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Technical note with Supporting Results for
Outlier Accommodation Nonlinear State Estimation:

A Risk-Averse Performance-Specified Approach
Elahe Aghapour, Farzana Rahman, Jay A. Farrell

Department of Electrical and Computer Engineering,
University of California, Riverside, 92521.
{eaghapour, frimi, farrell}@ee.ucr.edu.

This tech note extends and supports the results in [1]. The
main article should be read first. That article presents RAPS
for nonlinear applications.

This technical note has two main parts. Section I presents
the derivation (related to Section VI-B in [1]) for choosing
the lower bound Jl in vehicle state estimation applications.
Section II presents a linear position, velocity, and acceleration
(PVA) vehicle model and experimental results using the same
GPS data as used in the main article. The linear system RAPS
application is a special case of the appraoch presented in [1].
The numerical results specific linear systems did not fit within
the journal page constraints. The linear application is referred
to in the GNSS literature as a PVA model wherein the GNSS
measurements are used to estimate the position, velocity,
and acceleration of the GNSS antenna. Such estimators are
included in almost all GNSS receivers.

I. CHOOSING Jl FOR VEHICLE STATE ESTIMATION

In highway vehicle applications horizontal position accuracy
is of primary importance. In particular, the SAE specification
[2] requires 1.5 meter horizontal position accuracy with 68%
probability.

If the first two elements of the state vector are the north
and east components of position and their error is distributed
as w = [δx1,δx2]

> ∼N (0, Ph), the probability density is:

p(δx1,δx2) =
1

2π|Ph|0.5
exp
(
− 1

2
w>P−1

h w
)
.

where |A| denotes the determinant of matrix A. Since Ph
is symmetric positive definite, there is an unitary matrix
U and positive definite matrix Σ = diag(σ1,σ2) such that
Ph =UΣ2U>.

For the analysis, consider the two random variables v = Sw
and y =U>w where S = Σ−1U>. Then, v∼N (0, I) and y∼
N (0, Σ2). The probability density function for v is:

p(v) =
1

2π
exp
(
− 1

2
v>v
)
.

For scalars 0≤ β ≤ 1 and c≥ 0, define

β = Prob{‖v‖ ≤ c}. (1)

The random variable ρ = ‖v‖ is a Rayleigh random variable
(see Section 4.9.1.2 in [3]) with distribution

Pρ(r) = 1− exp
(
− r2

2

)
.

Therefore, given a value for β , selecting c to satisfy

β = 1− exp
(
−c2

2

)
(2)

(e.g., β = 68% yields c = 0.99) results in eqn. (1) being
satisfied.

For the definitions of v and y, eqn. (1) is equivalent to:

β = Prob{‖v‖ ≤ c}
= Prob{w>S>Sw≤ c2}
= Prob{w>P−1

h w≤ c2} = Prob{‖w‖2
P ≤ c2}

= Prob{y>UP−1
h U>y≤ c2}

= Prob{y>Σ
−2y≤ c2} = Prob{‖y‖2

Σ2 ≤ c2}.
These expressions use the Mahalonobis norm defined as
‖x‖2

Q = x>Q−1x, which arises naturally when working with
normal distributions. For the choice of c from eqn. (2)

β = Prob{‖w‖2
P ≤ c2}= Prob{‖y‖2

Σ2 ≤ c2}.

The regions

‖w‖2
P ≤ c2 and (3)

‖y‖2
Σ2 =

δy2
1

σ2
1
+

δy2
2

σ2
2
≤ c2 (4)

each defines an ellipse. The region ‖w‖ ≤ c defines a circle.
Eqn. (4) shows that

1
σ
‖y‖ ≤ ‖y‖

Σ2 ≤
1
σ
‖y‖,

where σ = max(σ1,σ2) and σ = min(σ1,σ2). The fact that U
is unitary implies that ‖w‖ = ‖y‖ and ‖w‖P = ‖y‖

Σ2 by the
definition of y, so that

1
σ
‖w‖ ≤ ‖w‖P ≤

1
σ
‖w‖.

