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Abstract—As a part of an innovative Intelligent Transporta-
tion System (ITS), this paper investigates the effectiveness
of transportation-based microgrid configurations in reducing
carbon dioxide (CO2) emissions and electricity costs. A case
study at the University of California, Riverside (UCR) uti-
lizes high-resolution California Independent System Operator
(CAISO) CO2 emission data to assess the environmental impact
of each microgrid configuration. It also compares electricity
costs to determine potential consumer savings. The results
demonstrate that a load-following transportation microgrid
strategy can significantly reduce CO2 emissions (67%–84%)
and achieve annual cost savings of approximately $24,000, even
when accounting for the additional demand from daily electric
vehicle (EV) charging at the building. However, battery sizing is
crucial for cost-effectiveness, as load-following exhibits dimin-
ishing returns. Doubling battery capacity may yield negligible
reductions in electricity costs and CO2 emissions after ex-
ceeding certain threshold. This emphasizes the importance of
optimizing battery capacity to achieve a balance between cost
and environmental impact. The study further reveals that Level
2 chargers in a commercial building generally have minimal
impact on building demand and energy charges. Conversely, a
single Level 3 DC fast charger has a more significant impact,
requiring increased solar and battery storage capacity for
further cost reduction.

Index Terms—Infrastructure for Charging, Communication
and Controls, Energy Storage and Control Systems, Electric
Vehicles

I. INTRODUCTION

A. Background

California is committed to reducing greenhouse gas
emissions (GHG) through various approaches, particularly
in the two largest sectors: transportation and electricity
generation. In California, electric vehicles (EVs) accounted
for 25.4% of Q2 2023 vehicle sales [1], and the state will
ban the sale of internal combustion engine vehicles by
2035 [2]. Concurrently, California is expanding the number
of EV charging stations in the state, with 13,844 Level
2 and 1,924 Level 3 stations [3] as of November 2023.
EV technology has advanced, and new EVs can typically

charge up to 80% in 20-60 minutes [4]. This is made
possible by Level 3 DC fast charging, which can deliver
up to 350 kilowatts (kW), compared to Level 2 charging,
which is limited to 19 kW [4]. While this reduced charging
time has increased the attractiveness of EVs, it also poses
a challenge for the owners of these chargers, as they can
quickly demand a large amount of electricity demand. As
California strives to increase the share of clean energy in
its electricity mix, it also needs to reduce the CO2 emis-
sions from transportation by promoting electrification.
This leads to two conundrums: how will California provide
enough capacity for electrified transportation, and how
clean is the grid that minimizes the emissions associated
with battery electric vehicles? One method to alleviate the
pressure on the grid is to localize electricity production
and EV charging using microgrids. A microgrid is defined
by the Department of Energy (DOE) and the Institute of
Electrical and Electronics Engineers (IEEE) as: "a group
of interconnected loads and distributed energy resources
within clearly defined electrical boundaries that acts as
a single controllable entity with respect to the grid. A
microgrid can connect and disconnect from the grid to
enable it to operate in both grid-connected or island-
mode." [5] [6]. As microgrids and EV chargers become
more widespread, it is essential to study the economic
and environmental impacts of EV charging, especially fast
charging, and the effect of microgrids on that impact.
EV charging differs from typical building loads, as it can
rapidly ramp up to high levels at random intervals based
on human behavior, i.e., when they plug in. An outlier
event where multiple people charge simultaneously can
cause a significant peak in the load.

This research holds significant implications for the ad-
vancement of intelligent transportation systems, as it aims
to address the economic needs of EV charging infras-
tructure owners and determine the optimal configuration
that benefits both EV owners and the environment by



minimizing GHG emissions. This paper delves into the
impacts of Level 2 and Level 3 charging infrastructure on
the behavior of microgrids, associated electricity costs, and
CO2 emissions within the context of Southern California.
The simulations are conducted using OpenModelica [7],
a dynamic modeling and simulation environment. This
study distinguishes itself from previous research in many
ways, including employing a higher time resolution for cal-
culating CO2 emissions, capturing data every 15 minutes.

