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Abstract

We offer a computational framework for modeling explanation
as cooperative rational communication. Under our framework,
when an explainer is faced with a “why?” question, they reason
about the question-asker’s current mental model, and intervene
on that mental model in order to maximize the listener’s future
utility. We instantiate our framework in a planning domain,
and show that our framework can model human explanations
about plans across a wide variety of scenarios.

Keywords: explanation; theory of mind; Bayesian models;
rational communication; social cognition

Introduction
While wandering in Carroll’s Wonderland, Alice asks for and
receives dozens of explanations: some sensible, others less
so. Consider the doorman in Chapter VI, who explains to
Alice why there’s no use in her knocking on a door: “First,
because I’m on the same side of the door as you are, and
second, because they’re making such a noise inside, no one
could possibly hear you.”

No ordinary doorman would give that first explanation; if
he did, we might call him uncooperative (or worse—Alice
goes with “uncivil”). After all, explanations are typically
cooperative social interactions: asking “why?” is a request
for help in understanding something unexpected. The
doorman’s first explanation was not helpful—it failed to
understand and support Alice’s goals.

Decades of research into the nature of explanation (see
Lombrozo (2006, 2012); Miller (2019) for reviews) has
explored the many dimensions of good explanations: for
example, the way good explanations are contrastive (Lipton,
1990; Riveiro & Thill, 2021), selective (Lombrozo, 2007;
Gerstenberg & Icard, 2020; Poesia Reis e Silva & Goodman,
2022), and causal (Josephson & Josephson, 1996; Hilton,
1996; McClure, 2002) in nature.

In this paper, we seek to formalize the social dimension
of explanation (Hilton, 1990; Kirfel, Icard, & Gerstenberg,
2022; Van Fraassen, 1988), approaching explanation as
a kind of rational cooperative communication. We build
on a long line of work that models pragmatic behavior
in human communication (Grice, 1975) as recursive social
reasoning. In particular, we build on the Rational Speech
Acts (RSA) framework (Frank & Goodman, 2012; Goodman
& Frank, 2016), which has previously been extended in
a variety of ways (Sumers et al., 2023; Ho et al., 2022,

Figure 1: A computational framework for explanation. Alice,
the explainer, first infers Bob’s erroneous mental model from
past observations and the fact that he is asking “why?” in the
present. Then, she corrects Bob’s mental model in order to
minimize his future confusion.

2021) to model behaviors like politeness (Yoon et al., 2018,
2017, 2016), punishment (Radkani, Tenenbaum, & Saxe,
2022), pedagogy (Shafto, Goodman, & Griffiths, 2014),
and storytelling (Chandra, Li, Tenenbaum, & Ragan-Kelley,
2023a, 2023b). Under our computational framework,
when faced with a “why?” question the explainer reasons
recursively about the question-asker to infer and correct
the question-asker’s mental model. The explainer’s goal is
to help the question-asker now and in the future, without
offending them as the doorman offended Alice. For this, we
augment RSA with an additional “social” cost term.

In the next section, we will formalize this idea in
Bayesian terms. Then, we instantiate our framework to
model explanation in a planning domain, showing that our
model produces human-like explanations across a variety
of scenarios. Finally, we discuss scope for future work,
including our ongoing efforts to apply this framework to build
real-world explanation systems.

Computational framework
In outlining our framework, we will let Alice be the explainer
for a change. Our framework is centered around modeling
her behavior—but we will start by describing a model of her
friend Bob, who has just asked her a “why?” question.
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Suppose Bob has some world model mBob, which, being a
model, matches the real world in some ways but not in others.
Over time, Bob observes some sequence of events e1,e2, . . . .
If at time t he is surprised by et , i.e. if p(et | mBob) ≪ 1,
then Bob might suspect his world model is incorrect or
incomplete. In that case, he might ask Alice “Why et?”
The “why?” question is an admission that mBob is missing
something, and a request to Alice to fix it.

