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Abstract: Genome-wide association studies have identified 2p13.1 as a prominent susceptibility locus
for systemic lupus erythematosus (SLE)—a complex, multisystem autoimmune disease. However,
the identity of underlying causal variant (s) and molecular mechanisms for increasing disease sus-
ceptibility are poorly understood. Using meta-analysis (cases = 10,252, controls = 21,604) followed
by conditional analysis, bioinformatic annotation, and eQTL and 3D-chromatin interaction analyses,
we computationally prioritized potential functional variants and subsequently experimentally val-
idated their effects. Ethnicity-specific meta-analysis revealed striking allele frequency differences
between Asian and European ancestries, but with similar odds ratios. We identified 20 genome-wide
significant (p < 5 × 10−8) variants, and conditional analysis pinpointed two potential functional
variants, rs6705628 and rs2272165, likely to explain the association. The two SNPs are near DGUOK,
mitochondrial deoxyguanosine kinase, and its associated antisense RNA DGUOK-AS1. Using lu-
ciferase reporter gene assays, we found significant cell type- and allele-specific promoter activity at
rs6705628 and enhancer activity at rs2272165. This is supported by ChIP-qPCR showing allele-specific
binding with three histone marks (H3K27ac, H3K4me3, and H3K4me1), RNA polymerase II (Pol II),
transcriptional coactivator p300, CCCTC-binding factor (CTCF), and transcription factor ARID3A.
Transcriptome data across 28 immune cell types from Asians showed both SNPs are cell-type-specific
but only in B-cells. Splicing QTLs showed strong regulation of DGUOK-AS1. Genotype-specific
DGOUK protein levels are supported by Western blots. Promoter capture Hi-C data revealed long-
range chromatin interactions between rs2272165 and several nearby promoters, including DGUOK.
Taken together, we provide mechanistic insights into how two noncoding variants underlie SLE risk
at the 2p13.1 locus.

Keywords: lupus; Post-GWAS; DGUOK; Luciferase; enhancer

1. Introduction

Systemic lupus erythematosus (SLE or lupus) is an autoimmune disease characterized
by abnormal B- and T-cell responses, production of numerous pathogenic autoantibodies,
and immune complex deposition, among other phenomena—leading to myriad clinical
manifestations [1,2]. These range from relatively mild manifestations (e.g., skin rash or non-
erosive arthritis) to seriously disabling or even life-threatening complications, such as lupus
nephritis, neuropsychiatric disorders, and other major organ involvement [3–5]. In the US
alone, over 200,000 individuals are currently afflicted with active SLE [6], mostly women
(~90%), with prevalence 3–5 times higher in individuals of African, Asian, and Hispanic
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ancestries compared to Caucasian ancestry. In addition, non-Caucasian patients tend to
manifest clinical disease earlier and show accelerated and more severe organ damage [7–9].

While SLE etiopathogenesis is not fully understood, there is a substantial genetic
contribution, as exemplified by frequent familial aggregation [7], high heritability [10],
striking monozygotic twin-concordance (a 10-fold increase over dizygotic twins) [11],
and large sibling recurrence risk (λs ~ 29) [7]. To date, several large-scale genome-wide
association studies (GWAS) and meta-analyses from our lab and others have identified
over 100 genome-wide significant (p < 5× 10−8) lupus-associated risk loci, mostly linked to
single nucleotide polymorphisms (SNPs) located in non-coding regions [12,13]. However,
given that credible intervals responsible for GWAS loci typically consist of hundreds
of variants with similar statistical support, discerning ‘true’ causal SNP(s) underlying
association is difficult [14]—but necessary for a mechanistic understanding of disease
development, progression, and involved pathways.

The SLE susceptibility locus at 2p13.1 was first identified in a meta-analysis of Asian
(Chinese and Thai) populations [15]. However, despite strong genetic association with SLE,
the identities of causal variant(s) and their underlying molecular mechanisms at this locus
are unknown. In this study, using extensive bioinformatic analysis followed by diverse
in vitro experimental assays across SLE-relevant cell lines, we thoroughly characterized
relevant SNPs and molecular involvement at this locus. Our study provides mechanistic
insight into how two non-coding variants interact to modulate the expression of their
cognate target genes (DGUOK and the nearby antisense non-coding RNA DGUOK-AS1.)
We find that these two SNPs fully explain SLE susceptibility at the 2p13.1 locus.

2. Materials and Methods
2.1. Meta-Analysis and Conditional Analysis

For this study, we used summary data available from six cohorts, four from Asian [16,17]
and two from European [16–18] ancestries. For each cohort, sample sizes used for SLE cases
and controls are shown in Table 1. This study was approved by the Institutional Review
Board of the Oklahoma Medical Research Foundation (OMRF) IRB# 10-23).

