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Abstract: The symposium, “Role of Nutrition in Alcoholic Liver Disease”, was held at the European
Society for Biomedical Research on Alcoholism Congress on 9 October 2017 in Crete, Greece.
The goal of the symposium was to highlight recent advances and developments in the field
of alcohol and nutrition. The symposium was focused on experimental and clinical aspects in
relation to the role of different types of dietary nutrients and malnutrition in the pathogenesis of
alcoholic liver disease (ALD). The following is a summary of key research presented at this session.
The speakers discussed the role of dietary fats and carbohydrates in the development and progression
of alcohol-induced multi-organ pathology in animal models of ALD, analyzed novel nutrition-related
therapeutics (specifically, betaine and zinc) in the treatment of ALD, and addressed clinical relevance
of malnutrition and nutrition support in ALD. This summary of the symposium will benefit junior
and senior faculty currently investigating alcohol-induced organ pathology as well as undergraduate,
graduate, and post-graduate students and fellows.

Keywords: alcoholic liver disease; nutrition; fat; carbohydrates; betaine; malnutrition; zinc;
nutritional support in ALD
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1. Introduction

Alcohol-induced liver dysfunction is a significant health problem worldwide for which there is no
current food and drug administration (FDA)-approved therapy. Alcoholic liver disease (ALD) refers
to a wide histological spectrum of liver pathologies, including steatosis (fatty liver), steatohepatitis
(characterized by a combination of hepatic fat accumulation and inflammation), liver fibrosis and
cirrhosis. To date, alcohol abstinence is the most effective strategy to prevent, and/or to attenuate
the disease. The cross-talk among multiple organs/tissues, e.g., the gut-liver, the gut-liver-brain, and
the white adipose tissue (WAT)-liver axes, plays a significant role in the ALD pathogenesis. Overall,
oxidative stress and inflammation are key mediators in ALD development [1–3].

Multiple factors are involved in the development of ALD, including genetic, epigenetic, and
environmental factors, such as nutrition. Alcohol and nutrients can interact at multiple levels. Excessive
alcohol ingestion alters the metabolism of most nutrients. Alcohol consumption activates enzymatic
and non-enzymatic lipid oxidation contributing to hepatic oxidative stress. Ethanol-mediated
alterations in methionine metabolism result in reduced levels of antioxidants, S-adenosyl-methionine
(SAMe) and glutathione, leading to increased oxidative stress and liver injury [4]. Further, heavy
alcohol consumption also can cause poor intestinal absorption of certain nutrients (e.g., zinc) or
increase nutrient losses. Numerous dietary factors (e.g., Zn, SAMe and betaine supplements, dietary
fat enriched in certain fatty acids) have demonstrated beneficial effects in clinical and experimental
ALD [5–7]. Nutrition plays an important role as supportive therapy [8,9], as nutritional deficiencies
commonly occur in patients with ALD, and patients with severe alcoholic hepatitis almost invariably
demonstrate some form of malnutrition [10,11].

At this symposium, the speakers discussed the role of dietary fats in the development
and progression of alcohol-induced liver pathology, focusing specifically on linoleic acid and its
oxidized metabolites; discussed the importance of dietary fat/carbohydrate ratio; examined novel
nutrition-related therapeutics (specifically, betaine) in the treatment of ALD, and addressed clinical
relevance of malnutrition and nutrition support in ALD. All presentations at this symposium supported
the notion that nutritional factors play important roles in alcohol-induced multi-organ pathology and
could serve as potential preventive/therapeutic targets/options.