B. Literature Review

Transportation microgrids have gained significant trac-
tion in recent years due to the growing demand for trans-
portation electrification. These microgrids, which combine
distributed energy resources (DERs) and energy storage
systems with electric vehicle (EV) charging infrastructure,
offer a promising solution for integrating EVs into the
power grid while minimizing environmental impact. Pre-
vious studies have investigated the economic viability of
transportation microgrids, primarily focusing on energy
charges associated with EV charging. However, demand
charges, which reflect the peak demand imposed on the
grid, need to be addressed. This inclusion is crucial for
fast charging stations, which draw significant power dur-
ing peak periods. A more comprehensive approach to
economic analysis should consider energy and demand
charges, providing a more accurate assessment of the over-
all cost of operating a transportation microgrid. Research
has addressed the impact of EV charging demand on
transportation microgrids, often focusing on low-demand
Level 2 charging. However, the increasing deployment of
high-demand Level 3 charging requires a more nuanced
understanding of its implications. Studies should incor-
porate a mix of Level 2 and Level 3 charging scenarios
to accurately assess the impact of EV charging demand
on microgrid operation and economics. Assessment of the
GHG emissions associated with transportation-microgrids
is often simplified by using average CO2 emissions from an
area’s electricity production. This approach fails to capture
the variations in CO2 emissions throughout the day, which
can significantly affect the environmental impact of EV
charging. More sophisticated GHG emission calculations
should consider the time-varying nature of CO2 emissions,
providing a more accurate representation of the environ-
mental impact of transportation microgrids.

Several studies have investigated the performance of
electric vehicle charging stations (EVCS) under varying
conditions. Reference [8] is developing a demand and
stochastic model for EVCS, followed by a techno-economic
assessment and an environmental impact analysis. They
concluded that the optimal configuration and investment
costs of EVCS with solar integration are highly dependent
on feed-in tariffs and solar irradiation levels. However,
their CO2 emission calculations were based on annual
averages and did not account for intraday variations.
They only considered energy charges, omitting demand
charges in their economic analysis. Reference [9] proposed

a control algorithm for EVCS that can minimize charging
time, minimize costs, or maximize renewable energy use
depending on the scenario. They modeled charging loads
using a uniform distribution during peak demand periods,
assuming only Level 2 charging at 3.3 kW and excluding
Level 3 charging. Reference [10] proposed an EV charging
model that shifts charging events from peak demand
periods to off-peak times. They found that their current
method had limited impact on peak load shaving and that
solar production surplus may only sometimes be diverted
to EVs due to their low availability during those times.
Their dataset was limited to one week, involving four EVs
in a system with ten buildings. Reference [11] ran multiple
scenarios with different self-consumption rates, compar-
ing scenarios first and then calculating emissions for each.
Their CO2 emission calculations were based on whole-life-
cycle CO2 emissions without high time resolution. Refer-
ence [12] employed the Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) to analyze four different responses
with EV penetration rates of 0%, 10%, 20%, and 30% using
a Monte Carlo load profile. They achieved remarkable
results but did not elaborate on their CO2 calculations
or provide a detailed analysis of the specific impacts of
Level 2 versus Level 3 charging. Reference [13] analyzed
IEEE 9 and 14 bus systems, forecasting EV loads one
day ahead. They utilized multiple microgrids to balance
out EV charging within the system, employing a multi-
objective energy management approach for optimizing
microgrid operation. The forecasted EV loads did not have
sudden high-demand events nor level 3 charging, which
makes the forecasting model challenging to implement. A
similar problem arises in Reference [14], which performs
a techno-economic analysis of PV EVCS with BESS. Their
analysis also varies battery size to find the net present
values that would make the project economically viable.
However, it is limited to only one Level 2 electric vehicle.
While their cost experiment spans the course of a year, it
only uses the total energy for the year, which is multiplied
by an annual CO2 emissions rate.

