
UC Irvine
UC Irvine Previously Published Works

Title
Combination of Deep Learning Grad-CAM and Radiomics for Automatic Localization and 
Diagnosis of Architectural Distortion on DBT.

Permalink
https://escholarship.org/uc/item/8bh4f8v4

Journal
Academic Radiology, 32(3)

Authors
Chen, Xiao
Zhang, Yang
Zhou, Jiejie
et al.

Publication Date
2025-03-01

DOI
10.1016/j.acra.2024.10.031
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8bh4f8v4
https://escholarship.org/uc/item/8bh4f8v4#author
https://escholarship.org
http://www.cdlib.org/


Combination of Deep Learning Grad-CAM and Radiomics for 
Automatic Localization and Diagnosis of Architectural Distortion 
on DBT

Xiao Chen1,
Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 
China

Yang Zhang1,
Department of Radiological Sciences, University of California, Irvine, CA; Department of 
Radiation Oncology, University of California, Irvine, CA

Jiejie Zhou,
Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 
China; Department of Radiological Sciences, University of California, Irvine, CA

Yong Pan,
Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 
China

Hanghui Xu,
Zhuji People’s Hospital of Zhejiang Province, China

Ying Shen,
Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 
China

Guoquan Cao,
Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 
China

Min-Ying Su,
Department of Radiological Sciences, University of California, Irvine, CA; Department of Medical 
Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan

Meihao Wang
Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 
China; Key Laboratory of Intelligent Medical Imaging of Wenzhou, Key Laboratory of Alzheimer’s 
Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China

Address correspondence to: M-Y.S. msu@uci.edu.
1Xiao Chen and Yang Zhang are joint first authors who contributed equally to this work.

DECLARATION OF COMPETING INTEREST
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

HHS Public Access
Author manuscript
Acad Radiol. Author manuscript; available in PMC 2025 March 04.

Published in final edited form as:
Acad Radiol. 2025 March ; 32(3): 1287–1296. doi:10.1016/j.acra.2024.10.031.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Abstract

Rationale and Objectives: Detection and diagnosis of architectural distortion (AD) on digital 

breast tomosynthesis (DBT) is challenging. This study applied artificial intelligence (AI) using 

deep learning (DL) algorithms to detect AD, followed by radiomics for classification.

Materials and Methods: 500 cases with AD on DBT reports were identified; the earlier 292 

cases for training, and the later 208 cases for testing. The DL Gradient-weighted Class Activation 

Mapping (Grad-CAM) was applied to automatically localize abnormalities and generate a region 

of interest (ROI), which was put into the radiomics model to estimate the malignancy probability 

for constructing ROC curves. Radiologists delineated ROI manually for comparison. Cases were 

categorized into pure AD and AD associated with other features, including mass, regional high-

density, and calcifications. The ROC curves were compared using the DeLong test.

Results: The overall malignancy rate was 57% (285/500). Of them, 267 cases were classified as 

pure AD, and the malignancy rate (106/267 = 39.7%) was significantly lower compared to AD 

cases associated with other features (179/233 = 76.8%, p < 0.01). In the testing set, the diagnostic 

AUC was 0.82 when using the manual ROI and 0.84 when using the DL-generated ROI. In the 

more challenging pure AD cases, DL-generated ROI yielded an AUC of 0.77, significantly lower 

than 0.86 for AD associated with other features.

Conclusion: DL could detect AD on DBT, and the diagnostic performance was comparable to 

manual ROI. The strategy worked for pure AD, but the performance was worse than that for AD 

with other features.

Keywords

Architectural distortion; Breast cancer; Deep learning; Digital breast tomosynthesis; Radiomics

INTRODUCTION

Despite remarkable progress that has been achieved in the early detection and treatment 

of breast cancer, it was the most common cancer in women in 157 countries and caused 

670,000 deaths globally in 2022 (1). The death rate peaked in 1989 and has since declined 

by 43% as of 2020, mainly because of increased breast cancer awareness and earlier 

detection through widely implemented screening programs, e.g., by using mammography 

(2). Early diagnosis increases treatment options and improves the rate of cure.

