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Steps to an Advanced Ada* Progriamming Environment

Richard N. Taylor and Thomas A. Standish**

Programming Environment Project
Department of Information and Computer Science

University of California, Irvine
Irvine, California 92717 U.S.A.
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ABSTRACT

Conceptual simplicity, tight coupling of tools, and
effective support of host-target software develop
ment will characterize advanced Ada programming
support environments. Several important princi
ples have been demonstrated in the Arcturus sys
tem, including template-assisted Ada editing, com
mand completion using Ada as a command
language, and combining the advantages of
interpretation and compilation. Other principles,
relating to analysis, testing, and debugging of con
current Ada programs, have appeared in other con
texts. This paper discusses several of these topics,
considers how they can be integrated, and argues
for their inclusion in an environment appropriate
for software development in the late 1980's.

Key Words: programming environments, Ada,
analysis, debugging, concurrency

Introduction

In this paper we present concepts and ideas we
think should characterize an advanced APSE (Ada Pro
gramming Support Environment). These range from
already proven concepts to emerging ideas currently
being explored and prototyped. Several important issues
remain unresolved. Our intention is to explore issues,
problems and opportunities.

Brief Background

Ada is a new programming language designed to

* Ada is a registered trademark of the U.S. Government (Ada
Joint Program Office).

♦♦ This work was supported in part by the DefenseAdvanced
Research Projects Agency of the United States Department of De
fense under contract (OMR) N00039-83-C-0567 to the Irvine Pro
gramming Environment Project. The views and conclusions con
tained herein are those of the authors and should not be interpret
ed as necessarily representing the official policies, either expressed
or implied, of the Defense Advanced Research Projects Agency or
the U.S. Government.

0270-5257/84/0000/0116$01.00© 1984 IEEE

promote reliabilitv and maintainability of embedded
computer software. Such software is often large
(upwards of 100,000 instructions) and long-lived (15-25
years from conception to retirement). It must often
meet requirements for concurrent processing and real
time performance.

If we are to produce and maintain Ada software
that is reliable, affordable, and adaptable, the charac
teristics of Ada may not be the only important matter
to , consider. In addition, the characteristics of Ada
software development environments may well be criti
cal. [Stan82] makes the case that it is time to seize the
opportunity to conceptualize what sort of advanced
programming support tools should populate a mature
APSE of high utility and effectiveness. In this context,
consideration arises of support tools for modern pro
gramming practices, software reuse, interactive pro
gramming, software project management, project data
base support, improved testing and verification, and
improved program understanding techniques.

At Irvine an experimental approach is being taken,
using a prototype interactive Ada programming
environment called Arcturus. We are using Arcturus as
a platform for investigation and resolution of issues
such as: •

• Is interactive Ada a valuable concept? If so, what is
needed to make it work to advantage by way of
debugging facilities, coupling of interpretation and
compilation, and other interactive support
features?

• Given that Ada is a comparatively extensive
language, is it reasonable to have a large, highly-
integrated support environment, somewhat like
Interlisp [Teit81], or is it better to follow the
composable, small-tool fragment philosophy of
Toolpack [Oste82]? What are the performance
implications of these two philosophies?

• How are we going to set sail on the uncharted
waters of verification, testing, and debugging of
Ada tasking programs? Are there effective, practi
cal approaches for checking them out, especially in
cases where they may be prepared on a host and
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executed on a dififerent target with unknown
scheduling algorithms?

In this paper we will present our approaches to
exploring these matters and discuss the lessons learned
to date. Particular attention will be paid to the
analysis and debugging of tasking programs. It will be
clear that we have not addressed all the issues and that
more investigation is needed. A tutorial on interactive
Ada features and template-assisted Ada editing is given
in [Stan83].

Arcturus: Current Status

At the moment, an experimental prototype of
Arcturus exists, has been used for the past two
academic years (1982-1984), and has been released to
over 45 outside user groups. This prototype version of
Arcturus offers an approach to the integrated use of
compiled and interpreted Ada, template-assisted Ada
text editing, an Ada Program Design Language (PDL),
Ada program performance measurement with color
profiles, formatted printing ofAda programs with useful
listing options, and automated stepwise refinement from
Ada program designs written in Ada PDL into execut
able Ada. In this section, we briefly cover some of the
features of the current working prototype.

