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Abstract

Prior work by Gonnerman and colleagues presented a theory
of semantic processing in normal and impaired populations.
Their account incorporates distributed representations and
predicts a complex relationship between semantic knowledge
and naming ability. According to this account, during the
course of progressive brain damage, one should observe
different relationships between damage to semantic
knowledge and naming ability for natural kinds versus
artifacts. For artifacts, the theory predicts that naming ability
will not be strongly correlated with damage to semantic
category structure, whereas for natural kinds the nature of the
relationship will change as damage to the system progresses.
To test this theory, young and elderly participants and patients
with Alzheimer’s disease named a series of pictures and
completed a board sorting task, in which they placed words
from a semantic category on a two dimensional grid in a way
that represented their inter-similarities, thus reflecting the
nature of their semantic knowledge. Results confirmed the
prediction that a strong relationship between picture naming
and disrupted category structure is evident only for natural
kinds categories at later stages of damage. For natural kinds
in earlier stages and artifacts throughout the progression of
the disease, disrupted category structure is not directly
reflected in naming performance. These data point to a
complex relationship between the underlying category
structure and its realization in naming ability.

Introduction

The investigation of the consequences of brain damage on
specific semantic categories has revealed much about the
normal organization of concepts and categories. Although
there have been a wide array of category-specific deficits
reported in the literature (e.g. Caramazza & Shelton, 1998
and Sheridan & Humphreys, 1993), the type that have
generated the most interest are those that are domain
specific, most typically affecting natural kinds (e.g.,
animals, plants) or artifacts (e.g., vehicles, tools). Each type
of domain-specific deficit has become associated with
damage to specific brain areas. Natural kinds deficits have
been associated with damage to the bilateral antero-medial
and inferior temporal lobe (Sartori, Job, Miozzo, Zago, &
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Marchiori, 1993), while artifacts are associated with damage
to fronto-parietal regions (Sacchett & Humphreys, 1992;
Warrington & McCarthy, 1983).

In an early account of category specific impairments,
Warrington and McCarthy (1987) proposed that these
deficits could be explained by damage to particular types of
features that underlie the representations of natural kind or
artifact categories. They argued that concepts that represent
natural kinds are predominantly recognized based on their
perceptual features (e.g., zebras and horses are
differentiated by the feature has-stripes), while concepts
that represent artifacts are predominantly recognized based
on their functional features (e.g., hammers are differentiated
from saws because they are used to pound things, whereas
saws are used to cut things). By this account, individuals
have category-specific deficits for natural kinds because of
damage to areas responsible for storing and processing the
visual semantic information (perceptual features) so crucial
to natural kinds. In contrast, damage to areas representing
functional features (presumably related to action and
movement), will cause selective deficits for artifacts
concepts. Additional support for feature-based theories
comes from evidence for the anatomical localization of
features (e.g., Martin, Haxby, Lalonde, Wiggs, &
Ungerleider, 1995).

Such a feature-based account can explain why focal
damage causes category specific deficits, as can accounts
that posit anatomical localization of specific categories (e.g.,
Caramazza & Shelton, 1998). However, category specific
deficits have also been reported in patients with Alzheimer’s
disease (AD), which is characterized by more patchy,
widespread damage. Below we review the evidence for
category specific impairments in AD and a theory proposed
to account for these deficits.

Expanding the Featural Approach to Account for
Category-Specific Deficits in AD

A number of studies have found category specific naming
deficits in AD patients (e.g., Chan, Salmon, & De La Pena,
2001; Gonnerman, Andersen, Devlin, Kempler, &
Seidenberg, 1997; Silveri, Daniele, Giustolisi, & Gainotti,



1991). These findings pose a problem not only for category
localizing accounts such as Caramazza and Shelton’s
(1998), but also for feature based accounts that rely solely
on the localization of features to explain category specific
impairments.  The question that arises is how the
widespread damage characteristic of AD could affect only
isolated brain regions (where either categories or features
are localized, depending on the theory) and produce
selective damage to natural kinds or artifacts. Why doesn’t
AD affect both domains equally?