This is what Alice does when constructing an explanation.
Based on Bob’s past behavior from time 1 to t, as well as
her prior belief about Bob’s world model, she first infers
p(mBob | Bob asked “why?” at time t). Then, she chooses the
best way to correct mBob, taking into account the costs and
utilities associated with each potential intervention she could
make (Figure 1). In the next two sections, we will formalize
these two steps: inferring and correcting Bob’s mental model.

Inferring Bob’s erroneous mental model
To infer p(mBob | Bob asked “why?” at time t), we apply
Bayes’ rule. Let’s say Alice’s prior over Bob’s world model
is p(mBob). Then it remains to compute the likelihood,
p(Bob asked “why?” at time t | mBob). We will assume that
whenever Bob observes a surprising event (i.e. one which
mBob assigns probability lower than some threshold), he asks
a “why?” question with probability pcurious. He might also
ask spurious questions about non-surprising events with some
tiny probability pspurious ≪ pcurious. Hence, upon observing
event et at time t, the likelihood of Bob asking “Why et?”
is pcurious if he found et surprising according to mBob, and
pspurious otherwise. That is,

p(ask about et | mBob) =

{
pcurious if p(et | mBob)≪ 1
pspurious if p(et | mBob) ̸≪ 1.

However, Alice actually has a little more information than
that: in addition to Bob’s question about et , Alice observes
Bob not ask “why?” about events e1, . . . ,et−1. The likelihood
of Bob not asking about a previously-observed event et ′<t is
1− p(asks about et ′ | mBob).

Hence, the overall likelihood of Alice’s observations are
given by the product of all of these terms:

p(Bob asked “why?” at time t | mBob) =

∏
1≤t ′<t

(1− p(ask about et ′ | mBob)) · p(ask about et | mBob).

Finally, by Bayes’ rule, Alice’s posterior belief about Bob’s
world model is proportional to the likelihood multiplied by
the prior. That is, p(mBob | Bob asked “why?” at time t) ∝

p(Bob asked “why?” at time t | mBob) · p(mBob).

Correcting Bob’s mental model
At this point, Alice has inferred Bob’s world model. Next,
Alice decides how to correct Bob’s world model.

Suppose Alice has some space U of possible utterances.
Let us say that utterance u ∈ U causes a listener with world

model m to update their world model to r(m,u). How should
Alice value a given utterance u? This depends on the utilities
and costs associated with u.

One natural factor to consider is whether or not u resolves
Bob’s confusion, i.e. whether or not p(et | r(mBob,u)) has
been raised (in expectation over the inferred mBob). But
more generally, as noted by Tsvilodub et al. (2023), Alice
might additionally wish to anticipate and (at lower priority)
proactively address future confusion as well. That is, Alice
might also wish to raise p(et ′ | r(mBob,u)) for t ′ > t.

With this in mind, we model Alice’s utility of transmitting
utterance u as the sum

V (u) = EmBob

[
∑
t ′≥t

γ
t ′−t p(et ′ | r(mBob,u))

]
,

where the expectation is taken over Alice’s posterior belief
over mBob, which we computed in the previous section. Here,
0 ≤ γ < 1 is a free parameter used to discount the value of
resolving future confusion. The higher γ is, the higher Alice
values resolving Bob’s potential future confusion beyond the
present “why?” question.

Next, we have to consider the cost Alice incurs in choosing
utterance u, which we will call c(u). We consider two
sources of costs that contribute terms to c(u). First, there
is a “transmission cost” proportional to the length of u. This
models the time and energy needed for Alice to say u to Bob.