2. Summary of Presentations at the Symposium

2.1. Dietary Linoleic Acid and Its Oxidized Metabolites Exacerbate Liver Injury Caused by Ethanol via
Induction of Hepatic Pro-Inflammatory Response

Dennis R. Warner, Ariel E. Feldstein, Craig J. McClain, and Irina A. Kirpich

Studies from our laboratory and others have demonstrated that dietary fats are important
modulators of the toxic effects of ethanol in the liver [12]. It has been previously shown that rodents
placed on diets high in unsaturated fat (USF, enriched predominantly in the polyunsaturated fatty
acid (PUFA), linoleic acid (LA)) when combined with ethanol showed significantly greater liver
injury compared to animals fed ethanol and other types of fat, e.g., saturated fat (SF), enriched in
medium chain fatty acids [6,13,14]. This effect may be partially due to the oxidation of LA via the
12/15-lipoxygenase pathway or through non-enzymatic, free radical-mediated oxidation, to generate
pro-inflammatory metabolites. In agreement with previously published studies [15,16], we found in
two different animal models of ALD (chronic ad-libitum Lieber-deCarli and acute-on-chronic NIAAA
models) that in comparison to mice fed SF and ethanol, animals fed USF and ethanol had a greater
liver injury which was associated with the increased levels of oxidized LA metabolites (OXLAMs,
Figure 1A,B, acute-on-chronic NIAAA model is shown). In addition, we also observed alterations in
arachidonic acid (AA) metabolites (e.g., hydroxyeicosatetraenoic acids (HETEs)), many of which are
known pro-inflammatory lipid mediators (Figure 1C). For example, 12-HETE induced Tnf-α, Mcp-1,
and Il-6 expression in macrophages [17,18]. Additionally, an increase in 12-HETE was observed in
patients with ALD [19].



Biomolecules 2018, 8, 16 3 of 13

Figure 1. Elevated levels of polyunsaturated fatty acid (PUFA) metabolites in liver injury caused
by acute-on-chronic ethanol administration. (A) Plasma alanine aminotransferase (ALT) levels
were significantly higher in mice fed ethanol and unsaturated fat compared to ethanol and dietary
saturated fat; (B) oxidized metabolites of linoleic acid; (C) oxidized metabolites of arachidonic acid.
SF: saturated fat; EtOH: ethanol-fed; USF: unsaturated fat; HODE: hydroxyoctadecadienoic acids;
HETE: hydroxyeicosatetraenoic acids; * p < 0.05.

To explore the mechanisms by which oxidized linoleic acid metabolites (OXLAMs) may contribute
to enhanced liver injury, we tested the hypothesis that ethanol-induced oxidation of LA and the
subsequent increase in hepatic and circulating OXLAMs exacerbate liver injury via shifting hepatic
macrophages toward the pro-inflammatory (M1) phenotype. To this end, RAW264.7 cells were treated
with 5 µM 9- or 13-hydroxyoctadecadienoic acids (HODEs) with or without lipopolysaccharides (LPS)
(100 ng/mL). Stimulation of RAW264.7 cells by 9-HODE alone, but not 13-HODE alone, led to a
significant increase in Tnf-α expression. A similar pattern was observed for the expression of Mip-2α

and Mcp-1, where 9-HODE alone or in combination with LPS enhanced their expression, but 13-HODE
alone did not. In contrast, 13-HODE, but not 9-HODE, potentiated LPS-induction of iNos expression.
These results demonstrate that 9- and 13-HODE have different, and even opposing, roles in regulating
cytokine gene expression in RAW264.7 cells, with 9-HODE promoting a pro-inflammatory response
(M1 response) to a greater extent than 13-HODE. There was no effect of either 9- or 13-HODE on
the expression of M2 macrophage markers (Arg-1 or Tgf-β1, anti-inflammatory response markers),
suggesting that 9-HODE was primarily pro-inflammatory and that 13-HODE was mainly neutral or
had some anti-inflammatory activity. There are three known receptors for HODES: GPR132, TRPV1,
and PPARγ. GPR132 binds to 9-HODE but binds only very weakly to 13-HODE [20]. TRPV1 and
PPARγ can bind to both 9- and 13-HODE [21,22]. RAW264.7 cells do not express Trpv1 [23] and
express only very low levels of Pparγ [24]. Therefore, the primary response to HODEs in RAW264.7
cells is likely mediated by GPR132 and explains the relative inactivity of 13-HODE in these cells.
Future studies on HODE/receptor interactions are needed.

