
UC Irvine
ICS Technical Reports

Title
Minimizing syntactic variance with assignment decision diagrams

Permalink
https://escholarship.org/uc/item/8bb922r5

Authors
Chaiyakul, Viraphol
Gajski, Daniel D.
Ramachandran, Loganath

Publication Date
1992-04-16

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8bb922r5
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Minimizing Syntactic Variance
~

with
Assignment Decision Diagram~

Viraphol QhaiyakuJ
Daniel D. Gajski ,

Loganath Ramachandran

Technical Report #92-34
April 16, 1992

Dept. of Information and Computer Science
U niversity of California, Irvine

Irvine, CA 92717
(714) 856-8059

Abstract

Most synthesis systems generate designs from hardware descriptions by relating each lan­
guage construct to a particular hardware structure. Thus, designs obtained from these
systems are dependent on description styles. In other words, semantically equivalent
descriptions with different ordering or grouping of conditional and assignment state­
ments, could generate designs with distinctively diff erent cost and performance. This
paper introduces a new representation that minimizes the syntactic variance of diff erent
description styles. We also propose an algorithm for conversion of hardware descrip­
tions into this new representation. In addition, using this representation for scheduling
results in a drastic reduction on the number of control steps required to synthesize the
description. Experimental data on severa[examples show effectiveness ofthe proposed
approach.

c/JJil{

1i e -

(JO, -Jf
,, l¡ '
\.:_,¡ / /

Contents

1 Introduction 3

2 Overview of our approach 5

3 Assignment Decision Diagrams 7

4 Converting input description into ADD 9

4.1 Converting an assignment statement .. 10

4.2 Converting an IF-THEN-ELSE statement 10

4.3 Converting a CASE statement to ADD . 11

4.4 Converting a loop to AD D 11

4.5 Merging of two consecutive ADDs 12

5 Experimental results 14

6 Conclusion 17

7 References 17

1

List of Figures

1 Examples of descriptions that have the same semantics but different styles: (a)
different ordering of conditional branches, and (b) different grouping of condi-
tional branches. 3

2 Two descriptions with the same semantics but different ordering of statements:
(a) description 1 and its corresponding control-fiow graph, and (b) description
2 and its corresponding control-fiow graph. 4

3 Overview of the proposed approach: (a) a general high-level synthesis system,
(b) incorporating the proposed approach. 5

4 The Assignment Decision Diagram. 7

5 Algorithm for converting a list of statements toan ADD . 9

6 Examples of ADDs for assignment statements. 10

7 An example of converting a simple IF-THEN-ELSE statement toan ADD. 11

8 An example of merging consecutive ADDs, where ADDl is taken from Figure 7
and ADD2 is taken from Figure 6. 12

9 Usages of language constructs in each example. 15

10 Results from the experiment using traditional approach and our approach. 16

2

1 Introduction

High-level synthesis is a process of synthesizing design from a given abstract behavioral
description. In general, the process includes: compiling descriptions into an interna!
representation, transforming the interna! representation into a more suitable form for
synthesis, partitioning operations into control steps, and binding operations and inter­
connects to the appropriate resources.

Input descriptions to the synthesis system usually contain a set of high-level language­
constructs, (e.g., conditional branches, loops) that make use of complex data types, (e.g.,
integers, arrays, and records). Most systems synthesize designs from such descriptions
by associating each language construct with a particular hardware structure. For ex­
ample, conditional branches and loops are translated to control structures [5, 7, 9, 14),
while operations in basic blocks are executed in a datapath [7, 12). Because of the
close relationship between language constructs and the synthesis algorithms
the design quality obtained from these systems is dependent on the input
description. In other words, semantically equivalent descriptions that differ syntac­
tically could result in distinctively different designs. Let us consider systems, which
evaluate conditions of a branch statement in the control step that precedes operations
in the branches [5, 7, 9, 14, 18]. Results generated by these systems depend on the way
conditional branches are ordered or grouped in the input description. For example, Fig­
ure 1 (a) shows two descriptions that ha ve the same semantics but different ordering of
conditional branches. When scheduling Descriptionl and Description2 with hardware

09scrlpt/on t

d:•c+e;
STt • (a < 2) th•n
sñZ" ,r¡'(¡;~ .. º¡-:::·2i·i'ti~~
..................... x":,;;v·+·z:
ST3 end K;

end tf¡

(a)

Ducrlptlon2 Descriptlon 3 O.scrfptlon 4

d :=e+ e¡

endW;

end ti;

