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Developing User Model-Based Intelligent Agents

Alonso H. Vera and Julio K. Rosenblatt
Hughes Research Labs
3011 Malibu Canyon Road
Malibu, CA 90265
vera@hkucc.hku.hk, jkr@cmu.edu

Abstract

We describe a GOMS model of a ship-board Radar
Operator's behavior while monitoring air and sea
trafficc. = GOMS is a technique that has been
successfully used in Human-Computer Interaction to
generate engineering models of human performance.
Based on the GOMS model developed, we identified
those portions of the task where anintelligent agent
would be most able to assist operators in the
performance of their duties, and the nature of the
knowledge that will be required for the task. We
present the results of a simulated execution of the
model in a sample scenario, which predicted the
operator's responses with a high degree of accuracy.

Introduction

Our goal is to determine the domain knowledge required to
implement an intelligent agent which assists a human user
in performing a computer-based task. A central
characteristic of intelligent behavior is that it is
purposeful, i.e., the agent is executing a task in order to
achieve a goal. Consequently, to help a user accomplish a
goal, an intelligent agent must have knowledge about that
goal. GOMS is a technique that has been used in the
study of human-computer interaction to model user
knowledge and behavior at various levels of description.
We investigate here how GOMS models may be used by
intelligent agents as a means of understanding the actions
of other agents and users so that it may interact and
cooperate with them in a consistent and helpful manner.

A GOMS model consists of a set of Goals, Operators,
Methods, and Selection rules necessary to accomplish a
particular task. A hierarchy of goals is created, and within
that hierarchy a set of methods provide a functional
description of a task. Selection rules distinguish between
various operational cases and account for the idiosyncrasies
of individual users. Operators provide a low level
description of the actions finally performed. Thus, GOMS
provides a uniform structure for representing the
intentional, functional, and implementational levels of
behavior. A GOMS model of a particular task might be
used by an intelligent agent to understand the task at hand
and the current state within that task. Acting alone, the

agent can use the model to decide the next action; acting as
an assistant, the agent can use the model to understand
what other the user is doing and tailor its actions and
recommendations appropriately.

In this paper we describe a GOMS model of Radar
Operators monitoring air and sea traffic on board a ship.
The task is very interactive, between the operator and other
members of the crew, as well as between the operator and
the radar console itself. The work presented here uses a
methodology that was originally developed to address
routine expert behavior on non-interactive tasks; recent
work has indicated that this methodology yields excellent
results when applied to interactive tasks as well (John,
Vera and Newell, 1994; Gray, John and Atwood, 1993;
Endestad and Meyer, 1993). Our study of the Radar
Operator's task shows that it has a large amount of routine
content, even when things get busy.

A Model of a Radar Operator

We have created a model of the radar operation task by
decomposing the Radar Operator's actions into goals,
operators, methods, and selection rules (GOMS) as first
proposed by Card, Moran and Newell (1982). A GOMS
model begins with the concept of a top-level goal which
the user seeks to achieve, and a series of unit tasks that the
user performs repeatedly until there are no tasks left. The
classic example is that of a typist using a word-processor
to make corrections that have been marked on a printed
copy of a manuscript; the top-level goal is to edit the on-
line version of the manuscript, and the unit task is simply
to make the next correction (Card et al, 1982).

We have written the GOMS model using NGOMSL, or
Natural GOMS Language, (Kieras, 1988; 1994). It takes
the basic precepts of GOMS and defines a programming
language based on those ideas, allowing creation of a
model where flow of control is clearly specified and which
in principle could be run on a computer; indeed, a compiler
is currently being written for that purpose. The process of
fully specifying the Radar Operator's decisions and actions
guided us to create a model that is complete ard accurate ©0
the level of detail in which it is specified, and aided us in
the task of knowledge acquisition as well; it also pointed
out those places where there were gaps or inconsistencies
in our knowledge of the domain.
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Structure of the Model

One of the first and most basic decisions that had to be
made was how to define the unit task for the Radar
Operator; the organization of the top-level goal and the
unit task would affect the entire structure of our GOMS
model. In the case of text editing, the structure was easily
defined by making each marked correction a unit task. The
analogous decomposition in our domain would be to define
the unit task as tracking each object on the radar screen.
However, one obvious reason that such a scheme could
neither model the Radar Operator's behavior accurately nor
provide a reasonable framework for defining a system is
that the task of tracking an object has no well-defined end;
the task might never be completed and all other radar
contacts would be ignored as a result. In addition, the
Radar Operators must also receive and respond to orders
which may arrive at any time, so they must be
incorporated into the definition of a unit task as well.

