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Abstract

not share this bias.

Background: Non-specific feature selection is a dimension reduction procedure performed prior to cluster analysis
of high dimensional molecular data. Not all measured features are expected to show biological variation, so only
the most varying are selected for analysis. In DNA methylation studies, DNA methylation is measured as a
proportion, bounded between 0 and 1, with variance a function of the mean. Filtering on standard deviation biases
the selection of probes to those with mean values near 0.5. We explore the effect this has on clustering, and
develop alternate filter methods that utilize a variance stabilizing transformation for Beta distributed data and do

Results: We compared results for 11 different non-specific filters on eight Infinium HumanMethylation data sets,
selected to span a variety of biological conditions. We found that for data sets having a small fraction of samples
showing abnormal methylation of a subset of normally unmethylated CpGs, a characteristic of the CpG island
methylator phenotype in cancer, a novel filter statistic that utilized a variance-stabilizing transformation for Beta
distributed data outperformed the common filter of using standard deviation of the DNA methylation proportion,
or its log-transformed M-value, in its ability to detect the cancer subtype in a cluster analysis. However, the standard
deviation filter always performed among the best for distinguishing subgroups of normal tissue. The novel filter and
standard deviation filter tended to favour features in different genome contexts; for the same data set, the novel
filter always selected more features from CpG island promoters and the standard deviation filter always selected
more features from non-CpG island intergenic regions. Interestingly, despite selecting largely non-overlapping sets
of features, the two filters did find sample subsets that overlapped for some real data sets.

Conclusions: We found two different filter statistics that tended to prioritize features with different characteristics,
each performed well for identifying clusters of cancer and non-cancer tissue, and identifying a cancer CpG island
hypermethylation phenotype. Since cluster analysis is for discovery, we would suggest trying both filters on any
new data sets, evaluating the overlap of features selected and clusters discovered.

Background

Non-specific filtering of variables, the selection of a sub-
set of variables based on a characteristic unrelated to the
outcome of interest, is often applied for dimension re-
duction in high-dimensional data sets. The approach can
be used for both supervised and unsupervised analysis.
For differential expression, non-specific filtering of fea-
tures prior to hypothesis testing can increase power to
detect differentially expressed genes [1]. For cluster ana-
lysis, it can improve sensitivity of finding disease clusters
[2]. The most common filter methods use a measure of
variance to rank variables, hoping to enrich for features
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that vary due to biological signal [3-5]. In these settings,
the variance of the (possibly log-transformed) data is
usually independent of the mean. However, when study-
ing DNA methylation measured as a proportion, this
may not always be the case, and alternate filter statistics
may be preferred.

DNA methylation is an epigenetic mark that varies be-
tween different cell types, correlating with DNA packaging
within the cell and facilitating cell-type specific function.
Today, Illumina’s DNA methylation BeadArrays allow for
high-throughput analysis, with their most recent platform
measuring hundreds of thousands of targeted loci for large
numbers of samples. On Illumina’s platform, DNA methy-
lation is measured by the percentage of total fluorescence
due to methylation. This value is bounded between 0 and 1,
and can be modelled using a Beta distribution. To perform
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cluster analysis on such data, Houseman et al. (2008) [5]
developed a recursive partitioning mixture model (RPMM)
for Beta-distributed data. They applied a non-specific filter
prior to cluster analysis, using the standard deviation of the
Beta values. However, for Beta-distributed data, the vari-
ance is a function of the mean, and a standard deviation fil-
ter will bias the selection of most variable features towards
those having a mean near the middle of the 0 to 1 scale.
This bias could favour selecting features that show cell-type
specific methylation and be desirable for clustering sub-
groups of normal tissue, as CpG methylation at cell-type
specific marks can be sensitive to shifts in the distributions
of cells driving the associations of CpG methylation with
sample characteristic (e.g. disease state, or age) [6-8]. How-
ever, at the same time, a bias that favours selecting features
with mean DNA methylation levels near 0.5 can be prob-
lematic in studies to discover cancer subtypes where aber-
rant DNA methylation may only be observed in a small
fraction of tumors [9,10]. When the subset of tumors with
aberrant profiles is rare, the average DNA methylation level
across a set of tumors for sites that are normally unmethy-
lated is closer to the normal state of 0 than 0.5. At the same
time, the average level for sites that are normally methyl-
ated is closer to 1. When filtering variables based on stand-
ard deviation, clusters having only a few samples may not
separate distinctly from the rest. To decrease the associ-
ation between the mean and variance of methylation pro-
portions measured on the Illumina platform, Du et al.
(2010) [11] propose using a logit transformation (on the
log2 scale). We explore alternate transformations that take
the Beta-distribution explicitly into account. In particular,
we consider methods making use of the cumulative distri-
bution function, the variance stabilizing transformation for
a Beta distribution [12].

We compare different filtering methods in a collection
of real data sets generated on either Illumina’s Human-
Methylation27 or HumanMethylation450 platform. The
variety of examples considered will allow us to evaluate
filter methods across different data distributions and
structures. We find that the properties of the data set,
specifically the fraction of samples in a subtype, or the
variation of features within groups, can lead to very dif-
ferent behaviour of some filtering methods.

Methods

lllumina HumanMethylation BeadArrays

[lumina’s BeadArray technology analyzes more than 27,000
targeted CpGs on the HumanMethylation27 (HM27) plat-
form, and over 480,000 on the HumanMethylation450
(HM450) [13]. Whereas the HM27 array primarily targets
CpGs in promoter regions, the HM450 expands coverage
of exons, gene bodies, and 3'UTRs, targeting sites in 99%
of RefSeq genes [13]. At each targeted position, the quantity
of methylated (M) and unmethylated (U) DNA is measured
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by fluorescence intensity, and the proportion of methylated
target is summarized by the average Beta value = M/(M + U),
a value bounded by 0 and 1. Many such targets show
skewed distributions near the boundary conditions, motiv-
ating the use of a Beta distribution for statistical modelling
[5]. As not all targeted sites show variation in proportion
of DNA methylation, our goal is to use non-specific filter-
ing to reduce the dimension of variables in our analysis.

