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SUMMARY
Meningiomas, although mostly benign, can be recurrent and fatal. World Health Organization (WHO) grading
of the tumor does not always identify high-risk meningioma, and better characterizations of their aggressive
biology are needed. To approach this problem, we combined 13 bulk RNA sequencing (RNA-seq) datasets to
create a dimension-reduced reference landscape of 1,298 meningiomas. The clinical and genomic metadata
effectively correlated with landscape regions, which led to the identification of meningioma subtypes with
specific biological signatures. The time to recurrence also correlated with the map location. Further, we
developed an algorithm that maps new patients onto this landscape, where the nearest neighbors predict
outcome. This study highlights the utility of combining bulk transcriptomic datasets to visualize the
complexity of tumor populations. Further, we provide an interactive tool for understanding the disease
and predicting patient outcomes. This resource is accessible via the online tool Oncoscape, where the sci-
entific community can explore the meningioma landscape.
INTRODUCTION

Meningiomas are the most common primary intracranial tumors

in humans and usually benign. However, some rapidly recur after

multimodal treatment with surgery and radiotherapy, and can ul-

timately be fatal.1 The histologic grading of the 2021 World

Health Organization (WHO) identifies many of these aggressive

tumors as grade 3, but some tumors identified as grades 1 or 2

are equally aggressive.2 Improved risk classification systems

for these tumors are needed, and several grading systems based

on DNA methylation, copy number, or expression signatures

have been proposed.1,3–5

Clues to the underlying biology of these tumors come from

neurofibromatosis type 2 with germline loss of one copy of
Cell Genomics 4, 100566,
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NF2, resulting in the formation of multiple meningiomas.6

Consistent with this observation, DNA molecular analysis shows

that the most common alteration of spontaneous meningiomas

is loss of chromosome 22 harboring the NF2 gene.7,8 The major-

ity of rapidly recurrent meningiomas are among those that show

functional loss of NF2.9,10 Additional recurrent genetic alter-

ations inNF2-wild-typemeningiomas includemutations in genes

TRAF7, KLF4, AKT1, and SMO and are often restricted to benign

meningiomas.11,12

NF2 encodes the protein Merlin, which is a tumor suppressor

that regulates YAP1 via the Hippo signaling pathway.7 Upon

contact inhibition, the Hippo pathway phosphorylates YAP1, re-

sulting in the inhibition of YAP1 activity.13 In the absence of

Merlin, YAP1 remains active and translocate into the nucleus,
June 12, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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binding the TEAD transcription factors and activating cell prolif-

eration. In addition to chromosome 22 loss, theNF2 allele can be

inactivated due to either inactivating point mutations in the NF2

sequence or inactivating gene fusions. An alternative route of

YAP1 de-regulations can occur due to gene fusions involving

the YAP1 gene, resulting in constitutively active YAP1 that is

insensitive to Hippo pathway inactivation.14 Mousemodeling ex-

periments have shown that the expression of either constitutively

active YAP1 or YAP1 gene fusions found in human meningiomas

induce similar tumors in mice, functionally implicating de-regu-

lated YAP activity in the pathobiology of meningiomas.15

Currently available therapeutic options for patients with

aggressive meningiomas are limited to radiation and multiple

surgeries. It is likely that rapid recurrence and aggressive

behavior of some meningiomas reflect the underlying biology

of these tumors, which is in turn largely reflected by its overall

gene expression pattern. In the hope of understanding this

aggressive subset of meningiomas and being able to predict

which meningiomas will fall into that category, we performed

RNA sequencing of 279 meningiomas from all grades. We then

combined our data with multiple publicly available meningioma

RNA sequencing (RNA-seq) datasets to generate one of the

largest clinically annotated meningioma full RNA-seq datasets

available to define the biology of the various meningioma sub-

groups to create a reference landscape using uniform manifold

approximation and projection (UMAP) of 1,298 tumors with

associated metadata.

The resulting reference map exhibits multiple clusters of tu-

mors each represented by multiple datasets and indicating mul-

tiple RNA-seq-based meningioma subtypes, some of which are

associated with distinct time to recurrence. These subgroups

are distinguished from each other by gene expression similarities

to developmental cell types and biological pathways. We

observed several subtypes with particularly poor outcomes; the

most common aggressive tumors of these showed high prolifer-

ation rates and RNA expression resembling muscle develop-

ment. We also sought to develop a method to map new patients

onto our UMAP landscape and predict tumor behavior and pa-

tient outcome based on the nearest neighboring tumors in the

map. Oncoscape, an open-source online tool via which this

reference map is accessible, provides a great visualization plat-

form for the data shared in this article and allows interactive

and analytical exploration of tumors along with various associ-

ated metadata. (Oncoscape is accessible on the Chrome search

engine via the link https://oncoscape.sttrcancer.org/#project_

meningiomaumap94. The main figure panels can be directly ac-

cessed using the dropdown menu ‘‘Figures from the paper’’ on

the upper-right corner of the website.) We believe that this refer-

ence map with demographic and clinical data provides insight to

the behavior of the multiple meningioma subtypes, and tools to

map new patients onto it will be beneficial in clinical applications

to determine patient outcome and therapeutic strategies.

RESULTS

Constructing the meningioma reference UMAP
We obtained 12 publicly available bulk RNA-seq meningioma

datasets from nine institutions and five countries in North
2 Cell Genomics 4, 100566, June 12, 2024
America, Europe, and Asia and combined them with 279

sequenced meningiomas from the University of Washington

to create a set of 1,298 meningiomas (Table S1).3,4,14,16–25

Raw sequencing data were collected from each dataset and

aligned to human genome hg38 using the same pipeline (Fig-

ure 1A). To remove batch effects from different datasets, we

used R function CombatSeq from the R package sva. Here,

we removed batch effects specific to sample collection, pro-

cessing, and sequencing inherent to each dataset (Figure S1A).

Almost all datasets except the one from Yale had a similar dis-

tribution of benign and malignant tumors (Figures S1B and

S1C). Gene expression values from combined datasets were

normalized using the variance stabilizing transformation (VST)

method.26 We applied UMAP, a dimensionality reduction

method, on batch-corrected, normalized transcript counts to

create a reference UMAP (Figures 1A and 1B). This landscape

is made up of multiple distinct clusters of different sizes, all of

which are composed of a mix of the 13 datasets (Figure 1B).

We were unable to assess the distribution of patients by

their race/ethnicity due to lack of information. In addition to

UMAP, we explored other dimension-reduction techniques

(principal-component analysis [PCA] and t-distributed stochas-

tic neighbor embedding [tSNE]) and found that UMAP better

distinguished clusters that showed differences in clinical and

genomic features (Figures S1D and S1E).27 The collection of

tumor samples included fresh-frozen (FF) tissue as well as

formalin-fixed paraffin-embedded (FFPE) tissue. The FFPE

samples distributed evenly across the landscape (Figure S1F).

The UMAP landscape facilitates 2D or 3D visualization and is

available for interactive analysis and visualization via the

open-source, interactive online tool Oncoscape28 (see Figure

1 in Oncoscape).

Known genetic aberrations are regionally distributed
across the UMAP
We colored in the UMAP by DNA sequencing-based mutational

metadata associated with a subset of the tumors. For any col-

oring scheme, we colored in only known values; tumors with no

known values for a given data field were left gray. More than

half of meningiomas (73% of tumors for which NF2 status is

available) exhibit functional loss of NF2, which is achieved via

either the loss of chromosome 22, point mutations, or gene fu-

sions (Figure S1G). We colored the map for tumors with known

chromosome 22 loss (from collected metadata), which clearly

highlighted a large subregion of the map (Figure 1C). Point mu-

tations and gene fusions leading to inactivation of NF2 also

cluster with the tumors with chr22 loss (Figures 1D and 1E).