STt

ST4

ST1 d := e+ e; d :me + e;
"""'" "it:(a a1),ÓFl'(b';;2)th~·~" tt (a= 1) then STt
... !!.!.~ ::::~:'.~·;¡:·~·z;.............. i<':~·y.·~"Zi""" .. ;:;;·
... ~.:.~ .. ~.~.~ .. ~:............................ "eiiil'lit"''"""'""" .. ;~·

n (b•2) then
........ ;r::;y~"Z:'""" .. ~~~·

......... Danoma a st.ate ba.Jnd!lry

lntrod.Jcod 1:7,' lle sdleclJlet. (b)

... !~~.~:

Figure 1: Examples of descriptions that have the same semantics but different styles:
(a) different ordering of conditional branches, and (b) different grouping of conditional
branches.

constraints of one adder and one comparator, we find that Descriptionl requires three
states in comparison to the four states required by Description2 (Figure l(a)). This
additional state is inevitable since expressions (e+ e) and (b + e) cannot be executed in
the same state when only a single adder is available. Figure 1 (b) shows two descriptions
with different grouping of conditional branches. Scheduling these two descriptions us-

3

ing similar hardware constraints (one adder and one comparator) produces designs with
three states for Description3, and four states for Description4, as shown in Figure l(b).
Description4 requires an additional state because the value of variable X is computed
twice.

Sorne algorithms, such as the Path-based Scheduling [4], try to minimize the im­
pact of nested conditions by considering all possible paths in the description. In these
algorithms, operations are scheduled according to the dependency in the Control-Flow
Graph (CFG), where nodes represent assignment or conditional statements and edges
represent the ordering of execution for each node. Although the impact of nested con­
ditions is minimized by path-based scheduling, statement ordering is still crucial. This
fact is illustrated in Figure 2, which shows two semantically identical descriptions with
different ordering of operations. Performing path-based scheduling with constraints of

a:-b+c: --1
J :• k • r: --2
11 (X) lh•n --3

d =- •+ f: --4
end 11: --6
m :- n •o; --e

(•)

a:• b + Cj --1
11 (X) then --2

d :- • + f; --3
end lf: --4
J ,. k• r: --6
m :•n• o; --e

............ Danot- a atate boundary
lntroduced by tha achedular.

(b)

Figure 2: Two descriptions with the same semantics but different ordering of statements:
(a) description 1 and its corresponding control-flow graph, and (b) description 2 and its
corresponding control-flow graph.

an adder anda multiplier, would produce a design with two states for the description in
Figure 2(a), and three states for the description in Figure 2(b). Thus, results obtained
with the path-based scheduling algorithm depend on the ordering of operations in the
description, as mentioned in [4].

The syntactic variation in the description can be minimized by applying a few trans­
formations on the input description. Although many synthesis systems use transfor­
mations [1, 17] on their interna! representation, these transformations do not try to
reduce the impact of syntactic differences in the input descriptions on the synthesized
design. They are mainly intended for the purpose of optimizing the final design [16].
For example, none of the descriptions from Figure l(a),(b), or Figure 2(a),(b) would be
influenced by published transformation techniques.

A simple solution to avoid the inefliciences caused by syntactic differences is to force
the designer to write descriptions that fits the algorithm used inside the synthesis sys-

4

tem. This solution is impractical because the designers would need to acquire detailed
knowledge of the synthesis algorithms that are used.

In order to increase the acceptability of synthesis, consistent results must be gener­
ated regardless of syntactic variation, i. e., descriptions with the same semantics should
produce ídentícal desígns in spite of groupíng and orderíng of language constructs. This
paper proposes a new approach to resolve problems with syntactic differences in the
description. The next section of this paper contains the overview of our approach. A
new internal representation, called ADD, is introduced in section 3, and detailed algo­
rithms for constructing this representation are described in section 4. In section 5, we
present results from our experiments on five examples to illustrate the effectiveness of
the proposed approach. Finally, we present our conclusions, based on our experiments.

2 Overview of our approach

The first task in high-level synthesis is to compile the input description into an in­
terna! representation, as illustrated in Figure 3(a). Typical examples of such inter­
na! representations include, the Control-Data-Flow Graph(CDFG)[6], the Control-Flow
Graph(CFG)[6], and the Value Trace(VT)[lü, 13]. The compilation is usually accom-

N deeaipfllon•w4Ml
lhe .. me eemant109 but
dtterwlt ordeling and/or

gro~ng of opera.dona andlor
condltlor* brWlChM

(/,,/'......_)

I

\
... "'

,.....--:::··•""••"''''""'··-.
/ DeecnpMon 1 ~¡

í Oeecñpdon 2 I \ : .