Second, we consider the “social cost” associated with
telling Bob something that he already knows. There are many
reasons why Alice might consider making such a redundant
statement extra costly, on top of the transmission cost of
that statement. For example, if Alice makes a redundant
statement, then Bob might infer that she thinks he is ignorant,
which could (a) embarrass him (e.g. in a classroom context),
and (b) lower his trust that Alice has properly inferred his
mental model (e.g. in a cooperative problem-solving context).
Such redundancies in explanation are sometimes even
perceived as rude, combative, condescending, or patronizing:
for example, the pejorative term “man-splaining,” and the
suffix “–splaining” more generally, refer to this phenomenon
(recall the example of the doorman from the introduction).

We do not explicitly model this recursive social reasoning
on-line here: instead, in the spirit of resource-rational
contractualism (Levine et al., 2023), we amortize that
computation and reduce it to a social cost term in Alice’s
utility, which is proportional to the number of redundant
statements Alice transmits to Bob (i.e. statements already
known to be true in Bob’s mental model). Because Alice
is uncertain about Bob’s mental model, the social cost is
computed as an expectation over mBob. Note that the social
cost is not subsumed by the transmission cost—we will see
in the next section why it really is separately necessary.

Finally, putting everything together, we say that Alice
selects utterance u in a softmax-rational way, i.e. Alice selects
utterance u with probability ∝ exp(β · (V (u)− c(u)), where
the parameter β controls the sharpness of the softmax.
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Instantiating the framework
to explain surprising plans

Let us now use our framework to model how people
intuitively give explanations in a simple planning domain.
Consider a small town with two 24-hour convenience stores
(East-Mart and West-Mart), a bank, and an ATM.

While taking a walk, Alice runs into her friend Bob and
decides to take him to a convenience store to buy him a
snack. Typically, Alice would take Bob directly to the nearest
convenience store. However, in some scenarios, there could
be unexpected exceptional circumstances that affect her plan.
In particular, any (or all) of these conditions may be in effect:

(“street”) Main Street is closed for a parade.
(“cash”) Alice needs cash (has to stop at the bank or ATM).
(“mart”) West-Mart is closed for renovations.
(“strike”) The bank workers are on strike.

With this in mind, Alice plans a route and starts leading Bob.
However, at some point along the way, Bob asks, “Wait, why
are we going this way?” Alice then provides an explanation.

As an example, consider the scenario shown in Figure 2.
Alice takes Bob south, then turns east. At that point Bob asks
“Wait, why are we going east now?” Most people suggest
that Alice explain “Because I need cash.” We will use our
computational framework to model such intuitions.

Computational model
Recall that under our computational framework, Alice infers
and corrects Bob’s erroneous mental model. We modeled the

space of Bob’s possible mental models as the 24 = 16 possible
subsets of the 4 exceptional conditions. Note that this means
Bob might erroneously think an exceptional condition was in
effect (e.g. thinking Alice needs cash when in reality she has
enough for snacks). We placed a uniform prior over these
subsets, except for the empty subset (i.e. nothing unusual),
which received a much higher prior. Following the principle
of rational action (Jara-Ettinger et al., 2016), we assumed that
Bob expects Alice to take the shortest path possible, and that
he is “surprised” by an action taken by Alice (and moved to
ask a “why?” question) if the action deviates from the optimal
route under his mental model.

We modeled the space of Alice’s possible utterances u as
follows: for each of the 4 exceptional conditions, Alice could
either say it was in effect, say it was not in effect, or not
comment on it at all. This gives 34 = 81 possible utterances.
Utterances denote interventions on possible world models:
upon hearing u, Bob updates his world model to be consistent
with the interventions in u. We set the transmission cost to
the number of conditions Alice comments on (0–4), and we
set the social cost to the number of statements Alice tells
Bob which Bob already knows (in expectation, accounting for
Alice’s uncertainty over mBob). Finally, we restricted Alice to
only say true statements.

Together, these pieces allow us to instantiate our
framework in this domain.

Alternate models
We additionally considered four alternate models:

• We lesioned Alice’s inference of mBob. Instead, Alice
always assumes that Bob is “naı̈ve,” i.e. that he believes
no exceptional circumstances are in effect.

