: of the Walnut 
Gulch drainage basin in an alluvial fan portion of the San 
Pedro River watershed in southeastern Arizona. Depth to 
ground water varies from 45 m at the lower end to 145 m in the 
center of the watershed. Soil types range from clays and silts 
to well-cemented boulder conglomerates [Kustas et al., 1992], 
with the surface soil textures being gravelly and sandy loams 
containing, on average, 30% rock and little organic matter. 
The mixed grass-brush rangeland vegetation ranges from 20 to 
60% in coverage. This rangeland region receives 250 to 500 
mm of precipitation annually, typically two thirds of it as 
convective precipitation during the summer monsoon season 
[Renard et al., 1993]. 

Eighty-five recording rain gauges, 11 primary watershed 
runoff-measuring flumes, and micrometeorological 
observations make the WGEW a valuable research location. 

During the Monsoon '90 experiment (July 23 through August 
10, 1990), extensive remote-sensing observations were made, 
while eight micrometeorological energy flux (Metflux) 
instruments provided continuous measurement of local 
meteorological conditions and the surface energy balance 
[Kustas and Goodrich, 1994]. 

Precipitation is the most important spatial forcing variable 
in semiarid regions because of its highly variable, convective 
nature; thus much effort was devoted to deriving spatially 
distributed precipitation data sets for the Monsoon '90 
experiment. A multiquadric-biharmonic interpolation 
algorithm [Syed, 1994] was used to produce spatially 
distributed precipitation values for the entire model domain 
from the available rain gauge data. All other meteorological 
forcing was assumed to be spatially constant and derived from 
averaging observations at the eight Metflux stations in place 
during the experiment. A spatial averaged soil moisture profile 
was derived from several in situ profile observations 
[Schmugge et al., 1994] and used to initialize the LSM on July 
22 (Table 1). 

3. Land Surface Model 

The land surface water and energy balance model (LSM) 
[Famiglietti and Wood, 1994] simulates land surface runoff, 
energy fluxes, and soil moisture dynamics in three layers. This 
LSM is designed to predict diurnal dynamics of the water and 

This section examines the hypothesis that the use of 
spatially distributed soils and vegetation information can help 
to improve the predictive ability of the LSM. The LSM was 
used to simulate the land surface water and energy dynamics in 
a spatially distributed manner for the entire WGEW at a 40 m 
resolution. Predictions were made hourly from July 22 to 
August 15, or day of year (DOY) 204 to 228, of 1990. LSM 
parameter estimates were first specified by using 
catchment-averaged parameter values based largely on 
observations. Next, spatially distributed values for the 
parameters were derived from geographic information 
system's (GIS) maps. 

4.1. Spatially Constant Parameters 

Spatially constant parameters for the LSM were specified 
primarily on the basis of observations made during Monsoon 
'90 [Daughtry et al., 1991; Kustas et al., 1992, 1994a, 1994b, 
1994c; Stannard et al., 1994; Moran et al., 1994a, 1994b; 
Humes et al., 1994a, 1994b; Weltz et al., 1994; Menenti and 
Ritchie, 1994; Hipps et al., 1994; Spangler, 1969]. The albedo 
of dry soil was specified by adopting the parameters suggested 
by Dicla'nson et al. [1993]. Soil profile temperatures measured 
in three trenches at the Lucky Hills and Kendall sites were 
analyzed and modeled to determine the temperature diurnal 
damping depth. The saturation soil moisture was assumed to 
be close to the porosity calculated from bulk density 
measurements. The surface saturated hydraulic conductivity 
was based on porosity using the Kozeny-Carmen equation with 
a coarse fraction correction, following RawIs et al. [1993]. 
The depth of the surface zone was specified equal to the 
maximum reported L band microwave penetration depth 
[Jackson, 1993] to aid compatibility with remote sensing data. 
Because of the deep water table at Walnut Gulch, surface 
processes show no sensitivity to the LSM water table 
parameters, so these were assigned to arbitrary values. The 
vegetation stress soil moisture parameter was assumed to be 
halfway between the saturated and residual soil moisture 
values, while the wilting point was assumed to be equal to the 
value of residual soil moisture because desert vegetation rarely 
wilts. The soil moisture at which evapotranspiration reaches 
the potential rate was assumed to be 10% below saturation, this 
being the approximate ratio suggested by Sellers et al. [ 1986]. 
Values for albedo of dry vegetation for semiarid areas were 
obtained from Dicla'nson et al. [1993], and the albedo of wet 
vegetation was assumed to be 5% lower than that for dry 
vegetation. The stomatal resistance, root activity factor, root 
density, root resistivity, and critical leaf water potential were 
not measured; indeed, because many of these parameters were 
not observable quantities, estimates were used. 
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Table 1. Catchment-Averaged LSM Parameters for Walnut Gulch, Based on Observations, GIS Coverage, and 
Multiobjective Calibration a 

