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Abstract

Programming Wireless Networks of Embedded Systems

(WNES) is notoriously difficult and tedious. To simplify

WNES programming, we propose Declarative Resource Nam-

ing (DRN) to program WNES as a whole (i.e., macropro-

gramming) instead of several networked entities. DRN al-

lows for a set of resources to be declaratively described by

their run-time properties, and for this set to be mapped to

a variable. Using DRN, resource access is simplified to only

variable access that is completely network-transparent. DRN

provides both sequential and parallel accesses to the de-

sired set. Parallel, or group, access reduces the total access

time and energy consumption because it enables in-network

processing. Additionally, we can associate each set with

tuning parameters (e.g., timeout, energy budget) to bound

access time or to tune resource consumption.

1 Introduction

WNES consists of a massive number of resource-

constraint wireless nodes that are deployed in dynamic, hos-

tile environments. Unlike traditional networks, WNES is

property-centric. As such, nodes of interest in WNES are

defined by their properties at run-time rather than by their

node ids. These characteristics pose two major research

challenges to the design of WNES programming.

1. How do we easily and efficiently write the WNES ap-

plications?

2. How do we reprogram the network of unattended

nodes after deployment?

In this paper, we will focus on the first question of

characterizing WNES applications. To simplify WNES

programming, we propose Declarative Resource Naming

(DRN) 1 to program WNES as a whole (i.e., macroprogram-

1An initial design of this work appears in a UCSD technical report [15]

ming) instead of several networked entities. DRN allows

programmers to declaratively describe a set of desired re-

sources by their run-time properties and to map this set to

a variable. To access the desired resources, we can simply

refer to the mapped variable. Therefore, remote resource ac-

cess is simplified to only variable access that is completely

network-transparent. DRN provides both sequential and

parallel access to the desired set. Parallel access reduces

the total access time and energy consumption because it en-

ables data aggregation in the network. Additionally, we can

associate each set with tuning parameters (e.g., timeout, en-

ergy budget) to bound access time or to tune resource con-

sumption.

Given that WNES may be deployed in dynamic, hostile

environments, and also that we may not be able to physi-

cally reach the nodes, it is necessary that we can remotely

program these unattended nodes. Systems based on code

migration are preferable because programs can be propa-

gated to target nodes without human intervention. Exam-

ples of such systems include Smart Messages (SM) [3],

SensorWare [4], Mate [18], and TML [20]. Even though re-

programming the network is not our focus in this paper, we

have completed our preliminary implementation of a DRN

run-time library using Smart Messages (SM) that runs on

iPAQs equipped with 802.11 radios. SM is an appropriate

choice because it supports program migration, a necessary

capability for reprogramming the network. Undoubtedly,

there are other reprogrammable platforms such as Sensor-

Ware, Mate, and TML. However, we select SM because the

library can be implemented in Java, a well known language.

Nevertheless, given network transparency, our abstraction

is independent of the underlying platforms. As a result, it is

possible to macroprogram other wired or wireless networks

using our approach.

In addition, we have implemented an object tracking ap-

plication using our DRN runtime library to illustrate the

model’s viability. We have also evaluated our DRN runtime

library and its tuning knob (i.e., resource binding lifetime)
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on a network of 20 virtual machines. When the application

code is already cached or installed in the network, our tun-

ing knob enables the DRN application to save up to 55.2%

of the bytes sent without significant accuracy degradation.

2 What is the Right Abstraction?

Traditionally, there are two programming styles in com-

puter literature: declarative and imperative. Declarative

programming fully abstracts out all algorithmic details.

Programmers only specify what they want rather than how

to algorithmically obtain the results. The translator and op-

timizer will then fill in the algorithms. Automatic genera-

tion of algorithmic details can be efficient for simple and

specific tasks (e.g., database), but is questionable for others.

Examples of such an approach include COUGAR [1] and

TAG [19]. Despite its simplicity, declarative programming

is not applicable for every WNES application. Imperative

programming is more appropriate for complex tasks where

efficient algorithmic details are either not obvious, or not

easy to generate automatically.

Declarative and imperative programming function well

within their domain and complement one another. Integra-

tion of declarative constraints and imperative constructs can

form a powerful programming paradigm suitable for both

domains. In this paper, we propose that such integration

is possible if the declarative abstraction is applied only to

some parts of the program.