In screening mammography, masses and microcalcifications are two major abnormalities 

associated with malignancy. Architectural distortion (AD) is the third most suspicious 

appearance, representing 6% of abnormalities detected on mammography (3). However, the 

detection and interpretation of AD on 2-dimensional (2D) mammograms is challenging due 

to the overlapping tissues. Digital breast tomosynthesis (DBT) has been shown to improve 

the detection and characterization of mammographic AD; however, it is still challenging and 

highly subjective for radiologists (4).

Artificial intelligence (AI)-based imaging analysis has been extensively applied for the 

detection and diagnosis of breast lesions on mammography and DBT, and several 
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commercial computer-aided diagnosis (CAD) systems have been approved by the FDA (5). 

However, since AD is not the major finding, the accuracy of detection and interpretation by 

these commercial systems is unknown. Furthermore, AD is often presented as an associated 

finding accompanying the primary mass, regional density, or calcifications, and the accuracy 

for the detection of AD by AI models or the characterization to predict malignant vs. benign 

diagnosis is rarely reported (6).

We have previously developed a radiomics model to classify AD identified on DBT as 

benign or malignant, using manually outlined region of interest (ROI) (7). The radiomics 

features were extracted using PyRadiomics, and then a machine learning method using the 

Support Vector Machine (SVM) was applied to select features and build the diagnostic 

model. To use this model, the ROI needs to be determined by radiologists. Furthermore, we 

have trained a deep-learning (DL) model by using the entire DBT image as input. Although 

the diagnostic accuracy of deep learning was much lower compared to that achieved by the 

radiomics model using tumor ROI, it was shown that the Gradient-weighted Class Activation 

Mapping (Grad-CAM) method could localize the areas of interest, including architectural 

distortions and, thus, potentially offered a means for automatic ROI delineation. Therefore, 

the results suggest that integrating suspicious areas detected by deep learning and the 

classification by the radiomics model could provide an automated diagnostic tool for AD on 

DBT.

In the present study, we assembled an independent late temporal dataset to test the 

diagnostic performance of this combined strategy. The accuracy achieved by using manual 

ROI and DL-detected ROI was compared. Furthermore, to gain more knowledge about the 

diagnostic performance in different types of AD presentations, we separated cases into pure 

AD without any accompanying feature and AD associated with other features, including 

mass, regional high-density, and calcifications, and compared the diagnostic performance in 

these different groups.

MATERIALS AND METHODS

Datasets

This retrospective study was approved by the institutional ethics committee. Due to the 

nature of the retrospective review, the requirement of written informed consent was waived. 

The dataset was identified by reviewing all patients receiving DBT in our hospital. The 

cases included in the previous study were from October 2016 to December 2019 and were 

used for training (7). The new cases from Jan 2020 to September 2022 were used for 

independent testing in the present study. The inclusion criteria were: [1] patients presenting 

with clearly discernible architectural distortion on DBT, based on the original reports; [2] 

patients receiving biopsy or surgery to obtain tissues for pathological examination. The 

exclusion criteria were: [1] patients receiving any prior procedure or treatment in the breast; 

[2] no confirmed pathological diagnosis; [3] poor image quality, such as serious artifacts, 

noise, and poor positioning. Finally, a total of 500 patients were included in this study, 292 

for training and 208 for testing. The age range was from 18 to 74 years old, with an average 

of 47.2 years old. The BI-RADS scores of DBT were obtained from the radiology reports, 

classified into 2, 3, 4A, 4B, 4 C, and 5.
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DBT Protocol

The images were acquired by using the standard small-angle mode of Amulet Innovality 

Digital Breast Tomosynthesis System (Fuji Film, Japan). DBT images were taken first, and 

then the Full-field Digital Mammography (FFDM) images were acquired. The X-ray tube 

angular range for DBT acquisition was ± 7.5°, with one exposure per degree, for a total of 

15 exposures, by using the W-Al anode filter. For FFDM, the W-Rh anode filter was used. 

