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ABSTRACT OF THE DISSERTATION

Understanding the evolution of HIV-1 Env through computational analysis and
visualization of long-read amplicon sequences

by

Kemal Eren

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California, San Diego, 2017

Professor Joel Okrent Wertheim, Chair
Professor Siavash Mir Arabbaygi, Co-Chair

Single-molecule long-read sequencing technology recently reached accuracies

useful for studying diverse viral genes and genomes. Challenging error profiles, however,

hinder the interpretability of long-read sequencing datasets. Here we develop compu-

tational tools for processing such datasets and for visualizing rapidly evolving viral

populations.

Our primary biological focus is the HIV-1 envelope protein, which is the only

target of neutralizing antibodies. An effective HIV-1 vaccine would be a powerful weapon

xiv



against the current global epidemic, but progress has been slow because Env is a difficult

target. Nevertheless, some hosts develop broadly neutralizing antibodies (bNAbs), which

could be protective if they could be elicited by vaccination. Env and bNAb lineages

co-evolve, so understanding the Env populations and evolutionary dynamics will likely be

critical for understanding how to elicit the desired immune response. Tools developed in

this dissertation allow, for the first time, accurate processing of full-length sequencing of

HIV-1 env populations. Computational challenges in analyzing these sequences include

the length of the gene (2.6kb) and the prevalence of indel sequencing errors and extensive

biological indel variation which render traditional approaches inaccurate.

FLEA is a pipeline for processing circular consensus sequences and providing

biological insights into the evolution of env. It performs sequence cleaning, infers

high-quality consensus sequences, and performs analyses including codon alignment,

phylogenetic tree inference, ancestor reconstruction, and selection inference. The FLEA

pipeline supports multiple cluster and high-performance computing environments. A

client-side web application provides interactive visualizations, including a tree viewer,

MSA browser, and three-dimensional structure viewer.

RIFRAF is a novel multi-objective sequence consensus algorithm. It uses per-base

quality scores and uses a reference sequence for frame correction. RIFRAF consistently

finds consensus sequences that are more accurate and in-frame than those from other

methods, even with few reads and a distant reference. It is also uniquely capable of

keeping true indels while removing spurious ones.

These tools have been used to study donors from the Protocol C primary infection

cohort, resulting in two high-profile journal articles and another in preparation. They have

also been used to analyze data from a phase-I clinical trial of an anti-Env monoclonal

antibody therapy, published in Nature Medicine. This dissertation reviews those articles,

focusing on the results obtained with these tools.

xv



Chapter 1

Background and motivation

1.1 HIV-1

Human immunodeficiency virus (HIV) is a retrovirus that infects CD4-positive

cells, such as T-cells and macrophages. After an initial viral load spike, the infection

becomes asymptomatic for a period of months to years. Without treatment, this stage

usually ends within ten years, causing acquired immunodeficiency syndrome (AIDS) due

to the depletion of CD4-positive T cells. The compromised immune system is vulnerable

to opportunistic infections or cancers, which are almost always fatal. A worldwide HIV

pandemic has been raging for decades, causing millions of deaths.

HIV descends from Simian Immunodeficiency Virus (SIV), which crossed the

species barrier into humans from primates [105]. SIV is an old virus, estimated to have

been circulating in simian populations for more than 32,000 years, during which time it

may have successfully crossed into humans multiple times [156]. However, the ancestor

of the current pandemic crossed into humans relatively recently. HIV-1, which is the

most prevalent type, is related to SIV in chimpanzees and gorillas. HIV-1 group M,

which is responsible for the global pandemic, came from SIVcpz (a strain of HIV that

1
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infects chimpanzees), probably in the late 19th or early 20th century in Cameroon or the

Democratic Republic of the Congo, as a result of human contact with chimpanzee blood

while harvesting bushmeat [143]. Factors that may have contributed to its spread include

social changes and expanding transportation networks [34]. An increasing number of

cases occurred during the following decades, culminating in the official start of the

epidemic in 1981 [120]. Since that time, 76.1 million people have become infected with

HIV, and 35.0 million have died. 36.7 million people globally were living with HIV in

2016, of which 1.8 million became newly infected and 1 million died [142].

HIV is transmitted when HIV virions from an infected individual contact a

mucosal surface or the bloodstream of an uninfected individual [129]. Rates of infection

vary according to the mechanism of transmission, which include sharing needles, sexual

transmission, mother to child transmission, and other forms of blood contact. Certain

populations are more at risk of infection than others, partially due to differences in rates

of these behaviors. The most at-risk populations include drug users, men who have sex

with men (MSM), and sex workers [142].

Over the past decades, HIV has been the target of an intensive research effort to

find treatments, vaccines, and cures. Thanks to the development of antiretroviral therapy

(ART) and its combination into highly active antiretroviral therapy (HAART), the disease

is currently manageable [97, 99, 112], but no effective vaccine or cure has yet been found.

ART disrupts specific phases of the virus replication cycle, reducing the viral load to

below detectable limits in plasma and reducing transmission rates [3, 28]. However,

the virus persists inside latently inside cells such as CD4+ lymphocytes, macrophages,

and monocytes [2] and in tissue reservoirs [154], and viremia returns if the patient

stops therapy or if their viral population develops drug resistance. HIV rapidly acquires

resistance to individual therapies, which is why HAART is the current standard of care;

a combination of therapies that target different parts of the HIV life cycle make escape
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more difficult. Access to HAART has greatly increased the life expectancy, especially in

high-income countries, and life expectancy continues to improve [139]. ART may also be

used as a pre-exposure prophylactic (PrEP) for high-risk populations [55, 135, 160]. PrEP

could even be used on an intervention basis to identify and treat high-risk individuals [73].

However, most HIV-positive individuals are not receiving treatment. Of the 36.7 million

people infected with HIV in 2016, only 19.5 million people were accessing antiretroviral

therapy because of factors such as expense, lack of access to medical care, social stigma

of being HIV-positive or of accessing ART, and insufficient health and sex education

[142].

Despite its success, HAART has its downsides. It is not curative, so a course of

therapy must be taken for life, administered daily, and monitored for effectiveness. Low-

level viremia may still have unknown long-term consequences. ARTs do not penetrate

nervous tissue, so replication and neuropathology occurs unchecked in those tissues.

It also modulates lipid and glucose metabolism, with potentially deleterious effects.

The long-term effects of HAART itself are unknown, and HIV-positive individuals on

HAART still experience excessive morbidity and mortality [118].

HAART and public health programs have contributed to the decline of AIDS-

related deaths [142]. However, these programs have so far failed to completely halt the

spread of HIV. Crucially, no cure or vaccine against HIV has ever been developed. The

search for a vaccine is particularly important because models suggest that a vaccine that

is only 50% effective would still make a huge contribution to halting the HIV pandemic,

preventing 6.3 million new infections by 2035 [86]. HIV is difficult to treat and has

resisted efforts to develop vaccines and cures for a number of reasons [119]. It evolves

quickly, because it lacks proofreading machinery and has a fast generation time (as

fast as 1.5 days). Viral populations therefore acquire large amounts of genetic diversity

within a single host in a short amount of time [10, 18, 20], which allows it to acquire
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Figure 1.1: HIV-1 virion structure. Scale: approximately 120 nm in diameter. Credit
Thomas Splettstoesser (www.scistyle.com).

drug resistance and evade the body’s immune response. Latent viral DNA in host cells

is not treatable by drugs or other therapies in the bloodstream. Reservoirs of virus

exist intracellularly and within multiple tissues – such as nervous tissue – that are not

accessible to current therapies [132]. In addition to these traits, specific factors relating

to the structure and function of Env and the details of immune response make vaccines

difficult to develop; these details are covered in Sections 1.1.2 and 1.1.3.

Latency makes it a challenge to develop a cure for HIV [78]. Researchers draw a

distinction between a sterilizing cure, which would clear all trace of the infection from

all tissues and cells, and a functional cure, which would suppress viremia and allow the

host to live a normal life, despite the presence of reservoirs of latent virus [23].

1.1.1 Genome, structure, and replication

The HIV virion is shown in Figure 1.1. Its outermost membrane is a lipid bilayer

which is dervived from the host cell when the virion buds from its surface. The membrane

is studded with embedded viral envelope proteins, as well as host proteins from the host

www.scistyle.com
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Figure 1.2: Landmarks of the HIV-1 genome, with genes in all three reading frames.
From https://www.hiv.lanl.gov/content/sequence/HIV/MAP/landmark.html

cell. Inside the envelope is a matrix of protein p17, which has both a structural function

and regulates various parts of the viral life cycle. The matrix contains copies of other

viral proteins, and a capsid of viral protein p24. Inside the capsid are two copies of RNA,

which encode the virus’s genome, plus other viral proteins such as reverse transcriptase

and integrase. Figure 1.2 shows the layout of the genes in the HIV-1 genome. Genes are

encoded in different, sometimes overlapping, reading frames.

The virion reproduces by infecting host cells, reverse transcribing its RNA and

integrating it into the host’s DNA, inducing the host into producing more copies of itself.

gp160 gets cleaved into gp41 and gp120, which are expressed on the surface of the host

cell. The rest of the viral proteins are assembled into a new capsid, which buds from the

surface of the cell as a new virion. The full process is shown in Figure 1.3. CD4-positive

T cells die after infection; other types of cells do not [19]. Each part of the life cycle is a

potential target for anti-retroviral therapy: entry inhibitors prevent binding and fusion;

reverse transcriptase inhibitors inhibit the reverse transcription of viral RNA to DNA,

either by binding to reverse transcriptase or by incorporation into and termination of the

DNA strand; integrase inhibitors prevent the viral DNA from being integrated into the

host DNA; protease inhibitors prevent protease from cleaving precursor proteins.

https://www.hiv.lanl.gov/content/sequence/HIV/MAP/landmark.html
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Figure 1.3: Replication cycle of HIV. HIV-1 infects a CD4-positive cell,
reverse-transcribes its RNA to DNA, and integrates it into the host DNA. The host
transcribes and translates the viral genes, producing proteins which are cleaved and
packaged into new virions that bud from the surface of the cell and go on to infect more
cells. From [4].

Figure 1.4: Regions of gp160, which codes for both gp120 and gp41. Three copies of
each make up the viral spike Env. From Figure 2 [136].
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(a) The structure of unbound
Env.

(b) Env bound to CD4
receptor.

Figure 1.5: Structure of Env in unbound state, and bound to a CD4 receptor. Structural
visualizations of Env from the Protein Data Bank [7] (www.rcsb.org).

1.1.2 Env

This work is chiefly concerned with Env, because it is the primary target of

neutralizing antibodies. The env gene (Figure 1.4) is a 2.6kb gene that codes for the

gp160 polyprotein. After transcription and translation, the gp160 polyprotein is cleaved

into gp120 and gp41 [44]. The fully-assembled protein, also known as the “viral spike”,

is a trimer of gp120/gp41 heterodimers: three copies of gp41 form the transmembrane

protein, and three copies of gp120 that form the surface protein (Figure 1.5a). The

viral spike is thickly shielded with glycans, hiding it from the immune system until it

is close to a host cell and begins to bind to a CD4 receptor (Figure 1.5b). Env then

undergoes a complex series of conformational changes as it binds to the CD4 receptor

and to a chemokine co-receptor. The virion envelope fuses with the host cell’s membrane,

releasing the payload into the cell and setting the rest of the replication cycle into motion

(Figure 1.6).

Different strains of HIV use different chemokine co-receptors during envelope-

www.rcsb.org
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Figure 1.6: CD4-mediated entry. Env binds to a CD4 receptor and a chemokine
co-receptor. It undergoes a conformational change that brings the viral envelope into
close proximity with the host cell membrane, causing them to fuse. From [153].

mediated entry into the host cell. The ability of a strain to use a particular coreceptor

is known as tropism. R5 viruses use the beta-chemokine CCR5 receptor, which is

expressed on the surfaces of macrophages and T-cells. Almost all HIV subtypes use this

coreceptor, and it has been extensively studied because of its effect on disease progression

[6, 54, 84, 162]. For reasons yet unknown, most transmissions involve R5 virus [129].

X4 viruses use the alpha-chemokine CXCR4 receptor, which is expressed on T-cells.

X4R5 viruses can use both. Moreover, some strains can infect CD4-negative cells via

CXCR4 alone. HIV may also be transmitted directly from cell to cell in vitro, though

whether it occurs in vivo remains a matter of debate [1].

1.1.3 Broadly-neutralizing antibodies

Antibodies are proteins produced or secreted by B cells that recognize and bind

antigens. They either tag pathogens, which are then recognized and attacked by other

components of the immune system, or they can directly neutralize the target. Antibodies

are composed of two identical heavy chains and two light chains, each of which contains

variable and constant regions, as shown in Figure 1.7. The amino acid sequence of the

variable regions determines which antigens are recognized by a particular antibody. B
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Figure 1.7: Antibody structure. From http://what-when-how.com/acp-medicine/
adaptive-immunity-antigens-antibodies-and-t-cell-and-b-cell-receptors-part-1/.

cells code for a huge number of possible antibodies from a limited genetic repertoire

via recombination of multiple V, D, and J genes [22, 92, 149], as shown in Figure 1.8.

Mutations can further increase their variability. The circulating naive B cell repertoire is

capable of recognizing ∼ 109 antigens [26, 89]. The naive repertoire becomes further

specialized by evolution in response to exposure to antigens. This process, known as

affinity maturation, causes naive B cells that have been exposed to their particular antigen

to undergo clonal selection, leading to lineages of evolved B-cell repertoires against

specific threats. In the case of a rapidly-evolving pathogen like HIV, this evolution

proceeds in a complex series of interactions between the evolving B-cell repertoire and

the evolving HIV population.

The host immune system produces antibodies that bind multiple HIV proteins;

however, Env is the only target for neutralizing antibodies. When targeted by neutralizing

antibodies, the viral population quickly evolves escape mutations. This arms race between

the immune system and the viral population is one of the main drivers of the explosion of

genetic diversity after the initial infection, which usually begins with a single founder

sequence [58]. 10-25% of people with HIV develop broadly-neutralizing antibodies

http://what-when-how.com/acp-medicine/adaptive-immunity-antigens-antibodies-and-t-cell-and-b-cell-receptors-part-1/
http://what-when-how.com/acp-medicine/adaptive-immunity-antigens-antibodies-and-t-cell-and-b-cell-receptors-part-1/


10

Figure 1.8: Somatic recombination in antibody heavy and light chains. From
http://what-when-how.com/acp-medicine/
adaptive-immunity-antigens-antibodies-and-t-cell-and-b-cell-receptors-part-1/.

http://what-when-how.com/acp-medicine/adaptive-immunity-antigens-antibodies-and-t-cell-and-b-cell-receptors-part-1/
http://what-when-how.com/acp-medicine/adaptive-immunity-antigens-antibodies-and-t-cell-and-b-cell-receptors-part-1/
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Figure 1.9: The main bNAb targets in Env. Broadly-neutralizing antibodies tend to
target one of these five regions in Env. These epitopes may represent weaknesses in Env
from an evolutionary standpoint that could be exploited [152]. From “HIV Vaccine
Research: An update”.

(bNAbs), which are able to bind and neutralize a large number of HIV strains [49]. This

ability makes bNAbs an attractive target of research, since they may provide they key to

vaccine design, as well as antibody-mediated therapies.

