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ABSTRACT
Despite substantial reductions in the cost of sequencing over the last decade, genetic panels remain relevant due to their cost-
effectiveness and flexibility across a variety of sample types. In particular, single nucleotide polymorphism (SNP) panels are 
increasingly favoured for conservation applications. SNP panels are often used because of their adaptability, effectiveness with 
low-quality samples, and cost-efficiency for population monitoring and forensics. However, the selection of diagnostic SNPs for 
population assignment and individual identification can be challenging. The consequences of poor SNP selection are under-
powered panels, inaccurate results, and monetary loss. Here, we develop a novel and user-friendly SNP selection pipeline (mP-
CRselect) that can be used to select SNPs for population assignment and/or individual identification. mPCRselect allows any 
researcher, who has sufficient SNP-level data, to design a successful and cost-effective SNP panel for a diploid species of conser-
vation concern.

1   |   Introduction

Whole-genome sequencing (WGS) approaches have increased in 
feasibility and popularity as sequencing costs have declined and 
computational tools have improved. For many species, however, 
sequencing whole genomes from a large number of individuals 
or using WGS for continuous population monitoring is still cost-
prohibitive and computationally challenging. Well-established 
systems that rely heavily on genomic technologies, such as 
human (e.g. LaFramboise 2009) or agricultural genetics (e.g. Fan 
et al. 2010), frequently turn to single-nucleotide polymorphism 

(SNP) panels, arrays or other forms of reduced-representation 
sequencing, such as RADseq or ddRAD for population genetic 
studies (Hirsch et al. 2014; Scheben, Batley, and Edwards 2017).

SNP panels have been created for numerous non-model organ-
isms including: Iberian lynx (Kleinman-Ruiz et al. 2017), pumas 
(Fitak et al. 2015), lampreys (Hess et al. 2015), cichlids (Ciezarek 
et al. 2022), lions (Bertola et al. 2022), tigers (Khan et al. 2022; 
Natesh et  al.  2019), bison (Wehrenberg et  al.  2024), canids 
(Parker et  al.  2022) and many others. This increase in popu-
larity has occurred primarily because panels are cost-effective 
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and flexible (Puckett  2017). SNP panels are often designed to 
run on certain technologies (e.g., Fluidigm 96.96 Dynamic 
Array, Agena Bioscience MassARRAY), which limits them to 
specific facilities or ultimately requires additional validation on 
other machines (Carroll et al. 2018). Multiplex PCR (mPCR) is 
an alternative and more flexible approach, which involves cre-
ating a primer pool that amplifies many SNPs simultaneously. 
However, mPCR presents its own obstacles. For example, it 
can be challenging to avoid issues in the primer pools, such as 
primer dimers or cross amplification. Conversely, because it is 
relatively straightforward to add indexes and adapters for many 
individuals and adapt primers to be compatible with a variety of 
sequencing technologies, mPCR also has considerable benefits. 
Methods such as GT-seq (Campbell, Harmon, and Narum 2015) 
have made advances in the design and pooling of primers around 
specific loci, but the selection of those loci is left to the user.

The selection of loci for a targeted panel is critical to ensure that 
panel aims (such as population assignment or sample identity) 
are accurately achieved. For example, it is possible to include 
SNPs that are not informative, which have the potential to intro-
duce noise into downstream analyses. Further, when creating 
panels for multiple populations, SNPs that represent the ge-
netic variation in one population may not be informative in the 
other due to allele frequency differences (Biddanda, Rice, and 
Novembre 2020). This result has led the human genetics com-
munity to create multiple panels over time to better represent 
non-European human diversity, improve imputation accuracy, 
and bolster detection of variants that are associated with com-
plex traits (Bien et al. 2016).

Panel design often includes the goals of population assignment 
and individual identification. The first hurdle in marker selec-
tion is that the methods used to filter and select SNPs to achieve 
these two aims varies widely. Methods used for marker selection 
and filtering include but are not limited to, estimates of pi (π) or 
theta (θ), Hardy–Weinberg equilibrium (HWE), differentiation 
(FST), minor allele frequency (MAF), linkage disequilibrium 
(LD), in conjunction with various quality filters such as map-
ping and genotype quality (see e.g., Bertola et al. 2022; Ciezarek 
et al.  2022; Fitak et al.  2015; Hess et al.  2015; Kleinman-Ruiz 
et al. 2017; Natesh et al. 2019; Wehrenberg et al. 2024). Human 
geneticists previously developed approaches to select optimal 
genetic markers for ancestry (Balding and Nichols  1994; Baye 
et al. 2009; Galanter et al. 2012; Kidd et al. 2006; Manel, Gaggiotti, 
and Waples 2005; Rosenberg 2005; Rosenberg et al. 2003) and 
individual identification (Balding and Nichols  1994; Kidd 
et  al.  2006; Pakstis et  al.  2007, 2010). However, these insights 
are not always applied in non-model species. Significantly, a 
majority of the theory that guides SNP selection for population 
assignment and individual identification assumes that markers 
are in linkage equilibrium and segregating at an appreciable 
frequency within populations, making MAF and LD filtering 
most relevant during the SNP filtering stage (Kidd et al. 2006). 
Further, in human genetics, filtering for HWE is often used 
to ensure genotype quality since HWE outlier loci are often 
caused by sequencing errors. Whereas in conservation genet-
ics, HWE filters have been shown to remove informative loci 
that are variable between populations (Chen, Cole, and Grond-
Ginsbach  2017; Hemstrom et  al.  2024; Pearman, Urban, and 
Alexander 2022), primarily because conservation projects have 

substantially lower sample sizes or unknown population history 
and are potentially structured. Given the numerous approaches 
that exist and the potential large variance of their success in 
non-human species, the selection of loci remains challenging 
for conservation-oriented projects, but ultimately the selection 
of SNPs must be guided by the desired end result of the panel 
(individual identification, population assignment, parentage or 
a combination therein).