The images were acquired with the standard 2-view, craniocaudal (CC) and mediolateral 

oblique (MLO), projections under breast compression. The full set of DICOM DBT images 

was downloaded for offline analysis using computer algorithms.

Radiomics Model and Deep-Learning Localization Method

The overall AI-based processing flowchart using radiomics and deep learning algorithms 

is illustrated in Figure 1. Two radiologists with 5 and 10 years of experience delineated 

the region exhibiting architectural distortion on both craniocaudal (CC) and mediolateral 

oblique (MLO) views. The outlined ROIs were cross-checked, and, if needed, the 

radiologists discussed to reach a consensus. Detailed training processes to build the 

radiomics model for differential diagnosis and the deep learning model for localizing the 

abnormal regions were reported previously (7). Each ROI was resampled to a resolution of 

0.4 × 0.4 mm2 and quantized into 25 gray levels. Feature extraction was conducted using 

PyRadiomics v3.0.1, which extracted 107 features from each ROI. These features included 

14 shape descriptors, 18 first-order statistics, 24 gray-level co-occurrence matrix (GLCM) 

features, 14 gray-level dependence matrix (GLDM) features, 16 gray-level run length matrix 

(GLRLM) features, 16 gray-level size zone matrix (GLSZM) features, and 5 neighboring 

gray tone difference matrix (NGTDM) features. In total, 214 parameters were derived for 

each case from both the CC and MLO images. Although the shape features were irrelevant 

(since the ROI did not trace the abnormal region not as typically done for a mass), they were 

included in the PyRadiomics and were used as inputs.

Feature selection was performed using a sequential approach by constructing multiple 

Support Vector Machine (SVM) classifiers with a Gaussian kernel. The process started 

with an empty candidate set, and features were added iteratively. Each iteration included 

5000 training repetitions to evaluate the robustness of individual features, and the feature 

demonstrating the best performance was added to the candidate set. The algorithm also 

examined all possible subsets of “shadow” attributes and identified the final key features 

by comparing their relative importance. To address the class imbalance, different weights 

were applied to the benign and malignant groups during feature selection. Finally, a total of 

8 radiomics features were selected to build the model, and as expected, none of the shape 

features was included. In the order of importance, they were: [1] GLCM Cluster Prominence 

from MLO, [2] NGTDM Coarseness from CC, [3] GLCM Difference Entropy from CC, 

[4] Skewness from MLO, [5] GLCM Maximum Probability from CC, [6] GLRLM Long 

Run Emphasis from CC, [7] Interquartile Range from CC, [8] GLDM Dependence Entropy 

from CC. Although there were only two features from MLO, their importance levels were 

high, ranking #1 and #4 among the 8 features. After the final features were determined, 

an SVM was used to construct the diagnostic model, which was then evaluated using 
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10-fold cross-validation. The radiomics score, indicating the probability of malignancy, was 

calculated.

Deep learning was carried out using the ResNet50 algorithm, with a binary output for 

classifying malignant versus benign cases. The input to the network consisted of the selected 

slice along with its two adjacent neighboring slices from both the CC and MLO views, 

resulting in six input channels. Images were resampled to a 256 × 256 matrix using linear 

interpolation, and pixel intensities were normalized to have a mean of 0 and a standard 

deviation of 1. Model performance was assessed via 5-fold cross-validation. The DL 

model was not meant for classification. Instead, it was used to localize the attention areas 

by Gradient-weighted Class Activation Mapping (Grad-CAM), which leverages gradient 

information from the final convolutional layer of Convolutional Neural Networks (CNNs) to 

assign importance values to individual neurons for specific decisions. Grad-CAM-generated 

heat maps were normalized to a scale of 0 to 1, with a threshold of 0.6 to 1 used to generate 

the Region of Interest (ROI), followed by morphological filling operations.