Parameter Source Observed GIS Calibrated 

Vegetation parameters 
vegetation height, m 
leaf area index 

minimum stomatal resistance, s m -• 
initial water storage in canopy, m 
unstressed transpiration soil moisture, % 
wilting point soil moisture, % 
vegetation fraction 
albedo, wet vegetation 
albedo, dry vegetation 
albedo, bare soil 

root activity factor 
root density, m m'3 
root resistivity, s m 4 
critical leaf water potential, m 

Soil parameters 
surface zone depth, m 
initial surface soil moisture, % 

root depth, m 
initial root zone soil moisture, % 

maximum rate of capillary rise, m s '• 
initial transmission zone soil moisture, % 

percent sand, % 
percent clay, % 
bulk density, gcm '3 
residual soil moisture, % 
saturated soil moisture, % 

saturated hydraulic conductivity, m s '• 
bare soil roughness length, m 
bare soil zero plane displacement, m 

Water table parameters 
average topographic index 
K s exponential decay parameter 
initial water table depth, m 

Energy balance parameters 
soil moisture for calculation of PET, % 

diurnal heat penetration, m 
temperature of deep soil layer, øK 

Humes et al. [ 1994a] (0.22) 
Daughtry et al. [1991] 1.275 
Chow et al. [ 1988] 40 
assumed dry at start of simulation (0) 
assumed halfway between 0s and 0r (20) 
assumed 0 r (cacti rarely wilt) (1) 
Kustas et al. [1994a] (0.42) 
Dickinson et al. [ 1993] (0.2) 
Dickinson et al. [1993] (0.25) 
Dickinson et al. [1993] (0.33) 
Famiglietti [ 1992] 10,000 
Famiglietti [1992] 1 
Fatniglietti [ 1992] 1 e9 
Fatniglietti [ 1992] -210 

Based on PBMR sensitivity depth (0.1) 
Schmugge et al. [ 1994] (10.0) 
Schrnugge et al. [1994] 1.5 (0.8) 
Schrnugge et al. [ 1994] (17.0) 
Famiglietti [1992] (0.1) 
Schmugge et al. [ 1994] (17.0) 
Kustas and Goodrich [1994] 70.9 63.1 
Kustas and Goodrich [ 1994] 8.5 22.1 
Kustas and Goodrich [ 1994] (1.6) 
Rawls et al. [1993] 1 5.1 
Kustas and Goodrich [1994] 38.0 33.6 
Rawls et al., [ 1993] 6.9e-5 4.7 e-6 
assumption (0.001) 
assumption (0.0) 

calculation from A(tan(B)) image (8.314) 
Famiglietti [ 1992] (7.0) 
Gilbert [ 1996] (100.0) 

Sellers et al. [1986] 
from observations [Houser, 1996] 
from observations [Houser, 1996] 

28 

0.5 

297.0 

(1.31) 
267 (574) 

(348025) 
(86.5) 

(4.8e 11) 
(-500) 

(14.4) 
(8.•) 

(2.2) 
(30) 

(8.7e-6) 

(47) 
(0.33) 

(287.6) 

Values in parentheses produce the "best" Monsoon '90 simulation. Read l e9 as 1 fro. 

4.2. Spatially Variable Parameters 

Spatial distributions of the soil and vegetation parameters 
were estimated using GIS maps of Walnut Gulch vegetation 
and soils. The potential rooting depths for each soil series 
were taken from a recent Walnut Gulch soil survey (D. J. 
Breckenfeld, unpublished document, 1993). Values of the 
effective porosity, •b e, residual soil moisture, 0r, and the 
saturated hydraulic conductivity, Ks, were determined by 
Mayeux [1995] using values suggested by Rawls et al. [1993] 
and Bouwer [1966]. J. Berglund, unpublished report, (1995) 
calculated saturated soil moisture, 0e, for each soil class as 
follows: 

Oe--•e-{-Or. 