Adding to this list of considerations for marker selection, re-
searchers must also assess marker informativeness to build 
robust SNP panels. There are many different statistics that mea-
sure marker informativeness from the perspective of population 
assignment, including Fisher Information Content (FIC; [Pfaff 
et  al.  2004]), Shannon Information Content (SIC; [Rosenberg 
et  al.  2003]), F statistics (in particular, FST; [Wright  1951]), 
Informativeness for Assignment Measure (In; [Rosenberg 
et  al.  2003]) and the Absolute Allele Frequency Differences 
(delta, δ; [Rosenberg et al. 2003]). Principal Component Analysis 
(PCA) has additionally been used as a tool to select SNPs for 
structure identification and assignment (Paschou et  al.  2007). 
Fisher Information Content (FIC) is typically used in admixed 
populations and quantifies a marker's informativeness of the 
genetic contributions of ancestral populations. In contrast, 
Shannon Information Content (SIC) assesses the reduction in 
entropy (uncertainty) provided by a marker, reflecting its over-
all effectiveness in distinguishing between different ancestral 
source populations. F statistics (here we will focus on FST) 
quantifies genetic differentiation between source populations. 
The Informativeness for Assignment Measure (In) evaluates a 
marker's practical utility in assigning individuals to particular 
populations or groups while taking into account self-reported 
ancestry of a sampled individual. Absolute Allele Frequency 
Differences (delta, δ) measures the information content of a 
marker through quantifying the absolute allele frequency dif-
ferences between different ancestral source populations. Lastly, 
PCA is a dimensionality reduction technique and is often used 
to visualise and infer population structure in genetic data by 
identifying the main axes of variation in a population-level data-
set. Previous work has suggested that the two best methods of 
estimating marker informativeness for biallelic loci are In and 
FST (Ding et al. 2011), with In performing better for mixed ances-
try populations. Studies have also shown that selecting mark-
ers which maximise FST perform better than selecting markers 
using PCA (Wilkinson et al. 2011). While these approaches aim 
to optimise SNP selection, they do not inform on the ability 
of particular SNPs to assign individuals to the populations of 
interest.

In addition to estimating individual marker informative-
ness, there are methods for determining which combinations 
of markers will yield the most effective panel based on their 
ability to accurately assign individuals to the populations of 
interest, such as fORCA (Rosenberg  2005). Broadly, fORCA is 
an assignment function that computes the Optimal Rate of 
Correct Assignment (ORCA) across a set of markers, with the 
goal of assigning an individual to the source population from 
which the individual's genotypes are most likely to have arisen 
from. This approach has rarely been implemented outside of 
human and agriculturally relevant species, such as salmon 
(Storer et al. 2012), sheep (Sottile et al. 2018) and crop species 
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(Morrell and Clegg 2007). In rare cases, the method has been 
applied to non-model systems, such as in the domestic cat and 
European wildcat (Oliveira et al. 2015). Despite its relevance 
to optimising the selection of small panels (which are desir-
able in the conservation sector), this method has seldom been 
applied in non-model species.

Here, we seek to optimise diagnostic SNP selection using FST 
and fORCA, specifically for the purposes of population assign-
ment. We demonstrate the utility of this method of selection 
and assignment evaluation in humans, tigers and domestic 
dogs. We also briefly explore the overlap between selecting 
SNPs for population assignment and individual identification. 
Last, we present an accompanying pipeline, mPCRselect, 
that when provided with a variant call file (VCF) and pre-
designated populations uses a greedy algorithm to provide 
users with diagnostic SNPs suitable for population assignment 
and/or individual identification in the context of a multiplex 
PCR assay.

2   |   Materials and Methods

2.1   |   Simulated Genotype Data for Two 
Populations

We conducted forward-in-time simulations using SLiM 4.0.1 
(Haller and Messer  2023) on a high-performance computing 
cluster, utilising Dell node models R440 and xl170 with core 
speeds of 2.1 Ghz. We simulated a burn-in with neutral dynam-
ics for a population of 10,000 individuals, each with a uniform 
100 Mb genomic segment, until all lineages in the ancestral trees 
were fully coalesced. After the burn-in, the ancestral population 
was instantaneously split into two subpopulations of 10,000 
individuals each. We allowed no migration between subpopu-
lations after divergence. Simulations were conducted with a neu-
tral mutation rate of 1e−8 and a recombination rate of 1e−8. As 
the subpopulations diverged, we recorded individual genotypes 
every 200 generations until 2000 generations after the popula-
tion split. Increments of 200 generations were selected based on 
theoretical estimates of FST from Nicholson et al. (2002), and re-
sulted in the populations having an FST ranging [0.01, 0.1] with 
increments of 0.01.

Finally, we sub-sampled 100 individuals from each of the two 
populations and output a VCF for classification. The VCF was 
converted to a plink file with PLINK 2 (version 2.00a3.7LM; 
[Chang et al. 2015]). The plink file was filtered to 10,000 mark-
ers in linkage equilibrium with each other. Linkage pruning 
was achieved with the command ‘--indep-pairwise 500kb 0.2’.

2.2   |   Simulated Genotype Data for Three 
Populations

Using the same mutation rate, recombination rate and saved 
burn-in state as in the two-population simulations, we con-
ducted two additional sets of simulations of three diverging pop-
ulations. In the first set, the ancestral population split into three 
populations, (A, B, and C) after the burn-in, each consisting of 
10,000 individuals. In the second, the ancestral population split 

into two populations of 10,000 individuals after the burn-in, 
populations A and B. Then after 1000 generations (when A–B 
FST is expected to be 0.05) a third population of 10,000, popula-
tion C, split off from population A. Again, as the subpopulations 
diverged, we recorded individual genotypes every 200 genera-
tions until 2000 generations after the A-B population split.