To explain how patchy and widespread damage can cause
domain-specific deficits, Gonnerman et al. (1997) proposed
that, in addition to the difference between the principle type
of features that define natural kinds and artifacts
(Warrington and McCarthy, 1987), there is a critical
difference between the two domains in terms of both the
degree of feature intercorrelations and the nature of
distinguishing features." Features become intercorrelated
when they occur together frequently such that one feature is
predictive of another (e.g., has wings and has a beak).
Unlike artifact concepts, natural kinds tend to share a large
number of intercorrelated features with other category
members (e.g., many animals have four legs and have tails).
These intercorrelations allow natural kinds to be more
resilient than artifacts to limited damage, for two reasons: 1)
because the proportion of intercorrelated to distinguishing
features is so high, a small amount of damage is less likely
to affect a distinctive feature; and 2) because intercorrelated
features receive collateral support from all the concepts with
which they are associated, damaged features within a
particular semantic representation may be activated
indirectly through collateral support from other features (see
Devlin, Gonnerman, Andersen, & Seidenberg, 1998).

Progressive Semantic Damage in Natural Kinds versus
Avrtifacts

These differences in the structure of semantic
representations lead to different predictions about the effect
of progressive semantic damage on the ability to name
natural kinds versus artifacts. For a particular concept,
damage that affects the availability of any single non-
distinguishing feature will not necessarily cause a naming
deficit for that concept. For example, losing the feature
grows-on-trees for apple will not prevent an individual from
naming an apple if other features (is round, has a core, etc.)
are maintained, just as the loss of has a windshield should
not prevent naming a car, if other features are available. In
contrast, inability to activate a distinguishing feature can
cause immediate naming problems (without has stripes, it is
hard to differentiate a zebra from a horse). Because artifacts
have a higher ratio of distinguishing to non-distinguishing
features (Devlin et al. 1998) and fewer intercorrelated

' Distinguishing features are those features that serve to
differentiate concepts within a semantic category. For example,
the feature has-stripes differentiates tigers from lions.
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features than natural kinds, minimal damage is more likely
to affect a distinguishing feature and thus interfere with
naming ability. As damage progresses, there will be a linear
increase in the number of artifact concepts affected, as more
distinguishing features are lost. The pattern of decline for
natural kinds looks very different; the intercorrelated
features that characterize this category initially help support
the maintenance of features and concepts, but increasing
damage has a profound effect, as the network is no longer
able to sustain these features and whole clusters of concepts
that depend on them become unavailable.

Relationship Between Naming and Category Structure

Given this account of differences in the structure of natural
kinds versus artifact categories, one would expect a different
relationship between the degree of disruption to semantic
knowledge and the ability to name individual concepts for
each domain. Small amounts of damage to natural kinds
may disrupt the category structure, but this will not be
reflected in naming scores because of the collateral support
provided by intercorrrelations. In effect, for natural kinds
categories at low levels of damage, disordered category
structure is masked by a preserved ability to name items.
However, with increasing damage to the semantic system,
sets of intercorrelated features will drop out en masse,
resulting in a corresponding inability to name the entire set
of items that relied on those intercorrelated features. These
items may be a subset of a particular natural kind category,
for example four legged animals, or they may affect a larger
set of items such as animals. Thus, for natural kinds the
theory predicts a weak correlation between naming ability
and disruption of category structure at low levels of damage,
and a strong correlation at higher levels of damage.

The picture is different for artifacts. Small amounts of
damage within the artifacts domain are more likely to affect
a distinguishing feature and thus cause a naming problem.
Therefore, one would expect a correlation between the
amount of damage and naming errors. However, since the
errors are not related to sets of intercorrelated features as
they are in natural kinds, the damage and the naming errors
may be distributed across several artifact categories. For
example, a patient may name a vehicle, a piece of furniture
and a couple of tools incorrectly. If one then looks at the
structure of the vehicles category, it would be relatively
intact, even though the patient is making several naming
errors. While damage and naming errors are more closely
related throughout the progression of damage for artifacts
than for natural kinds globally, examining any single artifact
category may not reveal a strong correlation with naming
ability.