Env possesses many characteristics that make it a difficult target for antibodies,

which is why few individuals develop bNAbs, and why the immune response is often

inadequate to prevent the progression to AIDS. HIV’s high mutation rate and fast genera-

tion time allow it to quickly evolve escape mutations, if they were not already present

at low frequencies in the highly diverse population. Cleavage of gp160 into gp120 and

gp41 is inefficient, causing antibodies to target the uncleaved, inactive form. Env is

conformationally flexible and heavily shielded by glycans until fusion begins, at which

point proximity of the host cell inhibits binding. Despite these difficulties, bNAbs do

develop. Five main classes of bNAbs have been discovered, which differ in their target,

as shown in Figure 1.9: the V3-high mannose patch, the V2 apex, CD4 binding site

(CD4bs), the gp41 membrane proximal external region (MPER), and the gp120/gp41

interface, including the fusion peptide [65, 151].



12

One promising approach to developing a vaccine would be to induce the de-

velopment of bNAbs in HIV-negative individuals. However, there are currently many

obstacles that need to be overcome before this approach becomes clinically viable

[38, 62, 81, 83, 88]. The conditions that lead to the development of bNAbs are not

generally understood. Naive antibodies bind weakly to HIV, and most evolved antibody

lineages that appear soon after infection are narrowly neutralizing, which means they do

not neutralize a broad number of strains in a neutralization panel. In contrast, bNAbs do

not appear in most cases until after years of infection, suggesting that a complex series of

specific interactions with the evolving Env population are necessary to develop bNAbs.

These lineages may also depend on features of the early variants of Env [61] and on the

genetic background of the host. Finally, even if bNAbs can be successfully induced, they

will need to be maintained at protective levels.

Deep sequencing of B cell repertoires has become a key tool for understanding the

immune response [9, 39, 46, 48, 155, 158], and this approach is currently being used to

understand the process of bNAb development. However, the evolution of B cell lineages

cannot be fully understood except in the context of the Env population that co-evolved

with them. Therefore, there is a similar need for longitudinal deep sequencing of Env

populations. Most sequencing methods are insufficient for this task, because they either

lack depth or they use short reads that lose long-range linkage information that could be

crucial for understanding the evolution and escape. These shortcomings were recently

addressed by deep, full-length sequencing of env with the SMRT sequencing protocol.

1.2 Full-length SMRT sequencing of env

Pacific Bioscience’s single-molecule realtime (SMRT) sequencing is a third-

generation sequencing protocol. Single-molecule methods like SMRT have a number of
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Figure 1.10: The Pacific Biosciences RS II sequencer. From pacb.com.

Figure 1.11: How SMRT sequencing works. From [35].

pacb.com
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specific advantages over first- and second-generation sequencing technologies, including

speed and read length [121, 124]. This platform is especially useful for viral sequencing

[113].

SMRT sequencing can provides high-quality reads with sufficient length and

depth to study HIV-1 env populations. The details of the effective sequencing depth and

of the single-molecule accuracy distribution depends primarily on the amplicon length,

as described below. For a comparison with other sequencing technologies, see [42].

These qualities make it the best choice currently for sequencing highly diverse amplicon

populations such as HIV-1 env. The work described in this dissertation was done with the

RS II (1.10); these benefits are presumably compounded in the newer Sequel Systems,

which produce about seven times more reads than the RS II.

The entire sequencing process takes place on a silicon chip (SMRTcell) that

contains a large number of microscopic holes called zero-mode waveguides (ZMWs).

Each ZMW contains a single DNA polymerase, allowing a number of molecules to be

sequenced in parallel. SMRTbell adapters are ligated onto the amplicon to form a circular

SMRTbell molecule, which runs through the DNA polymerase repeatedly. Nucleotide-

specific fluorescent tags are observed by a sensor and the fluorescence signal is used for

basecalling. The entire process produces a ZMW read, which contains multiple copies

of the forward and reverse amplicon sequences, interleaved with the adapter sequences.

The individual copies are then combined into a higher-quality consensus sequence called

a circular consensus sequence (CCS). The process is illustrated in Figure 1.11.

SMRT sequencing has a reputation for producing error-prone reads, but the error

rates usually cited (typically around 12-15% [111, 113]) refer to the raw error rate of the

ZMW read. Combining the forward and reverse passes into a single CCS drops the error

rate considerably. The final accuracy of the CCS depends on the length of the amplicon

and the length of the read. The shorter the amplicon, or the longer the read, the more
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Figure 1.12: SMRT errors rates on NL4-3. (A) Distribution of error rates of full-length
env CCS sequences, for different predicted error rate thresholds. (B) Observed error
rate versus predicted error rate, showing that quality scores are well correlated with the
true error rates, and therefore useful for filtering. Image from [63].

passes get combined into the final CCS, and the higher the quality. Errors tend to be

mostly insertions and deletions, especially in homopolymer regions.

My collaborators at UCSD and Pacific Biosciences recently developed a SMRT

sequencing protocol for full-length env [63]. It is now possible to sequence an entire

population from a single host at multiple time points to infer how the population is

evolving, for instance, in response to bNAbs or therapies that target Env. For full-length

env sequencing, the amplicon is about 2.6kb, yielding a per-read error distribution shown

in Figure 1.12 for the P5/C3 chemistry. Multiple tests confirm the accuracy of the results,

including comparisons with a known NL4-3 template. Moreover, phylogenies obtained

from running our newly-developed pipeline on SMRT sequences agree with Sanger

sequencing, as shown in Figure 1.13.

The sequencing protocol was published in [63], which also contained an early

version of the computational pipeline presented in this dissertation. The method was

validated on NL4-3, as well as donors P018, K453, and H497, and results analyzed with

early version of FLEA. We re-analyzed P018 with the current version of FLEA, which is

described in the next chapter.
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Figure%S10.%"

Figure 1.13: Phylogenetic tree of Env from donor PC064. Nodes are colored according
to the longitudinal time point and scaled according to inferred abundance. Sequencing
was done with both the SMRT sequencing protocol and Sanger sequencing, to show
agreement between the two methods. Dotted lines show the locations of Sanger
sequences. Image from [63].
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Figure 1.14: Phylogenetic trees for Env from three donors from the San Diego HIV-1
Primary Infection Research Consortium (SD-PIRC). Sequenced with SMRT
sequencing and analyzed with the FLEA pipeline. Nodes are colored according to the
longitudinal time point and scaled according to inferred abundance. All three infections
show increased diversity as time goes on. Image from [63].

The sequencing depth and accuracy of this protocol allow researchers to resolve

complex population structures with many closely-related minority variants and to perform

phylogenetic analysis of entire viral populations in a single host. Once the sequencing

technology enabled these experiments, significant computational work was required to

develop the tools to analyze the data coming off the sequencer. Those computational

tools and methods are the subject of this dissertation.

1.3 The rest of this dissertation

Thanks to the full-length sequencing protocol, it is now possible to obtain longi-

tudinal full-length env sequences. That data can be used to aid in rational vaccine design,

tracking the effect of monoclonal antibody therapies on the population, and many other

kinds of population-level work, but processing the sheer number of reads it provides is a

challenge. Each sequencing run is capable of producing around 50,000 reads per time

point. Filtering at a 1% expected error rate and appropriate length yields about 10,000

sequences for the P5/C3 chemistry, and 15,000 for the P6/C4 chemistry. Therefore, a

longitudinal experiment can easily produce over hundreds of thousands of sequences.
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Moreover, the data still contains errors – for instance, even an error threshold of 1% for

a 2.6 kb amplicon still yields an expected 26 errors per sequence – so even if it were

possible to input all the CCSs directly into a suite of analyses, the results would be

biased. For pathogens with low indel variablity, such as HCV, a common strategy is to

pairwise align each read to a reference, stack them into a multiple sequence alignment,

then perform further analyses1 [146]. However, HIV env populations contain a large

amount of indel variation, so this strategy would discard all insertions relative to the

reference and break in highly variable regions.

The subject of this dissertation is a set of computational methods to solve these

problems for longitudinal full-length env sequences. Chapter 2 describes FLEA, a pipeline

for analysis and visualization of a large number of erroneous sequences with indel

variation. Chapter 3 describes RIFRAF, a sequence consensus algorithm that uses quality

scores and an in-frame reference sequence to infer highly-accurate consensus sequences.

Chapter 4 gives an overview of the results acquired so far with FLEA, which has been

used on samples from donors that developed lineages of broadly-neutralizing antibodies,

and on participants in a phase I clinical trial of a monoclonal antibody therapy. Chapter 5

summarizes my work and proposes future directions for this research.
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Chapter 2

FLEA

Abstract

Next generation sequencing of viral populations has advanced our understanding

of viral population dynamics, the development of drug resistance, and escape from host

immune responses. Many applications require complete gene sequences, which can

be impossible to reconstruct from short reads. HIV-1 env, the protein of interest for

HIV vaccine studies, is exceptionally challenging for long-read sequencing and analysis

due to its length, high substitution rate, and extensive indel variation. While long-read

sequencing is attractive in this setting, the analysis of such data is not well handled by

existing methods. To address this, we introduce FLEA (Full-Length Envelope Analyzer),

which performs end-to-end analysis and visualization of long-read sequencing data.

FLEA consists of both a pipeline (optionally run on a high-performance cluster),

and a client-side web application that provides interactive results. The pipeline transforms

FASTQ reads into high-quality consensus sequences (HQCSs) and uses them to build

a codon-aware multiple sequence alignment. The resulting alignment is then used to

infer phylogenies, selection pressure, and evolutionary dynamics. The web application

20
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provides publication-quality plots and interactive visualizations, including an annotated

viral alignment browser, time series plots of evolutionary dynamics, visualizations of

gene-wide selective pressures (such as dN/dS) across time and across protein structure,

and a phylogenetic tree browser.

We demonstrate how FLEA may be used to process Pacific Biosciences HIV-1 env

data and describe recent examples of its use. Simulations show how FLEA dramatically

reduces the error rate of this sequencing platform, providing an accurate portrait of

complex and variable HIV-1 env populations.

A public instance of FLEA is hosted at http://flea.datamonkey.org. The Python

source code for the FLEA pipeline can be found at https://github.com/veg/flea-pipeline.

The client-side application is available at https://github.com/veg/flea-web-app. A live

demo of the P018 results can be found at http://flea.murrell.group/view/P018.

2.1 Introduction

Next generation sequencing (NGS) has become an invaluable tool for studying

HIV-1 and other rapidly evolving viruses by providing direct high resolution measure-

ments of viral genetic diversity within the host. NGS has been used to study immune

escape [24, 36, 47, 70, 82, 102, 141], drug resistance [40, 50, 51, 69, 91, 137, 141],

transmission bottlenecks [12, 69, 144, 147], population structure and dynamics [36, 41,

47, 59, 76, 108, 133, 157, 159], tropism dynamics [126], and multiplicity of infection

[100]. It is also used in clinical virology [13, 113]. For reviews of the promises and

challenges of NGS applications in virology, see [71], [145], [85], and [5].

Full-length sequences can resolve features that are difficult to assemble from

short sequences [50, 116]. For instance, Pacific Biosciences SMRT sequences were

able to resolve 1.5 kb msg isoforms from Pneumocystis jirovecii, but reads from a 454

http://flea.datamonkey.org
https://github.com/veg/flea-pipeline
https://github.com/veg/flea-web-app
http://flea.murrell.group/view/P018
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instrument could not be assembled correctly [116]. For tracking evolutionary patterns in

viral populations, accurately resolving these features provides a more accurate history

of the population, which becomes especially relevant when epistatic interactions and

linkage between mutations effect phenotypic changes in the pathogen [43, 103, 150]. For

example, studies of HIV-1 env frequently use functional assays to measure the potency

with which a given antibody or donor serum neutralizes a specific env strain [123], which

requires knowing the full env sequence.

We have developed a pipeline for handling long read HIV-1 env sequencing data

from within-host viral populations: the Full-Length Envelope Analyzer (FLEA). FLEA

addresses the specific challenges posed by large volumes of such data, e.g., using the

sequencing protocols we previously described in Laird et al [63], which also contains an

overview of a prototype of FLEA. Here we describe the full pipeline and experimentally

demonstrate its ability to resolve populations of closely related variants. FLEA uses state-

of-the-art tools and methods at every step and can be accessed through a web browser or

on a high-performance cluster. FLEA is readily extensible to other genes and systems.

FLEA has recently been used by the authors in two high-profile studies. In [14],

we describe how FLEA was used to process PacBio HIV-1 env data from a clinical trial of

monoclonal antibody 10-1074. For sequences sampled before and after therapy, FLEA

reveals that prior to antibody therapy low-frequency env variants were present with

mutations that typically confer resistance to 10-1074. Additionally, when resistance

emerges, it emerges multiple times, exploiting many different resistance pathways. FLEA

was also used to characterize the longitudinal env population that drove development of a

broadly neutralizing antibodies against the apex of the env trimer, sampled from donor

PC64 from the Protocol C primary infection cohort [65].

There exist dozens of standalone pipelines developed for analyzing HIV-1 and

related sequence data, including longitudinal samples [40, 51, 70, 72]. However, it was
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necessary to develop a new tool due to HIV-1 env’s extensive natural indel variation

and the high rate of indels in long PacBio reads, which are especially problematic when

any spurious indel in the 2.6kb env amplicon corrupts the reading frame, rendering the

sequence uninterpretable. With HIV-1 env, the common strategy of mapping reads to

a reference fails because the diversity in variable regions of env, predominantly driven

by extensive indel processes, means that these regions in sampled reads lack homology

to those in any heterologous reference sequence. Instead, FLEA relies on a fine-grained

cluster-and-consensus strategy to remove spurious indels from reads. The task is related

to Liang et al. (2016), but, rather than distinguishing a small number of variants at

81-91% identity, we must distinguish potentially hundreds of variants that differ by only

a handful of bases.

In addition to a standalone application, FLEA is also available as an online resource

that provides interactive visualizations for all its analyses. To allow researchers to further

examine and dissect their results, FLEA also provides access to raw data, such as aligned

consensus sequences and phylogenetic trees.

2.2 Design and Implementation

2.2.1 Pipeline

The input to FLEA is a set of FASTQ files from the PacBio RS-II or Sequel. Each

set corresponds to one time point, containing circular consensus sequence (CCS) reads,

which can be obtained using the ”Reads of Insert“ protocol on PacBio’s SMRTportal

or SMRTanalysis tools. Upon completion, the FLEA pipeline produces results as JSON

(Javascript Object Notation) files, a standard format for machine (and human-) read-

able structured data. The logic of FLEA is implemented in Nextflow [27], a workflow

framework for deploying parallel pipelines to clusters and clouds.
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CCS

time point 1

Quality pipeline

QCS

Consensus pipeline

HQCS +
copynumbers

CCS

time point 2

Quality pipeline

QCS

Consensus pipeline

HQCS +
copynumbers

CCS

time point N

Quality pipeline

QCS

Consensus pipeline

HQCS +
copynumbers

. . .

Alignment pipeline

Multiple sequence alignment

Analysis pipeline

Analysis results

Figure 2.1: Overview of the FLEA pipeline, broken into conceptual sub-pipelines. The
Quality and Consensus sub-pipelines process each time point separately. Duplicate
steps in other time points are grayed out. CCS stands for “circular consensus
sequences”; QCS for “quality-controlled sequences”, and HQCS for “high-quality
consensus sequences”.

FLEA consists of multiple sub-pipelines, as shown in Fig. 2.1. Details of the quality

and consensus pipelines are depicted in Fig. 2.2. Together, these two pipelines take error-

prone CCS reads and convert them into unique high-quality consensus sequences. The

alignment pipeline generates a multiple sequence alignment, which is used by multiple

methods in the analysis pipeline.