• We lesioned Alice’s value of resolving Bob’s future
confusion. Instead, Alice seeks only to make Bob
understand her current action. This can be implemented
by fixing the discount factor γ to be zero.

• We lesioned the social cost, so that Alice has no additional
penalty for telling Bob something he already knows.

• As an alternative to the social cost, we instead added a

Figure 2: An example scenario in our planning domain, as shown to participants in our experiment. In this scenario, people
typically say that Alice should explain “Because I need cash.” Our computational model captures this intuition well—see
Figure 3, where this scenario is shown as Scenario 1.
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street cash mart bank
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Figure 3: Our full model predicts human explanations well across a wide variety of scenarios. Here, we show a bar for the
probability of including each statement in the explanation, marginalizing over the joint distribution of all possible utterances.
Blue bars show human responses, while green bars show model predictions. See the text for discussion of specific scenarios.
Note: In each scenario, Bob asks “why?” at the location marked by “×,” or at the beginning of the route if no × is shown.

second layer of recursive reasoning under the Rational
Speech Acts (RSA) framework (Frank & Goodman, 2012;
Goodman & Frank, 2016) to see if the phenomenon
of pragmatic strengthening (Goodman & Lassiter, 2015)
provides an alternate account of the data. In RSA terms,
we model Alice as an S2 speaker without the social cost (as
opposed to an S1 speaker, as in all of the models above).

Experiment
We recruited n = 100 participants on Prolific for an
IRB-approved study. Each participant was paid $2.50
to complete 9 rounds, which took a median 10 minutes
($15/hour). In each round, they first read the conditions
in effect for the current scenario and confirmed their
understanding by selecting the best route for Alice among
a set of distractors (given multiple chances). Then, they
watched Alice lead Bob along the chosen path, and Bob
ask a “why?” question at some point along that path (this
was shown as in Figure 2). Finally, they designed an
explanation for Alice to give Bob by choosing any (or all)
of 4 checkboxes representing the exceptional circumstances
(cash, strike, mart, parade). The checkboxes were labeled

based on whether or not the exceptional circumstance was in
effect in that scenario (e.g. “The bank workers are on strike.”
vs. “The bank is open.”), and presented in randomized order.
Participants were instructed that it was okay to check none of
the boxes if they felt that none of the statements were a good
explanation. In that case, they clicked a separate button to
confirm that they intended to leave all boxes un-checked.

We collected data for 15 scenarios, chosen to elicit a variety
of interesting explanations. Each scenario had the same map
layout, but different starting locations for Alice and Bob, and
different exceptional circumstances in effect. We excluded
data from 5 participants who responded incorrectly to the
understanding checks in a majority of scenarios. Finally, we
independently fit our full model, as well as each of the four
alternate models, to human data via black-box optimization.

Results
Our full model fit human judgements well across a wide
variety of scenarios (r2 = 0.88). See Figure 3 for comparisons
by scenario. Notice for example that our model captures
human intuitions about how many statements to make, or how
selective to be: compare Scenario 1, where both humans and
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Figure 4: (left) Without the social cost, an S1 model assigns nonzero probability to all statements, even statements that are very
rarely selected by humans. (center) Adding another level of recursive social reasoning (i.e. an S2 model) adds some pragmatic
strengthening. (right) However, adding a social cost to the S1 model captures human responses much better. (Each point in
these plots represents one of the 15×4 bars in Figure 3.)

Model Fit (r2)

Full model (S1 with social cost) 0.88

No inference of mBob 0.86
No future value (γ = 0) 0.81

S1 (no social cost) 0.51
S2 (no social cost) 0.73

Table 1: A summary of the models we tested, and their fit to
the data we collected. See the text for discussion.

the model choose only one statement, to Scenario 8, where
they both choose two. It also captures graded uncertainty and
even cases where there is no clear explanation—for example,
in Scenarios 3 and 10 (which are further discussed below).