Each case in the testing set was processed to determine the ROI using manual drawing and 

DL-Grad-CAM attention maps. The ROIs on CC and MLO views were then put into the 

radiomics process pipeline to extract features and estimate the malignancy probability using 

the trained SVM model.

Classification According to Different AD Presentations

For each case, the two radiologists who outlined the ROI also classified each case according 

to the presentation AD, as pure AD without any accompanying feature or AD associated 

with other features, including mass or regional high-density, calcifications, or both mass/

density and calcifications. If there was doubt or disagreement, a senior radiologist with 25 

years of experience gave the final determination.

Statistical Analysis

The age and the proportions of BI-RADS between benign and malignant groups were 

compared using the U-tests and chi-square tests, by using SPSS software (version 20.0). 

The ROC curves generated by using the manual ROI and the DL-generated ROI were 

compared using the DeLong test. For each case, the radiomics score, that is, the malignancy 

probability, was used to make the binary diagnosis of malignant (≥ 0.5) or benign (< 0.5). 

The sensitivity, specificity, and overall accuracy were calculated and compared. ROC curves 

were generated for cases presenting pure AD or AD with accompanying features, and the 

difference was compared using the DeLong test.

RESULTS

Pathological Types and BI-RADS Scores

Of the total of 500 identified cases, 285 (57%) were malignant and 215 (43%) were benign. 

The pathological types are listed in Table 1. The age and distribution of BI-RADS scores in 

the training and testing datasets are listed in Table 2. The mean age was 49.4 ± 8.8 in the 

malignant group and 44.4 ± 8.7 in the benign group. Most malignant lesions had BI-RADS 
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scores of 4B, 4 C, and 5 (229/285 = 80.4%). In the benign group, a substantial number of 

patients also had high BI-RADS ≥ 4B (81/215 = 37.7%), but significantly lower than in 

the malignant groups (p < 0.001). In the present study, all benign lesions had histological 

confirmation, and the biopsies in BI-RADS 2, 3 and 4A cases were mainly from patients’ 

choice. In each case, mixed pathological features might be noted in the pathological report, 

and the dominating type is listed in Table 1.

Diagnostic Performance Using Manual ROI vs. DL-generated ROI

For each case, there were two ROIs, one manually delineated by radiologists and the other 

Ngenerated by ResNet50 deep learning from Grad-CAM. Figure 2 and Figure 3 illustrate 

two benign cases with pure AD. Figure 4 illustrates another pure AD case confirmed to be 

malignant. The radiomics features from the ROI were extracted to calculate the malignancy 

probability. The Area Under Curve (AUC) and the classification results in the training and 

testing datasets are summarized in Table 3. The ROC curves of the manual ROI and the 

DL-generated ROI were compared using the DeLong test, and there was no significant 

difference. In the testing set, the AUC was 0.82 when using the manual ROI and 0.84 when 

using the DL-generated ROI.

Diagnostic Performance in Four AD Presentation Groups

The presentation of AD was determined based on whether there were accompanying 

features, including mass or regional high-density, suspicious calcifications, or both. The 

500 cases were separated into pure AD (n = 267) and AD with other features (n = 

233). The malignancy rate in the pure AD group was 106/267 = 39.7%, which was 

significantly lower than in the AD group with other features (179/233 = 76.8%, p < 0.01). 

The cases with other features were further separated into AD with mass or density (n = 

80), AD with calcifications (n = 109), and AD with both density and calcifications (n = 

44). The diagnostic results are summarized in Table 4. Figure 5 illustrates one malignant 

case presenting AD accompanied by mass/regional density, and Figure 6 shows another 

malignant case presenting AD with microcalcifications. The ROC curves in the pure AD and 

AD with other features are shown in Figure 7. The AUC was in the range of 0.85–0.88 in 

AD cases with other features, which was significantly higher than the AUC of 0.73–0.77 

in the pure AD group. The results in the training and testing datasets were consistent and 

comparable using manual ROI and DL-ROI. In the pure AD group, DL-generated ROI 

yielded an AUC of 0.77, significantly lower than 0.86 for AD associated with other features.