\ Deecñp•on N Y/
.... J , _

(•)

(b)

•Ml•l ... dlMlore(JJ.lltoN

M dfferient l~i.tmeotatlon• wlll
lhe IUln8 • rchltectu"' and
,.~ cooalIWnc.

Figure 3: Overview of the proposed approach: (a) a general high-level synthesis system,
(b) incorporating the proposed approach.

plished by a one-to-one mapping of the input description into the interna! representation.

5

In other words, each language construct in the description is realized with a particular
topology of nodes in the representation. For example, a VHDL[15] description can be
compiled into a CDFG by mapping computations in a basic block to nodes in a data­
fl.ow graph, and a conditional construct to a control node [9, 11]. Similar one-to-one
mappings from VHDL to CFG and from ISPS [2] to VT can be found in (4, 10, 13].

Dueto the one-to-one correspondence that exist between the constructs of the input
descriptions and the schema for the internal representation, these compilers produce
di:fferent representations for di:fferent descriptions. The interna! representations of two
given descriptions could be far di:fferent even if the descriptions are semantically equiv­
alent. If these representations are used by algorithms in subsequent synthesis tasks,
di:fferent hardware would result (Figure 3(a)).

This led us to believe that the dependency of the synthesis system on input descrip­
tion can be resolved by modifying the compilation scheme and improving the internal
representation. Thus, we introduce a new uniform representation called the Assignment
Decision Diagrams(ADD) and propose an algorithm for conversion of input descriptions
into this representation. The main objective of the ADD representation and the con­
version algorithms is to resolve the discrepancies in the description that are caused by
the ordering and grouping of conditional branches and/or operations. The proposed
algorithms can replace or be incorporated with the compilation task, as shown in Fig­
ure 3(b). Further transformations that optimize the design, and other synthesis tasks
can then be applied to the resultant ADD.

The proposed representation, ADD, is capable of recognizing conditions and com­
putations in a data-fl.ow fashion. Hence, conditional branches and computations are
ordered only by data dependencies and not by positions in the description. This rep­
resentation is similar to the Binary Decision Diagram (BDD) [3, 8], which is used in
logic verification and synthesis. The conversion algorithm is designed to produce a ADD
that represents the most parallel implementation (i.e., the implementation that requires
the least number of states). Thus, the resultant representation is free from implicit
state boundaries that might inadvertently get introduced due to sorne specific language
constructs. Furthermore, di:fferent grouping of conditional branches are resolved by fl.at­
tening conditions on the assignment path1 basis. Thus, the representation will not be
a:ffected by the grouping of conditional constructs in the description. ADD is discussed
in more detail in section 3 and the conversion algorithm is presented in section 4.

1 An assignment path is a path generated by conditional branches from the beginning of a description
to the referenced assignment statement.

6

3 Assignment Decision Diagrams

The function of a digital system can be viewed as a set of computations on the input­
port values and contents of the interna! storage elements in the system. The results
of the computation are stored in interna! storage elements, or assigned to an output
port. Hence, a digital system can be represented as a set of conditional assignments to
targets that represent storage units or output ports in the form of Assignment Decision
Diagram(ADD). Figure 4 shows a general representation of a digital system in ADD.

Legend: ~ Asslgnment
values

11111111 Asslgnment
1111111!11 deolalon

O = Read node (storage unlt/lnput)

• = WrMe node (storage unlVoutput)

~ Asslgnment •"'li:f': n 0 = Operator node
target = ~ = Asslgnment declslon node

Figure 4: The Assignment Decision Diagram.

The ADD representation consists of four parts: (1) the assignment value, (2) the
assignment condition, (3) the assignment decision, and (4) the assignment target, as
shown in Figure 4. These parts are implemented with four types of nodes: operation
nodes, read nodes, write nodes and assignment decision nodes (ADN).

The assignment value part consists of read nodes and operation nodes. This part
represents the computation of values that are to be assigned to a storage unit or an
output port. The value is computed from current contents of storage units, inputs
ports, or constants. These are represented by read nodes. The actual computation is
represented as a data-fl.ow graph that contains operator nodes, which correspond to the
type of operations that are performed.