We refer to each targeted CpG site on the array as a fea-
ture, and evaluate a number of methods for ranking fea-
tures and filtering for dimension reduction. A number of
methods explicitly use parameters from, or variance-
stabilizing transformations of, Beta distributions.

Beta distribution
For a single feature, we model the distribution of DNA
methylation across independent samples using a Beta distri-

bution. Let X ~ Beta(a, B), f(x) = B&.ﬁ) x*1(1-x)", where

1
B(a, ) :/o Lt‘)"l(l—u)ﬁ*1 and «, B>0. The mean and

. : _ «a 2 p#(-p)
variance are given by u = v and o° = (B

ively, with the variance a function of the mean. A useful
reparameterization is Beta(u, ), with ¢p=a + S a precision
parameter independent of the mean.

Transformations of the data can also lead to independence
of the mean and variance. Du et al. (2010) [11] proposed the
M-value, a (log2) logit transformation of the methylation
proportion. However, the true variance stabilizing trans-
formation for the Beta distribution is the cumulative

, respect-

X
distribution function (CDF), Y =f,(X;a,p) = ﬁ /
mJo

41 (1-£#"'dr [12]. If the original data X follow a Beta
distribution, the data after transformation (Y) will fol-
low a Uniform distribution with mean 1/2 and variance
1/12. Any lack of fit of a single Beta distribution would
suggest that the data arise from a mixture of Betas. We
measure lack of fit using the distance of our trans-
formed data from their expected distribution. Two fil-
ters below rank features using the CDF-transformed
data, Y = CDF(X).

Filter methods

We evaluate a total of eleven filters, eight based on rank-
ing single statistics, and three based on a weighted score
for combining ranks (Table 1). Filters 1 through 4 are
commonly used methods today: Filter 1, standard devi-
ation of Beta values (SD-b); Filter 2, standard deviation
of M-values (logit-transformed Beta values) (SD-m); Fil-
ter 3, median absolute deviation of Beta values (MAD-
b); Filter 4, DIP test, a measure of unimodality of Beta
values (DIP) [14].
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Table 1 Description of feature filtering methods
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How to calculate the statistic*

Method Description

SD-b Standard deviation based on beta values
SD-m Standard deviation based on M values
MAD Median absolute deviation of beta values
DIP Measure of unimodality in a sample
Precision Inverse precision parameter

BQ-GOF Beta Quantile Goodness-of-fit

TM-GOF Transformed Moment Goodness-of-fit
TQ-GOF Transformed Quantile Goodness-of-fit

BR Best rank of 8 single filter methods

AR Average of the top 2 ranks

WAR Weighted average of the top 4 ranks

SD = sqrt(1/N S(Xi-mean(X))?)
SD = sqrt(1/N 3(Xi-mean(X))?)
median(]Xi-median(X)|)

The max difference, over all sample points, between the
empirical distribution function and the unimodal distribution
function that minimizes that maximum difference

1/phi= 1/(mean(X)(1-mean(X))/SD*-1)

Sum the absolute differences, over 25 quantile points, between
the empirical distribution function and the expected beta
distribution function

The Euclidean distance between the empirical standardized
transformed moments and the expected center of the
transformed moments (1/2,5qrt(1/12))

Sum the absolute differences, over 25 quantile points,
between the empirical cumulative distribution function
and the expected cumulative beta distribution function
(uniform distribution function)

The best rank value of 8 single filter methods
(the highest rank value)

The average of the best two rank values of 8 single filter methods

The weighted average of the best four rank values of 8
single filter methods (weight =4:3:2:1)

*Sample R code provided in Additional file 4.

Filters 5 through 8 are statistics that assume the data
derive from a single Beta distribution. Filter 5, inverse
precision (also known as adjusted SD) [15], ranks the
data by an estimate of the (inverse) precision parameter,

1/¢p=1/ (0} + B), with alpha and beta estimated using

method of moments estimators,

(1-%)[x(1-%)-s%]

P (1-x)-xs

oy , W

2

where % and s* are the mean and variance for a given
feature. For this method the features with lower
precision have higher variation. Filter 6, Beta-quantile
Goodness-of-Fit (BQ-GOF), is a comparison of the ob-
served to theoretical quantiles from a Beta distribution.
It sums for each feature, the absolute difference between
corresponding quantiles from the observed cumulative
distribution function and the theoretical one obtained
using the estimated parameters &, /3’ .

Filters 7 and 8 measure goodness-of-fit on the CDF-
transformed data, Y = CDF(X). Filter 7, Beta-Transformed
Moments Goodness-of-Fit (TM-GOF). The CDF-trans-
formed data are ranked using the distance of the mean, ¥,
and standard deviation, s,, from their expected values. The
complete procedure is summarized as follows: 1. For each
feature, estimate &, /;’ ; 2. Compute Y = CDF(X); 3. Compute,
y and s, the mean and standard deviation of the trans-
formed data; 4. Calculate s, and s, standard deviation for y

and s, across all features; 5. Rank features by their standard-

_ 2 75\ 2
ized Euclidean distance \/ (y_s#) + (@371/12> . The fea-

Sy

tures containing a mixture of Betas will have larger
Euclidean distances compared to features that are from a sin-
gle Beta distribution. Filter 8, Beta Transformed Quantiles
Goodness-of-Fit (TQ-GOF), besides using the mean and SD
of the CDF-transformed data as a pair of statistics to meas-
ure lack of fit, we can use the quantile differences between
the observed CDF of Y and the theoretical CDF. Here, we
rank the features by the sum of the absolute difference of the
corresponding quantiles. This is similar to the BQ-GOF (Fil-
ter 6) except the quantiles, instead of the cumulative quan-
tiles, are compared for the CDF-transformed data.