DISCUSSION

Detection and diagnosis of AD on mammography or DBT is challenging. In the Breast 

Imaging Reporting and Data System (BI-RADS) lexicon (8), architectural distortion is 

defined as “the normal architecture of the breast is distorted with no definite mass visible”. 

AD is much less common compared to masses and calcifications, only comprising 6% of 

detected abnormalities, and it is also more challenging to diagnose because it can be subtle 

and variable in presentations. Although AD is not highly prevalent, it has been reported 

as a common finding in retrospective assessments of false-negative mammography, and it 

may represent the earliest manifestation of breast cancer (3). Several automated approaches 
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have been developed to increase the detection rate of AD; however, it was shown that 

fewer than half of cases were detected by the two most widely available CAD systems used 

for interpretations of screening mammograms (5). More research is needed to detect and 

characterize AD and improve diagnostic accuracy (6,9).

Architectural distortion is a particularly challenging pattern for radiologists, and it is also 

highly subjective. The distortion may be challenging to discern from the normal overlapping 

of the various soft tissue, parenchyma, vessels, and ligamentous structures (10). Due to its 

subtle nature, AD has been shown to have poor interobserver agreement among radiologists 

compared with masses and calcifications (11). DBT could help resolve the overlapping 

of normal tissues, but it did not improve AD's characterization or diagnostic accuracy 

compared to mammography (12). Due to the low prevalence and the subtle presentation 

of AD, assembling a large dataset for developing artificial intelligence (AI)-based imaging 

analysis or computer-aided diagnostic algorithms was challenging.

We had previously applied radiomics analysis and deep learning algorithms to develop 

AI-diagnostic models for AD, and the results showed that the radiomics model could 

achieve the AUC of 0.82; however, the deep learning (DL) using the whole DBT image 

as input only achieved AUC of 0.61 (7). It is known that the diagnostic accuracy of deep 

learning is highly dependent on the size of the input image that contains the abnormalities 

(13). However, our study and others have further shown that DL with Grad-CAM may 

localize the AD (7,14,15). Given that manually drawn ROI was not clinically feasible for 

developing an automatic diagnostic tool, we suggested a combined strategy to use DL for 

localizing AD based on the Grad-CAM heat maps and then use the generated ROI to extract 

radiomics features for diagnosis. In the present study, we assembled an independent dataset 

to test this combined strategy. The results showed that the DL-generated ROI could yield 

comparable diagnostic performance as manual ROI, reaching the overall AUC of 0.84–0.85 

in the training dataset and 0.82–0.84 in the testing dataset.

AD can also be an associated feature accompanying other clinically significant findings 

such as mass, regional high-density, and calcifications. The second objective of our study 

was to investigate the presentation of different ADs, by separating cases into pure AD and 

AD accompanied by mass, regional high-density, and calcifications. The results showed 

that the malignancy rate and the diagnostic AUC in the group with other features were 

significantly higher than in the pure AD group. As the mass, regional high-density, and 

calcifications were prominent features, the DL could detect them more easily, which resulted 

in higher diagnostic accuracy. The DL-generated ROI yielded an AUC of 0.86 in the AD 

group associated with other features, significantly higher than 0.77 in the pure AD group. 

Nonetheless, the results also support the feasibility of the combined strategy to detect and 

classify pure AD.

Several studies have applied AI to detect AD, primarily for two-dimensional mammography. 

Liu et al. (6) developed four deep learning architectures utilizing the Mask R-CNN 

framework to identify AD, where the EfficientNetV2 model demonstrated good diagnostic 

efficacy. Wan et al. (16) demonstrated an integrated approach combining AI algorithms 

with the Reader First-1 protocol, which resulted in an AUC of 0.88. Baccouche et al. 
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(17) assessed a YOLO-based fusion model for detecting and classifying breast lesions on 

mammograms. Rehman et al. (18) introduced an automated, computer-aided diagnostic 

system that leverages computer vision and deep learning to diagnose AD.