Coloring the UMAP for all three mechanisms of NF2 inactivation

demonstrated a near-complete loss of NF2 across this region

of the map, correlating with overall downregulated expression

of NF2 (Figures 1F and S1E). NF2 wild-type YAP1 fusion-posi-

tive meningiomas also mapped onto the same region, indi-

cating that they resemble NF2 mutant meningiomas on a

gene expression level (Figure 1G).15,29 Other recurrent non-

NF2 mutations, including TRAF7 and SMO, were found distrib-

uted across the NF2-wild-type region of the map, while KLF4

and AKT1 additionally showed high regionality for recurrent

mutations (Figures 1H and S1H). The regionality of these

https://oncoscape.sttrcancer.org/#project_meningiomaumap94
https://oncoscape.sttrcancer.org/#project_meningiomaumap94
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Figure 1. Generating the meningioma reference UMAP and coloring by clinical and genomic metadata

(A) Method overview.

(B) UMAP colored by datasets.

(C) Tumors with (blue) and without (yellow) loss of chromosome 22. (D) Tumors with (blue) and without (yellow) NF2 mutations.

(E) Tumors with (blue) and without (yellow) NF2 gene fusions.

(F) NF2 expression.

(G) YAP1 gene fusions.

(H) Tumors with (blue) and without (yellow) mutations in TRAF7/KLF4/AKT1/SMO.

(I) WHO grade: grade 1 (yellow), 2 (green), and 3 (red).

(J) Recurred (blue) and primary (yellow) tumors.

(K) Patients’ gender (female pink, male blue). Region 1 marked by the red dashed line.

(L) Age at sample acquisition. Region 2 marked by red dashed line. na, not available. Figure 1 in Oncoscape. See also Figure S1 and Table S1.
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genetic alterations is consistent with the known unique biology

for the meningiomas. For example, meningiomas that harbor

both TRAF7 and KLF4 mutations were predominantly regional-

ized to one cluster (Figure S1I).30 TRAF7-mediated cell

transformation is enhanced by loss of KLF4 in a subset of

meningiomas.31
Aggressive tumors are regionally concentrated
Most of the samples in our dataset have a WHO grade associ-

ated with them, and coloring in the UMAP by that grade shows

nonrandom distribution. A subset of the region characterized

by NF2 loss had an increased concentration of WHO 2 and 3 tu-

mors relative to the rest of the map (Figure 1I). However, the
Cell Genomics 4, 100566, June 12, 2024 3
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Figure 2. Various grading systems show regional patterns across the UMAP

(A) UMAP colored by the Baylor RNA classification: A/NF2wt_ben = NF2 wild-type benign (blue), B/NF2loss_int = NF2 lost intermediate (green), C/NF2loss_mal =

NF2 lost malignant (red).

(B) UMAP colored in by UCSF DNA methylation-based classification of a subset of tumors: hypermitotic, red; immune-enriched, green; Merlin-intact, blue.

(C) UMAP colored in by the Torontomethylation profile of a subset of tumors:MG1/immunogenic, orange;MG2/benign_NF2wt, (benign NF2wild type) blue;MG3/

hypermetabolic, green; MG4/proliferative, red.

(D and E) UMAP colored by GSVA scores calculated using UCSF gene set (D) upregulated and (E) downregulated in most aggressive meningioma. 1 suggests

upregulation, �1 suggests downregulation of the respective gene set.

(F) Ratio of GSVA scores from upregulated and downregulated gene sets. Black arrows indicate the regions with themost aggressive tumorsmarked by the ratio.

Figure 2 in Oncoscape. See also Figure S2.
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region with the highest concentration ofWHO 2 and 3 tumors still

contained tumors of all three grades. Tumors known to be recur-

rent at the time of resection are generally also concentrated in

the same region as tumors with a higher grade (Figure 1J). For

some of the patients, there were data regarding the time be-

tween the surgery generating the sample and the next or previ-

ous resection. Coloring in the map with these data also showed

that a short time to recurrencewas enriched in that same area, as

was higher average grade and increased likelihood of being a

recurrent tumor (Figure S1J).

Regional age and gender distribution
Nearly all the samples had records of age and gender. Consis-

tent with what is known, the majority of the map comprised older

patients that were predominantly female (median age of 58 years

and 66% female) (Figure 1K and 1L).32,33 By contrast, there were

two regions of the UMAP that varied from this general rule. One

region with the most aggressive tumors was largely male (61%

male vs. 31%male in the rest of the UMAP), and a second adja-
4 Cell Genomics 4, 100566, June 12, 2024
cent region comprised a higher percentage of younger patients

(<30 years) than the general populations of meningioma patients

(22% vs. 5% in rest of the UMAP) (Figures S1K–S1M).

Various grading systems are consistent with the
regional patterns across the UMAP
Because the WHO grading system does not identify all the me-

ningiomas with aggressive behavior, several recent alternative

grading systems have been proposed that use methylation pat-

terns, copy-number alterations, and gene expression to place

patients into specific groups associated with a time to recur-

rence.3,4,21,34,35 We colored in this UMAP by metadata of these

grading systems, and all of them correlate with UMAP subre-

gions (Figures 2A–2C and S2A) (see Figure 2 in Oncoscape).

Additionally, the expression of the 34 genes presented by the

Raleigh lab as a signature to predict meningioma outcome was

analyzed in correlation to our UMAP.36 Upregulated and down-

regulated genes in the most aggressive meningiomas were

divided into two gene sets, and the whole dataset was subjected
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Figure 3. Meningioma subtypes with distinct time to recurrence
(A) Seven regions identified by DBSCAN denoting meningioma subtypes A–G. Unclustered samples (n = 37) are shown in gray.

(B) Kaplan-Meier plots for the seven regions based on time to recurrence (AvsB and AvsC p < 0.0001; CvsD and BvsC p < 0.02); n(A) = 317, n(B) = 172, n(C) = 131,

n(D) = 101.

(C) Subclusters of cluster A (A1 and A2).

(D) Kaplan-Meier plots showing recurrence-free rates of cluster A subclusters (A1 vs. A2: p < 0.0001); n(A1) = 230, n(A2) = 36.

(E) Subclusters of cluster C (C1, C2, C3, and C4).

(F) Kaplan-Meier plots showing recurrence-free rates of cluster C subclusters (C1 vs. C2, p < 0.0001; C3 vs. C4, p= 0.26; C1 vs. C3, p = 0.01); n(C1) = 26, n(C2) = 5,

n(C3) = 13, n(C4) = 100. Figure 3 in Oncoscape. See also Figure S3.
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to gene set variation analysis (GSVA) using the two gene sets

separately. The two sets of GSVA scores and then a ratio of

them were used to color in the UMAP, and they highlighted the

most aggressive region of our map in line with the University of

California San Francisco (UCSF) findings (Figures 2D–2F).