Once again, we sub-sampled 100 individuals from each of the 
three populations and output a VCF for classification. The VCF 
was converted to a plink file with PLINK 2 (version 2.00a3.7LM; 
[Chang et al. 2015]). The plink file was filtered to 10,000 mark-
ers in linkage equilibrium with each other. Linkage pruning 
was conducted with the command ‘--indep-pairwise 500kb 0.2’.

2.3   |   Empirical Data

We applied marker selection methods (δ, FST, and PCA) to ge-
nomic data from three different species. We used whole-genome 
sequence data from humans in the 1000 Genomes Project (Dai, 
CDX; Puerto Rican, PUR; Luhya, LWK; Colombian, CLM; and 
Afro-Caribbean, ACB) (1000 Genomes Project Consortium 
et al. 2010); from tigers (Amur, Bengal, and Generic, [Armstrong 
et al. 2024]); and dogs (Labrador retriever and Yorkshire terriers, 
[Mooney et al. 2023]). Sample sizes were 88 humans from each 
population (N = 440 individuals total), 13 tigers from each of the 
Amur and Bengal subspecies and 13 Generic (N = 39 individuals 
total), and 100 individuals from each dog breed (N = 200 individ-
uals total). Unrelated individuals from the 1000 Genomes Project 
were identified using the ped file (20130606_g1k.ped) that is 
provided with the hg19 data. For the tiger data, unrelated in-
dividuals were previously identified in Armstrong et al. (2024). 
For the dog data, unrelated individuals were previously iden-
tified in Mooney, Yohannes, and Lohmueller  (2021). We used 
PLINK 2 (version 2.00a3.7LM; [Chang et al. 2015]) and filtered 
for a minor allele frequency that was at least 5% (common in the 
population) and markers that were in linkage equilibrium with 
each other. We used the command ‘--maf 0.05 --indep-pairwise 
500kb 0.2’ to accomplish this filtering. Then, we created a subset 
of 10,000 markers randomly sampled from across the genome 
using the remaining markers in linkage equilibrium.

2.4   |   Population Assignment Performance 
Function

We assigned individuals to populations with a performance 
function, fORCA (Rosenberg et al. 2003), which uses the genotype 
of an individual and population-level allele frequencies of the 
selected marker for population assignment. For a detailed de-
scription of the fORCA approach, see Rosenberg  (2005). Briefly, 
for each sample we calculated the probability that the individual 
originated from a given source population (k), then we assigned 
the individual to the population that had the highest probability 
of assignment.

2.5   |   Marker Selection and Population Assignment

FST (Wright 1951) was used to quantify the genetic differentia-
tion among subpopulations. The higher the FST value, the more 
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pronounced the genetic differentiation. Various definitions and 
formulations of FST exist, and in this work, we use

to calculate FST values (Balding 2003). We calculated FST values 
for all of the markers and sorted the results in descending order. 
A greedy algorithm was applied to select the top M markers to 
compose a marker panel for individual classification.

Population-level allele frequencies were computed on the basis 
of the sampled individuals. We used fORCA to assign N individu-
als a population label computed with either M random markers 
or the M top markers. Accuracy was measured as the proportion 
of empirical individuals that were classified with the correct 
population label. We ran 20 replicates of each classification sce-
nario in the simulated and empirical datasets.

2.6   |   mPCRselect Pipeline

We designed a novel Nextflow pipeline to select optimal SNP 
markers for population differentiation and individual identi-
fication. The pipeline is compatible with macOS and Linux 
operating systems and can run locally on a desktop/laptop 
computer, remotely on a computing cluster, or in the cloud. 
Most dependencies can be installed automatically in their 
own Conda environment through Nextflow (Di Tommaso 
et  al.  2017). Only the optional dependencies (BaitsTools; 
[Campana  2018] and NGS-PrimerPlex; [Kechin et  al.  2020]) 
must be installed by the end-user as no Conda recipe currently 
exists for these packages. We describe the pipeline briefly 
below. A simplified flow diagram of the pipeline is available 
as Figure  S1. See the mPCRselect documentation (https://​
github.​com/​ellie​earms​trong/​​mPCRs​elect​) for a complete di-
agram including the various parameters, internal processes 
and outputs.

mPCRselect's primary input files are a variant call format (VCF) 
file of individual genotypes and a comma-separated value (CSV) 
table assigning each individual in the VCF to a designated pop-
ulation. Optional input includes a list of individuals to remove 
from the dataset, a list of chromosomes to retain in the analysis 
and a browser extensible data (BED) format file of genomic co-
ordinates to remove from the dataset (e.g., regions of low map-
pability, repetitive regions, etc.). mPCRselect uses VCFtools 
(Danecek et al. 2011) to remove unwanted individuals, chromo-
somes and genomic regions from the dataset. VCFtools is also 
used to identify and remove singleton and individual-unique 
doubleton sites, remove sites that failed previously applied fil-
ters (e.g., those without a ‘PASS’ flag), exclude non-biallelic 
sites, and to filter the input VCF by genotype quality (GQ), site, 
and individual data missingness. The pipeline uses a custom 
Python script (‘Culling.py’) to remove SNPs that are within a 
user-specified distance of another SNP (default is 40 bp; recom-
mended based on typical size of amplicons). This filter aims to 
exclude variants where primer attachment sites would contain 
additional SNPs and inhibit amplification. Afterwards, the sites 
are optionally thinned by physical distance using VCFtools and 

by LD using PLINK 2 (Chang et al. 2015). The resulting file then 
is pushed through two distinct paths to select markers for pop-
ulation assignment and markers for individual identification, 
respectively.