Table 1. Meta-analysis of rs6705628 and rs2272165 at 2p13.1 using Asian and European cohorts.

rs6705628 (T/C) rs2272165 (A/G)

Ethnicity Cohort PMID #
Cases

#
Controls FU(A1) FA(A1) OR (95% CI) p-Value FU(A1) FA(A1) OR

(95% CI) p-Value

ASN

Meta-
analysis 4144 11,014 0.19 0.16 0.79

(0.72–0.87) 5.56 × 10–10 0.19 0.16 0.79
(0.71–0.86) 3.48 × 10−10

HC: Morris
et al., 2016 27399966 1659 3398 0.18 0.15 0.72

(0.63–0.81) 3.23 × 10−8 0.18 0.15 0.71
(0.63–0.80) 1.86 × 10−8

Korean: Sun
et al., 2016 26808113 1710 6836 0.20 0.17 0.86

(0.77–0.961) 6.42 × 10−3 0.20 0.17 0.86
(0.77–0.96) 7.63 × 10−3

HC: Sun
et al., 2016 26808113 490 493 0.22 0.20 0.85

(0.67–1.07) 1.49 × 10−1 0.22 0.20 0.84
(0.67–1.06) 1.40 × 10−1

Malaysian:
Sun et al.,

2016
26808113 285 287 0.17 0.11 0.66

(0.46–0.93) 1.36 × 10−2 0.17 0.11 0.67
(0.47–0.94) 1.72 × 10−2

EUR

Meta-
analysis 6108 10,590 0.01 — 0.78

(0.55–1.0) 1.88 × 10−2 0.01 — 0.78
(0.55–1.0) 1.90 × 10−2

EUR:
Bentham

et al., 2015
26502338 5201 9066 0.01 — 0.84

(0.65–1.08) 1.68 × 10−1 0.01 — 0.84
(0.65–1.08) 1.69 × 10−1

SPN: Julia
et al., 2018 29848360 907 1524 0.01 — 0.57

(0.31–1.04) 7.21 × 10−2 0.01 — 0.57
(0.31–1.04) 7.19 × 10−2

Abbreviations: FU: Minor allele frequency in unaffected individuals. FA: Minor allele frequency in affected
individuals. OR: Odds Ratio. ASN: Asian ancestry. EUR: European ancestry.

To identify associated SNPs from the SLE susceptibility locus at 2p13.1, we extracted
all relevant information (SNP, position, allele frequencies, effect sizes). We began with our
published Asian cohorts [16,17] and augmented with data from another study [18]. SNP
quality control for our initial Asian cohort has been described elsewhere [16,17]. All SNPs
in the study were in Hardy-Weinberg equilibrium (p > 1 × 10−6) and had minor allele
frequency >1%. Association analysis for both studies was performed using PLINK v1.9 [19].
Ethnicity-specific meta-analysis for four Asian and two European cohorts was performed by
METAL [20], using the weighted inverse variance method—based on regression coefficients
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(β values), standard errors, and p-value—by weighting the effect estimates of individual
sample sizes by the inverse of the variance and taking into account effect direction and odds
ratio heterogeneity. We then performed conditional analysis on selected SNPs (those with
significant p-values) to assess whether each SNP was sufficient to explain the association of
the entire locus using GCTA software with the GCTA-cojo module [21]. Since the p-values
for highly associated SNPs are similar in order of magnitude, we began conditional analysis
with the most evolutionary conserved SNP. For this, we used “SiPhy-cons,” a measure of
evolutionary conservation that measures conservation pressure on single base pairs instead
of DNA stretches, as calculated by the PhastCons algorithm implemented in Haploreg [22].
We used a pre-defined threshold of p < 5 × 10−4 for independent association.

2.2. Bioinformatics, eQTL and sQTL Analysis, and 3D-Chromatin Interaction Analysis

We annotated the region with the two selected SNPs with epigenetic marks from
the ENCODE GM12878 cell line track. As shown in Figure 1, the two SNPs, especially
rs2272165, are located at the peak of the H3K27ac mark, often found near active regulatory
regions. (The highlighted region is the interval between the two SNPs, which are in
complete linkage disequilibrium).
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Figure 1. Chromatin interaction analysis using PCHiC showing the interacting region containing
rs2272165 and promoters of neighboring target genes including DGOUK in GM12878 (B-lymphocytes)
and monocytes. Chromatin interactions between the SNP (yellow vertical line) and target gene
promoters are shown by magenta arcs.