Percent sand and clay were calculated by J. Berglund (1995) 
from values of percent material passing through certain sieves 

for each soil series in the soil survey. Bulk density, B, was 
estimated using an empirical formula [Rawls et al., 1993]: 

B = 1.51+0.0025(S) - 0.0013(S)(O) - 0.0006(C)(O) 
- 0.0048(C)(E). (2) 

where S is percent sand, C is percent clay, O is percent organic 
matter, and E is the cation exchange capacity of clay 
normalized by percent clay. Measurements at the eight 
Monsoon '90 Metflux sites [Daughtry et al., 1991] and 
parameter ranges given by Jones [1983] were used in 
conjunction with the Walnut Gulch vegetation GIS coverage to 
estimate the spatial distribution of leaf area index (LAI) and 
minimum stomatal resistance. The topographic index was 
calculated from digital elevation models (DEMs) derived from 
23 1:5000 stereo aerial photos [Matthews, 1992]. DEM 
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a) Topographic Index 

20 

b) 1 August 1990 Rainfall .• 

ß '•• ..? 
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c) Leaf Area Index 
...,-- 

. 

.::.. 
: 

d) Saturated Soil Moisture 

:•:: o 0% 
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't • .... ½;½• '• •:•5•?"• ..... •:½:::,½;•...;•t•½ • •" 

g) 5 August 1990 PBMR Soil Moisture h) 9 August 1990 PBMR Soil Moisture 
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0% o 5 0% 

Figure 1. Spatially distributed Walnut Gulch Experimental Watershed: (a) topography, (b) precipitation, (c) 
vegetation, and (d) soils. LSM spatial predictions of surface soil moisture at 1200 LT on August 7 (DOY 219) 
using (e) spatially constant and (f) spatially variable soils and vegetation parameters (all simulations using 
spatially variable topography and precipitation). Push broom microwave radiometer (PBMR)'derived soil 
moisture for (g) August 5, 1990 (DOY 217) and (h) August 9, 1990 (DOY 221) [Houser et al., 1998]. The 
addition of spatially variable soils and vegetation produces unrealistic polygon artifacts in the simulation. 

overlaps were averaged, then a smoothing algorithm was 
applied to reduce noise, and isolated runoff sinks were filled. 
The watershed was delineated and the topographic index was 
derived using the standard methodology detailed by Beven 
[ 1995]. A selection of representative spatially variable Walnut 
Gulch parameters is shown in Figure 1 a-1 d, and the watershed 
averages of these parameters are reported in Table 1. 

4.3. Results and Discussion 

1 e' 1 fi It is evident that the spatially variable parameters have a 
large impact on the spatial patterns of the simulation. Further, 
the soil moisture patterns derived using the spatially variable 
parameters appear to be unrealistic and do not compare well 
with observed push broom microwave radiometer (PBMR) 
surface soil moisture (Figures 1 g- 1 h). 

A series of simulations, where only one spatially variable 
parameter set was used at a time (the other parameters were set 
to their estimated catchment-averaged values), were performed 
to determine which subset of spatial parameters contribute 

The simulated spatial patterns of surface soil moisture for most to these patterns (the topographic index and the 
August 7, 1990 (DOY 219), using both the spatially constant precipitation fields were spatially variable in all these 
and the spatially variable parameters, are shown in Figures simulations). The simulations with spatially variable 
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vegetation parameters perform similarly to the control run, 
indicating that spatial variation in these parameters has little 
effect on predictions. All of the simulations using spatially 
variable soil parameters show distinct polygon patterns. The 
parameter specifying saturated soil moisture has the most 
influence on simulated spatial patterns, while those which 
specify the percentages of sand and clay, the saturated 
hydraulic conductivity, and the residual soil moisture have a 
more moderate influence. The soil characteristics are 

extremely important, and the vegetation characteristics are less 
important in regulating soil moisture variability and other 
surface water and energy components in this watershed. The 
results of this sensitivity also show that the spatially variable 
topographic index has very little influence on the simulations; 
this result is a consequence of the large depth to the water table 
at Walnut Gulch. 

