
UC San Diego
Technical Reports

Title
Dynamic Deferral of Workload for Capacity Provisioning in Data Centers

Permalink
https://escholarship.org/uc/item/8bv2j2hp

Authors
Adnan, Muhammad Abdullah
Ma, Yan
Sugihara, Ryo
et al.

Publication Date
2011-09-17

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8bv2j2hp
https://escholarship.org/uc/item/8bv2j2hp#author
https://escholarship.org
http://www.cdlib.org/

Dynamic Deferral of Workload for Capacity

Provisioning in Data Centers

Muhammad Abdullah Adnan∗, Yan Ma†, Ryo Sugihara∗ and Rajesh Gupta∗

∗Department of Computer Science and Engineering

University of California, San Diego, CA, USA

Email: {madnan, ryo, rgupta}@ucsd.edu
†School of Computer Science and Technology

Shandong University, Jinan Shandong, China

Email: yam002@eng.ucsd.edu

Abstract—Recent increase in energy prices has led researchers
to find better ways for capacity provisioning in data centers to
reduce energy wastage due to the variation in workload. This
paper explores the opportunity for cost saving and proposes a
novel approach for capacity provisioning under bounded latency
requirements for the workload. We investigate how many servers
to be kept active and how much workload to be delayed for energy
saving while meeting every deadline. We present an offline LP
formulation for capacity provisioning by dynamic deferral and
give two online algorithms to determine the capacity of the data
center and the assignment of workload to servers dynamically. We
prove the feasibility of the online algorithms and show that their
worst case performance are bounded by a constant factor with
respect to the offline formulation. We validate our algorithms on
synthetic workload generated from two real HTTP traces and
show that they actually perform much better in practice than
the worst case, resulting in 20-40% cost-savings.

I. INTRODUCTION

With the advent of cloud computing, data centers are emerg-

ing all over the world and their energy consumption becomes

significant; as estimated 61 million MWh, ∼1.5% of US

electricity consumption, costing about 4.5 billion dollars [1].

Naturally, energy efficiency in data centers has been pursued

in various ways including the use of renewable energy [2], [3]

and improved cooling efficiency [4], [5], [6], etc. Among them,

improved scheduling algorithm is a promising approach for

its broad applicability regardless of hardware configurations.

While there are a number of work in this approach as well

(e.g., [6], [7]), one non-conventional perspective is to optimize

the schedule such that certain performance metric satisfies a

predetermined requirement, which is normally defined in the

form of service level agreements (SLAs). Specifically, latency

is an important performance metric for any web-based services

and is of great interests for service providers who run their

services on data centers.

In this paper, we are interested in minimizing the en-

ergy consumption of data center under guarantees on la-

tency/deadline. We use the deadline information to defer

some tasks so that we can reduce the total cost for energy

consumption for executing the workload and switching the

state of the servers. We determine the portion of the released

workload to be executed at the current time and the portions to

be deferred to be executed at later time slots without violating

deadline. Our approach is similar to ‘valley filling’ that is

widely used in data centers to utilize server capacity during

the periods of low loads [7]. But the load that is used for

valley filling is mostly background/maintenance tasks (e.g.

web indexing, data backup) which is different from actual

workload. In fact current valley filling approaches ignore

the workload characteristics for capacity provisioning. In this

paper, we determine how much work to store for valley filling

in order to reduce the current and future energy consumption.

Later we generalize our approach for more general workload

where different workload have different deadline.

The contribution of this paper is twofold. First, we present

an LP formulation for capacity provisioning with dynamic

deferral of workload. The formulation not only determines

capacity but also determines the assignment of workload for

each time slot. As a result the utilization of each server can be

determined easily and resource can be allocated accordingly.

Therefore this method well adapts to other scheduling policies

that take into account dynamic resource allocation, priority

aware scheduling, etc.

Second, we design two optimization based online algorithms

depending on the nature of the deadline. For uniform deadline,

our algorithm named Valley Filling with Workload (VFW(δ)),

looks ahead δ slots to optimize the total energy consumption.

The algorithm uses the valley filling approach to accumulate

some workload to execute in the periods of low loads. For

nonuniform deadline, we design a Generalized Capacity Pro-

visioning (GCP) algorithm that reduces the switching (on/off)

of servers by balancing the workloads in adjacent time slots

and thus reduces energy consumption. We prove the feasibility

of the solutions and show that the performance of the online

algorithms are bounded by a constant factor with respect to the

offline formulation in worst case. Since for the proof we do

not presume anything about the workload, the performance

of both the algorithms are much better in practice than the

worst case, as shown by experiments. We used HTTP traces

as examples for dynamic workload and found more than 40%

total cost saving for GCP and around 20% total cost saving for

VFW(δ) even for small deadline requirements. We compared

the two online algorithms with different parameter settings

and found that GCP gives more cost savings than VFW(δ) for

2

typical workload but for bursty workload, VFW(δ) sometimes

performs better than GCP.

The rest of the paper is organized as follows. Section II

presents the model that we use to formulate the optimization

and gives the offline formulation. In section III, we present

the VFW(δ) algorithm for determining capacity and workload

assignment dynamically when the deadline is uniform. In

section IV, we illustrate the GCP algorithm with nonuniform

deadline. Section V shows the experimental results. In section

VI, we describe the state of the art research related to capacity

provisioning and section VII concludes the paper.

II. MODEL FORMULATION

In this section, we describe the model we use for capacity

provisioning via dynamic deferral. The assumptions used in

this model are minimal and this formulation captures many

properties of current data center capacity and workload char-

acteristics.

