
UC Irvine
ICS Technical Reports

Title
Design visualization and entry using structural and functional entities

Permalink
https://escholarship.org/uc/item/8bx0c1d3

Authors
Sinha, Vivek
Gupta, Rajesh K.

Publication Date
2000-02-16

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8bx0c1d3
https://escholarship.org
http://www.cdlib.org/

Ill

es1g
tru

Vivek Sinha, Rajesh K. Gupta

Technical Report Number: #00-05

Information and Computer Science
University of California
Irvine, CA 92697-3245

http://www.ics.uci.edu/ rviesag/yaml

February 16, 2000

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.G.)

si
iti

Abstract

Visualization of design is an important part of the system design process. In practice,
systems are often visualized using a combination of structural and functional entities. In this
technical report, we describe YAML (Yet Another UML front end) that enables the system
designer to enter designs ((schematically" using predefined structural and functional objects
conforming to UML notation. YAML provides support for modeling objects and a range of
object relationships that are crucial to real-life embedded system designs. A YAML design entry
can then be automatically translated into a C++ or synthesizable C++ code for simulation
and hardware synthesis.

1

Contents

1 Introduction 4

2 System Modeling using Scenic and ICSP 4
2.1 Scenic 5
2.2 Modeling Structure: ICSP 6

3 Visual Modeling and Design Entry 6
3.1 YAML 6
3.2 Objects and relationships 7
3. 3 Code generation from Y AML 9

4 Implementation and Availability 9

5 Summary 10

6 Appendix 12
6.1 Code generated by the UML Front End for the 2 stage pipeline using the Scenic

Class Library . 12
6.2 Code generated by the UML Front End for the 2 stage pipeline using the ICSP class

library . 15

2

List of Figures

1 The partitioning of module SL2 of type StageL2 horizontally into two sub-components
Sl and S2. Port locations are also shown. 6

2 YAML Menu box . 7
3 A Scenic Class Diagram showing the 2 stage pipeline(Figure 1) created using YAML 7
4 UML examples for relationships between classes: (a) generalization (b) composition

(c) aggregation (d) association . 8
5 Dialog box for the Scenic Module class (Figure 3), showing names and parameters

of the subcomponents ·. 10

3

1 Introduction

A system is usually modeled as a combination of functional and structural entities. Functional
entities allow a higher level of abstraction, while structure allows breaking up a large and complex
system into smaller parts which can be handled with more ease. It also allows a hierarchical
implementation of the system.

Traditionally, the Unified Modeling Language(UML) [1) has been used to conceptualize and
model a design, before implementing it in an object oriented language. The software industry has
been using UML as the standard for object oriented programming for a long time now. However,
extending UML concepts to model hardware[2, 3) is a relatively new area.

Object oriented hardware modeling using c++ is quite popular in the industry these days.
Projects like Scenic[4), SystemC1 [5) and Cynlib provide class libraries, which support hardware
modeling. However, writing hardware descriptions in C++ using class libraries such as Scenic, can
be quite tedious. Design Visualization tools are needed to help a designer conceptualize, model
and refine system design without being burdened by the implementation and syntactic details of
these c++ class libraries. Towards this end we have built a design entry tool YAML, which uses
UML notations to model hardware, and allows the user to input information about the classes and
relationships into the UML Diagram itself, rather than first modeling the system in UML and then
writing the c++ code for it, as is traditionally the case. YAML generates this C++ code from the
information input by the user to the UML Diagram. We note that the embedded system modeling
capabilities are not defined by UML, which has limited support for specifying concurrency, timing
and placement. In fact, we extend the UML notations to provide support for these hardware specific
features[6).

2 System Modeling using Scenic and ICSP

As system complexity increases and design time shrinks, it becomes extremely important that
system specification be captured in a form that leads to unambiguous interpretation by the system
implementers. Object oriented hardware modeling provides a good alternative[7, 8).