DBT can resolve overlapping tissues, and large datasets have slowly become available. Li et 

al. (19) engineered a deep learning framework based on deformable convolutions, focusing 

on the atypical architectural distortions. This model achieved a mean true positive fraction 

(MTPF) of 0.7148 ± 0.032, which could assist radiologists in identifying more ADs. Li 

et al. (20) devised a deep learning model that incorporated the distribution of mammary 

glands as a priori knowledge to detect architectural distortions in DBT. They employed a 

Faster R-CNN network, a common algorithm used for lesion detection in medical images. 

Nevertheless, training such DL networks is challenging due to difficulties in acquiring 

accurate ground truth for distortions in DBT and is further complicated by the rarity of AD 

for training DL models.

In our research, instead of training a specialized detection network, we applied Gradient-

weighted Class Activation Mapping (Grad-CAM) to visualize suspicious areas. Similarly, 

Ricciardi et al. (14) produced activation maps using various confidence thresholds. DBT-

guided biopsy is a mature technique that has been demonstrated to be safe and effective 

for the pathologic diagnosis of lesions presenting with AD (21,22). However, there was 

a high rate of benign lesions, especially in pure AD without other features. Considering 

the risks of procedures and the psychological burden on the patients, the low-risk lesions 

may be managed by short-term imaging surveillance rather than immediate biopsy/surgery. 

Villa-Camacho et al. investigated the upgrade rates of AD on DBT, and reported an overall 

upgrade rate of 10.2% from nonmalignant pathology at biopsy to malignancy at the surgery, 

but AD without atypia has a very low upgrade rate of 2.2% (23). The results further suggest 

that more research is needed for cases with pure AD.

The study has several limitations. First, although an independent dataset was assembled, 

these were later temporal cases acquired at the same institution, not an external dataset. 

Second, as the AD did not have a clear boundary, the ROI drawing was known to have 

high variations, so we used consensus by two radiologists. Our results demonstrated that the 

DL-generated ROI may provide a standardized tool. Third, we attempted to separate cases 

into different AD presentations according to the presence of accompanying features. This 

was rarely reported before, and the assignment of cases with masses or regional high-density 

and suspicious calcifications was also performed based on consensus reading. Although the 

BI-RADS definition of AD is with no definite mass visible, mass or regional high density 

may appear nearby, and the presence of AD is included in the DBT report. Therefore, we 

chose to include all eligible cases and separately analyze them. Another limitation for the 

cases with AD and other imaging features was the difficulty of knowing the corresponding 

pathological types for the AD and other features, respectively. Therefore, we reported the 

dominating findings for each case.

In conclusion, we tested a combined AI strategy for diagnosing AD on DBT using deep 

learning with Grad-CAM to localize the distortion areas and then using a radiomics model 

to estimate the malignancy probability. The diagnostic performance achieved by the DL-
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generated ROI was comparable with manually delineated ROI. The results support the 

potential of using the combined DL and radiomics algorithms to develop a fully automatic 

diagnostic tool for AD on DBT images.
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Figure 1. 
The overall processing flowchart using the radiomics algorithm to train the classification 

model for the differentiation of benign and malignant lesions, and using deep learning 

Grad-CAM heat maps for the detection of abnormal areas.
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Figure 2. 
A benign case of pure architectural distortion, a true negative diagnosis from a 46-year-old 

patient confirmed with adenosis. The DBT BI-RADS score is 2. The radiomics score from 

the manual ROI is 0.22, and the radiomics score from DL-generated ROI is 0.31. (a) CC 

view DBT image with manual ROI, (b) CC view DBT image overlaid with heat map from 

Grad-CAM and the DL-generated ROI, (c) MLO view DBT image with manual ROI, (d) 

MLO view DBT image overlaid with heat map from Grad-CAM and the DL-generated ROI.
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Figure 3. 
A benign case of pure architectural distortion, a true negative diagnosis from a 36-year-old 

patient confirmed with intraductal papilloma. The DBT BI-RADS score is 3. The radiomics 

score from the manual ROI is 0.47, and the radiomics score from DL-generated ROI is 0.39. 