Thus, our approach makes the following specific
predictions. First, to the extent that AD patients have
damaged semantic representations, their impairment should
be reflected in reduced differentiation of items within a
category. Second, since we believe that greater disruption
of internal category structure will be reflected in more
severe picture naming deficits, this reduced differentiation



should be even more apparent for categories in which they
show naming difficulties. Third, the relationship between
picture naming ability and impaired category structure will
be the strongest for more severely impaired natural kinds
categories. Thus, we expect a strong correlation between
picture naming scores and loss of item differentiation for
natural kinds categories, but only for those natural kinds
categories for which AD participants show poor naming
performance. In what follows, we describe a study designed
to test these predictions.

Participants

The participants were 64 individuals who were paid for their
participation. The young normal (YN) group consisted of
25 undergraduate students from the University of Southern
California. The old normal (ON) group consisted of 24
elderly individuals. The group of patients with Alzheimer’s
disease (AD) included 15 individuals who were diagnosed
with probable Alzheimer's disease using the NINCDS-
ADRDA criteria (McKhann, Drachman, Folstein, Katzman,
Price, & Stadlan, 1984). Results of neurological, laboratory
(including computed tomography or magnetic resonance
scan), and neuropsychological assessment failed to suggest
other causes of dementia. All participants were native
speakers of standard American English. See Table 1 for
mean age and MMSE scores.

Table 1: Participants information

Group Mean Age Mean MMSE
(SD) (SD)
YN 20.2 (2.4) 29.3 (0.6)
ON 78.1(5.3) 29.1(0.9)
AD 83.5(3.8) 20 (3.0)
Methods

Picture Naming

Participants named items from twelve categories, six natural
kinds and six artifacts, with twelve items in each category.
Stimuli were controlled for familiarity, imageability
(Snodgrass & Vanderwart, 1980; Wilson, 1988) and
frequency (Francis & Kucera, 1982), as well as being
matched for typicality across the two domains (Battig &
Montague, 1969). 144 color pictures were then selected
from various sources (e.g., graphics libraries). The pictures
were displayed using the PsyScope experiment software
(Cohen, MacWhinney, Flatt, & Provost, 1993) on a
Macintosh Powerbook computer. Participants were asked to
name each picture and responses were audio recorded and
transcribed. Participants were allowed as much time as
needed to respond to each stimulus.

Board Sort

The board sort task was adapted from one used by Ober and
Shenaut (1999) as well as by Bonilla and Johnson (1995).
Participants were presented with a set of printed words on
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1” X 1” foam-board chips and instructed to study them and
then place them on the board such that they represented the
relationship between the words, with more similar items
being placed closer together. The task was completed on a
laminated board with a 10 x 10 square grid. The 12 word
sets were the same as those used for the picture naming task.
Each participant completed four boards, usually two
selected from the natural kinds categories and two from the
artifacts. In addition, participants completed a board with a
set of 12 colored chips that did not have any words written
on them. This color board functioned as a control to verify
that the participants understood and were able to complete
the task.

Results

Below we report first the results of the picture naming task,
and of the board sort task. We then examine the
relationship between picture naming and board sorting for
both natural kinds and artifacts at different levels of
performance.

Picture Naming

Naming responses were coded as correct, incorrect, or
machine error. Synonyms were considered correct for the
purpose of this study, since we are interested in participants’
semantic knowledge rather than their word knowledge.

Results revealed that YN controls correctly named the
pictures 86% of the time, ON controls 85% of the time, and
AD patients 62% of the time (see Figure 1). T-tests were
conducted comparing all three groups. To control for
family-wise error, alpha was adjusted to .02 (alpha/c). The
results demonstrate a significant difference in picture
naming scores between YN and AD (t (15) = -4.15, p <
.0009), and ON and AD (t (16) = 3.95, p < .002), but no
significant difference between YN and ON (t (44)=-.48,p =
.63).

100
90
80 1—
70 +—
60 +— =
50 +— =
40 {— -
30 1 =
20 1 =
10 =

0

Percent Correct

YN ON AD

Figure 1: Percent correct on picture naming task by group:
Young Normal (YN); Old Normal (ON); and Alzheimer’s disease
patients (AD).