2.2.2 Quality assurance sub-pipeline

The first steps remove low quality reads and filter out common sequencing

artifacts. Parameters given in these steps were chosen for full-length HIV-1 envelope

sequences from the RS-II or Sequel platforms. Other reads with different properties (error
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Figure 2.2: Quality and consensus sub-pipelines. These steps are repeated
independently on each time point. Numbers are reported from the analysis of sequences
from the first time point (V03) of donor P018, which is three months post infection.
Percentages give the fraction of sequences retained after filtering. Tasks indicate
whether they use third-party tools USEARCH or MAFFT.
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Figure 2.3: Hidden Markov model used for trimming poly-A and poly-T heads and
tails. A head and tail states have a small (p = 0.01) probability to emit non-A bases,
and similarly for T . The body state emits all four bases with equal probability. The
start, and stop states emit nothing.

rates, error models, lengths, homopolymer distributions, etc.) likely require different

parameters. All steps are run independently per time point.

1. Filter by error rate. The input FASTQ files contain Phred scores for each base,

encoding the probabilities of incorrect base calls. USEARCH [30] is used to remove

reads with an expected error rate greater than 1%, computed as the mean of the

per-base error probabilities.

2. Trim heads/tails. A fraction of reads from the Laird et al. sequencing protocol

contain poly-A or poly-T heads or tails (cause unknown), which can be hundreds

of bases long and sometimes contain a small number of other bases.

These heads and tails are trimmed with a hidden Markov model (Fig. 2.3) imple-

mented in Pomegranate [53]. The emission probabilities of the model were fixed,

and the transitions trained using Baum-Welch. The Viterbi path for each sequence

is computed, and bases emitted by head and tail nodes are removed.

3. Filter long runs. Reads with homonucleotide runs longer than 16 bases are

discarded. This length was chosen to be twice the length of the longest such run in

the LANL HIV database [37].
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4. Filter contaminants and trim reads. Sample contamination can introduce non-

native sequences that interfere with subsequent analyses, so these contaminants

must identified and discarded. USEARCH is used to compare reads to a contaminant

database and a reference database using usearch global. Alignments returned

from querying the database are then used to trim reads to the gene boundaries.

Trimming terminal insertions is vital for the accuracy of downstream tasks, such as

length filtering and clustering.

The contaminant database contains HXB2 and NL4-3 env, each ubiquitous in labs

working with env sequences and a common source of sample contamination. Reads

that match with ≥ 98% identity are discarded. Since a 1% error rate cutoff was

earlier used, this parameter conservatively ensures that these contaminants are

almost certainly identified.

The reference database contains thirty-eight sequences representing the major

HIV-1 Group M subtypes from the LANL sequence database [37]. Reads with

≤ 70% identity to every sequence in the reference database are discarded. This

cutoff is chosen to retain reads remotely similar to HIV-1 Group M while excluding

contaminants such as human or bacterial genome reads. If a sample is from SIV,

or from a non group-M HIV+ donor, then more appropriate reference sequences

should be added to the database.

5. Filter by length. By default, sequences shorter than 90% or longer than 110%

of the length of the reference sequence are discarded. However, sequences with

large deletions are frequently observed in HIV. These likely represent replication

incompetent envelopes, and their reduced length can cause them to be dramatically

oversampled due to PCR length bias. Users who want to include these species in

their analyses should modify these parameters.
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Reads that pass this quality assurance phase have low expected error rates and

no homonucleotide runs, are within 70% identity of at least one reference sequence, are

(after trimming) no more than 10% different in length than a reference sequence, and do

not match the contaminant database. We refer to these sequences as quality-controlled

sequences (QCS).

Consensus sub-pipeline for variant identification

Even for highly diverse populations, unique reads in a sequencing run outnumber

the true unique variants, predominantly due to sequencing errors. The problem is far more

significant in long reads than in short reads, precluding the use of amplicon denoising

strategies used to reduce error rates in short read sequencing [31]. To accommodate this

effect, the next phase of the FLEA pipeline clusters and combines QCS reads, attempting to

infer the true variants in each time point. It also attempts to detect and correct frameshift

errors.

1. Cluster. USEARCH is used with the cluster fast command to generate clusters

with 99% nucleotide identity. This parameter approximates the 1% error cutoff

used in the error rate filtering step, so that pairwise distances of sequences in the

same cluster are consistent with the sequencing error. cluster fast runs in a

single pass, so it is sensitive to input order. Sequences are sorted from lowest to

highest quality according to expected error rate; experiment suggests that this order

yields better results (see supporting information).

2. Select and subsample clusters. Clusters with fewer than three members are

discarded, because they are too small to de-noise by majority consensus. Clusters

with more than 50 members are subsampled to the top 50 with the lowest expected

error rate to speed up the multiple sequence alignment step.
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3. Align and consensus. MAFFT [57] is used to align each cluster. The consensus

sequence of each alignment is computed.

4. Frame correction In-frame consensus sequences from all time points are collected

into a USEARCH database for frame correction. usearch global is then used to

align each out-of-frame sequence to its top hit. The nucleotide alignment is used

to correct incomplete codons: short insertions (1 or 2 base pairs) are discarded,

and single deletions are replaced with the aligned base. Sequences with longer

insertions or deletions are discarded. All changes are logged, so that the user can

identify the sequences that have been corrected.

5. Uniqueness Non-unique consensus sequences are dereplicated using usearch

--fastx uniques.

6. Copy numbers The number of sequences per cluster provides an estimate of the

relative abundance of that HQCS in the population. Those numbers are further aug-

mented by adding sequences orphaned by cluster filtering and HQCS dereplication.

usearch global is used to assign each QCS to its nearest HQCS. The number of

sequences accrued by each HQCS is interpreted as its copy number.

All of these tasks are run separately for each time point, yielding sets of unique in-frame

consensus sequences. We refer to these sequences as high-quality consensus sequences

(HQCS).

Alignment sub-pipeline

The HQCSs from all time points are combined into a single file, translated to

protein sequences, and aligned using MAFFT. A Python script then transfers the gaps from

each aligned protein sequence to the corresponding nucleotide sequences to produce a
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codon-level nucleotide multiple sequence alignment of all unique variants from all time

points.

Analysis sub-pipeline

The analyses used in FLEA take as input the two outputs of the alignment phase:

a codon multiple sequence alignment of all unique HQCS sequences from all time points,

and their associated copy numbers. These data are used for the following analyses.

1. Time point metrics. HyPhy [107] scripts are used to compute evolutionary metrics

(total, dN, and dS divergence and diversity) and phenotypic metrics (protein length,

potential N-linked glycosylation sites, isoelectric point) for each annotated region

(e.g., V1, MPER) in the amplicon for each time point.

2. MRCA. The most recent common ancestor is inferred by taking the copy-number-

weighted codon consensus of the codon-aligned HQCSs from the earliest time

point. By including gaps, the MRCA sequence is already aligned with the rest of

the multiple sequence alignment. This strategy is acceptable for primary infection

studies from single founders with very low early diversity.

3. Reference coordinates. MAFFT is used to assign HXB2 [115] coordinates to the

gapped MRCA sequence, which are then transferred to the full multiple sequence

alignment.

4. Infer phylogeny. A maximum-likelihood phylogenetic tree is inferred with Fast-

Tree2 [109, 110] under the general time reversible model.

5. Ancestral sequence reconstruction. HyPhy is used to infer ancestral sequences at

the internal nodes of the phylogeny, using joint maximum likelihood reconstruction

and the HKY85 substitution model [45].
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6. Multidimensional scaling. TN93 [127] is used to compute a distance matrix for

all HCQC sequences using the Tamura Nei 93 distance [138]. Metric multidi-

mensional scaling [140] (implemented in scikit-learn [21]) is used to find a

two-dimensional embedding of the sequences that approximates their pairwise

distances.

7. FUBAR. Site-specific selection rates are inferred using FUBAR [93], implemented

in HyPhy.

8. Position-specific changes. Entropy and Jensen-Shannon divergence are computed

for each position in each time point.

The results of these analyses are provided to the user in an interactive web

application, described next.

2.2.3 Web application

The FLEA web app is built using modern web design principles. It consists of two

parts: a Javascript client-side app, written using the Ember.js [33] framework, and a

server-side REST (REpresentational State Transfer) service for serving JSON-formatted

data. There are two main benefits to using this decoupled pattern for scientific web

applications. First, the client-side code only needs to be downloaded once, at the start

of the session. The data are requested from the server and cached as needed. Once

everything is loaded, the visualizations run entirely in the browser with no delays for

page loads. Second, the REST service may be reused by other apps and third-party tools.

The web app presents the results of the FLEA analysis as a series of interactive

visualizations. The report is organized into the following sections.
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Multidimensional scaling. A two dimensional embedding of the HQCSs is visualized

as a bubble plot, showing changes in population structure over time, as shown in Fig. 2.4.

This visualization has been especially useful for investigating populations with super-

infection, or with multiple founders, where aggressive recombination between vastly

different env variants precludes the use of phylogenies.

Figure 2.4: Screenshot of the multidimensional scaling plot. The embedding in two
dimensions preserves pairwise evolutionary distances between HQCSs. Node area is
proportional to copy number, and color corresponds to time point. The increasing
genetic diversity of the population is visible as time goes on.

Evolutionary trajectory. The evolutionary trajectory viewer plots evolutionary and

phenotypic metrics for each time point and multiple regions in the amplicon, giving a

high-level overview of population dynamics over time. Fig. 2.5 shows the plot for the



33

Figure 2.5: Screenshot of the evolutionary trajectory report. Four evolutionary metrics
(dS divergence, dN divergence, total divergence, and total diversity) and two phenotype
metrics (length and possible N-linked glycosylation sites) are shown for gp160.

entire gp160 region of HIV-1 Env, which is generated with the D3.js plotting library

[87].

Sequences. The multiple sequence alignment of all the HQCSs sequences is the foun-

dation for all subsequent analyses. It is displayed in the amino acid sequences viewer,

which contains a custom alignment browser and an interactive motif dynamics plot, as

shown in Fig. 2.6.

Protein structure. The protein structure viewer maps evolutionary metrics to an in-

teractive three-dimensional structure of the protein, customized from PDB ID 5FUU, a

recently resolved cryo-EM structure [68], and rendered using pv [77]. Missing residues

are rendered as spheres which are positioned by Bézier curve interpolation. dN/dS ratios,

Jensen Shannon divergence, and entropy may all be mapped to the protein structure, as

shown in Fig. 2.7. The same metrics are also plotted in one dimension for each time

point, as shown in Fig. 2.8. The protein visualization interacts with the sequence viewer



34

Figure 2.6: Screenshot of amino acid sequences viewer. Sequences are grouped by
identity, with aggregate copy number and population percentage shown to the right. An
overview of the amplicon, optionally annotated with region names, provides fast access
to different locations of the alignment. Selecting columns of the alignment interactively
updates the amino acid dynamics plot, showing the dynamics of the selected motif over
time. In this case, the trajectory shows changes in the N332 glycan supersite. Sites
inferred by FUBAR to be undergoing positive selection are selectable.

by showing alignment positions and highlighting the residues in the selected sequence

motif.

Trees. The tree viewer renders a tree browser with phylotree.js [128], as shown in

Fig. 2.9. Leaf nodes are scaled to the copy number of their sequence. The tree zoom

level, layout, and coloring is interactively modifiable. Motifs selected in the sequence

viewer are mapped to the tree. Ancestral nodes are colored by motif, allowing inferred

changes to be tracked through the entire phylogeny.
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Figure 2.7: Screenshots of the interactive three-dimensional Env structure, colored
according to JS divergence (left) and dN/dS values (right). Positions imputed to be
undergoing more positive selection (dN/dS > 1) are darker red, and positions
undergoing more purifying selection (dN/dS < 1) are darker blue. The right structure
also shows motif positions highlighted in the sequence viewer.

2.3 Results

The entire pipeline was run on HIV-1 env reads from donor P018, which are

available from the NCBI Sequence Read Archive under BioProject PRJNA320111, and

were sequenced as part of [63] on the RS-II instrument, using the older generation P5/C3

PacBio sequencing chemistry. The full dataset contains 58,468 CCS reads. The reads

are split across six time points, which are coded as V03, V06, V12, V22, V33, and V37,

where V x corresponds to a visit x months post infection. The number of reads per time

point ranges from 7,530 in V33 to 11,806 in V06.

2.3.1 Results on simulated data

The true sequences and copy numbers are not known for the P018 data. In order

to assess the accuracy of our inferred sequence population, we used the HQCSs from
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Figure 2.8: Screenshot of dN/dS values mapped to protein positions and separated by
time point.

a previous FLEA run to simulate a gold standard dataset on which to assess the FLEA

pipeline.

The simulation procedure starts with the HQCSs and copy numbers from the

FLEA results on P018, then augments them with additional mutated sequences to create a

gold standard set of templates. Mutated sequences were added because our clustering

strategy may artificially merge similar templates. For each template, noisy reads with a

SMRT-style error profile were sampled. Full details of the simulation process appear in

the supporting information. These simulated reads were sent through the FLEA pipeline,

both with and without frame correction.

The resulting QCS and HQCS sequences were compared to the ground truth

using Earth Mover’s Distance (EMD), using normalized copy numbers for the population

weights and edit distance for the distance matrix. The fully constrained EMD has

units that can be directly interpreted as the average change per nucleotide necessary to

transform one sequence population into another. We also calculate two variants of EMD
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Figure 2.9: Screenshot of the phylogenetic tree viewer. Leaf node size corresponds to
sequence copy number. Node color corresponds to time point. Since ancestral
sequences have been inferred, ancestral nodes are colored according to the selected
motif, which in this case is the N332 glycan supersite.

for further insight into how well the inferred population B estimates the sequences in the

ground truth population A. EMDFP removes the constraint on A, allowing any amount

of flow from A to B. It is a measure of false positives because it grows when B contains

extra sequences distant from any in A. Similarly, EMDFN removes the constraint on B.

It grows when B fails to recapitulate sequences in A, and therefore is a measure of false

negatives.

To see the effect of sequencing runs of different depths, the experiment was

repeated for 300, 1,000, 3,000, and 10,000 reads per time point. The results, which

appear in Table 2.1, show the benefit of FLEA’s approach of reducing sequence errors

via clustering and consensus. The QCS sequences, although they have few false nega-

tives (EMDFN = 0.0782) for n = 10,000, are dominated by false positives (EMDFP =

8.3). However, adding the consensus sub-pipeline virtually eliminates false positives
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Table 2.1: EMD metrics for various numbers of reads, averaged across all time points.
“mean errors” gives the average number of errors in the reads, estimated from the
simulated Phred scores.

n mean errors consensus type EMD EMDFP EMDFN

300 9.63 QCS 12.3769 8.3418 2.8956
HQCS 7.1570 0.4050 5.4271
HQCS (corrected) 6.4752 0.3020 4.5533

1000 9.63 QCS 10.5433 8.3686 1.2551
HQCS 2.8279 0.0610 1.1453
HQCS (corrected) 2.7557 0.0666 1.0405

3000 9.6 QCS 9.5053 8.2837 0.3908
HQCS 1.6432 0.0146 0.4322
HQCS (corrected) 1.5168 0.0045 0.2925

10000 9.56 QCS 9.0734 8.3080 0.0782
HQCS 1.0549 0.0336 0.1735
HQCS (corrected) 1.0146 0.0073 0.1463

(EMDFP = 0.0336), at the cost of only a 2.4x increase in false negatives, for a 8.6x im-

provement in EMD to 1.0549. The frame correction step further improve both EMDFP

and EMDFN because it turns false positives into true positives.