In summary, the results of the study support the concept that dietary LA, aω-6-PUFA, exacerbates
ethanol-induced liver injury and provides evidence that the increase in OXLAM production and
promotion of an OXLAM-mediated pro-inflammatory response might be one of the underlying
mechanisms. Of note, there is scant evidence regarding the potential role of metabolites generated
from LA and other PUFAs through other metabolic pathways (e.g., the cytochrome p450/epoxide
hydrolase pathway), as well as lipid mediators derived from ω-3 PUFAs, such as α-linolenic acid,
eicosapentaenoic and docosahexaenoic acids. Given that the majority of PUFA metabolites are potent
endogenous signaling molecules that function through multiple pathways, identification of changes in
specific lipid mediators might shed new light into the mechanisms contributing to ALD pathogenesis
and may reveal novel therapeutic targets and biomarkers of this disease. Further research is required
to elucidate the specific role and mechanisms by which each PUFA-derived metabolite exerts its effect
during ALD pathogenesis.
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2.2. Role of Fat/Carbohydrate Ratio and Dietary Fat Type in Development of Alcoholic Liver Pathology

Martin J.J. Ronis, Colin T. Shearn, and Dennis R. Petersen

The development of liver pathology following alcohol consumption in experimental animals is
highly dependent on dietary macromolecule composition. Rats were fed ethanol at 12–13 g/kg/day
intragastrically via isocaloric liquid diets at a level of 187 kcal/kg/day. Ethanol diets high in simple
carbohydrates (16% protein, 79% dextrose/maltodextrin, 5% corn oil) or polyunsaturated fats (16%
protein, 39% dextrose/maltodextrin, 45% corn oil) were both observed to produce hepatic steatosis.
However, this occurred much more rapidly in rats fed ethanol as part of the high carbohydrate
diet, within 14 days of feeding, coincident with increased fatty acid synthesis and increased nuclear
expression of the carbohydrate response element binding protein (ChREBP) [25]. In contrast to
data from other laboratories [26], development of steatosis was not accompanied by any significant
effects on serum concentrations of adiponectin, hepatic expression of the histone deacetylase, Sirt-1,
or nuclear expression of the steroid regulatory element binding protein, SREBP-1c [25]. Chronic feeding
of high carbohydrate control diets in the absence of ethanol for 65 days resulted in development of
identical steatosis and liver injury to that seen in the ethanol-high carbohydrate diets [25]. These data
are consistent with recent studies from David Crabb’s laboratory [27] and suggest that ethanol is
treated metabolically like a carbohydrate. The data also raise an important issue regarding use
of dextrose/maltodextran to pair-feed control groups in chronic studies of alcoholic liver injury.
Such “control” liquid diets, high in fat and simple carbohydrates are not benign. This is illustrated by
the results of a recent chronic feeding study from our laboratory in which we examined the effects
of gestational exposure to second hand smoke on alcoholic liver injury in adult male C57BL/6 mice.
Pregnant mice were exposed to air or second-hand smoke for 4 h/day from gestational day 6–19.
Pups were culled to 6 pups/litter with litters of equal average weight and fed chow diets ad libitum
until post-natal day 65. At that time groups of n = 20 male pups either continued on chow or were
switched to high fat Lieber DeCarli liquid diets and were fed ethanol up to a final concentration of 28%
total calories or pair-fed diets in which the ethanol calories were matched by dextrose-maltodextrin
for 16 weeks. As shown in Figure 2, no effects of gestational second-hand smoke on adult body
weight or liver pathology were observed in any diet group. However, the pair-fed “controls” had
significantly increased body weight >30%, increased % liver weight, increased liver triglycerides
and had dramatically increased serum alanine aminotransferase (ALT) values (p < 0.05) indicative of
development of non-alcoholic steatohepatitis (NASH). In contrast, the ethanol-fed group had lower
weights than the pair-fed mice, consistent with reports that ethanol is treated as “empty calories” [13]
and had smaller increases in % liver weight and serum ALTs relative to chow-fed mice, despite having
higher levels of hepatic triglycerides than pair-fed mice (p < 0.05). Development of obesity and fatty
liver pathology in the pair-fed controls makes interpretation of any alcohol effects in such studies
very difficult.