C. CO2 Emissions

Our microgrid’s solar production, shown in Fig. 1, largely
overlaps with the local solar energy production within the
larger grid. With a Battery Energy Storage System (BESS),
we can utilize renewable energy during peak times and at
night. In this scenario, the control algorithm is optimized
to minimize cost for the consumer. However, we want
to see how low-price EV charging aligns with actual CO2

emission outputs. While the microgrid does not produce
any direct CO2 emissions, CO2 emissions are attributed to
the microgrid when it pulls power from the main power
grid. The simulation uses emission output calculations
from the California Independent System Operator (CAISO)
for each time interval as a sum of all the powerplant
CO2 emissions (imports, natural gas, biogas, biomass,

geothermal, coal)
mT ON CO2

hour . The CO2 emissions output is
divided by the amount of power produced (solar, wind,



geothermal, biomass, biogas, small hydro, grid batteries,
large hydro, imports, nuclear, coal ) in MW, which gives

us an emissions rate of
mT ONCO2

hour
W . This is multiplied by

15-minute data kW and a multiplier. The multiplier of
1

4000 converts kW into W and addresses the four 15-
minute periods in an hour. CAISO gives us an estimate
of the amount of CO2 emissions in mTONCO2 for every 15
minutes that is summed to give us the total for the entire
period. This method is similar to the one used in [15]. The
CO2 calculations use 15-minute intervals to align with the
time intervals used for billing and demand cost by electric
utilities. When the microgrid does not pull power from the
grid or is sending power, the CO2 emissions are assumed
to be zero since we are using renewable solar energy.

II. SIMULATION IN OPENMODELICA

OpenModelica is an open-source implementation of
the Modelica programming language [16]. Modelica is
a programming language that is designed for dynamic
systems simulation [7]. OMEdit is the GUI interface for
OpenModelica, allowing the user to draw a system for
simulation [17]. The microgrid scenarios are simulated
in OpenModelica using the Modelica Buildings library.
Lawrence Berkeley National Laboratory created the Mod-
elica Buildings library for building and district energy
and control systems [18]. Further, its capability for energy
storage systems, bi-directional inverter, solar, and HVAC
modeling make it ideal for a microgrid simulation setup.
This allows us to create scenarios that do not currently ex-
ist in our microgrid, shown in Fig. 1, for example, running
a month with solar with the same load or running the BESS
control algorithm for different electric rates. The power
circuits are three-phase balanced circuits. The simulation
of our case study microgrid is the grid connected to the
building netload. The model’s net load is broken down into
solar power, HVAC loads, regular building loads, electric
vehicle chargers, and the BESS, as shown in Fig.1.

A. Validation

A year of real-world data was used to validate the PG

output to ensure that our model accurately portrays our
real-world system. PG is the power the microgrid sends or
consumes from the grid. The actual data was compared to
the simulated with a correlation coefficient of ≈ 0.965087
as shown in Figure 2.

B. Solar Generation and Building Loads

The solar power in our model is based on historical
solar data from a 100 kW photovoltaic (PV) array. The
HVAC loads and the regular building loads are represented
separately in this model but utilize the same method; they
both use historical real-world power data to represent their
load in the system.

C. EV Charger Loads

Our model also considers transportation loads in the
form of EV chargers. The EV chargers are represented

as two models: Level 2 EV chargers (Fig. 5) and Level 3
EV chargers. While other building loads follow a typical
daily and yearly pattern, EV loads are different since
they stochastically switch on and off, depending on when
people plug in. Our case study microgrid has four Level 2
chargers, so it can have four “steps” of 5 kW each, while
there is only one “step” of 50 kW with the Level 3 chargers.
SCADA data is used to generate EV loads in our model for
the Level 2 charger. For the Level 3 charger, a Poisson
random distribution is used to generate the number of
charge sessions in a day, the arrival times, and charging
durations based on real-world data recorded over a year.

Data from the Level-2 charger SCADA system was
utilized to determine the parameters for the probability
density function (PDF) depicted in Fig. 3. Additionally, the
power output of the Level 2 chargers is illustrated in Fig.
4. Analysis of the historical data revealed three distinct
peak charging periods occurring at 7:00, 9:00, and 13:00,
respectively, with an average number of vehicle arrivals of
6, 2, and 1 during each peak. The Level 2 SCADA data is
used in the Level 2 charger load simulation. The random
arrivals for Level 3 charging are modeled with three peak
times at 7:00, 9:00, and 13:00, with an average number of
vehicle arrivals of 2, 1, and 1, respectively. Level 3 charging
has a mean charging time of 30 minutes. The EV random
arrivals function uses these parameters to generate ran-
dom arrival times and durations. The function employs
the NumPy library [19] [20] in Python to create a Poisson
random distribution with means centered around the peak
times. To ensure consistency across different scenarios and
prevent any outlier event from the EV charging load from
disproportionately influencing higher demand events, a
random data seed value of 10 was employed to ensure
every charging event was the same.