To evaluate the pathogenicity of the SNPs, we used PredictSNP2 [23], which predicts
the effect of nucleotide substitution in any region of the genome. The final consensus
score was based on the integration of outputs from CADD, DANN, FATHMM, FunSeq2,
and GWAVA.

Regulatory expression quantitative trait locus (eQTL) mapping is a powerful approach
to connect disease-associated non-coding variants to gene regulatory mechanisms. To
evaluate cell type-specific eQTL and target gene expression, we used ImmuNexUT (Im-
mune Cell Gene Expression Atlas from the University of Tokyo) [24] data, including gene
expression and eQTL data from 28 types of immune cells isolated from 10 distinct human
immune diseases and healthy donors. When queried, the atlas contained 9852 immune cell
samples from 416 donors. We also analyzed splicing quantitative trait loci (sQTLs), i.e.,
regulation of gene alternative splicing—computed from GTEx RNA-seq datasets.

Chromatin histone marks for the region were extracted from the ENCODE GM12878
cell line track and visualized using the WASHU genome browser [25]. We also extracted
chromatin conformation data from a promoter capture HiC (PCHiC) study [26] to determine
possible regional chromatin interactions between SNP-containing regions and neighboring
genes. We extracted PCHiC data for the SNP-containing region and genes around this
region from B-cells and monocytes.
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2.3. Non-Coding RNA Interaction Analysis

We used the DIANA-LncBase (v3) database [27] to collate experimentally validated
miRNA targets of lncRNAs. At the time of our search, DIANA-LncBase v3 included
~250,000 miRNA-lncRNA pairs, collected from 243 distinct human and mouse tissues
and cell types. The entries were derived from manual curation of publications and
>300,000 publicly available datasets, across 14 different experimental methodologies. We
used default settings for our searches.

For prediction of non-miRNA interactions of lncRNAs, we used lncRRIsearch [28]
(lncRRIsearch). LncRRIsearch uses RIblast to predict RNA–RNA interactions. We used
default settings for our searches.

2.4. Expression Level Analysis of DGUOK and DGUOK-AS1 in Four B-lymphocyte Lines

The single-cell expression matrix files containing UMI counts for expressed genes in
matrix market exchange format output by the 10× CellRanger pipeline were downloaded
from GEO for samples GSM3596321 (Coriell cell line GM12878) and GSM3596320 (Coriell
cell line GM18502) [29]. This process was repeated for GEO samples GSM4796271 and
GSM4796272, for which sequencing samples and subsequent UMI counts were generated
in the same manner as the previous reference but from patient-derived EBV-transformed
lymphoblastoid B-cell lines using B95-8 or M81 strains of EBV, respectively [30]. UMI
counts for DGUOK and DGUOK-AS1 were retrieved from the matrix files and the number
of cells counted for each unique combination of DGUOK/DGUOK-AS1 expression levels.
Cell counts were log-transformed and displayed as a heatmap (see calibration bar below
figure panels) for each combination to visualize co-regulation of expression as a function of
expression value. The value “−1” represents pairs of expression values for which no cells
were found; this was chosen to aid in visualization.

2.5. Luciferase Reporter Assay

The Dual-Luciferase Reporter Assay System (Biotium) was used to assess potential
allele-specific enhancer/promoter activity of the sequences containing rs67056278 and
rs2272165. Briefly, ~400 bp regions surrounding rs67056278 and rs2272165 were cloned
into the pGL4.14 vector (for promoter assays) and the pGL4.26 vector (for enhancer assays)
(both from Promega). HEK293 (human embryonic kidney cells), U937 (monocyte), and LCL
(B-lymphoblastoid) cell lines were cultured and grown up to ~70% confluence, and each
plasmid was transiently co-transfected with pGL4.74 (internal control). Enhancer/promoter
activity of each construct was measured after 24 h, using the Dual-Luciferase Reporter Assay.