For population assignment, we implement the greedy algorithm 
described above using a custom R script (‘make_fst_plots.R’). 
In order to account for differences in sample size between pop-
ulations, we bootstrap individuals to a user-specified population 
size (default is 20 individuals per population). The greedy algo-
rithm is run a user-specified number of times (default is 20 rep-
etitions per comparison of two populations). Users are provided 
with output plots which correlate the number of markers with 
assignment accuracy for each repetition. Additionally, mPCRse-
lect identifies the sites with the highest FST values overall using 
VCFtools (flag ‘--weir-fst-pop’). mPCRselect then uses a custom 
Ruby script (‘get_best_snps.rb’) to identify the sites that appear 
most frequently in the lists of highest FST sites from each of the 
greedy algorithm runs and from the VCFtools FST analysis.

To select markers for individual identification, the VCF file is 
first split into distinct populations and π is then estimated using 
VCFtools with the flag ‘--site-pi’, which calculates nucleotide di-
vergence on a per site basis using the following equation:

where AC is allele count and AN is allele number. We use π to 
select sites for individual identification, because π will also be 
maximized at alleles with intermediate frequencies. For each 
population, we compile a list of sites with the highest π. We then 
use the ‘get_best_snps.rb’ script to identify the most frequently 
appearing sites across the datasets. Afterwards, we calculate 
the Probability of Identity (PID) of the selected SNPs using a 
custom R script (‘RMP_calc.R'). PID is the probability that two 
randomly sampled individuals have identical genotypes. For bi-
allelic loci at Hardy–Weinberg equilibrium, this probability is: 

After site selection, the individual identification and ancestry 
assignment SNP sets are combined and the user can choose 
to design baits for capture-based projects using BaitsTools 
(Campana  2018) or alternatively import the sites into NGS-
PrimerPlex (Kechin et al. 2020) to design primers for multiplex 
SNP panels. Finally, as an in silico validation of the panel de-
sign, the programme performs PCA (using PLINK 2) on the bi-
allelic sites from the unfiltered input VCF, the post-filtering VCF 
and the final chosen population-assignment and individual-
identification sites (both separately and concatenated).

We benchmarked the mPCRselect pipeline using the ‘time’ 
command and default mPCRselect settings (as specified in the 
default ‘nextflow.config’ file for mPCRselect 0.3.1) on a 2022 
Mac Studio with an Apple M1 Max chip and 64 GB of memory. 
Our benchmarking analysis used a sub-selected dataset of 40 
tigers representing six populations (Amur, Bengal, Generic, 
Indochinese, Malayan and Sumatran: Armstrong et  al.  2021; 
dataset available on dryad under doi: 10.5061/dryad.0k6djhb96). 

FST =
var(p)

p∗q

� =
AC∗ (AN − AC) + (AN − AC) ∗AC

AN∗ (AN − 1)

p4 + 4p2(1−p)2 + (1−p)4

https://github.com/ellieearmstrong/mPCRselect
https://github.com/ellieearmstrong/mPCRselect
https://doi.org/10.5061/dryad.0k6djhb96
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The dataset consisted of 1,319,280 variant sites on three chromo-
somes (B1, F2 and D4), which the benchmark settings further 
restrict to two chromosomes (B1 and F2; maximum 1,020,529 
sites) to test the chromosome filtration step.

3   |   Results

3.1   |   Population Assignment Using Realistic 
Simulated Data

To better understand how FST influenced the ability of fORCA to 
assign individuals to a population, we simulated a split-model 
of two populations with no migration in SLiM. We used the full 
data to estimate allele frequencies and compute FST between the 
two populations. Then, we classified subsets of (N) individuals 
using (M) markers for population assignment. For each set of 
parameters, we computed the rate of misclassification while 
varying N, M, and FST values. Overall, we found that when 
FST between populations is 0.01, individuals could be correctly 
assigned to a population with as few as 10 markers (Figure 1). 
However, the probability of incorrectly assigning individuals is 
quite large, the average misclassification rate was approximately 
37% (Table S1). Importantly, increasing the marker set to as few 
as 100 markers decreased the average misclassification rate to ap-
proximately 12% (Table S2). Conversely, when FST = 0.09, which 
is on the same order of magnitude as the average FST between 
two human populations (Ramachandran et al. 2005; Rosenberg 
et al. 2005), 10 markers resulted in an average misclassification 
rate of 21% (Table S1). When we increased the marker set and in-
cluded 80 markers, we achieved misclassification rates that were 
on-average < 1% (Figure 1). Increasing the number of markers 
improved accuracy for every tested value of FST (Figure 1). Our 
results demonstrate that when FST is small (0.01), it is necessary 
to include more markers for accurate classification (Tables  S1 
and S2), and as FST increases accurate results can be achieved 
with fewer markers and fewer individuals (Figure 1).

