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Topological Constraints and Rigidity of Network Glasses from Molecular Dynamics
Simulations

Mathieu Bauchy1, ∗

1Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab),
Department of Civil and Environmental Engineering,

University of California, Los Angeles, CA 90095, United States
(Dated: June 23, 2015)

Due to its non-crystalline nature, the glassy state has remained one the most exciting scientific
challenges. To study such materials, Molecular Dynamics (MD) simulations have been extensively
used because they provide a direct view into its microscopic structure. MD is therefore used not only
to reproduce real system properties but also benefits from detailed atomic scale analysis. Unfortu-
nately, MD shows inherent limitations because of the limited computational power. For instance,
only the simulations of small systems are currently permitted, which prevents from studying small
compositional changes, although it is well known that they can dramatically alter system properties.
At this stage, it is tempting to follow topological constraint theory, which aims at describing macro-
scopic properties of the glass relying only on the connectivity of individual atoms, thus considering
the complicated glass network as simple mechanical trusses. Thanks to only basic hand calcula-
tions, this theory has been successful in predicting complex composition and temperature behavior
of glass properties, such as the glass forming ability, the viscosity of the corresponding liquid or the
elasticity. The purpose of my PhD work is to connect these successful approaches based only on
the topology of the underlying low-temperature network with properties that can be obtained from
MD calcultations. It should thus allow for an increased applicatibility of rigidity theory.
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TOPOLOGICAL CONSTRAINT THEORY OF GLASS

According to this theory, pionnered by Phillips and Thorpe in the 80’s [1, 2], the rigidity of a glass can be evaluated
by counting the number of constraints experienced by the individual atoms. In a covalent glass network, one needs to
take into account both two-body radial bond-stretching (BS) and three-body angular bond-bending (BB) constraints.
Phillips predicted that the glass-forming tendency is maximized when the number of mechanical constraints per atom
(nc) equals the number of degrees of freedom per atom (nd = 3), a condition which corresponds exactly to the Maxwell
stability criterion for trusses. The corresponding network is then termed as isostatic. If the number of constraints per
atom is less than 3, the network is considered as being flexible and shows low frequency (floppy) deformation modes.
On the other hand, if the number of constraints per atom is greater than 3, the network is considered over-constrained.
[3]

In covalent systems, such as in chalcogenides, the mean coordination number r is the key control parameter and
evaluating the number of BS and BB constraints per atom is quite straightforward (one has r/2 BS and 2r − 3 BB).
The total number of constraints per atom is thus given by :

nc =
r

2
+ 2r − 3 (1)

so that the Maxwell stability criterion (nc = 3, the rigidity percolation threshold), occurs at r = 2.4. This theory
has successfully predicted the rigidity percolation threshold of numerous chalcogenide systems and has now been also
extended to oxide glasses.

Although the original Phillips-Thorpe theory predicts a single threshold where the network fulfills nc = 3, recent
modulated differential scanning calorimetry experiments by Boolchand and co-workers [4] have revealed the existence
of a reversibility window defining more than one simgle isostatic composition. This has led to the recognition of an
intermediate phase (IP), defined between the usual flexible and stressed-rigid phases. The existence of the IP has
been attributed to a self-organization of the network with increasing stress (connectivity) as illustrated through a
phenomenological cluster model. [5]

RELATING MOLECULAR DYNAMICS TO CONSTRAINTS

General method

Even if the applicability of the topological constraint theory is rather simple when atoms follow the 8-N (octet)
rule, one has to be careful on how to use it. Especially, the link between coordination number (CN) and constraints
and the distinction between soft and hard constraints need to be carefully considered. For example, for stoichiometric
compositions like GeSe2 or GeS2, a simple counting leads to nc = 3.67 (i.e. an over-constrained glass) in agreement with
the fact that these compositions exhibit a low glass-forming ability. Applying the same algorithm to the corresponding
oxides (GeO2 and SiO2) would lead to the same value of nc, which would actually be challenged by experiment
indicating that silica and germania form glasses rather easily. In silica, the constraint associated to the inter-tetrahedral
angle Si-O-Si is actually broken so that its network is isostatic. [6] Moreover, if constraint counting in tetrahedral
glasses is rather straightforward, alkali silicate systems are more challenging since alkali atoms do not follow the 8-N
rule. For instance, the CN of sodium atoms is found to be 5 from MD simulations and EXAFS experiments [7],
although it has been proposed that only one BS constraint is relevant. These two examples illustrate that an exact
knowledge of which constraint should be taken into account is needed in order to apply rigidity theory with confidence,
and it can certainly not be obtained by simple guesses on CN or interactions.