2.6. Allele-Specific ChIP–qPCR

Chromatin immunoprecipitation (ChIP) assays were performed using a Magnify
ChIP assay kit (Cat No. 492024, Thermo-Fisher, Waltham, MA, USA) according to man-
ufacturer guidelines to test allele-specific binding of the homozygous risk and non-risk
genotypes of the rs67056278 and rs2272165 regions to histone marks (H3K27ac, H3K4me1,
and H3K4me3), RNA Pol II, P300, CTCF, and ARID3A. Briefly, 1.5–2 × 106 homozygous
rs67056278/rs2272165 (both) risk and non-risk haplotype-containing Epstein–Barr virus-
transduced B-lymphoblastoid cell lines (from the Coriell collection) were first crosslinked
with 1% paraformaldehyde. Cells were thoroughly washed with cold PBS, pelleted, and
sonicated (Covaris S1 sonicator, No. E220) in 130 µL of lysis buffer containing protein
inhibitor cocktail. Antibodies against the individual histone (H3K27ac, H3K4me1, and
H3K4me3) and other DNA-binding proteins (RNA Pol II, P300, and CTCF), as well as a
control mouse IgG, were pre-incubated with Dynamag magnetic A+G beads for 2 h at
4 ◦C. Sheared chromatin–protein complexes were then incubated overnight at 4 ◦C with
mild agitation for immunoprecipitation. DNA was reverse cross-linked by incubating
with proteinase K at 55 ◦C for 25 min and eluted from the immunoprecipitated chromatin
complexes. Eluted samples were subjected to real-time qPCR analysis with SYBR Green and
primers flanking the rs67056278 and rs2272165 SNP regions, using an Applied Biosystems
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7900HT qPCR machine. Experiments were performed in triplicate, and statistical signif-
icance was assessed by Student’s t-test using GraphPad PRISM software. p-value < 0.05
was considered as significant.

2.7. Western Blotting

Three lymphoblastoid cell lines (LCLs; 2 homozygous risk/risk and 1 homozygous
non-risk/non-risk) from Coriell were used for Western blots. Two non-risk (GM18553,
GM18561) and two risk (GM18572, GM18592) lines were lysed in NP40 buffer (50 mM
Tris, pH 8.0, 150 mM NaCl, 1% NP40, 1% SDS, 1 mM protease inhibitor cocktail) on ice for
15 min. The prepared lysates were centrifuged at 20,000× g at 4 ◦C for 10 min. Supernatants
were collected and used for protein quantification. Further, 100 µg supernatant from each
sample (non-risk and risk) was separated on an SDS-PAGE gel and transferred onto a
PVDF membrane. The membranes were blocked with 5% BSA in Tris-buffered saline with
Tween-20 (TBST) for 1 h at room temperature. Upon completion of incubation, blotting
membranes were washed three times with buffer. Next, the blots were incubated with
anti-DGUOK (Santa Cruz Biotechnology, SC-376267) and anti-GAPDH (SC-47724) primary
antibodies overnight at 4 ◦C, on a shaker. The next day, blotting membranes were incubated
with anti-mouse IgG secondary antibody for 1 h at room temperature on a shaker. Finally,
the bands were detected by an ECL-plus Western blotting detection system (Cat No. 32209,
Thermo-Fisher, Waltham, MA, USA) following manufacturer guidelines.

3. Results
3.1. Meta-Analysis of Genome-Wide Association Studies

We first performed two ethnicity-specific meta-analyses across published Asian and
European GWAS studies covering the 2p13.1 region (Table 1). The Asian cohorts included
individuals from Han Chinese, Malaysian Chinese, and Korean populations, and the
European cohorts included individuals from Spanish and European ancestries. The total
number of individuals in our meta-analysis was 31,856 (10,252 cases; 21,604 controls).
The association signal mapped almost exclusively to the TET3 region, with particular
accumulation at the intergenic region between TET3 (5′ to it) and DGUOK (3′ to it—also the
overlapping lncRNA DGUOK-AS1) (Figure 2a). Among the 1741 qualified (MAF > 1% in
East Asians) SNPs within ~1 megabase (hg19-Chr2: 73,708,783-74,705,126) region, 20 SNPs
(18 substitutions and 2 indels) from Asian-specific meta-analysis passed genome-wide
significance (p < 5 × 10−8) (Table S1). Signal localized to several SNPs near the association
peak (Figure 2a). Of these, only rs2272165 was highly conserved (Methods), and we began
conditional analysis with this SNP. Conditional analysis localized signal to rs2272165 and
rs6705628, with further conditioning on these SNPs essentially removing association signal
(Figure 2b). Thus, the association is well explained by these two SNPs.