A. Workload Model

We consider a workload model where the total workload

varies over time. The time interval we are interested in is

t ∈ {0, 1, . . . , T} where T can be arbitrarily large. In practice,

T can be a year and the length of a time slot τ could be as

small as 2 minutes (the minimum time required to change

power state of a server). In our model, the jobs have length

less than τ and each job has deadline D associated with it

within which it needs to be executed. If the length of a job

is greater than τ then we can safely decompose it into small

pieces (≤ τ) each of which has deadline D. Hence we do

not distinguish each job, rather deal with the total amount of

workload. For now, assume that the deadline is uniform for

all the workload and the non-uniform case is considered in

section IV. Let Lt be the amount of workload released at time

slot t. This amount of work must be executed by the end of

time slot t + D. Since Lt varies over time, we often refer to

it as a workload curve.

In our model, we consider a data center as a collection of

homogeneous servers. The total number of servers M is fixed

and given but each server can be turned on/off to execute the

workload. We normalize Lt by the processing capability of

each server i.e. Lt denotes the number of servers required to

execute the workload at time t. We assume for all t, Lt ≤M .

Let xi,d,t be the portion of the released workload Lt that is

assigned to be executed at server i at time slot t + d where

0 ≤ d ≤ D. Let mt be the number of active servers during

time slot t. Then
mt
∑

i=1

D
∑

d=0

xi,d,t = Lt and 0 ≤ xi,d,t ≤ 1

Let xi,t be the total workload assigned at time t to server i
and xt be the total assignment at time t. Then we can think

of xi,t as the utilization of the ith server at time t i.e. 0 ≤
xi,t ≤ 1. Thus

D
∑

d=0

xi,d,t−d = xi,t and

mt
∑

i=1

xi,t = xt

From the data center perspective, we focus on two important

decisions during each time slot t: (i) determining mt, the num-

ber of active servers, and (ii) determining xi,d,t, assignment

of workload to the servers.

B. Cost Model

The goal of this paper is to minimize the cost (price) of

energy consumption in data centers. The energy cost function

consists of two parts: operating cost and switching cost.

Operating cost is the cost for executing the workload which

in our model is proportional to the assigned workload. We

use the common model for the energy cost for typical servers

which is an affine function:

C(x) = e0 + e1x

where e0 and e1 are constants (e.g. see [8]) and x is the

assigned workload (utilization) of a server at a time slot.

Switching cost β is the cost incurred for changing state

(on/off) of a server. We consider the cost of both turning on

and turning off a server. Switching cost at time t is defined as

follows:

St = β|mt −mt−1|

where β is a constant (e.g. see [7], [9]).

C. Optimization Problem

Given the models above, the goal of a data center is to

choose the number of active servers (capacity) mt and the

dispatching rule xi,d,t to minimize the total cost during [1, T],
which is captured by the following optimization:

minxt,mt

T
∑

t=1

mt
∑

i=1

C(xi,t) + β
T

∑

t=1

|mt −mt−1| (1)

subject to

mt
∑

i=1

D
∑

d=0

xi,d,t = Lt ∀t

mt
∑

i=1

D
∑

d=0

xi,d,t−d ≤ mt ∀t

D
∑

d=0

xi,d,t−d ≤ 1 ∀i,∀t

0 ≤ mt ≤M ∀t

xi,d,t ≥ 0 ∀i,∀d, ∀t.

Since the servers are identical, we can simplify the problem

by dropping the index i for x. More specifically, for any

feasible solution xi,d,t, we can make another solution by

xi,d,t =
∑mt

i=1 xi,d,t/mt (i.e., replacing every xi,d,t by the

average of xi,d,t for all i) without changing the value of the

objective function while satisfying all the constraints after

this conversion. Then we have the following optimization

equivalent to (1):

3

minxt,mt

T
∑

t=1

mtC(xt/mt) + β

T
∑

t=1

|mt −mt−1| (2)

subject to

D
∑

d=0

xd,t = Lt ∀t

D
∑

d=0

xd,t−d ≤ mt ∀t

0 ≤ mt ≤M ∀t

xd,t ≥ 0 ∀d, ∀t.

where xd,t represents the portion of the workload Lt to

be executed at a server at time t + d. We further simplify

the problem by showing that any optimal assignment for

(2) can be converted to an equivalent assignment that uses

earliest deadline first (EDF) policy. More formally, we have

the following lemma:

Lemma 1: Let x∗

tr
and x∗

ts
be the optimal assignments of

workload obtained from the solution of optimization (2) at

times tr and ts respectively where ts > tr and ts − tr = θ <
D. If ∃δ with

∑δ−1
d=0 x∗

d,tr−d 6= 0 and
∑D

d=θ+δ+1 x∗

d,ts−d 6= 0
for any 0 < δ < D−θ then we can obtain another assignments

xe
tr

= x∗

tr
and xe

ts
= x∗

ts
where

∑δ−1
d=0 xe

d,tr−d = 0 and
∑D

d=θ+δ+1 xe
d,ts−d = 0.

Proof: We prove it by constructing xe
tr

and xe
ts

from x∗

tr

and x∗

ts
. We change the assignments x∗

d,tr
, 0 ≤ d ≤ D−θ and

x∗

d,ts
, θ ≤ d ≤ D to obtain xe

tr
and xe

ts
. We now determine δ.

Note that all the workloads released between (including) time

slots ts−D to tr can be executed at time tr without violating

deadline since tr − D < ts − D < tr − δ < tr. Also all

the workloads released between (including) time slots ts −D
to tr can be executed at time ts without violating deadline

since ts −D < tr − δ < tr < ts. Hence the new assignment

of workloads cannot violate any deadline. We determine δ
at a point where

∑D−θ
d=δ+1 xe

d,tr−d =
∑D−θ

d=δ+1 x∗

d,tr−d +
∑D

d=θ+δ+1 x∗

d,ts−d and
∑δ−1

d=0 xe
d,tr−d = 0 and xe

δ,tr−δ =
∑D−θ

d=0 x∗

d,tr
−

∑D−θ
d=δ+1 xe

d,tr−d such that xe
tr

= x∗

tr
. Similarly

for xe
ts

, we have the new assignment as:
∑θ+δ−1

d=θ xe
d,ts−d =

∑δ−1
d=0 x∗

d,tr−d +
∑θ+δ−1

d=θ x∗

d,ts−d and
∑D

d=θ+δ+1 xe
d,ts−d = 0

and xe
θ+δ,ts−θ−δ =

∑D
d=θ x∗

d,ts
−

∑θ+δ−1
d=θ xe

d,ts−d such that

xe
ts

= x∗

ts
.

