
UC Berkeley
UC Berkeley Previously Published Works

Title
Voronoi cells of non-general position spheres using the GPU

Permalink
https://escholarship.org/uc/item/8bb8k1ck

Journal
Computer-Aided Design and Applications, 14(5)

Authors
Hu, Zhongyin
Li, Xiang
Krishnamurthy, Adarsh
et al.

Publication Date
2017-03-14

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8bb8k1ck
https://escholarship.org/uc/item/8bb8k1ck#author
https://escholarship.org
http://www.cdlib.org/

Preprint to eScholarship

1

Voronoi Cells of Non-general Position Spheres Using the GPU

Zhongyin Hu1, Xiang Li2, Adarsh Krishnamurthy3, Iddo Hanniel4 and Sara McMains5

1University of California, Berkeley, daphnedut@gmail.com
2University of California, Berkeley, xli@berkeley.edu

3Iowa State University, adarsh@iastate.edu
4Technion, Israel Institute of Technology, iddohanniel@gmail.com

5University of California, Berkeley, mcmains@me.berkeley.edu

ABSTRACT

We present a GPU algorithm for computing the Voronoi cells for a set of spheres in R3.
The algorithm is based on sampling rays from each sphere and finding the lower
envelope of intersections of the rays with the sphere bisectors on the GPU. The presence
of Voronoi vertices and edges is determined based on where neighboring rays intersect
different bisectors. For accurate geometry, we present a numerical iteration approach
to calculate the Voronoi vertices’ locations within a user-defined tolerance. The
algorithm robustly handles input in non-general position and large input sets of
thousands of spheres.

Keywords: Voronoi diagram, spheres, GPU, lower envelope

1 INTRODUCTION

The Voronoi diagram is a fundamental construct in computational geometry, for partitioning space into
regions that are closest to a set of points or surfaces, useful in a wide range of application domains.
Many algorithms have been proposed for constructing Voronoi diagrams of lower order objects (points,
line segments, and polygons) in R3. However, Voronoi diagrams of higher order objects such as spheres
in R3 have not been explored as extensively, even though they have many applications. For example, to
analyze pathways through molecular tunnels in proteins with their atoms represented by Van der Waals
spheres, Voronoi diagrams of spheres are often used [11]. However, due to the lack of robust algorithms,
many applications simplify the problem by assuming that all atoms have the same radius [11], or
approximating larger atoms by collections of spheres with the radius of the smallest atom [3], so that
existing codes for Voronoi diagrams of points can be used. Kim et al. [10] have successfully computed
Voronoi diagrams of spheres in R3, but their method is limited to input in general position.

In this paper, we present a GPU algorithm to compute Voronoi cells of spheres in R3. Our main
contributions include:

• A novel approach to compute Voronoi cells of spheres that exploits the parallelism of the GPU
by shooting intersection rays at the bisector surfaces. We sample rays from each input sphere
and find the lower envelope as points on Voronoi faces.

• Separation of the construction of the topology of the Voronoi cells from the calculation of the
geometry. The topology is calculated directly from the face sample points.

• Accurate calculation of Voronoi vertices’ geometry by using the samples to initialize Newton-
Raphson iteration that can guarantee the accuracy of the vertices to be within a user-defined
tolerance.

• Calculation of Voronoi cells of thousands of input spheres representing actual protein
molecules. Our algorithm is robust even for spheres not in general position, handling Voronoi
vertices with degree greater than four.

Preprint to eScholarship

2

Fig. 1: Example results: (a) A single Voronoi cell pictured, where the green Voronoi vertex is equidistant
from the 5 spheres; the full Voronoi diagram we computed for (b) “Random Set A" [12]; (c) Protein ID
1crn-PQR consisting of 642 atoms (202 Cs, 55 Ns, 64 Os, 6 Ss, and 315 Hs) [14]; (d) Protein ID 1bh8-PQR
consisting of 2161 atoms (680 Cs, 181 Ns, 203 Os, 10 Ss, and 1087 Hs) [14].

2 RELATED WORK

The connection between Voronoi diagrams and lower envelopes is well known [4]. For example, the
computation of the Voronoi diagram of a set of points (sites) in R2 corresponds to the projection of the
lower envelope of 45-degree cones whose apexes are located on the sites in the xy-plane. More generally,
the Voronoi diagram of a set of curves in R2 corresponds to the projection of the lower envelope of
generalized cone surfaces that correspond to distance functions. This insight has led to several
algorithms that construct the Voronoi diagram of objects in R2 by computing the lower envelope of their
generalized cones (or distance functions) [2, 8, 13].

The connection between Voronoi diagrams and lower envelopes has inspired the use of GPU
algorithms for Voronoi diagram computation, such as in the seminal work by Hoff et al. [9], in which
the authors rendered a 3D polygonal mesh approximating the distance function, and used the z-buffer
depth comparison to compute the lower envelope of these meshes and hence the Voronoi diagram. This
approach has been far more successful for computing Voronoi diagrams in R2 than in R3 up to now,
however, because in R3 the Euclidean space lower envelope requires projections from surfaces in R4 onto
R3.

