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Abstract

Background

Our goal was to investigate the role of physical exercise to protect brain health as we age,

including the potential to mitigate Alzheimer’s-related pathology. We assessed the effect of

52 weeks of a supervised aerobic exercise program on amyloid accumulation, cognitive per-

formance, and brain volume in cognitively normal older adults with elevated and sub-thresh-

old levels of cerebral amyloid as measured by amyloid PET imaging.

Methods and findings

This 52-week randomized controlled trial compared the effects of 150 minutes per week

of aerobic exercise vs. education control intervention. A total of 117 underactive older

adults (mean age 72.9 [7.7]) without evidence of cognitive impairment, with elevated

(n = 79) or subthreshold (n = 38) levels of cerebral amyloid were randomized, and 110 par-

ticipants completed the study. Exercise was conducted with supervision and monitoring

by trained exercise specialists. We conducted 18F-AV45 PET imaging of cerebral amyloid

and anatomical MRI for whole brain and hippocampal volume at baseline and Week 52

follow-up to index brain health. Neuropsychological tests were conducted at baseline,

Week 26, and Week 52 to assess executive function, verbal memory, and visuospatial

cognitive domains. Cardiorespiratory fitness testing was performed at baseline and Week

52 to assess response to exercise. The aerobic exercise group significantly improved

cardiorespiratory fitness (11% vs. 1% in the control group) but there were no differences

in change measures of amyloid, brain volume, or cognitive performance compared to

control.
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Conclusions

Aerobic exercise was not associated with reduced amyloid accumulation in cognitively nor-

mal older adults with cerebral amyloid. In spite of strong systemic cardiorespiratory effects

of the intervention, the observed lack of cognitive or brain structure benefits suggests brain

benefits of exercise reported in other studies are likely to be related to non-amyloid effects.

Trial registration

NCT02000583; ClinicalTrials.gov.

Introduction

There is increasing interest in the role of exercise in the prevention and treatment of Alzhei-

mer’s disease and related cognitive disorders given the growth of the older adult population.

Though not all studies agree [1], accumulating evidence suggests that aerobic exercise may

protect against cognitive decline and dementia [2–5]. Ongoing work will provide more defini-

tive evidence regarding the cognitive benefits of exercise [6], but aerobic exercise remains

among the most promising and cost-effective strategies for delaying or preventing cognitive

decline and dementia [7,8].

A wealth of data indicate exercise positively impacts brain health. Higher levels of aerobic

fitness are associated with age-related improvements or attenuated decline in brain volume

and cognition at both cross-section and over time [3,9–13]. In randomized controlled trials,

aerobic exercise promotes brain plasticity, attenuate hippocampal atrophy, or even promotes

hippocampal volume increases while improving spatial memory [3,5,14,15].

The effect of aerobic exercise on the pathophysiological markers of AD, beta-amyloid and

tau, have been less well explored. Animal studies indicate exercise may reduce amyloid burden

and modify AD pathophysiology through direct effects on amyloid precursor protein metabo-

lism [16–18] and indirect effects on neurotrophic factors, neuroinflammation, and oxidative

stress [16,17,19–21]. Exercise-induced reductions of amyloid also appear to mediate improve-

ments in cognitive functioning in animals [22–25]. Studies in humans assessing the effect of

physical activity on AD pathophysiology are limited. Cross-sectional, observational studies in

humans have found that greater amounts of self-reported physical activity (i.e., volitional

behavior that is part of daily function) is associated with evidence of lower cerebral amyloid

levels among cognitively normal adults [26–32], and those at high genetic risk for AD [26,33–

35]. It remains unclear whether the lifestyle behaviors causally influence cerebral amyloid, or

vice versa, and whether introducing more physical activity through planned exercise can caus-

ally mitigate amyloid pathology.

The advent of amyloid imaging creates an opportunity for identifying individuals in the

presumptive pre-symptomatic phase of AD, when interventions may have the greatest impact

[36]. Approximately 30% of cognitively normal older adults have asymptomatic cerebral amy-

loidosis and thus meet the NIA and Alzheimer’s Association research criteria for “preclinical

AD”, defined as having a cerebral to cerebellar amyloid ratio above a certain, method-depen-

dent threshold. The concept of preclinical AD posits that cerebral amyloid deposition in cogni-

tively normal adults represents a pre-symptomatic stage of AD and individuals with preclinical

AD currently represent the earliest feasible stage for trials of AD prevention. Individuals with

subthreshold levels of cerebral amyloid (individuals with non-elevated amyloid PET but with

quantitative measures near the threshold for being elevated) may be more likely to accumulate
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clinically significant levels of amyloid and have memory decline [37], suggesting they are good

candidates for prevention studies [38].