Interactive Ada

Interactive Ada provides immediate execution of
Ada program fragments and convenient conversational
management of interactive programming sessions.
Arcturus employs interactive techniques such as break
points, tracing, interruption and resumption of compu
tations, queries, and pretty-printing. No matter
whether Arcturus is at the top-level awaiting a com
mand from the user or whether an Ada computation is
suspended at a breakpoint, the full power of the
interpreter is available. One can execute statements
(such as assignments, procedure calls or multi-line
blocks), evaluate expressions (such as Boolean condi
tions or function calls), elaborate declarations, or call
any operating system service. Full Ada has not been
implemented; we are currently at the Pascal superset
stage.

Template-Assisted Editing

An approach to interactive, screen-oriented Ada
editing is incorporated which integrates five ideas: filling
in holes in Ada program templates, syntactic comple
tion starting with unique prefixes, arbitrary character-
by-character editing at arbitrary cursor positions, help
menus, and file inclusion (which permits users to define
and name their own templates, extending the set ini
tially available).

Performance Measurement

Measurement of Ada program performance can be
accomplished by using traditional execution-time
profiles displayed as histograms or by using color spec

tra. For example, the frequently executed parts of an
Ada program text are displayed in red (the hot parts)
and the infrequently executed parts in blue (the cool
parts).

Mixed Compilation and Interpretation
Ada programs can be compiled using an Ada com

piler donated by the Irvine Computer Sciences Corpora
tion. (Originally we started to implement our own com
piler, but decided to use the ICSC compiler when it was
offered to us in order to release more of our resources
for exploration of Ada support environment issues).
Currently we can develop Ada programs in interactive
mode and then compile them after putting them
through an export laundry. This transforms interac
tively developed Ada programs into programs suitable
for compilation, by, for example, inserting incomplete
type declarations required in mutually recursive declara
tions. It is planned (though not yet implemented) to be
able to execute mixes of compiled Ada compilation
units and interpreted units to combine the advantages
of compilation and interpretation during program
development. Compilation yields a factor of 35 to 50
times better execution speed than interpretation and
compiled code is considerably more compact than inter
preted code (which requires elastic, information rich
representations). However, interpretation promotes
rapid composition and debugging at the expense of
these space-time performance penalties.

Program Design Language

An Ada Program Design Language (PDL) is
integrated into the interactive Ada environment so that
the same tools which process normal Ada programs can
operate on PDL program designs as well. For instance,
PDL programs can be recognized by the syntax
analyzer, pretty-printed, and refined stepwise into exe
cutable Ada by expanding user-definable Ada macros
[Smit82]. The Ada PDL uses normal Ada syntax forms
in which quantities in braces {such as this} can be sub
stituted for names, types, declarations, expressions, or
statements.

Development Details

The current version of Arcturus runs on a VAX*

under Berkeley Unix**. It was built with approxi
mately six person years of effort by four graduate stu
dents and one professional programmer. The source
consists of about 24,000 lines of C. When the system is
initially loaded, the bare Arcturus code and data con
sume 238,732 bytes. Adding in the additional space
necessary to run user programs, the system requires
310,749 bytes. When Arcturus runs a 300 line Ada pro
gram for a "knights tour," the total system size is
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368,200 bytes. The internal form used consists of
nested records linked together by pointers into a tree
and annotated with symbol tables, suitable for execu
tion by a recursive interpreter.

Concepts and Issues Being Explored

Issue of Complexity

One challenge we face relates to the complexity of
Ada. Ada is an ambitious language that can express a
greater range of concepts than many previous languages
(e.g, tasks, generics, overloading, packages, representa
tion specifications, and exceptions). A price must be
paid for this wide conceptual coverage. The problems
we encounter in building an interactive environment for
Ada are substantially greater than they are for
languages with simpler, more uniform representational
substrates, such as Lisp. Handling all of Ada's cases and
the interactions between them appear to require much
greater computer resources than handling a simpler
language. It remains to be determined whether the
whole language can be supported in an interactive
environment of acceptable efficiency and size. Building
and experimenting with environments such as Arcturus
may help us resolve this issue.