D. BESS and Load-Following

The BESS is modeled as a battery connected to a bidi-
rectional inverter. Data generated by the control algorithm
controls the BESS output. The BESS output is computed in
real-time using a load-following algorithm utilizing BESS
SOC and the grid meter output. The algorithm charges the
battery when excess solar power is exported to the grid
and when the battery needs to be charged. Our algorithm
reads the net load from the grid model and determines the
amount of CO2 produced during that interval. Algorithm
1 shows the load the following algorithm sufficient for 0
kW operation.

III. RESULTS

The charging setup in OpenModelica is modified for
different layouts and scenarios, as described in Table I.

Scenario 1 represents the baseline case where only the
building loads, such as air conditioners, appliances, and
lights, are connected to the grid. Scenario 2 represents a
building installing four Level 2 EV chargers. Scenario 3
adds one Level 3 charger to the building and the Level
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Algorithm 1: Load-Following

1 net_load, SOC ← Modelica Data Output
2 if net_load <= 0 kW and SOC > 20 % and net_load

>= -100 kW then
3 BESS_inverter = -net_load
4 else if net_load <= -100 kW and SOC > 20 % then
5 BESS_inverter = -100 kW
6 else if net_load >= 0 kW and SOC < 90 % and

net_load <= 100 kW then
7 BESS_inverter = net_load
8 else if net_load >= 0 kW and SOC < 90 % then
9 BESS_inverter = 100 kW

10 else
11 BESS_inverter = 0

2 chargers. Scenario 4 is the first case that utilizes a
microgrid, which includes 100 kW of solar power and
500 kWh of battery storage. This scenario demonstrates
the peak-shaving capabilities of a microgrid without EV
chargers, creating high demand. This can be thought of
as the baseline case for the BESS microgrid. Scenarios
5, 6, 7, and 8 represent a transportation microgrid with
EV chargers; the BESS capacity is varied to different sizes
that include or exclude Level 3 charging to show which
BESS size offers the lowest cost and the lowest CO2

emissions, as well as the impact Level 3 charging has on
the transportation-based microgrid.

Each scenario is run independently of the others, and
the power outputs of the different components in the
simulation are shown in Fig. 6. Scenarios 1, 2, and 3 are
constantly negative, meaning they pull power from the
grid. Scenarios 3-8, on the other hand, mostly stay at zero,
meaning they either export power to the grid when the
BESS SOC is over 90% or import power from the grid when
it is under 20%.

While the load-following algorithm should limit the
amount of power consumed at any time to near zero kW,
there are still times when the BESS cannot supply the
building with power. This happens when the BESS is too
depleted, and there is little to no solar power to replenish
it, as shown in Figure 9. The two main reasons for these
events are multiple cloudy days and electrical faults. The
larger the battery capacity, the less frequently the battery
is depleted, and the microgrid can better weather events
of low solar output. Most of the low solar power events
occur during the winter months.

Figures 6, 7, and 8 show box plots of the power output.
Fig. 6 is for the entire year, while Figures 7 and 8 show
selected months. The box plots show that all three figures’
mean and 75th percentile are almost identical at 0 kW.
This implies that the following load functions correctly
most of the time. However, the outliers show when the
BESS fails to keep the power pulled from the grid at 0 kW.
Fig. 6 shows that Scenarios 4 - 8 have almost identical
values. However, this is because the figure is maximum

for the entire year. Only a few of the billing months have
a solar outage long enough to cause BESS depletion that
causes a demand peak almost as large as the no BESS
scenario (Scenario 2).