According to lemma 1, we do not need both t and d as

indices of x. We can use the release time t to determine the

deadline t + D. Thus, we drop the index d of x. At time t,
unassigned workload from Lt−D to Lt is executed according

to EDF policy while minimizing the objective function. To

formulate the constraint that no assignment violates any dead-

line we define delayed workload lt with maximum deadline

D.

lt =

{

0 if t ≤ D,

Lt−D otherwise.

(a) Offline optimal (b) VFW(δ)

Fig. 1. Illustration of (a) offline optimal solution and (b) VFW(δ) for arbitrary
workload generated randomly; time slot length = 2 min, D = 15, δ = 10.

We call the delayed curve lt for the workload as deadline

curve. Thus we have two fundamental constraints on the

assignment of workload for all t:

(C1) Deadline Constraint:
∑t

j=1 lj ≤
∑t

j=1 xj

(C2) Release Constraint:
∑t

j=1 xj ≤
∑t

j=1 Lj

Condition (C1) says that all the workloads assigned up to

time t cannot violate deadline and Condition (C2) says that

the assigned workload up to time t cannot be greater than the

total released workload up to time t. Using these constraints

we reformulate the optimization (2) as follows:

minxt,mt

T
∑

t=1

mtC(xt/mt) + β
T

∑

t=1

|mt −mt−1| (3)

subject to

t
∑

j=1

lj ≤

t
∑

j=1

xj ≤

t
∑

j=1

Lj ∀t

T
∑

j=1

xj =
T

∑

j=1

Lj

0 ≤ xt ≤ mt ∀t

0 ≤ mt ≤M ∀t.

Since the operating cost function C(.) is an affine function,

the objective function is linear as well as the constraints. Hence

it is clear that the optimization (3) is a linear program. Note

that capacity mt in this formulation is not constrained to be

an integer. This is acceptable because data centers consists of

thousands of active servers and we can round the resulting

solution with minimal increase in cost. Figure 1(a) illustrates

the offline optimal solutions for xt and mt for a dynamic

workload generated randomly. The performance of the optimal

offline algorithm on two realistic workload are provided in

Section V.

III. VALLEY FILLING WITH WORKLOAD

In this section we consider the online case, where at any

time t, we do not have information about the future workload

Lt′ for t′ > t. At each time t, we determine the xt and mt

by applying optimization over the already released unassigned

workload which has deadline in future D slots. Note that the

workload released at or before t, can not be delayed to be

assigned after time slot t+D. Hence we do not optimize over

more than D + 1 slots. We simplify the online optimization

4

Fig. 2. The curves Lt and lδ
t

and their intersection points.

by solving only for mt and determine xt by making xt =
mt at time t. This makes the online algorithm not to waste

any execution capacity that cannot be used later for executing

workload. But the cost due to switching in the online algorithm

may be higher than the offline algorithm. Thus our goal is to

design strategies to reduce the switching cost. In the online

algorithm, we reduce the switching cost by optimizing the

total cost for the interval [t, t + D].
When the deadline is uniform, we can reduce the switching

cost even more by looking beyond D slots. We do that

by accumulating some workload from periods of high loads

and execute that workload later in valleys without violating

constraints (C1) and (C2). To determine the amount of accu-

mulation and execution we use ‘δ-delayed workload’. Thus

the online algorithm namely Valley Filling with Workload

(VFW(δ)) looks ahead δ slots to determine the amount of

execution. Let lδt be the δ-delayed curve with delay of δ slots

for 0 < δ < D.

lδt =

{

0 if t ≤ δ,

Lt−δ otherwise.

Then we can call the deadline curve as D-delayed curve and

represent it by lDt . We determine the amount of accumulation

and execution by controlling the set of feasible choices for

mt in the optimization. For this we use the δ-delayed curve

to restrict the amount of accumulation. By lower bounding

mt for the valley (low workload) and upper bounding it for

the high workload, we control the execution in the valley

and accumulation in the other parts of the curve. In the

online algorithm we have two types of optimizations: Local

Optimization and Valley Optimization. Local Optimization is

used to smooth the ‘wrinkles’ (small variation in the workload

in adjacent slots e.g. see Figure 2) within D consecutive slots

and accumulate some workload and Valley Optimization fills

the valleys with the accumulated workload.

A. Local Optimization

The local optimization applies optimization over future D
slots and finds the optimum capacity for current slot by

executing not more than δ-delayed workload. Let t be the

current time slot. At this slot we apply a slightly modified

version of offline optimization (3) in the interval [t, t + D].
Then we apply the following optimization LOPT(lt, lδt , mt−1,

M) to determine mt in order to smooth the wrinkles by

optimizing over D consecutive slots. We restrict the amount

of execution to be no more than the δ-delayed workload while

satisfying the deadline constraint (C1).

minmt
(e0 + e1)

t+D
∑

j=t

mj + β

t+D
∑

j=t

|mj −mj−1| (4)

subject to

t
∑

j=1

lDj ≤

t
∑

j=1

mj

t+D
∑

j=1

mj =

t+δ
∑

j=1

lδj

0 ≤ mk ≤M t ≤ k ≤ t + D

After solving the local optimization, we get the value of

mt for the current time slot and assign xt = mt. For the

next time slot t + 1 we solve the local optimization again to

find the values for xt+1 and mt+1. Note that the deadline

constraint (C1) and the release constraint (C2) are satisfied at

time t, since from the formulation
∑t

j=1 lDj ≤
∑t

j=1 mj ≤
∑t

j=1 lδj ≤
∑t

j=1 Lj .