Feeding of ethanol intragastrically to rats with diets high in polyunsaturated fat where
carbohydrate calories are limited resulted in development of steatohepatitis and an increase in
necroinflammatory injury relative to high fat controls [25,28]. Under these conditions, the increase
in pathology appears to be associated with increased induction of the ethanol-inducible enzyme
cytochrome P450 CYP2E1, which has been characterized as an important source of reactive oxygen
species (ROS) [26,28]. In this model we have demonstrated that liver pathology including steatosis
disappears when polyunsaturated fats are substituted with a mixture of medium and long chain
saturated fats, even when dietary ethanol content is the same [13]. Reduction in liver pathology in
rats fed this diet appeared to be due to a reduction in susceptibility to ROS-mediated membrane
peroxidation and increases in peroxisome proliferator activated receptor alpha (PPARα)-mediated fatty
acid oxidation [13]. More recent studies with double knockout mice lacking the enzymes, glutathione
S-transferase A4-4 and PPARα, suggest that lipid peroxidation products such as 4-hydroxy-2-nonenal
(4-HNE) derived from free radical degradation of polyunsaturated fatty acids are important in the
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progression of liver pathology beyond simple steatosis. The double knockout mice had increased
4-HNE protein adducts, higher serum ALT, increased production of inflammatory cytokines, including
tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ), increased evidence of matrix
remodeling, and more fibrosis than ethanol-fed wild type or single knockout mice [29]. 4-HNE
adduction of hepatic proteins identified by immunohistochemistry and LC-MS/MS proteomics
analysis, particularly in the mitochondria, appear to result in metabolic dysfunction including defects
in fatty acid homeostasis and ammonia metabolism [30]. These protein adducts also appear to
act as haptens stimulating autoimmune responses which may contribute to the development of
necroinflammatory responses and progression of liver injury [29]. Interestingly, we have established a
similar role for lipid peroxidation of polyunsaturated fatty acids in the progression of non-alcoholic
fatty liver disease in both rat intragastric feeding and in GSTA4-4/PPARα double knockout mice
models [31,32].

Figure 2. Effects of gestational second-hand smoke (SHS) on body weight and liver pathology in
male C57BL/6 mice fed chow or pair-fed Lieber DeCarli liquid diets at up to 28% ethanol calories for
16 weeks beginning on post-natal day 65. PF: pair-fed dextrose/maltodextran. a < b < c, significantly
different at p < 0.05.

2.3. Betaine: A Promising Therapeutic in the Treatment of Alcohol-Induced Liver Injury

Kusum K. Kharbanda

Research conducted over past several decades has demonstrated that chronic alcohol exposure
causes liver damage by several mechanisms, as recently reviewed [33–36]. It is well-established that the
pathogenesis of alcoholic liver disease involves not only multiple factors but also involves cross-talk
among multiple organs/tissues, the most notable being the white adipose tissue (WAT)-liver [37–40]
and the gut-liver [41–46] axes. Our laboratory and others have made seminal contributions in
elucidating how ethanol exposure alters the methionine metabolic pathway in the liver [47–52].
Later investigations, largely conducted in my laboratory, revealed that these alterations are also seen in
WAT and the various gastrointestinal segments following ethanol exposure. Interestingly, this unifying
mechanism not only helps to understand how ethanol can adversely affect multiple organs of interest,
but also provides a singular therapeutic approach for mitigating ethanol effects on the liver, WAT,
gut, and other organs. Briefly, we have shown that ethanol exposure predominantly inhibits the
activities of methionine synthase and methionine adenosyltransferase, two vital cellular enzymes
involved in remethylating homocysteine and generating S-adenosylmethionine (SAM), respectively.
To compensate for these losses, ethanol feeding increases the activity of betaine-homocysteine
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methyltransferase (BHMT) that utilizes betaine to remethylate homocysteine and maintain normal
levels of SAM. However, during extended periods of ethanol feeding, the alternate homocysteine
remethylation pathway cannot be maintained because of a depletion of endogenous betaine stores.
This results in decreasing the SAM levels while increasing the levels of two toxic metabolites,
homocysteine and S-adenosylhomocysteine (SAH) and the subsequent reduction in the cellular
SAM:SAH ratio [5,49–52]. The ethanol-induced reduction in the ratio in the liver, WAT and the
various intestinal segments produces diverse, but profound, functional consequences in these three
organs/tissues as detailed below. This occurs because SAM:SAH ratio is an important metabolic
indicator for cellular methylation status and regulates the activity of many of the 120 members
of SAM-dependent methyltransferases. It has been shown that decreasing the SAM:SAH ratio
correspondingly impairs the activity of several methyltransferases [53]. This occurs because SAH has
a high affinity binding to the catalytic region of many methyltransferases, especially for those with a
lower Ki value for SAH than the Km value for SAM [53]. Since every organ/tissue has a repertoire
of specific methyltransferases that play critical roles in maintaining their functional homeostasis,
a reduction in the cellular SAM:SAH ratio generates specific consequences in each of these and
other organs/tissues. These organ/tissue-specific consequences, in turn, modulate the gut-liver and
liver-WAT axes producing adverse events that ultimately culminate in progressive liver injury.