Board Sort

To analyze the sorting data, each board was first converted
into a set of 66 data points representing the Euclidian
distances between any two chips on the board. The unit of



measurement used was board spaces, thus the closest
together any two chips could be placed on the board was 1
space apart, and the farthest two chips could be from each
other on the board was 12.73 spaces®.

For each board there are several possible ways to group
the items. For instance, a participant can group insects by
manner of motion (which would have flying and crawling
insects in separate groups), or they could group the items by
number of legs (e.g., spiders, ants, and flies versus
caterpillars and centipedes). In this respect, the task
resembles traditional similarity judgments, where similarity
can be judged based on a variety of features, not all of
which are equally important (Medin & Goldstone, 1993). In
both types of tasks what is important is the average
“distance” between any two items, averaged across the
different groupings.

Moreover, placement of items on the board may be
affected by the extent to which individual participants
choose to divide categories into multiple subgroups. For
instance, the category insects can be divided into flying
insects and crawling insects. Crawling insects, in turn, can
be divided into crawling insects with four or fewer legs, and
crawling insects with more than four legs. Crawling insects
with more than four legs can be divided into those with a
countable number of legs, and those with too many legs to
count. Natural kinds categories tend to have a richer set of
subgroups than artifact categories (see Garrard, Ralph, &
Hodges, 2001). Each additional subgroup isolates its
members (to some degree) from the other members of the
category, thus increasing the mean distance between all the
chips on the board (see Figure 2). Thus, we expect the
natural kinds boards of normal participants to show greater
overall mean chip distances than their artifacts boards. In
addition, the boards of AD patients should differ from those
of normal participants in that disrupted representations will
lead to chips being placed close together, reflecting less fine
differentiation within a category.

Figure 2: Two example boards. The one on the left contains two
subgroups and has a mean distance of 3.38. The one on the right
has the same number of chips but arranged in three subgroups and
has a mean distance of 3.67.

% Scores are derived using the Pythagorean theorem. The board is
square, and the distance of each side is 9, thus the diagonal
distance from a chip in the bottom corner to one in the opposite top
corner is the square root of 9” plus 9%, or 12.73.
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To compare the performance of AD patients to YN and
ON controls, we ran a one-way, repeated measures ANOVA
using the distances between word pairs as the dependent
measure. The results revealed a main effect of Group, F(2,
63) = 6.32, p <.003 (see Figure 3). Planned comparisons
revealed significant differences between all three groups,
with YN having a higher mean chip distance than ON (t =
11.9, p < .0001), and ON having a higher mean chip
distance than AD (t = 6.42, p <.0001).

3.5 —

Mean distance

YN ON AD

Figure 3: Board sort task: mean distances across 12 categories for
each group: Young Normal (YN); Old Normal (ON); and
Alzheimer’s disease patients (AD).

We also analyzed the color board responses for
comparison (see Figure 4). The results indicated that AD
patients did not have a tendency to place chips closer
together than YN/ON for color boards (YN mean: 2.7, ON
mean: 3.11, AD mean: 3.1). We can therefore be confident
that the AD patients are capable of performing the task and
any differences between AD patients and normal controls
are due to underlying differences in category structure and
not simply task demands.

3.2 1
3.1 —] —

3 | -
2.9 — —
2.8 — —
2.7 — —
2.6 — — —
2.5 1 — — —
2.4

Mean distance

YN ON AD

Figure 4: Mean distances for color board by group: Young Normal
(YN); Old Normal (ON); and Alzheimer’s disease patients (AD).

Our second prediction was that the mean chip distance
should be greater for boards with items AD patients were
able to name (Good boards) than for those boards with items
AD patients were unable to name (Bad boards). The Good
boards included the natural kinds and artifacts boards for
which the patient made the fewest naming errors, and the



Bad boards were those for which they made the most
naming errors. Thus, every subject had two Good boards
and two Bad boards. As expected, the results demonstrate a
significant difference between the two types of boards
(F(1, 14) = 8.47, p < .011) with Good boards having a
higher mean distance than Bad boards (see Figure 5).

w2

2.75 —

Mean distance

2.5

Good board Bad board

Figure 5: Alzheimer’s patients” performance on board sort task:
Mean chip distance for boards with corresponding high naming
performance (Good boards) compared to boards for which patients
made many errors naming the items (Bad boards).