The pattern of enhanced spatial soil and vegetation 
polygons apparent in the simulations is an artifact of both 
assigning lumped values of the parameters to discretely 
partitioned areas as well as the misspecification of parameter 
values. A more appropriate specification of spatial parameters 
would reflect their continuous variability in space, as obtained 
with remote sensing. It is also clear that the specification of 
the spatial parameter values using scattered observations, table 
lookup, and physical relationships (as described in section 4.2) 
result in inadequate parameter specification. These results 
indicate that the available WGEW parameter observations 
simply have insufficient accuracy and spatial frequency to 
realistically constrain the LSM. Because the simulations 
using spatially constant vegetation and soil parameters 
compare well to the PBMR patterns, the subsequent parameter 
calibration studies reported in section 5 assume spatially 
constant soil and vegetation parameters across the catchment, 
leaving only topographic index and precipitation as spatially 
varying entities. 

The use of catchment-averaged parameters in this study is 
supported by White et al. [ 1997], who found that the difference 
between the calculated area-averaged surface energy fluxes 
given for the WGEW by a single point land surface model with 
aggregate parameters and that given by a distributed array of 
land surface models was small. This conclusion was tested 

here; although there was more variability than reported by 
White et al. [1997] because of the finer spatial resolution, there 
was overall agreement. The relevance of this finding to the 
present study is that it supports the use of catchment-averaged 
parameters and forcing for the WGEW if catchment-averaged 
surface fluxes are required. This conclusion is only valid 
when catchment-averaged fluxes are of interest; for cases 
where downslope flows or water availability in valley bottoms 
is of interest, then spatially variable parameters and forcing are 
required. In this study, the spatially distributed LSM is 
required to allow prediction of spatial patterns of soil moisture 
at the resolution of the available remotely sensed observations. 

5. Multiobjective Calibration of Nonobserved 
Model Parameters 

The purpose of this study was to obtain estimates of the 
nonobserved model parameters that would result in improved 
simulations of the overall behavioral responses of the 
watershed. In particular, the desire was to select values for the 
parameters that minimized the error in predicted soil moisture 
and sensible, latent, and ground heat fluxes. As discussed by 

Gupta et al. [1999], this situation involves the problem of 
finding parameter estimates which can simultaneously 
minimize several noncommensurable criteria. This section 

examines the hypothesis that a multiobjective parameter 
calibration method can be used to improve the estimates of the 
nonobserved model parameters of the LSM model. 

5.1. Data Available for Calibration 

The primary observations used to calibrate the LSM 
parameters in this study were hourly time series of 
catchment-averaged, water balance corrected, latent heat flux 
during unstable atmospheric conditions, soil heat flux, and 
gravimetric calibrated near-surface soil moisture measured 
with resistance sensors (Table 1). During the Monsoon '90 
study period, three replicate gravimetric surface soil moisture 
samples were collected each day at the eight Metflux sites 
[Schrnugge et al., 1994]. Resistance sensors collected 
continuous time series of soil moisture at 2.5 cm and 5 cm 

below the surface at all eight Metflux sites [Arner et al., 1994]. 
Because such sensors are generally difficult to calibrate and 
tend to drift, they were recalibrated each day against 
gravimetric measurements for the purpose of this study. The 
energy balance was determined from measurements of net 
radiation, soil heat flux, and estimates of sensible and latent 
heat flux by either eddy covariance or temperature variance 
methods [Kustas et al., 1994a]. A detailed water balance study 
showed that during Monsoon '90 the sensible heat flux was 
underestimated because of eddy correlation propeller stalls, 
source area mismatch, or horizontal flux divergence in hilly 
terrain [Houser et al., 1997; William& 1996; Keefer et al., 
1997]. Therefore, for this study the observed latent and 
sensible heat fluxes were adjusted to be consistent with the 
water balance, and unreliable observations during stable 

Table 2: Calibration Parameter Ranges and Objective Functions a 

Calibration Parameter Possible Range 
Root activity factor 
Root density, m m -3 
Root resistivity, s m 4 
Critical leaf water potential, m 
Potential evaporation soil moisture, % 
Penetration of diurnal heating, m 
Temperature of deep soil layer, K 
Minimum stomatal resistance, s m 'l 
Percent sand, % 