Since we have not yet tried out Arcturus on large-
scale software development, we cannot be certain that
it will scale up and work equally well for
"programming-in-the-large." We speculate, however,
that it could be effective for large projects where the
work is broken down into modules of reasonable size
with well-specified, stable interface characteristics.
Arcturus is demonstrably effective in rapidly composing
and developing Ada modules in the range of two
thousand lines or less. Of course the use of Arcturus for
such large projects must be coupled with effective
large-project support disciplines, such as the use of
"automated unit development folders" [BoehSl]. We
are working in partnership with a group at TRW who
are applying their expertise in large-project manage
ment to add software management support tools to an
environment based on Arcturus. By this means we
hope to address the large-scale software production
issues that lie beyond the boundaries of single-user,
interactive programming techniques.

AVOS: An Ada Virtual Operating System

Another issue we are exploring is the concept of an
Ada Virtual Operating System, AVOS [Whit82]. The
goal of AVOS is to provide a completely uniform user
interface and a machine-independent substrate for
Arcturus-like environments. We are seeking to show
how all operating system commands and programs can
be expressed in Ada, and how Ada concepts can be used
in place of conventional operating system notions, such
as files and directories. The potential advantage of this
is one of conceptual simplicity — it is simpler to use a
single substrate of Ada concepts to express operating
system commands than to learn and use a separate

operating system command language.

User Interface Issues

Can we identify a family of compatible man-
machine interfaces to serve as user-interfaces to a wide
variety of tools? Can these interfaces be simple and uni
form? One approach to this is to catalogue powerful
user-interface techniques and move them out of indivi
dual tool interfaces into a common interface. (This
probably cannot be done independently of the device
type, so we may need one approach for each substan
tially different class of user interface devices, such as
line-at-a-time printing terminals, glass teletypes, and
bit-mapped displays). Examples of capabilities are uni
form ways of: (a) redrawing a line and deleting the last
character typed, (b) completing commands from initial
prefixes and prompting for parameters, (c) menuing, (d)
windowing, (e) including files, (f) getting help, (g)
switching contexts rapidly (with screen regeneration on
return to an interrupted context), and (h) typescript
management and template-assisted editing. If we move
powerful capabilities into a common interface that sits
between the user and the tools we can perhaps enjoy
one simple way of interfacing to a variety of tools.

Our current exploration of these issues is taking
the form of a prototype common user-interface called
Adash (which stands for "Ada Shell").

Mixing Interpretation and Compilation
We are exploring approaches for mixing compiled

and interpreted Ada program units. One issue that
arises when we try to do this is, "What level of g^nu-
larity shall we be allowed to use when mbdng^ch
units?" A natural level of unit to begin with is the Ada
compilation unit, but mixing at the level of procedures
or statements may also be appropriate.

Our approach to this problem is to begin with
compilation units and to develop "export and import
laundries". These will; (a) export an interpretively
developed Ada program to a compiler by filling in miss
ing information such as incomplete type declarations
needed to handle forward referencing (as described ear
lier), and (b) import a compiled package into the inter
pretive environment by interfacing to its visible entities
making it possible to call procedures and access vari
ables from the interpreter.

Evolving Toward a Layered System

We are evolving toward a layered system such as
that pictured in Figure 1. The user may have to inter
face to several distinct devices, each with its own well-
adapted user-interface properties. These properties are
exhibited by the user-interface paradigms provided by
Adash (and perhaps others) which furnish services such
as typescript management, template-assisted editing,
and command completion. At the next level are tools
such as the mixed interpreter/compiler, the Castor
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[Smit82] macro package for mapping Ada PDL into
concrete Ada, verification and testing tools, and pro
gram explanation tools. At the base sits an Ada Virtual
Operating System, providing a foundation level of ser
vices that frees the Ada environment from dependencies
on particular operating systems and renders services
linguistically accessible in Ada conceptual terms.