Hanniel et al. computed the Voronoi cells of a set of CSG primitives (including spheres) using a
three-dimensional lower envelope algorithm [6]. The implementation encountered robustness and
efficiency issues beyond a relatively small number of input objects, however. One of the reasons is that
a bivariate lower envelope algorithm inherently incurs degenerate cases; the vertices of the minimization
diagram (the arrangement of curves that is the projection of the lower envelope) are an intersection of
three curves meeting at the same point.

Anton et al. [1] showed how an alternate approach, relying on the empty circumsphere property of
Voronoi vertices, can be made robust by using exact evaluation of the empty sphere predicate, showing
also that the input must have six times more precision than that required for the empty sphere predicate
exact computation.

To our knowledge, algorithms for computing Voronoi diagrams of spheres that show the best results
for large data sets in practice are based on the edge tracing algorithm of Kim et al. [10]; however, this
algorithm assumes non-degenerate input that is in general position, with all Voronoi vertices having
degree four, and no disconnected Voronoi edges.

This paper is inspired by Hanniel et al. [7], which used the lower envelope of distance functions to
compute the Hausdorff distance on the GPU by sampling points on the first surface and performing
numerical iterations to compute the minimal distance from each sample to the other surface.

3 ALGORITHM DESCRIPTION

Definition 1: Given a set of spheres S 0, S 1,…, S n in R 3, the Voronoi cell of sphere S i is the set of all points
closer to S i than to S j(∀j ≠ i). The Voronoi diagram is the union of the Voronoi cells of all (n + 1) spheres.

Preprint to eScholarship

3

Definition 2: The locus of points that are equidistant from S i and S j (j ≠ i) is called bisector Bi,j.

In general, bisectors in R3 are surfaces, either a plane when the two spheres are the same size, or a
hyperbolic surface when the two spheres are different sizes [6]. We assume that no input sphere is
completely contained inside another, but our same framework handles intersecting spheres correctly.
Voronoi faces are portions of such bisector surfaces between two spheres that have equal (minimal)
distance from the two spheres. Please refer to Elber and Kim [5] for a detailed formulation of the
bisectors.

For a single Voronoi cell, its Voronoi edges are formed where two of its Voronoi faces intersect and,
in general, are segments of curves [10]. In general, three of the bisector surfaces contribute to each of
the cell’s Voronoi vertices, and this involves four spheres for each vertex.

In this paper, instead of analytically calculating Voronoi faces, we propose a sample-based approach
to obtain sample points on Voronoi faces, by taking the lower envelope of the bisectors with respect to
the distance function to the “base sphere" in each Voronoi cell. We shoot sample rays from this sphere
in radial directions (Section 3.1), calculate the intersection of each ray with the implicit bisector surface
functions (Section 3.2), and retain only the intersection with the minimum distance as our face sample
point (Section 3.3).

We calculate the Voronoi vertices of each cell by using a marching-grid approach to locate the
neighborhoods of the vertices. We virtually “color code" each Voronoi face sample point by giving it the
same color as the bisector to which it belongs (Section 5). A Voronoi vertex occurs where there are three
or four different colors out of four neighboring sample points, which means there is an intersection of
three or more bisectors.

The stages of the algorithm to construct a Voronoi cell are:

1. Sample rays from the base sphere S i.

2. Calculate the bisector surfaces functions between S i and S j (j = 0, 1, …, i − 1, i + 1, …, n).

3. Compute the intersection of each ray with all the bisectors and take the lower envelope of all
the intersections to obtain the sample points on the Voronoi faces.

4. Find all grid cells of neighboring sample points that contain Voronoi vertices and use the
Newton-Raphson method to calculate the vertex location.

We now describe the steps in detail.

3.1 Sampling Rays from Base Spheres

For simplicity of calculation, we assume each base sphere in turn is a unit sphere with radius 1 located
at the origin. If not, we translate and scale the coordinate system so that the base sphere fulfills this
requirement. The algorithm to sample normal rays from the sphere surface uses a parametric
representation of the ray. Denoting O as the vector of the ray origin on the sphere surface, n as the unit
normal of the ray, and t as the scalar distance along the ray from the origin, the representation of the
ray r(t) in parameter t is given in Eq. 1. With respect to the base sphere, O is on the surface of the base
sphere, n is in the radial direction from the base sphere, and t represents the distance from the ray origin
to the intersection of the ray with the bisector surface (Fig. 2(a)).
 𝐫𝐫(𝑡𝑡) = 𝒓𝒓�𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡),𝑧𝑧(𝑡𝑡)� = 𝑶𝑶 + 𝑡𝑡 ∙ 𝒏𝒏 (1)

For sampling, we parameterize the six faces of the axis-aligned bounding cube of the base sphere.
Each face of the bounding cube is taken as a uniformly subdivided parameterized domain expressed in
variables u and v (Fig. 2(b)).