Percent clay, % 
Residual soil moisture, % 
Saturated soil moisture, % 

1 to 1 e6 

1 to 100 

le6 to le12 

- 1 to - 1000 

10 to 50 

0.1 toO.7 

285 to 310 

0 to 700 

lto 100 

1 to 100 

1 to20 

20 to 50 

Surface saturated hydraulic conductivity, m s 4 5e-5 to 5e-7 

Objective Function 

sensible heat flux (eight sites, water balance corrected, daytime 
average from temperature variance) 

latent heat flux (eight sites, water balance corrected, daytime 
average from temperature variance) 

soil heat flux (eight sites average from soil heat flux plates) 
surface soil moisture (eight sites, gravimetric corrected average 

from resistance sensors) 
a The sensible heat flux objective function was included as a 

diagnostic; it was not used in the determination of the Pareto 
set. Read 1 e6 as 10 '6. 
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atmospheric conditions were excluded from objective function Figure 2a illustrates how each of the mean square error 
calculations. functions f•(0) and f2(0) might vary with 19. Note that the 

5.2. Parameters Calibrated 

The 13 parameters listed in Table 2 were identified for 
calibration. Table 2 also lists the typical range of their values; 
these ranges were specified larger than might normally be 
expected in order to allow the calibration procedure some 
leeway in accounting for model and data error. Moreover, 
because some of the parameters are nonphysical, the 
specification of their ranges is somewhat arbitrary. Note that 
the soil heat flux parameters (temperature of the deep soil layer 
and penetration of diumal heating) were included in this list 
even though they were measured with confidence. This is 
because the soil heat flux was poorly simulated by the LSM 
owing to the simplicity of its soil heat flux submodel; this 
suggests that nonphysical values for these parameters may be 
necessary for the model to perform adequately. Note also that 
the five soil water retention parameters, which can be 
estimated from observations, were also included in the 
calibration, because this greatly improved the simulation of 
soil moisture and yielded insight into the use of observed soil 
parameters. 

5.3. Theoretical Background to the Multiobjective 
Calibration Approach 

A theoretical and practical basis for the calibration of 
models with multiple and noncommensurable output fluxes has 
been presented by Gupta et al. [1998, 1999], Bastidas et al. 
[1999], and Meixner et al. [1999]. Because of errors in the 
model (structure) and in the data it is impossible to find a 
single "best" parameter set that simultaneously minimizes the 
errors in matching all of the observable model outputs. This 
leads to a multiobjective optimization problem for which the 
"solution" is a region of the parameter space that reflects 
different trade-offs in the matching of the outputs. An 

parameter value 19 = 02 minimizes the function f• but has a 
relatively poor value for f2, while a different value 19 = 02 
minimizes the function f2 but has a relatively poor value for f•. 
In other words, the individual solution 19 = 0• that gives the 
best match to the first model flux might give rather poor 
performance in terms of matching the second model flux and 
vice versa. However, in general, we wish to have a model 
solution that simultaneously gives acceptable "good" matching 
of both fluxes. 

To this end we note that there exists a region of values O v = 
{ 01 < 0< 02 } consisting of those parameter values for which it 
is possible to obtain improvement in f2(0 ) (by varying 0 ) 
while simultaneously allowing some deterioration in f2(19); this 
region is called the "Pareto," "non-inferior," or "trade-off' 
solution. Similarly, all values of 19 q•O• are called "inferior" 
solutions. Figure 2b shows the problem plotted in the function 
space with f• (19) and f2(0) on the axes, and the curve represents 
the trajectory obtained by varying 19 over its feasible range. 
Clearly, the objective is to find 0 such that we come as close to 
the origin • ,f2}={0,0} as possible. Note that the segment of 
the curve between B and C represents the trade-off region, 
while other portions of the curve represent inferior solutions. 
Any one of the trade-off solutions can be selected by the user 
as "best," depending on which trade-off in matching of model 
performance is considered most acceptable by the user. 