The full-length env sequencing protocol yields approximately 10,000 reads per

run; the P018 data averaged 9,744 reads per time point. Therefore, these results with

n = 10,000 suggest that FLEA is capable of taking a full sequencing run of CCS reads

from a diverse viral population with an average of 9.56 errors per sequence and inferring

HQCSs with an average of 1.01 errors per sequence, which corresponds to an average

error rate of 0.038%. Moreover, these error rates are mostly caused by low-abundance

sequences in both the true population and the inferred FLEA sequences. Figure 2.10

shows that FLEA perfectly recovers all sequences from all time points that account for at

least 1.6% of the population.
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Figure 2.10: Comparison of true sequence abundances versus copy numbers inferred
by FLEA for each time point of the simulated P018 data. Each node represents one
sequence, with the area denoting its relative abundance in the population. The true
population (top) is colored green. For each true sequence, the matching HQCS
sequences appears below it in blue. Red nodes denote false negatives and positives. The
most common false negative for each time point is annotated with its abundance.

2.3.2 Results on real data: donor P018

FLEA was run directly on the P018 sequences, and the results are summarized here.

The full results of this run are available to view at http://flea.murrell.group/view/P018.

Fig. 2.2 shows the number of sequences from the V03 time point that make it

to each stage of the quality and consensus pipelines . At three months post infection,

the majority amino-acid sequence variant is shared by 52.1% of the population, and the

next most common variants accounts for just 8.66%. This relative lack of diversity is

consistent with early infection dynamics. By 37 months post infection there is much

more diversity: the most common variant accounts for only 3.96% of the population.

Donor P018 shows signs of potential N332 glycan specificity, as shown by the

motif trajectories in Fig. 2.6. The glycan supersite, centered around N332 in V3, is a

common target for broadly-neutralizing antibodies [64] because they are often conserved,

so mutations in these regions are associated with escape [25]. A year into sampling

(V12), mutations 328R and 330H dominate, and the majority of sequences also contain

http://flea.murrell.group/view/P018


40

339N from 22 months (V22) onwards.

2.4 Discussion

The FLEA pipeline analyzes longitudinal full-length env sequences and provides

visualizations of the results. Using simulations, we show that FLEA is capable of inferring

accurate HIV-1 env consensus sequences and population frequencies. Despite each CCS

read containing an average of ten errors, our approach distinguishes variants that differ

by as little as one base from an amplicon with high indel variation. It uses those high-

quality consensus sequences to generate a codon-aware multiple sequence alignment of

all time points, estimate ancestral sequences, infer the phylogenetic tree, and perform

many other population-level analyses with high accuracy. These results are presented

in a visualization suite that is highly general and applicable to many related sequencing

problem.

While our USEARCH-based clustering and consensus strategy for de-noising long

PacBio amplicons performs well when error rates are < 1%, there is a clear need for

more sophisticated long-read de-noising algorithms that exploit the additional depth of

lower quality reads that we currently discard. This will be especially beneficial for longer

PacBio amplicons, because the CCS read quality distribution degrades with length. For

example, while we can currently obtain around 15,000 CCS reads < 1% from a P6/C4

RS-II run of our 2.6kb env amplicon; this read count drops to ∼ 1,000 for full-length 9kb

HIV genomes.

Both the pipeline and client-side visualizations are under development, with

many improvements planned, including a novel clustering algorithm that reduces false

positives and a novel consensus algorithm that uses quality scores and performs frame

correction. We plan to integrate epitope prediction into the FLEA pipeline and add
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appropriate visualizations for the case when users have IC50 values available for their

sequences. Finally, FLEA will be expanded to support other amplicons.

2.5 Supporting Information

2.5.1 Simulation method

The simulation procedure begins with a population of copynumber-weighted

HQCS sequences from a real FLEA run. The population is augmented with mutants of the

input sequences, to ensure that the simulated ground truth population contains sequences

that differ by only a few bases. Each HQCS has a p = 0.2 probability to donate 30% of

its abundance to a closely-related mutant, which contains one, two, or three substitutions

with equal probability. This mutated population is treated as the ground truth for all

experiments.

In order to simulate sequencing at different depths, different numbers of N reads

are drawn from the same ground truth population for each time point. For each value of

N (300, 1,000, 3,000, and 10,000 in this paper), and for each time point, N sequences are

sampled with replacement from the copynumber-weighted population. Each read is then

mutated with an error model derived from true Pacific Biosciences sequences, in order to

mimic the errors introduced by sequencing, especially homopolymer length errors.

To simulate a read r from template t, it is necessary to model both r itself and

its Phred scores. First an error rate p is drawn from p ∼ Gamma(α = 2,θ = 0.0017).

The length n for each run of identical bases in t (including singletons) is lengthened

or shortened with equal probability to be m = max(n± ε,0), where ε ∼ Poisson(λ =

p/c ·n1.5). c is calibration parameter chosen in these experiments to be 1.55 to match

observed errors. This process introduces homopolymer length errors, which account for

most of the error in Pacific Sciences reads. Then point mutations are introduced at each
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position with probability p/4 of occurring and equal probability for each nucleotide.

Finally, error probabilities are computed for each base as P = p/4+m1.5/m,

which is the per-base mutation rate plus a homopolymer error rate. The final simulated

Phred scores are obtained by adding error per-base errors ε∼N (0,0.1) in the natural

log domain to these probabilities, then converting to Phred scores.

2.5.2 Sequence order for clustering

USEARCH’s cluster fast algorithm runs in a single pass, and therefore is sensi-

tive to the order of the input sequences. We investigated four different strategies: none

(no re-ordering), shuffle (randomly shuffle the sequences), sort (sort from high to low

quality, as measured by expected number of errors), and reverse sort (sort from low to

high quality). Ten trials of simulated sequencing were run to generate 3,000 reads. FLEA

was run on each dataset with all four ordering strategies.

The results clearly favor reverse sorting, as shown in Table 2.2, which does better

on average across the ten trials, and in the worst case it does much better. In the worst

case, other methods suffer from false negatives, as shown in Table 2.4. We hypothesize

that this behavior is caused by reads from the rare templates – which have a low chance of

having a high-quality representative read – loading onto the nearest high-quality template.

Table 2.2: EMD score statistics for different ordering strategies, summarized over ten
trials.

strategy min median max

none 1.161733 1.754568 4.650523
shuffle 1.042900 1.877201 15.177280
sort 1.362890 2.170702 15.585899
reverse sort 1.077585 1.495208 2.853009
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Table 2.3: EMDFP score statistics for different ordering strategies, summarized over
ten trials.

strategy min median max

none 0.0 0.012702 0.726121
shuffle 0.0 0.005160 0.634556
sort 0.0 0.019261 0.839726
reverse sort 0.0 0.005992 0.079191

Table 2.4: EMDFN score statistics for different ordering strategies, summarized over
ten trials.

strategy min median max

none 0.109267 0.363806 4.064444
shuffle 0.104379 0.359525 13.443283
sort 0.170185 0.623503 13.672487
reverse sort 0.096213 0.233316 1.011137

2.5.3 Pipeline visualizations

Nextflow provides pipeline introspection and performance tools including tracing

reports, task order graphs, and timeline visualizations (Figure 2.11).
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Figure 2.11: Timeline of each task in the FLEA pipeline. Tasks are annotated with time
per task and max memory used. Image generated with Nextflow’s -with-timeline
option.



Chapter 3

RIFRAF

Abstract

Motivation: Protein coding genes can be studied using long-read next generation

sequencing. However, high rates of indel sequencing errors are problematic, corrupting

the reading frame. Even the consensus of multiple independent sequence reads retains

indel errors. To solve this problem, we introduce RIFRAF, a sequence consensus algo-

rithm that takes a set of error-prone reads and a reference sequence and infers an accurate

in-frame consensus. RIFRAF uses a novel structure, analogous to a two-layer hidden

Markov model: the consensus is optimized to maximize alignment scores with both

the set of noisy reads and with a reference. The template-to-reads component of the

model encodes the preponderance of indels, and is sensitive to the per-base quality scores,

giving greater weight to more accurate bases. The reference-to-template component of

the model penalizes frame-destroying indels. A local search algorithm proceeds in stages

to find the best consensus sequence for both objectives.

Results: Using Pacific Biosciences SMRT sequences of NL4-3 env, we compare our

approach to other consensus and frame correction methods. RIFRAF consistently finds a

45
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consensus sequence that is more accurate and in-frame, especially with small numbers

of reads. It was able to perfectly reconstruct over 80% of consensus sequences from as

few as three reads, whereas the best alternative required twice as many. RIFRAF is able

to achieve these results and keep the consensus in-frame even with a distantly related

reference sequence. Moreover, unlike other frame correction methods, RIFRAF can detect

and keep true indels while removing erroneous ones.

Availability: RIFRAF is implemented in Julia, and source code is publicly available at

https://github.com/MurrellGroup/Rifraf.jl.

Contact: bmurrell@ucsd.edu

3.1 Introduction

The problem of finding the consensus of a set of sequences is fundamental to

bioinformatics, especially in the age of high-throughput sequencing. This paper addresses

the task of reconstructing an unknown true sequence from a set of error-prone reads.

Many algorithms that solve this task focus on de-novo or reference-guided assembly of

short reads [96, 101, 104]. However, with the advent of third-generation single-molecule

sequencing technologies, such as Pacific Biosciences’ SMRT sequencing protocol [32],

it is now possible to perform full-length sequencing of entire genes or small genomes.

Here we will focus on finding the consensus of a set of amplicon sequences - where

the sequences have the same start and end points. An example application would be

targeted sequencing of an entire gene from a viral population (eg. [63]). We focus just

on the consensus reconstruction problem, assuming that reads have first been grouped by

genetic identity, either using primer ID barcodes [52, 131], or some form of clustering.

Consensus sequences found via multiple sequence alignment may be inaccurate

https://github.com/MurrellGroup/Rifraf.jl
bmurrell@ucsd.edu
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when there are few reads available, or when the reads contain many errors. SMRT se-

quencing in particular is known to contain mostly indel errors, especially in homopolymer

runs. For example, in [63], we discovered that 80% of the sequencing errors were indels.

If these indels carry over into the consensus sequence, they cause frameshift errors which

corrupt the reading frame, and render the amino acid sequence uninterpretable. If a

reference sequence with a trusted reading frame is available, it can be exploited to inform

the consensus.

Current approaches that attempt to reconstruct in-frame consensus sequences

consider these problems separately. There are approaches to infer the consensus of

multiple reads, and there are approaches to correct the reading frame of an already-

inferred consensus sequence. Here, we solve these problems jointly, simultaneously

considering evidence from the reads and the reference sequence.

One common approach to inferring consensus sequences is from multiple se-

quence alignments (MSAs), from which the consensus is calculated by taking the most

common base in each column. A myriad of multiple alignment algorithms are available

[106], any of which may be used for this task. This paper uses MAFFT [56, 57] as an

example of this strategy when comparing alternatives. A multitude of tools, such as the

cons command in EMBOSS [117], are available for computing the consensus of these

alignments. Another approach is to use a partial order alignment [67] representation

of the set of sequences, and find the consensus sequence using dynamic programming

to extract the heaviest bundles [66]. This paper uses poaV21 for comparison. Other

implementations of this approach include pbdagcon2, which was released by Pacific

Biosciences specifically for raw SMRT sequence reads, and nanopolish [74], which

wraps poaV2 for Oxford Nanopore reads. Finally, specialized consensus methods are

available for specific sequencing technologies; these methods model the specific behavior

1https://sourceforge.net/projects/poamsa/
2https://github.com/PacificBiosciences/pbdagcon

https://sourceforge.net/projects/poamsa/
https://github.com/PacificBiosciences/pbdagcon
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of their target protocol, such as read length and error model. In this domain, Pacific

Biosciences developed the Quiver [17] and Arrow algorithms3 for building circular

consensus sequences from raw ZMW reads.

Existing approaches for reading frame correction (such as FrameBot, which we

use here as a comparator) exploit frame-aware codon alignment to a protein reference,

followed by inserting or deleting bases in the target sequence [148]. Related algorithms

include FALP and LAST [130], Frame-Pro [29], HMMFrame [161], and others. Another

approach is hybrid sequencing, which supplements long single-molecule reads with short

reads [106]. Methods such as HGAP [17] use hybrid sequence data to find and remove

indels.

This paper introduces a new method for inferring consensus sequences of such

reads: the Reference-Informed Frame-Resolving multiple-Alignment Free consensus

algorithm (RIFRAF). RIFRAF considers evidence from both the reads and the reference

simultaneously, allowing reads to inform the frame correction process, and is sensitive

to the read quality scores to ensure that high-quality bases are more informative. These

features allow RIFRAF to make highly accurate predictions, even for a small number

of error-prone reads. Unlike other frame-correction methods, RIFRAF can detect true

frameshift-causing indels and keep them while removing spurious indels.

3.2 Methods

RIFRAF addresses the following sequence consensus problem. Let t be an un-

known template sequence, which is sequenced N times to generate a set of N pairs of

reads and quality scores R = {(si, pi)}N
i=1. Each read si is a noisy observation of t, and

each pi is a vector of error probabilities, one for each base in si. The ith character in read

3https://github.com/PacificBiosciences/GenomicConsensus

https://github.com/PacificBiosciences/GenomicConsensus
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s is denoted si, and the substring from the ith to the jth character is denoted si... j. pi is

the probability that si is an error; an error at a base is either a substitution, an insertion,

or a deletion has occurred next to it. The task is to infer a consensus sequence c that

matches the unknown t. Additionally, we also consider a reference sequence r and prefer

that c not contain insertions or deletions that change its reading frame relative to r. This

is especially useful when the template that generated the reads in R had an intact reading

frame, but the reads themselves have a high indel rate.

r

t

s1, p1 s2, p2 s3, p3 · · · sN , pN

Figure 3.1: Structure of the full model. The unknown template t (grey) has the same
reading frame as known reference r. The sequencing process generates error-prone
reads s1 . . .sN with quality scores p1 . . . pN .

The structure of the full RIFRAF model is shown in Figure 3.1. It infers the

unknown template by optimizing two objectives: the quality-aware alignment to the

reads, and a frame-aware alignment to the reference. The optimization procedure starts

with an initial consensus sequence and proceeds in an iterative greedy manner, mutating

the consensus sequence at every step to improve those objectives. RIFRAF uses a number

of techniques to speed up convergence: filtering mutations, accepting multiple mutations,

forward and backward alignments, banding, batching, increasing indel penalties, and

multi-stage optimization.

RIFRAF is implemented in Julia [8], a high-level scientific computing language.
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3.2.1 Objective 1: pairwise alignment to reads

In order to find the optimal consensus, it is necessary to assign a score to can-

didates. RIFRAF scores consensus sequences by a global pairwise alignment [98, 134]

of each read s with the current values of c. Let A be the |s|+ 1× |c|+ 1 dynamic

programming matrix for aligning c and s. Each ai, j is the score of aligning prefix s1...i

to prefix c1... j. a0,0 is initialized to 0, and the last cell a|s|+1,|c|+1 contains the score

for the full alignment. The score function for c and s is defined as the full alignment

score: S(c|s) = a|s|+1,|c|+1. The overall score of consensus sequence c is the sum over

the alignment scores for all reads: S(c|R ) = ∑(s,p)∈R S(c|s).