For these two SNPs, each risk allele occurred at around 20% frequency in the Asian
populations, and around 1% in the Europeans, reflecting a profound difference in underlying
allelic prevalence. The meta-analysis yielded similar statistics for both SNPs (unsurprising
given their close distance—4883 bases—and strong LD between them—r2 = 0.99—in Asians.)
We analyzed our data on Asian and European ancestries both separately and jointly. The
p-value and odds ratio (OR) with 95% confidence interval were p = 5.56 × 10−10 and
0.79 (0.72–0.87) for rs6705628; and p = 3.48 × 10−10 and 0.79 (0.71–0.86) for rs2272165.
Despite the much lower incidence, computed odds ratios were identical (0.91) in European
populations. The rs6705628 SNP just achieved statistical significance (p = 4.99 × 10−2),
whereas the rs2272165 SNP just missed it. Taken together, this meta-analysis indicates that
these two SNPs (whose effects are difficult to separate due to nearly compete LD) strongly
contribute to SLE susceptibility, especially pronounced in Asians. Thus, we moved forward
with experiments to determine mechanistic aspects of risk arising at these two SNPs in the
2p13.1 region.
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3.2. Bioinformatics of the Region

We evaluated the potential pathogenicity of the SNPs by running PredictSNP2 [23]
on this genomic region. Several SNPs including rs2272165 were identified as potentially
deleterious (Table S2).

Both SNPs (rs2272165 and rs6705628) are in chromatin that is annotated as quite active
(ENCODE data in UCSC Genome Browser). rs6705628 is annotated as an active promoter
in GM12878 (B-lymphocyte) cells, and as a strong enhancer in K562 cells (erythroleukemia
cells resembling granulocytes). ENCODE project data show very strong histone marking
(particularly H3K4me3 and H3K27ac) in both cell lines, and the region is annotated as open
chromatin in both, as well. ENCODE ChIP-seq data show a remarkable number of bound
transcription factors and chromatin regulators at this locus: JUND, MYC, MAX, KDM5B,
SIX5, ZBTB33, ELF1, PHF8, E2F1, TAF1, HMGN3, CHD2, TBP, TFAP2C, CTCF, CREB1,
EBTF, ZBTB7A, SP4, IRF1, E2F4, MAX, TEAD4, TBL1XR1, ARID3A, and NR2F2. This base
is 100% conserved as the risk C in primates.

rs2272165 is annotated as a strong enhancer in both GM12878 and K562 cells. Histone
marking (particularly H3K4me3) is strong in K562 cells, and both cells show this region as
open chromatin. ChIP-seq shows binding of MAX, SMARCB1, BHLHE40, MYC, KDM5B,
MXI1, E2F6, TBP, NFIC, STAT3, UCTF, and SPI1 to the region. Consensus recognition motifs
for MZF1 and RREB1 occur directly adjacent to this base. This base is 100% conserved as
the risk G in primates.

Based on 3D-chromatin interaction analysis with the PCHiC data, we found that the
rs2272165 region strongly interacts with the promoters of neighboring genes (including
both DGUOK and DGUOK-AS1) in both GM12878 cells and monocytes, as well as all other
immune cells together (Figure 1). This suggests a potential regulatory role.
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3.3. Non-Coding RNA Interactions

The DGUOK-AS1 antisense RNA presents fascinating connections with the immune
system. In addition to targeting its namesake DGUOK itself, DGUOK-AS1 regulates many
microRNAs with immune involvement. DGUOK-AS1 regulates the microRNA miR-204-5p,
whose principal downstream target is interleukin-11; in this context, the RNA was found
to promote IL-11 secretion, breast cancer cell migration, angiogenesis, and macrophage
migration [31,32]. It appears that DGUOK-AS1 may bind to multiple miRNA species
and affect their function. Other experimentally validated miRNA targets of DGUOK-AS1
(Table S3) included miR-1-3p, miR-138-5p, miR-148a-3p and miR-148b-3p, miR-151a-3p,
miR-653-5p, and miR-876-3p. Remarkably, all interacting miRNAs are primarily annotated
as immune modulators.

We next performed a search for non-miRNA targets of DGUOK-AS1 (Table S4). The
top hits included the inflammatory peptide bradykinin, which is upregulated in SLE,
rheumatoid arthritis, and Hashimoto’s thyroiditis [33]; pattern recognition receptor 36,
which is involved in the innate immune system [34]; and the lncRNA Xist, the principal
mediator of X chromosome inactivation in females [35]—Xist has been shown to strongly
contribute to B-cell modulation and sex bias in SLE and arthritis [36].

3.4. Relationship of DGUOK and DGUOK-AS1

The lncRNA DGUOK-AS1 was discovered through RNA-seq on cervical cancer tissues.
The lncRNA consists of two exons, one of which overlaps the penultimate coding exon of
DGUOK (exon 4 or 6, depending on splice isoform) by 60 bases—this is the origin of the
name of the lncRNA. We explored existing single-cell RNA-seq data for B-lymphocytes
(Coriell lines GM18502, GM12878, LCL_777_B958, and LCL_777_B958_M81) and discovered
that levels of DGUOK and DGUOK-AS1 are indeed largely negatively correlated (Figure S1),
as would be expected if DGUOK-AS1 is targeting DGUOK for inhibition (as do most, but
not all, lncRNA-target gene pairs). Thus, the two genes appear to be transcriptionally
co-regulated, as predicted from genome structure.