Our study examined the effects of a 52-week aerobic exercise program on AD pathophysiol-

ogy (amyloid burden), associated “downstream” neurodegeneration (whole brain and hippo-

campal volume change) and cognitive decline in cognitively normal individuals with either

preclinical AD or with subthreshold levels of cerebral amyloid. We hypothesized that 52 weeks

of aerobic exercise would be associated with reduced amyloid accumulation, reduced hippo-

campal atrophy, and improved performance on a cognitive test battery.

Materials and methods

Study design

The Alzheimer’s Prevention through Exercise study (APEx: ClinicalTrials.gov, NCT02000583;

trial active between 11/1/2013–11/6/2019) was a 52-week study of aerobic exercise in individu-

als 65 years and older without cognitive impairment. Based on public health recommendations

and our prior work [4,39], we randomized individuals to either 150 minutes per week of sup-

ported moderate intensity aerobic exercise or standard of care education control in a 2:1 ratio.

The unbalanced design was intended to maximize recruitment and retention with minimal

impact in power. Cerebral amyloid load, neurodegeneration, cognition, and cardiorespiratory

fitness were measured at baseline and post-intervention. Cognition was also measured at the

midpoint of the study. The University of Kansas Medical Center Human Subjects committee

approved the protocol (HSC#13376) and written informed consent was obtained from all

participants.

Participants

Participants were recruited as a convenience sample of volunteers through print and online

advertising, community talks, and existing databases of individuals willing to be in research

studies [40]. Enrollment occurred between March 1, 2014 and October 31, 2018. Interested

individuals first underwent a telephone screen of medical history for key inclusion and exclu-

sion criteria including: age of 65 years and older, sedentary or underactive as defined by the

Telephone Assessment of Physical Activity [41], on stable medications for at least 30 days, will-

ingness to conduct prescribed exercise (or not) for 52 weeks at a community fitness center,

and willingness to undergo an 18F-AV45 PET scan for cerebral amyloid load and learn their

individual result (elevated vs non-elevated). Amyloid status was disclosed to all participants

regardless of screening status [42]. In-person screening included a clinical assessment by clini-

cian of the University of Kansas Alzheimer’s Disease Center including a Clinical Dementia

Rating and Uniform Data Set neuropsychiatric battery [43,44]. Participants could not be insu-

lin-dependent, have significant hearing or vision problems, clinically evident stroke, cancer in

the previous 5 years (except for localized skin or cervical carcinomas or prostate cancer),

uncontrolled hypertension, or have had recent history (<2 years) of major cardiorespiratory,

musculoskeletal or neuropsychiatric impairment, and had to be able to complete graded maxi-

mal exercise testing with a respiratory exchange ratio > = 1.0.

We enrolled only those participants who met criteria for elevated cerebral amyloid (see

below) as previously described [42,45], until March 2016 when we revised the protocol to

allow individuals with subthreshold amyloid levels (cerebral-to-cerebellar standard uptake

value ratio (SUVR) threshold > 1.0). This was motivated by recruitment challenges for the

preclinical AD group and new evidence that this group accumulates amyloid and is more likely

to have associated memory decline [37] and thus may represent an excellent target for early

prevention studies.
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Amyloid screening

Florbetapir PET scans were obtained approximately 50 minutes after administration of intra-

venous florbetapir 18F-AV45 (370 MBq) on a GE Discovery ST-16 PET/CT scanner. Two PET

brain frames of five minutes in duration were acquired continuously, summed, and attenua-

tion corrected. To determine amyloid status three experienced raters interpreted all images

independently and without reference to any clinical information, as previously described [45].

Raters followed a process that combined both visual and quantitative information to deter-

mine status as “elevated” vs “non-elevated.” Final status was determined by majority of the

three raters [46,47]. Images were viewed and analyzed using the MIMneuro Amyloid Work-

flow (version 6.8.7, MIM Software Inc., Cleveland, OH, USA), using florbetapir templates as the

target for a two-phase registration: first rigid registration, then deformable registration to a

common template space. Raters first reviewed raw PET images visually then examined the cere-

bellum normalized SUVRs in 6 cortical regions (anterior cingulate, posterior cingulate, precu-

neus, inferior medial frontal, lateral temporal, and superior parietal cortex) and projection

maps comparing SUVRs to an atlas of amyloid negative scans [46]. Participants were eligible for

the study if they had an elevated scan or (after March 2016) were in the subthreshold range. We

defined subthreshold as a mean cortical SUVR for the 6 ROIs> 1.0, which represented the

upper half of non-elevated scans (mean cortical SUVR for non-elevated scans [n = 166] 0.99

[0.06 SD]). Enrolled participants were re-scanned after 52 weeks of intervention.