Each of the six u-v domains corresponds to 1/6 of the base sphere. For each sample on each u-v
domain, there is a ray shooting from the surface of the base sphere. Fig. 2(b) shows an example of
sampling based on the top face z− 1 = 0,−1 ≤ x ≤ 1,−1 ≤ y ≤ 1. The u-v domain for the top face has u
and v ranges as −1 ≤ u ≤ 1,−1 ≤ v ≤ 1. Each (u, v) sample corresponds to a ray (u, v, 1) with the origin on
the sphere surface, normalized as unit vector

1
�(𝑢𝑢2+𝑣𝑣2+12)

 ∙ (𝑢𝑢,𝑣𝑣, 1). The sample ray origin and unit normal

on the base sphere are both
1

�(𝑢𝑢2+𝑣𝑣2+12)
 ∙ (𝑢𝑢,𝑣𝑣, 1).

Preprint to eScholarship

4

Fig. 2: (a) Illustration of ray intersection with bisector surfaces. (b) Mapping sphere to six u-v parametric
surfaces on the bounding cube; uniform parametric sampling of top surface shown.

3.2 Calculating the Bisector Functions

The bisector surfaces between two spheres are the simultaneous solutions of two distance equations
(Eq. 2), where P(x,y,z) is any Euclidean point on the bisector surface, (Cx1,Cy1,Cz1), (Cx2,Cy2,Cz2) are the centers
of the two spheres, and R1, R2 are the radii of the two spheres:

 �(𝑥𝑥 − 𝐶𝐶𝑥𝑥1)2 + (𝑦𝑦 − 𝐶𝐶𝑦𝑦1)2 + (𝑧𝑧 − 𝐶𝐶𝑧𝑧1)2 − 𝑅𝑅1 = �(𝑥𝑥 − 𝐶𝐶𝑥𝑥2)2 + (𝑦𝑦 − 𝐶𝐶𝑦𝑦2)2 + (𝑧𝑧 − 𝐶𝐶𝑧𝑧2)2 − 𝑅𝑅2. (2)

Eliminating the radius in Eq. 2 results in an implicit quadratic surface equation:
 Ax2 + 𝐵𝐵𝑦𝑦2 + 𝐶𝐶𝑧𝑧2 +𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐺𝐺𝐺𝐺 +𝐻𝐻𝐻𝐻+ 𝐼𝐼𝐼𝐼 + 𝐽𝐽 = 0 (3)

where A = 4R2 – 4Dx
2, B = 4R2 – 4Dy

2, C = 4R2 – 4Dz
2, D = -8DxDy, E = -8DyDz, F = -8DzDx, G = -8R2Cx1 – 4KDx,

H = -8 R2Cy1 – 4KDy, I = -8R2Cz1 – 4KDz, and J = 4R2(Cx1
2 + Cy1

2 + Cz1
2) – K2, where R = R1 – R2, the difference

in the radii, Dx = Cx1 – Cx2, Dy = Cy1 – Cy2, Dz = Cz1- Cz2, the distance between the centers, and K = (Cx2
2 – Cx1

2)
+ (Cy2

2 – Cy1
2) + (Cz2

2 – Cz1
2) – R2.

If the two spheres are different sizes, the bisector is a hyperbolic surface; otherwise it is a plane. If
the two spheres are of the same size, the coefficients A, B, C, D, E, and F are zero and Eq. 3 simplifies to
the linear equation:
 G𝑥𝑥 + H𝑦𝑦+ I𝑧𝑧 + J = 0 (4)

where G = 2(Cx1 - Cx2), H = 2(Cy1 - Cy2), I = 2(Cz1 - Cz2), and J = Cx2
2 – Cx1

2 + Cy2
2 – Cy1

2 + Cz2
2 – Cz1

2.

3.3 Finding Intersections and Lower Envelope

The Euclidean distance function r of a point (x, y, z) from a sphere surface is (𝑥𝑥 − 𝑥𝑥0)2 + (𝑦𝑦 − 𝑦𝑦0)2 +
(𝑧𝑧 − 𝑧𝑧0)2 = (𝑟𝑟 + 𝑟𝑟0)2, where (𝑥𝑥0 ,𝑦𝑦0 ,𝑧𝑧0) is the center of the sphere with radius r0, and r is the distance of
the point (x, y, z) from the spherical surface. When solving for the intersection of the ray and the bisector
surface, we substitute the ray representation (Eq. 1) in terms of t into the bisector implicit function (Eq.
3); which can be simplified as a quadratic equation in parameter t when the bisector is a hyperbolic
surface (Eq. 5), or a linear equation when the bisector surface is a plane (Eq. 6).
 a ∙ t2 + b ∙ t + c = 0 (5)
 d ∙ t + e = 0 (6)

While solving Eq. 5, depending on the value of the discriminant (b2 − 4ac), there will be zero, one, or
two solutions to the equation, corresponding to the respective cases where the ray does not intersect
the bisector, intersects it once, or intersects it twice. In addition, the solution to the hyperbolic bisector
equation has two possible sheets, and depending on the relative radius of the second sphere to the base
sphere, only one of the sheets should be retained. As shown in Fig. 3, when the smaller sphere (the red
sphere on the left) is the base sphere, the closer of the intersections corresponds to the correct bisector
surface and therefore, the closer solution of Eq. 5 is used. Conversely, when the larger sphere is the base
sphere (shown in green), the farther solution is used.

