UCLA
UCLA Previously Published Works

Title
Identifying noise sources governing cell-to-cell variability

Permalink
https://escholarship.org/uc/item/8bs1n733

Authors

Mitchell, Simon
Hoffmann, Alexander

Publication Date
2018-04-01

DOI
10.1016/j.coisb.2017.11.013

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/8bs1n733
https://escholarship.org
http://www.cdlib.org/

ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Current Opinion in

Systems Biology

Identifying noise sources governing cell-to-cell

variability

Simon Mitchell and Alexander Hoffmann

Abstract

Phenotypic differences often occur even in clonal cell popu-
lations. Many potential sources of such variation have been
identified, from biophysical rate variance intrinsic to all chem-
ical processes to asymmetric division of molecular compo-
nents extrinsic to any particular signaling pathway. Identifying
the sources of phenotypic variation and quantifying their con-
tributions to cell fate variation is not possible without accurate
single cell data. By combining such data with mathematical
models of potential noise sources it is possible to characterize
the impact of varying levels of each noise source and identify
which sources of variation best explain the experimental ob-
servations. The mathematical framework of information theory
provides metrics of the impact of noise on the reliability of a cell
to sense its environment. While the presence of noise in a
single cellular system reduces the reliability of signal trans-
duction its impact on a population of varied single cells remains
unclear.
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Introduction

Cells must reliably sense their environment in order to
behave and respond appropriately. Sources of informa-
tion in the environment are highly varied and can
include nutrient availability, cytokine and chemokine
levels, pathogens and combinations thereof. Sensing the
cellular environment typically involves receptor activa-
tion and transduction of receptor state information
through a signaling network resulting in an appropriate
response. Such responses can take the form of gene

expression [1], or cell fate decisions such as differenti-
ation [2], division and death [3°]. Mechanistic compu-
tational models of signaling networks are valuable tools
to explain how a cell can respond to environmental cues
with stimulus specific gene expression [4], differentia-
tion [5,6], division [7] and death [3,8].

However, single cell studies have revealed a high degree
of variability in the responses of genetically identical
cells grown and treated in identical conditions.
Numerous theoretical and experimental studies have
addressed the sources and physiological consequence of
this variability [9—11]. A useful distinction is whether
the source of the variability is intrinsic or extrinsic to the
regulatory system and timescale being considered. That
distinction has indeed important implications to both
the biology and our study of it. As intrinsic molecular
variability reflects thermodynamic noise of molecular
interactions within the regulatory network, modeling, it
requires stochastic mathematical representation (e.g.
Gillespie formalisms), and may limit the predictability
of biological phenotypes, or reliability of signal trans-
duction (Figure 1A). In contrast, extrinsic noise reflects
distinct starting conditions (initial concentrations and/
or kinetic rate constants) of the molecular networks of
individual cells within the population, or distinct time-
dependent inputs (changes in the environment) to the
system [12,13]. In principle, biological outcomes that
are only subject to extrinsic noise can be predicted and
modeled with deterministic mathematical formalisms
(e.g. ordinary differential equations) so long as the
starting conditions and inputs to the system are known.
Further, information loss through extrinsic noise can be
mitigated through a Dynamical Signaling Code [14,15].
By leveraging information contained in time trajectories,
the reliability of signaling is not diminished by extrinsic
noise (Figure 1B and C) [16,17].

In a seminal study, an engineered bacterial system was
developed to quantify the contribution of extrinsic and
intrinsic noise sources to the expression of identical
duplicate reporter genes [18]. However, such elegant
engineering of signaling systems is not possible in many
biological contexts such as the immune system [19,20].
For natural biological systems computational models can
provide a tool to elucidate how different sources of
variability can result in distinct phenotypes.

Here we will describe how recent advances in single-cell
imaging, combined with computational models enable
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Dynamic information can increase channel capacity and overcome
extrinsic variability [16]. A) Mutual information (the information carried by a
channel) calculated as a function of the number of input measurements
integrated and the level of intrinsic noise. By integrating multiple mea-
surements from a dynamic input mutual information can be increased to
overcome pre-existing cell-to-cell variability. Increasing intrinsic noise re-
duces the mutual information and cannot be overcome by integrating
more measurements of the same biochemical species. B) Trajectories
from a computational model of ERK activity show highly variable re-
sponses [17]. C) Line graph of mutual information showing that a static
single-timepoint measurement is incapable of encoding high mutual in-
formation. Dynamic information encoded by integrating measurements
from multiple time points can overcome pre-existing variability to achieve
high mutual information, this is limited by intrinsic noise.

disentangling the sources and impact of variability on a
cell responding to its environment.