Filters 9 through 11 are summaries of the ranks from the
individual statistics used above. Filter 9, Best Rank (BR) se-
lects as the statistic the top rank across the eight statistics,
Filter 10, Average Rank (AR), averages the top 2 ranks, and
Filter 11, Weighted Average Rank (WAR), averages the top
four ranks using weights 4:3:2:1, respectively.

Simulation study

We perform a simulation study to evaluate the ability of
the eleven non-specific filters to enrich a ranked list of fea-
tures with those informative of subgroups. The data are
simulated from distributions observed in our colon cancer
data set (data set #1; see Real data sets below). In this data
set, 6 out of 26 subjects (23%) contain a hypermethylation
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profile known as the CpG island methylator phenotype
(CIMP), determined using a separate technology [10].

We simulate DNA methylation data from Beta distribu-
tions with parameters (ji,¢;;), where i=1 or 2, for the CIMP
and non-CIMP subsets, and j=1,...,2000 indicates the fea-
ture. A random 10% of features are selected to be inform-
ative, with (uy;¢yj) and (pj¢y) estimated from the CIMP
and non-CIMP subgroups, respectively. For the non-
informative features, a single set of parameters (u;;) are es-
timated from the non-CIMP subgroup only, and used for
both subgroups (i = 1,2). We simulate 200 samples, consider-
ing sample size ratios of 1.9, 1:1, and 9:1. As the feature char-
acteristics vary between the two groups (e.g., CIMP cancers
shows higher mean and variance of measures on average
compared to non-CIMP cancers, Additional file 1: Figure
S1A-C), the ratios 1:9 and 9:1 can represent very different
scenarios. For 100 replicate data sets, we rank the 2000 fea-
tures based on the different filter methods. For each data set,
the same 1800 distributions are used for the non-informative
features, and a new random sample of 200 features is se-
lected for the informative features. For each data set and
each filter statistic, we rank the features by the statistic, and
compute sensitivity and specificity for identifying the 200 dif-
ferentially methylated features, for feature lists of all possible
lengths. The average sensitivity and specificity is computed
over the 100 replicate data sets for each filter, and presented
using receiver operating characteristic (ROC) curves.

In addition, we compare for the different filtering
methods the sample misclassification rates when performing
cluster analysis using a Recursive-Partitioning Mixture
Model (RPMM) [5]. RPMM was designed for clustering
DNA methylation signatures, and clusters samples using a
mixture of Beta distributions in a recursive partitioning rou-
tine. For each filter method, cluster analysis of the samples
is performed on the top 100, 200, and 400 ranked features
(5%, 10%, 20%, respectively), when the true percentage of in-
formative probes was 10% of all features. In the results we
will see that all filter methods performed well when the dis-
tributions of the informative features mimicked the distribu-
tions observed in the real data set. We attributed this to a
very strong cluster signal from the subset of informative

Table 2 Description of data sets used in application analysis
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features. In an attempt to differentiate the performance of

the filter methods, we restricted the distributions of the in-

formative features to those from a subset of features show-

ing a smaller effect size. We defined the effect size of a

feature by g — lnw, and sampled 200 informative
141,‘/ (1*/4 1/)

features from the subset with ‘é‘sl, or ‘é‘SO.S. The 1800

non-informative features remain unchanged from the earlier
ROC-curve evaluation. The limit on the effect size of the
informative features reduced the cluster signal in the data,
and resulted in greater variation in performance among the
different filtering approaches.

Real data sets

Finally, we apply our filtering methods to eight Illumina
data sets. The data sets were selected to span a variety
of biological conditions and include data generated on
the HM450 and HM27 platform. We selected three
cancer-only, four tumor-normal tissue, and one normal
blood data set. The three cancer-only data sets include
one colon and two glioblastoma, cancer types known to
have a distinct subtype defined by the CpG island meth-
ylator phenotype (CIMP). The four tumor-normal tissue
data sets include two kidney and two breast data sets.
The normal blood data set is selected to evaluate the fil-
ter methods in the presence of the strong quantitative
risk factor, age. Further details are provided in Table 2
and Supplemental Material (Additional files 2 and 3). All
of the data are anonymized, and this study did not re-
quire institutional review board approval.

We perform RPMM cluster analysis on different lists of
filtered features to assess the ability of different filtering ap-
proaches to identify (1) cancer subtypes, (2) cancer/normal
tissue types, or (3) young from old individuals. For each
data set we applied the 11 filtering methods, each time
selecting the top 1000 features for RPMM clustering. We
also considered a hybrid variable selection approach, in
which we pool the top 500 features selected from two filters
methods above (SD-b and TM-GOF). These filters are
chosen because they each perform well for different

Data set Description Platform Source # of probes after preprocessing # of samples

1 Colon cancer ~ HM27 Local 19,965 20 NONCIMP vs. 6 CIMP

2 Glioblastoma ~ HM27 TCGA, plate 1,23,10 20,549 74 NONCIMP vs. 12 CIMP

3 Glioblastoma HM450 TCGA, plate 79,111,130 374,601 93 NONCIMP vs. 6 CIMP

4 Kidney HM27 TCGA, plate 64 21,624 50 KIRC vs. 45 normal

5 Kidney HM450 TCGA, all KIRC 374,708 283 KIRC vs.160 normal

6 Breast HM27 TCGA, plate 93 21,787 37 Infiltrating Ductal Carcinoma vs. 20 normal
7 Breast HM450 TCGA, plate 109 377853 56 Infiltrating Ductal Carcinoma vs. 17 normal
8 Normal blood  HM450 GEO:GSE40279, plate 2 383,911 84 blood samples
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biological conditions studied (see Results below). For data
sets 1-7 the misclassification rate was computed by com-
paring the top two clusters to the known tissue types. We
also evaluated the cluster agreement between the clusters
identified by the RPMM routine (typically varying from 2—
6 groups) with our two known tissue classes using the ad-
justed rand index. For data set 8, we evaluated the differ-
ences in mean age between the two major cluster groups.
To evaluate the general effect of filtering the data, we ana-
lyzed the HM27 data sets without any filtering, and the
HM450 data sets after selecting a random subset of 1000
features. Feature reduction for the HM450 data was neces-
sary, as the cluster analysis software required a lower di-
mensional data set in order to run. Also, since the HM450
clustering results varied with random selection of features,
we repeated the analysis ten times and report the average
misclassification error rate over the ten replicates (data sets
1-7).