Therefore, the circle ‖w‖≤ cσ contains the ellipse ‖w‖P−1 ≤ c.
Therefore,

Prob{‖w‖2 < σ
2c2} ≥ Prob{‖w‖2

P−1 < c2}= β .
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To satisfy the requirement that ‖w‖ ≤ R|R=1.5m with at least
β = 68% probability, requires1:

Ph ≤ ε
2 I

where ε = R
c = 1.5

0.99 and I is the identity in two dimensions.
This inequality ensure that σ ≤ ε . By the analysis above:

Prob{‖w‖< 1.5}= Prob{‖w‖2 < ε
2 c2}

≥ Prob{‖w‖2
P−1 < c2}= β = 68%.

Therefore, the upper bound on the covariance is Pu = ε2 I. The
lower bound on the information matrix is Jl =

1
ε2 I.

II. LINEAR PVA RESULTS

A. Linear (PVA) Model

The rover state is x = [p>,v>,a>]> ∈ R9 where p, v and
a ∈ R3 represent the rover position, velocity and acceleration
vectors, respectively. The three vectors that comprise x are
each represented in local tangent frame coordinates such that
the position vector has north, east, and down elements (in
that order). Therefore, the horizontal position accuracy is
determined by the accuracy of the first two components of
x.

The continuous-time PVA vehicle model is

ẋ(t) =

0 I 0
0 0 I
0 0 −λaI

x(t)+

0
0
I

ωa(t),

where I is the identity matrix in R3 and ωa(t) is modeled
as Gaussian white noise with independent elements each with
power spectral density Qa = σ2

a .
The corresponding PVA discrete-time propagation model is

xk = Ψk−1xk−1 +Gk−1uk−1 +ωk−1. (5)

with

ψk =

I T I a3 I
0 I a2 I
0 0 a1I

 , Γk≈

T 5/2/
√

20 I
T 3/2/

√
3 I√

T I

 , and Qd =

 0
0

σ2
a I

 ,
where all submatrices are three by three with a1 = e−λaT ,

a2 =
(
1− e−λaT )/λa, a3 =

(
λaT −1+ e−λaT )/λ

2
a

and ωk ∼N (0, Qd) where Qd is a covariance matrix. The
approximation indicated in Γk yields the correct diagonal of
the discrete-time noise covariance matrix, but ΓkQdΓ>k approx-
imates the off-diagonal terms relative to the exact calculation.
The details of the model and its parameters are in [4].

The state estimation is updated using double-differenced
GNSS pseudorange and Doppler measurements using the
models in Section VII-A in [1].

B. Performance Specification

For the results herein, only the performance of the horizontal
position was constrained in the RAPS optimization.

1The inequality is interpretted in the matrix sense:

A≤ B ↔ x>Ax≤ x>Bx

for all x 6= 0.

Fig. 1: Mean horizontal position error and the percentage of selected
measurements versus mean outlier magnitude µ ∈ [0,20]. The red curves
display the result for the binary RAPS algorithm. The yellow, green, blue

and black curves show the results for the NP-(E)KF approach with γ =2, 3,
4, and 5, respectively.

C. Experimental Results

Each table and figure herein considers five algorithms, as
summarized in Section IX-B of [1]. Four of the algorithms are
the NP-KF with four different values of the decision parameter
γ . The final algorithm is the RAPS approach. The error, risk
and PVA metrics are defined in Section IX-C and IX-E of [1].

Fig. 1 shows NP-KF and RAPS state estimation accuracy
as characterized by horizontal position error. As explained in
Section IX-D in [1], for each value of µ ∈ [0,20] meter, each
point on each curve is produced as the average of horizontal
position error over 300 seconds and 10 Monte Carlo experi-
ments. For each Monte Carlo run, the same outlier corrupted
data is used for all NP-KF and RAPS algorithms. The x-axis
in both sub-figures is the mean outlier magnitude. The y-axis
in the top sub-figure is the mean of the horizontal position
error. The y-axis in the bottom sub-figure is the percentage of
measurements used by the state estimation algorithm. At each
time instant, the measurement set (pseudorange and Doppler)
contains 9% generated outliers. Fig. 1 shows the NP-KF mean
horizontal position error initially increases and later falls as the
magnitude of the outlier increases. The initial rise is due to
small outliers being likely to pass through the threshold test.
As the magnitude of the outlier (i.e., µ) increases, each NP
threshold test removes an increasingly higher percentage of
the outliers, until it is correctly removing all the measurements
which are affected by outliers. Correct rejection of all outliers
occurs for smaller values of µ as the NP threshold γ decreases.
The RAPS mean horizontal error is always less than that for
NP-KF, regardless of the value of the threshold γ . This shows
that the RAPS approach is robust to the magnitude of the
outlier, without the designer having to pick a value for a test
parameter (e.g., the NP threshold γ).