Furthermore, we generated a UMAP using only those 34

genes (Figure S2B) and found that basic regionalization of

aggressive and recurrent tumors was in line with the UMAP

generated using all protein-coding genes; however, meningioma

subtypes were better segregated in the latter UMAP. The one

classification system for meningiomas that did not correlate

with map location was the Simpson grading scale, which is a

measure of tumor resection completeness, suggesting that the

ability to completely resect a tumor is not determined by expres-

sion pattern and underlying biology of the tumor (Figure S2C).37

Meningioma subtypes with distinct time to recurrence
Genomic and clinical metadata integrated into the UMAP re-

vealed regionalization, suggesting potential meningioma sub-

types. In order to define map regions with statistical confidence,
we employed three methods: density-based spatial clustering of

applications with noise (DBSCAN), k-means, and hierarchical

clustering (Figures 3A, S3A, and S3B). There was overall overlap

among clusters identified by the three methods. We chose

DBSCAN due to its ability to delineate regional distinct clusters

that corresponded well with metadata, identifying seven general

clusters labeled A through G (Figure 3A) (see Figure 3 in Onco-

scape). Notably, both k-means and hierarchical clustering out-

puts corroborated the UMAP-based intra-cluster subdivisions,

as depicted below.

The region of the UMAP with functional loss of NF2 (Fig-

ure S1G) comprised clusters A and B. Cluster A contained the

highest density of aggressive tumors, and cluster B represented

the remainder of the NF2 loss region of the UMAP with relatively

benign tumors. Clusters C and D were composed of mostly NF2

wild-type tumors. The comparison of Kaplan-Meier plots of time

to recurrence for these main clusters identified clusters A and G

as the clusters with the shortest time to recurrence (Figure 3B).

Patients in cluster C also perform significantly worse than those

in clusters B, D, E, and F, all of which were similar.
Cell Genomics 4, 100566, June 12, 2024 5
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Intra-cluster time-to-recurrence analysis suggests
further subdivision of the map
The regional differences of time to recurrence within a cluster

was seen for many of the clusters. The most striking was in clus-

ters A and C. We identified two major subclusters within cluster

A based on the regionalization of the most aggressive tumors

and, most importantly, differences in patient outcome (Figures

3C and 3D). A2 harbored the largest population of patients

with poor outcomes and was also identified by the 34-gene

signature (Figure 2F). Cluster C can be similarly divided into

four subclusters with significant differences in outcome (Fig-

ure 3E and 3F). Subcluster C2 is a small subcluster of eight tu-

mors derived from six different datasets having a uniform short

time to recurrence. Several of the other clusters can also be

subdivided into regions with significant differences in outcome

(Figure S3C).

Gene fusion calling from RNA-seq data shows high
prevalence in aggressive regions
We identified gene fusions from the RNA-seq data using Ar-

riba.38 At high confidence, we were able to identify 171 gene fu-

sions that have at least one coding gene partner and that recur at

least twice within the dataset (Table S2). The regions of the map

with highly aggressive tumors (cluster A and parts of cluster C)

showed significantly high fusion burden (Figure 4A) (see Figure

4 in Oncoscape). Some of the tumors harbored multiple fusions,

and some highly recurrent protein-coding gene fusions were

found regionalized on themap (Figures 4B and 4C). For example,

TRPM3,RP11-563H8.2-TRPM3 fusions enriched within cluster A

and some parts of cluster C and F. In another example, PARD6B-

BCAS4 fusions were enriched in cluster A and most concen-

trated within the subcluster A2. Using RNA-seq, we identified

NF2 fusions additional to those known from collected metadata,

and they were predominant in cluster A (Figure S4A). It is worth

noting that YAP1 fusions are mostly in pediatric patients

(Figures 1G and 1L). YAP1-MAML2 is identified as a causal

oncogenic driver in pediatric NF2 wild-type meningiomas.14

Furthermore, YAP1-MAML2, which leads to constitutive activa-

tion of YAP1, has been shown to be sufficient to induce menin-

giomas in mice.15 The pediatric tumors achieve YAP1 activation

by different mechanisms with fewer losses of chromosome 22

and more gene fusions such as those that activate YAP1.

Regionally enriched chromosome arm-level copy-
number alterations
We estimated arm-length gains and losses of chromosomes us-

ing CaSpER onRNA-seq data (Table S3).39 Thesewere validated

with the known copy-number alteration (CNA) data on 304 sam-

ples where DNA sequencing was available for chromosome 22
Figure 4. Regionally enriched gene fusions and copy-number alteratio

(A) Fusion burden in each tumor derived from high-confidence gene fusions calle

(B and C) Examples for regionalized fusions.

(D) Burden of CNA in each tumor (loss of chromosome arms).

(E–H) Loss (�1), gain (1), or intact (0) status of (E) chromosome 1p, (F) chromoso

(I) Manhattan plots showing losses (blue) and gains (red) of each chromosome a

(J) Kaplan-Meier plot showing the recurrence-free rate of patients in cluster A wi

(K) chr 6q, p < 0.0001, n(del) = 96, n(intact) = 184. Figure 4 in Oncoscape. See a
status, and 90% of 22q losses identified by CaSpER were

confirmed by available metadata. Additionally, chromosome 22

losses correlate well with the expression of the NF2 gene, which

is harbored on chromosome 22 (Figure S4B). The CNA burden

was highest in cluster A where the most aggressive tumors are

located (Figure 4D). We observed specific gains and losses of

chromosome arms regionalized on the UMAP in a cluster-spe-

cific manner (Figures 4E–4H and S4C). Consistent with pub-

lished data, the aggressive region of the UMAP (cluster A) shows

loss of 1p, 6q, 10q, and 14q (Figures 4E–4I).24 Patients with loss

of either 1p, 6q, 10q, or 14q were all associated with shorter time

to recurrence than the patients without those CNAs (Figure 4J,

4K, and S4D–S4F). Chromosome 1p loss and 1q gain were spe-

cific to cluster A, while gain of 1p was seen frequently in the rest

of the UMAP (Figures 4E–4I and S4G). We show loss of 10q,

which harbors PTEN, and low expression of PTEN in the most

aggressive region (subcluster A2) (Figures 4H and S4H). Other

groups have demonstrated PTEN mutations in aggressive tu-

mors.3 We also observed loss of 9p, 18p, and 18q and gain of

17q enriched in the most aggressive regions (Figures 4I, S5,

S6, and S7).

Meningioma subtypes frequently show expression
patterns of developmental cell types
The meningioma reference landscape was generated using

RNA-seq data and therefore presents an advantage of perform-

ing differential gene expression analysis and deciphering the

underlying biology across meningioma subtypes. We first deter-

mined the differentially expressed genes in each cluster relative

to the rest of the meningiomas. We then performed Gene

Ontology (GO) analysis, and the most prevalent GO terms in

each cluster were used to discern the underlying biological

signature for each of them (Figures 5A–5C and S8A; Tables S4

and S5).40 Cluster A was enriched for cell cycle, skeletal and car-

diac muscle development, and DNA replication and repair, while

cluster B was specific to immune cells and function (Figures 5A

and 5B) (see Figure 5 in Oncoscape). Although cluster C had

fewer GO terms that did not point toward a specific biological

signature, SMO mutations were enriched in cluster C (Fig-

ure S8B). Accordingly, regulation of Smoothened signaling and

SHH (Sonic hedgehog) pathway were upregulated within cluster

C (Figures S8A and S8C). Similarly, cluster D had a broader

collection of GO terms; however, these were enriched for

AKT1 mutations (Figures S8A and S1F). Clusters E and F en-

riched for epidermis development and vascular development,

respectively (Figures 5C, and S8A). It is worth noting that

KLF4, a transcription factor involved in skin development, was

highly mutated in cluster E tumors—specifically, the K409Q mu-

tation (Figure S1F).41 Cluster G, which had one of the worst
ns

d using RNA-seq.

me 6q, (G) chromosome 14q, and (H) chromosome 10q in each tumor.

rm in clusters A, B and C.

th intact and deleted chr 1p; p < 0.0001, n(del) = 194, n(intact) = 86.

lso Figures S4–S7 and Tables S2 and S3.
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outcomes, was enriched for neuronal functions including

neurotransmitter/synaptic transmission and nervous system

development.