For two filter methods that show good performance
(SD-b and TM-GOF, filters #1 and #7), we report the
frequency of the top selected features by genomic con-
text. On the HM27 array the selected probes are charac-
terized using the UCSC definition of CpG island and the
gene-based definitions provided by Illumina: “promoter”,
“transcribed region”, “exonic region”, and “intronic re-
gion”. For the HM450 array we stratified four gene-
based categories (Promoter/Exon/Intron/Intergenic) [16]
by their position relative to a CpG island (hgl9 UCSC
definition).

All analyses are performed using the R programming lan-
guage 2.15.2 (http://www.r-project.org). Infinium data were
processed using the methylumi package in Bioconductor,
using a combination of Normal-Exponential background
correction, dye bias equalization, and beta-mixture quantile
normalization (BMIQ) to remove technical artifacts [17,18].
With a goal of discovering latent disease subtypes, we re-
moved features occurring on the X and Y chromosomes
which would be enriched for sex-related variation, and fea-
tures with other data quality issues (e.g. contain common
SNP within 10 bp of the target CpG that may misrepresent
DNA methylation level, or map to multiple regions of gen-
ome hgl9 and lack target specificity. Common SNPs are
defined as having MAF > 0.01 in dbSNP build 135 per the
UCSC snpl35common track.) After pre-filtering, 22,198
CpG targets remain on the HM27 array, and 384,310 on
the HM450. Sample R code for the filtering methods is pro-
vided in Additional file 4.

Results

Colon cancer data

Figure 1 shows the relationships between six filter statis-
tics and mean DNA methylation level in a study of 26
colon cancer tissues. In this collection of heterogeneous
cancers (23% CIMP and 77% non-CIMP), we see a
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strong relationship between standard deviation and the
mean value (Figure 1A), and selecting features with high
variation (SD-b) biases the selection to those with mean
near 0.5. This relationship is reduced for alternate filter
statistics (Figure 1B-1E). Therefore, depending on the fil-
ter statistic employed, a different set of top ranked fea-
tures may be retained for statistical evaluation.

Simulation study

Enrichment of ranked lists

The ROC curves from the analysis of simulated data
show the ability of the filters to enrich the top ranking
genes with those truly informative of subgroup (Figure 2).
The features that enrich the top of the list will show in-
creasing sensitivity under low false-positives, falling
above the diagonal line, and having an area under the
curve (AUC) greater than 0.5. Figure 2 shows that for all
scenarios considered, filters that combine a Beta variance
stabilization transformation with goodness-of-fit statistic
(TQ-GOF, TM-GOF, BQ-GOF) appear to enrich the
most highly ranked features with ones informative for
cluster subgroup. The filters SD-b, SD-m, and Precision
appear non-informative, with 95% confidence intervals
for the AUC containing 0.5 (Additional file 5: Table S1).
The figures also show that for the informative filters, the
greatest enrichment occurs when the subgroups have
equal sample size. This is to be expected, as equal sam-
ple sizes will give the greatest power to detect differen-
tial DNA methylation in supervised analyses. Between
the two analyses with unequal sample sizes, the better
discrimination occurs when the group with larger vari-
ance has the larger sample size (Figure 2C, F).

In ROC analyses, another quantity of interest is the par-
tial AUC, the AUC for a given false-positive rate. In this set-
ting, fixing the error rate will give a variable number of
features for different filters. Instead, we select a fixed num-
ber of features (p) to discuss the sensitivity and specificity.
This approach reflects how non-specific filtering is
performed in practice. The solid black diagonal line in
Figure 2D-F indicates the estimated sensitivity and specifi-
city levels for the top 100 features. The diagonal line con-
nects the boundary points indicating the maximum true-
positive fraction (y-axis) for O false-positives (x-axis) and
the maximum false-positive fraction for 0 true-positives. In
the simulation, the true number of informative features is
always 200 out of 2000. Thus, the maximum possible true-
positive fraction is 0.5, corresponding to all 100 features se-
lected being true positives (100/200 true-positives and
0/1800 false-positives); the maximum possible false-positive
fraction is 0.056 (100/1800 false-positives and 0/200 true
positives). The diagonal lines in Figures 2D-F connect the
coordinates for these boundary points: (0,0.5) and (0.056,0),
respectively. We estimate the sensitivity and specificity for
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Figure 1 Smoothed scatter plots showing six filter statistics vs. the mean DNA methylation (Beta) value (22198 features, 26 colon
cancer samples). A. SD-b: standard deviation of Beta values; B. SD-m: standard deviation of M-values; C. 1/Precision: inverse of precision
parameter; D. BO-GOF: Beta Quantile Goodness-Of-Fit; E. TM-GOF: Transformed Moment Goodness-Of-Fit; F. TO-GOF: Transformed Quantile
Goodness-Of-Fit. Red line in each figure indicates the median statistic values.

the top ranked 100 features from each filter by the coordi-
nates where the ROC curve crosses the diagonal line. These
intersection points provide a more clear comparison of en-
richment for the top ranking features than is evident when
viewing the entire ROC curve. For subgroups of equal size,
the TQ-GOF statistic shows the greatest sensitivity and spe-
cificity in selecting informative features for a fixed number
of features. For unequal sized subgroups, the methods TM-
GOF and BQ-GOF, performed competitively.