Allocation

A study statistician constructed an allocation schedule that was applied by study staff after

baseline testing was completed. The study statistician used random number generator to gen-

erate blocks of nine in a 2:1 ratio to protect against imbalance if recruitment fell short Partici-

pants were prospectively assigned to treatment versus control from this schedule using

REDCap’s randomization module which restricts access and viewing once uploaded.

Intervention

Participants in the education control group were provided with standard exercise public health

information and received a membership to a community exercise facility after completion of

the study.

For those randomized to the aerobic exercise group, the intervention was conducted at

their nearest study-certified exercise facility under the guidance of certified personal trainers

employed by the community exercise facility. They were asked to refrain from changing their

regular physical activities other than those prescribed by the study team. Methods for ensuring

study protocol compliance and ongoing training refreshers have been published previously

[4,48,49]. Personal trainers oversaw prescription for weekly exercise duration and intensity

under the direction of the study team. At each session, participants manually recorded the

duration of exercise on an exercise study log. Exercise began with a goal of 60 total minutes

during Week 1 and increased by approximately 21 min/week until achieving 150 min/week of

aerobic exercise. Participants exercised 3–5 days a week, never more than 50 minutes a day to

reduce the likelihood of overuse injury. Intensity was prescribed as a target heart rate zone (F4

or FT4, Polar Electro Inc., Lake Success, NY) based on the percentage of heart rate reserve

(HRR) as calculated by the Karvonen formula. Beginning at 40–55% of HRR (% of the differ-

ence between maximal and resting), target heart rate zones were increased by 10% of HRR

every 3 months.

Trainers supervised all exercise sessions for the first 6 weeks of exercise and at least once

weekly thereafter. Treadmill walking served as the primary exercise mode but participants

PLOS ONE Aerobic exercise and amyloid accumulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0244893 January 14, 2021 4 / 18

https://doi.org/10.1371/journal.pone.0244893


were allowed to use a different aerobic modality if requested to alleviate boredom or accom-

modate discomfort. No compensation was provided to participants beyond the fees paid to the

exercise facility for memberships and trainer time. We have previously demonstrated that our

methods using community fitness facilities and trainers can deliver a well-controlled exercise

dose with rigor and a high level of adherence, comparable to lab-based methods [4,49].

Adherence and safety

Trainers asked about changes in health status (adverse events [AE]) at every visit. Study staff

inquired about AEs and medication changes during scheduled telephone check-ins every 6

weeks, or during incidental contact at weekly exercise facility visits. An independent safety

committee reviewed AEs quarterly. Intent-to-treat analyses were performed on all enrollees

(n = 117). We separately assessed individuals who participated in the trial per-protocol

(n = 92) by complying with at least 80% of the intervention exercise prescription [4].

Outcomes

This study sought to provide evidence of a specific effect on AD pathophysiology (i.e., disease-

modifying effect) of aerobic exercise on AD-related pathophysiological change in preclinical

AD. We specified our primary outcome as mean change from baseline to 52 weeks in

18F-AV45 standard uptake value ratio (SUVR) with secondary outcomes of MRI measures of

change in whole brain and hippocampal volume and cognitive performance measures. To

assess the physiologic impact of the intervention, we measured the highest achieved oxygen

consumption rate (VO2 peak, mL�kg-1�min-1) during a graded exercise test [4].

Substantial evidence exists demonstrating that aerobic exercise has a preferential effect on

cognition, particularly in executive functioning [3,50]. Thus, our cognitive outcome measure

of interest was executive function. We also planned to assess key cognitive domains that are

associated with asymptomatic cerebral amyloid deposition such as episodic memory and

visuospatial function which has been previously associated with aerobic exercise [4]. Raters

involved with key outcomes (psychometrician, imaging technicians, exercise physiologists)

were blinded to the participant’s intervention group (aerobic exercise or control) and had no

interaction with participants beyond the testing visits.

Magnetic Resonance Imaging (MRI) of brain anatomy. MRI of the brain was performed

at baseline and 52-week follow up testing in a Siemens 3.0 Tesla Skyra scanner. We obtained a

high-resolution T1 weighted image (MP-RAGE; 1x1x1.2mm voxels; TR = 2300ms,

TE = 2.98ms, TI = 900ms, FOV 256mmx256mm, 9˚flip angle) for detailed anatomical assess-

ment. We used the Freesurfer image analysis suite (ver. 5.2 http://surfer.nmr.mgh.harvard.

edu/) for volumetric segmentation optimized for longitudinal data [51], extracting hippocam-

pal and total gray matter volume change as measures of neurodegeneration.