Non-genetic origins of cell-to-cell variability in TRAIL-

induced apoptosis

Cell death decision pathways are well-suited for in-
vestigations into the molecular basis of cell fate het-
erogeneity due to the distinct and unambiguous
phenotype. T'NF-related apoptosis-inducing ligand
(TRAIL) induces apoptosis through the TRAIL-
receptor which activates initiator caspases (caspase-8
and caspase-10) followed by activation of effector
caspase (caspase-3) either directly or via mitochondrial
outer membrane permeabilization (MOMP) [8]. In
response to a fixed dose of TRAIL, a wide distribution
of death times is observed within clonal cell popula-
tions. By recording and tracking division events that
occurred prior to administration of TRAIL a strong
correlation between the death times of recently
divided sibling cells was found. This indicated the
predominance of extrinsic variability present prior to
the treatment as substantial intrinsic noise would
manifest as a poor correlation between siblings
(Figure 2A). Further, by measuring the decay of
concordance of death times among siblings as time

after division increased, the investigators could quan-
tify the effect of intrinsic noise (Figure 2B). The
prevalence of pre-existing extrinsic variability over
intrinsic noise motivated the search for determinants
of death time in individual cells.

A computational model trained on live-cell imaging and
flow cytometry data could recapitulate observed cell-
death responses to TRAIL [21]. By incorporating experi-
mentally determined distributed abundance of molecular
regulators into the computational model, SL. Spencer et al.
[8] were able to show that cell-to-cell variable steady-state
pre-stimulus protein concentrations were sufficient to
explain the variable death times. Through the use of
fluorescent reporters the investigators found that vari-
ability in the signaling network upstream of MOMP ac-
counts for the distribution of death times. While such
results show that a cell’s pre-stimulus steady state de-
termines its death time in response to TRAIL, no single
protein abundance had predictive power over death time
in either the model or through fluorescent reporter assays.

A combination of mechanistic modeling and single-cell
Fluorescence Resonance Energy Transfer (FRET) by
Roux et al. [22°°] revealed initiator caspase trajectory
variation within a population controls cell death fates.
Insight from a simplified computational model of the
apoptosis signaling pathway was used to reduce the
complex variety of caspase 8 trajectories to a two variable
space represented by the initial rate of caspase 8 acti-
vation and time of maximal caspase 8 activity. By map-
ping populations of single cells to this space a boundary
could be found that separates cells within a population
that survive from those that die. At different doses of
TRAIL the fraction of cells on each side of this boundary
explain the fraction of cells dying. An important conse-
quence of the predominance of existing cell-to-cell
variability within a population is the sensitivity of frac-
tional killing (the proportion of cells undergoing cell
death) to ligand dose (Figure 2C). Cells that survive the
fractional killing were also found to maintain a pro-
survival phenotype to subsequent stimuli [23].

The potential role of pre-existing cell-to-cell heterogene-
ity in controlling fractional phenotypes within a population
is an enticing one. While it is tempting to extrapolate this
finding to other biological scenarios it may not be true in
other contexts. For example, stochastic decisions-making
in lymphocyte proliferation has been long regarded as the
process by which distinct fates are achieved.

Single cell lineage tracking enables quantification of
intrinsic and extrinsic noise sources in affecting
lymphocyte expansion

Snap shot assays at single cell resolution (such as flow-
cytometry) have revealed a high degree of cell-to-cell
heterogeneity in B lymphocyte proliferation [24].
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Sibling analysis reveals the predominance of pre-existing variability over intrinsic noise which enables dose-dependent fractional killing [8,22]. A)

Schematic of the sibling analysis performed by SL Spencer et al. [8] in which treatment with TRAIL leads to highly variable cell death with no correlation
between the time since division and the death time. However sister cell death times were found to be highly correlated indicating the predominance of pre-
existing variability over intrinsic noise. B) Representative decay of correlation coefficient (R?) between sister cells as a function of time since division. The
decreasing correlation enables quantification of intrinsic noise. The addition of cycloheximide slows the loss of correlation indicating that intrinsic noise
requires protein synthesis. C) Schematic representing the space created by time of each cells maximal FRET activity along with the rate of activation. By
plotting each cell within a population within this space the role of pre-existing variability on increasing fractional killing with increasing TRAIL dose can be

explained.

While genetic variability in the variable regions of the
B-cell receptor (BCR) may contribute to variable pro-
liferative capacity [25], highly varied proliferative fates
are also observed in clonal cell populations, or in response
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Lineage analysis reveals intrinsic and pre-existing variability that is difficult
to distinguish at the population scale [3,31]. A) Example lineage trees
created by single-lymphocyte tracking through live-cell microscopy.
Intrinsic noise is visible as diverse generations are reached within a single
lineage while pre-existing variability is displayed as differences in terminal
generation between founder-cell lineages. B) Schematic of lymphocyte
development indicating that while intrinsic noise is minimal there are many
generations among which it can accumulate during hematopoiesis.
Accumulation of intrinsic noise is a potential generator of the pre-existing
variability seen in a population during an immune response.

to mitogenic stimuli that do not target the BCR. This has
led to the hypothesis that B cell fate decision-making is
highly stochastic and dominated by intrinsic noise.
Probabilistic models based on characterizing variability
of cell fate decisions timings may recapitulate population
dynamics with great accuracy [24,26—29].