Cluster analysis

Applying cluster analysis to the data simulated in Figure 2,
all methods performed nearly perfectly (results not shown).
Presumably this is due to the selection of a few features
with very large signal between the two cancer subtypes. To
introduce variation in behaviour, we reduced the effect sizes
for the informative features in the simulation (see
Methods). Figure 3 shows the misclassification error rates
from a cluster analysis of data simulated under these re-
duced effect sizes. For all scenarios, TM-GOF and TQ-
GOF performed best among all single statistic methods.
We see that the Precision filter, SD-b and SD-m performed

worst. Filters MAD and DIP also performed poorly (data
not shown). Regardless of the number of features retained,
the Precision filter was unable to find the correct subgroups
in the cluster analysis. For other methods, the misclassifica-
tion rates increased as we increased the number of features
in the analysis. Among the three summary methods, BR
and AR performed similarly to the best single filter
methods (AR data not shown); the WAR filter did not per-
form as well (data not shown). These results are consistent
with previous ROC curves (Figure 2).

We note that the maximum error rate for each panel in
Figure 3 depended on the sample sizes in the two sub-
groups. When there are no clear clusters in the data,
RPMM tends to find one big cluster. This resulted in a
maximum error rate of 10% (=20/200) for sample size ra-
tios of 1:9 and 9:1 (Figure 3A and B) and an error rate of
50% (=100/200) when the sample sizes were equal
(Figure 3C and D).

Real data application
Table 3 shows the misclassification rates of RPMM clus-
ter analysis after variable filtering on a variety of cancer
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different sample ratio scenarios: A. Sample size ratio 9:1 (non-CIMP/CIMP); B. Sample size ratio 1:1; C. Sample size ratio 1:9. The bottom three
panels D-F are partial ROC curves obtained from the panels A-C by restricting the axis ranges to the region relevant to the diagonal line. The solid
black diagonal line in Figure D-F indicates the estimated sensitivity and specificity levels for a list of 100 genes.
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data sets. Error rates are also reported in the absence of fil-
tering, or after random feature selection. For the colon and
glioblastoma cancer data sets containing CIMP and non-
CIMP cancer subtypes, (the colon data set being the one
our simulation study mimicked), TM-GOF and TQ-GOF
consistently showed low misclassification rates, as expected
from our simulation study. For the data sets having both
cancer and non-cancer tissues, these same filters performed
much worse than other methods (Table 3). For the kidney
samples (data sets #4-5), all methods except TM-GOF and
TQ-GOF performed well, including no filtering for the
HM27 data and random filtering for the HM450. Interest-
ingly, for the breast tissues (data sets #6 and #7), SD-b and
SD-m performed best. None of the summary-based filter
methods ever performed better than the best single-filter
method. They also performed inconsistently across the dif-
ferent data sets. The hybrid approach that combined an
equal number of top SD-b probes with TM-GOF probes
showed some merit. Sometimes the hybrid selection scheme
behaved as well as the best single filter method (Colon data
set #1, Kidney data sets #4, #5), and at other times it

resulted in error rates that were intermediate between the
other two (Glioblastoma data set #3, Breast cancer data sets
#6, #7). Overall, the TM-GOF and TQ-GOF methods con-
sistently performed best for identifying the CIMP subgroup
in cancer data, while the SD-b filter performed best at dis-
tinguishing cancer from non-cancer tissue.

To visualize the different performance of our top fil-
ters, TM-GOF and SD-b, we created heatmaps of the
top 1000 filtered features following RPMM clustering.
Figures 4 and 5 show the clusters identified for the colon
cancer data set (data set #1, tumor-only) and the TCGA
kidney data set (data set #4, tumor and non-tumor kid-
ney), respectively. Using TM-GOF in the colon cancer
data, our subcluster identified 4 out of 6 CIMP samples,
leaving 2 CIMP samples misclassified in our first split of
the data (Figure 4A). (We note that we use the word
“misclassified” loosely, as our definition of CIMP is likely
not a gold standard (see Additional file 2, Data set #1)).
Using SD-b as the filter, the first split identified two
clusters more equal in sample size (11 and 15), misclas-
sifying 5 non-CIMP samples (Figure 4B). Interestingly,
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Figure 3 Misclassification rates of RPMM cluster analysis using top filtered features for 7 filtering methods (2 groups, 200 informative
features out of 2000, 200 samples, 100 simulated data sets). Average 100 simulations of misclassification rates from a cluster analysis
performed using RPMM, for the top 100, 200, or 400 features of seven different filtering methods under different sample size ratios. A*. Sample
size ratio 9:1 (non-CIMP/CIMP); B*. Sample size ratio 1:9; C* & D**. Sample size ratio 1:1. For A*-C*: informative features have effective size smaller
than 1; For D**: informative features have effective size smaller than 0.5.

in the next split of the data all 6 CIMP samples sepa-
rated themselves from the others, appearing together in
one of the four sub clusters (Figure 4B). Thus the CIMP
subtype was found by SD-b filtering, but only after fur-
ther sub-clustering. Using the adjusted rand index meas-
ure of the co-clustering of sample pairs by cluster
category and tissue label the TM-GOF filter showed su-
periority over the SD-b filter because of the smaller
number of clusters estimated by the clustering method
(Additional file 6: Table S2). In Figures 4A and B, 47 out
of 1000 features are shared by the two filter methods.
For data set #4 (Figure 5), SD-b filter resulted in the suc-
cessful identification of tumor and normal kidney sam-
ples at the first division (Figure 5B). Using TM-GOF, the
first cluster division identified a subtype of 4 cancer
samples (Figure 5A, light green) with high DNA methy-
lation in a subset of features. However, a second division
of the data resulted in the separation of non-cancer tis-
sues from the cancer samples (red bar). Thus, again we
found the substructure sought in the cluster analysis,
but not until the second division of the clusters. In
Figure 5A and B, only 4 of the 1000 features overlapped.
Interestingly, using different feature selection methods

the cluster substructure became similar for both data
sets, even when the first split found different subgroups.
This common substructure in the data set was captured
by the adjusted rand index (Additional file 6: Table S2).
However, this same cluster substructure was not repro-
duced on the HM450 platform.