Cognitive test battery. A trained psychometrist performed a comprehensive cognitive

test battery at baseline and again at Week 26 and Week 52, employing validated, alternate ver-

sions of tests every other visit. We created composite scores for three cognitive domains (exec-

utive function, verbal memory, visuospatial processing) using Confirmatory Factor Analysis

(CFA) in MPlus software. We standardized scores to baseline mean and standard deviation,

thus scores at Week 26 and Week 52 can be interpreted as a change from baseline. The execu-

tive function domain composite score was made up of verbal fluency (the sum of animals and

vegetables) [52], Trailmaking Test B [53], Digit Symbol Substitution test [54], and the interfer-

ence portion of the Stroop test [55]. The verbal memory domain composite score was made up

of the immediate and delayed portions of the Logical Memory Test [54], and the sum of free

recall trials of the Selective Reminding Test [56]. The visuospatial domain composite score was
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made up of scores from Block Design [54], space relations, the paper folding test, hidden pic-

tures, and identical pictures [57]. We included the combined cognitive scores as outcomes in

subsequent models. Missing data were accounted for using full information maximum likeli-

hood algorithm. To evaluate model fit, we used Root Mean Squared Error of Approximation

(RMSEA), a measure of the discrepancy between predicted and observed model values. Values

closer to 0 indicate better fit (preferred values are<0.09). We report a comparative fit index

(CFI) that estimates the relative fit of a model compared to an alternative model, in which a

CFI >0.90 indicates good fit. Typically, these multiple fit indices are considered together, as

opposed to relying on any one indicator.

Graded maximal exercise test. We assessed cardiorespiratory fitness at baseline and

Week 52 as the highest oxygen consumption attained (VO2 peak) during cardiorespiratory

exercise testing on a treadmill to maximal capacity or volitional termination [4].

Genotyping. APOE genotype determination Whole blood was collected and stored at

-80C until genetic analyses could be conducted. To determine APOE genotype, frozen whole

blood was assessed using a Taqman single nucleotide polymorphism (SNP) allelic discrimination

assay (ThermoFisher). APOE4, APOE3, and APOE2 alleles were distinguished using Taqman

probes to the two APOE-defining SNPs, rs429358 (C_3084793_20) and rs7412 (C_904973_10).

The term “APOE4 carrier” was used to describe the presence of 1 or 2 APOE4 alleles.

Statistical analysis

Descriptive statistics were generated, including means, standard deviations and ranges for

continuous measures, and frequencies and relative frequencies for categorical measures. For

primary study endpoints with baseline and 12-month follow-up data only, we calculated differ-

ences between pre- and post-treatment measures and compared these differences with two-

sample t-tests for intent-to-treat analyses. For further assessment among the per protocol pop-

ulation we used covariate adjustment by analyzing these difference scores as a function of the

treatment group and other covariates (age, sex, education, and PET amyloid status [elevated

vs. subthreshold]) using ordinary least squares regression. For cognition endpoints measured

at three time points (baseline, 26-, and 52-weeks), linear mixed models were used. We used a

random intercept for subject to account for repeated measures, and treated time as a linear

explanatory variable. Unadjusted analyses included treatment group, time, and their interac-

tion, with the interaction test term providing the test for interaction effect using a t-test of that

parameter from the model for intent-to-treat results. This approach also allowed for further

covariate adjustment for sex, age, education, and PET amyloid status among the per-protocol

subgroup.

All statistical methods assessed appropriate model assumptions. For continuous measures,

this involved residual analyses to assess normality and variance homogeneity assumptions.

At the time of study design, no previous exercise studies in humans had measured in vivo

amyloid. Therefore, we powered our primary outcome from prior investigational compound

work. A 78-week study assessing Bapineuzumab in AD reported an effect size of d = 1.98 [58].

Given the differences in our proposed study (preclinical AD sample, lower expected amyloid

burden, shorter duration and expectation of a lower exercise effect) we estimated effect size of

only 40% as large, (resultant d = 0.79), yielding 93% power to detect this conservative antici-

pated effect of exercise on amyloid burden. Our initial enrollment goal was 100. Subsequent to

including individuals with subthreshold amyloid, we increase our enrollment goal to 120.

Data were captured using REDCap [2] which allowed for secure randomization and role

based access to data capture forms. The analysis for this project was generated using SAS soft-

ware, Version 9.4 for Windows (SAS Institute Inc., Cary, NC, USA).
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Results

Participants

A total of 1578 individuals were assessed for study eligibility from November 2013 to October

2018. The flow of participants from screening through study completion is shown in Fig 1.

Participants (n = 117) were randomized to either the aerobic exercise (n = 78) or control

(n = 39) intervention groups.