5.4. Objective Function 

Three objective functions were used to calibrate the model 
parameters: the hourly mean square error in matching of latent 
heat flux during unstable atmospheric conditions, soil heat 
flux, and gravimetric calibrated near-surface soil moisture. In 
each case the mean square error objective function, F, was 
computed using the normalized sum of the squared difference 
between the catchment-averaged, water balance corrected 
observations, Oi, and the predictions, Pi, whenever the 

acceptable solution can be selected by the user from this region observation was available; thus 
of trade-off solutions using subjective judgment. 

To clarify, a simple one-parameter example is presented in 

Figure 2; we assume that data are available for two model F = 1 y,• (O•- P•) (3) output fluxes that must be matched, and we letf•(O) and f2(0) n i=• 
represent the mean square error (MSE) in matching these 
fluxes for selected values of a specific model parameter 19. where i is the time step and n is the number of observations. 

(a) 

f• 
) 

01 '- 02 

(b) 

f1(02 ) 

f•(O•) 

B 

f2(02 ) f2(01 ) 
Figure 2. A simple one-parameter, two-objective model calibration example: (a) how each of the mean 
square error functions, f•(0) and f2(0), might vary with model parameter 19, and (b) problem plotted in the 
function space with the curve representing the trajectory obtained by varying 19 over its feasible range. 
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5.5. MultiobjectiveCalibration Methodology shows the corresponding trade-off among the parameters. 
Inspeclion of these results shows that the five solutions giving 

The procedure adopted for the multiobjective calibration of best matching to soil moisture also give relatively good 
the LSM parameters at Walnut Gulch was to conduct a matching of the other four fluxes. In addition, it was decided 
Monte-Carlo search of the feasible parameter space indicated that the soil moisture objective was most important for the 
in Table 2. A total of 200,000 parameter set realizations were purposes of this study. Therefore the parameter set that 
randomly generated, and the three objective function values produced the lowest soil moisture objective was chosen 
were computed at each parameter set. From these, the (bolded line in Figure 4). The selected parameter values are 
"noninferior" trade-off parameter region was estimated by 
finding those points for which there did not exist at least one 
other member of the original 200,000 realizations for which all 
three objective function values were better. Only 125 
parameter set realizations were found to belong to this 
estimated noninferior region, indicating a rather substantial 
reduction in overall parameter uncertainty. In addition, at each 
noninferior point, the mean square error in matching of hourly 
sensible heat flux was also computed for diagnostic purposes. 

The estimated noninferior region is displayed in Figure 3 
using the formats introduced by Sorooshian et al. [ 1993] and 

shown in Table 1. 

It is interesting to note that the calibrated parameter values 
are reasonably close to the default values, with the exception 
of the root parameters, and are in general more realistic. A 
root density of 86 m m '3 is much more realistic than 1 m m '3, 
for instance, while the high minimum stomatal resistance is 
realistic for water-conserving semiarid plants. The default 
percent sand and clay parameters that were derived from a 
number of soil analyses (J. Berglund, unpublished report, 
1995) were likely too high because the large coarse fraction 
(D. J. Breckenfeld, unpublished document, 1993) was removed 

Gupta et al. [1998, 1999]. Figure 3 (le•) shows the trade-off prior to analysis. Basically, if the sand, silt, and clay 
among the objectives, while Figure 3 (right) shows the percentages (which in the published soil analysis add up to 
corresponding trade-off among the parameters. Note that the 100%) are adjusted so that they add up to 100% minus the 
objective function values have been normalized onto a coarse fraction, then they get very close to the parameters 
zero-to-one scale, where zero corresponds to the smallest error found using calibration. These insights lead to the inclusion of 
and one corresponds to the largest error in the feasible region. a coarse fraction correction in the model physics [Houser, 
Similarly, the parameter sets are also normalized onto a 1996]. The large differences in soil heat flux parameters are 
zero-to-one scale, with zero corresponding to the minimum probably an artifact of the LSM having a simplified soil heat 
value of the parameter and one corresponding to the maximum flux submodel. Finally, the high values of critical leaf water 
value in their defined ranges. These plots enable ease in potential and soil moisture for the calculation of potential 
identifying which parameters are poorly or well identified and evapotranspiration (PET) reflect the fact that the plants do not 
also how various parameter values affect prediction errors. wilt and that the environment rarely experiences potential 
The estimated noninferior solution region shows relatively low evaporation. 
values for most of the objectives, with the largest spread being There is a clear compromise in the calibration between 
in the matching of soil moisture. Some of the calibrated latent heat flux prediction and soil moisture prediction (Figure 
(noninferior) parameters ranges are quite tight (e.g., deep soil 5). The range of prediction shows that latent heat flux can be 
temperature and percent clay), showing that these parameters calculated well by the LSM but at the expense of soil moisture. 
are identified well. The noninferior parameter values also are By choosing to predict soil moisture most accurately, rather 
generally confined to moderate ranges of the parameter space. than latent heat flux, we obtain "flat tops" or "hats" in the 
However, quite a lot of parameter interaction is observed, with 
two clusters of parameters evident (i.e., see minimum stomatal 
resistance, potential evaporation soil moisture, diurnal heating 
penetration, residual soil moisture, etc.). 