We also asked whether omitting features with outlier
values might discover larger clusters than the small dis-
ease subset discovered when filtering using TM-GOF
(Figure 5A). We omitted all features with values greater
than or less than the median Beta value +/-3 times the
inter quartile range (IQR), excluding a relatively large
number of features from the kidney data set (data set
#4). We then selected the top 1000 features using TM-
GOF, performed cluster analysis, and found perfect dis-
crimination of cancer and non-cancer kidney (Figure not
shown). This confirmed that the TM-GOF filter favoured
features that identified disease subtypes prior to its se-
lection of features identifying tissue disease state.

This same removal of features with outliers, followed
by filtering the top 1000 features and cluster analysis,
was performed on data sets #5-#7. Each time we found
TM-GOF was able to find disease state clusters at the



Table 3 Misclassification rate of RPMM cluster analysis to find 2 groups using different variable filtering methods (top 1000 features)

661/51/S0LT-1 L1 L/WOY [RAUDPIWOIG MMM//:d1Yy

Data set 1 Data set 2 Data set 3 Data set 4 Data set 5 Data set 6 Data set 7
Tissue type Colon cancer Glioblastoma Glioblastoma Kidney Kidney Breast Breast
Platform HM27 HM27 HM450 HM27 HM450 HM27 HM450
# of samples 20 non-CIMP vs. 6 74 non-CIMP vs. 12 93 non-CIMP vs. 6 50 KIRC vs. 45 non- 283 KIRC vs. 160 non- 37 Breast cancer vs. 20 non- 56 Breast cancer vs. 17 non-

CIMP CIMP CIMP cancer cancer cancer cancer
No filter 0.31 0.22 NA 0 NA 0.12 NA
Filter top 1000
by:
Random * 0.34 0.27 040 0.004 0.005 0.12 0.20
SD-b 0.19 0.07 049 0 0.02 0 0.12
SD-m 0.12 0.07 042 0.02 0.03 0.12 0.08
MAD 0.38 0.35 049 0 0.005 0 0.14
DIP 023 0.36 045 0 0.005 0 0.14
Precision 0.08 0 0.10 0.03 0.01 0.11 022
BQ-GOF 0.19 0 0.07 0 0.01 0.25 023
TM-GOF 0.08 0.02 0.06 0.36 047 044 049
TQ-GOF 0.08 003 0.06 035 047 044 048
BR 0.12 0.02 0.1 0.02 0.02 0.23 0.19
AR 0.08 0.06 0.11 0.02 0.02 025 0.19
WAR 0.12 0.07 045 0.02 0.01 0.11 0.10
SD-b + TM- 0.08 0.07 0.20 0.05 0.01 0.26 0.36
GOF**

NA = not applicable; Too many features for RPMM to run.
*Average from 10 analyses of randomly sampled feature sets.
**Combine top 500 SD-b + top 500 TM-GOF features.
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Figure 4 Heatmaps of RPMM cluster analysis using top 1000 filtered features by A) TM-GOF or B) SD-b methods using 26 colon cancer
samples (data set #1). Rows represent features and columns represent samples; yellow represents high DNA methylation and blue represents
low. The color bars at the top of the columns indicate sample tissue types (row 1) and clusters (row 2). In row 1 dark and light green indicate
CIMP and non-CIMP tumors, respectively. In row 2 red, yellow, blue and green bars indicate the sample clusters found after two divisions of
clustering using RPMM. In Figure A, the red and yellow clusters are identified at the second division, and no subdivision of the blue cluster is
found. In Figure B, the red and yellow clusters separate in the second division, as do the blue and green clusters.
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first division just as well as SD-b (results not shown).
However, for the CIMP cancer data sets (data sets #1-3),
a pre-filtering of features with outliers (using median
+/-3*IQR criteria) resulted in equally bad clustering for
all filtering methods (data not shown). These results sug-
gest that broad pre-filtering using this definition re-
moved features informative for a CIMP classification.

Next we asked if we could find the same tumor sub-
structure in the kidney data set if we had started with
the 50 kidney tumors only. In general, this appeared to
be the case. Using TM-GOF as our filter, we identified a
distinct subgroup of five tumors, four of which were
those previously identified when clustering the larger set
of tumor and non-tumor tissue (Figure 5C). A subset of
50 features (5%) is shared by the two analyses, selected in
the top 1000 features of both data sets (Figure 5A and C).
When using features selected using SD-b, the tumors are
separated into subgroups of size 12 and 38 (Figure 5D).
The cluster of five tumors identified from the TM-GOF fil-
ter is a subset of the cluster of 12 identified using SD-b fil-
ter; a subset of 44 of the 1000 features (4.4%) were selected
by both filter methods (Figure 5C and D).

The last data set analyzed was whole blood (data set #8),
selected to compare the different filter methods when there
is structure due to age, a continuous variable. Table 4 sum-
marizes the mean age in the top two clusters after filtering
the top 1000 features and performing RPMM in 84 whole
blood samples. The number of samples in each cluster

varied considerably depending on the filtering method.
Selecting features ranked by SD-b resulted in two groups
approximately similar in size (52 vs 32) whereas selecting
features ranked by MAD resulted in the detection of only a
single cluster (n = 84) (Table 4). The difference in mean age
between the top two clusters was greatest when using the
hybrid SD-b and TM-GOF filtering method (difference =
7.3 years, p=0.02) or WAR (difference =7.2 years, p =
0.01), and the filters SD-b, SD-m, and AR all recovered dif-
ferences in mean age around 6.5 years (p = 0.03-0.04). Two
filters using the Beta-distribution variance stabilizing trans-
formation (TM-GOF and TQ-GOF) tended to find groups
most unequal in sample size, but not statistically signifi-
cantly associated with age (p > 0.05). Interestingly, the Pre-
cision filter found groups with nearly balanced sample size,
but did not discriminate samples by age (difference = 3.5,
p=025).