In search of a better definition of the unit task, we tumed
to the training manual used by the Radar Operators
(Operations Specialist Training Manual), where we found
this statement: "Information handling comprises five
major functions gathering, processing, displaying,
evaluating, and disseminating information and orders.” We
attempted to use these five functions for our unit task
structure, but our efforts were complicated by another
emergent task structure; as we examined a sample Radar
Operator scenario, it became apparent that the Radar
Operator went through various stages of identification for
each new contact: establishing tentative track, air or
surface, commercial or military, friendly or hostile, and so
on. The challenge was to create a goal structure that
persisted in the incremental acquisition of knowledge about
a given tracked object while still providing reactiveness to
new information and situations and as they developed. The
manual continues, "All information handling must be
considered a continuous and growing process that
ulmately furnishes a composite picture of a situation,
enabling the commanding officer to make a final
evaluation and give orders for action.”

The solution we ultimately decided upon was to select a
contact, determine which stage of identification should be
performed next, and go through the steps of gathering,
processing, displaying, evaluating, and disseminating
information on this fine grained unit task. Once done with
a particular stage of the identification process on a
particular contact, the model returns to the top-level, where
new orders may be received and acted upon or a task that
has become more urgent may be selected for execution.
As in John and Vera (1992), a relatively shallow goal
stack and carefully designed set of selection rules was used
to make the model reactive to external changes.  The
resulting goal and method hierarchy for the intentional and
functional levels of the task is shown in Figure 1.

Knowledge Content of the Model

As can be seen in Figure 1, there are three sets of
selection rules in our GOMS model. These correspond to
points in the execution of a unit task where a decision
must be made as to how to proceed because there are
multiple methods to accomplish a goal. The first
selection rule, Select Next Task, simply chooses the
Execute Order method if a new order has been received,
otherwise the method for Monitor Radar Contacts is
selected. If an order is to be executed, Execute Ordered
Task selects the method that is appropriate for carrying out
that order. If no order has been received, then the Execute
Unit Task selection rule must decide, for a given contact,
which is the appropriate subtask; this depends on what
information has already been gathered about that contact,
which is reflected by the current label assigned to it. The
corresponding selection rule, written in NGOMSL, is as
follows:

Selection rule set for goal: Execute Unit Task

If <contact-label> is New and contact is under local
control, then accomplish goal: Establish
Tentative Track.

If <contact-label> is Tentative Track and contact is
under local control, then accomplish goal:
Establish Air or Surface.

If <contact-label> is Unknown and contact is under
local control, then accomplish goal: Establish
Friend or Foe.

If <contact-label> is not Tentative Track or Unknown
and contact is under local control, then
accomplish goal: Update Contact Information.

If contact is not under local control, then accomplish
goal: Update Contact Information.

Return with goal accomplished.

This selection rule uses perceptual information that is
available to the Radar Operator, in order to choose the
appropriate method. This is true of the other two sets of
selection rules as well. Very little beyond the ability to
understand symbols and orders is encapsulated in the
selection rules. The Radar Operator's knowledge is
contained in the methods of the model.

Within the GOMS model of a Radar Operator, the goal
hierarchy captures the structure of the decision-making
process involved; its topology reflects knowledge of the
nature of the task and the control knowledge needed to
carry it out. The detailed knowledge which makes these
decisions and the achievement of goals possible is
embedded in the methods of the model. For example, the
Establish Air or Surface method describes the steps that are
taken to achieve that goal, including the specific steps the
Radar Operator must take to make the determination:

Method for goal: Establish Air or Surface
Step 1. Accomplish goal: Gather and Process
Movement Information.
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Step 2. Decide: If contact is not a track,
then remove tentative track and return with goal
accomplished.

Step 3. Decide: If contact type is determined to be Air,
then Accomplish goal of: Display Contact
Information Unknown Air.

If contact type is determined to be Surface,
then Accomplish goal of: Display Contact
Information Unknown Surface.

If contact type is not determined,
then return with goal accomplished.

Step 4. Accomplish goal: Evaluate and Disseminate

Information.

Step 5. Return with goal accomplished.

The implementational (or keystroke) level is created by
further decomposing the structure of the task into
primitive operators, such as reading text, pointing and
clicking the mouse, etc. For example, the first step in the
Establish Air or Surface method is to invoke the subgoal
Gather and Process Movement Information, implemented
by the following method whose steps consist of operators
that are not analyzed further:

Method for goal: Gather and Process Movement
Information
Step 1. Decide: If contact is under local control,
then perform position correction.
Step 2. Read contact information.
Step 3. Decide: If CPA needs to be evaluated,
then compute contact CPA.
Step 4. Process contact information.
Step 5. Return with goal accomplished.