However, initial short-term microscopy tracking of live
cells indicated concordance of the fate decisions of
siblings [30]. As an alternative, a mechanistic modeling
approach treated the division and death decision as a
predictable process determined by underlying regula-
tory networks, which are inherited throughout a lineage,
with cell-to-cell variability introduced as pre-existing
differences in the kinetic rates between founder cells
[3]. Both probabilistic and mechanistic modeling ap-
proaches can provide accurate fits to the population
scale experimental data [31°]. However, these two
models predict very different single-cell lineages. The
assumption that intrinsic noise is the main source of
cell-to-cell variability results in highly irregular lineage
trees with varied terminal generations within a single
lineage (Figure 3A upper). A mechanistic modeling
approach in which extrinsic, pre-existing variability is
the main source of variability results in highly regular
lineage trees in which the terminal generation within
each lineage is constrained by the founder cell
(Figure 3A lower). The lack of long-term single cell
tracking prohibits distinction between these two hy-
potheses. A recently developed experimental and image
analysis workflow reveals complete, long-term lineage
information which is consistent with a predominance of
extrinsic noise. By fitting the width of the distribution
from which kinetic rates of founder cells are sampled an
estimate of pre-existing extrinsic noise can be
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generating using the mechanistic model. Similarly, by
fitting the width of the distribution from which resam-
pling occurs during proliferation an estimate for intrinsic
noise can be obtained. Comparing the two a 3-fold
higher coefficient of variance can be estimated for pre-
existing variability than intrinsic noise [31]. These
findings suggests the exciting opportunity to predict
and perturb lymphocyte proliferative outcomes with
high accuracy given sufficient characterization of the
state of the founder cells. Modeling can predict specific
signaling molecules that are indicative of proliferative
capacity. By these signaling molecules in the naive cells,
it should be possible to predict the cells that will pro-
liferate to late generation, and perturbing these targets
experimentally may increase the number of cells
proliferating to late generation.

It remains unclear how the preexisting cell—cell vari-
ability within a population of naive B lymphocytes
comes about. While only small amounts of intrinsic noise
affect cellular growth and division, a cell must undergo
many divisions during hematopoietic development from
a stem cell to a naive B cell. Recent studies have com-
bined genetic barcoding and mathematical modeling to
quantify hematopoietic developmental rates [32].
Incorporation of intrinsic variability into these models
may reveal whether an accumulation of small amounts of
intrinsic noise during development is sufficient to
generate the pre-existing variability seen in naive B
lymphocytes (Figure 3B).

Both terminal generation and cell death are highly
discrete phenotypes that show varied single cell re-
sponses to environmental perturbations due to preex-
isting variability in molecular networks. While
transcription factor responses to stimuli are less discrete
the predominance of preexisting variability may also
explain the highly varied dynamics seen through recent
single-cell analyses.

Identifying the sources of cell-to-cell variable NFkB
signaling dynamics in response to LPS

The response of immune cells to pathogen-associated
molecular patterns (PAMPs) is not only graded
compared to the all-or-none response to apoptosis
inducing ligands, but it is also dynamic [33,34]. Indeed,
signaling dynamics have been hypothesized to consti-
tute a code that carries information about environ-
mental perturbations to coordinate cellular core
machineries for ligand-appropriate responses. Macro-
phages sense PAMPs through a repertoire of toll-like
receptors (TLRs) which recognize specific pathogenic
stimuli [35]. Just two adaptor proteins are critical:
myeloid differentiation marker 88 (MyD88) and TIR
domain-containing adaptor protein-inducing inter-
feron-p (TRIF). Whether the two branches have over-
lapping or distinct functions in LLPS-to-NFkB signaling,

and their relative roles in producing cell-to-cell variable
NFkB dynamics, was the question addressed by Z
Cheng et al. [36].

While average cellular dynamics can be observed in
population assays [4], characterizing cellular variability
requires accurate single-cell assays. Fluorescent re-
porters and time-lapse imaging enables quantification of
the translocation of transcription factor NFkB in
response to TLR ligands and intuitive visualization of the
variability in response. Z Cheng et al. [36] found that
there was little variability in the MyD88 branch, as the
pathway showed a high degree of ultrasensitivity (due to
the presence of a signalosome) and at typical doses of
ligand the intra-cellular signal generated was substan-
tially above the inflection point. At these ligand con-
centrations it thus showed reliable “digital” activation
(Figure 4). In contrast, variability in the TRIF pathway
(which showed a more linear dose response) affected the
duration of signaling (determined by endosomal matu-
ration time) and thus had a substantial impact on the
phenotypic variability in NFkB activity dynamics.