Functional Consequences of Lower SAM:SAH Ratio in the Liver. Five important liver SAM-dependent
methyltransferases are: phosphatidylethanolamine methyltransferase, isoprenylcysteine carboxyl
methyltransferase, protein-isoaspartate methyltransferase, guanidinoacetate methyltransferase, and protein
arginine methyltransferase. Focusing on these methyltransferases, we reported that alcohol-induced
reduction in the hepatocellular SAM:SAH ratio specifically impairs the reactions catalyzed by these
enzymes, thereby decreasing methylation of their respective targets [5,54–58]. This results in decreased
secretion of very-low density lipoproteins, impaired activation of GTPases, diminished protein repair,
reduced creatine biosynthesis and arginine methylation, respectively [5,56–59]. Ultimately, these defects
contribute to the development of steatosis [5], increased apoptosis [56], accumulation of damaged
proteins [57,60], reduction in creatine levels [58], and altered signaling [61] –all of which are hallmark
features of early alcoholic liver injury.

Functional Consequence of Lower SAM:SAH Ratio in the WAT. We have shown that alcohol-induced
reduction in WAT SAM:SAH ratio through a methylation-dependent pathway activates two main
lipases (hormone-sensitive lipase and adipose triglyceride lipase) which enhance WAT lipolysis [38,39].
The consequent increased circulating non-esterified free fatty acids are transported to the liver and
become deposited there as triglycerides, contributing to the development of hepatic steatosis. Further
studies have revealed that the alcohol-induced increased WAT homocysteine levels cause a reduction
in adiponectin production and secretion [37].

Functional Consequence of Lower SAM:SAH Ratio in the Gut. Using both in vivo and in vitro
approaches [62], we have shown that a reduction in SAM:SAH ratio through a methylation-dependent
process caused tight junction disruption, as evident from the disorganized localization of three key
members (occludin, claudin-1 and ZO-1) of the multiprotein tight junction complex. This loss of barrier
integrity ultimately causes portal circulation endotoxemia, a necessary etiological factor that promotes
liver inflammation.

Betaine Treatment. We further showed that treatment with betaine, a nutrient in itself and
a metabolite product of choline, lowers cellular SAH to maintain normal SAM:SAH ratio [5,54].
This preserves the essential methylation reactions in the liver, WAT and the gut, which thereby
prevents the development of alcoholic organ injury, especially progressive liver damage [5,51,52,57,59].

2.4. Malnutrition and Nutrition Support in Alcoholic Liver Disease: Clinical Relevance

Samir Zakhari and Craig J. McClain

The liver is the largest and possibly the most metabolically complex organ in the body. The liver
plays a vital role in protein, carbohydrate, and fat metabolism, as well as the metabolism of important
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micronutrients. With the development of alcoholic liver disease (ALD) in patients, there is frequently
an associated altered nutritional status, especially with advanced ALD. A widely recognized phenotype
for malnutrition in severe alcoholic hepatitis (AH)/advanced ALD is skeletal muscle loss (sarcopenia)
with or without loss of fat mass [63,64].