Preprint to eScholarship

5

Fig. 3: Culling the incorrect sheet of the two hyperboloid sheets.

When the ray does not intersect the bisector surface, we have a distance value of infinity that we
input as a large value to unify the lower envelope calculation. For each ray, the lowest distance to all the
bisectors is stored, to output the final sample point on the Voronoi face the ray intersects. For infinite
Voronoi cells, some of the final sample points will be at infinity (these can be thought of as intersections
with a bisector surface between the base sphere and infinity, allowing us to process them like any other
bisector for calculating Voronoi vertices).

In the case of intersecting spheres, the bisector surface will pass through the interior of both spheres
(Fig. 4). (Intersecting spheres are actually quite common in the case of molecular input where atoms’
influence spheres often overlap within a single protein, for example.) For simplicity of implementation,
we thus calculated all distances along sample rays from the origin of the base sphere rather than its
surface, so that the lower envelope calculations need only consider positive distances to bisectors.

Fig. 4: Bisector surface for two intersecting spheres

4 CALCULATING VORONOI CELLS

We use a marching-grid approach to locate the neighborhood of Voronoi vertices by checking each group
of four neighboring face sample points, which we call a “grid cell" on the bounding cube. In the u-v
parametric domain, for each such grid cell, we color-code each of its four corner points based on the
corresponding bisector. Within a grid cell, if the four corners have three or more colors, then they
correspond to three or more bisectors and thus to a corresponding number of Voronoi faces. Hence, at
least one Voronoi vertex must be located within the cell (e.g. where those Voronoi faces intersect).

Fig. 5(a) and Fig. 5(b) shows the correspondence between sample points on Voronoi faces in
geometric space and the samples on the bounding cube of the base sphere in the u-v domain. The
Voronoi cell of the base sphere (the large sphere in the middle) is shown on the left; it has four

Preprint to eScholarship

6

surrounding unbounded Voronoi faces (red, blue, green, and yellow). Infinite rays are represented by
the gray portion in the color map of the bounding cube (Fig. 5(b)). Fig. 5(c) shows one of the u-v domains
of the bounding cube of the base sphere. The grid cells indicated contain three colors.

Fig. 5: (a) Sample points on Voronoi faces for white base sphere; (b) Corresponding color map of u-v
domains on bounding cube; (c) Sample point grid on one face of the bounding cube with 3-color grid
cells indicated.

Similar to the Voronoi vertices, Voronoi edges occur where there are at least two different colors
out of the four neighboring sample points, which means there is an intersection of two bisectors. The
connectivity of the grid cells and the pattern of shared colors of the sample points determine the vertex-
edge topology of the Voronoi cell.

5 CALCULATING VORONOI VERTICES

For a three-color grid cell, finding the Voronoi vertex is equivalent to solving the three bisector surface
equations simultaneously. We use the Newton-Raphson method to find locations of the actual vertices,
unless one of the bisectors is the infinity bisector, in which case we already know the vertex is located
at infinity. By checking all the grid cells, those grid cells with three or more colors are easily located. To
calculate a Voronoi vertex P(x, y, z), we solve for the three unknowns x, y and z. The implicit functions
for the corresponding three bisector surfaces are denoted as𝑓𝑓1(𝑥𝑥,𝑦𝑦, 𝑧𝑧),𝑓𝑓2(𝑥𝑥,𝑦𝑦, 𝑧𝑧),𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓3(𝑥𝑥,𝑦𝑦, 𝑧𝑧) . The
solution for the system of 3 non-linear equations in 3 unknowns is given by:

𝑓𝑓1(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0
𝑓𝑓2(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0
𝑓𝑓3(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0

 (7)

The following vector expression is used to simplify Eq. 7, where F denotes the vector representing
functions 𝑓𝑓𝑖𝑖(𝑃𝑃) as in Eq. 8, and 0 denotes the zero vector. The solution for the system of implicit
functions for the bisector surfaces 𝑓𝑓𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝑧𝑧) can be written using a single vector expression as
𝐅𝐅�p(x, y, z)� = 𝟎𝟎, where

 𝐅𝐅�P(x, y, z)� = �
𝑓𝑓1(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑓𝑓2(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑓𝑓3(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

� (8)

If P = 𝑃𝑃0 represents the first guess for the solution, successive approximations to the solution are
obtained using numerical iteration. From the current kth iteration, iterating from an approximate solution
𝑃𝑃𝑘𝑘 and substituting it in, we obtain point 𝑃𝑃𝑘𝑘+1 for the (𝑘𝑘 + 1)𝑡𝑡ℎ iteration:
 𝑃𝑃𝑘𝑘+1 = 𝑃𝑃𝑘𝑘 − 𝐉𝐉−1(𝑃𝑃𝑘𝑘) ∙ 𝐅𝐅(𝑃𝑃𝑘𝑘) (𝑘𝑘 = 0,1, …) (9)

At each iteration, in the general case, an improved estimate of the solution is produced, (since the
bisector surfaces are always planes or hyperboloids) until the new estimate is close enough to the actual
solution. A convergence criterion for the solution of this system is defined to be:
 max|𝑓𝑓𝑖𝑖(𝑃𝑃𝑘𝑘)| < 𝜖𝜖 (10)
for the user-defined tolerance ϵ.