3.2   |   Empirical Data

After testing the algorithm with simulated data, we tested the 
method using three empirical data sets from humans, tigers 
and domestic dogs. Following the simulations, we used the full 
data to estimate allele frequencies and compute FST between 
the two populations. Then, we classified subsets N individuals 
with M markers for population assignment. First, we compared 
publicly available human data from the 1000 Genomes Project 
(1000 Genomes Project Consortium et al. 2010). We used whole-
genome sequence data from an African population with a single 
origin, the Luhya from Kenya, and an Asian population with 
a single origin, the Dai from China (Figure  2A). The  FST be-
tween these population approximately 0.11. When the number 
of markers was the smallest, we observed the largest accuracy 
gain using the markers selected from the method developed 
here versus randomly selected markers in linkage equilibrium. 
For example, when the number of markers was the smallest 
(M = 10), the average accuracy across random marker sets was 
0.8884 ± 0.0651, while the average accuracy across top marker 
sets is a perfect accuracy of 1. When the number of randomly se-
lected markers was 20, we observed an average accuracy across 
groups of 0.9611 ± 0.0040, compared to the top marker set which 
had an average accuracy of 1. As the number of markers in-
creased, the accuracy gain decreased. This pattern was observed 
across all datasets.

Given their endangered status and relatively recent efforts to 
sequence tiger populations, we only had access to 13 Amur 
individuals for performing classification (Figure 2B). The lim-
ited sample size also impacted our ability to vary the number 
of individuals we sampled for classification. However, because 
the FST value (~0.2; [Armstrong et al. 2021]) between the wild 
Amur and Bengal tiger populations is larger than that of human 
populations, even using only 10 random markers results in a 
classification accuracy of 0.9173 ± 0.0652 (Figure 2A,B). This 
accuracy was higher than what was achieved in the human 

FIGURE 1    |    Classification using simulated data. Two populations with a given measure of FST (as indicated in the grey bar above each panel) 
were classified using (M) markers (x-axis) and that consisted of (N) individuals per-population (y-axis). The mean misclassification rate over 20 
simulation replicates per parameter combination ranges from 0 (pink) to 0.4 (light yellow). As the FST value and number of markers increases, the 
misclassification rate decreases.

0.37 0.3 0.3 0.25 0.22 0.21 0.17 0.15 0.13 0.11

0.37 0.31 0.27 0.24 0.21 0.2 0.17 0.16 0.13 0.11

0.37 0.31 0.27 0.23 0.21 0.2 0.17 0.15 0.13 0.12

0.37 0.31 0.27 0.24 0.2 0.19 0.17 0.15 0.14 0.12

0.37 0.31 0.27 0.24 0.2 0.19 0.17 0.14 0.13 0.11

0.26 0.19 0.11 0.1 0.08 0.03 0.02 0.02 0.01 0.01
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dataset with the same number of markers for each set of clas-
sifications. Additionally, the random marker set accuracy 
began to match the top markers more quickly in the tigers 
than humans.

Lastly, we examined breed dogs (Figure  2C), which have 
high homozygosity within breeds, but are quite divergent be-
tween the various clades (Parker et  al.  2017). We used two 
breeds with the largest samples from Mooney, Yohannes, and 
Lohmueller  (2021): Yorkshire Terrier and Labrador Retriever. 
Since both dog (FST ~ 0.14) and tiger populations (FST ~ 0.2) had 
a slightly larger FST than the human populations (FST ~ 0.1), we 
once again observed that the random marker set started with 
a high classification accuracy (0.9128 ± 0.0639) and reached 
the same performance as top markers faster relative to humans 
(Figure 2).

We also created a dataset that allowed us to explore whether the 
degree of admixture influenced our ability to accurately clas-
sify populations (Figures  S2 and S3). In order to achieve this, 
we conducted classification in additional human populations, 
specifically Puerto Rican, Colombian and Afro-Caribbean 
populations, (Figure  S2) as well as the captive (Generic) tiger 
population (Figure  S3). We found that admixture decreased 
classification accuracy in both human and tiger populations. 
The drop in accuracy was most impactful when using random 
marker sets (Figures  S2 and S3), and less severe when using 
fORCA in conjunction with the pipeline developed here which 
selected the top FST markers. It is also important to note that 
the degree to which there was shared ancestry between the two 
populations played a role in the magnitude of the decreased ac-
curacy. For example, the Puerto Rican population represented in 

1000 genomes has a more similar ancestry composition to sam-
pled Colombian population than the sampled Afro-Caribbean 
population (1000 Genomes Project Consortium et  al.  2010). 
Thus, the classification is much worse across all random marker 
sets in the Colombian population compared with the Afro-
Caribbean. Classification also required more top FST markers to 
perform accurately in the admixed populations. In the tigers, we 
observed a similar pattern when comparing classification accu-
racy for differentiating the Amur and Bengal populations versus 
the Amur and Generic (captive) populations. On average, a ran-
dom individual in the captive population could have up to ap-
proximately 39% Amur ancestry (Armstrong et al. 2024), which 
led to a marked (0.9173 ± 0.0652 to 0.8442 ± 0.0813) drop in our 
classification accuracy at the minimum marker set, M = 10, and 
a lag in the random marker classification accuracy reaching the 
accuracy of the top markers.

We also repeated all of the classifications while splitting the 
data into a training (humans N = 30, dog N = 30, and tiger N = 5) 
and test set of individuals (humans N = 50, dog N = 50, and tiger 
N = 10) and obtained results for each classification (Figure S4). 
Overall, our results with the split and full data were similar. 
We observed the worst performance when classifying the two 
admixed populations with the lowest FST values. When the full 
data were used, we observed slightly better classification results 
with both the top markers and random markers in linkage equi-
librium. Though the full data resulted in better accuracy for 
classification, in the case of replicates with random markers, the 
standard deviations of the full data overlapped with the split data 
(Figure S4). The stability of accuracy across these two scenarios 
demonstrated that the most important component for classi-
fication is the number of individuals that were independently 

FIGURE 2    |    Classification accuracy using two approaches, top FST markers (triangles) and random markers in linkage equilibrium (circles). For 
the random markers, each dot signifies the mean over 20 simulation replicates, error bars represent the standard deviation. The x-axis indicates the 
number of markers used for classification and the dot colour indicates the number of individuals. The accuracy of classification is shown on the 
y-axis. Here, three classifications were conducted using human populations (Luhya and Dai), tiger populations (Amur and Bengal) and breed dogs 
(Yorkshire Terrier and Labrador Retriever).
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sampled to infer the allele frequency within the population and 
compute FST between populations.