(a) CC view DBT image with manual ROI, (b) CC view DBT image overlaid with heat map 

from Grad-CAM and the DL-generated ROI, (c) MLO view DBT image with manual ROI, 

(d) MLO view DBT image overlaid with heat map from Grad-CAM and the DL-generated 

ROI.
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Figure 4. 
A malignant case of pure architectural distortion from a 47-year-old patient confirmed with 

invasive ductal cancer. The DBT BI-RADS score is 4B. The radiomics score from manual 

ROI is 0.47, false negative. The radiomics score from DL-generated ROI is 0.64, true 

positive. (a) CC view DBT image with manual ROI, (b) CC view DBT image overlaid with 

heat map from Grad-CAM and the DL-generated ROI, (c) MLO view DBT image with 

manual ROI, (d) MLO view DBT image overlaid with heat map from Grad-CAM and the 

DL-generated ROI.
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Figure 5. 
A malignant case example of mass/density, with associated architectural distortion at the 

boundary of the mass, from a 64-year-old patient diagnosed with invasive ductal cancer. The 

DBT BI-RADS score is 4B. The radiomics score from manual ROI is 0.73, true positive; and 

the radiomics score from DL-generated ROI is 0.89, true positive. (a) CC view DBT image 

with manual ROI, (b) CC view DBT image overlaid with heat map from Grad-CAM and the 

DL-generated ROI, (c) MLO view DBT image with manual ROI, (d) MLO view DBT image 

overlaid with heat map from Grad-CAM and the DL-generated ROI.
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Figure 6. 
A malignant case example of architectural distortion with suspicious microcalcifications 

from a 58-year-old patient diagnosed with invasive ductal cancer. The DBT BI-RADS 

score is 5. The radiomics score from manual ROI is 0.96, and the radiomics score from 

DL-generated ROI is 0.99, both very high and yield true positive diagnoses. (a) CC view 

DBT image with manual ROI, (b) CC view DBT image overlaid with heat map from 

Grad-CAM and the DL-generated ROI, (c) MLO view DBT image with manual ROI, (d) 

MLO view DBT image overlaid with heat map from Grad-CAM and the DL-generated ROI.
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Figure 7. 
ROC curves. (a) 4 curves in the Training set for the group of pure AD and AD with other 

features, constructed by using manual ROI and DL-generated ROI. (b) 4 curves in the 

Testing set for the group of pure AD and AD with other features, constructed by manual ROI 

and DL-ROI. The AUC for the cases with other features is significantly higher, and the AUC 

generated by manual ROI and DL-ROI is comparable.
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TABLE 1.

Pathological Types in the Malignant and Benign Groups

Pathology Case Number (%)

Malignant Total N = 285

 Invasive Ductal Cancera 211 (74.0%)

 Ductal Carcinoma In Situb 54 (18.9%)

 Invasive Lobular Carcinoma 11 (3.9%)

 Tubular Carcinoma 4 (1.4%)

 Lobular Carcinoma In Situc 5 (1.8%)

Benign Total N = 215

 Adenosis, Sclerosing Adenosisd 150 (69.8%)

 Fibroadenoma 38 (17.7%)

 Papilloma 20 (9.3%)

 Other Benign Tumor 7 (3.2%)

a
Main pathology is IDC, may have presence of DCIS or invasive lobular cancer.

b
Main pathology is DCIS, may contain micro invasion of IDC.

c
Lobular Carcinoma In Situ (LCIS) is a high-risk tumor, classified as malignant.

d
Adenosis and Sclerosing Adenosis are not precisely separated, thus combined here.
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