Just one outlier will change the demand charge for
the entire billing month. In some months, the maximum
demand peak of Scenario 2 and 3 is similar since they
have the same load, but for most of the months, it is
reduced significantly, reflected in the reduced demand
charges of the building.

Figures 9 and 10 demonstrate the challenges that
arise when utilizing Level 3 charging compared to Level
2 charging. In Fig. 9, the microgrid mostly maintains
zero power consumption from the grid, occasionally
exporting power to the grid with minimal imports. In
Fig. 10, the microgrid still maintains a mostly zero power
consumption but experiences higher power imports
from the grid due to battery depletion. While the
demand peaks vary significantly between Level 2 and
Level 3 charging, the overall energy consumption of the
microgrid compared to local solar production remains
similar, as shown in Table III.

The average daily CO2 emissions from each scenario are
shown in Fig. 11. Scenario 2, with its increased charging
events, shows about a 26% increase in CO2 emissions
compared to Scenario 1. The CO2 emissions from the
transportation-microgrids are lower than a conventional
building, even with the additional load from the EV
chargers. This case study shows that integrating a BESS
coupled with peak morning charging significantly alters
the characteristic emissions profile of the microgrid, devi-
ating from the conventional duck curve paradigm. Unlike
the typical afternoon peak observed in traditional duck
curve scenarios, the microgrid under examination exhibits
a peak demand period during the early morning. This
phenomenon is attributed to the near depletion of the
battery reserve, diminished solar power generation, and
heightened demand for electric vehicles (EVs) during this
timeframe. Table II shows each scenario’s emissions and
electric price amounts.

IV. CONCLUSIONS

Transportation microgrids have emerged as a com-
pelling solution for mitigating the electrical costs and
emission levels associated with EV charging infrastruc-
ture. A comprehensive analysis of various scenarios re-
veals significant economic and environmental benefits of
transportation microgrids compared to conventional sys-
tems, as depicted in Table II. For transportation-microgrid
systems using a load-following algorithm, the estimated
annual savings range is similar at around $23,000 to
$24,000 for our case study, even with the additional de-
mand from EV chargers. This implies that load-following
transportation microgrids provide the same amount of
savings even with varying demand and a sufficiently large
BESS. The cost of demand and the cost of energy saved



TABLE I: Simulated Scenarios of the example UCR Microgrid under Different Battery Sizes and EV Charging Demands

Scenario

1 Standard Building with no EV Chargers
2 Standard Building with Level 2 Charging
3 Standard Building with Level 2 and Level 3 Charging
4 Microgrid Building with 100 kW Solar, 500 kWh BESS, and No EV Charging
5 Microgrid Building with 100 kW Solar, 500 kWh BESS, and Level 2 Charging
6 Microgrid Building with 100 kW Solar, 500 kWh BESS, Level 2, and Level 3 Charging
7 Microgrid Building with 100 kW Solar, 1 MWh BESS, and Level 2 Charging
8 Microgrid Building with 100 kW Solar, 2 MWh BESS, Level 2, and Level 3 Charging

TABLE II: Microgrid Utility Prices and CO2 Emissions Output under Different Battery Sizes and EV Charging Demands

Scenario Demand Charges ($) Energy Charges ($) Total Cost ($) CO2 Emissions (mTons)

1 6616 22736 29352 34
2 8196 24607 32803 37
3 14235 29693 43928 43
4 3887 2387 6274 5
5 5133 3853 8986 7
6 11329 8238 19567 14
7 5022 3814 8836 7
8 11400 8133 19533 14

TABLE III: Microgrid Building Power Generation & Consumption
(This table determines if the renewable energy produced is sufficient to meet demand)

Billing Month Energy Produced (MWh) Capacity Factor % No EV Charging (MWh) Level 2 Charging (MWh) Level 2 & 3 Charging (MWh)