This has driven many system, hardware, and software designers to create executable specifi­
cations for their systems. For the most part, these are functional models written in a language
like C or C++. These languages are chosen for three reasons: they provide the control and data
abstractions necessary to develop compact and efficient system descriptions; most systems contain
both hardware and software and for the software, one of these languages is the natural choice;
designers are familiar with these languages and the large number of development tools associated
with them. However, a programming language like C or c++ is intended for software and does not
have the constructs necessary to model timing, concurrency, and reactive behavior, all of which are
needed to create accurate models of systems containing both hardware and software[4).

To model concurrency, timing, and reactive behavior, new constructs need to be added to C++.
An object oriented programming language like c++ provides the ability to extend the language
through classes[9], without adding new syntactic constructs. A class-based approach to providing
modeling constructs is superior to a proprietary new language because it allows designers to continue
to use the language and tools they are familiar with. These· classes add the capabilities needed to
model hardware to the c++ language.

1SystemC is a publically released version of Scenic by Synopsys Inc. and is available at http://www.systemc.org

4

2.1 Scenic

To describe hardware in C++, one has to use the building blocks provided in the Scenic[4]
class library. The fundamental building block in Scenic is a process. A process is like a C or C++
function that implements behavior. A complete system description consists of multiple concurrent
processes. Processes communicate with one another through signals, and explicit clocks are used
to order events and synchronize processes. All the building blocks are objects(classes) that are a
part of Scenic.

Using the Scenic library, the user can model a system at various levels of abstraction. At the
highest level, only the functionality of the system may be modeled. For hardware implementation,
models can be written either in a functional style or in a RTL (register-transfer level) style. The
software part of a system can be naturally described in c++. Interfaces between software and
hardware and between hardware blocks can be described either at the transaction-accurate level or
at the cycle-accurate level. Moreover, different parts of the system can be modeled at different levels
of abstraction and these models can co-exist during system simulation. c++ and the Scenic classes
can be used not only for the development of the system, but also for the test-bench. Scenic consists
of a set of header files describing the classes and a link library that contains the simulation kernel.
These header files can be used to compile the program. Any ANSI C++ compliant compiler can
compile Scenic, together with the program. During linking, the Scenic library, which contains the
simulation kernel is used. The resulting executable serves as a simulator for the system described.
Scenic has the following features:

• Processes: Processes are used to describe functionality. Processes can be stand alone entities
or can be contained inside modules. The interfaces for synchronous and asynchronous pro­
cesses are sc_sync and sc_async respectively. A synchronous process is clocked through the
interface, and is invoked on each desired edge. An asynchronous process is invoked according
to events on the signal from which the process is sensitive. The behavior is similar to VHD L
processes. The processes have an entry() function which is invoked when an event triggers
the process.

• Modules: Scenic has a notion of a container class called a module. This is a hierarchical entity
that can have other modules or processes contained in it. The class for this is sc.module.

• Signals: Signals in Scenic are implemented by the sc_signal class. To support modeling at
different levels of abstraction, from the functional to RTL, as well as to support software,
Scenic supports a rich set of signal types. A clock mechanism implements the time step
calculation, and event generation.

• Channels: Channels are implemented using the sc_channel class. It enables communication
between synchronous processes using handshaking.

• Clocks: Scenic has the notion of clocks as special signals. Clocks are the time-keepers of the
system during simulation.

• Cycle-based simulation: Scenic includes a cycle based simulation kernel that allows high speed
simulation.

• Multiple abstraction levels: Scenic supports modeling at different levels of abstraction, ranging
from high level functional models to detailed RTL models. It supports iterative refinement
of high level models into lower levels of abstraction.

5

2.2 Modeling Structure: !CSP

While Scenic provides the concept of hierarchical containment, missing from Scenic is the con­
cept of relative placement of components, and the attachment or placement of ports with respect
to their components. The ICSP[lO] class library developed at UCI, is an extension to Scenic to ex­
press structural information like component and port placement and layout. The Scenic component
interfaces have been specialized to contain the following information:

• Component order f:J Placement: Placement is specified using a slicing tree consisting of hori­
zontal and vertical composition of rectangles. This is implemented in the icsp_module class,
which can be used to specify the location of subcomponents, as well as the location of input
and output ports. For instance in Figure 1 the module stageL2 is split horizontally into two
subcomponents Sl and 82.