B. Valley Optimization

In valley optimization, the accumulated workload from the

local optimization is executed in ‘global valleys’. Before

giving the formulation for the valley optimization we need

to detect a valley.

Let p1, p2, . . . , pn be the sequence of intersection points of

Lt and lδt curves (see Figure 2) in nondecreasing order of their

x-coordinates (t values). Let p′1, p
′

2, . . . , p
′

n be the sequence of

points on lδt with delay δ added with each intersection point

p1, p2, . . . , pn on lδt such that t′s = ts + δ for all 1 ≤ s ≤ n.

We discard all the intersection points (if any) between ps and

p′s from the sequence such that ts+1 ≥ t′s. Note that at each

intersection point ps, the curve from ps to p′s is known. To

determine whether the curve lδt between ps and p′s is a valley,

we calculate the area

A =

t′
s

∑

t=ts

(lδt − lδts
)

If A is negative, then we regard the curve between ps and

p′s as a global valley though it may contain several peaks and

valleys. If the curve between ps and p′s is a global valley, we

fill the valley with some (possibly all) of the accumulated

workload by executing more than the δ-delayed workload

while satisfying the release constraint (C2). For each t, we

apply the following optimization VOPT(lt, Lt, mt−1, M) in

the interval [t, t+D] to find the value of mt where ts ≤ t ≤ t′s.

5

minmt
(e0 + e1)

t+D
∑

j=t

mj + β
t+D
∑

j=t

|mj −mj−1| (5)

subject to

t
∑

j=1

lDj ≤

t
∑

j=1

mj

t+D
∑

j=1

mj =

t
∑

j=1

Lj

0 ≤ mk ≤M t ≤ k ≤ t + D

Note that the deadline constraint (C1) and the release

constraint (C2) are satisfied at time t, since
∑t

j=1 lDj ≤
∑t

j=1 mj ≤
∑t

j=1 Lj . We apply the valley optimization (5)

for each ts ≤ t ≤ t′s and local optimization (4) for each

time slot t where t ∈ {[1, T − D − 1] − [ts, t
′

s]} for all ts.

For each t ∈ [T − D,T] we apply the valley optimization

(5) for global valley in the interval [t, T] in order to execute

all the accumulated workload. Algorithm 1 summarizes the

procedures for VFW(δ). For each new time slot t, Algorithm 1

detects a valley by checking whether the curves lδt and Lt

intersects. If t is inside a valley, Algorithm 1 applies valley

optimization (VOPT); local optimization (LOPT), otherwise.

Figure 1(b) illustrates the nature of solutions from VFW(δ) for

xt and mt. Note that δ is a parameter for the online algorithm

VFW(δ).

Algorithm 1 VFW(δ)

1: valley ← 0; m0 ← 0
2: lD[1 : D]← 0; lδ[1 : δ]← 0
3: for each new time slot t do

4: lD[t + D]← L[t]
5: lδ[t + δ]← L[t]
6: if valley = 0 and lδ intersects L then

7: Calculate Area A
8: if A < 0 then

9: valley ← 1
10: end if

11: else if valley > 0 and valley ≤ δ then

12: valley ← valley + 1
13: else

14: valley ← 0
15: end if

16: if valley = 0 then

17: m[t : t+D] ← LOPT(l[1 : t], lδ[1 : t+ δ], mt−1,M)

18: else

19: m[t : t + D] ← VOPT(l[1 : t], L[1 : t], mt−1, M)

20: end if

21: xt ← mt

22: end for

C. Analysis of the Algorithm

We first prove the feasibility of the solutions from the

VFW(δ) algorithm and then analyze the competitive ratio of

this algorithm with respect to the offline formulation (3). First,

we have the following theorem about the feasibility.

Theorem 1: The VFW(δ) algorithm gives feasible solution

for any 0 < δ < D.

Proof: We prove this theorem inductively by showing that

the choice of any feasible mt from an optimization applied

in the interval [t, t + D] do not result in infeasibility in

the optimization applied in [t + 1, t + D + 1]. Initially, the

optimization in VFW(δ) is applied for the interval [1, D + 1]
with

∑k
j=1 lDj = 0 for 1 ≤ k ≤ D. Hence the optimization

applied in the intervals [1, D + 1] gives feasible m1 because
∑k

j=1 lDj ≤
∑k

j=1 lδj ≤
∑k

j=1 Lj for 1 ≤ k ≤ D.

Now suppose the VFW(δ) gives feasible mt in an interval

[t, t + D]. We have to prove that there exists feasible choice

for mt for the optimization applied at [t + 1, t + D + 1]. The

deadline constraint (C1) and the release constraint (C2) are

satisfied for mt. Hence,
∑t

j=1 lDj ≤
∑t

j=1 lδj ≤
∑t

j=1 Lj .

Since 0 < δ < D,
∑t

j=1 lDj ≤
∑t+1

j=1 lDj ≤
∑t

j=1 lδj ≤
∑t+1

j=1 lδj ≤
∑t

j=1 Lj ≤
∑t+1

j=1 Lj . Thus for any feasible

choice of mt, we can always obtain feasible solution for mt+1

such that the above inequality holds.

We now analyze the competitive ratio of the online

algorithm with respect to the offline formulation (3).