Overall, our marker selection method with FST always outper-
formed the randomly selected marker sets. In order to accurately 
classify population pairs with lower FST values, we always had 
to use more markers. For randomly selected markers in linkage 
equilibrium, as more markers are incorporated into the panel, 
there was consistently better performance for population assign-
ment. Our results are comparable to previous conclusions from 
both theory and empirical data (McVean 2009; Patterson, Price, 
and Reich 2006; Rosenberg 2005).

3.3   |   Allele Frequency Differences of the Most 
Informative Markers

We next examined the allele frequency distributions of the top 
marker sets in humans, tigers and dogs (Figure  3). As we ex-
pected, the majority of top FST markers were concentrated at 
opposite allele frequencies, irrespective of the compared pop-
ulations. Given that FST quantifies the magnitude of drift be-
tween two populations, this was expected. The allele frequency 
differences were smallest in the human populations studied 
(Figure 3A) and largest in tigers and dogs (Figure 3B,C), which 
have larger values of FST overall.

Taking the same approach as with classification, we explored 
whether the degree of admixture influenced the magnitude 
of the allele frequency gap of top FST markers between the 
same admixed human and captive (Generic) tiger populations 
(Figures  S5 and S6). Indeed, admixture decreased the allele 
frequency gap and the degree to which there was shared an-
cestry affected how close the allele frequency gap was. This 

was expected, given that recent shared ancestry will likely 
result in populations having more similar allele frequencies 
(Ramachandran et al. 2005). Since the Puerto Rican population 
has a more similar ancestry composition to sampled Colombian 
population (FST ~ 0.005), we expected that the allele frequency 
gap would be smaller than both the Afro-Caribbean (FST ~ 0.054) 
and Luhya (FST ~ 0.065) populations, which was ultimately what 
we observed (Figure S5). The tigers followed this expectation as 
well, and the allele frequency gap between the Amur and Bengal 
tigers was larger than that between the Amur and Generic tigers 
(Figure S6).

3.4   |   The Relationship Between Top Ancestry 
Markers and Probability of Identity

One measure of the degree to which a marker is useful in in-
dividual identification is the probability that two random in-
dividuals from the population have matching genotypes at the 
marker—if this probability is low, then the marker will distin-
guish individuals often. We will refer to this probability as the 
PID. PID is defined as the probability that two randomly sam-
pled individuals have identical genotypes. For biallelic loci in 
Hardy–Weinberg equilibrium, this probability is:

The equation above is minimised at allele frequency p = 0.5. In 
other words, markers with allele frequencies near 0.5 are the 
most useful for individual identification. Such markers tend to 
not be found in our top FST marker sets (Figure 3). In tigers and 
dogs, markers with high FST seldom had allele frequencies near 
0.5 in either population. For human populations, though we 
found more alleles that existed at frequencies closer to 0.5, we 

p4 + 4p2(1−p)2 + (1−p)4

FIGURE 3    |    Allele frequency of the top 100 FST markers between populations, and the frequency difference for each marker between various 
populations. The x-axis indicates the rank of FST values of the markers, and the y-axis indicates the markers' allele frequency in both Luhya 
(represented in blue) and Dai (represented in red) populations; Amur (represented in blue) and Bengal (represented in red); and Labrador Retriever 
(represented in blue) and Yorkshire Terrier (represented in red).
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still did not observe a strong overlap between top FST and PID 
markers when comparing our reference population. When we 
identified the top 100 markers for minimising PID, we observed 
no overlapping markers in the Luhya population, no overlap-
ping markers in the Amur subspecies and no overlapping mark-
ers in Yorkshire Terriers when the marker set was overlapped 
with the top FST markers in Figure 3. When we further explored 
the overlap between top FST and PID markers, we found that 
two markers overlapped when comparing the Puerto Rican and 
Luhya populations, one marker overlapped when comparing the 
Puerto Rican and Colombian populations, two markers over-
lapped when comparing the Puerto Rican and Afro-Caribbean 
populations and no markers overlapped when comparing the 
Generic and Amur populations.

3.5   |   mPCRselect Performance

The mPCRselect analysis completed in 2 wall clock hours (17.4 
CPU hours) using the equivalent of 8.86 CPUs. As analysis time 
scales approximately linearly with both the number of sites and 
the number of individuals, these results indicate that large (mil-
lions of SNPs and hundreds of individuals) can be processed on 
a current workstation in a reasonable time frame (a few days). 
Extremely large datasets or those that utilise a large number 
of populations (> 6) may require parallelisation on a high-
performance computing cluster or cloud instance as the number 
of FST comparisons scales approximately quadratically with the 
number of specified populations.

4   |   Discussion

This work introduces the mPCRselect pipeline which is designed 
to provide users with a sufficient marker set to distinguish pop-
ulations within their species of interest and/or a marker set to 
identify individuals. Markers for population assignment are se-
lected using FST and tend to be close to fixation or loss when 
comparing two populations, while markers which optimise 
individual identification hold intermediate frequencies within 
populations. Implementing our marker selection method con-
sistently reduces the number of markers required for accurate 
population assignment.