In general, potential targets for abstraction are: 1) parts

that are unrelated to the core algorithms; 2) common to ap-

plications, and; 3) tedious for programmers. To identify

the abstractable parts, a basic understanding of WNES pro-

grams is required. Typically, programs are collections of

operations on variables and resources. Given that variables

are more frequently accessed, programming languages pro-

vide a simpler way to access variables than to access re-

sources.

Not surprisingly, traditional resource access is more te-

dious, especially in networked systems where there exists a

distinction between local and remote resources. Resources

are normally bound to nodes that are known a priori. There-

fore, in order to specify the remote resources that are of in-

terest, node ids are required. If the node ids are not known,

resource discovery is needed. As a result, programmers are

required to work on several programming details (e.g., net-

working, resource discovering, resource accessing).

WNES programming is still more labor-intensive be-

cause the resources of interest are specified by their proper-

ties at run-time rather than node ids. For example, we may

want to access sensors on a particular hill only when the

temperature is more than 30 degrees Celsius. In this case,

resource discovery in WNES becomes necessary and com-

mon rather than optional. The resource property is highly

dynamic because the environment – where the temperature

can drop below 30 degrees Celsius at any moment – is hos-

tile and volatile. Some resource bindings or mappings may

have to be invalidated because the bound resources may no

longer match the desired property. But even if the resource

property does not change, bound resources may not be ac-

cessible because of network dynamics such as node mobil-

ity. WNES programs are required to detect changes, inval-

idate bindings, discover equivalent resources, and bind the

newly discovered resources. Given that the above events are

frequent in WNES, these resource handlings (e.g., discov-

ering, accessing, rebinding, and networking) are tedious to

programmers. Therefore, the resource-related parts of the

WNES program are reasonable choices for our declarative

abstraction.

3 Declarative Resource Naming

To simplify the programming tasks for WNES, we pro-

pose a scheme that will program the WNES as a unit. Par-

ticularly, we consider WNES a single abstract machine. Al-

though physically scattered, all resources are on the same

machine in our model. Given this single machine model,

there is no notion of networking, being remote, or local.

3.1 Resource Variable

WNES programming can be simplified by making a re-

source access as simple as a variable access. In order to do

this, we propose resource variables (i.e., variables that are

mapped and referred to actual resources). For example, one

can write a program to read a light sensor and to control a

camera as follows.

Resource R, X;

printf("light intensity=%f", R->light);

X->camera=off;

In the above example, the resource variable R contains a

light sensor and the resource variable X contains a camera.

To read the light intensity, we can simply refer to R� >

light. Similarly, the camera can be turned off by assigning

off to X� > 
amera. There is no need for algorithmic

detail of resource controls and operations.

3.2 Declarative Constraint

Understandably, one may wonder to which physical

nodes (or resources) these variables (R andX) are precisely

bound. Rather than specify the node ids for binding, a target

resource’s desired property can be declaratively indicated

with a boolean expression. For example, we can specify

that R will be bound to nodes within the forest with tem-

peratures greater than 30 degrees Celsius.
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Resource R = <location == within(forest) &&

temperature > 30>

Resource X = <a(b,c)!=0>

We also allow user-defined boolean functions (e.g., func-

tion a()) in our expression. Such a flexible expression is

generally powerful and sufficient for various complex con-

ditions.

3.3 Resource Access

In this section, we illustrate the need for various types of

DRN resource access that can be used in different situations.

Their advantages and disadvantages are also provided as a

guideline for selecting the resource access type that is most

suitable for a particular task.

Given that more than one resource can match a speci-

fied expression, a resource variable is referred to as a set

of matched resources rather than a single one. Therefore,

mechanisms for accessing each element in the set are re-

quired. We propose two approaches for accessing multiple

matched resources: sequential and parallel.

� Sequential Access. Each element in a set can be re-

ferred to using an iterator (similar to an iterator in

C++ standard template library). The iterator enables

sequential and selective access of resources. For ex-

ample, one can sequentially read the light intensity of

each resource in the set R as follows.

Resource R;

Iterator i;

foreach i in R {

printf("light intensity = %f\n", i->light);

}

However, the sequential readings cannot represent a

snapshot of the desired target because the delay in

accessing the whole set sequentially can be signifi-

cant. In particular, the total delay is essentially the

summation of all individual access time. Nevertheless,

this individual approach is still useful, especially when

only some elements in the set are accessed.