Some of these clusters were notably enriched with develop-

mental GO terms, indicating potential parallels between the

biology of these tumors and embryonic development. Therefore,

to further learn about the potential association of meningioma

subtypes with developmental cell types, we compared the iden-

tified cluster-specific gene signatures to mouse embryonic cell

types. We leveraged the transcription profiles of a series of

mouse embryonic developmental stages and hundreds of cell

types put together by the Shendure lab.42 In line with what GO

terms suggested, we found that cluster A was enriched for

muscle progenitor cells and cardiomyocytes, while cluster B

was enriched for immune cells (Figures 5D, S9, and S10;

Table S6). Cluster C was enriched for neuronal cells; however,

cluster D was not enriched for any specific embryonic cell type

(Figures 5D, S9, and S10; Table S6). Consistent with GO terms,

epithelial cells and endothelial cells were top hits in clusters E

(skin related) and F (vascular related), respectively (Figures 5D,

S9, and S10; Table S6). Similar to what GO terms suggested,

cluster G was enriched for various neuronal cells (Figures 5D,

S9, and S10; Table S6).

Cluster A, where the GO terms suggested muscle develop-

ment had one of the worst outcomes, exhibited enrichment

of HOXD12/13, HAND2, and ROBO1 genes (Figure 5E). Relative

enrichment of expression of these genes suggests the possibility

that the underlying biology of this cluster may resemble embry-

onic limb development.43 Alternatively, biology of this cluster

could be related to the entirety of embryonic state in which the

limb is developing rather than limb development specifically.

High-HOXD13-expressing tumors in cluster A had a significantly

shorter time to recurrence than the low-HOXD13-expressing

tumors of that same cluster, which may further suggest that

limb-related development correlates with the most common

aggressive meningiomas (Figure 5F).

Recurrent tumors remain largely in the cluster from
which they arise
There were several cases where samples were resected from

multiple tumors from the same patient. We identified three sce-

narios: recurred tumors, multiple individual tumors from different

brain regions, and progressed tumors due to incomplete surgical

resection.We evaluated their location on the UMAP to further un-

derstand how their biology and outcome might differ with time.

Recurrent tumors remained within the clusters in which they

were found originally, and vectors (between two tumors of the

same patient) do not point toward a more aggressive region of
Figure 5. Biological significance of meningioma subtypes

(A) Visualization of GSVA scores across the UMAP for selected Gene Ontology

downregulation of the respective gene set.

(B) Top 15 GO BP terms enriched in clusters A and B.

(C) Summary of biological significance of each cluster.

(D) Mouse embryonic cell types enriched in each cluster (top hits). Cell type simi

(E) Expression profiles for genes known to be involved in embryonic limb develo

(F) Kaplan-Meier plots showing correlation between recurrence-free rate and HO

also Figure S8–S10 and Tables S4, S5, and S6.
the map, suggesting that the recurred tumors’ biology and

outcome do not vastly differ from the initial tumor (Figure 6A;

Table S7A). In four different cases, multiple tumors had occurred

in different brain regions, and most of them were patients with

NF2 loss (Figures 6B; Table S7B). While some of the tumors pre-

sented similar biology and outcome, some were vastly different

from each other. Two cases where the tumors progressed due

to previous incomplete surgical resection mapped within the

same cluster (Figures 6C; Table S7C).

Overlaying new patients onto an existing reference
UMAP
The above data have shown that the biology and outcomes of

meningiomas are regionally located in our UMAP reference land-

scape. Therefore, the nearest neighbors on the UMAP to a given

tumor can serve as references from which a tumor’s biology and

likely outcome can be inferred. However, for us to make such in-

ferences, we must be able to reliably map a new patient onto our

reference UMAP. To this end, we developed and validated an al-

gorithm that accurately places new patients on our map.

Our placement method uses a weighted, nearest-neighbors

approach that leverages an ensemble of UMAP models. We

pre-trained 100 UMAP models with different initializations on

our reference dataset (Figure 7A) and used each model to map

a new patient to a distinct two-dimensional embedding (Fig-

ure 7B). We then used the location of the new patient in each

embedding to determine which reference samples are the 100

nearest neighbors of the new patient in each embedding within

a radius determined using cross-validation (Figure 7C). This re-

sults in 100 sets of nearest neighbors from the reference dataset.

This information is used to determine how frequently each refer-

ence sample in our reference dataset is a nearest neighbor of the

new patient (Figure S11A). Finally, using this frequency informa-

tion and the coordinates of the reference samples on our refer-

ence UMAP, we computed the centroid of the coordinates of

the reference samples on our reference UMAP weighted by the

frequency with which these samples were nearest neighbors of

the new patient (Figures 7D and 7E). We used this centroid as

the final placement location of a new patient on our refer-

ence UMAP.

To establish the reliability of our placement algorithm, we used

leave-one-out cross-validation to assess how far samples in the

reference dataset moved when they were removed from the da-

taset and mapped back onto the reference UMAP. First, we

considered each reference sample’s location in the reference

UMAP as ground truth (Figure 7F). Next, we iteratively removed

each sample, retrained our UMAP models without that sample,

and used our placement method to place each sample back
Biological Processes (GO BP) terms. 1 suggests upregulation, �1 suggests

larities are as listed. Welch’s two sample t test; p < 2.2e�6.

pment.

XD13 levels; p = 0.0022, n(high) = 66, n(low) = 69. Figure 5 in Oncoscape. See
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onto the reference map (Figure 7G). Last, we computed the

Euclidean distance between each reference sample’s ground-

truth position and its predicted location (Figure 7H). Nearly all

reference points were mapped within a small radius of their

true location (Figure 7I). The reliability of our placement method

was also confirmed by evaluating its predictive power. Cross-

validated results showed that our method was able to predict

patient cluster membership accurately (AUC = 0.98) by simply

predicting the cluster most common in the samples around

which the patient was placed (Figures S11B–S11D).

Cross-validated results also demonstrated the potential prog-

nostic utility of our reference landscape. To leverage a patient’s

location on our referencemap, we assigned a location-based tu-

mor grade to each sample in our reference dataset that corre-

sponded to the WHO grade most common in the sample’s sur-

rounding samples once remapped onto our reference map.

Our results indicated that our predicted location grade was a su-

perior risk indicator compared to WHO grade within WHO grade

1 and WHO grade 2 meningiomas and, to a lesser extent, WHO

grade 3 tumors. In univariate analyses, WHO grade 1 tumors

were separated into predicted location grade 1 and predicted

location grade 2/3 tumors with dramatically different recur-

rence-free survival (hazard ratio [HR] = 2.5, p = 2e�05, log

rank); similarly, WHO grade 2 tumors classified as location grade

1 had significantly better recurrence-free survival compared

to tumors classified as location grade 2 or 3 (HR = 3.0,

p = 1e�08, log rank) (Figures 7J and S11E). Additionally, among

WHO grade 1 and 2 tumors, a multivariate analysis shows our

predicted location grade is an independent predictor of recur-

rence-free survival compared toWHO grade in our reference da-

taset (p = 2e�13, Cox proportional hazard [CPH]) (Figure S11F).

However, although WHO grade 3 tumors classified as location

grades 1 or 2 hadmore favorable outcomes than those predicted

to be location grade 3 (HR = 2.4, p = 0.02, log rank), all WHO

grade 3 tumors experience short times to recurrence. Thus,

despite the prognostic power of our UMAP landscape, histopa-

thology plays a crucial role in assessing patient risk. We do not

propose this location-based tumor grade as an alternative to
10 Cell Genomics 4, 100566, June 12, 2024
current classification systems; rather, we present these predic-

tions to highlight the predictive power of the reference land-

scape. The ability to place new patients on this landscapemakes

our findings relevant for clinical applications. Furthermore, we

found that, despite notoriously poor sequencing quality, FFPE

samples map onto the UMAP as well as the more common FF

samples (Figure S11G).