3.5. eQTL and sQTL Analysis

To better establish the effects of the SNPs on gene expression, we searched publicly
available expression quantitative trait locus (eQTL) databases (based on patient-derived
primary cells) for the two SNPs. A detailed eQTL analysis across essentially all blood
cell types [24] showed that both rs6705628 and rs2272165 were powerful determinants
of DGUOK expression levels (Figure 3), particularly in naïve B-cells (p = 1.48 × 10−5

and 1.67 × 10−5, respectively), unswitched memory B-cells (USM_B, p = 2.41 × 10−3 and
2.97 × 10−3, respectively), and double-negative effector memory B-cells (DN_B,
p = 1.01 × 10−2 and 1.97 × 10−2, respectively). Changes were smaller and less sig-
nificant in switched memory B-cells (SM_B). We also found that both SNPs are strong
sQTLs for DGUOK-AS1 in multiple tissues: p = 2.1 × 10−24 for esophageal mucosa and
1.7 × 10−15 for skin (Figure S2).
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the risk for rs6705628 and (G/G) is the risk for rs2272165. USM = unstimulated, SM = stimulated,
DN = double negative.

3.6. Validation of Allele-Specific Regulatory Effects of SNPs

To assess allele-specific promoter/enhancer effects of the two SNPs, we performed
luciferase reporter assays in three cell lines by transient transfection (HEK293 kidney cells,
U937 monocytes, and the Coriell lymphoblastoid B-cell line GM18572—“LCL”; see Methods).
In HEK293 cells, the rs2272165 locus showed strong promoter and enhancer activity (~6-fold
over the empty vector for both)—the risk G SNP lowered activity ~10% over the non-risk A
SNP for both—the difference was significant (p = 0.009) for enhancer activity (Figure 4a). The
rs6705628 locus showed modest promoter and enhancer activity—the risk C SNP increased
activity ~40% (p = 0.007) for promoter activity. In U937 cells (Figure 4b), the rs2272165 locus
showed stronger promoter and enhancer activity (~4-fold and ~8-fold over the empty vector,
respectively), and the risk G SNP had a more profound effect on enhancer activity (40%
decrease, p = 0.03). The rs6705628 locus also showed much stronger promoter and enhancer
activity than in HEK293 cells (40% increase and 4x increase over empty vector)—the risk
C SNP increased promoter activity ~2.5-fold (p = 0.002). In LCL (Figure 4c), both regions
were strong, SNP-independent silencers of promoter activity (~2x less than empty vector).
Meanwhile, the rs2272165 locus was a strong enhancer (~2.5x over empty vector)—an effect
that was completely abolished by the risk G SNP (p = 0.002). Taken together, both genomic
loci exhibit strong effects on both promoter and enhancer activities—and a single base pair
substitution significantly modulates these effects. Overall, the risk genotype at rs2272165
decreased enhancer and promoter activity across all three cell types, whereas the rs6705628
risk genotype increased enhancer and promoter activity across all cell types.
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3.7. Differential Allele-Specific Binding of Regulatory Proteins to SNP Regions

To better understand the allele-specific regulatory activity of both SNP regions, we
first sought to establish the set of histone marks and other proteins interacting with the
two loci. To recapitulate in vivo conditions, we measured binding at the regions in their
endogenous chromatin state—with proteins expressed at native levels—by making use of
genotyped cells (Coriell B-cell lines) homozygous at the two SNPs. From Coriell lines with
the appropriate genetic background (Han Chinese in Beijing, CHB HapMap group), we
selected (from published genotyping) two homozygous-risk and six homozygous-non-risk
lines for verification by TaqMan. Of these verified lines, we chose GM18572 and GM18553,
respectively, to represent the risk and non-risk haplotypes.