In the rest of this section we discuss our alternate models,
the results of which are summarized in Table 1.

Effect of the social cost Lesioning the social cost from
our model dramatically lowered the model fit (r2 = 0.51).
Without the social cost, the model assigns substantial nonzero
probability to all statements, even ones that humans rarely or
never select. This is visible in Figure 4 (left panel), where the
model’s predictions reach a floor well above zero.

To better understand this effect, consider Scenario 1 again,
where the best explanation is that Alice needs cash. The
lesioned model indeed assigns highest utility to that utterance.
However, it also assigns some utility to Alice saying that
she needs cash and that Main St. is open, because that
utterance also corrects Bob’s mental model (albeit at higher
transmission cost). This raises the marginalized probability
of selecting the statement about Main St.

Of course, people almost never select this statement when
constructing their explanations. This suggests a unique
aspect of explanation that sets it apart from other rational
communication settings: the heightened cost of redundancy.
In the signaling game setting described by Goodman and

Frank (2016), for example, it would not be unusual for a
speaker to redundantly refer to the person with “the glasses
and the hat” even though “glasses” is redundant if “hat” is
specified. Standard RSA models capture human intuitions
well in such settings, especially when employing multiple
levels of recursive reasoning. In our explanation setting here,
however, redundant statements are almost never made (many
bars in Figure 3 are at or near zero). Increasing the number
of levels of RSA to an S2 model (without a social cost) does
improve the fit (r2 = 0.73) compared to S1, but the model still
shows the same flooring effect (Figure 4, center).

As discussed earlier, we instead propose that speakers’
reluctance to make extraneous statements is explained by the
additional social cost to Alice of telling Bob something he
already knows. Indeed, adding the social cost to S1 does
allow the model to predict that some statements are almost
never chosen (Figure 4, right).

Effect of reasoning about the future Lesioning the
contribution of Bob’s future confusion to Alice’s utility
function also reduced the model fit (r2 = 0.81). Consider
Scenario 12, where Bob asks “why?” on the second eastward
step (after crossing the corner of Main St). It is clear enough
that Alice should say “because I need cash and the bank is
closed.” However, people and the model additionally say
“because Main St. is closed,” because they anticipate in the
future that Bob will be surprised that they do not head down
Main St. to East-Mart on the way back from the ATM. The
lesioned model fails to predict this.

Another compelling example of this is Scenario 10, where
Bob asks “why?” on the second westward step. This is an
odd question—there is no reason for Bob to be confused, and
indeed most people select zero statements. However, some
suggest that Alice say that she does not need cash. Our
full model captures this: the utterance lowers Bob’s future
surprise if he expects her to walk past East-Mart to the ATM
and back. The lesioned model does not capture this effect,
instead placing equal (low) weight on all four statements.
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Effect of reasoning about the past Finally, lesioning
Alice’s inference of mBob based on his past observations
only slightly reduced the overall model fit (r2 = 0.86), but
its effect can still be seen in individual scenarios. Consider
Scenario 3, where Bob asks “why?” when they turn south.
People prefer that Alice say she does not need cash, than
that she say West-Mart is closed. Our full model captures
this: because Bob observed the earlier eastward step without
asking “why?,” Alice infers that it is likelier that he already
knows West-Mart is closed than that he knows she has cash.
In contrast, the lesioned model places precisely equal weight
on “cash” and “mart.”

Discussion
Potential extensions to the framework
Our framework currently makes several simplifying
assumptions about Alice and Bob. We do not yet model
uncertainty Bob might have over possible world models, or
any on-line inferences Bob might make before asking his
“why?” question. We also do not model Alice’s uncertainty
about future events. Finally, we do not model bounded
rationality on Bob’s part: Bob might have a correct world
model, but he may have not performed enough computation
to be able to predict Alice’s actions. For example, if
Alice were an expert chess player, Bob might ask why she
sacrificed her queen for a pawn, and Alice might respond by
telling him about a clever checkmate several moves ahead.