The 3 × 3 Jacobian of the system (Eq.9) is:

Preprint to eScholarship

7

 𝐉𝐉(𝑃𝑃𝑘𝑘) = ∂F(x,y,z)
∂P(x,y,z)

=

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓1
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓1
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓2
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓2
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓2
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓3
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓3
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓3
𝜕𝜕𝜕𝜕 ⎦
⎥
⎥
⎥
⎤

 (11)

when the Jacobian matrix 𝐉𝐉(𝑃𝑃𝑘𝑘) is singular, it is not invertible. This occurs when the three bisector
equations are not linearly independent, which will occur, for example, where the three bisectors intersect
at one common edge instead of at a vertex (Fig. 6). A singularity can also occur when the three bisectors
actually have no intersection (Fig. 7). A third sort of singularity occurs if the start point for the iteration
happens to fall at a local minimum. We distinguish the third case from the other two by subdividing the
grid cell; we expect all of the sub-cells with the same colors of bisectors as the parent to also have
singular Jacobian in the first two cases. In the third case, we should have a non-singular Jacobian in the
sub-cell with the same color bisectors as the parent and can now successfully use iteration to solve for
the location of the Voronoi vertex.

Fig. 6: Special case of Jacobian singularity for atoms in a hexagonal configuration, the bisectors all
intersect along an edge.

Fig. 7: Special case of Jacobian singularity when bisectors do not actually intersect (Input consists of 3
intersecting colored spheres and a white base sphere; a cross section is also shown).

For the start point for the Newton-Raphson method, we intersect a ray that is the average of the
four corner points of the grid cell with the corresponding bisector surfaces. Occasionally this leads to
converging to a solution at the intersection of an incorrect sheet of a hyperbolic surface (Fig. 10(a)). We
identify such cases by confirming that the solution is truly equidistant to the spheres defining the
corresponding bisectors, and if not, reinitialize the start point with the ray intersection with a different
bisector. In practice we found that the iteration converges within 10 steps except in cases such as shown
in Fig. 8, where the iteration oscillates between two intersections of the bisector surfaces close together.
When we identify such non-convergence, we subdivide the grid cell.

Preprint to eScholarship

8

Fig. 8: Case of a non-converging grid cell with two intersections. The two Voronoi vertices (white) are at
the intersection of the same four bisectors (blue, green, red, and yellow).

5.1 Subdivision

We uniformly subdivide the original grid cell into four sub grid cells. By taking the midpoints of the
edges of the original grid cell, we have five new rays. The original parent grid cell is decomposed into
four new child cells. Taking the lower envelope of each new ray with bisectors gives us five new sample
points. We identify if any of the sub-cells have the same three colors as their parent. If so, we take the
average of the rays of such cells as a new start point for the iteration. Otherwise, when all of the four
children share only one or two colors with the parent, there is no vertex to output.

When there is a new color identified during the subdivision, there is a new Voronoi face that was
missed in the original sampling. If the new color lies on an edge of the old grid cell, we also subdivide
the neighboring grid cell sharing the edge.

 By using subdivision in our algorithm, we can increase the local sample density when the numerical
iteration fails to converge or leads to a singular Jacobian in finding the Voronoi vertex.

5.2 Four-color Special Cases

Subdivision is also required to distinguish the special cases where all four corners of the grid cell are
different colors. There are two possibilities: 1) the four corresponding bisector surfaces intersect at one
vertex (Fig. 9(a); or 2) there is more than one Voronoi vertex in the neighborhood and we increase the
sampling density for this grid cell to identify the other Voronoi vertices (Fig. 9(b-d)). To identify the
vertex the four bisectors intersect at, we check if choosing any three of the four corner points as input
for Newton’s method gives us the same calculated vertex location.

Fig. 9: Special Cases with four colors within one grid.

If there is more than one vertex within this grid cell, we increase the samples in this grid cell by
subdividing the original grid cell (Section 5.1). The next level of subdivision will reveal either two vertices
within the grid cell (Fig. 9(b)), three vertices within the grid cell (Fig. 8c), or four vertices within the grid

Preprint to eScholarship

9

cell (Fig. 9(d)). For Fig. 9(c) and Fig. 9(d), there is a fifth color inside the grid cell but it has yet to be found
without increasing the sampling density of the grid cell.