We report the genomic context of the features selected
by TM-GOF and SD-b, our two best performing filter
methods (Additional file 7: Table S3a and 3b). For the
colon cancer and glioblastoma data sets (#1-3), both fil-
ter methods enriched for features in CpG islands, which
makes sense for detecting a CpG island methylator
phenotype cancer subtype. In the cancer versus normal
tissue comparisons, the different filters prioritized differ-
ent feature subsets. For the HM27 data, SD-b prioritized
features from non-CpG island regions while TM-GOF
still prioritized features from CpG island regions. Both
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Figure 5 Heatmaps of RPMM cluster analysis using top 1000 filtered features by TM-GOF (A,C) or SD-b (B,D) methods using 95 kidney
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cancer-non-cancer samples (data set #4). Rows represent features and columns represent samples; yellow represents high DNA methylation
and blue represents low. The color bars at the top of the columns indicate sample tissue types (row 1) and clusters (row 2). In row 1 dark and
light green indicate cancer and non-cancer samples, respectively. In row 2 red, yellow, blue and green bars indicate the sample clusters found
after two divisions of clustering using RPMM. Figure A & B show heatmaps of all 95 kidney samples using top 1000 features filtered by TM-GOF

or by SD-b method, respectively. Figures C & D show heatmaps of 50 kidney tumors using top 1000 features filtered by TM-GOF or by SD-b
method, respectively. In C, the blue and green bar clusters are found at the second separation.

filters enriched for features from exonic regions, with
only SD-b from the Kidney data set (#4) preferentially
selecting features in promoters. For the HM450 Kidney
cancer vs non-cancer tissue comparison, both filter
methods over-represented non-CpG island features,
however TM-GOF selected more from exons and SD-b
selected more from introns and intergenic regions. The

Breast cancer versus non-cancer tissue (data set #7)
showed the greatest variation in enrichment categories
by the TM-GOF and SD-b filter methods. The better
performing SD-b filter selected intergenic features, both
inside and outside CpG islands. In general, across all
HM450 data sets the TM-GOF filter selected more fea-
tures from CpG island promoters than the SD-b filter
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Table 4 Mean age in two clusters identified by RPMM using different filtering methods on blood samples of a normal

population
Filter method Sample size group 1 Sample size group 2 Mean age group 1 Mean age group 2 Difference in mean T test p-value
ages
MAD 84 0 59.54 0 NA NA
DIP 84 0 59.54 0 NA NA
SD-b 52 32 57.10 63.50 6.40 0.03
SD-m 64 20 57.92 64.70 6.78 0.04
Precision 40 44 57.73 61.18 346 0.25
BQ-GOF 62 22 5821 63.27 5.06 0.09
TM-GOF 75 9 59.11 63.11 4.00 038
TQ-GOF 75 9 59.11 63.11 4.00 038
BR 57 27 57.89 63.00 511 0.08
AR 56 28 57.38 63.86 6.48 0.03
WAR 55 29 57.04 64.28 7.24 0.01
SD-b + TM-GOF* 56 28 57.09 64.43 7.34 0.02

*Combine top 500 SD-b + top 500 TM-GOF features.

(Additional file 7: Table S3b). At the same time, the SD-
b filter selected more features from non-CpG island
intergenic regions. Thus the two filters were sensitive to
prioritizing features in different regions of the genome.
This likely explains their different performance for clus-
tering samples from different biological conditions.

We comment briefly on the effect processing HM450
data has on feature selection. We present results for data
processed using a combination of background correc-
tion, dye-bias [17] and BMIQ normalization [18]. We
performed analyses both with and without BMIQ
normalization and saw a huge enrichment of design type
1 features prior to BMIQ normalization. Following
BMIQ normalization the distribution of selected design
type 1 and type 2 features aligned more closely to the
distribution on the array. Interestingly, despite the differ-
ent probe types being selected after normalization, the
distribution of features by genomic context varied little
(results not shown). Thus we believe the genomic con-
text of the feature is a stronger predictor of feature se-
lection than the platform feature design type.

Discussion

We used both simulated and real data to evaluate the per-
formance of a number of variable filtering methods for
cluster analysis, when the variables are proportions that are
bounded on the 0 to 1 scale. Both the simulated and real
data show that TM-GOF and TQ-GOF are the best at iden-
tifying a subset of cancers having the CpG island methyla-
tor phenotype (CIMP). The new filters that use a Beta
variance stabilizing transformation are very sensitive to out-
lier measurements. This may benefit the search for low fre-
quency cancer subtypes that have extreme values occurring
across a large number of features (eg. CpG island

methylation phenotype), but may not translate to an ability
to directly cluster cancer versus normal tissues well. For
clustering cancer versus normal tissue, an outlier removal
step was required before the tissue clusters could be prop-
erly recovered. In general, the cancer-based simulation
study results were not generalizable to the clustering of
normal tissue, or tumor versus non-tumor tissue, suggest-
ing that the filter methods are sensitive to the variation in
observed DNA methylation distributions due to the under-
lying biology.