Despite the relatively low objective function values 
produced by the noninferior parameter range the corresponding 
total range of LSM flux prediction remains high. The eight 
Metflux site average ranges of prediction obtained from the 
Pareto parameter sets are shown in Figure 5. There is still a 
large amount of prediction variability even within the Pareto 
set, and hence the final parameter set must be chosen carefully. 

All of the noninferior parameter sets are good but with 
different compromises as to which objective is more fully 
minimized. To select a single "best" parameter set from the 
125 noninferior solutions, a necessarily subjective procedure 
was followed. For each of the three objectives, the five 
noninferior parameter sets giving the best value of that 
objective function were selected (a total of 15 solutions); in 
addition, the five members of the noninferior region giving the 
best value of hourly mean square error in matching of sensible 
heat flux also were selected as shown in Figure 4. Note that 
the sensible heat flux objective function was not used in the 
estimation of the noninferior region. Each row of plots 
corresponds to a different optimized objective function, while 
Figure 4b shows the trade-off among objectives and Figure 4a 

simulated latent heat flux time series. According to Carlson 
[ 1991, p. 353], "there is considerable observational evidence of 
[such] behavior in the field." This LSM prediction of latent 
heat flux may not be entirely incorrect, but it is certainly not 
supported by the Monsoon '90 observations. It is difficult to 
draw any definitive conclusions here because the accuracy of 
these latent heat flux observations has been questioned 
[Williams, 1996; Keefer et al., 1997; Houser et al., 1997]. 

6. Conclusions 

High-quality land surface water and energy balance 
simulations are essential for the prediction of drought, floods, 
agricultural production, land surface inputs to the atmosphere, 
and the response of land surfaces to climate change. However, 
the land surface water and energy balance models that make 
these predictions generally utilize large numbers of parameters, 
many of which are not regularly measured and some of which 
describe abstract land surface characteristics that cannot be 

measured. The inherent heterogeneity of land surfaces 
requires spatially distributed LSM predictions, which 
complicates the opli•num selection of parameters. Further, 
LSMs are expected to predict multiple land surface states and 
fluxes reasonably well, which requires the use of a 
multiobjective calibration procedure to achieve optimal 
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Figure 3. Pareto set normalized objective function and parameter values for the 13-parameter, three objective 
function Monte-Carlo calibration. The best five parameter sets and objective function values for each 
objective function are shown, with the subjectively chosen "best" parameter set shown in bold. Parameter and 
objective function definitions are shown in Table 2. 

performance. Therefore, this study has explored the feasibility 
of using spatially distributed soils and vegetation information 
and a multiobjective parameter calibration method to improve 
the predictive ability of a spatially distributed LSM at the 
WGEW. 

Although it seems reasonable that the inclusion of spatially 
variable soil and vegetation information in a spatially 

distributed LSM should improve local predictions, this study 
shows that the polygon nature of these data sets results in 
unrealistic simulations which were inconsistent with 

observations. A parameter sensitivity study revealed that 
spatial variations in vegetation parameters have little effect on 
predictions, but that soil parameters have a large effect. This 
problem is both an artifact of discretely assigning a single set 
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Figure 4. Pareto set normalized (a) objective function and (b) parameter values for the 13-parameter, three 
objective function calibration. Parameter and objective function definitions are shown in Table 2. 

of parameters to large areas of the catchment and a 
misspecification of spatial parameter fields due to inadequate 
measurement of the required parameters. 
ß It is also recognized that the choice of spatially constant soil 

moisture initialization on July 22, 1990 and the short model 
spinup influences the spatially distributed predictions and 
influences thus the calibration of the distributed model. 