Fig 1. APEx study CONSORT diagram.

https://doi.org/10.1371/journal.pone.0244893.g001
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A total of 109 participants (93%: control n = 34, aerobic exercise n = 75) completed the

study. There were no significant differences across intervention groups in demographic and

baseline characteristics (p>0.05, Table 1).

Adherence to exercise protocol

The aerobic exercise group completed an average of 84.6% (SD 25.8%) minutes of the pre-

scribed exercise dose. The control group did not report weekly exercise. However, the control

group remained underactive or sedentary during the intervention as evidence by their self-

report of weekly physical activity [59]. The control group reported a -778 calorie (SD 5101)

reduction in moderate intensity activity from baseline to Week 52. In contrast, the aerobic

exercise group increased moderate intensity physical activity by 1853 calories (SD 5019).

Outcomes of interest

We provide pre-specified analyses for both the intent-to-treat cohort of 117 enrollees and a

per-protocol cohort of 92 individuals who were protocol adherent (as defined as achieving > =

80% of prescribed exercise minutes).

Primary and secondary outcomes are detailed in Table 2. In the intent-to-treat group, there

was a strong physiologic effect of aerobic exercise on cardiorespiratory fitness, with the aerobic

exercise group increasing VO2 peak by 11% compared to 1% in the control group. There was

no apparent effect of intervention on the primary outcome measure of change in global cere-

bral amyloid (p>0.9). Aerobic exercise was not associated with change in executive function,

verbal memory, or visuospatial function (p> = 0.3). Aerobic exercise was not associated with a

change in whole brain or hippocampal volume (p>0.1). These results were unchanged when

we excluded the subthreshold amyloid group and assessed only those with elevated amyloid

(n = 79; S1 Table).

In the per-protocol subset (Table 3; n = 92), there remained a strong physiologic effect of

aerobic exercise, with the aerobic exercise group increasing VO2 peak by 12.8%. Again, there

was no apparent effect of intervention on primary outcome measure of change in global amy-

loid burden (p>0.7). Aerobic exercise was not associated with change in executive function,

verbal memory or visuospatial function (p>0.2). Aerobic exercise was not associated with a

change in whole brain or hippocampal volume (p>0.1). When we examined only those partic-

ipants with elevated amyloid (n = 65) there were no differences in the results (S1 Table).

Table 1. Enrolled participant demographics.

Measure Education Control (n = 39) Aerobic Exercise (n = 78) p-value

Age (y) 72.2 (5.3) 71.2 (4.8) 0.31

Sex, female n(%) 24 (61.5) 55 (70.5) 0.44

Education (y) 16.2 (2.2) 16.1 (2.4) 0.71

APOE ε4 carriers n(%)� 15 (38.5) 36 (46.2) 0.51

Race/Ethnicity: White, not Latino n(%) 35 (89.7) 77 (98.7) 0.08

African American n(%) 4 (10.3) 1 (1.3)

Baseline MMSE (mean, range) 29.1 (26–30) 29.1 (26–30) 0.51

Elevated amyloid status: n(%) 27 (69.2) 52 (66.7) 0.94

subthreshold n(%) 12 (30.8) 26 (33.3)

Mean (standard deviation), unless otherwise noted.

�Four individuals declined genotyping. APOE = Apolipoprotein ε4 genotype; MMSE = Mini-Mental State Exam.

https://doi.org/10.1371/journal.pone.0244893.t001
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There were 122 adverse events. Three incidental cardiac findings were discovered at base-

line exercise testing and one fall at home during screening for which participants did not

receive clearance to continue participation, leaving 118 adverse events following randomiza-

tion. The education control group had 118 adverse events: 10 mild, 3 moderate and 5 severe,

all unrelated to the intervention. The aerobic exercise group had 31 mild (e.g., joint pain

resolving with exercise modification), 2 moderate (e.g. joint pain temporarily halting exercise),

and 0 severe event related to the intervention, and 48 mild, 12, moderate, and 7 severe events

unrelated to the intervention. Examples of mild severity events included seasonal allergies and

joint pain resolving with exercise modification. Examples of moderate severity events included

outpatient eye surgery and joint pain altering exercise. Examples of severe events included falls

at home and hospitalization for gastrointestinal infection. The Data and Safety Monitoring

Committee (DSMC) was comprised of 3 physicians unaffiliated with the authors. Adverse

events were submitted for review to the DSMC quarterly or within 48 hours if a serious adverse

event. Adverse events are summarized in S2 Table.