We denote the operating cost of the solution vectors

X = (x1, x2, . . . , xT) and M = (m1, m2, . . . ,mT) by

costo(X, M) =
∑T

t=1 mtC(xt/mt), switching cost by

costs(X, M) = β
∑T

t=1 |mt − mt−1| and total cost by

cost(X,M) = costo(X, M) + costs(X,M). We have the

following lemma.

Lemma 2: costs(X, M) ≤ 2β
∑T

t=1 mt

Proof: Switching cost at time t is St = β|mt−mt−1| ≤
β(mt + mt−1), since mt ≥ 0. Then costs(X, M) ≤
β

∑T
t=1(mt + mt−1) ≤ 2β

∑T
t=1 mt where m0 = 0.

Let X∗ and M∗ be the offline solution vectors from

optimization (3). We have the following theorem about the

competitive ratio.

Theorem 2: cost(X,M) ≤ e0+e1+2β
e0+e1

cost(X∗, M∗).

Proof: Since the offline optimization assigns all the work-

load in the [1, T] interval,
∑T

t=1 x∗

t =
∑T

t=1 Lt ≤
∑T

t=1 m∗

t ,

where we used x∗

t ≤ m∗

t for all t. Hence cost(X∗, M∗) ≥
costo(X

∗, M∗) =
∑T

t=1 m∗

t C(x∗

t /m∗

t) =
∑T

t=1(e0m
∗

t +

e1x
∗

t) ≥
∑T

t=1(e0 + e1)Lt.

In the online algorithm we set xt = mt and
∑t

j=1 mj ≤
∑t

j=1 Lj for all t ∈ [1, T]. Hence by lemma 2, we have

cost(X,M) = costo(X, M) + costs(X,M) ≤
∑T

t=1(e0 +

e1)mt + 2β
∑T

t=1 mt ≤ (e0 + e1)
∑T

t=1 Lt + 2β
∑T

t=1 Lt =

(e0 + e1 + 2β)
∑T

t=1 Lt.

Note that the competitive ratio does not depend on δ or D.

Hence the performance of the VFW(δ) is within a constant

factor of the offline algorithm. Although the ratio seems to be

large, the performance of VFW(δ) algorithm is close to the

offline optimal algorithm as evaluated in section V .

6

IV. GENERALIZED CAPACITY PROVISIONING

We now consider the general case where the deadline

requirement is not same for all the workload. Let ν be the

maximum possible deadline. We decompose the workload

according to their associated deadline. Suppose Ld,t ≥ 0 be

the portion of the workload released at time t and has deadline

d for 0 ≤ d ≤ ν. We have

ν
∑

d=0

Ld,t = Lt

The workload to be executed at any time slot t can come

from different previous slots t − d where 0 ≤ d ≤ ν as

illustrated in Figure 3(a). Hence we redefine the deadline curve

lt and represent it by l′t. Assuming Ld,t = 0 if t ≤ 0, we define

l′t =

ν
∑

d=0

Ld,(t−d)

Then the offline formulation remains the same as formula-

tion (3) with the deadline curve lt replaced by l′t.

minxt,mt

T
∑

t=1

mtC(xt/mt) + β

T
∑

t=1

|mt −mt−1| (6)

subject to

t
∑

j=1

l′j ≤

t
∑

j=1

xj ≤

t
∑

j=1

Lj ∀t

T
∑

j=1

xj =

T
∑

j=1

Lj

0 ≤ xt ≤ mt ∀t

0 ≤ mt ≤M ∀t.

We now consider the online case. Delaying the workload

up to their maximum deadline may increase the switching cost

since it may increase the variation in the workload compared to

the original workload (see Figure 3(b)). Hence at each time we

need to determine the optimum assignment and capacity that

reduces the switching cost from the original workload while

satisfying each individual deadline. We can apply the VFW(δ)

algorithm from the previous section with D = Dmin where

Dmin is the minimum deadline for the workload. If Dmin

is small, VFW(δ) does not work well because δ < Dmin

becomes too small to detect a valley. Hence we use a novel

approach for distributing the workload Lt over the Dt slots

such that the change in the capacity between adjacent time

slots is minimal (see Figure 3(c)). We call this algorithm

Generalized Capacity Provisioning (GCP) algorithm.

In the GCP algorithm, we apply optimization to determine

mt at each time slot t and make xt = mt. The optimization

is applied over the interval [t, t + ν] since at time slot t we

can have workload that has deadline up to t + ν slots. Hence

at each time t, the released workload is a vector of ν + 1
dimension. Let, Lt = (L0,t, L1,t, . . . , Lν,t) where Ld,t = 0
if there is no workload with deadline d at time t. Let yt

be the vector of unassigned workload released up to time

Fig. 3. Illustration of workload with different deadline requirements. (a)
workload released at different times have different deadlines, (b) the delayed
workload l′

t
, may increase the switching cost due to large variation, (c)

distribution of workload in adjacent slots by GCP to reduce the variation
in workload.

t. The vector yt is updated from yt−1 at each time slot

by subtracting the capacity mt−1 and then adding Lt. Note

that mt−1 is subtracted from the vector yt−1 in order to use

unused capacity to execute already released workload at time

t−1 by following EDF policy (see lines 4-17 in Algorithm 2).

Let y′

t−1
= (y′

0,t−1, y
′

1,t−1, y
′

2,t−1, . . . , y
′

ν,t−1) be the vector

after subtracting mt−1 with y′

0,t−1 = 0 and y′

j,t−1 ≥ 0 for

1 ≤ j ≤ ν. Then yt = (y′

1,t−1, y
′

2,t−1, . . . , y
′

ν,t−1, 0) + Lt

where yt = (0, 0, . . . , 0) if t <= 0. Then the optimization

GCP-OPT(yt, mt−1, M) applied at each t over the interval

[t, t + ν] is as follows:

minmt
(e0 + e1)

t+ν
∑

j=t

mj + β

t+ν
∑

j=t

|mj −mj−1| (7a)

subject to

ν
∑

j=0

mt+j =
ν

∑

j=0

yj,t (7b)

j
∑

k=0

mt+k ≥

j
∑

k=0

yk,t 0 ≤ j ≤ ν − 1 (7c)

0 ≤ mt+j ≤M 0 ≤ j ≤ ν (7d)

Note that the optimization (7) solves for ν + 1 values.