The assignment condition part consists of read nodes and operation nodes that are
connected as a data-fl.ow graph to represent computation of a condition. The end product

7

of the condition-computation is a binary value that evaluates to true or false. This
true/false value is used as a guarding condition for the assignment value.

The assígnment-decísíon part consists of a Assignment Decision Node (ADN). The
ADN selects a value from a set of values that are provided to it. These input values
are computed by the assignment-value part of the ADD. The selection is based on
the conditions computed by the assignment condítíon part of the ADD. If one of the
conditions to the ADN evaluates to true then the corresponding input value is selected.
It is also possible that non.e of the conditions of a ADN evaluate to true at a given time.
In this case non.e of the input values are selected.

The assignment-target is represented by a write node. The write node is provided
with the selected value from the corresponding ADN. A value will be assigned to the
write node, only if one the conditions to the corresponding ADN is true. And sin.ce only
one value can be assigned to a target at any given time, all assignment conditions for
each target are mutually exclusive.

The unique feature of ADD is its capability to represent conditions and computa­
tions in a consistent data-flow fashion. Thus, operations in ADD are ordered by their
data dependency only. In other words, ADD is free of control dependency that are in­
troduced in the description. With this capability, ADD can represent the most parallel
implementation for a given description.

In addition to representing the most parallel representation, ADD can be used to
represent multi-state designs. Such multi-state designs become necessary if the descrip­
tion contains a loop construct with variable bounds. In this case, the corresponding
ADD would contain a special storage unit called State...:reg that represents the control
step-sequencer. This State...:reg has the same representation as any other storage units.
Assignments to State...:reg represent the sequencing of control steps, where each assign­
ment value is a constant that represents a control step, and each assignment condition
represents the sequencing between the steps.

ADD can also be used to represent storage elements with multiple ports. Storage
units that contain multiple read ports are represented in ADD as a read node with
multiple output lines, where each line represents a read port. On the other hand, storage
units with multiple write ports are represented with multiple ADNs, where each ADN
represents assignments through a write port. A value is written through a port only
if its corresponding assignment condition evaluates to true. Sin.ce a storage unit with
multiple read and/or write ports primarily is implemented as a two dimensional storage
unit, (such as register files or memories), an index is assigned to each of these ports.
This index indicates the location where the value is to be read from or written to.

ADD can be implemented as an undirected acyclic graph, where each read, write,
operation or assignment decision node is implemented as a node with different attributes,
and connections are implemented as undirected edges. Representing a description would

8

require, in the worst case, a graph whose size is proportional to the number of conditional
assignments to all the ports and storage units.

4 Converting input description into ADD

Given an input description, constructing the equivalent ADD is a constructive process.
The algorithm (Figure 5) starts from the firsLstatement of the description with the
variable ADDdesc set to null. Then, at each iteration, a statement, ST, is taken from
the description and converted into its corresponding ADD called ADDsT· Subsequently,
ADDsT is merged into the ADDdesc· This process is repeated until the lasLstatement
is reached.

Algorithm: conv....stmts-to-ADD (first.staternent)ast..staternent) returns ADD ;
ADDdeac = ef>¡
ST = first.staternent;
while (ST -:f. last.staternent)

case (type oí staternent(ST))
assignment..staternent:

ADDsT = conv..a.sstmt(ST);
ST = statement following ST;

if...statement:
ADDsT = conv.if(ST);
ST = statement following the "end if" ;

case.statement:
ADDsT = conv..case(ST);
ST = statement following the "end case";

loop.statement:
ADDsT = convloop(ST);
ST = statement following the "end loop";

end case;
ADDdeac ·= merge..consecutive.ADDs(ADDde•c• ADDsT);
end while;
return ADDde•ci

Figure 5: Algorithm for converting a list of statements to an ADD .

The conversion of a statement is carried out by an algorithm which is designed to
handle a particular language construct; for example, conv_asstmt is used for converting
an assignment statement, conv_if is used for converting an IF-THEN-ELSE statement,
etc. Discussion of these algorithms are provided in following sections.

9

4.1 Converting an assignment statement

An assignment statement consists of two parts, the computation and the target vari­
able/ signa!. The computation is represented in ADD as a data-flow graph with operands
as read nodes and operators as operation nodes. The target variable/signal is represented
as the assignment target. The result of the computation from the data-flow graph is
assigned to the assignment target with a true assignment condition. Figure 6 shows
examples of ADDs for assignment statements (A:= X - E;) and (RF[J] := C x E;).

Figure 6: Examples of ADDs for assignment statements.