The sequencing process has an error rate ρ, which by assumption can can be

partitioned into ρ = ρmismatch +ρinsertion +ρdeletion. These parameters account for the

different error profiles of different sequencing technologies. For instance, in SMRT

sequencing, indels are more likely than substitutions. The base move scores for the

alignment are derived from these error probabilities.

Typical pairwise alignment uses fixed scores for moves. However, RIFRAF also

incorporates sequence qualities into the move scores to generate more accurate alignments.

The scores for match, insertion, and deletion moves depend on the error probabilities p in

the following way. Let q = log10 p (base 10 is used instead of the usual natural logarithm

for compatibility with quality scores such as Phred scores). Let qmismatch = log10 ρmismatch,

and similarly for the others. Then move scores are calculated as follows

• A diagonal move from ai−1, j−1 to ai, j has score log10(1− pi) if si = c j (ie. a

match), else qmismatch +qi (ie. a mismatch).

• A vertical move (insertion relative to c) from ai−1, j to ai, j has score qinsertion +qi.

• A horizontal move (deletion relative to c) from ai, j−1 to ai, j has score qdeletion +

max(qi +qi+1). If i = 0, the score is just qdeletion +q1; similarly, i = |s|, the score
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is just qdeletion +q|s|.

Intuitively, the penalties for mismatches, insertions, and deletions are more severe

when the consensus does not match higher quality regions of the reads. PHRED values

are capped at 30 because rarer sources of error that are not sequencing errors (eg. PCR

errors) may have very confident PHRED scores, and we do not wish these to be overly

informative. This cap can be adjusted if these sources of error can be ruled out (for

example if PCR was not used to generate the amplicon library).

The best consensus c∗ under Objective 1 (pairwise alignment to reads) is the one

that maximizes S(c|R ).

3.2.2 Objective 2: Frame-aware alignment to reference

To perform frame correction, RIFRAF requires a reference nucleotide sequence r,

which is known to be in-frame. It models the reference sequence r as having diverged

from the template t, where the differences between r and t represent evolutionary events,

not sequencing error as in Objective 1. The score for the consensus-reference alignment

is modified to reflect this difference. First, two new moves are allowed during alignment:

codon insertion and codon deletion, each with their own penalty, as shown in Figure 3.2.

Second, a new parameter tindel is used as a multiplier for the non-codon insertion and

deletion penalties. Together, these two modifications bias the alignment to prefer only

codon indels, keeping the consensus in-frame. Because it uses nucleotide alignments,

this method works may be expected to work better with more closely related reference

sequences, where nucleotide similarity is preserved.

We first let RIFRAF converge to a draft template c without the reference sequence.

This draft template is used to approximate the divergence between the true template and

the reference, taking the edit distance normalized by the max length d(r,c)/max(|r|, |c|)

to obtain a per-base probability of template/reference disagreement (which is used in the
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ai, j

ai−1, j−1

ai, j−1

ai−1, j

ai, j−3

ai−3, j

Figure 3.2: Codon moves in the reference alignment dynamic programming matrix.
The goal is to favor a consensus that preserves the reading frame. Thus, in addition to
the usual single match, insertion, and deletion moves, codon insertions and deletions
are also allowed, with a lower penalty than single-base indels.

same manner as the per-base quality scores p in Objective 1). Reference (mis)match,

indel, and codon error rates are provided as parameters, and the scores for each move are

computed from error rate ρ as log10(ρ), as before.

The insertion and deletion scores are multiplied by a penalty tindel , which controls

the influence of single insertions and deletions in the reference alignment. If tindel is small,

frame-destroying indels may appear in the consensus, but if it is large, the consensus will

be forced into the reference reading frame, even if the unobserved template really did

contain indels. As we show in Section 3.3, this penalty can be tuned to discard spurious

indels while keeping true ones.

RIFRAF combines both objectives into a single score, allowing the reads to inform

the frame correction. The score of the consensus to reference alignment is denoted

Sr(c|r), and the full score function is:

S(c|R ,r) = S(c|R )+Sr(c|r).
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3.2.3 Optimization procedure

An exhaustive search for the optimal consensus c∗ would be intractable, so

RIFRAF uses a variant of the following greedy search algorithm, with some optimizations

to speed up convergence:

1. Start with a guess c0. RIFRAF chooses the read with the lowest expected number

of errors.

2. For the most recent guess ci, examine a set of candidate single mutations, such

as insertions, deletions, and substitutions. Note that these candidates vary at each

optimization stage. Keep all that improve the score S(ci|R ,r). Call the set of

candidate mutations C .

3. If C is empty, accept ci and terminate. Otherwise, choose some subset of C , apply

them to ci to obtain ci+1, and iterate.

RIFRAF works in two stages, first optimizing just S(c|R ), and then optimizing

the full S(c|R ,r).

Filtering mutations

When comparing the template to the reads, we need not consider all possible

modifications to the current consensus. For example, if any candidate mutation to c does

not appear in any pairwise alignment of c with a read, that mutation need not be scored.

Since it has no support among any observed sequence, it is likely to hurt the alignment

score. Similarly, during the frame correction stage, the model only proposes insertions or

deletions that appear in the pairwise alignment to reference.
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Multiple mutations

Instead of accepting only the best mutation in C , RIFRAF accepts all the mutations

that are separated by a certain number of positions: nseparate (the default value is 15,

i.e. five codons). The candidates are accepted in order from best to worst score. This

policy allows RIFRAF to converge in many fewer iterations than if it only accepted one

mutation per iteration. nseparate ensures that the changes to the consensus are relatively

independent of each other, and that the score of one is unlikely to be affected by the

acceptance of another. After accepting mutations in C , RIFRAF also compares the new

score to the score that would be obtained from accepting only the single best mutation in

C , and optionally accepts that single mutation instead if it results in a better score.

Forward and backward alignments

Recomputing the full alignment matrix for each candidate mutation to c would be

prohibitively expensive. For a sequence c from alphabet {A,C,G,T}, there are 4(|c|+1)

insertions, 3|c| substitutions, and |c| deletions to consider. Computing the alignment

matrix A for each candidate requires O(cs) operations, so each iteration of the proposed

algorithm would require O(Nc2s) operations (we omit | · | in O(·) for clarity). Instead,

RIFRAF uses forward and backward alignments to compute the new score for any single

change to c by only recomputing a single column of A [17].

To achieve this, in addition to the prefix alignment matrix A, where ai, j is the

score for aligning prefix s1...i to prefix c1... j, RIFRAF also computes the suffix alignment

matrix B, where bi, j is the score for aligning suffix si+1...|s| to suffix c j+1...|c|. Note that

a|s|,|c| = b0,0 is the score for the full alignment. For any j, that alignment score can also

be computed from columns A·, j and B·, j:

∀ j ∈ [0 . . .v] : a|s|,|c| = b0,0 = maxi(ai, j +bi, j) (3.1)



55

Modifying c j leaves unchanged columns 0 . . . j− 1 of A, and also leaves un-

changed columns j . . .v of B. Therefore, for all three types of mutations, computing the

new score requires that at most only a single new column of A must be recalculated.

1. substitution at c j: compute A·, j; new score is maxi(ai, j +bi, j).

2. insertion after c j: compute A·, j+1; new score is maxi(ai, j+1 +bi, j).

3. deletion of c j: no new column necessary; new score is maxi(ai, j−1 +bi, j).

Using the forward and backward alignments, all possible mutations to the con-

sensus can be scored in O(Ncs) operations.

During the alignment of the template and reference, additional columns must be

recomputed to account for codon insertion and deletion moves.

Banding

b

b||s|− |c||

Figure 3.3: Banded alignment. Alignments must stay within the banded region of the
dynamic programming matrix.

Despite the improvements from using forward and backward alignments, each

iteration is still approximately quadratic in the length of the consensus, assuming |c| ≈ |s|.

Alignment banding [15, 16] further reduces the number of operations per iteration.

For a given bandwidth parameter b, the maximum usable column size in A and B is
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2b+ ||s|− |c|| � |s|, so evaluating a possible mutation requires many fewer operations

than recomputing the full column. Alignment moves are only allowed to originate inside

the band, so alignment paths must stay within the band boundaries (see Figure 3.3).

With banding, the time complexity per iteration becomes O(Nc(
√

s+b)), since ||s|− |c||

grows like
√
|s| under reasonable assumptions.

RIFRAF dynamically increases the bandwidth if the number of differences in the

banded alignment is sufficiently larger than the expected number of differences implied by

the read’s quality scores, under the assumption that the difference between the template

candidate c and the true template is much smaller than the number of sequencing errors

in s. Let r be the observed number of differences between s and c, and e be the expected

number of errors computed from the quality scores p. If the value of r is in the upper

tail of a Poisson distribution with mean parameter e, then the bandwidth is doubled and

the alignments are re-computed. α controls the size of this upper tail probability, with a

default value of 0.1.

Batching

RIFRAF uses a variety of batching strategies to speed up convergence. If the

number of reads is greater than a threshold k (default 5), the best k reads by error rate are

fixed as the initial batch, and RIFRAF runs to convergence. This ensures that RIFRAF first

converges without considering the many spurious mutations presumably present in less

accurate reads. The resulting initial guess is further refined at the refinement stage, this

time with a different random batch of size nbatch (default 20) for each iteration. Sequences

are chosen for inclusion in the batch by sampling from a multinomial distribution of

their error rates, parameterized by parameter ρ between 0 and 1. When ρ = 1, all the

weight is evenly distributed among the top nbatch sequences. Interpolating from ρ = 1.0

to ρ = 0.5, the probabilities become proportional to the read error rates. Interpolating
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from ρ = 0.5 to ρ = 0, the probabilities become uniform. By default, ρ = 0.9i, where i

is the number of iterations since random batching activated. Like the fixed batch, this

strategy speeds up convergence by initially avoiding inaccurate reads, then gradually

letting them contribute to resolve uncertain bases if necessary.

Ideally, nbatch is small enough to make each iteration fast, but large enough that

RIFRAF converges stably. RIFRAF tries to detect if nbatch is too small by monitoring the

change in score after each iteration. If the new score is worse than the old score by more

than a certain percent (10% by default), nbatch is increased to 2nbatch, then 3nbatch, etc.

Combining all of the previous optimizations, a single iteration’s time complexity

is reduced from O(Nc2s) to O(nbatchc(
√

s+b).

3.2.4 Increasing indel penalties

Whenever the algorithm converges to a consensus ci, if single indel moves were

used in computing Sr(·), the single insertion and deletion scores are multiplied by a

parameter tindel , increasingly encouraging the alignment with the reference to use only

codon indels, thereby keeping c in-frame. This process repeats up to m times, so the

maximum multiplier is (tindel)
m. If the penalty is large enough, the consensus will always

be forced into the reference’s reading frame, which is the default behavior. However,

some consensus sequences really are out of frame relative to the reference. The indel

penalties can be tuned so that RIFRAF correctly identifies true frameshifts, with a small

risk of allowing some spurious ones.

3.2.5 Multi-stage optimization

The full optimization procedure proceeds in stages, allowing RIFRAF to converge

quickly by focusing on different objectives in different stages.
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1. Initial stage: Do not use the reference. Propose all mutations to the consensus that

appear in the pairwise alignments. Use the fixed batch, if available. If no reference

was provided, stop after this step.

2. Frame correction stage: Use the full model, including the reference and reads.

Propose indel candidate mutations that appear in the consensus-reference alignment.

Increasingly penalize single indels in alignment of r and c. Use the fixed batch, if

available.

3. Refinement stage: Propose only substitutions (no indels) to the consensus that

appear in the pairwise alignments, no longer considering the reference. Use random

batches, with decreasing ρ.

The initial stage quickly finds a good candidate consensus from the reads alone.

The frame correction stage uses a reference to penalize indels that cause frame shift errors,

correcting the reading frame of the template in a way that is maximally compatible with

both the reads and the reference. Finally, the refinement stage ensures that the reference

influences only the frame of c, and exerts no bias upon the nucleotides themselves. The

final stage also fixes biases introduced by the fixed batch in the first two stages.

3.3 Results

We compared RIFRAF to two other methods: MAFFT [56] followed by the standard

per-column consensus, and POA [67] with the heaviest bundle consensus algorithm [66].

All three methods were run with and without reference-guided frame correction. RIFRAF

natively performs frame correction, but only if it is given a reference sequence. To

distinguish these models in this section, we refer to the model with no reference as

RIFRAFnr, and the model with a reference as RIFRAFref. FrameBot [148] was used for
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correcting results from MAFFT and POA; these are referred to as MAFFT FB and POA FB.

A full-length sequencing run of Pacific Biosciences SMRT sequencing on env

from HIV-1 subtype B strain NL4-3 was used for the comparison [63]. The true sequence

of NL4-3 is known, so results could be compared to the ground truth. The filtered

data (available on FigShare4) contains 27,600 reads with expected error rate 1% or

better, which were further filtered and processed as follows. To make the problem more

challenging and better reveal differences between methods, very high quality sequences

were excluded (expected error rate < 0.1%). Short fragments and long reads (often

concatemers) were discarded by filtering out sequences 25 bases shorter or longer than

the median of 2,597. PacBio reads come in random orientations, so reads were converted

to their reverse complement, if necessary. Extra bases around the amplicon were removed

by aligning to NL4-3 env without penalizing terminal gaps, then trimming terminal

insertions. After preprocessing, 9,473 sequences remained, with a mean error rate of

0.0015 (the distribution of errors appears in Figure S1). All experiments were run for

1,000 trials on randomly sampled reads.

Choice of reference. A set of reference sequences – shown in Figure S2 – were

tested to investigate how frame correction accuracy deteriorates for distantly-related

references. The results are shown in Figure 3.4. Nucleotide results from MAFFT FB and

POA FB were both equally insensitive to the choice of reference, whereas RIFRAFref’s

results did degrade slightly. However, the reverse is true for the protein sequences, with

RIFRAFref’s performance degrading by half an amino acid on average, and the others

degrading by more than one. This difference indicates that RIFRAFref not only keeps

the consensus in-frame, but also makes better choices of inferring which nucleotides

are truly indel errors. Finally, RIFRAFref was the most accurate, regardless of choice of

reference. As expected, RIFRAFref’s frame correction strategy works best with a closely

4https://doi.org/10.6084/m9.figshare.5643247

https://doi.org/10.6084/m9.figshare.5643247
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related reference, but these results show that it is capable of working even with a distant

reference. Except where noted, the most distant reference, B.BR, was used for the rest of

the results.

Number of sequences. Clusters of 2, 3, 4, 5, 6, 8, 10, 15, and 20 reads were

randomly sampled for this experiment. The fraction of perfectly reconstructed consensus

sequences per 1,000 trials appears in Figure 3.5a. For fewer than ten sequences, both

versions of RIFRAF dominate the other corresponding methods. For instance, RIFRAFref

gets over 90% correct with access to only four reads. POA FB does not achieve similar

results until N = 8, and MAFFT FB does not until between N = 10 and 15. Interestingly,

POA’s results actually degrade significantly for n > 6, but POA FB continues to improve,

because POA tends to include extra bases on the ends of the consensus sequence which

are then removed by FrameBot. These extra bases also affect the average number of

nucleotide errors (Figure 3.5b): for N = 20, POA averages one error per sequence, whereas

all the other methods average none.

The average number of protein errors (Figure 3.6a) highlights the importance

of frame correction. Frame shifts cause the translated consensus sequences to differ

greatly from the true protein sequence, especially for n < 15. For N = 2, fully half of

each protein sequence is wrong on average, regardless of method. Even for N = 20,

sequences from RIFRAFnr and POA contain about 100 errors. On the other hand, the

corrected sequences (shown in Figure 3.6b for clarity) contain nearly no errors for n > 10.