When do people ask “why?” questions?
Our framework assumes that people ask “why?” questions
when their expectations are violated, and our model
operationalizes this assumption by modeling Bob as asking
“why?” questions when he observes some event that
(according to his world model) has probability less than
some fixed threshold. This simplified account was enough to
capture a variety of interesting effects in our model, but there
are many reasons why this nonetheless remains dissatisfying.

First, people do not ask “why?” questions about all
unlikely events—for example, to take an example from
Griffiths and Tenenbaum (2007), people are likelier to ask
“why did these coin tosses come up H T H T H T H T H T?”
than to ask “why did these coin tosses come up
H T T H H T H T H H?” even though both sequences of
outcomes have the same probability of ≈ 0.1%. Second,
people often do ask “why?” questions about phenomena
that have relatively high probabilities and are not strong
expectation violations (e.g. “why is the sky blue?” or “why do
you prefer chocolate over vanilla?”). A richer model of Bob’s
why-question-asking might begin to address these issues by
taking into account not only the likelihood Bob assigns to the
explanandum, but also Bob’s intuitions about what he might
stand to learn or gain by understanding it.

Practical applications of the framework
In concurrent work (Chandra, Li, Nigam, Tenenbaum,
& Ragan-Kelley, 2024), we are studying ways in which

we can use our framework to build tools that can
automatically provide good, human-like explanations to
human users—specifically, to programmers asking “why?”
questions about surprising behaviors of their programs.

We were inspired by a famous software engineering
talk by Bernhardt (2012), who demonstrated a variety of
counter-intuitive behaviors of the programming language
JavaScript. For example, he showed that in JavaScript,
applying the addition operator (+) to two empty lists ([]+[])
produces the empty string ("") as output. The audience’s
nervous laughter shows that even expert programmers find
such behaviors surprising (in most languages, we would
expect this to give an error). Many cognitive scientists
routinely encounter such surprises when using popular
JavaScript-based tools like jsPsych and WebPPL.

Using our framework, we designed a tool that
automatically answers questions like “Why does []+[]
return "" in JavaScript?” Following our framework,
we modeled Bob (the user) as having some potentially
erroneous mental model of JavaScript’s semantics. Inspired
by VanLehn (1990) and Lu and Krishnamurthi (2024),
we represented these erroneous mental models as buggy
JavaScript interpreters, where “bugs” correspond to common
misconceptions about the language. When a user asks
“why?” about a program, our system uses modern program
synthesis techniques (Torlak & Bodik, 2013, 2014; De Moura
& Bjørner, 2008; Chandra & Bodik, 2017) to efficiently
synthesize a buggy interpreter that would predict a different
expected result from the true result of the program—that
is, predict that the user would be surprised by the output.
This corresponds to inferring misconceptions in the user’s
mental model. We then generate a succinct and helpful
explanation of the program’s behavior by correcting
those misconceptions, i.e. by debugging the user’s mental
model. For example, our system explains the puzzle
about JavaScript above by saying, “When the + operator is
given non-numerical inputs, it converts them to strings and
concatenates them. The empty list gets converted to the
empty string. Hence, the result of []+[] is the empty string.”
This closely resembles the kind of explanations humans give,
for example on sites like Stack Overflow (Ventero, 2012).

Conclusion
We presented a computational framework that formalizes
explanation as rational communication: the explainer infers
and debugs the question-asker’s mental model. We used
our framework to model explanation in a planning domain
and showed that our model captures human intuitions well.
Finally, we discussed a variety of future directions, including
ongoing work on applying our framework to build a practical
pedagogical tool for programmers. We hope these these
ideas can be extended to build more tools that cooperatively
help learners debug their mental models—not only of
programming languages, but more broadly of any facet of our
infinitely complex rabbit-hole of a world.
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