Discussion

This is the one of the first randomized controlled trials to prospectively assess the effect of aer-

obic exercise on cerebral beta-amyloid accumulation in humans. We found no evidence that

Table 2. Primary outcome measures in the Intent-to-Treat group.

Outcome measures Timepoint Education (n = 39^) Aerobic Exercise (n = 78^) p-value�

Global Amyloid Burden (SUVR) Baseline 1.2 (0.2) 1.22 (0.2) 0.93

Week 52 1.21 (0.2) 1.22 (0.2)

Change 0.01 (0.04) 0.01 (0.06)

VO2 peak (mL�kg-1�min-1) Baseline 22.7 (5.3) 21.9 (5.2) 0.01

Week 52 23.0 (4.9) 24.3 (5.8)

Change 0.1 (2.5) 2.0 (2.5)

Whole Brain Volume (mL) Baseline 1061.7 (114.4) 1068.7 (109.7) 0.12

Week 52 1059.1 (115.1) 1063.4 (109.1)

Change -2.6 (-7.2) -5.3 (-8.7)

Hippocampal Volume (mL) Baseline 7.6 (1.0) 7.5 (0.8) 0.42

Week 52 7.6 (1.0) 7.4 (0.8)

Change -0.09 (0.14) -0.07 (0.10)

Executive Function Composite Baseline -0.042 (0.365) 0.029 (0.458) 0.83

Week 26 -0.035 (0.389) 0.017 (0.625)

Week 52 -0.037 (0.452) 0.018 (0.615)

Verbal Memory Composite Baseline 0.032 (0.822) -0.016 (0.882) 0.69

Week 26 -0.007 (1.014) 0.003 (0.989)

Week 52 0.051 (0.939) -0.025 (0.935)

Visuospatial Composite Baseline -0.062 (0.572) 0.031 (0.646) 0.30

Week 26 0.012 (0.659) -0.006 (0.715)

Week 52 0.003 (0.559) -0.001 (0.643)

Mean (standard deviation). Cognitive composites at Week 26 and Week 52 can be interpreted as change from baseline.

�2 sample paired t-test comparing baseline and week 52 for amyloid, fitness and volume measures. For cognitive measures, a p-value for treatment by time interaction

test from linear mixed models is given.

^Sample size for change in amyloid is Educ:35/Exercise:74. Sample sizes for change in fitness and volumes are Educ:34/Exercise:70 Sample sizes for cognitive measures

at baseline, week 26, and week 52 are Educ:39,37,36/Exercise:78,75,75. SUVR = Standard uptake value ratio; VO2 peak = peak oxygen consumption during the graded

exercise test.

https://doi.org/10.1371/journal.pone.0244893.t002
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one year of aerobic exercise influences cerebral amyloid burden in a cohort of cognitively nor-

mal participants with elevated and subthreshold levels of amyloid, individuals who are at highest

risk of clinically significant amyloid accumulation. We did find significant and meaningful

changes in cardiorespiratory fitness suggesting the intervention was of sufficient intensity and

duration to provoke physiologic effects. Despite this, however, we did not find aerobic exercise

effects on whole brain volume, hippocampal volume, or cognitive measures. Our observed atro-

phy rates were consistent with those previously reported in cognitively normal older adults [60].

We believe these null findings support a hypothesis that the widely reported brain benefits of

exercise are modest and driven mechanistically by the mitigation of non-amyloid pathologies.

It is important to consider the context of our findings in a highly selected sample that likely

skewed towards fewer age-related pathologies, such as subclinical cerebrovascular disease,

than most studies in the literature. We assessed over 1,500 participants for eligibility (see Fig 1)

and excluded those with cardiopulmonary concerns and systemic illnesses while retaining

those (largely through participant self-selection) interested in potentially participating in a

year of rigorous exercise. Importantly, we performed careful clinical and cognitive assessments

to exclude those with cognitive impairment, despite the presence of cerebral amyloid; thus this

group is likely enriched with unmeasured (and currently poorly defined) resilience factors,

Table 3. Primary outcome measures in the Per-Protocol group.