In addition to leave-one-out cross-validation, we tested the

reliability of our placement method by randomly removing 10%

of samples from each data source in our dataset to form a sepa-

rate test dataset (N = 128). We retrained 100 UMAP models on

the remaining 90% of these data (N = 1,170) and used these

models to individually place each test sample on a fixed UMAP

reference map generated from these 1,170 training samples

(Figure S12A). To quantify the performance of this assessment,

we first used the nearest-neighbors approach described above

to assign a location-based tumor grade to each test sample.

As we saw during cross-validation, our predictions dramatically

stratified survival in WHO grade 1 (HR = 4.2, p = 0.02, log rank)

and WHO grade 2 (HR = 11.4, p = 0.004, log rank) samples (Fig-

ure S12B). To assess the accuracy of the placements of samples

in the test set with a distance metric, we approximated the

ground-truth location of the samples in the test set on the

1,170-sample reference UMAP. For each test sample, we

considered its approximate ground-truth location on the 1,170-

sample reference UMAP as the centroid of the samples that

were the nearest neighbors of that test sample on the full

1,298-sample reference UMAP. We observed no significant dif-

ference between cross-validation error (difference between

placement and ground truth on 1,298-sample UMAP) and test

set error (difference between placement and approximated

ground truth on 1,170-sample UMAP), an indication of similar ac-

curacy (Figure S12C).

DISCUSSION

Most studies thus far have categorized meningiomas as malig-

nant or benign. There are several classification systems currently
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available that are based on histomorphology and a limited num-

ber of genetic alterations. Our goal was to determine the

complexity of the meningioma population and decipher the un-

derlying biology of these tumors using a comprehensive tran-

scriptomic-based approach. We identified a complex landscape

of multiple meningioma subtypes comprising seven general map

regions and determined that there is more than one aggressive

type (clusters A, C, and G). The reference UMAP regionalized

meningioma subtypes based on NF2 status and underlying

biology.3,4,21 More importantly, our study further extends the un-

derstanding of meningioma subtypes by adding a granular clas-

sification such as subtypes related to muscle, skin, vascular and

neuronal development, and separate clusters within the NF2

wild-type region (clusters C and D, which enrich for SMO and

AKT1 mutations, respectively). In addition to GO term analysis,

we compared clusters against different cell types during mouse

embryonic development, where we show that the biology of

clusters depicts both pathways and developmental cell types.

Our findings were in line with methylation-based classifications

presented in previous studies because those classification co-

horts mapped regionally on the UMAP. Tumor clusters identified

by the UCSF group as hypermitotic, immunogenic, and Merlin-

intact overlapped with cluster A; cluster B; and clusters C, D,

E, and F, which enriched for proliferation, immune cells and func-

tion, and NF2 wild-type tumors, respectively (Figure 2B).4,21

Classification done by University of Toronto (UoT) was also

congruent with our analysis (Figure 2C).3 Furthermore, we

show that the 34-gene signature presented by the UCSF group

identifies UMAP regions with the most aggressive tumors

(Figures 2E and 2F).

Within main clusters, we identified subregions that perform

differently in terms of patient outcome. These subregions were

identified based on visual inspection of how the most aggressive

tumors group together and how they behave in the 3D format of

the UMAP. Subregions were obvious, with clear differences in

patient outcome. They were ascertained by the UMAP colored

in by UCSF gene signature (Figure 2F). Moreover, we observed

CNA patterns that highlighted subregions within clusters (for

example, chr 10p and 10q in subcluster A2 and chr 5q, 19p,

and 19q in subclusters B1/B2). Identification of such subregions

underscores the importance of predicting the outcome of a new

patient based on nearest neighbors within a subregion instead of

overseeing it as a whole cluster. The addition of more samples to

the map will likely allow delineation of these subregions with

higher accuracy.
Figure 7. Overlaying new patients on to the reference UMAP

(A) Two of 100 UMAP embeddings produced by 100 pre-trained UMAP models

(B) New patient VST data are mapped onto all 100 UMAP embeddings using the

(C) For each UMAP embedding, the nearest 100 neighbors are chosen subject t

(D) Example plot of the reference UMAP with samples colored by the frequency o

new patient.

(E) Illustration of the placement of a new patient at the centroid of the nearest ne

(F) The ground-truth location of a reference sample during cross-validation.

(G) The placement of a reference sample using our placement method during cr

(H) Comparison of the ground-truth placement and the centroid it is mapped to

(I) The distribution of the distances between the ground-truth placement of a refer

validation.

(J) Kaplan-Meier curves for location grade predictions within WHO grade 1, 2, an
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Our dataset contained 33 pediatric (<18 years old) and 49

young adults (19–30 years old). The majority of these young pa-

tients mapped onto the region between cluster A and B. Consis-

tent with other tumor types, pediatric patients and young adults

harbored more gene fusions as opposed to CNAs (data not

shown). YAP1-MAML2 fusion was more prominent among

younger patients, while NF2 fusions were enriched among

adults. Further investigation is warranted comparing fusions in

adults and young patients with a larger cohort of the latter. We

observed a large fraction of fusions with non-coding genes.

Although we limited our current study to fusions with protein-

coding genes, it would beworth deciphering the role of non-cod-

ing fusions in meningiomas in future studies.

We developed a method to overlay prospective patients on

our reference UMAP to infer their biology and clinical outcomes

from their nearest neighbors. We used cross-validation to verify

that patients were accurately placed on the reference UMAP

both by measuring the distance our method places reference

samples from their location in the reference UMAP and by as-

sessing how well our method predicts cluster membership. In

addition to cluster membership, we also used our method to

assign patients a location grade based on the distribution of

theWHOgrade of their surrounding samples. Some tumors clas-

sified as WHO grade 1 were located in the most aggressive re-

gion of our UMAP reference landscape, which suggests that,

despite the histopathological grading, their underlying biology

and outcome are similar to more malignant tumors. Therefore,

our transcriptomic-based UMAP landscape of meningioma

may provide a better understanding of a patient’s biology and

outcome. If clinical and treatment data are available for the

patients used to build the reference landscape, the nearest-

neighbor analysis could also be used to identify what therapeutic

approaches were successful in the patients with tumors most

similar to a new patient placed on the reference landscape. In

the case of meningiomas specifically, there are no targeted ther-

apies that work in a subset of these tumors. However, in other tu-

mor types, this kind of analysis could help distinguish those likely

to respond based on the underlying biology of the disease type.

Although the majority of our data were derived from FF sam-

ples, we found that 114 FFPE samples blended into themap (Fig-

ure S1F). FFPE samples were mapped on to UMAP with a higher

precision than the frozen samples (Figure S11G). Due to the low

number of metadata associated with these FFPE samples, we

were unable to reach statistical significance determining map-

ping accuracy comparing metadata of FFPE samples to their
trained with different random states.

pre-trained UMAP models.

o a radius R determined by cross-validation.

f each reference sample in our reference dataset being a nearest neighbor of a

ighbors weighted by the frequency vector in (D) after outlier exclusion.

oss-validation.

during cross-validation.

ence sample and its centroid placement for all reference samples during cross-

d 3 meningiomas. See also Figures S11 and S12.