4.2 Converting an IF-THEN-ELSE statement

Considera general IF-THEN-ELSE statement below:
IF (cond) THEN

STE1
ELSE

STE2
where STBl and STB2 are blocks of statements. The IF-THEN-ELSE statement is con­
verted into its maximal parallel representation by first converting the statement blocks
ST El and ST E2 to their ADDs, ADDthen and AD De/se, respectively. This is accom­
plished by invoking the algorithm conv_stmts.i,nto.ADD with the list of statements in
ST El and ST E2. Hence, if ST El or ST E2 contains nested conditional branches, the
innermost conditions are converted first, and the outermost conditions are converted last.
cond is used as the guarding condition for all assignments in ADDthen· On the other
hand, assignments in ADDelse are guarded by the condition cond. Finally, ADDthen and
AD De/se are merged by simply combining all elements from both ADDs without having
to resolve any data dependency, since assignments in both ADDs are mutually exclusive.
This mutual exclusion is guaranteed because of the truth value of conditions (cond) and
(cond). Figure 7 shows an example of converting a simple IF-THEN-ELSE statement.

10

~ (b • 2) then
X:•Y+Z;
RFPJ :•O+ D;

•lo•
X:•Y-Z;

endlf;

Input d•crptkm

step 1:
RcNuttfrom

conv_autrnt(X:• Y +z);
•nd conv_autml(RF{l}:•o+D);

step 2:
RNuttfrom

conv_•••tmt(X:•Y-Z);

stop a:
R<MuMfrom

oonv_lf(ll {b-2) then ••• end //;);

Figure 7: An example of converting a simple IF-THEN-ELSE statement toan ADD.

4.3 Converting a CASE statement to ADD

CASE staternents are handled very similarly to the IF-THEN-ELSE statement. Given
a CASE statement each branch is converted into its ADD. Then, the condition for each
branch is used as the guarding condition for all assignments in its corresponding ADD.
Finally, the resultant ADDs for all branches are merged.

4.4 Converting a loop to ADD

Consider a general loop construct below:
STBJ
WHILE (cond) LOOP

STB2
END LOOP;
STB3

where STBl, STB2 and STB3 are blocks of staternents. The iteration of the loop has
to be done in a sequential manner. Thus, the most parallel irnplernentation for a loop
would require at least three control steps, namely, STl, ST2 and ST3. The loop is
converted to ADD by first updating assignrnent to State...reg, based on the following
criteria: ST2 is assigned to State...reg if its current value is STl and cond is true, or
if its current value is ST2 and cond is true; ST3 is assigned to State...reg if its current
value is STl and cond is false, or its current value is ST2 and cond is false. Then,
statements in STBl, STB2 and STB3 are independently converted to ADDs and the
results are merged.

11

4.5 Merging of two consecutive ADDs

The conversion process into ADDs aims to produce the maximal parallel implementation.
Thus, merging of two consecutive ADDs(Figure 5), requires analysis of data dependency
between the two ADDs such that assignment in the resultant ADD can be performed
in parallel without changing the semantics. Consider the merging of two consecutive
ADDs, ADD1 and ADD2 , where ADD1 represents statements which precede statements
in AD D2 in the original description. The data dependency-analysis tasks include:

1) read-after-write dependency-analysis,
2) read-after-read dependency-analysis and
3) write-after-write dependency-analysis.

In order to obtain the correct merging, the analysis must be applied in the order given
above. Also, it should be noted that there is no dependency between variables that are
written after they were read. This is because, in ADD, assigned values will only be used
in the next state. Figure 8 shows the merging of two consecutive ADDs.

MERGE

Figure 8: An example of merging consecutive ADDs, where ADDl is taken from Figure
7 and ADD2 is taken from Figure 6.

To resolve a read-after-write dependency, values for a storage unit in ADD1 are
substituted for each of its read instances in ADD2 • Consider a variable Si that needs
to be resolved. If in ADD1 , Si contains n : (n > 1) assigned values (Ao ... An) which
are guarded by n assignment conditions (C0 ••• Cn), then the substitution requires that

12

each value (Ai) will be substituted according to its assignment condition (Ci)· This is
accomplished with the following steps:

1) Duplicate each usage path 2 of Si in AD D2 into (n + 1) paths.
2) For each j of the first n duplicated paths,

2.1) substitute the read node of Si with a distinct assigned value from ADDi,

2.2) substitute the condition of that duplicated path 3 , C(i)dup, with (Ci /\ C(i)dup),
where Cj is the assignment condition for Aj.