It is important to do an initial assessment of nutritional status and to perform systematic
nutritional follow-up examinations in patients with alcoholic hepatitis/alcoholic cirrhosis.
Unfortunately, there are no gold standard techniques or widely-accepted strategies for assessment of
malnutrition in liver disease in the clinical setting [63]. Moreover, underlying liver disease itself impacts
many of our standard tests of malnutrition. Ten potential mechanisms of nutritional assessment are
listed in Table 1. Anthropometry measurements, such as triceps skinfold or body mass index (BMI),
are widely used but can be impacted by fluid retention that is frequently seen in cirrhosis [65,66].
Biological parameters, such as visceral protein, are impacted by the fact that visceral proteins are
made in the liver, and liver disease can decrease visceral protein production [67]. Subjective global
assessment (SGA) is a simple, bedside evaluation of nutritional status that we regularly utilize in
patients with ALD [68,69]. The SGA includes patient history regarding weight loss, usual dietary
intake, functional capacity, gastrointestinal symptoms, and evidence of malnutrition on physical exam
(loss of muscle or fat mass or presence of edema) [68]. Using this information, patients are classified
as: (i) well nourished; (ii) moderately malnourished; or (iii) severely malnourished. Bioelectrical
impedance (BIA) technology has recently improved, and this technique is increasingly used in liver
disease [66]. BIA involves introducing a small electric current through the body. Each body tissue has
a specific electrical conductivity which is directly related to the water and electrolyte content of that
tissue. Pirlich and coworkers showed a strong correlation between BIA and the gold standard of total
body potassium for assessing malnutrition [70]. They concluded that BIA provided reliable estimates
of body cell mass, even in patients with ascites, and it was superior to other bedside techniques.
We regularly evaluate handgrip strength by handgrip dynamometry, an easily performed, inexpensive
and noninvasive technique. Handgrip strength has been correlated with other markers of malnutrition
in liver disease. It provides an important indicator of functional status, and it can improve with
nutritional supplementation [66,71]. This test is especially useful for monitoring patient progress over
time, as shown in Figure 3. Probably the most detailed reports describing malnutrition in alcoholic
hepatitis (AH) are from large studies from the Veterans Health Administration (VA) Cooperative
Studies Program [10,72–74]. It has been demonstrated that virtually every patient with AH had some
degree of malnutrition [10]. Patients had a mean alcohol consumption of 228 g/day (>15 drinks/day
with approximately 50% of energy intake from alcohol). Thus, while calorie intake was generally
adequate, there was inadequate intake of protein and critical micronutrients. Similar data were
observed in a follow-up VA study on alcoholic hepatitis [75].

Table 1. Methods of Assessment of Malnutrition.

Methods

1 Anthropometry
2 Biologic Indicators
3 Creatinine Height Index
4 Muscle Strength
5 Bioelectrical Impedance
6 Air Displacement, Plethysmography
7 Imaging (DEXA, MRI, CT, etc.)
8 Subjective Global Assessment
9 Energy Balance

10 Metabolomics

DEXA: dual-energy X-ray absorptiometry; MRI: magnetic resonance imaging; CT: computed tomography scan.
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Figure 3. Time-course handgrip assessment in patient with moderate alcoholic hepatitis.
(A) Correlation analysis between hand grip response and Model for End-Stage Liver Disease (MELD)
score; (B) hand grip dynamometry.