Our final prediction was that semantic damage as
reflected in the board sort task should be most highly
correlated with naming at later stages of damage for natural
kinds categories. To verify this, we calculated the
correlation between mean distance on the board sort task
and percentage of errors on the naming task. As predicted,
only one group, the Natural Kind High Error group (i.e.,
those that had a high percentage of errors for naming items
in a natural kinds category) demonstrated a significant
(inverse) correlation (r = -.64, p < .007). This means that as
picture naming errors increased, the mean distance (i.e.,
internal category structure) decreased (see Figure 6).
Neither the Natural Kind Low Error, the Artifact High
Error, nor the Artifact Low Error board sort distances
showed any correlation with naming error (r = -2 and p =
.56, r=-36and p = .25, r =-.3 and p = .36, respectively).

100 *
90 A
80 A
70
60
50 -
40
30

Percent error

Mean distance

Figure 6: Correlation between mean distance measure from the
board sort task and percent error for natural kind categories with
high error rates.
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Discussion

Our results confirm that AD patients have semantic deficits,
which can be seen in picture naming and board sorting
tasks. Contrary to Ober and Shenaut (1999), our data
indicates that AD patients do have impaired semantic
representations as demonstrated by their lower mean score
compared to YN and ON on the board sort task. Although
both studies shared a similar method, there was a crucial
difference between how we analyzed our data and how they
analyzed theirs. Ober and Shenaut compared the results
from patients with Alzheimer’s disease with those from
normal controls using a pathfinder algorithm. This analysis
provides a rank-based output. Because the pathfinder
algorithm only demonstrates that, for example, horse is
more related to camel than to duck, we decided to use a
different analysis that would reveal more precise differences
within a category than rank orderings allow.

In addition, our results show that good picture naming
performance does not necessarily reflect preserved
underlying category structure. The comparison of naming
scores and category structure, measured by mean chip
distances, confirmed our predictions. First, AD patients’
performance differed significantly from that of both YN and
ON controls; although they were not different from normal
controls on the color boards, AD patients consistently
placed their chips closer than YN and ON controls on the
word boards. Thus, the disrupted internal category structure
in the semantic systems of AD patients resulted in less fine
differentiation of items within a category. In addition, this
disrupted semantic structure was reflected in differences in
naming performance, with more naming errors on items that
were placed closer together on the board sort task.

Finally, as predicted, there was a weak, nonsignificant
correlation between naming scores and category structure
(measured by the board sort task) for artifact categories at
all levels of naming performance. This is because increases
in naming errors reflect damage from several categories
across the artifact domain, but our board sort tasks looks at
artifact categories one at a time. As for the natural kinds
categories, when AD patients had only minor or no trouble
naming, there was no significant correlation between the
mean distance of the chips (i.e., the amount of internal
structure in the category) and the picture naming score. As
proposed, this indicates that small amounts of semantic
damage can affect the integrity of natural kinds categories as
seen in the board sort task, while having only slight effects
on the naming of the same words. However, since natural
kinds concepts are largely dependent on intercorrelated
features, once this core information is lost for the category,
the high level of category damage should be reflected in
poor naming performance for many items in the category.
This is exactly what was seen, as evidenced by the strong
correlation between picture naming scores and the category
structures revealed in the board sort task for increasing
levels of damage.

These results provide evidence for the importance of
intercorrelated and distinguishing features, not only in



accounting for the semantic deficits in AD, but also in
normal processing. They support a view where category
structure can differ across categories because each category
is dynamically shaped by its members. Our data suggest
that natural kinds and artifacts categories differ, not only in
the features that make up these categories, but also in the
organization of the internal category structure. These
findings also highlight the importance of task differences in
revealing underlying damage to semantics and other aspects
of language processing in AD (see also Kempler, Almor,
Tyler, Andersen, & MacDonald, 1998).
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