• Ports Locations: The location of input and output ports can be specified on the sides of a
component. The ports are contained in totally ordered sets, one set for each of the four sides.
For instance in Figure 1, if we consider subcomponent Sl, the position of input port in1 is
"left upper" while that of output port diff is "right lower".

Sl_2: Stage1_2

S2: Stage2
sum prod

diff

elk quot

quot

Figure 1: The partitioning of module SL2 of type StageL2 horizontally into two sub-components
Sl and S2. Port locations are also shown.

ICSP is useful in building a schematic editor for system level designs, where the user can specify
the relative placement of components and ports.

3 Visual Modeling and Design Entry

3 .. 1 YAML

The Unified Modeling Language(UML)[l, 3, 11, 12] is a language for specifying, visualizing,
constructing, and documenting the artifacts of systems. It provides a convenient notation that
allows the developer to capture structural and behavioral details which can cover both software
and hardware characteristics.

As mentioned before, the motivation behind developing Y AML is to allow the user to con­
ceptualize and model the design in a graphical interface using UML notation, and add detailed
information, which then gets automatically translated to c++ code. This is particularly helpful
while using the Scenic and ICSP library of C++ classes, as it allows the user to model the system
without being aware of the syntactic details of the underlying c++ code.

6

Figure 2: YAML Menu box

YAML allows the user to do a schematic like design entry of the system while conforming to
UML notation. It provides support for Scenic and ICSP class libraries, so that the user may use
classes from these libraries in the UML Class Diagram of the system. It allows the user to create
Scenic processes and modules in the class diagram. The user can create a Scenic class and then add
various properties of this class to the class dialog box, such as class name, input and output signals,
internal signals and variables, entry function, subcomponents, etc. YAML also provides support
for creating ICSP classes, and specifying detailed structure and layout information. The user can
specify the type of component partition, either horizontal or vertical, subcomponent order, and the
location of the input and output ports around the four sides of the component.

Figure 3: A Scenic Class Diagram showing the 2 stage pipeline(Figure 1) created using YAML

3.2 Objects and relationships

YAML supports system design using objects and relationships. While objects represent function
or structure, relationships characterize the interface or interaction among these objects. We have
extended the meaning and notation of these objects and relationships so as to support the design
of embedded systems[6]. Relationships can be categorized as follows.

7

a_ class
I v_class H w_class

I m_class H n_class I i_class H j_class x_class y_class

b_class

(a) (b) (c) (d)

Figure 4: UML examples for relationships between classes: (a) generalization (b) composition (c)
aggregation (d) association

1. Generalization: Generalization or inheritance is an important concept in object oriented
programming. From a base class, we can derive specialized classes, through inheritance. In
YAML, generalization is primarily used to derive specialized classes from the set of base
classes provided in the Scenic and ICSP libraries. For example, in Figure 3 class stageL2 is
derived from the base class sc_rnodule using the generalization relationship. It is represented
by a unidirectional arrow with a triangular head.

2. Aggregation: An aggregation relationship applies when one object physically or conceptually
contains another. It is represented by an arrow with a diamond shaped head which points
towards the owner. The owned class may be shared by more than one owner classes. For
example, in Figure 4(b), class m aggregates class n.

3. Composition: Composition is a strong form aggregation in which the owner is explicitly re­
sponsible for the creatiOn and destruction of the owned objects. It can be represented by the
actual inclusion of the owned object in the owner, or by a directed arrow with a diamond
shaped filled head pointing towards the owner. Composition corresponds to component hier­
archy in a design. In Figure 4(c), class j is a component of class i. This may represent, for
instance a CPU datapath, that physically contains an ALU block.

4. Association: Association represents conceptual relationships between classes, and is used for
the exchange of messages. It corresponds to communication, either through signals or chan­
nels. The association relationship can be extended to contain information like communication
protocols between objects or even wire delays at a very low level of design. In Figure 4(d),
class v has an association relationship with class w. Class z is an association class, which can
be used to add details to the association relationship.