A research interest of our group has been whether nutritional abnormalities occur before the
development of alcohol-induced liver injury (potentially contributing to the liver injury) or whether
nutritional alterations occur only subsequent to liver injury. There are compelling animal data
showing that nutritional deficiencies (such as zinc deficiency) occur early in experimental ALD
in mice/rats, and that nutritional deficiencies contribute to the development/progression of liver
injury/inflammation [43,76]. Indeed, other presentations in this symposium highlight the importance
of nutritional factors such as dietary fat in the development of experimental ALD. There are also
compelling human data showing that when liver disease becomes more advanced, malnutrition
frequently occurs. This is true whatever the etiology of liver disease (alcohol, viral or metabolic).
We recently evaluated a cohort of 48 otherwise healthy participants with alcohol use disorder but no
clinical signs of ALD and no clinical evidence of malnutrition who were participating in a treatment
program. They averaged 15 drinks per day, and an average of 15 years of heavy drinking [77]. Thus,
these chronic alcoholics without clinical liver disease had alcohol consumption levels very similar to
those observed in VA cooperative studies and other clinical trials of severe alcoholic hepatitis/alcoholic
cirrhosis. These chronic alcoholics with no overt clinical evidence of malnutrition were consuming
over 1500 calories a day of “empty calories.” However, more detailed investigations revealed that these
chronic alcoholics often had subtle individual nutrient deficiencies, such as zinc deficiency. Moreover,
those subjects with zinc deficiency were more likely to have modest elevations in their liver enzymes
that were indicative of early alcohol-induced liver injury. Thus, our human data are consistent with
animal studies which suggest that altered nutrition occurs early in the development of ALD and may
play a mechanistic role in the development of liver disease.

Several studies of hospitalized ALD patients suggest that enteral nutritional support improves
nutritional status and may improve outcome. A relatively high protein intake is usually recommended
(1.2–1.5 g/kg body weight (BW)/day) [63,64]. It is important to monitor food intake because of
the high risk for malnutrition and the frequency with which feeding is interrupted in the hospital.
In subjects with inadequate oral intake, early enteral nutrition is suggested. Similarly, a low-sodium
product that is calorically dense should be used. Placing a feeding tube has not been shown to increase
the risk of bleeding from esophageal varices, and a high-protein diet does not increase the risk of
encephalopathy [63,64]. On discharge, patients should continue to receive dietary counseling and
nutritional assessment and support. Patients with ALD and cirrhosis should receive a late-night snack
(9.00 p.m.) to decrease an overnight starvation state which contributes to muscle breakdown.

In summary, patients with ALD, especially those with advanced cirrhosis/alcoholic hepatitis,
frequently have malnutrition that can impact outcome. Nutritional assessment and appropriate
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nutritional therapy can have a positive impact on nutritional status and quality of life and may
improve survival.

Acknowledgments: The authors thank Marion McClain for manuscript proofreading. Grant Supports: The work
presented in this study was supported by NIH grants R01AA024102 (IAK), U01AA022489 (AEF, CJM),
U01AA021901 (CJM), U01AA021893 (CJM), R01AA023681 (CJM), R37AA009300 (MJJR, DRP), the Department
of Veterans Affairs BX000350 (CJM), BX001155 (KKK), and the Intramural Programs of the National Institute on
Alcohol Abuse and Alcoholism and National Institute on Aging (CER). Research reported in this publication
was supported by an Institutional Development Award (IDeA) from the National Institute of General Medical
Sciences of the National Institutes of Health under grant number P20GM113226 (CJM), and the National Institute
on Alcohol Abuse and Alcoholism of the National Institutes of Health under Award Number P50AA024337 (CJM).
The content is solely the responsibility of the authors and does not necessarily represent the official views of the
National Institutes of Health.

Author Contributions: All authors contributed to the respective study design, data acquisition, results interpretation,
and a manuscript preparation. I.A.K., K.K.K., M.J.J.R., S.Z. presented studies at the ESBRA 2017 meeting.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AA arachidonic acid
ALD alcoholic liver disease
AH alcoholic hepatitis
BIA bioelectrical impedance
BHMT betaine-homocysteine methyltransferase
BMI body mass index
ChREBP carbohydrate response element binding protein
HETEs hydroxyeicosatetraenoic acids
HODEs hydroxyoctadecadienoic acids
LA linoleic acid
NASH non-alcoholic steatohepatitis
4-HNE 4-hydroxynonenal
OXLAMs oxidized linoleic acid metabolites
PUFA polyunsaturated fatty acid
ROS reactive oxygen species
SAH S-adenosylhomocysteine
SAM S-adenosylmethionine
SREBP-1c steroid regulatory element binding protein 1c
SGA Subjective global assessment
WAT white adipose tissue
USF unsaturated fat
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