RIFRAFref again performs best here, approaching zero errors even for N = 3.

Interestingly, frame correction of MAFFT and POA often made the nucleotide

sequences less accurate, whereas it improves RIFRAFref. This result supports the idea

that RIFRAF’s method of integrating frame correction into the consensus algorithm makes

it more accurate by allowing all reads to inform the correction process. FrameBot, which

only has access to a single consensus sequence, cannot use the extra information in the
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reads, and therefore cannot achieve the same accuracy.

Execution times appear in Figure 3.7. Without frame correction, all three methods

are comparable for small numbers of sequences, but RIFRAFnr scales better, due to its

batching scheme. Frame correction adds a constant factor to all three methods’ execution

times. RIFRAFref’s constant factor is larger, but, because it scales better, it overtakes the

others between N = 10 and N = 15.

Sequence length. Figure 3.7 also shows execution time for varying sequence

lengths. For more details on this experimental setup, see SI section 2. RIFRAFref scales

less well than the other methods, taking about twice as long as MAFFT FB and POA FB for

the full-length sequences. However, it is comparable with the others at `= 900, and faster

than the others for ` < 600. This difference in speed is due to RIFRAF’s iterative approach,

which requires recomputing parts of each pairwise alignment after every iteration.

Detecting true frameshifts. In the other experiments, strict frameshift penalties

were used to ensure the consensus stays in-frame. However, sometimes frameshifts are

biologically plausible, such as in integrated (but non-functional) proviral Env sequences,

or in the cytoplasmic tail of Env leading to a truncation, but preserving infectivity. If

true frameshifts may occur in the template sequence, it may be preferable to relax this

frameshift penalty. RIFRAFref can be tuned to accept frameshift indels with enough

support in the reads, with only a small increase in the frequency of spurious frameshift

indels. To demonstrate this, single base insertions and deletions were added to NL4-3 in

both homopolymer and non-homopolymer regions (details in SI section 3). tindel was set

to 1.05, and the max frameshift indel penalty multiplier m varied from 0 to 12. We call

an in-frame sequence a “positive”, so increasing m increases the false positive rate by

forcing sequences with real frameshifts incorrectly into frame. To get the true positive

rate, RIFRAFref was also run on the unmodified sequences. Note that while we introduce

only a single true indel into our “negative” cases, the analysis is always at the whole-
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sequence level. We are not just detecting the presence or absence of the specific indel

we introduce. Thus to achieve a high true positive and low false positive rate, RIFRAFref

must successfully ignore spurious indels at any position in the “positive” cases, while

successfully identifying the real indel we introduce in each “negative” case. The resulting

ROC curves, which appear in Figure 3.8 for N ∈ 3,5,10, show that RIFRAFref can find

true indels while controlling the false positive rate, using either a closely related reference

or a distant one. A useful trade-off occurs for m = 6, which scores close to the maximum

true positive rate while keeping the false positive rate close to zero.

In agreement with the accuracy results, a more closely related reference (HXB2)

improved inference for N = 3 for this task. As expected, real homopolymer indels in

homopolymer regions are harder to discriminate than non-homopolymer indels (See SI

section 3 for more detailed results).

3.4 Conclusion

RIFRAF uses quality scores and a reference sequence to infer accurate frame-

corrected consensus sequences. It can often find the correct consensus, even from small

numbers of reads or with a distant reference, as shown in our experimental results. RIFRAF

with frame correction can be slower than taking a consensus from a multiple sequence

alignment, but in experiments with real SMRT sequences it finds consensus sequences

that are significantly more accurate. The benefits of using a reference to reduce frameshift

errors are especially apparent when comparing translated amino acid sequences, where a

single frameshift causes the entire downstream sequence to be incorrect. Finally, RIFRAF

can detect and retain true frameshifts during frame correction, and, to our knowledge, is

the only method capable of this.

While RIFRAF performs well with distantly related reference sequences, perfor-
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mance is improved when using closely related references. However, when sequencing

diverse populations, we note that it is always possible to first infer a set of autologous

sequences from clusters or primer ID bundles that have a large number of reads, and so

should be accurate. These can then be used as references to correct the reading frame of

the less-represented members of the population, providing an improved accuracy over

just using a more distantly related reference. We recommend using this strategy whenever

possible.

RIFRAF can improve the ability to resolve minority variants in sequenced popula-

tions. Its ability to find results comparable to MAFFT with three times fewer reads will

be essential for identifying minority variants in the population with greater precision.

More generally, RIFRAF will be useful whenever an accurate consensus sequence must

be inferred from a small number of full-length sequences, especially when quality scores

and a reference sequence are available.

When sequencing any population, it is often advisable to sequence a clonal

representative of that population first (NL4-3 env here), to investigate the sequencing

performance for that case. We recommend using such sequence datasets to investigate the

behavior of RIFRAF on new genes, especially if the user seeks to detect real frameshifts.

To this end, we provide a Jupyter notebook that allows one to replicate the accuracy and

ROC analyses from this manuscript on any clonal amplicon dataset.

RIFRAF will continue to be developed along multiple lines. First, the current

approach for performing frame correction needs to be faster, to keep pace with the

increasing volume of available sequence data. Further work needs to be done to speed

it up via optimization or algorithmic advances. Possible approaches include: re-using

partial alignments, speeding up alignments with k-mer seeding, and only correcting the

frame of obviously problematic regions. Another improvement would include amino acid

matching penalties in the reference-to-template alignment, which would allow even more
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distantly related reference sequences to be used, where the nucleotide homology has

been completely obliterated. Another useful feature would be to infer calibrated quality

scores for the consensus sequence, in order to communicate uncertain regions to the user.

Finally, RIFRAF is extensible to other systems and sequencing technologies. In particular,

we plan to investigate its behavior and tune its error model for Oxford Nanopore data,

and to extend the method to support amplicons containing both non-coding and coding

regions, which may contain different (potentially overlapping) reading frames.

The RIFRAF source code is available at https://github.com/MurrellGroup/Rifraf.jl.

3.5 Supporting Information

3.5.1 NL4-3 and references

The distribution of estimated error rates of the NL4-3 reads appears in Figure 3.9.

The phylogenetic tree of the reference database appears in Figure 3.10.

3.5.2 Length of template experiment

As a proxy for varying amplicon lengths, we sampled prefixes of varying lengths

from our NL4-3 sequence dataset. This protocol is valid because SMRT sequencing does

not have a positional bias (see Figure S8D in [63]), so the distribution of errors in the

prefix should match the overall errors. However, these short reads are of lower overall

quality than true short CCS reads, which have the benefit of more subreads in the ZMW

read.

The experiment was run for 1,000 trials of clusters of size N = 3. The fraction of

correct consensus sequences appears in Figure 3.11a. Although all methods degrade in

accuracy for longer sequences, RIFRAFref degrades much more slowly, getting at least

https://github.com/MurrellGroup/Rifraf.jl
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80% perfectly correct even for the full-length amplicon. For this number of sequences,

RIFRAFref beats even the other methods with frame correction. As expected, frame

correction keeps all three methods in-frame (Figure 3.12a). The amino acid edit distance

for frame correction methods alone appears in Figure 3.12b for clarity, showing that

RIFRAFref’s frame-corrected amino acid sequences contain an average of less than one

error even for the full-length amplicon, whereas the accuracy of other methods degrades

from one error all the way to three errors for POA FB and four errors for MAFFT FB.

3.5.3 True indel experiments

Single indels were simulated in both homopolymer (defined as four or more

identical bases in a row) and non-homopolymer regions of NL4-3 in the following manner.

First, a region was sampled uniformly from all matching regions; i.e. a homopolymer

region is chosen at random from all homopolymer regions. Insertions or deletions in

homopolymer regions were simulated by inserting or deleting a base. Deletions to non-

homopolymer regions were simulated by removing a single random base from that region.

Insertions in non-homopolymer regions were simulated by choosing a non-homopolymer

position and inserting a random base either before or after it.

Each read has a small probability p of not being modified to match the new

template, where p is proportional to the read’s estimated error rate and is calculated as

the mean of the Phred scores after converting them to error probabilities. Those reads

that were modified were pairwise aligned to the template and the matching base was

inserted or deleted from the correct position. Quality scores for insertions were drawn

from a uniform distribution between the two Phred scores on either side of the insertion.
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(b) Protein sequence edit distance for increasingly distant references.

Figure 3.4: Edit distance for increasingly distant references. All methods do better
with closely-related reference, but their rate of performance degradation is important
because a related reference may not always be available. Run with N = 3 full-length
reads.
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(a) Fraction of correct sequences versus number of sequences.
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(b) DNA edit distance versus number of sequences.

Figure 3.5: DNA results. Fraction of correct sequences (left) and mean edit distance
between the consensus and the template (right) for increasing N.



69

2 3 4 5 6 8 10 15 20
number of sequences

0

100

200

300

400

500

pr
ot

ei
n 

ed
it 

di
st

an
ce

RIFRAF_ref
RIFRAF_nr
POA_FB
POA
MAFFT_FB
MAFFT

(a) Protein edit distance versus number of sequences; all methods.
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(b) Protein edit distance versus number of sequences; frame correction only

Figure 3.6: Same results as Fig. 3.5, but for the translated protein sequences. The
fraction of correct sequences is not reproduced, since those figures are identical. The
left figure show results for all methods. The right figure show the same data, zoomed to
show the frame-corrected results. Note Y axis scale.
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Figure 3.7: Mean execution time, varying both number of sequences (left) and
sequence length (right). Note that intervals on the x-axis are not linear.
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(c) N = 10

Figure 3.8: ROC curves for true indel experiments, with max indel penalty multiplier
m varying from 0 to 12. The orange point denotes results from RIFRAFnr, while the
remainder of the curve was generated by RIFRAFref. The green point corresponds to a
max indel penalty multiplier m = 6. Both a related reference (HXB2, blue) and distant
reference (B.BR, red) were used.
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Figure 3.9: QV-derived error rates of the NL4-3 sequences used.
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Figure 3.10: Phylogeny of references used by RIFRAFref. The references were aligned
with MAFFT [56, 57], the phylogeny inferred by FastTree [109, 110], and visualized
with PhyloTree.js (https://github.com/veg/phylotree.js).
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(a) Fraction of correct sequences versus template length.
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(b) DNA edit distance versus template length.

Figure 3.11: Results on DNA sequences for varying sequence length. The left figure
shows the fraction of correct sequences; the right figure shows mean edit distance
between the consensus and the template.

https://github.com/veg/phylotree.js
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(a) Protein edit distance versus template length; all methods.
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Figure 3.12: Same results as Fig. 3.11, but for the translated protein sequences. The
fraction of correct sequences is not reproduced, since those figures are identical. The
left figure show results for all methods. The right figure shows the same data, zoomed
in on the details of the frame-corrected results.
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(a) N = 3, non-HP insertion
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(b) N = 5, non-HP insertion
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(c) N = 10, non-HP ins.
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(d) N = 3, HP insertion
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(e) N = 5, HP insertion
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(f) N = 10, HP insertion
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(g) N = 3, non-HP deletion
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(h) N = 5, non-HP deletion
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(i) N = 10, non-HP deletion
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(j) N = 3, HP deletion
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(k) N = 5, HP deletion
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(l) N = 10, HP deletion

Figure 3.13: ROC curves for true indel experiments, with max indel penalty multiplier
m from 0 to 12. Orange points denote runs without a reference; the rest use HXB2 as a
reference. The green point corresponds to a max indel penalty multiplier m = 6.
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(a) N = 3, non-HP insertion
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(b) N = 5, non-HP insertion
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(c) N = 10, non-HP ins.
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(d) N = 3, HP insertion

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 p

os
iti

ve
 ra

te

(e) N = 5, HP insertion
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(f) N = 10, HP insertion
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(g) N = 3, non-HP deletion
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(h) N = 5, non-HP deletion
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(i) N = 10, non-HP deletion
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(j) N = 3, HP deletion
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(k) N = 5, HP deletion
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(l) N = 10, HP deletion

Figure 3.14: The same results as in Figure 3.13, except using the more distant
sequence B.BR as a reference.



Chapter 4

Biological applications

4.1 Introduction

The FLEA pipeline has already been used in multiple papers to provide new

biological insights into the evolution of HIV-1. It has been used to characterize the

mutations in env that potentially drive the development of lineages of broadly neutralizing

antibodies in the Protocol C cohort. It has also been used to study evolution and escape

during a phase I clinical trial of monoclonal antibody 10-1074.

4.2 Protocol C

The Protocol C cohort is a group of 439 HIV-positive subjects from multiple

regions in sub-Saharan Africa that participated in a multi-year longitudinal study to

investigate the factors leading to the development of broadly neutralizing antibodies

[64]. HIV-negative individuals were monitored and enrolled in the study after they

contracted HIV, ensuring that data collection started as soon as possible after the initial

infection event. Blood draws were taken at regular intervals and neutralization assays
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were performed against a panel of heterologous virus. Consistent with other estimates

of bNAb frequency, 15% of participants developed bNAbs, most after two to four years

of infection. A summary of their neutralization scores over time appears in Figure 4.1.

Another third of the participants developed some neutralization breadth, but not enough

to be characterized as broad. Among those that did develop bNAbs, 40% of them targeted

the N332 glycan supersite in V3.

This study emphasized the need to perform in-depth followup studies in order to

understand how to elicit bNAbs:

A detailed analysis of the development of bNAb lineages in top neutralizers
will help understand which specificities are most amenable to elicitation
through vaccination and whether Env evolution pathways associated with
specific lineages suggest particular immunogen designs or vaccine strategies.
([64])

Those in-depth analyses are currently underway. Of the top forty-six donors,

PC039, PC064, and PC076 (marked in Figure 4.1) have already been studied with a

combination of strategies such as neutralization assays, longitudinal sequencing of both

the B-cell lineage and the Env population, structure determination of antibodies, and

some Env/Ab complexes. In all three cases, FLEA was used to analyze the longitudinal

Env sequences. This section highlights the major biological insights from each of those

donors, with an emphasis on the contributions of FLEA to the results.

4.2.1 PC039

Donor PC039 developed antibody lineages targeting the N332 glycan supersite

in variable loop 3 (V3), which was the most common target observed in the Protocol

C cohort. The donor developed a maximum neutralization score of 2.0 at 60 months

post infection. This donor is also notable because they were infected with two founder

variants, which recombined and then evolved into two stable sub-populations, each
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Figure 4.1: Best neutralizers from the Protocol C cohort. The 46 best neutralizers had
neutralization score ≥ 1. Neutralization score shown for each month. NT: Not Tested.
ART: on ART during visit. OFF: off-study during this visit. The three donors for which
FLEA was used during followup studies (PC039, PC064, PC076) are marked. Image
adapted from Figure 1C [64].
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Figure 4.2: Histogram of amino acid frequencies in PC039 for each time point. Only
differences from one of the parent MRCA sequences are shown. The other parent is
clearly visible at 3MPI. From Figure 1 [95].

Figure 4.3: PNGS locations in PC039. Fraction of PNGS sites at each position. From
Figure 2 [95].

of which separately escaped the antibody lineage. The early presence of at least two

founders, followed by recombination, may possibly have contributed to the antibody

lineage development.