However, the unrealistic very strong surface soil spatial 
patterns predicted on August 7 (Figure 1) would likely be 
enhanced given a spatially variable soil moisture initialization 
or longer term model spinup. It is possible that the spatially 
distributed initial conditions could be manipulated to produce a 
better spatially distributed prediction. However, we had no 
spatially distributed observations on July 22, for validating 
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Figure 5. Catchment-averaged time series of (a) latent, (b) sensible, (c) soil heat flux, and (d) near-surface 
soil moisture and their associated prediction ranges for the 13-parameter, three objective function Pareto set. 
The subjectively chosen calibrated parameter set prediction and area-averaged observations are also indicated. 

such manipulations, and we seriously doubt that such 
manipulation would change our conclusions given the very 
strong spatial patterns observed in the subsequent predictions. 

There is doubt that the process of deriving the spatially 
variable parameter fields from a few scattered observations 
using established physical relationships and table lookup is 
sufficient for realistically constraining a complex distributed 
land surface model. The spatially variable parameter fields 
were derived from a variety of sources, which leads to 
inconsistencies in the resulting parameter set and degraded 
LSM performance. Ideally, the model should be calibrated 
for each point in the domain to produce consistent parameter 
sets that account for the spatial variability of surface 
characteristics. For the WGEW this is a poorly posed 
problem, being that there are 90,000 model grid points and 

only eight surface flux observation points. Given that the 
available spatial information is insufficient to accurately 
specify the LSM spatial parameter distributions, we chose to 
calibrate the catchment average, parameters to provide the best 
possible simulation. Because precipitation is the dominant 
driver of spatial variability in soil moisture at the WGEW, this 
approach results in reasonable LSM spatial predictions. 

It is acknowledged that the simulation should improve if 
there were sufficient information to truly calibrate the LSM 
spatially. It may have been possible to use the spatially 
distributed PBMR soil moisture remote-sensing estimates to 
calibrate the spatially distributed parameters. However, this 
was not done because our intention in this study was to 
perform a multiobjective calibration that would improve the 
prediction of a number of quantities. If the LSM had been 
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Figure 5. (continued) 

calibrated spatially using only remotely sensed soil moisture, were derived by optimization. A multiobjective LSM 
then the surface energy flux prediction skill may have calibration technique was used to calibrate these parameters by 
degraded. estimating the noninferior parameter region based on a large 

The use of catchment-averaged parameters in this study is number of Monte-Carlo parameter set realizations, then 
also supported by the small difference between the calculated selecting the "best" parameter set in a semisubjective way. 
surface energy fluxes given by a single LSM with aggregate The chosen parameter set contained physically reasonable 
parameters and that given by a distributed array of LSMs. values which, in the case of the soil water retention parameters, 
This finding also suggests that a spatially distributed LSM 
applied at the WGEW with the resolution used in this study is 
probably not needed if catchment-averaged surface fluxes are 
required. However, a spatially distributed LSM is required for 
prediction of spatial patterns of soil moisture at the resolution 
of the available observations. 

LSMs have many parameters which must be carefully 
specified for their optimal implementation. Several parameters 
were directly observable at Walnut Gulch, and their values 
could be readily specified, but others were nonphysical and 

were superior to measured values (because of the removal of 
the coarse fraction prior to measurement). 

Several additional insights into multiobjective calibration 
were gained as a result of additional experiments not reported 
in this paper and for which additional investigation is required. 
These include the following: (1) Some parameters tend to have 
similar values for minimum objectives from several sites, 
indicating that watershed average parameters may be 
acceptable. However, the spatial patterns present in the PBMR 
data suggest that improved distributed representations may be 
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possible, and therefore a lumped representation may not be 
acceptable for all the parameters. (2) Pareto optimal parameter 
sets often produce objective functions with large error 
indicating that some model components may require 
improvement (the soil heat flux component for example). (3) 
Some objectives that are linked through model physics, such as 
sensible and latent heat fluxes, contain similar information. To 
make the multiobjective calibration more identifiable, only 
objective functions with significantly different model 
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