3) If it is possible that none of assignment conditions, (C0 ••• Cn), can evaluate to
true, no value will be assigned to Si in ADD1 • In this case, the value of S¡ that is
read from ADD2 will be the current content of Si from ADD1. We resolve this by first
creating a condition, Cx, that is mutually exclusive to all assignment conditions of Si in
ADD1 (i.e., Cx = Co /\ C1 /\ ... /\ Cn)· Then, the condition of the (n + l)th duplicated
path, C(n+l)dup' is substituted with (Cxc/usive /\ C(n+t)dup)•

The read-after-write dependency of a two-dimensional storage unit can be resolved
by applying similar steps as above. Values assigned to each write port of that unit in
ADD1 are substituted for every read port in ADD2. Figure 8 shows an example of
resolving read-after-write for the storage unit X.

It should be noted that by duplicating the usage paths of Si and substituting as­
signed values of S¡ according to its assignment conditions, we are actually flattening the
grouping of conditions that are specified in the description.

A read-after-read dependency of .a storage unit or an input port is resolved by
creating a common read node for this unit in the resultant ADD. This is to ensure that
values are read from the same source. In the case of a two-dimensional storage unit,
values that are read depend on their corresponding indices. Moreover, values that have
the same index can share the same port. Thus, resolving read-after-read dependency of
a two-dimensional storage unit requires merging of read ports that have the same index.
Figure 8 shows an example of resolving read-after-read dependency for the storage unit
c.

A write-after-write dependency of a storage unit, Si, is resolved such that the
resultant assignment conditions for Si will guarantee only one value can be assigned to
Si at any given time. Since ADD2 represents statements that are executed after ADD1,
values for Si from AD D1 will be assigned only if assignment conditions for Si in AD D2
are all false. In other words, if there is always one assignment condition for Si in ADD2
that evaluates to true, then assignment values for Si in ADD1 will be disregarded. This
is accomplished with the following steps:

2 Usage paths of a node is a set of paths from that node to immediate assignment decision nodes.
For example, usage paths ofread-node X in ADD2 of Figure 8 is (X-+(-)).

3 Conditions of a usage path are assignment conditions to which the usage path is associated with.
For example, conditions of a usage path (X -+ (-)) in ADD2 of Figure 8 is (TRUE).

13

1) Create a common write node, Scommon, for S¡.
2) Move the assignment decision node for S¡ in ADD2 to Scommon·
3) Create a mutually exclusive condition, Can from assignment conditions of S¡
in ADD2 (i.e., Cx = Co /\ C1 /\ ... /\ Cn).
4) if Cx =J FALSE then

for all A¡, which is an assigned value of S¡ in ADDi,
assign A¡ to Scommon with the assignment condition of (C¡ /\ Cx),

where C¡ is the corresponding assignment condition for A¡ in ADD1 •

Write-after-write dependency of a two-dimensional storage unit can be resolved by
applying similar steps to all the write ports. Figure 8 shows an example of resolving
write-after-write dependency for the two-dimensional storage unit, RF.

5 Experimental results

We have tested our approach on five examples, namely:
• a dock division circuit, which divides the input dock frequency, f¡n, such that the

output frequency, Íout = (N/M)fin, where N and M are given as inputs to the circuit,
• a timer, which contains two counters that keep tally of the dock pulse,
• Kim's example which is taken from [7],
• the AM2901, which is a four-bit microprocessor slice from Advanced Micro Devices,

and
• the AM2910, which is a twelve-bit microprogram controller from Advanced Micro

Devices.
The dock division circuit, AM2901 and AM2910 are benchmarks from the 1992 Work­
shop on High-level Synthesis [19). The behavior of each example is written in VHDL
using process-level constructs, such as variable, array, if-then-else, and case statements.
For each example, we created three different descriptions (A, B, and C) that have the
same semantics but differ in the ordering and grouping of statements and/or conditions.
Figure 9 shows the usages of different language constructs in each of the descriptions.

Hardware is synthesized from these descriptions using two different approaches: tra­
ditional approach and our approach. In the traditional approach, the VHDL description
is converted into a CDFG. Then, basic blocks in the CDFG are independently sched­
uled using Force-Directed List-Scheduling(FDLS) algorithm [12). The overall schedule
is constructed by assuming that conditions for each conditional branch are scheduled in
a state prior to the operations in the branches. Thus, states in different branches are
mutually exclusive and are scheduled to share the same hardware using the algorithm
given in Bridge [14). In our approach, the VHDL description is converted into ADD
using algorithms described in Section 4. Then, the ADD is scheduled using the FDLS
algorithm with merging of operations that reside on mutually exclusive paths.