Our findings are consistent with previous research, where the 
relationship between the number of SNPs, their frequency, and 
the power to detect differentiation between populations has 
been explored in a conservation context (Morin, Martien, and 
Taylor 2009; Willing, Dreyer, and van Oosterhout 2012). Morin, 
Martien, and Taylor (2009) primarily explored this relationship 
from the perspective of initial study design (i.e., determining 
how many loci are necessary to detect population structure with-
out having knowledge of the MAF or linkage status of a marker) 
and confirmed that more SNPs are necessary to detect differen-
tiation between groups with lower values of FST. Willing, Dreyer, 
and van Oosterhout (2012) also echoed results from Patterson, 
Price, and Reich  (2006) showing that even with small sample 
sizes, large numbers of markers can compensate to provide 
accurate estimates of FST. A graphical user interface with the 
explicit goal of helping conservation practitioners select the ap-
propriate number of samples and markers and avoid suboptimal 

sampling was presented in Hoban et al. (2013), again from the 
perspective of initial study design. Critically, these studies em-
phasize that a sufficient number of individuals must be sampled 
in order to get an accurate estimate of allele frequencies in the 
population and FST.

Our method is in line with previous findings, but we approach 
the other end of the problem when populations have already 
been identified and one desires identifying optimal markers. 
We found that population assignment accuracy increases as 
more informative markers are added. We observed the lowest 
accuracy when we used the smallest set of random markers 
(M = 10), and as the number of random markers increased, they 
achieved a performance similar to the top markers. This lim-
itation on information content when using FST for marker se-
lection was previously highlighted in several studies (Balding 
and Nichols 1994; Baye et al. 2009; Galanter et al. 2012; Kidd 
et al. 2006; Manel, Gaggiotti, and Waples 2005; Rosenberg 2005; 
Rosenberg et al. 2003). Our method, which identifies the most 
informative markers by computing FST, then conducts popula-
tion assignment with fORCA consistently outperforms or does as 
well as random markers when a sufficient set size is achieved. 
However, we emphasise the findings of previous studies which 
show that sufficient data are necessary for detecting population 
structure initially (i.e., that sufficient markers and individuals 
are required to detect structure between populations; Patterson, 
Price, and Reich 2006, Morin, Martien, and Taylor 2009, Willing, 
Dreyer, and van Oosterhout 2012). Insufficient data at this stage 
would ultimately result in inaccurate allele frequencies and hin-
der the accurate estimation of FST and π, which are critical for 
optimal marker selection.

Our pipeline independently estimates the population level allele 
frequency and FST between populations before classification. 
Thus, when individuals are added or removed from assign-
ment, we see only slight fluctuations in assignment accuracy. 
For example, in Figure 1, in the case where FST = 0.01 and the 
number of markers is fixed at N = 20, as we increase the number 
of individuals being classified, we observe a slight increase in 
the average misclassification rate from 0.3 to 0.31 over simula-
tion replicates. Importantly, the average misclassification rate 
is stable, and the standard deviations as we increase the num-
ber of individuals overlap (Figure S7). Additionally, we observe 
the same slight fluctuations across FST. When we compare FST 
of 0.08, 0.09, and 0.1 and we select a fixed number of markers 
(N = 10) and number of individuals (N = 10) for classification, av-
erage accuracy is similar across FST values. The slight change is 
due to generating a new replicate and selecting new individuals 
for each classification replicate. However, there is no significant 
difference between these small fluctuations and average accu-
racy remains stable across the number of selected markers and 
individuals when the change in FST is small (Figure S7).

It is important to note that populations with higher diver-
gence (as measured by FST) will require fewer markers for 
classification, whereas populations that are less divergent 
will require more markers. If divergence between popula-
tions is large enough, one could even use very few random 
markers in linkage equilibrium and accurately classify indi-
viduals to a population. For example, in Figure S3 when FST 
is extremely high (e.g., tigers), we have the ability to classify 
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individuals (accuracy > 0.9) with even 20 random markers. In 
contrast when FST is lower, such as in Figure S2 with human 
populations, when we add more random markers, we do not 
observe as steep of a gain in assignment accuracy for clas-
sification. Our work is not the first to highlight this result 
while using fORCA for population assignment. For example, in 
Rosenberg (2005), as few as 20 randomly selected markers in 
linkage equilibrium could classify human populations with 
an accuracy of ~90%. For other organisms (carp, cat, chicken, 
dog, fly, grayling and maize) as few as six random markers in 
linkage equilibrium could be used to achieve an assignment 
accuracy around ~90%.

We also explored alternate methods for marker selection for 
classification apart from FST, since fORCA and mPCRselect can 
perform assignment with any set of markers the user desires. 
We observed that FST and δ were consistently the best methods 
for marker selection across species (Figure S8). Generally, PCA 
demonstrated the worst performance. In the case of classifying 
the two dog populations, PCA had a lower accuracy than even 
random markers. The general poor performance of PCA for pop-
ulation assignment in relation to FST and δ has also been ob-
served in previous work (Wilkinson et al. 2011).

Lastly, we used simulations to explore the accuracy of classi-
fying a different population than either of those used to select 
markers. In the first set, the ancestral population split into three 
populations, A, B and C. In the second set, the ancestral popula-
tion splits into two populations A and B, and after 1000 genera-
tions (when A–B FST is expected to be 0.05), a third population, 
C, split off from population A. This split time results in A and C 
having a divergence that is half of A and B.

In the case where population C split off from the ancestral 
population at the same time as A and B, and we used pop-
ulations A and B to compute allele frequencies and select 
markers, we found on average (across 20 replicates) that the 
misclassification rate increased when C (Figure S9) was clas-
sified instead of A (Figure 1). When FST between populations 
is 0.01, individuals could still be correctly assigned to a pop-
ulation with as few as 10 markers (Figure S9). However, the 
probability of incorrectly assigning individuals is quite large, 
the average misclassification rate increased from approxi-
mately 37% (Figure 1) to approximately 43% (Figure S9). When 
we increased the marker set to 100, the average misclassifi-
cation rate more than doubled to approximately 28% relative 
to Figure 1, where the average misclassification rate was ap-
proximately 12% (Figure S9). When FST = 0.1, we observed an 
average misclassification rate as high as 33% (M = 10) in con-
trast to Figure  1 where the largest average misclassification 
rate was approximately 21% (Figure S9).