Using ChIP-grade antibodies (Abcam), we measured in situ allele-specific binding of
the histone marks H3K27ac, H3K4me1, and H3K4me3 to each SNP genotype, quantifying
binding with ChIP-qPCR (Figure 5). For rs6705628, all three marks bound significantly
more in GM18572 (i.e., the risk CC genotype) than in GM18553 (i.e., the non-risk TT geno-
type) (H3K27ac: p = 0.009, ~2.3× increase; H3K4me1: p = 0.009, ~5× increase; H3K4me3:
p = 0.03, ~2× increase). Conversely, for rs2272165, significantly lower binding was seen for
all three marks in GM18572 (i.e., the risk GG genotype) than in GM18553 (i.e., the non-risk
AA genotype) (H3K27ac: p < 0.001, ~2.5× decrease; H3K4me1: p < 0.001, ~2.5× decrease;
H3K4me3: p < 0.001, ~4× decrease). In general, H3K27ac and H3K4me3 mark active
promoters, particularly near transcription start sites, whereas H3K4me1 marks active en-
hancers. The risk rs2272165 genotype decreased promoter and enhancer activity across
cell types (Figure 4); thus ChIP-qPCR results are in complete agreement. Similarly, the risk
rs6705628 genotype increased promoter activity in monocytes and HEK293 cells; thus, the
rs6705628 ChIP-qPCR results are also consistent. Binding of several other proteins was also
dramatically increased in the risk rs6705628 genotype (P300: p = 0.021, ~7× increase; Pol II:
p < 0.001, ~4× increase; CTCF: p = 0.018, ~4× increase; ARID3A: p = 0.007, ~6× increase).
It is likely that a complex interaction between RNA polymerase, histone marks, chromatin
modulators, and cell type-specific components controls transcription from these loci.
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3.8. Western Blot Analysis of DGUOK

Given the large allele-specific effects that we observed from the luciferase and ChIP-
seq experiments, we sought to determine if the SNP genotypes dictated protein expression
levels as well. Using an antibody specific against the DGUOK protein, we performed
Western blots on three LCL lysates, from the homozygous rs2272165/rs6705628 risk/risk
genotype (GM18572 and GM18555) and the homozygous non-risk/non-risk genotype
(GM18553 and GM18561) (Figure 6). The non-risk GM18553 line showed much higher
levels of DGUOK protein expression than the risk 101739 and 101972 lines (~50% and
4.5× higher, respectively). These results are consistent with the luciferase experiments,
wherein promoter and enhancer activity were lower for risk than non-risk genotype at
all 8 measurements (significantly lower at 3 of them). Thus, the transcriptional effects
mediated by these two SNPs translate directly into protein levels—importantly, in relevant
white blood cell lines from endogenous chromosomal expression, likely mirroring the
in vivo situation.
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Figure 6. Western blot analysis of DGUOK protein in two risk (R1-GM18555, R2-GM18572) and two
non-risk (NR1-GM18553, NR2-GM18561) genotype-specific LCLs (B-lymphoblastoid cells). DGUOK
protein level was normalized to levels of glyceraldehyde 3-phosphate dehydrogenase (GAPDH).
(A) Variation in DGUOK band intensity in genotype-specific LCLs. (B) Densitometry analysis showed
that the normalized DGUOK expression was significantly reduced by ~3 fold in risk (R1 and R2;
average R) compared to non-risk (NR1 and NR2; average NR) LCLs. P-value was determined by
Student’s t-test. * p < 0.05.

4. Discussion

Here we have performed a meta-analysis of the 2p13.1 lupus susceptibility locus across
six cohorts from Asian and European populations. The meta-analysis greatly strengthened
and refined the association signal in both ancestries, especially predominant in Asian
populations. Subsequent conditional analysis localized the association to two non-coding
SNPs in the DGUOK/DGUOK-AS1 locus. Since the allele effects were found in Asians, we
used cell type-specific eQTL data from a Japanese population. These two SNPs have strong
eQTL signals from primary B-cells, modulating the expression of DGUOK significantly. We
carried out a series of in vitro experiments on three immortalized cell lines that demon-
strated strong promoter and enhancer activity of the local regions around these two SNPs,
with the two SNPs greatly modulating activity. The risk allele (G) at rs2272165 decreased
enhancer activity across all three cell types. Western blots verified that this decreased
transcriptional activity carried over to protein expression, which was several-fold lower
in risk genotype cells. For rs2272165, chromatin marks and transcription factor binding
were lower in the risk genotype, consistent with the above results. The risk allele (C) at
rs6705628 increased promoter and enhancer activity across all three cell types. Consistently,
rs6705628 chromatin marks and polymerase residency were significantly higher in the risk
genotype. The observation from Western blots that DGUOK protein levels decrease in the
risk-risk genotype suggests that the effects of the rs2272165 SNP perhaps outweigh those
of the rs6705628 SNP.