Overall, SD-b performed very well in the real data exam-
ples including normal tissues. One explanation could be
that the SD-b filter enriches for features in regions having
cell-type specific DNA methylation differences. It tended to
find groups of approximately equal size, finding a separ-
ation of groups by mean age for the normal blood samples
that was statistically significant (difference = 6.4 years, p =
0.03); in the cancer and non-cancer studies it identified
clusters based on disease state in the first partitioning of
samples. Although at first glance it appeared to perform
poorly in detecting the CIMP subtype in the colon cancer
data, upon further partitioning of the data the sub-cluster
of interest appeared. It is unknown if this is a coincidence
from the data selected in this study. Although the SD-b fil-
ter did not show a high AUC in the simulation study, it did
cluster the samples perfectly using RPMM when we did
not set boundaries on the largest effect size, suggesting that
the cluster analysis can be strongly influenced by a small
number of highly informative features.

We found the SD-b and TM-GOF filters tended to
prioritize features in different areas of the genome. For
each HM450 data set, TM-GOF selected a higher num-
ber of features in CGI promoters compared to SD-b,
while SD-b selected a larger number of features in non-
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CGI intergenic regions. The better performance of TM-
GOF for detecting a CIMP subtype in cancer, and SD-b
for clustering normal tissues, suggests that features in
different regions of the genome are not equally inform-
ative for all biological conditions. A recent study re-
ported a novel classification of breast cancer using
markers of normal-breast epithelial cell subtypes [19],
and might explain our superior classification of cancer
versus normal breast using SD-b, the filter performing
best in normal tissues.

The SD-m filter was a close competitor to SD-b, but Pre-
cision showed an unexplained sensitivity to tissue type.
Both Precision and SD-m performed slightly better than
SD-b in the analysis of CIMP cancers and nearly as well in
clustering cancer and non-cancer kidney and breast. In the
analysis of whole blood, SD-m found clusters that corre-
lated with age, but Precision did not. Because of this unex-
plained sensitivity of Precision to non-cancer tissue we do
not recommend its general use.

One filter method not included in our comparison is
arcsine-square-root transformation, also a good variance
stabilization method suitable for data bounded between
0 and 1. Similar to the logit transformation, the arcsine-
square-root transformation can be written as an in-
complete beta function having only one parameter [12].
Thus we would expect a filter based on its standard
deviation to behave similarly to our filter using the logit
transformed data (SD-m). Another statistic that could
be used as a filter method is the SD ratio, SD(X)/
v/mean(X)(1-mean(X)). For a Beta distributed variable
X, this ratio is equivalent to the (inverse) precision method
used in this paper (filter #5).

Although the summary-based filtering methods take
advantage of using the top ranked filter methods, they
are not always more robust than the single-filter
methods. This is because sometimes the best rank of a
feature can be affected by a single non-informative filter-
ing method. Thus, due to the different (and somewhat
complimentary) characteristics of the features enriched
by SD-b and TM-GOF methods, we prefer to use both
SD-b and TM-GOF methods for any data when our
main purpose of cluster analysis is to identify novel sub-
groups. Our results suggest that SD-b is very robust in
enriching for features that identify big subgroups, while
TM-GOF and TQ-GOF are very sensitive in enriching
features to identify low frequency cancer subtypes that
have outlying values occurring across a large number of
features (e.g. CpG island methylation phenotype).

We noticed that in the data sets comparing DNA methy-
lation in cancer to non-cancer tissue, the differences in
standard deviation (SD) between sample groups are not
symmetrically distributed. The majority of features have a
much higher SD in cancer samples than in normal samples.
However, in data sets with non-CIMP vs. CIMP cancer
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subtypes, the differences in SD are symmetrically distrib-
uted with mean around zero (data not shown). This sug-
gests that SD on beta values may be more informative in
data sets with huge SD differences between subgroups than
in data sets with balanced SD differences around zero.

One limitation of our simulation design is that for each
tissue subgroup our measures are simulated to follow a beta
distribution and the best performing filter methods make
proper use of this knowledge. In reality, a mixture of betas
might yield a more realistic measure from a population of
mixed cell types. However, instead of simulating this added
complexity which would require additional model assump-
tions, we chose to look for patterns of behaviour from the
analysis of a variety of real data sets that spanned different
biological conditions (e.g. tumor only, tumor versus nor-
mal, or single normal tissue). This evaluation shows: (1) the
top two filter methods, TM-GOF and SD-b, prioritize fea-
tures from different parts of the genome, (2) TM-GOF is
much more susceptible to outlier measures, and (3) that
the underlying biology can drive their performance.

One question not addressed in this study is the num-
ber of features to carry forward to the cluster analysis.
One might plot the filter statistics to see if they show a
bimodal distribution, suggesting subgroups of features
with different behaviour. In our experience, the statistics
are unimodal so we tend to use a number of thresholds
for features selection (e.g. top 1000, top 2000, top 5000
features), and evaluate the robustness of our groups
across the different feature lists.

Conclusions

We found two filter statistics, SD-b and TM-GOF, out-
perform the rest in different data sets with different na-
ture. We would suggest using each one, as cluster
analysis is for the purpose of class discovery and the two
methods tend to prioritize different sets of features, thus
serving as complimentary feature enrichment methods
for DNA methylation data.

Availability of supporting data

The Cancer Genome Atlas data (data sets 2—7) are pub-
licly available from the TCGA data portal (https://tcga-
data.nci.nih.gov/tcga/). The blood samples (data set 8)
are the subset of samples from plate 2 of GEO data set
GSE40279  (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE40279). The exact samples included in our
analysis are provided in Additional file 3.

Additional files

Additional file 1: Figure S1. Distribution of statistics in Colon Cancer
data set (data set #1).

Additional file 2: Real data sets.
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Additional file 3: Sample ids included in data sets 2 through 8.
Additional file 4: Sample R code to compute non-specific filter
methods.

Additional file 5: Table S1. Area under the curve (95% confidence
interval) for simulation results in Figure 2.

Additional file 6: Table S2. Adjusted Rand Index of RPMM cluster
analysis result using a variety of filtering methods for multiple data sets.

Additional file 7: Table S3. Genomic context of the features selected
by the top two filter methods. a. For HM27 platform (N/%). b. For HM450

platform (N/%).
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