YAML provides support for interpreting the relationships between classes, and using this infor­
mation to generate code. For instance, generalization can be used to create a derived class, and
Y AML uses this information from the UML Diagram to reflect this derivation in the code generated
for the derived class.

We have provided handles in the data structure of a class, so as to access its neighboring classes
and get any required information while processing it. The neighbors of a class are all the classes
around it in the class diagram that are connected to it by some kind of relationship. This can be
particularly helpful in interpreting the composition relationship that exists between a module class
and the subcomponents declared in it, where we need to access the subcomponents declared in the
Scenic or ICSP module. In short, handles provide a mechanism to traverse the graph of connected
classes and access information from any of the nodes of this graph as required.

The association relationship can be extended to contain detailed information about the commu­
nication mechanism among objects in an object diagram. Communication protocols, wire delays,
interface details are just some of the examples.

8

3.3 Code generation from YAML

A major drawback of using c++ class libraries for describing hardware is the complex syntactic
details to which the classes have to conform. In other words writing code is not easy when these
class libraries are used. YAML allows the user to perform graphical entry of the system using
Scenic and ICSP class libraries, and processes this information to generate the underlying C++
code.

The option of generating the code is in the class dialog box itself. The user can generate the
corresponding Scenic or ICSP code from the class diagram, after specifying the various properties
for that class. Following is the code generated for the Scenic class stageL2 from Figure 3. It is
to be noted that for the scenic module class, input and output signals are declared only in the
constructor.

#include 11 stagei 11

#include 11 stage2"
struct stage1_2 public sc_module {
//Internal Signals/Variables
sc_signal<double> sum;
sc_signal<double> diff;
//Subcomponents
stagei Si;
stage2 S2;
//Constructor
stage1_2(const char* NAME,

sc_clock_edge& CLK,
const sc_signal<double>& ini,
const sc_signal<double>& in2,
sc_signal<double>& prod,
sc_signal<double>& quot)

sc_module(NAME),
Si(11 stagei 11

, CLK, ini, in2, sum, diff),
S2(11 stage2 11

, CLK, sum, diff, prod, quot){
end_module();}};

4 Implementation and Availability

YAML has been built using an existing Diagram Editor, DIA[13]. We have used GTK[14] or
the Gimp Toolkit to create the graphical user interface. YAML provides a pallet of design entry
icons for the user to select from, while designing the system. These include Scenic & ICSP Classes
and templates, and relationships like association, aggregation, generalization, composition etc. The
UML diagram is created in a new window containing a GTK Canvas widget(Figure 3).

The user next, enters details specific to a class icon. This has been achieved by providing dialog
boxes for each of the design entry icons mentioned above. The user can open a dialog box(Figure
5) for the icon he is working on, say a Scenic class, and specify the class name, input and output
signals, entry function etc. C++ header and source files for that Scenic class can be generated
next, which comply to the Scenic class syntactic details, and are directly compilable. YAML also
allows the user to input the entry function for Scenic and ICSP classes into a text window which

9

Figure 5: Dialog box for the Scenic Module class (Figure 3), showing names and parameters of the
subcomponents

can be opened from their respective dialog boxes. Similarly, the user can also specify the body of
the constructor for these classes to initialize the internal variables if required.

YAML is supported on Linux as well as Solaris operating systems and is currently under active
development.

5 Summary

Y AML provides a user friendly graphical interface to model systems under the guidelines of
UML, using the Scenic and ICSP C++ class libraries. The user can specify the details of Scenic
and ICSP classes into the UML front end. YAML frees the designer from the syntactic nuances
and details corresponding to these class libraries, so that he may focus on the organization of the
structural and functional components of his design. The code generated by YAML conforms to the
syntax of ICSP and Scenic classes and can be directly compiled or simulated.

Acknowledgments

The authors would like to acknowledge Abhijit Ghosh and Synopsys Inc. for providing us with
the Scenic source code and their support for this work.

10

References

[1] Website: http://www.rational.com/uml/

[2] Hallal H., Xiao-Hua K., Negulescu R.: Experiments in Modeling Integrated Circuit Blocks by UML;
International Workshop on IP Based Synthesis and System Design'99.