We only use mt as the capacity and assignment of workload

at time t. Algorithm 2 summarizes the procedures for GCP.

The GCP algorithm gives feasible solutions because it works

with the unassigned workload and constraint (7c) ensures

deadline constraint (C1) and constraint (7b) ensures the release

constraint (C2). The competitive ratio for the GCP algorithm

is same as the competitive ratio for VFW(δ) because in GCP,

mt = xt and release constraint (C2) holds at every t making
∑T

t=1 mt =
∑T

t=1 xt ≤
∑T

t=1 Lt.

V. EXPERIMENTAL RESULTS

In this section, we seek to evaluate the cost incurred by the

VFW(δ) and GCP algorithm relative to optimal solution in the

context of workload generated from realistic data.

A. Experimental Setup

We aim to use realistic parameters in the experimental setup

and provide conservative estimates of cost savings resulting

from our proposed VFW(δ) and GCP algorithms.

7

Algorithm 2 GCP

1: y[0 : ν]← 0
2: m0 ← 0
3: for each new time slot t do

4: uc← mt−1 {uc represents the unused capacity}
5: for i = 0 to ν do

6: if uc ≤ 0 then

7: y′[i]← y[i]
8: else

9: uc← uc− y[i]
10: if uc ≤ 0 then

11: y′[i]← −uc
12: else

13: y′[i]← 0
14: end if

15: end if

16: end for

17: y[0 : ν] = {y′[1 : ν], 0}+ Lt[0 : ν]
18: m[t : t + D] ← GCP-OPT(y[0 : ν], mt−1, M)

19: xt ← mt

20: end for

Cost benchmark: Currently data centers typically do not use

dynamic capacity provisioning based on the variation of the

workload [7]. A naive approach for capacity provisioning is

to follow the workload curve and determine the capacity and

assignment of workload accordingly. Clearly it is not a good

approach because for capacity provisioning it does not take

into account the cost incurred due to switching. Yet this is a

very conservative estimate as it does not waste any execution

capacity and meets all the deadline. We compare the total

cost from the VFW(δ) and GCP algorithm with the ‘follow

the workload’ (x = m = L) strategy and evaluate the cost

reduction.

Cost function parameters: The total cost is characterized by

e0 and e1 for the operating cost and β for the switching cost.

In the operating cost, e0 represents the proportion of the fixed

cost and e1 represents the load dependent energy consumption.

The energy consumption of the current servers is dominated by

the fixed cost [10]. Therefore we choose e0 = 1 and e1 = 0.

The switching cost parameter β represents the wear-and-tear

due to changing power states in the servers. We choose β = 6
for slot length of 10 minutes such that it works as an estimate

of the time a server should be powered down (typically one

hour [7], [9]) to outweigh the switching cost with respect to

the operating cost.

Workload description: We use two HTTP traces from real

world as examples of dynamic workload. The HTTP traces

are taken from the HTTP request logs for one day (24 hours)

from a server at University of California San Diego (UCSD)

and San Diego Super Computing Center (SDSC). We counted

the number of different types of requests over a time slot length

of 10 minutes and use that as a dynamic workload (Figure 4).

The two examples we use represent strong diurnal properties

and have variation from bursty workload (UCSD) to typical

(a) UCSD (b) SDSC

Fig. 4. Illustration of the traces for dynamic workload used in the
experiments.

workload (SDSC). We then assign deadline for each workload.

For VFW(δ), the deadline D is uniform and is assigned in

terms of number of slots the workload can be delayed. For

our experiments, We vary D from 1 − 15 slots which gives

latency from 10 minutes upto 2 hour 30 minutes. Note that

the choice for the values of D are intended for the synthetic

dynamic workload and not for real http requests. For GCP,

we use the request types to generate workload with different

deadline requirements. For same type of requests we chose

the same value for d but assigned different value for different

types e.g. image files, video files, text files etc. We picked ten

different file types from the requests and used their relative

frequency to assign deadline varying from 1− 10 slots.

B. Experimental Analysis

In this section we analyze the impact of wide variety of

parameters on cost savings provided by VFW(δ) and GCP. We

then compare VFW(δ) and GCP for uniform deadline (GCP-

U) and justify practical significance of our work.

Impact of deadline: The first parameter we study is the

impact of different deadline requirements of the workload on

the cost savings. Figure 5 shows that even for deadline D
as small as 2 slots, the cost is reduced by ∼40% for GCP-

U, ∼30% for VFW(δ) while the offline algorithm gives a

cost saving of ∼60% compared to the naive algorithm. It

also shows that for all the algorithms, large D gives more

cost savings as more workload can be delayed to reduce

the variation in the workload. As D grows larger the cost

reduction from GCP-U and VFW(δ) approaches offline cost

saving which is as much as 70%. For VFW(δ), the cost saving

is always less than GCP-U for typical workload (SDSC), but

for bursty workload (UCSD) VFW(δ) performs better than

GCP-U as filling valleys with the workload becomes more

beneficial when D becomes large.

Impact of δ for VFW(δ): The parameter δ is used as a

lookahead to detect a valley in the VFW(δ) algorithm. If δ is

large, valley detection performs well but it may be too late to

fill the valley due to the deadlines. On the other hand if δ is

small, valley detection does not work well because the capacity

has already gone down to the lowest value. Figure 6 illustrates

the valley detection for small δ and large δ. Although the

cost savings from VFW(δ) largely depends the nature of the

workload curve, Figure 7 shows that δ ∼ D/2 is a conservative

estimate for better cost savings.