Not only are we convinced that these ideas are
noteworthy and valuable in themselves, but the
Arcturus concept (if not its current implementation) is
a necessary and excellent platform for further investiga
tion of the issues associated with the development of
Ada programs. One of the most challenging areas is
analysis and debugging of tasking programs. The fol
lowing section considers this in detail and outlines the
approach we are taking in the ongoing development of
Arcturus.

Analysis, Testing, and Debugging
of Tasking Programs

Typically, embedded software must satisfy real
time requirements and is often composed of multiple
concurrent tasks. The software is usually developed on
a host system providing program development services
and then retargeted for execution on (usually dissimilar)
embedded hardware. Assuring the reliability of embed

USER

Glass tty Color terminal

Typescript Template Command

Management Driven Completion
Editing

Adash

ded software is significantly complicated by these fac
tors, yet it is of critical concern. In this section we
present some techniques specifically aimed at assuring
the reliability of multi-tasking Ada software developed
in a host-target environment. A static analysis tech
nique, a dynamic analysis technique, and an interactive

debugger are considered. Though these techniques can
be considered independent agents, our theme is that
closely integrated application of all three is needed.
(Other analysis aids are surely necessary too. No claim
is made that the techniques presented are sufficient.)
Furthermore, housing these analytic capabilities in a
framework which provides the general program develop
ment services described in the preceding sections is
essential to their effective application. Tasking and
real-time issues cannot be considered only on their own:
development and analysis of tasking programs involves
looking both at the tasking and sequential aspects of the
program. There should be no artificial boundary
separating investigation of these concerns. Analysis and
testing work is therefore an important part of the
Arcturus project.

Static Analysis

Static analysis is often a desirable technique
because execution of the subject program is not
required, the analysis is often quickly performed, and
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the results cover all paths through the program. These
characteristics are particularly valuable in the analysis
of concurrent programs. It is unable to check deep
semantics, however, and some overly pessimistic
analysis reports may be included with the valuable
ones. The static analysis technique with which we are
concerned is described in detail in [Tayl83a]. Its objec
tive is to determine, for a given program, all possible
sequences of concurrency related events. From these
sequences information regarding several aspects of a
program's synchronization structure may be derived.
Included are identification of all the rendezvous that are
possible, detection of any task blockages (deadlocks)
that may occur, and listing of all program activities
that may occur in parallel.

These sequences of concurrency related events are
expressed in terms of concurrency states. A con
currency state displays the next synchronization-related
activity to occur in each of a system's tasks. A
sequence of states presents a history of synchronization
activities for a class of program executions. The
analysis algorithm can develop a representation of all
possible concurrency histories.

We will illustrate the concepts with an example.
Figure 2 presents an Ada program designed to solve a
version of the Dining Philosophers problem. Five philo
sophers are seated at a circular table, alternately eating
and thinking. In order to eat, a philosopher must
acquire the fork to the left of his plate and the fork to
the right. In Figure 2 each philosopher is a separate
task, as is each fork. The philosopher tasks request the
fork resources by issuing entry calls. The program
presented is a poor one in the sense that it is possible
for deadlock to occur; if each philosopher is able to
acquire the fork to his left, then they will all starve
while waiting for the fork to the right. This possibility
can be detected using static analysis.

The situation where all the tasks are active, the
philosophers are all requesting the left fork, and all the
forks are ready to accept a call on "Up" (i.e. "physi
cally" the forks are all down on the table) is shown in

Philosool] Forks

A K P T s 0 1 2 3 4

end U„ u. U2 U' U' U' U' U'

Here we abbreviate each philosopher's name with its
first initial, the entry calls on "Up" are shown with a
"U" and subscripted to indicate which fork is
requested, and the accept statments in the forks are
marked with an apostrophe (to distinguish them from
entry calls). The main thread of control is shown at
"end", indicating it is ready to terminate when all its
dependent tasks terminate. Among many possible