� Parallel Access. Conversely, in this approach, all re-

sources in the set are simultaneously accessed. This

parallel access can be specified using a direct reference

to the resource variable as follows.

Resource R;

printf("light intensity=%f", R->light);

Therefore, the total delay using this parallel approach

is reduced to the longest delay of an access. The par-

allel approach not only reduces the total access time

but also provides a much better snapshot of the de-

sired target. Additionally, unlike the sequential ap-

proach, this parallel approach exposes an opportu-

nity for the underlying system to perform in-network

processing (e.g., data aggregation) that can signifi-

cantly reduce a system’s overall energy consumption

[10, 11, 13, 17, 14, 19]. An example of data aggrega-

tion functions is max(A) whereby the maximum ele-

ment in A is returned.

Resource R;

printf("max light intensity = %f",

max(R->light));

Ideally, the system expends energy only on delivering

that max element, not on the others. This delivery can

be practically approximated by in-network suppres-

sion of the elements whose values are less than that

of the previously seen elements of the same access.

Suppression will be ineffective or even impossible if

the resources are accessed in sequence rather than in

parallel.

3.4 Resource Binding

Our model supports two binding types: dynamic and

static.

� Dynamic Binding. In our paradigm, code does not

need to be written to maintain binding between the

physical resources and resource variables. Given that

the resource property is constantly changing, rebinding

the set of matched resources is laborious. For example,

the set of resources R at time t
1

can be completely dif-

ferent from the set of resources R at time t
2

.

Resource R = <expression1>

Time t1 = get_time();

x=Count(R);

...

Time t2 = get_time();

y=Count(R);

/* Normally, x != y */

Rather, it is desirable to simply provide the declarative

expression that is associated with the resource vari-

able to describe the resources of interest. In general,

a reference to a resource variable implies a resource

access. Our semantic of a resource-variable access is

rather strict in a sense that the access is only performed

on the resource that matches the declarative expres-

sion at the time of access. Furthermore, changes in

the set of matched resources do not require attention

from programmers. As a result, to conform with this

strict semantic, the underlying system may need to ex-
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pend significant overhead and excessive energy con-

sumption for ensuring that this reactive binding is up

to date. Therefore, we propose options or tuning knobs

for lessening the semantic in order to save energy. For

example, programmers can lessen the semantic by al-

lowing access if the resource is bound in the last t sec-

onds.

Resource R = <expression,

last_bound_time > now-t>

Furthermore, programmers can even specify an energy

budget to bound the energy consumption of a resource

access.

Resource R = <expression,

energy_budget = 100>

Other tuning knobs are currently under investigation.

� Static Binding. Although the above dynamic binding

of resources seems reasonable, one may notice that

there are situations where dynamic bindings may

not be appropriate. Specifically, we may want to

access the previously matched resources that are no

longer matched. For example, we may have turned

on cameras in area A. However, after a period of

time, we may want to turn them off, but some cameras

have since been moved out of the area. If area A is

included in our declarative expression, those cameras

that have since been transferred will no longer match

the expression. As a result, we may be unable to turn

off the relocated cameras directly using the resource

variable.

One solution to the above problem is to rely on the

underlying system. For example, we could declare a

new resource variable using a usual expression with an

additional timing condition.

Resource R = <expression1>;

Time t1 = get_time();

....

Resource X = <expression1 && time == t1>;

As long as we know the time of the matching, we can

describe the desired resources. A similar solution is

to provide the function last() that returns the previous

set of matched resources to the caller. Therefore, we

can operate on the desired set even though it no longer

matches the expression.

Resource R = <expression1>;

Resource X = last(R);

However, both solutions incur excessive overhead as

the system is required to maintain all changes of a set

at all times.

An alternative solution is to provide explicit instruc-

tions for memorizing matched resources. We propose

two explicit mechanisms: the static resource and the

iterator.

Using the static resource, we can specify which re-

sources are statically bound. The static resource will

not be rebound in any circumstances. Therefore, we

can maintain any set of resources even though they are

no longer matched to the expression.