Article
ll

OPEN ACCESS
nearest neighbors. The standard procedures for surgically

derived tumor sample management is via formalin fixation and

paraffin embedding. The ability to precisely incorporate data

from these FFPE samples into reference landscapes generated

from FF tissues opens up the possibility for any patient’s tumor

to be mapped onto reference landscapes like this one.

We combined multiple datasets from various sources and

generated the largest meningioma reference landscape to date

with comprehensive analysis of all protein-coding genes. One

of our main goals was to better understand the biology of menin-

gioma subtypes, and using transcriptomic data provided the

ability to extract biological information such as expression of

specific genes and pathways in a straightforward manner. To

our knowledge, this is the first paper to put forth a reference

map of a disease on an interactive online tool. Oncoscape is

not only an attractive visualization platform for the figures but it

also provides the opportunity for multifaceted exploitation of

the map while mining for metadata. Overall, this study shows

how we can harness the power of combining multiple datasets

to extract further biological information of a particular disease.

This approach may be useful in other tumor types, there is no

reason to believe that success of this analysis will be unique to

meningiomas.

Limitations of the study
We called gene fusions using RNA-seq raw data and recognize

the lack of direct experimental evidence to support the identified

fusions. However, we note that some of these fusions show

regional localization on the reference map, indicating authen-

ticity rather than noise. Apart from NF2mutational status known

from original sources, we did not include DNA sequencing-

based mutational data. A potential limitation of this study is

that cross-validation can be biased toward over-optimistic re-

sults and can obscure prediction variation.We took steps tomiti-

gate overfitting, including limiting parameter optimization search

spaces and restricting the number of parameters we used cross-

validation to optimize. We also randomly removed 10% of these

data, trained our algorithm on the remaining 90%, and achieved

similar survival and distance results when tested on the 10% of

data uninvolved in training.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

In-house sequenced human

meningioma tumor samples

Department of Neurological Surgery,

University of Washington Medical Center

GSE252291

Deposited data

Raw and analyzed RNA-Seq data This paper GEO: GSE252291

Heidelberg Sahm Lab, University Hospital

Heidelberg, Germany14
N/A

UoT University of Toronto, Canada3 European Genome Archive (EGA): EGAS00001004982

CAVATICA CAVATICA24 N/A

UCSF(2018) University of California San Francisco16 GEO: GSE101638

Baylor Baylor College of Medicine22 GEO: GSE136661

UCSD University of California San Diego17 GEO: GSE139652

UCSF(2020) University of California San Francisco18 GEO: GSE151921

UCSF (2022) University of California San Francisco4 GEO: GSE183656

Yale Yale University School of Medicine20 GEO: GSE85133

Palacky Palacky University and University

Hospital Olomouc23
NIH BioProject ID: PRJNA705586

CHOP Children’s’ Hospital of Philadelphia25 CBTN

HKU/UCSF University of California San Francisco and

University of Hong Kong21
GEO: GSE212666

Gene sets for gene ontology

biological processes

MSigDB https://www.gsea-msigdb.org/

gsea/msigdb/

scRNA-Seq data of mouse embryos Qiu et al.42 N/A

Human reference genome Gencode GRCh38.primary_assembly https://www.gencodegenes.org/

human/release_39.html

Software and algorithms

SRA-Toolkit 2.11.0 (fastq-dump) https://trace.ncbi.nlm.nih.gov/Traces/

sra/sra.cgi?view=software

FASTQC https://www.bioinformatics.babraham.

ac.uk/projects/fastqc/

MULTIQC Ewels et al.44 N/A

STAR2(v2.7.7a) Dobin et al.45 N/A

HTSeq (v0.11.0) Anders et al.46 N/A

ComBat-seq (sva package) Zhang et al.47 N/A

DBSCAN Ester et al.48 N/A

Arriba (v2.1.0) Uhrig et al.38 N/A

CaSpER Serin et al.39 N/A

R package ‘‘survival’’ (v3.5.7) https://github.com/therneau/survival

Python package lifelines (v 0.27.7) https://lifelines.readthedocs.io/

en/latest/index.html

edgeR Robinson et al.49 N/A

EnrichR Chen et al.40 N/A

R package ‘‘GSVA’’ Hanzelmann et al.50 N/A

geosketch Hie et al.51 N/A

Seurat/v3 Stuart et al.52 N/A

(Continued on next page)
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DESeq2 Anders et al.26 N/A

Custom code used in this study https://github.com/FredHutch/

MeningiomaLandscape-HollandLab

Zenodo (https://doi.org/10.5281/

zenodo.11069609)
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Eric C. Holland

(eholland@fredhutch.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
RNA-Seq raw data from meningiomas collected from UW/FHCC are deposited in GEO GSE252291. All custom code used in this

study are available at https://github.com/FredHutch/MeningiomaLandscape-HollandLab and at Zenodo (https://doi.org/10.5281/

zenodo.11069609).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Collection of specimens and clinical data from University of Washington
Studies were conducted in accordance with the U.S. Common Rule ethical guidelines. Tissue was collected from study participants

admitted at the University of Washington Medical Center, Department of Neurological Surgery. The respective clinical data was ex-

tracted from the University of Washington, School of Medicine clinical database. Data and specimen collection were reviewed and

approved by the University of Washington Institutional Review Board and Human Subjects Division. Written-informed consent was

obtained from all subjects. Patients underwent surgery at the University of WashingtonMedical Center between January 1, 1998 and

June 1, 2023. Samples were collected and stored in �80�C. Clinical data were gathered regarding history, demographics, imaging,

neuropathology reports, operative information, adjuvant treatment, and outcomes. Resected tumors were graded according to the

current criteria (https://doi.org/10.1093/neuonc/noab106) and correlated with clinical information, when advised. Histologic subtype,

mitoses, Ki-67/MIB, sheeting, macronuclei, hypercellularity, invasion, necrosis, TERT promoter mutations (https://doi.org/10.1093/

jnci/djv377)) and CDKN2a/b homozygous deletions (https://doi.org/10.1007/s00401-020-02188-w) were recorded. Specimens were

reviewed by three neuropathologists and neurosurgeons. Total resection was defined as absence of residual enhancement on post-

operative MRI within 48 h of surgery. Recurrence was defined as at least 1 cm of enhancement on subsequent MRI. Progression was

considered to be at least 1 cm of growth of residual tumors detected on MRI after surgery.

METHOD DETAILS

Specimen processing for RNA-Seq
RNA was extracted using the Qiagen RNeasy Plus mini kit. Total RNA integrity was checked using an Agilent 4200 TapeStation

(Agilent Technologies, Inc., Santa Clara, CA) and quantified using a Trinean DropSense96 spectrophotometer (Caliper Life Sciences,

Hopkinton, MA). Samples with RIN <5were removed from further analysis. RNAwas normalized to 50ng/ul and 500ngwas submitted

for library preparation. RNA-seq libraries were prepared from total RNA using the TruSeq Stranded mRNA kit (Illumina, Inc., San

Diego, CA, USA). Sequencing was performed using an Illumina NovaSeq 6000 employing a paired-end, 50 base read length

(PE50) sequencing strategy. RNA extraction was performed by the Specimen Processing & Research Cell Bank at Fred Hutch.

Library preparation and sequencing was performed by the Genomics and Bioinformatics Core Services at Fred Hutch.

Collection of publicly available RNA sequencing data
Raw sequencing data of human meningioma samples were obtained from respective public data repositories (Table S1) except Hei-

delberg dataset which was obtained from the data repository of the Dept. of Neuropathology at the University Hospital Heidelberg.