Outcome measure Timepoint Education (n = 39^) Aerobic Exercise (n = 53^) p-value�

Global Amyloid Burden (SUVR) Baseline 1.20 (0.2) 1.23 (0.2) 0.73

Week 52 1.21 (0.2) 1.24 (0.2)

Change 0.01 (0.04) 0.01 (0.06)

VO2 peak (mL�kg-1�min-1) Baseline 22.7 (5.3) 22.7 (5.4) <0.01

Week 52 23.0 (4.9) 25.2 (5.8)

Change 0.1 (2.5) 2.5 (2.4)

Whole Brain Volume (mL) Baseline 1061.7 (114.4) 1073.6 (109.3) 0.12

Week 52 1059.1 (115.1) 1068.0 (108.3)

Change -2.6 (7.2) -5.5 (7.6)

Hippocampal Volume (mL) Baseline 7.6 (1.0) 7.6 (0.7) 0.31

Week 52 7.6 (1.0) 7.5 (0.7)

Change -0.09 (0.14) -0.06 (0.10)

Executive Function Composite Baseline -0.042 (0.365) 0.034 (0.392) 0.90

Week 26 -0.035 (0.389) 0.041 (0.606)

Week 52 -0.037 (0.452) 0.012 (0.607)

Verbal Memory Composite Baseline 0.032 (0.822) 0.024 (0.861) 0.47

Week 26 -0.007 (1.014) -0.039 (0.931)

Week 52 0.051 (0.939) -0.053 (0.839)

Visuospatial Composite Baseline -0.062 (0.572) 0.067 (0.657) 0.22

Week 26 0.012 (0.659) 0.036 (0.727)

Week 52 0.003 (0.559) 0.017 (0.669)

Mean (standard deviation). Cognitive composites at Week 26 and Week 52 can be interpreted as change from baseline.

� For amyloid, fitness and brain volume measures, a p-value from ordinary least squares regression adjusted for sex, age, education, and amyloid status comparing the

change (baseline to week 52) between the two groups is given. For cognitive measures, a p-value for treatment by time interaction test from linear mixed models

adjusted for sex, age, education, and amyloid status among per protocol subgroup is given.

^Sample size for amyloid at baseline and week 52 are Educ:39,35/Exercise:53,53. Sample size for VO2 at baseline and week 52 are Educ:39,34/Exercise:53,53. Sample size

for brain volumes at baseline, week 52 are Educ:34,34/Exercise:52,52. Sample sizes for cognitive measures at baseline, week 26, and week 52 are Educ:39,37,36

/Exercise:53,53,53. SUVR = Standard uptake value ratio; VO2 peak = peak oxygen consumption during the graded exercise test.

https://doi.org/10.1371/journal.pone.0244893.t003
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such as the absence of cerebrovascular disease or other age related pathologies. The lack of

observed exercise effects on amyloid, cognitive, or brain structure outcomes despite clear exer-

cise related effects on physiologic outcomes (cardiorespiratory fitness) leads us to hypothesize

that the brain benefits of aerobic exercise observed widely in the literature are not driven by

effects on AD pathology but instead are likely driven by the mitigation of aging related vascular

or other non-amyloid pathologies. Indeed, recent work has identified cerebrovascular out-

comes and important mediators of cognitive change following exercise [5,14,61].

It remains possible that our results are related to Type II error where a true effect is

obscured by lack of power or methodological issues. Our null finding for an effect of aerobic

exercise on amyloid accumulation is surprising given the number of animal exercise studies

reporting reduced amyloid accumulation rates and lower amyloid loads [16,17,19–21]. How-

ever, small human intervention studies have examined the impact of exercise on amyloid with

inconclusive results. At least three intervention studies have examined the impact of exercise

on serum amyloid concentration, with none reporting reliable reductions in amyloid as a con-

sequence of exercise [62–64]. The amyloid tracer we employed (18F-AV45) may lack sufficient

sensitivity/specificity to index subtle changes in amyloid induced by exercise in cognitively

normal older adults. In the overall group (n = 106) we observed a 0.8% (SD 4.4%) increase in

amyloid compared to reported annual changes of 1–4%, a range influenced by where an indi-

vidual is on the sigmoid curve of accumulation over the lifespan [65]. Additionally, when

examining our subgroups, the elevated group had a 1.5% (SD 4.5%) annual rate of accumula-

tion compared to a decline of -0.9% (SD 3.6%) in subthreshold group, a decline that was not in

line with our expectations for this group. Recent serial amyloid PET studies suggest that refer-

ence region selection (i.e., whole cerebellum vs cerebellar white matter) can influence mea-

sured change over time and that annual participant scan variance may be higher than the

expected annual rate of amyloid PET change, especially when only two data points are present

[66]. However, the tracer can sufficiently track dose-related amyloid change in investigational

medication trials [67], suggesting that if our failure to observe changes was related to measure-

ment error, exercise is unlikely to have a large effect on cerebral amyloid levels.

It is possible that our inclusion of individuals in the subthreshold range (n = 38) who were

not elevated reduced our ability to detect reductions in amyloid by enhancing a floor effect.