Resource R1;

Static Resource R2=R1;

/* R1 changes over time but R2 does not*/

This static resource is intended for memorizing the en-

tire set of matched resources. To memorize only one

resource, an iterator is more appropriate. The value of

an iterator does not automatically change without an

explicit assignment.

Iterator i1 = R1->first_element;

3.5 Access Timeout

Regardless of binding type, there is no guarantee that

every WNES resource access will succeed. Unfortunately,

WNES resource access time is unbound, and access fail-

ures are usually unavoidable because of network dynamics.

Given that there is no response after unbound access time

and failures, they cannot be easily differentiated. 2 Timeout

is usually a common technique for handling such problems.

Therefore, we propose associating a resource variable with

an access timeout. In this model, the access time is mon-

itored for each access. Once an access has timed out, an

exception is raised (similar to Java exceptions). It is nec-

essary that the method for handling a time-out is explicitly

specified in the catch statement.

Resource R = <expression1, timeout = 10>

Iterator i = R->first_element;

try {

printf("light intensity = %f", i->light);

} catch(TimeoutException) {

printf("can’t access the light sensor");

}

2This problem is similar to that of TCP. Packet loss and unbound acknowledgment

delay are handled using timeout.
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4 Evaluation

In this section, we conduct an experiment to evaluate a

DRN application executed over our DRN runtime system.

This section describes our methodology and considers the

impact of a DRN tuning parameter on the application’s per-

formance.

4.1 Goals, Metrics, and Methodology

We have implemented our object-tracking application

(Section 4.2) using DRN. This application is evaluated on a

network of 20 nodes. Each node is emulated using a Smart

Message Virtual Machine (SMVM) that runs on a different

port of a physical machine. (Given that the SMVM can run

directly on an HP iPAQ [3], our DRN code can also run on

the iPAQ without any modification.)

Our goals in conducting this evaluation study are

twofold: First, verify the viability of the DRN model for

macroprogramming WNES. Second, understand the impact

of resource-binding lifetime on the DRN application.

We choose two metrics to analyze the performance of our

DRN application: the number of application bytes sent and

average distance error. The number of application bytes

that are sent measures the total bytes sent across the net-

work. The metric roughly indicates the dissipated energy

and implies the overall lifetime of WNES. Average distance

error measures the distance between the actual object loca-

tion and the reported location. This metric implies the accu-

racy of the tracking application; similar metrics were used

in earlier work [23]. We study these metrics as a function

of the resource binding’s lifetime.

In our experiment, we study a sensor field (of 20 nodes)

that is generated by randomly placing the nodes in a 20m

by 40m rectangle. Each node has a radio range of 10m and

a sensing range of 5m. Such ranges enable a direct com-

munication between two nodes that detect the same object.

The DRN application tracks an object that moves at a rate

of 0.25m/s. The object moves clockwise along the edge of

a 10m by 30m rectangle located in the middle of the sensor

fields. This clockwise movement causes nodes in different

regions to detect and track the object. The application esti-

mated the object location on 25 different occasions during

our experiment, or once every 4 seconds.

Furthermore, our experiment uses an idealistic MAC

layer whereby there is no packet collision or loss. Given

that we measure the application bytes sent that do not in-

clude overhead from the lower layer, this MAC layer is rea-

sonable for our experiment. In a sense, our methodology

removes the impact of MAC layers from this study.

1: Space sp=UNIVERSE;

2: Resource R1=< (within(Sp)==TRUE) & (motion>0) >;

3: Location AverageLoc;

4:

5: for (int i=1; i<= 25; i++) {

6: AverageLoc = average(R1->Location);

7: if (AverageLoc != NULL) {

8: System.out.println("Average("+i+")="+AverageLoc);

9: sp.updateRegion(AverageLoc, 10);

10: } else {

11: System.out.println("Average("+i+")=NOT FOUND");

12: sp = UNIVERSE;

13: }

14: sleep(4000);

15: }

Figure 1. Pseudo­code for our object­tracking

application.

4.2 Object Tracking Application

Figure 1 shows the simple DRN pseudo-code that ac-

companies our object tracking application. Essentially, the

application tracks an object by acquiring the location of de-

vices (i.e., resources) that detect motion within a region of

interest. The average location of such devices is an esti-

mation of the object location. At the begining, there is no

estimation of object location. The application first searches

for the object throughout the sensor field. Once an object

location is found, the region of interest for the next search

is set to an area within 10m of the estimated location. This

approach limits the searching space, and results in better en-

ergy efficiency, especially when the geographical routing is

used in the underlying system. Later, if the object cannot be

found in this dynamic circular region, the region of interest

is reset to the whole sensor field.