When the variability in a pathway is well characterized,
it is possible to quantify the reliability of information
transfer possible through that pathway using an infor-
mation theory formalism [16°,37]. The MyD88 pathway
was found to have higher reliability to distinguish be-
tween low and medium doses than the TRIF pathway,
and therefore higher channel capacity (the maximum
possible information that can be transmitted through a
pathway). In contrast the TRIF pathways was found to
be susceptible to noise but maintained scalable response
(increasing response to increasing doses) beyond the
saturation point of the MyD88 pathway. NFkB dynamics
result from combining the different noise characteristics
and temporal control of the MyD88 and TRIF pathways
to reliably activate early but retain scalable activity with
dose at later time points (Figure 4).

Signaling systems appear to have evolved to exploit
extrinsic noise, enabling robust graduated responses or
fractional killing. Combining this insight with the in-
formation theoretic analyses requires careful consider-
ation of how such theoretic frameworks should be
viewed in the context of populations of individual cells.

Intrinsic noise sources limit channel capacity of
single-cell signal transduction however the effect on
the population remains unclear

Whether it be a cell’s imperfect ability to measure the
environmental TRAIL concentration or the effective-
ness of anti-cancer drugs, the effect of noise is widely
regarded as deleterious [38]. This impact of noise is
often quantified by the reduced channel capacity in the
presence of noise [16,39]. Initial information theoretic
studies focused on the ability of extracellular TNF to be
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The characteristics of the MyD88 and TRIF pathways combine to ensure the early phase of NFkB activity is noise insensitive while the late phase exploits
noise to enable a gradated dose-response [36]. Schematic shows how the switch-like MyD88 pathway shows all-or-nothing response which is highly
insensitive to noise. The TRIF pathways is sensitive over a wider-range and thus susceptible to cellular variability. The two pathways combine and impact

distinct phases of NFkB activity.

sensed by NFkB transcription factor and identified
channel capacities of almost 1 bit, meaning a cell can
only distinguish between the presence or absence of
TNF but cannot accurately detect dose [39,40]. More
recent work discovered that by integrating dynamic in-
formation from multiple time points within a response a
cell can encode more information about the dose
detected. It was discovered that a channel capacity of
between 1 and 2 bits could theoretically be achieved by
a single cell in by decoding such dynamic information,
however a biological mechanism by which a cell could
integrate such information and the effects of noise on
this process remains poorly understood [16].

While much of the literature has focused on the dele-
terious effect of noise and how biological systems may
mitigate noise, the ubiquitous nature of noise in bio-
logical systems along with the observation of a link be-
tween cell-to-cell wvariability and fractions of cell
populations displaying a phenotype hints at an advan-
tageous role for biological noise [20]. Single-cell analysis
of TRAIL-mediated apoptosis, a process with estab-
lished susceptibility to noise, by Suderman et al. [41°°]
results in limited channel capacity of ~0.56 bits.
However, by analyzing channel capacity on a population
scale, with ligand dose encoding the fraction of cells
undergoing apoptosis rather than a single cell’s ability to
determine TRAIL dose, a much larger channel capacity
is obtained (3.4—4 bits). Through analysis of the
computational model described in the first section of
this review, a fundamental tradeoff was identified:

increasing noise on the single cell level decreases the
channel capacity of the single cell while increasing the
channel capacity of the population as a whole. The
presence of existing cell-to-cell variability allows a
population of cells, which individually have highly
switch-like responses that are susceptible to noise and
limit channel capacity, to demonstrate a more graded
fractional killing dose-response on the population scale
that is robust to noise. In the biological context where
input signals such as TRAIL are cytokines expressed by
other cells and therefore expressed with some variability
it would be advantageous for a population of cells to
respond over a wider range of cytokine concentrations to
mitigate noise while reliably responding to a changing
environment.

Conclusions

Recent advances in single cell imagine have revealed
different phenotypic effects from intrinsic and extrinsic
noise sources. This enables existing and new biochem-
ical models to be fit with accurate levels of pre-existing
variability and intrinsic noise incorporated into the cor-
rect processes. The resulting models enable the char-
acterization of the effect of different noise sources along
with quantification of the impact on the ability of a cell
to detect accurately its environment.

While the approach of noise quantification using
biochemical models is widely applicable, care should be
taken when carrying quantitative results across
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biological systems, as the regulation of noise may differ
widely between biological contexts.

In many biological systems, the link between cell-to-cell
variability and functional outcome may be amplified,
such as individual lymphocytes undergoing clonal
expansion after affinity selection, and in such scenarios
the effect of pre-existing variability may be vastly
different to contexts in which the phenotype results
from an average of the entire population.
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