5.3 Replacement of Vertices on Incorrect Sheets

We use implicit functions of corresponding bisectors in the Newton-Raphson method. From Fig. 3, we
know that points on incorrect sheets of the hyperboloids (as well as points on the actual bisector
surfaces) can make the implicit functions equal to zero. Although we only preserve the correct bisectors
in the ray shooting process, the Newton-Raphson method may converge to vertices that are at an
intersection involving one or more incorrect sheets of the hyperboloids. Fig. 10(a) shows the problem in
a 2D case, where the iteration start point is farther from the real Voronoi vertex than from the indicated
point that is at an intersection with an incorrect sheet, and therefore Newton-Raphson converges to this
incorrect point. This situation typically arises when two spheres have close (but not identical) radii,
which leads the correct and incorrect sheets of the hyperboloid surfaces being very close to each other.

To determine if the point to which the iteration converges is a correct Voronoi vertex, we check its
distance to the corresponding spheres. If the point is equidistant from the spheres, it is a Voronoi vertex.
Otherwise, we use additional rounds of Newton-Raphson iteration with different start points,
determined as follows. From the base sphere, we shoot a new ray through the previous start point. The
intersection of the new ray and the bisectors between the base sphere and the other spheres are the new
iteration start points (Fig. 10(b)). After Newton-Raphson iteration with these new start points, we check
the equidistant property of their new converged points. (In practice, one of them always leads to the
correct intersection, within tolerance.)

Fig. 10: (a) Converging to an incorrect intersection with an unnecessary sheet of the bisectors. (b) Finding
new start points for Newton-Raphson method.

5.4 Sorting of the Voronoi Vertices

For each vertex, there are four or more spheres from which it is equidistant, including the base sphere
(in general position, it is exactly four). When combining the individual Voronoi cells into the Voronoi
diagram, we need to find each vertex in the cells of all of its contributing spheres. To determine if we
have done so, we sort the vertices by the lexicographic order of the indices of the contributing spheres.
We consider vertices identified in different Voronoi cells to be the same Voronoi vertex if they have the
same contributing spheres and their locations are within the user-defined tolerance.

5.5 Incompletely Matched Vertices

In the sorting process, we may discover that a Voronoi vertex is not found in the cells of all of its
contributing spheres. This occurs when the sampling is not dense enough to detect those vertices from
all the base spheres (typically due to a Voronoi face with small area that none of the sampling rays hit).

Preprint to eScholarship

10

For such incompletely matched vertices, we perform a second targeted search from each of the
corresponding base spheres where we have not found the specific vertex.

To do so, we shoot a new ray from the center of the base sphere in the direction of the undiscovered
vertex, whose exact location we now know. We then use the corresponding u-v coordinate on the
parametric bounding cube to determine the existing grid cell that the ray intersects. Centered around
this u-v coordinate point, we construct a much smaller grid cell that is a user-defined fraction of the
size of the original grid cell (Fig. 11). If this new grid cell’s corners are three or more colors matching
those of the other contributing spheres, then the same Voronoi vertex has now been found for this base
sphere and we can add this appearance to the sorting list. Otherwise, we recursively create even smaller
grid cells using the same size reduction ratio, until we find the 3-color grid cell or we reach a maximum
depth of recursion.

Fig. 11: Construction of the new grid cell

After processing all incompletely matched vertices, we sort the list again, and treat vertices found
for all the contributing spheres as Voronoi vertices. For any point that still cannot be found for all of its
contributing spheres, we test if it is truly a Voronoi vertex as follows. We can always find the sphere
centered at this point and cotangent to all its contributing spheres. If this tangent sphere intersects or
contains any other input sphere except its contributing spheres, the point is not a real Voronoi vertex
and we remove it from the sorting list. (These spurious Voronoi vertices arise due to sampling errors.)
For the full Voronoi diagram, we output each distinct Voronoi vertex once.

6 DESIGN OF GPU FRAMEWORK

The computation of intersections and lower envelopes as well as the calculation of Voronoi vertices are
more time consuming when the input data size increases, which informs the direction of parallelism.
Our algorithm is well suited to GPU programming because it has high-density sampling, making for
arithmetically intensive operations that can be parallelized, and at each sample the calculation is
relatively independent. The calculation of intersections with bisectors and the minimum distances
depends only on the ray and the bisector, independent of neighbor rays or other bisectors. The problem
is then reduced to a set of identical and independent distance equations to be solved for high-density
sample points. Similarly, the numerical iteration is performed identically and independently for each of
the Voronoi vertices.

Fig. 12 diagrams the framework of our algorithm. Serial operations done on the CPU are: reading
input spheres, sorting Voronoi vertices, processing incompletely matched vertices, and plotting sample
points and vertices in OpenGL. Most of the implementation is done on the GPU. There are seven kernel
operations on the GPU in total:

1. Transform Base Spheres.
2. Sample Rays.
3. Calculate Bisectors.
4. Lower Envelope.
5. Calculate Vertices.
6. Replace Vertices on Incorrect Sheets.
7. Transform Back.

Preprint to eScholarship

11

Fig. 12: GPU framework.

Transform Base Sphere: This kernel function transforms spheres according to the corresponding base
sphere; each base sphere has its own object space where it is located at the origin. Let each base sphere
be taken care of by one thread.