We have completed preliminary implementation of a

DRN run-time library using Smart Messages (SM) that can

run on iPAQs communicating with 802.11 radios. SM is

appropriate because it supports program migration that is

necessary for reprogramming the network. Undoubtedly,

there are other reprogrammable platforms such as Sensor-

Ware, Mate, and TML. However, we select SM because the

library can be implemented in Java, which is a well known

language. Nevertheless, given network transparency, our

abstraction is independent of the underlying platforms. As

a result, it is possible to macroprogram other wired or wire-

less networks using our approach.

The actual Java code for this application (Figure 2) is

very similar to the simple DRN pseudo-code in Figure 1; it

is possible to achieve a one-to-one translation from simple

DRN pseudo-code to real Java code. In this Java code, our

TrackingApp simply extends the SmWrapper that hides SM-

related details from programmers. To conform with the Java

syntax, we implement the resource expression (TrackingEx-
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1: public class TrackingApp extends SmWrapper{

2:

3: private final static int timeout = 24000; // Binding lifetime

4: private Space sp;

5: private TrackingExpression tExp;

6: private Resource resource;

7: private LocationAverage agg;

8:

9: public TrackingApp(){

10: super("TrackingApp");

11: }

12:

13: public void run() {

14: try {

15: sp = new Space(null,-1); // sp = UNIVERSE

16: tExp = new TrackingExpression(sp, "motion");

17: resource = new Resource(tExp, timeout);

18: agg = new LocationAverage();

19: for (int i=1; i<= 25; i++) {

20: agg = (LocationAverage)resource.access(agg, 4000);

21: System.out.println("agg = "+agg);

22: Location average = (Location)agg.evaluator();

23: if (average != null) {

24: System.out.println("Average("+i+") = "+average);

25: sp.updateRegion(average, 10);

26: } else {

27: System.out.println("Average("+i+") = NOT FOUND");

28: sp.updateRegion(null, -1); // sp = UNIVERSE

29: }

30: sleep(4000);

31: }

32: } catch(Exception e) {}

33: }

34:

35: public static void main(String []args) {

36: TrackingApp trackingApp = new TrackingApp();

37: String []types;

38: types = new String[3];

39: types[0] = "TrackingApp";

40: types[1] = "TrackingExpression";

41: types[2] = "LocationAverage";

42: trackingApp.initSM(types, trackingApp);

43: trackingApp.run();

44: }

45: }

Figure 2. Real Java code for our object­tracking application.

pression) as a class (Figure 3). (Automatic generation of

this expression class from DRN pseudo-code is part of our

future work.) Each expression class contains an evaluate()

method that needs to be executed on the device to determine

if the device property is matched with the expression.

In this application code, resources are accessed in paral-

lel. Parallel access provides an opportunity for in-network

processing (e.g., data aggregation) that can significantly re-

duce the system’s overall energy consumption [10, 11, 13,

14, 17, 19]. Typically, in other systems, the code for in-

network aggregation cannot be dynamically installed after

network deployment [19]. In some systems, an API may not

be provided for writing a new in-network aggregation code.

Unlike other WNES programming approaches, DRN pro-

vides an Aggregation class that can be extended to imple-

ment a new dynamically-deployable aggregation technique.

Generally, a data aggregation technique is implemented

using three functions: initializer i(), merger m(), and eval-

uator e(). The initializer i() specifies how to instantiate a

data state record for a single sensor value. DRN will call

this function on devices whose properties are matched with

the declarative expression. This data state record will then

be sent back toward the user node. During the return trip,

this data state may meet other data states from the same

set of desired resources. DRN will call the merger m() to

aggregate these data states into one. Once the data state

reaches the user node, the evaluator e() will compute the

actual value of the aggregate.

In our application, we have shown how to implement

a new aggregation technique called LocationAverage (Fig-

ure 4) in DRN. To do this, we simply extend the Aggre-

gation class and overload the three-mentioned functions.

We use < sum x; 
ount x; sum y; 
ount y > as our data

state. Suppose the matched device is located at (x1; y1).