14

Various usagas of languege constructs in the description

Examplea #of #of
max. level

#of #of of nested
assignment conditional conditional one-<llmensional two-dimensional
stalementa branchea branches variables variables

. DescriptionA 11 6 2 5 o
Clock division Description B 12 7 3 5 o clrcuit

Description C 12 8 3 5 o
Description A 21 7 5 9 o

Timar Description B 23 6 5 11 o circult
Description C 21 12 10 9 o
DescripttonA 24 2 2 8 o

Klm's Description B 23 3 1 8 o example
Description C 24 2 2 8 o

. Description A 102 7 1 10 1

AM2901 Description B 103 13 1 10 1

Description C 101 17 1 10 1 . Description A 129 42 3 5 1

AM2910 Description B 131 38 3 6 1

Description C 131 38 4 9 1

• Benchmerks from lhe lntemational Workshop on Hlgh-Level Synthesis.

Figure 9: Usages of language constructs in each example.

15

To observe the effect of differences in the description on the synthesized designs, we
use the same resource constraints to schedule the three different descriptions of each
example. The results of the experiments are shown in Figure 10 where numbers in the
resources columns represent resource constraints for the scheduling. The numbers in
states columns represent the total number of states in the resultant design, the number
of states in the longest execution path, and the number of states in the shortest execution
path. The proposed algorithms are implemented in C on a SPARC workstation. The
time taken for the conversion of input descriptions into ADD is given in Figure 10.

Traditional approach Our approach

Exan1Jles

Clock division
circuil

Timar
circuil

Kim's
exaJ'11'1e

AM2901

AM2910

resources

Desal>tionA 1 add

De~tionB 1 add

Description C 1 add

Desal>lionA 1 dec

De~tionB 1 dec

Desal>llonC 1 dec

Desal>tion A 2 add, 1 sub, 2 COl!l>

De~tlonB 2 add, 1 sub, 2 COl!l>

Desal>tion C 2 add, 1 sub, 2 COlll>

De~tlonA 1 add, 1 lnc, 1 RF

De~tionB 1 add, 1 lnc, 1 RF

De~tionC 1 add, 1 inc, 1 RF

De~tionA 1 inc, 1 dec, 1 RF

Desal>tlon B 1 inc, 1 dec, 1 RF

De~tionC 1 lnc, 1 dec, 1 RF

add : Adcler
sub : Subtractor
inc : Incrementar
dec : Decrementar

CO!ll> : COll1>8falor

timetaken
stales to convert

(tot11onwsho!I) toADD resources

(sec.)

1211217 10 1 add

1211217 15 1 add

1411417 12 1 add

81813 15 1 dec

1111113 12 1 dec

1611613 40 1 dec

61616 7 2 add, 1 sub, 2 COlll>

1211214 7 2 add, 1 sub, 2 COlll>

71716 12 2 add, 1 sub, 2 COlll>

10110110 63 1 add, 1 inc, 1 RF

24117/10 102 1 add, 1 inc, 1 RF

34/23112 162 1 add, 1 inc, 1 RF

1111116 304 2inc, 2dec,

919/6 278 2 lnc, 2 dec,

1011016 310 2 inc, 2 dec,

AM2901 RF : 16-word by 4 bit
register-file wilh
2 read and 1 write port

AM291 O RF : 9-word by 12-bil
register-file wlth
1 read and 1 write port

states
(tot11onwshort)

11111

11111

11111

21211

21211

21211

616/5

6/6/5

61615

11111

11111

11111

11111

11111

11111

Figure 10: Results from the experiment using traditional approach and our approach.

16

Figure 10 show that differences in the description styles can affect the results of
synthesis based on traditional approaches. For example, given the three descriptions
of the AM2901 (i.e., DescriptionA, B, and C) the traditional approach would produce
hardware that requires (10/10/10), (24/17 /10), and (34/23/12) states, respectively. On
the other hand, our approach resulted in (1/1/1) for all three descriptions. Our approach
also produces consistent results for the three different descriptions for all other cases.