Sample Rays: This kernel function samples the rays for all spheres. Let each ray be taken care of by
one thread. Denote n as the number of input spheres, and S2 as the number of samples per u-v domain.
For each Voronoi cell, there are 6S2 rays. For the whole Voronoi diagram, there are (6𝑆𝑆2 ∙ 𝑛𝑛) rays and such
that there are (6𝑆𝑆2 ∙ 𝑛𝑛) threads on the GPU (see Section 3.1).

Calculate Bisectors: This kernel function calculates all the bisector surface functions between each
base sphere and all other spheres. For each base sphere, there are (n - 1) valid bisectors. There are n ×
(n-1) bisectors in total (see Section 3.2). Let each base sphere be taken care of by one thread.

Lower Envelope: This kernel function includes the calculation of finding intersection as described
in Section 3.3 and then takes the minimum distance on each thread. Each ray finds intersections with
other bisector functions on its thread.

Calculate Vertices: This kernel function finds the grid cells containing the Voronoi vertices and then
calculates the vertices as described in Section 5 (except section 5.3 and 5.4). Let each grid cell of the
parametric surface be taken care of by one thread.

Replace Vertices on Incorrect Sheets: This kernel function identifies the vertices on the incorrect
sheets, and rectifies them by additional rounds of iteration in their corresponding grid cells with
different start points (see Section 5.3). Let each vertex calculated from the previous step be taken care
of by one thread.

Transform Back: This kernel function transforms back the points on Voronoi faces and Voronoi
vertices to the regular Euclidean space according to the current base sphere. Let each grid cell be taken
care of by one thread.

There is overhead associated with the GPU, such as allocating and deleting memory, and
communication between the CPU and the GPU. In our implementation, there are allocation and deletion
of rays and bisectors, sample points, and vertices on the GPU, copying of input spheres from the CPU to
the GPU, and copying of sample points and Voronoi vertices from the GPU to the CPU.

Preprint to eScholarship

12

7 RESULTS

Our algorithm to compute the Voronoi cells was run on a PC with an Intel(R) Core(TM) 2 Quad CPU
Q9400 @2.66GHz with 4.0 GB RAM and an NVIDIA Quadro 6000 graphics card. In our tests, we use a
relative percentage as our tolerance ε for convergence (Eq. 10), specifically, 0.001% of the length of the
diagonal of the bounding cube of all spheres for each input.

Our algorithm is robust in handling special cases of Voronoi vertices that arise with spheres not
in general position, such as arise with symmetrical input, as in the cell in Fig. 1(a) with a degree-4 vertex.
In addition to such synthetic test cases (e.g. Fig. 1(a) and 1(b)), we tested our implementation with several
examples of each of two types of protein structures from the protein data bank [14]: PDB format and
PQR format. In PDB format, atom spheres usually have different radii even for the same element, whereas
the PQR format includes hydrogen atoms that all have the same radii. The hydrogen atoms greatly
increase the presence of local symmetrical patterns, which can lead to non-general position Voronoi
vertices.

Fig. 13 compares the number of Voronoi vertices for the first Voronoi cell found by our
implementation when varying the sampling density for four different input proteins in PQR format. For
smaller protein molecules, a 30 or 40 sampling rate may be sufficient to discover its Voronoi vertices,
but for proteins consisting of a large number of atoms, the threshold is usually higher.

Figure 13: Sampling rate vs. the number of vertices calculated.

To test our ability to effectively build Voronoi diagrams for inputs of hundreds or thousands of
spheres and handle Voronoi vertices not in general position, we selected protein “1JD0” under PDB
format, protein “1al1” and “1bh8” under PQR format, and protein “1crn” under both formats. Table 14
shows the total running time for computing the Voronoi cells for these proteins as sampling density
increases. Running times increase roughly linearly with the number of input spheres (atoms), and
sublinearly with the number of sample rays, which are processed in parallel on the GPU.

Sampling 1al1-PQR
 (217 atoms)

1crn-PDB
 (327 atoms)

1crn-PQR
 (642 atoms)

1bh8-PQR
(2161 atoms)

1JD0-PDB
 (4195 atoms)

30*30 1.30 2.02 3.85 23.3 50.2
60*60 1.92 3.06 5.83 35.4 81.4
80*80 2.29 3.85 7.05 41.2 93.6

100*100 2.45 4.21 7.82 45.9 102

Table 14: Total computation time under different sampling rates. Running time in seconds.

Preprint to eScholarship

13

8 CONCLUSION

We have presented a new approach to calculating Voronoi cells of spheres that combines a sample-based,
lower-envelope approach with numerical iteration. The numerical iteration allows us to calculate the
geometry of the vertices to a much greater accuracy than the ray sampling density. The lower-envelope
calculations for sample rays are able to exploit the parallelism of the GPU, and are robust for non-general
position input.

ACKNOWLEDGEMENTS

We gratefully acknowledge support from National Science Foundation grant 1331352.