The initializer sets the data state record to < x1; 1; y1; 1 >.

The merger combines the state < x1; 
x1; y1; 
y1 > and

6



1: public class TrackingExpression extends Expression{

2:

3: private Space sp_;

4: private String moTag_;

5:

6: public TrackingExpression(Space sp, String moTag) throws BadSMApiUsageException {

7: sp_=sp;

8: moTag_=moTag;

9: }

10:

11: public boolean evaluate() {

12: try{

13: Integer moInt = (Integer)TagSpace.readTag(moTag_);

14: GPSData gps = (GPSData)TagSpace.readTag("gps");

15: if (!sp_.outside(new Location(gps.latitude, gps.longitude)) && (moInt.intValue()>0) ) {

16: return true;

17: }

18: }catch(Exception e) {}

19: return false;

20: }

21: }

Figure 3. TrackingExpression class for matching resources.

1: public class LocationAverage extends Aggregate{

2:

3: private GPSData gps;

4: double sum_x, sum_y;

5: int count_x, count_y;

6:

7: public void initializer() {

8: try {

9: gps = (GPSData)TagSpace.readTag("gps");

10: sum_x = gps.latitude;

11: sum_y = gps.longitude;

12: count_x = 1;

13: count_y = 1;

14: } catch (Exception e) {}

15: }

16:

17: public void merger(Aggregate agg) {

18: sum_x = sum_x+agg.sum_x;

19: sum_y = sum_y+agg.sum_y;

20: count_x = count_x+agg.count_x;

21: count_y = count_y+agg.count_y;

22: }

23:

24: public Object evaluator() {

25: try {

26: return new Location(sum_x/count_x, sum_y/count_y);

27: } catch (Exception e) {

28: return null;

29: }

30: }

31: }

Figure 4. LocationAverage class for in­network processing.

the state < x2; 
x2; y2; 
y2 > into a single state < x1 +

x2; 
x1+ 
x2; y1+ y2; 
y1+ 
y2>. The evaluator returns

< sum x=
ount x; sum y=
ount y > as the average lo-

cation.

4.3 Tuning Knob

Semantically, in our model, resource access is strictly

performed on resources that match the declarative expres-

sion at the time of access. Changes in the set of matched

resources do not require attention from the programmers.

Therefore, DRN must rebind resources transparently and

dynamically. This strict semantic could incur significant

overhead and excessive energy consumption for ensuring

that this reactive binding is up to date. Not surprisingly, we

propose tuning knobs for balancing strong semantics with

energy savings. One of these tuning knobs is the resource

binding lifetime. For example, using a binding lifetime of
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Figure 5. Impact of resource binding lifetime on our object­tracking application.

t, programmers can slightly lessen the semantic and allow

access if the resource is bound in the last t seconds.

In this experiment, we study an impact of binding life-

time on energy consumption and tracking accuracy of an

unoptimized version of our application. Specifically, Line

25 in Figure 2 is removed. Therefore, searches for the ob-

ject are always performed throughout the sensor field. An

additional objective of this experiment is to show that, even

though the declarative expression and related variables are

not changed, the resource is dynamically and deservedly re-

bound.

Figure 5(a) plots the number of bytes sent as a function

of the resource binding lifetime. As expected, the number

of bytes sent is reduced as we increase the binding life-

time (i.e., reduce the number of resource discovery). Re-

sults indicate that it is possible to achieve meaningful en-

ergy savings without a significant degradation in tracking

accuracy. Specifically, we can achieve a 51.5% savings in

bytes sent with only small accuracy degration when we in-

crease the binding lifetime from 4 to 16 seconds. This sav-

ings is even more significant when the application code is

already cached or installed in the network. When we factor

out the bytes sent for injecting the application code into the

network, the savings improves to 55.2%.

The average tracking error does not significantly increase

until the binding lifetime is more than 16 seconds (Fig-

ure 5(b)). The result is intuitive. If the object moves away

from a bound sensor at the speed of 0.25m/s, it will take at

most 20 seconds to move beyond the bound node’s sensing

range. Conversely, if the object moves toward the bound

sensor without changing its direction, it will take at most 40

seconds to pass out of range. Given the moving pattern in

this experiment, we do not need to rediscover the resources

within 20 seconds to achieve a reasonable accuracy. How-

ever, after 20 seconds, the accuracy will be significantly de-

graded. If we do not rediscover the resources after 40 sec-

onds, we will no longer be able to track the object.