Fig. 2 presents graphs of the horizontal error (top), risk
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Rk (middle) and GDOP (bottom) for a portion of a single
experiment using the GNSS data with the linear PVA model.
The computation of Rk and GDOP is explained in Section IX-E
of [1]. The algorithm cooresponding to each curve is defined in
the figure caption. The five algorithms are explained in Section
IX-B of [1]. Fig. 2 allows performance comparisons between
the five algorithms for two different values of the outlier mean
magnitude µ . Fig. 2a presents data for µ = 6 (i.e. outliers
magnitude distributed in U [4.5,7.5]). Fig. 2b presents data for
µ = 17 (i.e. outliers magnitude distributed in U [15.5,18.5]).

For µ = 6, RAPS both achieves the minimum risk at
all times and the best horizontal position accuracy at most
times. The lowest risk is expected as RAPS minimizes risk.
The best positioning performance is less obvious, especially
as the GDOP of RAPS is highest, because it uses fewer
measurements. A reason why RAPS achieves the best posi-
tioning performance is due to its having the lowest risk of
outlier inclusion. For any of the algorithms, once an outlier
is included, then both the prior mean and covariance are
wrong, which affects the validity of all subsequent state
estimation and decision making about which measurements
to use. Minimizing the risk of outlier inclusion therefore has
benefits for both accuracy and reliability, especially when there
are more measurements available than are required to meet a
stated specification.

The performance of NP-KFs improves for µ = 17 relative
to the case where µ = 6. This is because outliers with
larger magnitude are more likely to be detected for any fixed
value of the decision parameter γ . When all the algorithms
correctly remove the outliers, their curves are overlapping.
RAPS performance is almost the same for both scenarios,
because it considers all feasible solutions and selects the one
with minimum risk. Hence, its error is robust for different
values of µ .

Tables Ia and Ib provide vertical and horizontal positioning
accuracy statistics, respectively, for the five linear estimation
algorithms using the PVA model. In both Tables, the top
section is for µ = 6 and the bottom sections is for µ = 17. In
all statistics, the RAPS algorithm performance is the best.
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(a) Horizontal Position Error, Risk, and GDOP for µ = 6 (b) Horizontal Position Error, Risk, and GDOP for µ = 17

Fig. 2: Performance comparison using GNSS data with the linear PVA model. The yellow, green, blue and black curves display the results for NP-KF
approach γ =2, 3, 4, and 5, respectively. The red curve shows the RAPS performance.

TABLE I: GNSS-PVA Performance Statistics

(a) Vertical: µ = 6 (top) and µ = 17 (bottom).

Methods Mean of Std. of Error Maximum

error (m) error (m) < 2 m error (m)

NP-KF1 γ = 5 2.85 0.76 0.12 5.04

NP-KF1 γ = 4 2.82 0.74 0.10 5.02

NP-KF1 γ = 3 2.20 0.83 0.38 4.11

NP-KF1 γ = 2 0.68 0.60 0.96 3.30

RAPS1 0.56 0.46 0.99 2.07

NP-KF1 γ = 5 0.55 0.48 0.99 2.39

NP-KF1 γ = 4 0.55 0.48 0.99 2.39

NP-KF1 γ = 3 0.55 0.48 0.99 2.39

NP-KF1 γ = 2 0.55 0.48 0.99 2.40

RAPS2 0.56 0.46 0.99 2.09

(b) Horizontal: µ = 6 (top) and µ = 17 (bottom).

Methods Mean of Std. of Sub-meter Maximum

error (m) error (m) accuracy error (m)

NP-KF1 γ = 5 0.72 0.52 0.74 2.30

NP-KF1 γ = 4 0.66 0.42 0.76 1.79

NP-KF1 γ = 3 0.64 0.41 0.78 1.79

NP-KF1 γ = 2 0.37 0.33 0.92 1.45

RAPS1 0.35 0.31 0.95 1.41

NP-KF2 γ = 5 0.37 0.32 0.96 1.45

NP-KF2 γ = 4 0.37 0.32 0.96 1.45

NP-KF2 γ = 3 0.37 0.32 0.96 1.45

NP-KF2 γ = 2 0.33 0.31 0.96 1.45

RAPS2 0.33 0.31 0.96 1.45