REFERENCES

[1] Anton, F.; Mioc, D.; Santos, M.: Exact computation of the topology and geometric invariants of the
Voronoi diagram of spheres in 3D, Journal of Computer Science and Technology, 28(2), 2013, 255–
266. http://dx.doi.org/10.1007/s11390-013-1327-3

[2] Berberich, E.; Fogel, E.; Halperin, D.; Kerber, M.; Setter, O.: Arrangements on parametric surfaces II:
Concretizations and applications, Mathematics in Computer Science, 4, 2010, 67–91.
http://dx.doi.org/10.1007/s11786-010-0043-4

[3] Chovancova, E.; Pavelka, A.; Benes, P.; Strnad, O.; Brezovsky, J.; Kozlikova, B.; Gora, A.; Sustr, V.;
Klvana, M.; Medek, P.; Biedermannova, L.; Sochor, J.; Damborsky, J.: CAVER 3.0: a tool for the
analysis of transport pathways in dynamic protein structures, PLoS Computational Biology, 8(10),
2012, e1002708. http://dx.doi.org/10.1371/journal.pcbi.1002708

[4] Edelsbrunner, H.; Seidel, R.: Voronoi diagrams and arrangements, in: Proceedings of the First
Annual Symposium on Computational Geometry, SCG '85, ACM, New York, NY, USA, 1985, 251–
262. http://dx.doi.org/10.1145/323233.323266

[5] Elber, G.; Kim, M.-S: Computing rational bisectors, Computer Graphics and Applications, IEEE,
19(6), 1999, 76–81. http://dx.doi.org/10.1109/38.799747

[6] Hanniel, I.; Elber, G.: Computing the Voronoi cells of planes, spheres and cylinders in R3, Computer
Aided Geometric Design, 26(6), 2009, 695–710. http://dx.doi.org/10.1016/j.cagd.2008.09.010

[7] Hanniel, I.; Krishnamurthy, A.; McMains, S.: Computing the Hausdor distance between NURBS
surfaces using numerical iteration on the GPU, Graphical Models, 74(4), 2012, 255–264.
http://dx.doi.org/10.1016/j.gmod.2012.05.002

[8] Hanniel, I.; Muthuganapathy, R.; Elber, G.; Kim, M.-S.: Precise Voronoi cell extraction of free-form
rational planar closed curves, in: Proceedings of the 2005 ACM symposium on Solid and physical
modeling, ACM, 2005, 51–59, http://dx.doi.org/10.1145/1060244.1060251

[9] Hoff, K.; Culver, T.; Keyser, J.; Lin, M; Manocha, D.: Fast computation of generalized Voronoi
diagrams using graphics hardware, in: Proceedings of ACM SIGGRAPH, 1999, 277–286.

[10] Kim, D.-S; Cho, Y.; Kim, D: Euclidean Voronoi diagram of 3D balls and its computation via tracing
edges, Computer-Aided Design, 37(13), 2005, 1412–1424.
http://dx.doi.org/10.1016/j.cad.2005.02.013

[11] Petrek, M.; Kosinova, P,; Koca, J; Otyepka, M.: Mole: a Voronoi diagram based explorer of molecular
channels, pores, and tunnels, Structure, 15(11), 2007, 1357–1363.
http://dx.doi.org/10.1016/j.str.2007.10.007

[12] Random spheres data set from Voronoi Diagram Research Center,
http://voronoi.hanyang.ac.kr/qtdb/testdataset/random_sphereset.htm, accessed: 2015-04-05.

[13] Seong, J.-K.; Cohen, E.; Elber, G.: Voronoi diagram computations for planar NURBS curves, in:
Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling, SPM '08, ACM, New York,
NY, USA, 2008, 67–77, http://dx.doi.org/10.1145/1364901.1364913

[14] The RSCB Protein Data Bank, http://www.rcsb.org/pdb/home.home.do, accessed: 2016-02-25.

http://dx.doi.org/10.1007/s11390-013-1327-3
http://dx.doi.org/10.1007/s11786-010-0043-4
http://dx.doi.org/10.1371/journal.pcbi.1002708
http://dx.doi.org/10.1145/323233.323266
http://dx.doi.org/10.1109/38.799747
http://dx.doi.org/10.1016/j.cagd.2008.09.010
http://dx.doi.org/10.1016/j.gmod.2012.05.002
http://dx.doi.org/10.1145/1060244.1060251
http://dx.doi.org/10.1016/j.cad.2005.02.013
http://dx.doi.org/10.1016/j.str.2007.10.007
http://voronoi.hanyang.ac.kr/qtdb/testdataset/random_sphereset.htm
http://dx.doi.org/10.1145/1364901.1364913
http://www.rcsb.org/pdb/home.home.do

	Voronoi Cells of Non-general Position Spheres Using the GPU
	1 INTRODUCTION
	2 Related work
	3 algorithm description
	3.1 Sampling Rays from Base Spheres
	3.2 Calculating the Bisector Functions
	3.3 Finding Intersections and Lower Envelope

	4 calculating voronoi cells
	5 calculating voronoi vertices
	5.1 Subdivision
	5.2 Four-color Special Cases
	5.3 Replacement of Vertices on Incorrect Sheets
	5.4 Sorting of the Voronoi Vertices
	5.5 Incompletely Matched Vertices

	6 design of gpu framework
	7 results
	8 conclusion