SRA files downloaded from GEO were converted to fastq files using fastq-dump from the SRA-Toolkit (v2.11.0).
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RNA-seq data processing and visualization
Quality check on rawRNA sequencing data was done using FastQC (v0.11.9) (https://www.bioinformatics.babraham.ac.uk/projects/

fastqc/) and MultiQC (v1.9) tools.44 RNA sequencing reads were aligned to the Gencode GRCh38.primary_assembly genome using

STAR2 (v2.7.7a) and then using HTSeq (v0.11.0) reads were counted for each associated gene using the Gencode V39 primary as-

sembly annotations.45,46 Raw gene counts from each dataset were combined and corrected for batch effects using ComBat-seq

from the R package ‘‘sva’’.47 Gene expression values from combined datasets were normalized using the Variance Stabilizing Trans-

formation (VST) method.26 UniformManifold Approximation and Projection (UMAP), a dimensionality reduction method, was applied

on normalized counts from 19979 protein-coding genes to create the meningioma reference landscape.27 UMAPs were constructed

using the R package ‘‘umap’’ (https://cran.r-project.org/web/packages/umap/index.html).

Clustering using DBSCAN
DBSCAN (density-based spatial clustering of applications with noise) was used to confirm the clusters identified by UMAP.48

Obtaining gene fusion using RNA-Seq
Arriba (v2.1.0) was used to compute gene fusions from two-pass STAR-aligned RNA-Seq reads.38 All fusion analyses were restricted

to fusion calls Arriba indicated were high confidence. Using gencode.v38.annotation.gtf.gz from hg38 release 44 (GRCh38.p14) from

https://www.gencodegenes.org/human/we determined whether a gene was protein coding and selected only fusions with at least

one coding gene involved. Fusions that recur at least twice within the dataset were used to calculate fusion burden.

Obtaining copy number alternations (CNAs) using RNA-Seq
Large scale/chromosome arm level copy number alternations were estimated for all tumors using the package CaSpER (https://

rpubs.com/akdes/673120) on bulk RNA-Seq data.39 BAFExtract source code, genome list and genome pileup directory were down-

loaded from https://github.com/akdess/. hg38 cytoband and centromere information were downloaded fromUCSC.GTEXRNA-Seq

data from normal frontal cortex and hippocampus (dbGaP Accession: phs000424.v8.p2) were used as control samples in the

CaSpER analysis (GTEX sample IDs: SRR1147618, SRR1334440, SRR1337431, SRR1342045, SRR1348360, SRR1354446,

SRR1360128, SRR1375571, SRR1388305, SRR1402900, SRR1408368, SRR1413562, SRR1416477, SRR1435775, SRR1453341,

SRR1471817, SRR1488367, SRR1488651, SRR1500868).

Kaplan-Meier curves
Kaplan-Meier curves were generated using the information on time to recurrence of each sample. To perform the calculations, we

only selected tumors with known recurrence status (recurrence = yes/no) and known time to recurrence or last follow up. For tumors

that were confirmed as non-recurrent however with no last follow up date, a default of 315months was used as ‘‘Months of No Recur-

rence’’. Kaplan-Meier curves were plotted using the R package ‘‘survival’’ or Python package ‘‘lifelines’’ and p-values were calcu-

lated using the log -rank test (v3.5.7). Hazard ratios and p-vaues multivariate survival analyses were calculated using Cox Propor-

tional Hazard (CPH) regression models.

Differential gene expression analysis
To determine the biological signature of each cluster, differential expression analysis was performed between each cluster and the

rest of the UMAP samples using edgeR.49 Upregulated genes in each cluster were identified based on FDR (<0.05) and log fold

change (>0.6) or fold change of 1.5 cut-off. Downregulated genes in each cluster were identified based on FDR (<0.05) and log

fold change (<�0.6). Upregulated and downregulated genes in each cluster are listed in Table S5A.

Pathway analysis
Top 500 significant upregulated genes in each cluster (with the exception of cluster C = �700 genes) were analyzed using Enrichr to

determine the enriched biological signature.40 Gene Ontology Biological Processes (GO BP) terms that were statistically significant

(adjusted p value <0.05) weremanually curated to remove GOBP terms that had gene sets >80% overlapping. Dot plots were gener-

ated using ggplot2 (top 15 GO terms included). Complete lists of GO terms were attached as supplement information.

GSVA pathway analysis
Gene sets for pathways fromGene Ontology Biological Processes were downloaded fromMolecular Signature Databases (MSigDB)

(v7.2) (https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp). Gene Set Variation Analysis (GSVA) was performed on batch

corrected VST normalized counts from all 1298 samples. GSVA scores obtained from 1 and -1 for each sample were visualized using

ggplot2. Similarly, GSVA analysis was performed using UCSF gene set (34 genes upregulated or downregulated in aggressive me-

ningioma). Upregulated and downregulated genes were considered as two separate gene sets.

Embryonic cell type analysis
The scRNA-seq data of mouse embryos was downloaded fromQiu et al.42 In the study, over 11million cells were profiled frommouse

embryos during organogenesis and fetal development, with every 6 h temporal resolution ranging from embryonic day 8 (E8) to
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postnatal day 0 (P0). This resulted in the identification of �190 cell types. To save computational time and memory, the dataset was

downsampled to�1million cells using geosketch.51 Top 500 upregulated protein-coding genes in each cluster (with the exception of

cluster C = �700 genes) were obtained from the previously mentioned differential expression analysis. A gene module score was

calculated for individual groups of genes using the AddModuleScore function implemented in Seurat/v3.52 Gene module score

was calculated for each cell type and the mean score of each major cell cluster was calculated for Figure 5D. Welch two sample

t-test was performed to statistically confirm the top cell clusters enriched in each meningioma cluster.

Placing new patients on UMAP reference map
The stages of our algorithm, which places new patients on our UMAP reference map, are described below. These stages consist of

pre-training UMAP models, mapping new patients to embeddings generated by pre-trained UMAP models, determining nearest

neighbors on UMAP embeddings, aggregating all sets of UMAP embedding-derived nearest neighbors, and using the frequency

of these nearest neighbors to compute a centroid. This last process also involves removing outliners before computing the centroid.

UMAP pretraining

We train K = 100 UMAP models on the 1298 samples in our RNA-Seq reference dataset D using a different random state for each

UMAP model. We denote each of the K pre-trained UMAP models by the function.

UMAPk : R
#genes/R2

which maps any VST sample to two dimensions. In this way, we can represent the embedding of the reference dataset given by

each pre-trained UMAP model as UMAPkðDÞ. We denote the x-coordinate and y-coordinate of every reference sample pi in an

embedding given by UMAPk as UMAPkðpiÞ1 and UMAPkðpiÞ2; respectively. Similarly, we will refer to the x-coordinate and y-coor-

dinate of every reference sample pi in the reference landscape as UMAPðpiÞ1 and UMAPðpiÞ2: All UMAP embeddings given by

UMAPk are normalized by centering the embeddings and scaling points so that the average distance between points is 1.