Reactivity of the GOMS Model

When developing a model of a dynamic, real-world task,
it is of critical importance to capture and retain the
qualities that allow humans to perform the task as well as
they do. One of the key characteristics of human
performance in this task is reactivity. The operators in the
scenario are able to quickly react to new contacts and
respond to new orders. They can stop whatever task they
are doing, begin a new one, execute it, and return to the
original task. The GOMS model presented here must be
able to reproduce this reactivity in a natural way that
results in sequences of behaviors like those of the
operators in the scenario.

The GOMS model of the operator derives its reactivity
from the organization of its methods and selection rules.
At any given moment in the model's behavior, the goal
stack is relatively shallow because there are very few
chained methods that get called as a sequence. Reactivity
is not achieved by forcing the model to check for changes
in the world (e.g., new orders or contacts) within each
method, but instead by returning to the top-level goal after
completing a portion of prioritized sub-tasks. The top-
level method can then check for changes in the world.

Avoiding long linked sequence of methods allows the
model to check for important changes in its environment
in a way that does not overload working memory nor
unnecessarily interrupt routine behaviors. The model was
designed in such a way as to simulate the operator's
sequence of contact-identifying behaviors while remaining
sensitive to changes that affect its goal prioritization. It is
thus able to combine the routine collection of information
about contacts, detecting new targets, and executing orders
in a cognitively plausible way.

Using Predictive Models for Agent-
Assisted Decision-Making

The goal hierarchy of the GOMS model captures the
structure of the decision-making process involved in
performing the task; its topology reflects knowledge of the
nature of the task and the control knowledge needed to
carry it out. Additional knowledge which makes these
decisions and the achievement of goals possible is
embedded in the methods of the model. We propose that
an intelligent agent must embody, at least in part, a model
of the user, and that GOMS models provide a suitable
structure for this purpose. The GOMS model described
here indicates that there are at least three places where the
user performs complex cognitive operations that might be
assisted by an intelligent agent: evaluation of contact
information, selection of most relevant contact, and
checking of contact identity. These are parts of the
operator's task that require decision-making based on both
the current situation and experience-based knowledge.

These cases represent those aspects of the task where an
intelligent agent, armed with a model of the operator's
knowledge and behavior, can make significant
contributions by knowing the current goal of the operator.
A GOMS model provides a dynamic representation of
users' goals, knowledge, and priorities, as well as their
behavior. At any given point in the problem-solving
process, there exists the current goal stack; associated with
each goal is a method for achieving that goal, consisting
of a series of primitive perceptual, cognitive, and motor
operators that are to be executed. Using this knowledge,
the intelligent agent can anticipate the information the
operator will require to accomplish his goals, present that
information in a useful form, and recommend actions based
the information. Furthermore, the agent may use its
model of the operator's knowledge to determine what task
the operator is currently performing. If the operator
diverges from the behavior predicted by the model, the
agent will try to map the new behavior onto the model.
The agent can then assess whether the operator's divergent
behavior is warranted by the current situation. If it is not,
the agent can recommend alternative courses of action that
the operator should follow. If the operator's behavior is
warranted by the situation, then the agent can update its
location on the model to continue assisting the operator on
the appropriate task.
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When selecting the next task to be performed, the agent
can estimate the priority of processed information in order
to focus the radar operator's attention on the most
significant and urgent developments and to adapt to the
operator's priorities when they diverge from those predicted
by the model. As the operator evaluates new information,
the agent must update its model of the operator's beliefs.
The agent can anticipate the information the operator will
require to accomplish her goals, present that information
in a useful form, and recommend actions based the
information.

Monitoring Working Memory Load

Due to their procedural nature, GOMS models also
provide the means to predict a user's working memory
load. At any given point in the problem-solving process,
there exists the current goal stack; associated with each
goal is a method for achieving that goal, and each method
explicilly states what information it accesses and must
therefore be stored in working memory for the duration of
that method's execution. For example, referring to the
model shown in Figure 1, the operator begins execution of
the Operate Radar Station method, where she must retain
whether or not a new order has been received, and if so
what that order is. Within the selection rule Select Next
Task, the operator must then choose which task she will
perform next, and remember that information, and so on.
Table 1 shows a trace of which variables are retained
within each method, and the total working memory load at
that point in the goal stack.