Moreover, experimental results also show that the proposed approach reduces the
required number of states in the synthesized hardware. This is because the description is
converted into its maximal parallel representation. If the required resources are sufficient,
a hardware with one state will be produced (the dock division circuit, AM2901, and
AM2910). However, if the resources are not sufficient, the scheduling algorithm will
introduce states such that the available resources can be shared efficiently. Since the
conditions for ali the branches are :flattened, the scheduling is independent of implicit
state boundary that could be introduced by language constructs. In our experiments
two of the examples (the timer circuit and Kim's example) required scheduling.

6 Conclusion

In order for a high-level synthesis system to be successfully accepted by the users, it
has to be able to produce consistent results even with syntactic variance in the descrip­
tion, such as different ordering or grouping of statements or conditional branches. We
showed that these variations can be minimized by using ADD , a representation which
is independent of syntactic grouping and ordering.

Results from the experiment on five examples, three of which are benchmarks from [19],
show that ADD and the proposed algorithm can effectively minimize syntactic variance
in the description. Furthermore, results also show that the proposed approach could
effectively reduce the required number of states in the synthesized design. Future re­
search includes studying of impact of loop restructuring and reordering wait statement
dependencies.

7 Ref eren ces

[1] A.V. Aho, R. Sethi and J.D. Ullman, Compilers: Principles, Techniques and Tools,
Reading, MA: Addison-Wesley, 1986.

[2] M.R. Barbacci, G.E. Barnes, R.G. Cattell, and D.P. Siewiorek, "The ISPS Com­
puter Description Language," Technical Report, Department of Computer Science,
Carnegie-Mellon University, 1977.

17

[3] R.E. Bryant, "Graph-Based Algorithms for Boolean Function Manipulation," IEEE
Trans. CAD, vol.C-15, no.8, pp.677-689, Aug. 1986.

[4] R. Camposano, "Path-Based Scheduling for Synthesis," IEEE Trans. CAD, Vol.10,
no.l, pp.85-93, Jan. 1991.

[5] R. Camposano and W. Rosenstiel, "Synthesizing Circuits from Behavioral Specifi­
cations," IEEE Trans. CAD, vol.8, no.2, pp.171-180, Feb. 1989.

[6] R. Camposano and W. Wolf, High-Level VLSI Synthesis, Kluwer Academic Pub­
lishers, 1991.

[7] T. Kim, J.W.S. Liu, and C.L. Liu, "A Scheduling Algorithm For Conditional Re­
source Sharing," Proc. ICCAD'91, pp.84-87, 1991.

[8] C.Y. Lee, "Representation of switching circuits by binary-decision programs," Bell.
Syst. Tech. J., vol.38, pp.985-999, Jul 1959.

[9] J.S. Lis and D.D. Gajski, "Synthesis from VHDL," Proc. IEEE Int. Conf. on Com­
puter Design'88, pp.378-381, 1988.

[10] M.C. McFarland, "The Value Trace: A Data Base for Automated Digital Design,"
PhD. Dissertation, Department of Electrical Engineering, Carnegie-Mellon Univer­
sity, 1978.

[11] A. Orailoglu and D.D. Gajski, "Flow Graph Representation," Proc. 23rd DAC.,
pp.503-509, 1986.

[12] P.G. Paulin and J.P. Knight, "Force-Directed Scheduling for the Behavioral Syn­
thesis of ASIC's," IEEE Trans. CAD, vol.8, no.6, pp.661-679, Jun. 1989.

[13] E.A. Snow, "Automation of Module Set Independent Register-Transfer Level De­
sign," PhD. Dissertation, Department of Electrical Engineering, Carnegie-Mellon
University, 1978.

[14] C.-J. Tseng, R.W. Wei, S.G. Rothweiler, M. Tong and A.K. Bose, "Bridge: A
Versatile Behavioral Synthesis System," Proc. 25th DAC., pp.415-420, 1988.

[15] Standard VHDL Language Reference Manual. New York: The Institute of Electrical
and Electronics Engineers, Mar. 1988.

[16] R.A. Walker and R. Camposano, A Survey of High-Level Synthesis Systems, Kluwer
Academic Publishers, 1991.

[17] R.A. Walker and D.E. Thomas, "Behavioral Transformations for Algorithmic Level
IC Design," IEEE Trans. CAD, vol.8, no.10, pp.1115-1128, Oct. 1989.

18

(18] K. Wakabayashi and T. Yoshimura, "A Resource Sharing Control Synthesis Method
for Conditional Branches," Proc. ICCAD'89, pp. 62-65, 1989.

(19] Benchmarks for the Sixth International Workshop on High-Level Synthesis, 1992.

19