Main

Task

Philosool] ers Forks

A K p T s 0 1 2 3 4

end U2 U4 D' U' U' U' U'

procedure Dining_Philosophers is

type Seat_Assignment is Integer range 0..4;
task type Fork is

entry Up;
entry Down;

end Fork;
task body Fork is
begin

loop
accept Up;
accept Down;

end loop;
end Fork;
type Array_of_Fork is array (0..4) of Fork;

Forks: Array_of_Fork; - -this declaration results
--in the activation of the 5 fork tasks

generic
N: Seat_Assignment;

package Philosopher is
task T;

end;
package body Philosopher is

task body T is
begin

loop
--acquire left fork

Forks(N).Up;
--acquire right fork

Forks((N-)-l) mod 5).Up;
delay 1.0; - -eating time

--put down left fork
Forks(N).Down;

--put down right fork
Forks((N-|-l) mod 5).Down;
delay 1.0; --thinking time;

end loop;
end T;

end Philosopher;

package Aquinas is new Philosopher(O);
package Kierkegaard is new PhilosoDher(l);
package Bonhoeffer is new Philosopher(2);
package Tilich is new Philosopher(3);
package Schaeffer is new Philosopher(4);

--This instantiation of each specific package results
--in the activation of the task contained within
--the package. Each task is activated with the
--generic actual parameter (0, 1, ..., 4) in place
--of the formal parameter N

begin
null;

end Dining_Philosophers;

Figure 2
Dining Philosophers, Reserved Seating
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implying that Aquinas acquired Forkg and is now
requesting Forkj, as is Kierkegaard. Fork^ is now wait
ing to be put down. Supposing that next Kierkegaard
acquires Forkj the system can progress to

Main

Task

PhilosnnV ers Forks

A K R T R 0 1 7, ,3 4

end u. ^4 D' D' U' U' U'

The kbyr item to note is that the static analysis algo
rithm willV^culate all the possible states, exploring all
eventualities. XThe particular states that arise during
actual executio^will be determined by the scheduler
algorithm, procesW speeds, and the like. (To simplify
the presentation of\his example we have not shown the
relative position of entry calls on the entry queues.)

Further consideration of this example reveals that,
after a series of rendezvous, the following state is possi
ble:

Main

Task

Philosont ers \ Forks

A K R T ^ ,s 0 1 7 4

end U4 t D' D' D' D' D'

This represents the deadlock described earlier. Simple,
automatic analysis of this state will cause the deadlock
to be reported. It is noteworthy that this state is a
common successor of many different earlier states.
Moreover it may not occur until after an extended
period of "eating and thinking". All these possible
sequences of states are revealed by the static analyzer.
This history information can be used as an aid in
further investigation of the anomaly, such as investiga
tion to ensure that the history qoes not involve an
unexecutable path. ^

It is important to note the limrtations of the tech
nique. First, static analysis must \assume that each
intra-task path is executable. This presents no problem
in the example shown, but surely would introduce some
spurious event sequences in a real program. Second,
static analysis is only accurate when individual program
objects (like tasks or entries) can be identified statically;
program features potentially causing dynamic
identification, such as access values (pointers) and sub
scripts, may be inadequately handled. Again, in this
example there was no problem because ofihe use of the
generic (compile-time) parameter to dkermine the
"seating arrangement". If the program had been con
structed so that seating positions were assigned dynami
cally, as suggested by the program fragment of Figure
3, then analysis would not have been so useful. The
static analyzer would have been forced to compute all
possible concurrency states, not knowing the value of
"Seat". Even though the program may guarantee that
no two philosophers simultaneously have the same value
of "Seat", the static analyzer would nevertheless com
pute such outcomes. Literally thousands of spurious

states would result. This observation is a key motive
for developing a strategy to integrate static analysis
with other techniques, and is considered in more detail
below.

Finally, since the analysis conducted is indepen
dent (ignorant) of the target execution environment, the
implications of delay statements, non-zero execution
times, and scheduler algorithms are not taken into
account. This restriction, of course, is also an advan
tage: the results produced do not rely on any possibly
erroneous assumptions about the target environment.