Notably, ARID3A—which binds significantly more to the rs6705628 risk genotype—is
broadly involved in the development and progression of SLE [37]. ARID3A expression
levels in white blood cells correlated with disease activity in patients and were specifically
linked to autoantibody production by B-cells. ARID3A expression also drives lineage fate
in hematopoiesis, with high expression leading to greater numbers of B-cells, neutrophils,
and plasmacytoid dendritic cells in SLE patients. The substantial binding of ARID3A
specifically to the risk rs6705628 genotype (consistent with ENCODE data) may modulate
downstream disease processes.
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This locus was first reported in a meta-analysis, and the rs6705628 was flagged as a
risk SNP for SLE in Chinese (odds ratio 0.71, p = 3 × 10−8) [16] and in Chinese and Thai
(OR 0.75, p = 7 × 10−17) [15]. It was also noted as a risk locus for rheumatoid arthritis
in East Asians and Europeans (OR 0.88, p = 7 × 10−9) [38]. Intriguingly, both risk alleles
are the major and ancestral alleles; the derived non-risk alleles are very low abundance in
European populations but quite common (~20%) in Asians, suggestive of positive selection
for some desirable trait such as infection resistance. In fact, many SLE risk loci are targets
of recent positive selection in this manner [39].

The two primary loci regulated by the two SNPs are DGUOK (mitochondrial de-
oxyguanosine kinase), which regulates mitochondrial DNA replication; and DGUOK-AS1,
an antisense RNA directed against DGUOK [15]. DGUOK does not have an obvious im-
mune system role and has been primarily studied in the context of mitochondrial DNA
depletion and neurodevelopmental disorders [40]. Mitochondria are profoundly involved
in the healthy function of the immune system (notably reactive oxygen generation and
phagocytosis), though, and many of the most SLE-associated risk genes encode mitochon-
drial proteins [41], particularly components of mitochondrial NADPH oxidase [42,43],
which produces reactive oxygen species. It is not unreasonable that alterations in the level
of a critical mediator of mitochondrial DNA copy number and intactness would modulate
oxidative phosphorylation (OxPhos), with knock-on effects on the immune system. The
risk alleles are associated with lower DGUOK levels, potentially leading to less error correc-
tion in mitochondrial genomes, with potential downstream effects on other mitochondrial
components. Indeed, SLE patients with high disease activity exhibit substantially decreased
mitochondrial genome copy number and increased sequence heteroplasmy [44], indicative
of error-correction failures.

We found that the DGUOK-AS1 antisense RNA targets several immune-relevant
microRNAs—in addition to the DGUOK transcript itself. DGUOK-AS1 targets miR-1-3p
(which facilitates Th17 differentiation [45]), miR-138-5p (which promotes TNFα-induced
apoptosis through PTEN/PI3K/Akt signaling [46]), miR-148a-3p and miR-148b-3p (the
primary biomarker for lupus nephritis [47] and a potent PTEN activator), miR-151a-3p
(another biomarker of lupus nephritis [48]), miR-653-5p (an miRNA active in Behçet’s syn-
drome inflammation [49]), and miR-876-3p (which modulates proliferation and apoptosis
in lymphocytic leukemia through JNK signaling [50]). A separate search for non-miRNA
genes targeted by DGUOK-AS1 revealed bradykinin—a key inflammatory mediator—and
the lncRNA Xist, the primary determinant of X-inactivation and autoimmune sex bias. The
fact that DGUOK-AS1 is predicted to bind to the three most prominent lupus nephritis
biomarkers is quite suggestive, although further experiments will be required to validate
these predictions and establish mechanisms connecting the function of these miRNAs
to SLE and nephritis progression. Similarly, the roles of bradykinin and Xist, and their
regulation by DGUOK-AS1 and DGUOK, will require further study.

Taken together, we have conclusively demonstrated the association of two SNPs near
DGUOK/DGUOK-AS1 with SLE, established transcriptional regulatory mechanisms and
protein-binding effects of the risk alleles, and laid out potential downstream signaling
pathways, mediated primarily through mitochondrial OxPhos activity and phagocytosis,
and separately through competition with the function of myriad immune-involved microR-
NAs and Xist, the principal determinant of X chromosome inactivation and autoimmune
sex bias. In-depth mechanistic studies will further delineate these functional targets for
SLE susceptibility.
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//www.mdpi.com/article/10.3390/genes13061016/s1, Figure S1: Relationship between expression
levels of DGUOK and DGUOK-AS1 across four Coriell lines studied with single-cell RNA-seq.
Figure S2: Splicing QTL (sQTL) interactions of DGUOK-AS1. Table S1: Meta-analysis and relevant
information for four Asian and two European cohorts. Table S2: Predicted deleteriousness and
pathogenicity of the SNPs. Table S3: Experimentally validated microRNA interactions with the
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lncRNA DGUOK-AS1. Table S4: Predicted coding gene and lncRNA interactions with the lncRNA
DGUOK-AS1.
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