Entire Interval 202 23 -183 -198 -239
Mar_01_2022 to Mar_31_2022 22 29 -14 -15 -19
Apr_01_2022 to Apr_30_2022 15 21 -15 -16 -19
May_01_2022 to May_31_2022 12 16 -10 -11 -14
Jun_01_2022 to Jun_30_2022 16 23 -21 -22 -26
Jul_01_2022 to Jul_31_2022 26 36 -21 -21 -25
Aug_01_2022 to Aug_31_2022 23 31 -22 -24 -27
Sep_01_2022 to Sep_30_2022 20 28 -21 -23 -26
Oct_01_2022 to Oct_31_2022 18 24 -16 -17 -21
Nov_01_2022 to Nov_30_2022 15 21 -12 -13 -16
Dec_01_2022 to Dec_31_2022 11 15 -11 -12 -15
Jan_01_2023 to Jan_31_2023 10 13 -8 -10 -13
Feb_01_2023 to Feb_28_2023 9 14 -7 -8 -11

follow the same trend as the total cost, with the overall
amount of savings being similar, $3,000 and $21,000, re-
spectively, which is calculated from the commercial utility
rate shown in Tables IV, V. Furthermore, load-following
transportation-microgrids can reduce CO2 emissions by
67% to 85%, approximately 30 tons of CO2 in our case. It
is important to note that while the scenarios show similar
reductions in electricity prices and CO2 emissions, users
are strongly incentivized to acquire additional clean energy
sources (solar and wind), especially when adding a Level
3 fast charger. At the same time, a couple of Level 2
chargers do not heavily strain an office building. The solar
surplus rates make low CO2 emission load-following more
economically viable compared to just peak-shaving [22].
BESS reduces the energy pulled from the grid rather than

saving up energy to address a couple of peak cases in a
month.

It is important to note that increasing the battery ca-
pacity does not necessarily guarantee improved microgrid
performance. Addressing the most challenging solar power
outages requires a significant increase in battery capacity
while providing only marginal CO2 and cost savings in
return. Also, extra capacity is not very useful for CO2

emissions reductions without adding extra solar power to
charge the battery during daylight hours completely. Lastly,
any sensible microgrid planning requires addressing three
key parameters: clean energy generation, energy storage,
and load management. Doing only two of the three creates
situations where the microgrid alone cannot power the
building.



TABLE IV: Riverside Public Utility Commercial Demand Rate [21]

Per Meter, Per Month Effective January 1,
2024 2025 2026 2027 2028

Customer Charge Flat Charge $22.10 $22.10 $22.10 $22.10 $22.10
Reliability Charge Flat Charge $90.00 $90.00 $90.00 $90.00 $90.00
Network Access Charge $ Per kW $1.75 $1.75 $1.75 $1.75 $1.75

Demand Charge
First 15 kW or less of billing

demand, flat charge
$160.95 $160.95 $160.95 $160.95 $160.95

Demand Charge
All excess kW of billing

demand, per kW
$10.73 $10.73 $10.73 $10.73 $10.73

TABLE V: Riverside Public Utility Commercial Energy Rate [21]
Note: The solar surplus rate to sell electricity to the grid is $0.076 per kWh [22]

Per kWh Effective January 1,
2024 2025 2026 2027 2028

Tier 1 0−30,000kWh $0.1242 $0.1242 $0.1242 $0.1242 $0.1242
Tier 2 Over 30,000 kWh, per kWh $0.1360 $0.1360 $0.1360 $0.1360 $0.1360

Fig. 6: power measured from the meter for the entire year

Fig. 7: Power measured from the meter for March

Fig. 8: Power measured from the meter for July

Fig. 9: Load Following Failures after Battery Depletion (Level 2 Charging,
1 MWh BESS)



Fig. 10: Load Following Failures after Battery Depletion (Level 2 and
Level 3 Charging, 1 MWh BESS)

Fig. 11: CO2 Emissions Outputs Averages During Times of Day, using
a microgrid setup

V. FUTURE WORK

Future research will explore different, more advanced
control strategies to optimize the electric costs and CO2

emissions of the transportation-microgrid. These strate-
gies will include electric vehicle load allocation during
high peak times, maximizing the use of the clean energy
produced by the solar panels, and minimizing the power
drawn from the grid during high CO2 times. The effects
of the new net energy metering policy in California on
the value of the BESS system will also be assessed. The
impact of different time-of-use (TOU) rates in California
on electric costs and CO2 emissions will be analyzed.
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