A final note concerning this static analysis tech
nique is in order. Regarding complexity, the algorithm

is O(n^), where T is the number of tasks in the system,
and n is the number of concurrency related statements
[Tayl83b]. Usually a very large number of states will be
generated, and such generation may take considerable
time.

task type Philosopher;

task body Philosopher is
Seat: Integer range 0..4;

begin
ioop

get_seat_assignment(Seat); --this call
-- dynamically returns the number of
--an unoccupied seat

Forks(Seat).Up;
Forks((Seat-t-l) mod 5).Up;
delay 1.0; -- eating time
Forks(Seat).Down;
Forks((Seat-f1) mod 5).Down;
vacate_seat(Seat); --this call returns

-- "Seat" to unoccupied status
end loop;

end Philosopher;

Aquinas, Kierkegaard, Bonhoeffer,
Tilich, Schaeffer: Philosopher;

--in this program the tasks are not contained
-- within packages, but are explicitly

-- declared and activated here

Figure S
Dining Philosophers, General Admission

Dynamic Analysis

German, Helmbold, and Luckham have described a
dynamic analysis technique having several of the same
goals as the static analysis technique above [Germ82].
The basic idea of the technique is to transform an Ada
program P into another Ada program P' such that P
and P' have the same set of possible deadness errors,
but, during execution, P' will detect the imminency of a
deadness error, report the condition, and allow the pos
sibility of evasive action. The transformation accom
plishes this by adding a monitor task to P which main
tains, essentially, the current concurrency state. Each
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task in the system updates the monitor, telling it the
task's next tasking activity, such as entry call, accept
completion, or task completion. By doing a one state
look-ahead the monitor can detect a deadness error
"just before it happens" and can thus raise an excep
tion in the offending task, again "just before" the error
would occur.

The dynamic technique is not beset by the same
restrictions as the static technique. The dynamic tech
nique functions correctly in the presence of nearly all
Ada tasking constructs. The use of access values and
subscripts presents no problems. No spurious errors are
reported. Dynamic analysis of the program in Figure 3
would not present any difficulties: only legal seatings
would occur. (The deadlock possible in that program
may never occur with a particular scheduler, however.)

The instrumentation process itself is potentially
efficient; some parts of the monitor task do not even
require recompilation with each new program to be
monitored.

Some interesting issues arise regarding run-time
efficiency however. Since dynamic analysis is being dis
cussed it is clear that the impact of the real-time
environment is felt, including the effect of delay state
ments. Unfortunately the error monitoring instrumen
tation imposes a potentially substantial amount of over
head. Not only is another task included in the program
(the monitor) but the number of entry calls occurring
leaps by a factor of three or more. Sensitive timing
properties may therefore be disturbed. Then too the
overhead induced by the instrumentation may cause an
observed phenomenon to disappear (under the same set
of external conditions) though the potential for that
error still remains. An example of this is shown in
[Germ82].

The prime limitation of error monitoring, of course,
is that a batch of error-free runs does not allow one to

infer much about the correctness of the program, even
with respect to the limited scope of deadness errors. A
change in the underlying implementation, such as a new
scheduler, may cause a crop of errors to appear, even
when the program is run on the old test data.

The apparatus used to perform this error monitor
ing can be easily augmented to document many run
time events of interest. Since the monitor is notified of

all rendezvous, task initiations, terminations, and so
forth, it is a simple chore for it to produce a trace list
ing of these events. The implementation described in
[Helm83] allows this. Many other obvious extensions
are possible, including emission of the current con
currency state, length of actual delay at delay state
ments, length of blockage at entry calls, and so forth.

Cooperative application of static and dynamic analysis

Clearly the static analysis and dynamic analysis
techniques presented have complementary characteris

tics. Static analysis results can be definitive and infor
mative, accounting for all possible program actions.
But the application of the technique is limited to a sub
set of Ada and some of the analysis results require scru
tiny to determine if the reported phenomena are indeed
possible. Dynamic analysis has fewer limitations, but
the meaning of the results obtained is not so clear
(unless an error is discovered). This complementary
character of the individual techniques suggests that if
they are applied in concert, several of their deficiencies
may be eliminated.