Table 1: Working Memory Load during task execution,

et ule Varjables Retained WM
Operate Radar Station (order = nil) 0
Select Next Task none 0
Monitor Radar Contacts target_contact = Casper 1
Move to Target Contact contact_label = Unknown 2
Execute Unit Task none 2
Establish Friend or Foe none 2
Gather and bearing = 24.5 7
Process range = 32
Movement altitude = 30,000
Information speed = 500

heading = 693

Display Contact <new_label = Hostile> 8
Information (contact_label = Hostile)
<new_label>
Evaluate and Disseminate none 7

In the present scenario, the operator may often be in a
situation where her working memory is overloaded. For
example, if there are many new contacts as well as orders
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to be executed, the operator may not be able (o retain the
necessary sequence of behaviors. Using the model to
evaluate situations where the operator's working memory
capacity might be overwhelmed, it is possible to predict
when behavior may deviate from what is expected, and to
determine when an agent can be most effectively assisted.

Comparison of Predicted versus Actual
Radar Operator Behavior

A simulated execution of the GOMS model was
conducted on a test scenario, this resulted in a sequence of
behaviors that the model would perform if it were
operating the radar station. We then compared this
sequence of behaviors with that of the operators in the
scenario. Table 2 summarizes the results of this analysis.

Table 2: Summary of Comparison Between Model and

Operator Behavior
MODEL

Match Miss
=
& Math 54 4 T=58
4
8 Miss 107 NA
w

T=161

There were 58 distinct operator behaviors described in
the original scenario. The model generated a total of 161
behaviors in total and matched 54 of the 58 operator
behaviors. In order to be considered matching, the model
must generate not only the same behaviors as the operator,
but it must also do so in the same order. Model bebaviors
that occurred out of order were counted as mismatches. Of
the 4 operator behaviors that were not matched by the
model, 2 of them were behaviors that the model performed
implicitly. That is, the model, as we built it, did not
explicily perform these actions as independent methods,
but instead had them built in to other methods. This was
not an important design decision on out part but simply
the consequence of the granularity level chosen for these
methods. Of the other two actions that were not accounted
for, one involved changing the type of radar used and
simply was not included in our model, and the other
involved a non-routine reporting of information.
Discounting the bebaviors performed implicitly by the
model, only 2 (3.5%) of the operator's behaviors were not
matched by the model.

The model generated 107 behaviors in addition to the 54
that matched those of the operator. Although this is a
large number of extra behaviors, a case by case analysis
shows that 104 of them are behaviors that are implicit in
the scenario. That is, they are behaviors that were
necessarily performed by the operator, but that were not
explicitly described in the scenario. For example, when
the model selects a new contact to establish a Tentative



Track, it must necessarily execute an intermediate method
of moving to the contact and then hooking it. The
operator must also perform this sequence of behaviors, but
the full set of steps is not explicitly described in the
scenario.

The remaining 3 behaviors produced by the model that

were neither matches nor implicit in the scenario were
behaviors that probably should have been done by the
operator but were left out because of time or memory
constraints. As discussed, the GOMS model provides a
measure of working memory usage that can be used to
better predict the mental states of an agent by taking these
constraints into account. Steps within methods that are
not strictly necessary can be noted as optional, so that
non-deterministic behavior may be accounted for. Overall,
only 3 out of 161 (less than 2%) behaviors generated by
the model were neither matches nor implicit when
compared to the operator's behavior in the scenario.
The model predicted 96.5% of the operator's behaviors.
Furthermore 98% of the behaviors generated by the model
were either explicitly or implicitly present in the scenario.
These results indicate that the model is successfully
simulating the operator's behavior and therefore capturing
the knowledge required to perform the task.

Conclusion

Using the GOMS methodology for analysis of human-
computer interaction, we have developed a model of a
Radar Operator's goals, and the methods that used to
accomplish them. A simulated execution of the model in
a test scenario predicted the operator's responses with a
high degree of accuracy, and furthermore provided details of
those actions that were not explicitly stated in the scenario
description. Based on this model, we were able to identify
those portions of the task where an intelligent agent would
be most able to assist the operator and to describe the
nature of the knowledge required for the task.

By creating a knowledge-level description of a task
(Newell, 1982), GOMS models provide the means to
predict users' goals, beliefs, priorities, and, therefore, their
actions. When the user's actual behavior departs from
what the model has predicted, the agent may inform the
user of the unexpected actions and recommend an alternate
course of action. If the operator's behavior is warranted by
the situation, then the agent can update its model or its
parameters so that the agent may continue assisting the
operator on the appropriate task.
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