[3] Bruce Powel Douglass: Real-Time UML: Developing Efficient Objects for Embedded Systems; Addison­
Wesley 1998

[4] Liao S., Tjiang S., Gupta R. K.: An Efficient Implementation of Reactivity for Modeling Hardware in
the Scenic Design Environment; 34th Design Automation Conference, 1997

[5] SystemC Reference Manual: Release 0.9, Synopsys Inc.

[6] Doucet F. et al: System-on-chip Modeling using Objects and their Relationships - Technical Report
#99-53; CECS ICS, UC Irvinre October 1999.
http://www.ics.uci.edu/rvcecs/

[7] Kumar, S., Aylor, J. H., Johnson, B. W., Wulf, W. A.: Object-Oriented Techniques in Hardware
Design; Computer, June 1994.

[8] Vernalde, S., Schaumont, P., Bolsens, I.: An Object Oriented Programming Approach for Hardware
Design; IEEE Computer Society Workshop on VLSI April 1999

[9] Weiler C., Kebschull U., Rosenstiel W.: C++ Base Classes for Specification, Simulation and Parti­
tioning of a Hardware/Software System; VLSI 95, Japan.

[10] Siska, C.: Incidence Structure-Composition Project - Technical Report; CECS ICS, UC Irvine June
1999. http://www.ics.uci.edu/"-'cecs/

[11] UML Notation Guide: version 1.1 September 1997

[12] Fowler, M., Kendall, S.: UML Distilled: Applying the Standard Object Modeling Language; Addison­
Wesley 1997.

[13] Website: http://www.lysator.liu.se/rvalla/dia/

[14] Gale, Tony and Main, Ian: GTK vl.2 Tutorial, February 1999

11

6 Appendix

6 .. 1 Code generated by the UML Front End for the 2 stage pipeline
using the Scenic Class Library

stagel.h

struct stage1 public sc_sync {

//Input Signals
const sc_signal<double>& in1;
const sc_signal<double>& in2;

//Output Signals
sc_signal<double>& sum;
sc_signal<double>& diff;

//Internal Signals/Variables

//Constructor
stage1(const char* NAME,

sc_clock_edge& CLK,

}

const sc_signal<double>& IN1,
canst sc_signal<double>& IN2,
sc_signal<double>& SUM,
sc_signal<double>& DIFF)

sc_sync(NAME, CLK),
in1(IN1),
in2(IN2),
sum(SUM),
diff (DIFF) {

void entry();

};

stagel.cc

#include scenic.h
#include "stage1.h"

void stage1: :entry()
{

double a, b;

12

a = 20.0;
b = 5.0;
while (true) {

sum.write(a+b);
diff.write(a-b);
wait();

}

a = in1.read();
b = in2 . read() ;

} // end of entry function

stage2.h

struct stage2 public sc_sync {

//Input Signals
const sc_signal<double>& sum;
const sc_signal<double>& diff;

//Output Signals
sc_signal<double>& prod;
sc_signal<double>& quot;

//Internal Signals/Variables

//Constructor
stage2(const char* NAME,

sc_clock_edge& CLK,

}

const sc_signal<double>& SUM,
const sc_signal<double>& DIFF,
sc_signal<double>& PROD,
sc_signal<double>& QUOT)

sc_sync(NAME, CLK),
sum(SUM),
diff(DIFF),
prod(PROD),
quot(QUOT) {

void entry();

};

13

stage2.cc

#include scenic.h
#include "stage2.h"

void stage2: :entry()
{

double a, b;

a= 20.0;
b = 5.0;
while (true) {

prod.write(a*b);
quot.write(a/b);
wait();
a = sum.read();
b = diff .read();

}

} // end of entry function

stageL2.h

#include "stage1"
#include "stage2"

struct stage1_2 public sc_module {

//Internal Signals/Variables
sc_signal<double> sum;
sc_signal<double> diff;

//SubComponents
stage1 Si;
stage2 S2;