The most obvious joint use of the techniques is to
employ dynamic analysis in the further investigation of
phenomena detected by the static analyzer. It may be,
for example, that the scheduler used in a particular
implementation or the semantics of the guards on select
statements preclude a (statically) reported deadlock
from occurring.

Certain concurrency states may not be possible for
other reasons: the static analyzer may have assumed
the executability of an unexecutable path, for instance.
Dynamic analysis could monitor these conditions,
watching for the error during testing. Moreover the
concurrency histories may be of substantial use in
attempting to develop test data to force execution of
the anomalous sequences. In general, the concurrency
histories provide a guide to the development of a bat
tery of test cases. (Other automated tools, such as
symbolic executors, may be useful aids in this process as
well.) In the restricted sense of testing a program's syn
chronization structure, the complete concurrency his
tory can be used as a yardstick in evaluating the
thoroughness of a test regimen.

It is also possible for static analysis results to help
in reducing the overhead incurred by the dynamic
techniques. If a subset of a program's tasks can be con
clusively shown to be error free, then the instrumenta
tion used for their monitoring may be reduced or elim
inated.

Potentially one of the most significant problems
with static analysis is the large number of concurrency
states that a program may have. There may be so
many that it would be infeasible to generate them all.
It is possible, however, to use static analysis to examine
all the possible successors of an interesting concurrency
state that had been captured dynamically. Used in this
way the static analyzer would not generate the com
plete history for a program, only the the histories
rooted at the state supplied by dynamic analysis. An
appropriate state for the program of Figure 3 would be
when all the philosophers have received a seating
assignment, but before any of the forks have been
acquired. (Knowing what an appropriate state is may
require significant knowledge of the problem domain,
though.)

This cooperative application strategy is more fully
described in ['Tay183c].
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Debugging

A variety of issues are associated with the debug
ging of concurrent programs. The papers and discus
sions at the workshop on -'High-Level Debugging"
highlighted several of these [HLDB83]. While not deny
ing the importance of other kinds of support, our
approach is based on three distinguishing premises.
First, we believe a debugging system should permit
focus on both task interaction concerns (synchroniza
tion) and sequential program concerns. Effective inves
tigation of a phenomenon may involve looking in both
domains. Second, support must be provided for debug
ging using Ada language concepts. Tools for focusing
on other levels of abstraction, higher and lower, are
needed too, but Ada level support seems key. Third,
the analyst must be able to direct the course of a
debugging run with precision; complete control over
the scheduler and processor speed seems a must. At
any desired point full visibility into the system should
be available.

Our goal here is not to rehash all the desirable
capabilities of a debugger, particularly as they relate to
sequential code, but to stress the importance of
integrating a debugger with the static and dynamic
analyzers described above. Our contention is that this
union provides substantial debugging power. This
integration will be shown to be particularly valuable in
a host-target environment.

The functioning of a debugging system designed
with these principles in mind is indicated in Figure 4.
"Single-stepping" is the fundamental capability of the
system. A path through a concurrent program is deter
mined by three factors: the data processed, the choices
of the scheduler, and timing issues. In the timing
category are matters of processor speed and the arrival
time of data values. The analyst is given control over

all three factors. Data values are supplied on the neces
sary input channels as with sequential debugging.
Scheduler issues and timing concerns are controlled

either through use of concurrency states (the notion
described above under "Static Analysis") or by direct
interaction. Using a sequence of concurrency states, the
analyst may precisely state what actions are to occur in
the debugging execution. A sequence of states com
pletely governs the progress of each task, including
their relative progress. Time is thus "controlled" as
well. Intra-task paths are, of course, determined by the
test data. Input received from a resource shared by
multiple tasks must also be governed. This can be
accomplished if the resources are identified before exe
cution and included directly in the concurrency states.