Tracking accuracy depends on several factors: estima-

tion techniques, network density, and sensing range. The es-

timation error of 2-3m in this experiment is considered rea-

sonable, given our simple estimation technique, low-density

network, and 5m sensing range.

4.4 Space Scoping for Optimization

Like other programming paradigms, writing an efficient

program requires understanding of the underlying system.

For example, in virtual memory systems, programs should

be written such that the number of page faults is minimized.

To operate on an entire two-dimensional array in those

memory systems, elements in the array should be accessed

row-by-row rather than column-by-column. Similarly, our

tracking application is more efficient when the searching

space is specified because our run-time library supports

geographic routing. Given a specified space, resource-

discovery request is geographically routed to the space in-

stead of flooding throughout the network.

To study the impact of space scoping on our tracking

application, we conduct an experiment similar to that of the

previous section. The difference is that Line 25 in Figure 2

is now included.

As the binding lifetime is increased, the savings is de-

creased due to the reduced number of resource discovery.

Additionally, the tracking accuracy is not significantly de-

graded by space scoping (Figure 6(b)).

Our results indicate that we can achieve 42.5% savings
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Figure 6. Impact of space scoping on our object­tracking application.

on the number of bytes sent when we dynamically spec-

ify the target space (Figure 6(a)). Although this savings

is significant, one may expect more savings because geo-

graphic routing is much more efficient than flooding. How-

ever, once the resource-discovery request is geographically

routed to the specified space, the request is flooded within

the space in order to discover all matched resources. This

scoped flooding incurs additional overhead and results in

fewer-than-expected savings.

4.5 Impact of Space Radius

Intuitively, to minimize overhead, the specified space

should be as small as possible. In the previous experiment,

our space radius is 10m. The space seems unnecessarily

large, given a sensing range of 5m. Understandably, one

may expect that a 5m-radius space is sufficient for covering

all sensors that will detect the object. However, such an ex-

pectation is rather optimistic because the object constantly

moves and the estimated object location (used as the center

of the space for the next search) is generally imperfect.

To study the impact of space radius on our object-

tracking application, we conduct an experiment similar to

the previous experiment. The difference is that we now fix

the binding lifetime to 4 seconds and study the performance

of this application as a function of space radius.

As expected, when the space radius is increased, the

number of bytes sent is also increased (Figure 7(a) whereas

the tracking accuray is improved (Figure 7(b)). Therefore,

there exists a tradeoff between the tracking accuracy and

the number of bytes sent. The result indicates that, using a

space radius of 7m, we can maintain the tracking accuracy

similar to searching the entire network and achieve 51.6%

savings on the number of bytes sent. The use of a 7m radius

(2m more than our sensing range) is intuitive, given that our

accuracy error is also around 2-3m.

5 Related Work

WNES programming has begun to receive attention dur-

ing the last few years. However, our work has been in-

formed and influenced by a variety of other research efforts,

which we now describe.

Our work is mostly influenced by Spatial Programming

(SP) [2, 12] and Spatial View [16]. DRN, Spatial View,

and SP share a vision of programming WNES as a unit,

simplifying resource access as variable access, exposing

the space property to the programmers, hiding network de-

tails, and supporting imperative programming. However,

SP supports only sequential resource access, whereas DRN

supports both sequential and parallel access. Accessing

resources in parallel significantly reduces the total access

time and the overall energy consumption (by enabling in-

network processing). Additionally, SP is purely imperative

programming, but DRN is a hybrid between declarative and

imperative programming. Unlike DRN binding, SP binding

is, by default, static. Even though dynamic binding in SP

is provided as an option, rebinding must be explicitly in-

structed by programmers. As opposed to SP, DRN binding

is by default dynamic, whereas static binding is an option.

The emphasis on dynamic bindings of DRN is also simi-

lar to that of Spatial View. Like SP, Spatial View does not

provide parallel accesses and declarative abstraction.

Given that variables can be considered memory re-

sources, mapping other resources into variables of DRN

is similar to memory-mapped files. However, DRN must
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Figure 7. Impact of space radius on our object­tracking application.

handle dynamic mappings and frequent failures; memory-

mapped files do not.