8

(a) UCSD (b) SDSC

Fig. 5. Impact of deadline on cost incurred by GCP-U, Offline and VFW(δ)
with δ = D/2.

Fig. 6. Valley detection for (a) small δ and (b) large δ for VFW(δ).

(a) UCSD (b) SDSC

Fig. 7. Impact of δ for VFW(δ) with deadline D = 15.

Performance of GCP: We evaluated the cost savings from

GCP by assigning different deadline for different types of

workload. For conservative estimates of deadline requirements,

we found ∼60% cost reduction for UCSD workload and

∼40% cost reduction for SDSC workload each of which

remains close to the offline optimal solutions.

Comparision of VFW(δ) and GCP: We compare GCP

for uniform deadline (GCP-U) with VFW(δ) for δ = D/2.

Figure 8 illustrates the cost reduction for VFW(δ) and GCP-U

with uniform deadline D = 15 and δ = 8. Surprisingly for

bursty workload (UCSD), VFW(δ) works much better than

GCP-U for any value of δ. But for typical workload GCP-

U works better. Hence the performance of both the online

algorithms depends largely on the nature of the workload.

Practical significance: We now justify different practical as-

pects of capacity provisioning via dynamic deferral. Although

we have used synthesized workload for our experiments, there

are many real world examples in High Performance Com-

puting (HPC) which has real deadline requirements e.g. see

[11], [12]. Lee et al. [11] conducted a survey to measure the

impact of delay on user satisfaction and represented delay as

utility functions which are often flat indicating fixed deadline

requirements. The deadline requirements in HPC are usually

(a) UCSD (b) SDSC

Fig. 8. Comparision of VFW(δ), GCP-U and Offline algorithms with uniform
deadline D = 15 and δ = 8.

large in orders of hours but in other applications it might be

small in order of minutes. Hence we studied the impact of

different deadline requirements varying from 10 minutes to

2 hours and 30 minutes (see Figure 5). Our results highlight

that even if the deadline is as small as one slot (10 minutes),

we save around 40% energy consumption compared to without

using dynamic deferral. Note that we do not use any prediction

window [7], [13] for the algorithms. Using prediction window,

our algorithms can be modified to optimize over more future

slots which eventually results in more energy savings.

VI. RELATED WORK

With the importance of energy management in data centers,

many scholars have applied energy-aware scheduling because

of its low cost and practical applicability. In energy-aware

scheduling, most work tries to find a balance between energy

cost and performance loss through DVFS (Dynamic Voltage

and Frequency Scaling) and DPM (Dynamic Power Man-

agement), which are the most common system-level power

saving methods. Beloglazov et al. [14] give the taxonomy

and survey on energy management in data centers. Dynamic

capacity provisioning is part of DPM technique. Chase et al.

[15] introduce the executable utility functions to quantify the

value of performance and use economic approach to achieve

resource provisioning. Pinheiro et al. [16] consider resource

provisioning in both application and operating system level.

They dynamically turn on or turn off nodes to adapt to the

changing load, but do not consider the switching cost.

Most work on dynamic capacity provisioning for indepen-

dent workload uses models based on queueing theory [17],

[18], [19], or control theory [20], [21], [22]. Recently Lin

et al. [7] used more general and common energy model and

delay model which are not confined to queueing or control

theoretic methods. In our paper we also use general energy

model to extend its usage for latency requirements. However,

our work is different from Lin et al. [7] in several ways. First,

the performance of their LCP algorithm depends on the peak-

to-mean ratio (PMR) of the workload, while our algorithms

perform better for workloads with high PMR. Second, in LCP

algorithm, smaller time slot is desirable because switch cost

depends on the length of time slot, and thus the difference

between upper and lower limit for the capacity increases for

9

LCP algorithm and its capacity curve comes closer to the

workload curve resulting in higher switch cost than ours. At

last, in concerning delay, LCP considers delay as the objective

and aim to minimize the average delay while we regard it

as the deadline constraint. Instead of penalizing the delay,

we provide guarantee on maximum delay and utilize delay

to reduce the switching cost of the servers.

Many applications in real world require delay bound or

deadline constraint e.g. see Lee et al. [11]. When combining

with energy conservation, deadline is usually a critical adjust-

ing tool between performance loss and energy consumption.

Energy efficient deadline scheduling was first studied by Yao

et al. [23]. They proposed one offline algorithm and two

online algorithms, which aim to minimize energy consumption

for independent jobs with deadline constraints on a single

variable-speed processor. After that, a series of work was done

to consider online deadline scheduling in different scenar-

ios, such as discrete-voltage processor, tree-structured tasks,

processor with sleep state and overloaded system [24], [25].

There are also some work on energy-aware scheduling in

multiprocessor systems. Most of them focus on real-time tasks

[26], [27], [28]. In the context of data center, most work on

energy management merely talk about minimizing the average

delay but not give any bound on delay except Mukherjee

et al. [6]. They propose an offline algorithm-SCINT and

online algorithm-EDF-LRH considering deadline constraints

to minimize the computation, cooling and migration energy.

In the online algorithm, they simply use EDF algorithm to

satisfy the deadline, while in the offline algorithm they use

genetic algorithm. However, this work is a job assignment

problem not a dynamic resource provisioning problem, where

the number of needed servers is given in advance.

VII. CONCLUSION

In this paper we have proposed two new algorithms VFW(δ)

and GCP for capacity provisioning in data centers while

guaranteeing the deadlines. The algorithms utilize the latency

requirements of workloads for cost savings and guarantees

bounded cost and bounded latency under very general settings

- arbitrary workload, general deadline and general energy cost

models. Further both the VFW(δ) and GCP algorithms are

simple to implement and do not require significant computa-

tional overhead.