The full-length env sequencing protocol was used to sequence the population at

twelve time points, from three to sixty months post infection. FLEA was used to generate

HQCSs, align them, and perform phylogentic analyses. Per-site amino acid frequences

(Figure 4.2) clearly show the presence of both founder variants at 3 MPI, which also

appear in the phylogenetic tree in Figure 4.5.

These multiple founders, plus the high recombination rate in HIV-1, means that

alignment columns do not share a common ancestry, which is an assumption of most

phylogenetic analyses. Therefore, the inferred tree does not capture the true within-host
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Figure 4.4: Inferred recombination in PC039. Posterior probability that each base
came from parent A (blue) or parent B (red). Little recombination is visible at 3 MPI.
Sequences become increasingly recombined over time. Black regions denote gaps in
the alignment. From Figure 3 [95].

evolutionary history of the virus [122, 125]. To better understand these lineages, we also

visualized the population in a different way by using Multidimensional Scaling (MDS)

[60] to embed the sequences in two-dimensional space while preserving the pairwise

distances. The embedding clearly shows the branching and independent evolution of

two sub-populations of Env (Figure 4.6). A stable mixture of two sub-populations of

recombinants appeared by 17 MPI, which had already escaped. Subsequently each

population proceeded along different evolutionary pathways. This data was inspiration

for the MDS visualization in FLEA, as shown in Figure 2.4.

A previously-described recombination model [80] was implemented and cus-

tomized to infer the amount of recombination in each HQCS. The two founder variants

were inferred from the earliest time point and used to build a hidden Markov model

(Figure 4.7), keeping only the positions that differed in at least one parent. The model

was intilized with constant transition and emission matrices, then trained using Viterbi

training [114] with the constraint that the transition matrix must be symmetric with a

constant diagonal. The forward and backward algorithms were used to compute the

posterior probability that each base came from each parent. The training and inference

process was repeated independently for each sequence. A visualization of the posterior
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Figure 4.5: Phylogenetic tree of Env in PC039, with nodes colored according to time
point. The diverging ladder structure is due to recombination and diverging
sub-populations. Marked IC50 values show escape at later time points. From Figure
4A [95].
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Figure 4.6: MDS embedding of Env in PC039. Multidimensional scaling (MDS) was
used to generate a low-dimensional embedding of Env HQCSs sequences that preserves
pairwise distances. Node color shows time since infection, and node size is
proportional to inferred abundance. The evolution of two independent populations of
Env is clearly visible. The populations derived from the two founder sequences are
clearly visible (orange). They recombine, then split into separate lineages around 23
MPI. From Figure 4C [95].
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Figure 4.7: HMM for inferring recombination of two parent sequences to generate an
observed child sequence. Each column in their alignment corresponds to a state from
each parent. Transitioning to the other parent models a recombination event. The
shown probabilities are meant to be representative, as the true probabilities differ for
each observed sequence after Viterbi training.

probabilities for all HQCSs is shown in Figure 4.4.

The two Env lineages contained many genetic differences, such as the 322-323

motif, as shown in Figure 4.9, the 324-327 motif, as shown in Figure 4.8, the location

of glycans (Figures 4.10 and 4.3) and the composition of the V1 loop. In particular, the

deletion observed at position 322 has been functionally validated by mutagenesis and

neutralization assay, and explains escape from the PC039 antibody lineage for the top

arm of the MDS plot.

This work was presented by Ben Murrell in 2016 at Keystone [95]. Further work

is ongoing.

4.2.2 PC076

Donor PC076, who was infected by HIV-1 subtype C, also developed a bNAb

lineage targeting the N332 region, here referred to as the high-mannose patch. This

donor’s lineage is notable because at least one of its antibodies achieved breadth without

a large number of complex changes: it had a small number of somatic hypermutations

and no insertions or deletions. This result has implications for vaccine design, because it

should be faster and easier to induce such an antibody, compared to one that requires an

older, more complicated lineage. Presumably, the longer it took during natural infection
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Figure 4.8: [MDS embedding showing positions 332 and 333 in PC039. From an
ongoing collaboration.
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Figure 4.9: MDS embedding showing positions 324-327 “GDIR” motif in PC039.
From an ongoing collaboration.

Figure 4.10: Glycan dynamics in PC039, and corresponding development of breadth.
Both lineages had almost entirely escaped by 17 MPI. From [95].
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for a bNAb to develop, the more rounds of sequential vaccination would be required, if it

is possible at all.

The investigation proceeded as follows:

• Confirm a broadly neutralizing response and find its target on Env. Neutralization

assays detected a broad neutralizing response at 33 MPI and N332 activity. They

further confirmed that the response is N332 dependent by checking that a point

mutation which eliminates the glycan (N332A) is a neutralization knockout.

• Find the responsible mAbs. Twelve potent monoclonal antibodies (mAbs) were

isolated from the blood samples and sequenced via single-cell sequencing. Individ-

ual antibodies were tested against the neutralization panel of pseudoviruses, and

the three most potent were further investigated on another panel.

• Study Env population to find the variants that triggered the Ab lineage, mutations

that drove the lineage evolution, and eventual escape mutations. 76 autologous

full-length env sequences were cloned and sequenced via Sanger sequencing. The

capacity of each of the 12 mAbs (from the previous step) to neutralize these

suggested that the lineage was triggered by virus that emerged between 5 and 10

months. The Env sequences from those time points were checked for common

mutations. Mutations were confirmed by introducing them to the most common

virus and again checking for neutralization.

• Track mAb lineages that lead to the potent mAbs. Deep sequencing was used to

track the mAb lineages leading to the bNAbs studied in step #2. Multiple early

lineage arms developed in parallel.

• Get Fab structure. In order to better understand binding and possible mechanism

of neutralization, the structure of the Fab was resolved.
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An early version of FLEA was used to align and analyze the Env sequences.

Because sequences came from Sanger sequencing, not SMRT sequencing, the quality and

consensus sub-pipelines were not necessary. Instead, the Sanger sequences were treated

like HQCSs and fed directly into the alignment and analysis sub-pipelines. The results of

those analyses helped to identify residues in Env that contributed to the evolution of the

lineage. Those mutations could then be verified via mutagenesis.

This work was published in [75].

4.2.3 PC064

Donor PC064, who was infected by HIV-1 subtype A, developed a bNAb lin-

eage targeting the V2 apex epitope. Fewer donors in the Protocol C cohort developed

antibodies targeting V2, which is consistent with the estimated rate of 10-25% among

those that do develop bNAbs [49]. Like the lineage from PC076, this lineage contained a

low amount of somatic hypermutation and no indels, making it a realistic candidate for a

vaccine.

Full-length longitudinal SMRT sequencing of env was performed, and the results

were analyzed with FLEA. The inferred tree appears in Figure 4.11.

The HQCSs reconstructed by FLEA revealed key insights into the evolution of Env

that could lead to a method to elicit V2-targeting antibody lineages. They showed the V2

variants that drove the development of breadth and the eventual escape trajectory, which

occurred via mutations at positions 166, 167 and 169. The pattern of these mutations

over time suggests that the mAb lineage evolved towards greater breadth as a response

to successive escape mutations at these positions. The HQCSs also show that the Env

population continued to evolve after full escape. These further changes are possibly

restoring fitness lost during the escape.

This work was published in [65].
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Figure 4.11: Phylogenetic tree of Env in PC064. Node size is proportional to
abundances, and colors correspond to time point. Dotted lines show location of Sanger
sequences, which agree with the HQCSs inferred from the SMRT sequencing reads.
From Figure 4[63].
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4.3 Phase I clinical trial of antibody 10-1074

FLEA was also used as part of a recent study describing a phase I clinical trial of a

broadly-neutralizing monoclonal antibody [14]. As an alternative to eliciting antibodies

through vaccination, another approach is to manufacture monoclonal antibodies originally

isolated from donor studies (such as those described above), and directly inject them as

an antibody therapy. They confer the same neutralization benefits, both in preventing

infection and in controlling viremia during infection, so this approach is being considered

as an alternative or supplement to both vaccines and ART. Unlike native antibodies,

however, passively introduced antibodies get depleted and would have to be replenished.

This antibody used in this clinical trial, 10-1074, was isolated from an African

donor described in [90]. Like the lineage in PC076 [75], this antibody also targets the V3

epitope centered on N332. 10-1074 is one of the more potent and broad monoclonal anti-

bodies found so far. It neutralized 60.5% of pseudovirus in a large panel of neutralization

assays and 77.7% of isolates from HIV-1 infected individuals from the US and Germany.

In this study, 33 individuals (14 uninfected, 16 infected and off ART, 3 infected and on

ART) received a single dose of varying concentration to assess its medical safety and its

efficacy as a therapy for controlling viremia.

The therapy did successfully reduce viremia for a short time (approximately ten

days) before the viral population evolved escape mutations and viremia rebounded. A

variety of sequencing protocols were used to study this escape. Single genome sequencing

(SGS) was used to sequence Env before and after treatment. It confirmed sensitivity to

antibody before treatment and showed that most sequences escaped via N332 or S334

mutations that removed a PNGS. However, its depth was too low to look for minority

variants: a total of 1,111 Env sequences were acquired for 15 subjects, for an average of

37 sequences per subject per time point. Primer ID based deep sequencing (PIDS) of
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Figure 4.12: Escape in donor 1HD1. Multiple loss of glycan mutations appeared by
week four, then 325K took over by week sixteen. This suggests that the final escape
mutant was present at low frequencies and took longer to take over the population.
Unpublished data from ongoing work with Ben Murrell.

the V3 region was also done for fifteen subjects, which could identify minority variants,

since it was powered to detect mutations at 1.0% frequency, with a range of 0.5% to

2.4%). However, by focusing on only the V3 region, PIDS missed the other changes

occurring in the rest of env. Finally, full-length SMRT sequencing of env in three subjects

was performed, and analyzed with FLEA. Note that the amino acid frequencies inferred by

FLEA agreed with the SGS and PIDS frequencies, which independently confirms FLEA’s

accuracy.

The phylogenies inferred by FLEA showed that two of the three subjects already

had Env populations with multiple escape variants at low frequencies prior to initiation

of therapy. The results also showed that all three viral populations had escaped by the

fourth week of the trial via mutations at the same few positions in V3: positions 324-327

(the ”GDIR” motif) and the PNGS at 332-334. New, unpublished longitudinal data from

donor 1HD1 appears in Figure 4.12.

The aligned full-length sequences from FLEA also suggested that the escaped

variants were still vulnerable to bNAbs targeting other epitopes. This vulnerability

provides support for the idea that, like HAART, vaccines and monoclonal antibody

therapies will need to prevent escape by targeting multiple Env epitopes simultaneously.

This work was published in [14].
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Chapter 5

Conclusion

During my doctoral program I developed new tools and algorithms to investigate

the evolution of diverse populations of HIV-1 env using longitudinal SMRT sequencing.

The first is FLEA, a pipeline for aligning, analyzing, and visualizing Env sequences. FLEA

has already been used to study donors that developed broadly-neutralizing antibodies

and to study the effects of a monoclonal antibody in a phase 1 clinical trial. The second

is RIFRAF, a consensus algorithm that takes advantage of quality scores and that keeps

the consensus sequence in frame. In addition to these projects, I also contributed to

BUSTED, a new method for identifying episodic positive selection [94]

Both FLEA and RIFRAF are undergoing active development. The process of

integrating RIFRAF into the pipeline and using the modified pipeline for new projects is

currently underway. Just like RIFRAF made FLEA more accurate by replacing an off-the-

shelf consensus algorithm for consensus sequences with one designed specifically for

the problem at hand, improvements for other parts of the pipeline, such as clustering,

are currently being developed. Moreover, although it has only been used for HIV-1

Env, FLEA is being adapted to other proteins in HIV-1 and even to amplicons from other

pathogens. Its reference databases, error models, and parameters would need to be

92
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updated appropriately,

One outstanding question for FLEA, and more generally for the analysis of any

recombining virus, is how to deal with such recombination. HIV-1 recombines at a

high rate, which adds an extra layer of difficulty to the problem of reconstructing its

evolutionary history and invalidates the assumptions underpinning methods such as

phylogeny reconstruction. Methods exist for identifying recombination [11, 79], but

currently there are no good ways to accurately reconstruct phylogenies of recombinant

sequences. We plan to first address this issue by inferring recombination in every time

point using the HMM model mentioned in the previous chapter and visualizing the

results.

Finally, FLEA is being used to analyze breakthrough infections in two vaccination

studies, involving SIV and SHIV (SIV with an HIV Env) challenge of immunized

macaques. Preliminary data from the SIV challenge suggest a sieve effect, where low-

frequency pre-existing escape mutants are crossing the transmission barrier and seeding

the infection. This shows that FLEA is useful not just to study primary infection, but also

for translational vaccine research.



Bibliography

[1] Luis M Agosto, Pradeep D Uchil, and Walther Mothes. HIV cell-to-cell transmis-
sion: Effects on pathogenesis and antiretroviral therapy. In Trends in Microbiology,
volume 23, pages 289–295. 2015.

[2] Aikaterini Alexaki, Yujie Liu, and Brian Wigdahl. Cellular Reservoirs of HIV-1
and their Role in Viral Persistence. Current HIV Research, 6(5):388–400, sep
2008.

[3] Suzanna Attia, Matthias Egger, Monika Müller, Marcel Zwahlen, and Nicola Low.
Sexual transmission of HIV according to viral load and antiretroviral therapy:
systematic review and meta-analysis. Aids, 23(11):1397–1404, 2009.
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Leemann, Thomas Klimkait, Jürg Böni, Alexandra Trkola, and Osvaldo Zagordi.
MinVar: A rapid and versatile tool for HIV-1 drug resistance genotyping by deep
sequencing. Journal of Virological Methods, 240:7–13, 2017.

[52] Cassandra B Jabara, Corbin D Jones, Jeffrey Roach, Jeffrey A Anderson, and
Ronald Swanstrom. Accurate sampling and deep sequencing of the HIV-1 protease
gene using a Primer ID. Proceedings of the National Academy of Sciences, 108
(50):20166–20171, 2011.

[53] Jacob Schreiber. Pomegranate. Software download. URL https://github.com/
jmschrei/pomegranate.

[54] Anjali Joshi, Erin B Punke, Melina Sedano, Bethany Beauchamp, Rima Patel, Cas-
sady Hossenlopp, Ogechika K Alozie, Jayanta Gupta, Debabrata Mukherjee, and
Himanshu Garg. CCR5 promoter activity correlates with HIV disease progression
by regulating CCR5 cell surface expression and CD4 T cell apoptosis. Scientific
Reports, 7, 2017.

[55] Salim S Abdool Karim and Quarraisha Abdool Karim. Antiretroviral prophylaxis:
A defining moment in HIV control. The Lancet, 378(9809):2011–2014, 2011.

[56] Kazutaka Katoh and Daron M Standley. MAFFT multiple sequence alignment
software version 7: improvements in performance and usability. Molecular biology
and evolution, 30(4):772–780, 2013.

[57] Kazutaka Katoh, Kazuharu Misawa, Kei-ichi Kuma, and Takashi Miyata. MAFFT:
a novel method for rapid multiple sequence alignment based on fast Fourier
transform. Nucleic acids research, 30(14):3059–3066, 2002.

https://github.com/jmschrei/pomegranate
https://github.com/jmschrei/pomegranate


100

[58] Brandon F Keele, Elena E Giorgi, Jesus F Salazar-Gonzalez, Julie M Decker,
Kimmy T Pham, Maria G Salazar, Chuanxi Sun, Truman Grayson, Shuyi Wang,
Hui Li, et al. Identification and characterization of transmitted and early founder
virus envelopes in primary HIV-1 infection. Proceedings of the National Academy
of Sciences, 105(21):7552–7557, 2008.