However, when assessing only those in the elevated group (n = 79), there were no trends sug-

gesting an effect of aerobic exercise on amyloid accumulation. Additionally, the potential ben-

efits of aerobic exercise to influence cerebral amyloid may require a longer duration than 52

weeks. One year may not be long enough to meaningfully alter amyloid levels or the rate of

accumulation. Future studies looking at more than two amyloid PET time points to reduce

scan to scan variance and longer time interval (at least 2 years) may be important to investigate

whether exercise can impact the rate of amyloid accumulation. The non-significantly higher

proportion of E4 carriers in the treatment group may have subtly impacted cognitive decline

and amyloid accumulation, potentially obscuring our ability to detect a benefit of the interven-

tion. As a sensitivity analysis, we also tested our models with SUVR as a covariate, and with

APOE4 and APOE4 by Treatment Arm as factors. There was no appreciable change in our

results in these analyses (data not shown). Though we detected no difference in carrier versus

non-carrier performance, brain volume change, or amyloid accumulation, over 1-year, future

studies may wish to consider E4 carriage as a blocking variable for randomization

Our lack of effect on our secondary outcomes of brain volume and cognitive performance

was surprising, especially given the strong physiologic effects of the exercise intervention on

cardiorespiratory fitness. Practice effects, especially in cognitively normal older adults, reduce

power to discern group differences in cognitive performance [68,69] but despite this, a number

of well-designed RCTs have shown that aerobic exercise benefits cognition in older adults,
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though not specifically in those with elevated cerebral amyloid [2–5,50]. Many studies have

also demonstrated benefits to whole brain gray matter and hippocampal volume, with one

notable study reporting a decrease in whole brain gray matter volume after 12 months of resis-

tance training [70]. We have previously suggested that cardiorespiratory fitness gains are criti-

cal for cognitive or brain improvements [4,49,71]. Simply exercising without increasing

cardiorespiratory fitness, and therefore eliciting associated physiological and biochemical

adaptations, does not appear to support brain or cognitive changes. Despite significantly

increasing maximal cardiorespiratory capacity in this trial, we did not identify the same rela-

tionship in the present study. This may suggest that those with elevated amyloid are more

resistant to the putative brain benefits of aerobic exercise.

There are several additional limitations to this study. Our sample was almost exclusively

White, non-Hispanic and highly educated. This severely limits the generalizability of our find-

ings and highlights structural racism and inequity related to clinical trial access. As a result, we

have begun assessing the design of our trials and increased our efforts to inclusively design our

exercise trials with and for underrepresented communities [72–75]. An additional limitation is

the use of self-reported physical activity versus an activity monitor and lack of a treatment

fidelity analysis. It is possible that exercise activity increased in the control group. However,

consistent with participant self-report we saw evidence of fitness change only in the exercise

group. Finally, it may be possible that the selected dose of exercise (duration and intensity) is

insufficient or ill-suited to change amyloid accumulation. Future work should consider resis-

tance training, or alternate intensities.

It is critical to note that the results of the study do not suggest that aerobic exercise is not

beneficial. Aerobic exercise continues to have tremendous and unquestionable benefits for the

body. Potential mechanisms for benefits observed with exercise include the upregulation of

proteins involved in the clearance of amyloid [25,76] and reduction of systemic inflammation

[77]. Tailoring exercise prescription may maximize the engagement of these processes. Our

aerobic exercise group, for example, increased VO2 peak by 11%, with 11 individuals moving

from a state of potentially impaired independence with a VO2 peak below 20 mL�kg-1�min-1

[78], to a more fully functional cardiorespiratory state of a VO2 peak above 20 mL�kg-1�min-1.

Only one individual in the control group made that positive change, whereas 5 individuals in

the group dropped below a VO2 peak of 20 mL�kg-1�min-1 during the study.

Conclusions

The results of this trial do not support the hypothesis that 52 weeks of aerobic exercise influ-

ences amyloid burden in cognitively normal older adults. Additionally, secondary outcomes did

not support prior work indicating that aerobic exercise benefits measures of brain health or cog-

nition, at least in a cohort of cognitively normal older adults at elevated risk for Alzheimer’s due

to elevated cerebral amyloid burden. The observed lack of cognitive or brain structure benefits,

despite strong systemic cardiorespiratory effects of the intervention, suggests brain benefits of

exercise reported in other studies are likely to be related to non-amyloid effects.

A large-scale, definitive trial is currently underway which will help to confirm or refute

these findings [6].
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change in brain volumes Educ:24/Education:47. Sample size for change in cognitive measures

at baseline, week 26 and week 52 are Educ:26,26,25/Education:52,51,50. SUVR = Standard

Uptake Value Ratio; VO2 peak = peak oxygen consumption during graded exercise test. � For

amyloid, fitness and brain volume measures, a p-value from ordinary least squares regression
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