The abstract region [22, 23] work focuses on a wider def-

inition of space. Specifically, space in the abstract regions

can be physical or logical. For example, the logical space

can be defined by the number of hops in communication.

This example indicates that, unlike our work, the abstract

region does not intend to hide the networking details from

programmers. In addition, the space is simply an applicable

attribute (albeit a very useful one) for our declarative de-

scription of resources. Therefore, the space is hardly con-

sidered the focus of our work.

Nevertheless, our work has been influenced by directed

diffusion [10, 14] and LEACH [11], and this is seen most

clearly in the energy savings gained by processing data in

the network. Despite this influence on our parallel access,

DRN shares several similarities with diffusion. Given that

diffusion APIs [6] require declarative data description for

publication and subscription, DRN and diffusion are exam-

ples of hybrid programming. Furthermore, this data-centric

paradigm of diffusion effectively hides significant network-

ing details, which is one of several DRN features. However,

unlike diffusion, DRN focuses on resource naming rather

than data naming.

Programming WNES as a unit has also been explored

earlier by several research efforts, including TAG [19]

and COUGAR [1]. While the above efforts propose pro-

gramming WNES as a database, we propose programming

WNES as a single abstract machine.

Other macroprogramming research efforts include

Kairos [9]. Similar to Split-C [21] for parallel program-

ming, Kairos provides a facility to sequentially access re-

mote variables for WNES programming. Unlike Split-C

and Kairos, DRN can access variables and other resources

at declaratively-named nodes in parallel.

There exist several research efforts on a hybrid of

declarative and imperative programming. Examples of

such research include embedded SQL [7] and constraint-

imperative programming [8]. In embedded SQL, SQL is

mainly used for database access, and imperative program-

ming is used for data processing. In a sense, resources

in DRN are analogous to the database in embedded SQL

where declarative accesses are appropriate. In constraint-

imperative programming, variables are confined with con-

ditions about their eligible value. Given that conditions

are declaratively described, our resource variables are sim-

ilar to their constrained variables. Despite the mentioned

similarity, DRN, embedded SQL, and constraint imperative

programming target different problems, platforms, and en-

vironments. Specifically, embedded SQL is designed for

data processing on conventional databases, and constraint-

imperative programming is designed for computing a solu-

tion that matches a particular constraint on traditional sys-

tems. In contrast, DRN targets resource naming on highly

dynamic WNES.

X-Tree [5] is a recent work on hybrid programming that

targets macroprogramming wide-area sensor systems. Sim-

ilar to TAG, X-Tree programs the whole system as a sin-

gle database. Unlike TAG and X-Tree, DRN programs the

whole system as a single machine. Furthermore, X-Tree is

designed for programming devices within the Internet, but

DRN is designed for programming hostile dynamic WNES.
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6 Conclusions and Future Work

We believe that, to efficiently develop WNES applica-

tions, appropriate programming abstractions are necces-

sary. DRN is one such abstraction that integrates declara-

tive constraints with imperative constructs to form a pow-

erful programming paradigm suitable for macroprogram-

ming WNES. We have completed our preliminary imple-

mentation of a DRN run-time library using Smart Messages

(SM) that can run on iPAQs communicating with 802.11

radios. SM is appropriate because SM supports program

migration, which is necessary for reprogramming the net-

work. Undoubtedly, there are other reprogrammable plat-

forms such as SensorWare, Mate, and TML. However, we

select SM mainly because the library can be implemented

in a well known language (i.e., Java). Nevertheless, given

network transparency, our abstraction is independent of the

underlying platforms. Therefore, our approach is applicable

for macroprogramming other wired or wireless networks as

well.

In addition, we have implemented an object-tracking ap-

plication using our DRN runtime library to show the model

viability. We have also evaluated our DRN runtime library

and its tuning knob (i.e., resource binding lifetime) on a net-

work of 20 virtual machines. Our tuning knob enables the

DRN application to save up to 55.2% of bytes sent without

significant accuracy degradation when the application code

is already cached or installed in the network.

In the future, we intend to further explore the design

space of DRN such as other tuning knobs. Additionally,

we plan to implement other applications using DRN and to

conduct more extensive evaluation in order to better realize

DRN’s full potential.
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