The utility of technique integration can be seen by
considering one approach to investigation of an error
discovered during testing of the program running on the
target machine (bench testing). Assume for this discus
sion no resources are shared and time of data arrival is
immaterial. From the low level final state of the target
machine (taken perhaps from a memory dump) an Ada
level final state must be constructed. (This reconstruc
tion is machine dependent and, of course, may not
always be possible.) From the Ada level state the last
concurrency state reached may be derived. Call that
state S. The test data and S are transferred to the
host, where a debugging execution is initiated. Paths
internal to tasks are driven in the debug run by the test
data. The synchronization and timing issues can be
controlled as follows. The static analyzer is used to
generate the set of all concurrency histories for the pro
gram that contain S. When the debugging execution
reaches a point where a scheduling decision must be
made, a choice consistent with the history graph is
made. If this choice later proves to be infeasible (i.e.,
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Debugging in a host-target environment
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not leading to S) then execution is backed up and
another selection made. In effect a depth-first traversal
of the history tree guides the execution until S is dupli
cated in the debugging run; Visibility into the debug
run is always available, using standard debug features.

If the bench execution contained any instrumenta
tion in support of dynamic analysis, then the informa
tion gathered may significantly speed up this process for
finding a path to S. The instrumentation, for instance,
may capture an (acceptable) machine state prior to the
fault. Then the debugging execution could be started
from that point. If only a concurrency state was
captured, it could be used to prune the set of allowable
concurrency histories.

Other debugging strategies are possible in this gen
eral framework as well. It is noteworthy that many of
the normal limitations of static analysis (such as dealing
with pointers) can be overcome in this integrated con
text, since information from the debugging execution
(or target execution) can be used to help refine or build
the set of concurrency histories.

One of the more exciting possibilities associated
with debugging tasking programs is in the design of ani
mation features and user interface notions to aid in the

process. The current version of Arcturus uses color and
intelligent terminal operations in a variety of ways.
Bit-mapped terminals offer many opportunities; we are
currently exploring how to best extend and exploit these
features. A more detailed presentation of our approach
may be found in [Tayl83d].

Conclusion

The Arcturus system is a platform for exploring
issues associated with advanced Ada programming
environments. We believe many exciting concepts have
been demonstrated. Interactive program development
and debugging, the use of Ada as a command language,
template-assisted editing, and program design language
facilities combine to yield an effective environment for
module development. We have learned that even the
current fragile, incomplete prototype of Arcturus
demonstrates that interactive Ada programming tech
niques are effective and valuable. Even though the
pieces of the current Arcturus are not completely
integrated, Arcturus has been used with considerable
success in five compiler construction clases for 140 stu
dents at Irvine in which (small) working educational
compilers have been written in Ada. It has also been
used in rapid prototyping of programs written in Ada in
which software productivity has been measured to be
about 19 times greater than the nominal estimate given
by [BoehSl]. In one case the rapid prototyping tech
niques involved use of the Ada PDL for design, use of
interactive Ada for rapid composition and debugging,
and a 62% software reuse factor in constructing the
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prototype system [Stan83, Tayl82].
Our initial experience is also leading us to conclude

that a high degree of integration of some tools has a
high payoff. Rapid composition and debugging of code
frequently involves small-grained, intermixed use of the
editor, interpreter, and debugger. Tight integration
(sharing of address space and data structures) reduces
the conceptual overhead in tool-switching and execution
efficiency is improved as well {if adequate machine
resources are available). We are not claiming that such
tight integration is always effective. Indeed we believe
that the analysis and testing tools discussed will best be
fashioned from several small, separable tool fragments.
This would allow, for example, resource intensive jobs
— like static concurrency analysis — to be spun off as
background processes. Currently we are exploring how
we may support a "mixed strategy" in which some tools
are tightly coupled and others are not. In particular we
wish to allow dynamic, and perhaps automatic, environ
ment configuration, in which appropriate tools are
tightly or loosely coupled in response to functional
requests, availability of machine resources, and availa
bility of previously developed information.

We are particularly concerned with expanding
Arcturus to support the analysis, testing, and debugging
of real-time, tasking programs. Stand-alone techniques
have been developed to aid in these activities. In this
paper a strategy has been advanced for applying the
individual techniques in an integrated fashion, making
them even more valuable as they are mutually reinforc
ing and complementary in important ways. The stra
tegy presented offers a disciplined approach to the prob
lem of analyzing errors uncovered during real-time tar
get machine testing. Presenting all these capabilities in
a cohesive framework will result in their most effective

application.
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