In the simulations where population C split from A and popula-
tion C maintained an equivalent FST with B as A, our approach 
is capable of classifying individuals from C using markers se-
lected from populations A and B (Figure  S10). However, as 
expected, we observed that population assignment accuracy 
was on average slightly lower than classifying population A, 
though the confidence intervals across simulation replicates 
overlapped (Figure S10). For example, when FST between pop-
ulations A and C was 0.01, and 0.06 between A and B and B 

and C, if 10 markers were used  the average accuracy across 
the 20 replicates was 0.6950 ± 0.0809 when A was classified 
versus 0.7075 ± 0.0950 when C was classified (Figure  S10). 
When the number of markers increased to 100, the average 
accuracy across the 20 replicates was the same 0.9825 ± 0.0335 
when A was classified versus 0.9825 ± 0.0245 when C was 
classified (Figure S10). The same pattern held as FST between 
populations A and C increased 0.05, and FST between A and 
B and B and C increased to 0.1. When we used 100 markers 
for classification, the average accuracy across the 20 replicates 
was the same 0.9950 ± 0.0154 when A was classified versus 
0.9950 ± 0.0224 when C was classified (Figure S10). Through 
these two sets of simulations, we observed that classification 
of a related population is possible using markers selected from 
its close relative. mPCRselect will produce stable classification 
results when the populations being interchanged are closely 
related, here FST ≤ 0.05, and genetically equidistant from the 
other population of interest.

In the future, one natural extension to explore is optimising 
markers for PID and population assignment simultaneously, 
rather than as distinct steps. Incorporating PID will tend to in-
crease the number of markers on the panel, because markers that 
are most informative for population classification (Figure 3) typ-
ically have relatively low minor allele frequencies in each sub-
population. Conversely, PID (as defined above) is minimised by 
alleles of intermediate frequency. Thus, for biallelic loci, the top 
FST markers, which are the markers most useful in population 
assignment, tend to be the least useful markers in the individual 
identification. This contrasts with the situation for multi-allelic 
human STRs, where a correlation has been observed between 
markers' usefulness for individual identification and for popu-
lation classification (Algee-Hewitt et al. 2016). Another natural 
extension of this method could be for identification and selec-
tion of marker sets for sex identification and relatedness. If one 
wanted to approach creating a marker set that is balanced for 
both population assignment and individual identification, a 
greedy approach might be useful. The user begins with a SNP 
that is high in fORCA (or low in PID) across populations and for 
every subsequent SNP measure whether they are farther away 
from their desired fORCA or PID goals. Then, they would select a 
SNP that maximises the approach for fORCA or PID, conditional 
on the SNPs already in the set.

Though we do not discuss the practical applications of apply-
ing SNP panels here, it is broadly recommended to design and 
test more primer sets than what is identified as the ‘minimum 
number’ to achieve successful population assignment or indi-
vidual identification, since some SNPs will not amplify as well 
as others, or may not work due to other factors such as primer di-
merisation. Panels designed for low-quality samples (scat, hair, 
environmental or forensic materials) may require an increase 
in the overall number of SNPs being screened, as drop out will 
occur due to sample degradation, which will impact the ability 
to accurately assign or identify any one sample. This must be 
balanced with the expected amount of endogenous DNA in the 
sample because primers will not amplify well if there is too little 
DNA template. Similarly, we recommend designing ‘excess’ hy-
bridisation capture baits as individual baits vary in their capture 
efficiency (e.g., due to GC content, secondary structures, synthe-
sis efficiency, etc.). This can result in biased capture and locus 



10 of 12 Molecular Ecology Resources, 2025

drop out. While hybridisation capture works well on fragmented 
and low-concentration DNA samples, capture can become inef-
ficient if the capture conditions are too non-specific and can fail 
if the target sequences are too divergent from the capture baits 
(> ~20%: Hawkins et al. 2016). To maximise recovery of specific 
loci or genotype low-quality samples, we recommend increased 
tiling density (the depth of bait coverage over a specified target) 
to improve the likelihood of capture (e.g., Parker et al. 2022).

Our novel pipeline mPCRselect streamlines SNP panel design 
for ancestry assignment and individual identification. Further, 
the flexibility of this software allows for straight-forward inte-
gration of novel algorithms for marker selection in the future. 
Similar pipelines have already been created for selecting markers 
from human genomic data (Chen et al. 2020). One such pipeline 
is the R Package AIMsetfinder, which uses a Bayesian approach 
to identify SNPs which are informative of population assign-
ment. AIMsetfinder's approach is different from the approach 
described here because it tests every marker in the dataset, then 
goes backwards to create a set of markers that minimise a log-
arithmic loss function (Pfaffelhuber et al. 2020). Contrastingly, 
our pipeline maximises our assignment function, fORCA, using 
the most informative markers while simultaneously providing 
the user with a seamless connection to amplicon primer or hy-
bridisation capture design software.

In sum, to create an effective SNP panel, one must carefully con-
sider the minimum number of markers that should be present on 
the panel and the number of individuals to sample. These values 
should be determined by how divergent the populations of inter-
est are and how accurate the classification needs to be. Our pipe-
line mPCRselect streamlines the process of selecting optimised 
markers for population assignment and individual identification 
for any user with sufficient data.
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