[59] Cornell Kortenhoeven, Fourie Joubert, A Bastos, and Celia Abolnik. Virus genome
dynamics under different propagation pressures: reconstruction of whole genome
haplotypes of west nile viruses from NGS data. BMC Genomics, 16(1):118, 2015.

[60] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis. Psychometrika, 29(1):1–27, 1964.

[61] Peter D. Kwong and John R. Mascola. Human Antibodies that Neutralize HIV-1:
Identification, Structures, and B Cell Ontogenies. Immunity, 37(3):412–425, 2012.

[62] Peter D. Kwong, John R. Mascola, and Gary J. Nabel. Broadly neutralizing
antibodies and the search for an HIV-1 vaccine: the end of the beginning. Nature
Reviews Immunology, 13(9):693–701, 2013.

[63] Melissa Laird Smith, Ben Murrell, Kemal Eren, Caroline Ignacio, Elise Landais,
Steven Weaver, Pham Phung, Colleen Ludka, Lance Hepler, Gemma Caballero,
Tristan Pollner, Yan Guo, Douglas Richman, Pascal Poignard, Ellen E. Paxinos,
Sergei L. Kosakovsky Pond, and Davey M. Smith. Rapid Sequencing of Complete
env Genes from Primary HIV-1 Samples. Virus Evolution, 2(2), 2016.

[64] Elise Landais, Xiayu Huang, Colin Havenar-Daughton, Ben Murrell, Matt A.
Price, Lalinda Wickramasinghe, Alejandra Ramos, Charoan B. Bian, Melissa
Simek, Susan Allen, Etienne Karita, William Kilembe, Shabir Lakhi, Mubiana
Inambao, Anatoli Kamali, Eduard J. Sanders, Omu Anzala, Vinodh Edward,
Linda Gail Bekker, Jianming Tang, Jill Gilmour, Sergei L. Kosakovsky-Pond,
Pham Phung, Terri Wrin, Shane Crotty, Adam Godzik, and Pascal Poignard.
Broadly Neutralizing Antibody Responses in a Large Longitudinal Sub-Saharan
HIV Primary Infection Cohort. PLoS Pathogens, 12(1):1–22, 2016.

[65] Elise Landais, Ben Murrell, Bryan Briney, Sasha Murrell, Kimmo Rantalainen,
Alejandra Ramos, Lalinda Wickramasinghe, Melissa Laird Smith, Kemal Eren,
Zachary Berndsen, Natalia De Val, Mengyu Wu, Audrey Cappelletti, Yolanda Lie,
Terri Wrin, Paul Algate, Etienne Karita, B Andrew, Ian A Wilson, Dennis R Burton,
Davey Smith, L Sergei, Pascal Poignard, Computational Biology, Vaccine Im-
munology, La Jolla, Biomedical Informatics, San Diego, Monogram Biosciences,
Monogram Biosciences, Theraclone Sciences, and Project San Francisco. HIV
Envelope Glycoform Heterogeneity and Localized Diversity Govern the Initiation
and Maturation of a V2 Apex Broadly Neutralizing Antibody Lineage. Immunity,
2017.



101

[66] Christopher Lee. Generating consensus sequences from partial order multiple
sequence alignment graphs. Bioinformatics, 19(8):999–1008, 2003.

[67] Christopher Lee, Catherine Grasso, and Mark F. Sharlow. Multiple sequence
alignment using partial order graphs. Bioinformatics, 18(3):452–464, 2002.

[68] Jeong Hyun Lee, Gabriel Ozorowski, and Andrew B Ward. Cryo-EM structure of
a native, fully glycosylated, cleaved HIV-1 envelope trimer. Science, 351(6277):
1043–1048, 2016.

[69] Niall Lennon, Aaron M Berlin, Matthew R Henn, Christian L Boutwell, Patrick
Charlebois, Niall J Lennon, Karen A Power, Alexander R Macalalad, Aaron M
Berlin, Christine M Malboeuf, Elizabeth M Ryan, Sante Gnerre, Michael C Zody,
Rachel L Erlich, Lisa M Green, Andrew Berical, Yaoyu Wang, Monica Casali,
Hendrik Streeck, Allyson K Bloom, Tim Dudek, Damien Tully, Ruchi Newman,
Karen L Axten, Adrianne D Gladden, Laura Battis, Michael Kemper, Qiandong
Zeng, Terrance P Shea, Zabrina L Brumme, Chanson J Brumme, Suzane Bazner,
Jenna Rychert, Jake P Tinsley, H Ken, Bruce W Birren, Bruce D Walker, and
Todd M Allen. Whole Genome Deep Sequencing of HIV-1 Reveals the Impact
of Early Minor Variants Upon Immune Recognition ... Whole Genome Deep
Sequencing of HIV-1 Reveals the Impact of Early Minor Variants Upon Immune
Recognition During Acute Infection. (June), 2017.

[70] Preston Leung, Rowena Bull, Andrew Lloyd, and Fabio Luciani. A bioinformatics
pipeline for the analyses of viral escape dynamics and host immune responses
during an infection. BioMed research international, 2014:264519, jan 2014.

[71] Preston Leung, Auda A Eltahla, Andrew R Lloyd, Rowena A Bull, and Fabio
Luciani. Understanding the complex evolution of rapidly mutating viruses with
deep sequencing: beyond the analysis of viral diversity. Virus research, 2016.

[72] Ma Liang, Castle Raley, Xin Zheng, Geetha Kutty, Emile Gogineni, Brad T
Sherman, Qiang Sun, Xiongfong Chen, Thomas Skelly, Kristine Jones, Robert
Stephens, Bin Zhou, William Lau, Calvin Johnson, Tomozumi Imamichi, Minkang
Jiang, Robin Dewar, Richard A Lempicki, Bao Tran, Joseph A Kovacs, and Da Wei
Huang. Distinguishing highly similar gene isoforms with a clustering-based
bioinformatics analysis of PacBio single-molecule long reads. BioData Mining, 9
(1):13, 2016.

[73] Susan J. Little, Sergei L Kosakovsky Pond, Christy M. Anderson, Jason A. Young,
Joel O. Wertheim, Sanjay R. Mehta, Susanne May, and Davey M. Smith. Using
HIV networks to inform real time prevention interventions. PLoS ONE, 9(6):1–8,
2014.



102

[74] Nicholas J Loman, Joshua Quick, and Jared T Simpson. A complete bacterial
genome assembled de novo using only nanopore sequencing data. Nature Methods,
12(8):733–735, 2015.

[75] Daniel T. MacLeod, Nancy M. Choi, Bryan Briney, Fernando Garces, Lorena S.
Ver, Elise Landais, Ben Murrell, Terri Wrin, William Kilembe, Chi-Hui Liang,
Alejandra Ramos, Chaoran B. Bian, Lalinda Wickramasinghe, Leopold Kong,
Kemal Eren, Chung-Yi Wu, Chi-Huey Wong, Sergei L. Kosakovsky Pond, Ian A.
Wilson, Dennis R. Burton, Pascal Poignard, Matt A. Price, Jill Gilmour, Pat Fast,
Anatoli Kamali, Eduard J. Sanders, Omu Anzala, Susan Allen, Eric Hunter, Eti-
enne Karita, William Kilembe, Shabir Lakhi, Mubiana Inambao, Vinodh Edward,
and Linda-Gail Bekker. Early Antibody Lineage Diversification and Indepen-
dent Limb Maturation Lead to Broad HIV-1 Neutralization Targeting the Env
High-Mannose Patch. Immunity, 44(5):1215–1226, may 2016.

[76] Serghei Mangul, Nicholas C. Wu, Nicholas Mancuso, Alex Zelikovsky, Ren Sun,
and Eleazar Eskin. Accurate viral population assembly from ultra-deep sequencing
data. Bioinformatics, 30(12):329–337, 2014.

[77] Marco Biasini. pv. Software download. URL http://biasmv.github.io/pv/.

[78] Alyssa R Martin and Robert F Siliciano. Progress toward HIV eradication: case
reports, current efforts, and the challenges associated with cure. Annual review of
medicine, 67:215–228, 2016.

[79] Darren P. Martin, Ben Murrell, Michael Golden, Arjun Khoosal, and Brejnev
Muhire. RDP4: Detection and analysis of recombination patterns in virus genomes.
Virus Evolution, 1(1):1–5, 2015.

[80] Darren P Martin, Ben Murrell, Michael Golden, Arjun Khoosal, and Brejnev
Muhire. RDP4: Detection and analysis of recombination patterns in virus genomes.
Virus Evolution, 1(1), 2015.

[81] John R Mascola and Barton F Haynes. HIV-1 neutralizing antibodies: understand-
ing nature’s pathways. Immunological reviews, 254(1):225–244, 2013.

[82] Rosemary M McCloskey, Richard H Liang, P Richard Harrigan, Zabrina L
Brumme, and Art F Y Poon. An evaluation of phylogenetic methods for re-
constructing transmitted HIV variants using longitudinal clonal HIV sequence
data. Journal of virology, 88(11):6181–94, 2014.

[83] Laura E. McCoy and Dennis R. Burton. Identification and specificity of broadly
neutralizing antibodies against HIV. Immunological Reviews, 275(1):11–20, 2017.

[84] David H McDermott, Peter A Zimmerman, Florence Guignard, Cynthia A Klee-
berger, Susan F Leitman, Philip M Murphy, Multicenter AIDS Cohort Study

http://biasmv.github.io/pv/


103

(MACS, et al. CCR5 promoter polymorphism and HIV-1 disease progression. The
Lancet, 352(9131):866–870, 1998.

[85] Kerensa McElroy, Torsten Thomas, and Fabio Luciani. Deep sequencing of
evolving pathogen populations: applications, errors, and bioinformatic solutions.
Microbial Informatics and Experimentation, 4(1):1, 2014.

[86] Jan Medlock, Abhishek Pandey, Alyssa S Parpia, Amber Tang, Laura A Skrip,
and Alison P Galvani. Effectiveness of UNAIDS targets and HIV vaccination
across 127 countries. Proceedings of the National Academy of Sciences, 114(15):
4017–4022, apr 2017.

[87] Mike Bostock, Jason Davies, Jeffrey Heer, Vadim Ogievetsky, and community.
D3.js. Software download. URL http://d3js.org/.

[88] Penny L. Moore, Carolyn Williamson, and Lynn Morris. Virological features
associated with the development of broadly neutralizing antibodies to HIV-1.
Trends in Microbiology, 23(4):204–211, 2015.

[89] H. Morbach, E. M. Eichhorn, J. G. Liese, and H. J. Girschick. Reference values
for B cell subpopulations from infancy to adulthood. Clinical and Experimental
Immunology, 162(2):271–279, 2010.

[90] Hugo Mouquet, Louise Scharf, Zelda Euler, Yan Liu, Caroline Eden, Johannes F
Scheid, A. Halper-Stromberg, P. N. P. Gnanapragasam, D. I. R. Spencer, M. S.
Seaman, H. Schuitemaker, T. Feizi, M. C. Nussenzweig, and P. J. Bjorkman.
Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies.
Proceedings of the National Academy of Sciences, 109(47):E3268–E3277, nov
2012.

[91] Rithun Mukherjee, Shane T. Jensen, Frances Male, Kyle Bittinger, Richard L.
Hodinka, Michael D. Miller, and Frederic D. Bushman. Switching between
raltegravir resistance pathways analyzed by deep sequencing. Aids, 25(16):1951–
1959, 2011.

[92] Kenneth Murphy and Casey Weaver. Janeway’s immunobiology. Garland Science,
2016.

[93] Ben Murrell, Sasha Moola, Amandla Mabona, Thomas Weighill, Daniel Sheward,
Sergei L Kosakovsky Pond, and Konrad Scheffler. FUBAR: a fast, unconstrained
bayesian approximation for inferring selection. Molecular biology and evolution,
page mst030, 2013.

[94] Ben Murrell, Steven Weaver, Martin D Smith, Joel O Wertheim, Sasha Murrell,
Anthony Aylward, Kemal Eren, Tristan Pollner, Darren P Martin, Davey M Smith,
et al. Gene-wide identification of episodic selection. Molecular biology and
evolution, 32(5):1365–1371, 2015.

http://d3js.org/


104

[95] Ben Murrell, Kemal Eren, Lorena S Ver, Nancy Choi, Elise Landais, Pascal
Poignard, Sergei Kosakovsky Pond, and Davey Smith. Full-length env deep
sequencing in a donor with broadly neutralizing N332 antibodies. In Keystone
Symposia on Molecular and Cellular Biology, 2016.

[96] Niranjan Nagarajan and Mihai Pop. Sequence assembly demystified. Nature
Reviews Genetics, 14(3):157–167, 2013.

[97] Fumiyo Nakagawa, Margaret May, and Andrew Phillips. Life expectancy living
with HIV. Current Opinion in Infectious Diseases, 26(1):17–25, 2013.

[98] Saul B. Needleman and Christian D. Wunsch. A general method applicable to
the search for similiarities in the amino acid sequence of two proteins. Journal of
molecular biology, 48(3):443–453, 1970.

[99] Oluwafemi O Oguntibeju. Quality of life of people living with HIV and AIDS
and antiretroviral therapy. HIV/AIDS (Auckland, N.Z.), 4:117–24, 2012.

[100] Mary E Pacold, Sergei L Kosakovsky Pond, Gabriel A Wagner, Wayne Delport,
Daniel L Bourque, Douglas D Richman, Susan J Little, and Davey M Smith. Clin-
ical, virologic, and immunologic correlates of HIV-1 intraclade B dual infection
among men who have sex with men. AIDS, 26(2):157–65, Jan 2012.

[101] Sankar K. Pal, Sanghamitra Bandyopadhyay, and Shubhra Sankar Ray. Evolution-
ary computation in bioinformatics: A review. IEEE Transactions on Systems, Man
and Cybernetics Part C: Applications and Reviews, 36(5):601–615, 2006.

[102] Aridaman Pandit and Rob J de Boer. Reliable reconstruction of HIV-1 whole
genome haplotypes reveals clonal interference and genetic hitchhiking among
immune escape variants. Retrovirology, 11:56, 2014.

[103] Mariona Parera, Nuria Perez-Alvarez, Bonaventura Clotet, and Miguel Angel
Martı́nez. Epistasis among deleterious mutations in the HIV-1 protease. Journal
of molecular biology, 392(2), 2009.

[104] Konrad Paszkiewicz and David J. Studholme. De novo assembly of short sequence
reads. Briefings in Bioinformatics, 11(5):457–472, 2010.

[105] Martine Peeters, Matthieu Jung, and Ahidjo Ayouba. The origin and molecular
epidemiology of HIV. Expert review of anti-infective therapy, 11(9):885–896,
2013.

[106] Pervez, M Babar, Asif Nadeem, M Aslam, A Awan, Naeem Aslam, Tanveer
Hussain, Nasir Naveed, Salman Qadri, Usman Waheed, and Muhammad Shoaib.
Evaluating the Accuracy and Efficiency of Multiple Sequence Alignment Methods.
Evolutionary Bioinformatics, page 205, dec 2014.



105

[107] Sergei L Kosakovsky Pond and Spencer V Muse. HyPhy: hypothesis testing
using phylogenies. In Statistical methods in molecular evolution, pages 125–181.
Springer, 2005.

[108] Art F Y Poon, Luke C Swenson, Evelien M Bunnik, Diana Edo-Matas, Hanneke
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