Our experiments highlight that significant cost and energy

savings can be achieved via dynamic deferral of workload.

In this paper, we tried to limit our motivation towards data

centers. But in the future ‘cloudy world’ where almost all the

computation will be outsourced, deadline/latency requirements

would catch more attention. Therefore it would be worth and

interesting to apply the concept of dynamic defferal to other

load balancing or scheduling problems. We keep that as our

future work.

REFERENCES

[1] N. Anderson, Epa: Power usage in data centers could double

by 2011, http://arstechnica.com/old/content/2007/08/ epa-power-usage-in-
data-centers-could-double-by-2011.ars, August 2007.

[2] Z. Liu, M. Lin, A. Wierman, S. Low, and L. Andrew, Greening Geo-
graphical Load Balancing, in Proc. SIGMETRICS, June 2011.

[3] C. Stewart and K. Shen, Some Joules Are More Precious Than Others:

Managing Renewable Energy in the Datacenter, in Proc. Power Aware
Comput. and Sys., October 2009.

[4] E. Pakbaznia and M. Pedram, Minimizing data center cooling and server

power costs, in Proc. ISLPED, 2009.
[5] R. K. Sharma, C. E. Bash, C. D. Patel, R. J. Friedrich, J. S. Chase,

Balance of Power: Dynamic Thermal Management for Internet Data

Centers, IEEE Internet Computing, vol. 9, no. 1, pp. 42-49, 2005.
[6] T. Mukherjee, A. Banerjee, G. Varsamopoulos, and S. K. S. Gupta, Spatio-

Temporal Thermal-Aware Job Scheduling to Minimize Energy Consump-

tion in Virtualized Heterogeneous Data Centers, Computer Networks,
2009.

[7] M. Lin, A. Wierman, L. H. Andrew, and E. Thereska, Dynamic right-

sizing for power-proportional data centers, in Proc. IEEE INFOCOM,
2011.

[8] SPEC power data on SPEC website at http://www.spec.org.

[9] P. Bodik, M. P. Armbrust, K. Canini, A. Fox, M. Jordan, and D. A.
Patterson, A case for adaptive datacenters to conserve energy and improve

reliability, University of California at Berkeley, Tech. Rep. UCB/EECS-
2008-127, 2008.

[10] L. A. Barroso, and U. Holzle, The case for energy-proportional com-

puting. Computer, vol. 40, no. 12, pp. 3337, 2007.
[11] C. B. Lee, and A. Snavely, Precise and realistic utility functions for

user-centric performance analysis of schedulers, In Proc. IEEE Symp.
on High-Performance Distributed Computing (HPDC), June 2007.

[12] Atsuko Takefusa, Satoshi Matsuoka, Henri Casanova, Francine Berman,
A Study of Deadline Scheduling for Client-Server Systems on the Compu-

tational Grid, in Proc. 10th IEEE Int. Sym. on HPDC, pp. 04-06, 2001.
[13] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, Workload analysis

and demand prediction of enterprise data center applications, In Proc.
IEEE Symp. Workload Characterization, Sep. 2007.

[14] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya, A taxonomy and

survey of energy-efficient data centers and cloud computing systems, Univ.
of Melbourne, Tech. Rep. CLOUDS-TR-2010-3, 2010.

[15] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle,
Managing energy and server resources in hosting centers, in Proc. ACM
SOSP, pp. 103-116, 2001.

[16] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath, Load balancing

and unbalancing for power and performacne in cluster-based systems, in
Proc. Compilers and Operating Systems for Low Power, 2001.

[17] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy, Optimal power

allocation in server farms, in Proc. ACM Sigmetrics, 2009.
[18] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. A. Kozuch, Optimality

analysis of energy-performance trade-off for server farm management,
Performance Evaluation, vol. 67, no. 11, pp. 1155 - 1171, 2010.

[19] D. Meisner, B. T. Gold, and T. F. Wenisch, The PowerNap Server

Architecture, ACM trans. Computer systems (TOCS), 29(1), 2011.
[20] T. Horvath and K. Skadron, Multi-mode energy management for multi-

tier server clusters, in Proc. PACT, 2008.
[21] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gau-

tam, Managing server energy and operational costs in hosting centers,
in Proc. ACM Sigmetrics, 2005.

[22] R. Urgaonkar, U. C. Kozat, K. Igarashi, and M. J. Neely, Dynamic

resource allocation and power management in virtualized data centers,

in Proc. IEEE/IFIP NOMS, 2010.
[23] Frances Yao, Alan Demers, and Scott Shenker, A scheduling model

for reduced CPU energy, In Proc 36th IEEE symp on foundations of
computer science (FOCS), pp. 374-382, 1995.

[24] H. L. Chan, J. W. T. Chan, T. W. Lam, L. K. Lee, K. S. Mak and P. W.
Wong, Optimizing throughput and energy in online deadline scheduling,
ACM Trans. Algorithms 6(1), 1-10, 2009.

[25] X. Han, T. W. Lam, L. K. Lee, I. K. To and P. W. Wong, Deadline

scheduling and power management for speed bounded processors, Theor.
Comput. Sci. 411(40-42), 3587-3600, 2010.

[26] N. K. Jha, Low power system scheduling, synthesis and displays, IEE
Proc. on Comput. and Digital Tech., 152(3), 34-35, 2005.

[27] K. Q. Li, Performance analysis of power-aware task scheduling

algorithms on multiprocessor computers with dynamic voltage and speed,
IEEE Trans. Parall. Distr., 19(11), 1484-1497, 2008.

[28] H. Chen, A. M. K. Cheng and Y. W. Kuo, Assigning real-time tasks to

heterogeneous processors by applying ant colony optimization, J. Parallel
Distrib. Comput., 71(1), 132-142, 2011.