//Constructor
stage1_2(const char* NAME,

sc_clock_edge& CLK,
const sc_signal<double>& in1,
const sc_signal<double>& in2,
sc_signal<double>& prod,
sc_signal<double>& quot)

sc_module(NAME),
S1("stage1", CLK, in1, in2, sum, diff),

14

S2("stage2", CLK, sum, diff, prod, quot){
end_module();

}

};

6 .. 2 Code generated by the UML Front End for the 2 stage pipeline
using the ICSP class library

Stagel.h

struct Stage1 public icsp_sync {

//Input Signals
const sc_signal<double>& in1;
const sc_signal<double>& in2;

//Output Signals
sc_signal<double>& sum;
sc_signal<double>& diff;

//Internal Signals/Variables

//Constructor
Stage1(const char* NAME, sc_clock_edge& CLK,

const sc_signal<double>& IN1,

}

const sc_signal<double>& IN2,
sc_signal<double>& SUM,
sc_signal<double>& DIFF)

icsp_sync(NAME, CLK,
icsp_porder(

icsp_ppair(in1, icsp_e_uleft),
icsp_ppair(CLK, icsp_e_lleft),
icsp_ppair(in2, icsp_e_mleft),
icsp_ppair(sum, icsp_e_uright),
icsp_ppair(diff, icsp_e_lright))),

in1(IN1),
in2(IN2),
sum(SUM),
diff (DIFF) {

void entry();

15

} ;

Stagel.cc

#include scenic.h
#include "Stage1.h"

void Stage1: :entry()
{

double a, b;

a = 20.0;
b = 5.0;
while (true) {

sum.write(a+b);
diff.write(a-b);
wait();

}

a = in1 .read();
b = in2 .read();

} // end of entry function

Stage2.h

struct Stage2 public icsp_sync {

//Input Signals
const sc_signal<double>&
const sc_signal<double>&

//Output Signals
sc_signal<double>& prod;
sc_signal<double>& quot;

sum;
diff;

//Internal Signals/Variables

//Constructor
Stage2(const char* NAME, sc_clock_edge& CLK,

const sc_signal<double>& SUM,
const sc_signal<double>& DIFF,
sc_signal<double>& PROD,

16

sc_signal<double>& QUOT)
icsp_sync(NAME, CLK,
icsp_porder(

icsp_ppair(sum, icsp_e_uleft),
icsp_ppair(diff, icsp_e_mleft),
icsp_ppair(CLK, icsp_e_lleft);
icsp_ppair(prod, icsp_e_uright),
icsp_ppair(quot, icsp_e_lright))),

}

sum(SUM),
diff(DIFF),
prod(PROD),
quot(QUOT) {

void entry() ;

};

Stage2.cc

#include scenic.h
#include "Stage2.h"

void Stage2: :entry()
{

double a, b;

a = 20.0;
b = 5.0;
while (true) {

prod.write(a*b);
quot.write(a/b);
wait();

}

a = sum.read();
b = diff .read();

} // end of entry function

Stagel_2.h

#include "Stage1"
#include "Stage2"

17

struct Stagei_2 : public icsp_module {

//Internal Signals/Variables
sc_signal<double> sum;
sc_signal<double> diff;

//SubComponents
Stagei Si;
Stage2 S2;

//Constructor
Stagei_2(const char* NAME, sc_clock_edge& CLK,

canst sc_signal<double>& ini,

};

canst sc_signal<double>& in2,
sc_signal<double>& prod,
sc_signal<double>& quot)

icsp_module(NAME,
ICSP_SPLIT_HDRIZDNTALLY,
icsp_corder(

icsp_comp(Si),
icsp_comp(S2)),

icsp_porder(
icsp_ppair(CLK, icsp_e_lleft),
icsp_ppair(ini, icsp_e_uleft),
icsp_ppair(in2, icsp_e_mleft),
icsp_ppair(prod, icsp_e_uright),
icsp_ppair(quot, icsp_e_lright))),

Si("Stagei", CLK, ini, in2, sum, diff),
S2 ("Stage2", CLK, sum, di ff, prod, quot,) {

end_module();
}

18