Mapping samples to embeddings given by pre-trained UMAP models

Given K pre-trained UMAPmodels, we can place any new patient P onto a UMAP embedding UMAPkðDÞ by passing the VST data of

that patient (PVST ) through the UMAP model UMAPk . We denote this position in the embedding as UMAPkðPVST Þ, where we will refer

to the x-coordinate of UMAPkðPVST Þ as UMAPkðPVST Þ1 and y-coordinate as UMAPkðPVST Þ2.
Computing 100 sets of nearest neighbors from pre-trained UMAP embeddings

To get a set of nearest neighbors of a patient P on an embedding generated by a pre-trained UMAPmodel UMAPk , we first compute

the distances between the position of the new patient P in the embedding and the position of all other reference samples pi: Thus, for

every patient pi in the reference dataset and every pre-trained UMAP model UMAPk we compute the square of the Euclidian dis-

tances dkðpi;PÞ between UMAPkðPVST Þ and the 1298 positions UMAPkðpiÞ on each of the 100 embeddings generated by the 100

UMAPk maps. The square root of dkðpi;PÞ is not taken for efficiency. We define dkðpi;PÞ as follows:

dkðpi;PÞ =
�
UMAPkðpiÞ1 � UMAPkðPVSTÞ1

�2
+
�
UMAPkðpiÞ2 � UMAPkðPVSTÞ2

�2
To obtain a list of nearest neighbors for the patientP on eachUMAPmodelUMAPk , we choose the 100 samples pi with the smallest

dkðpi;PÞ under the constraint dkðpi;PÞ<a, where a = 0:05 is the square root of the Euclidian radius chosen so that the list of nearest

neighbors would not span multiple unconnected clusters. We denote the set of nearest neighbors to a patient P on for a pre-trained

UMAP model UMAPk as Sk
NNðPÞ.

Computing the frequency vector used to weight the centroid calculation

Weconstruct amatrixMwhose values represent whether a sample in the reference dataset pi is a nearest neighbor of the new patient

P in the k th UMAP embedding UMAPkðDÞ: Formally, this can be expressed as

Mi;k = 1
n
pi ˛ Sk

NNðPÞg

where 1 is the indicator function. To find the frequency vector fP of new patient P, we average the values ofM across the K UMAP

embeddings. This results in a vector of length 1298 whose value fPi represents the frequency sample pi was a nearest neighbor of P

across the K pre-trained UMAP embeddings.

Compute centroid

The weighted centroid of a frequency vector fP and the x-coordinate UMAPðpiÞ1 and y-coordinate UMAPðpiÞ2 of each sample on the

reference UMAP is compute as follows:

C
�
fP
�
=

 PN
i = 1 f

P
i $UMAPðpiÞ1PN

i = 1 f
P
i

;

PN
i = 1 f

P
i $UMAPðpiÞ2PN

i = 1 f
P
i

!

Remove outliers in the frequency vector
To prevent samples pi which may have been included in some set of nearest neighbors Sk
NNðPÞ by chance, we create an adjusted

frequency vector bf P from fP by setting elements fPi to zero for all such pi. We first set bf P equal to fP. Next, we adjust bf P by setting

values less than 0.25 to 0 and compute the weighted centroid Cðbf PÞ of bf P (described above). Then we compute the distance of all
Cell Genomics 4, 100566, June 12, 2024 e4
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samples pi with non-zero bf iP values toCðbf PÞ and remove those with distances greater than the 95%quantile. Last, we recompute the

centroid Cðbf PÞ with the updated bf P and set the values of bf P for samples farther than R = 0:75 from the centroid to zero. he radius R

was chosen using cross-validated results and visual inspection.

Final placement of the patient

To place a new patient P on our reference UMAP, we simply compute bf P and place the patient at the coordinates given by Cðbf PÞ as
described above.

Uncertain placements

We compute a score to quantify the quality of our placements based on the distribution of frequencies in fP, which is computed as

follows

s
�
fPi
�
=

1

N

XN
i = 1

�
1 � fPi

�
Here sðfPi Þ describes the average frequency every reference sample pi is a nearest neighbor of P on the UMAP embeddings

UMAPkðDÞ for samples that are nearest neighbors at least once (i.e., pi such that fPi s0). Lower values of sðfPi Þ indicate that the

sets of nearest neighbors were more consistent over all Sk
NNðPÞ and suggest more reliable predictions. For this reason, we consider

predictions for which sðfPi Þ < 0:75. This threshold was established empirically using cross-validation.

Cross-validation

To conduct cross-validation, we repeated the following procedure for each patient pi in our reference datasetD. First, we pre-trained

100 UMAP models on D\pi, the reference dataset without the sample pi. Afterward, we treated pi as a new patient and placed pi on

our reference UMAP at the location Cðfpi Þ as described above. Finally, we computed the distributions of the Euclidean distances be-

tween the predicted centroid Cðbf pi Þ and the ground truth location of pi on the reference UMAP for each pi�kUMAPðpiÞ;Cðbf pi Þk2��i ˛ f1;.; 1298g�
where

kUMAPðpiÞ;Cðbf pi Þk2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2
j = 1

�
UMAPðpiÞj � Cðbf pi Þj	2

vuut

90/10 training/testing validation
To establish a 90/10 split of our dataset into a training set and test set, we randomly removed 10% of samples from each data source

in our dataset to form a separate test dataset (N = 128); the remaining samples (N = 1170) made up our training set. We then pre-

trained 100 UMAP models on the training set and used these UMAP models to place each test sample on a fixed UMAP reference

map generated from the training data. To assess the performance of our method on the test set, we first used the nearest-neighbors

approach described below in the ‘‘WHO grade prediction’’ section to assign a location-based tumor grade and evaluated the extent

to which these predictions stratified outcomes. We also assessed the accuracy of our method on the samples in the test set using a

distance metric. We first approximated the ground truth location of the samples in the test set on the training reference UMAP. For

each test sample, we considered its approximate ground truth location on the training reference UMAP as the centroid of the samples

that were the nearest neighbors of that test sample on the full 1298-sample reference UMAP. Then we examined the distribution of

the distances between the placement location and the approximated ground truth location for each test sample.

Cluster prediction

To predict the cluster membership of a new patient, we mapped the patient onto our reference UMAP and computed its nearest

neighbors.

We used a majority vote strategy which predicted the most common cluster found in this set of nearest neighbors. Cluster predic-

tions given in the main text were computed via cross-validation.

WHO grade prediction.

WepredictedWHOgradeusing the sameprocedureweused topredict clustermembership.Wemappedanewpatient onto our refer-

ence UMAP and computed its nearest neighbors. A majority vote strategy issued the most common WHO grade among the set of

nearest neighbors as the WHO grade prediction. WHO grade predictions given in the main text were computed via cross-validation.

Oncoscape integration
Matrix and clinical data were prepared for Oncoscape by converting them to cBioPortal formats (cbioportal.org). Custom settings,

including colorings and precalculated views to match the paper’s figures, were stored in JSON in an Oncoscape updates.txt file. See

https://oncoscape.sttrcancer.org/assets/uploading.html for details.

Data analysis
All analysis including statistics and visualization were done in R version 4.2.0 (2022-04-22) as implemented in Rstudio (2022.05.999).

Plots were generated using R basic graphics and ggplot2.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Kaplan-Meier curves were generated using the information on time to recurrence of each sample. To perform the calculations, we

only selected tumors with known recurrence status (recurrence = yes/no) and known time to recurrence or last follow up. For tumors

that were confirmed as non-recurrent however with no last follow up date, a default of 315months was used as ‘‘Months of No Recur-

rence’’. Kaplan-Meier curves were plotted using the R package ‘‘survival’’ (for Figures 3 and 4, S3 and S4) or Python package ‘‘life-

lines’’ and p-values were calculated using the log -rank test (v3.5.7) (for Figures 7, S11 and S12). Details on statistical analysis is

mentioned in the STAR Methods. Number of samples and p-values are listed on the figure or in figure legend. Pathway enrichment

analysis was done using Enrichr and adjusted p-value was calculated using the inbuilt Benjamini-Hotchberg method (Figures 5, S8).

In the mouse embryonic cell type analysis, Welch two sample t-test was performed to statistically confirm the top cell clusters en-

riched in each meningioma cluster. FDR and fold change cut off in differential expression analysis are mentioned above in methods.
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