We have therefore proposed to use Molecular Dynamics in order to compute the number of constraints per atom at
the atomic scale, without any prerequisite on coordination number or interactions. [8, 9] In valence-force-field models,
an atom experiencing bond-stretching (α-type) and bond bending (β-type) interactions is characterized by the total
potential energy U given by U = (1/2)kασ

2
r +(1/2)kβr

2σ2
θ where σr and σθ are the standard variations of respectively

the bond length r and the bond angle θ. Thus, as in classical mechanics, one can treat potential energies or forces
and deduce the motion. However, one can perform the opposite and relate atomic motion to the absence of restoring
forces which would maintain bonds and angles fixed around their average value. It is thus equivalent to evaluate the
rigidity of a constraint by calculating its potential energy or by computing the standard deviation (σr for BS and σθ
for BB) of the corresponding atomic motion, which give rise to radial or angular distributions.



3

FIG. 1. Method of constraint counting from MD-generated configurations. Large (respectively small) radial (a) or angular (b)
excursions around a mean value are characterized by large standard deviations on bond B (respectively small on A) representing
broken (respectively intact) constraints.

FIG. 2. Na pair distribution function gNa in the NS2 glass and its decomposition into 10 neighbor distributions out of which
are computed correspoding radial standard deviations σr. The broken curve is the sum of the 10 distributions.

Bond-Stretching (BS) constraints

During the course of the PhD work, we have first focused on three different alkali disilicate systems 2SiO2-M2O with
M = Na, K and Li (referred as NS2, KS2 and LS2). Having generated atomic scale configurations for each system,
pair distribution functions have been computed and splitted into neighbors contributions (1, 2,...6). The standard
deviations σr of each neighbor distribution give an estimate of the strength of the corresponding BS constraint, i.e.
a large σr will be associated to a broken constraint indicative of large radial excursions whereas a small standard
deviation will be associated with an intact constraint (see Fig. 1a and Fig. 2).

Fig. 3 shows the standard deviations σr for each relevant pair of atoms in the three alkali silicates. Note that O
atoms have been splitted into bridging oxygens (BOs, connecting 2 Si tetrahedra) and non-bridging oxygens (NBOs,
in the vicinity of an alkali cation) since these two species have a different environment (and thus do not experience
the same constraints). Results show a clear gap between intact (low σr) and broken (large σr) constraints for each
glass at least for most of the species involved. As expected, Si atoms are associated to 4 BS constraints with the 4
oxygens of the tetrahedron. BOs and NBOs respectively show 2 and 1 active BS constraints with Si neighbors. The
BS constraint between the NBO and the alkali atom M has a somewhat higher standard deviation (σr ∼ 0.1Å) but
it is still low compared to the other contributions arising from the next shell of neighbors (σr ∼ 0.2Å). This suggests
that the limit between intact and broken constraints should be taken between 0.1 and 0.15 Å. Note that, if the 3
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FIG. 3. Radial standard deviations σr at 300K for selected pairs Si-O, BO-Si, NBO-Si and NBO-M centered neighbor distri-
butions as a function of the neighbor number for the three alkali silicates NS2, KS2 and LS2. The broken horizontal line is an
approximate limit between intact and broken constraints (see text for details).

alkali silicates show the same general resort, associated constraints are not equivalent. In particular, the NBO-M
and NBO-Si BS constraints are found to be respectively stronger and weaker in lithium silicate than in the 2 other
silicates.

Bond-Bending (BB) constraints

We have evaluated the number of BB constraints in the same fashion, by defining the partial bond angle distribution
(PBADs), i.e. the distributions of the 15 angles (102, 103,...106, 203,..506) formed by a central atom 0 and each
neighbors (1, 2,...6). The standard deviations σθ of each PBAD give a quantitative estimate of the angular excursion
around the mean value, thus providing a measure of the strength of the associated bond-bending constraints. Once
again, broad distributions (large σθ) are associated to broken BB constraints whereas sharp distribution (low σθ) to
active BB constraints (see Fig. 1b and Fig. 4).

As for BS constraints, Fig. 5 shows that there is a clear gap between intact (low σθ) and broken (large σθ)
constraints. As expected, only the 6 angles of the Si tetrahedron (associated to 5 independent BB constraints) and
the inter-tetrahedral Si-BO-Si angle are associated to active constraints. NBO centered angles have a larger standard
deviation because of the increased angular motion that manifests from the non-directional ionic NBO-M bond and the
associated BB constraint is therefore broken. Note that the definition of the quite arbitrary limit between intact and
broken constraints (σθ '17◦) can be well defined when the temperature is changed, as discussed below. The present
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FIG. 4. Ten Si-centered partial bond angle distribution of a NS2 silicate glass for an arbitrary N. The colored curves correspond
to distributions having a standard deviation σθ lower than 17◦ (see also Fig. 5). Other distributions are represented by broken
lines. A generic view of a molecule used for the PBAD algorithm is shown : from the selection of a central atom 0, and for a
given number of neighbors (here N=5), one computed all possible bond angle distributions between sets of neighbors (e.g. the
marked 305).

results on BS and BB constraints are thus found to match exactly a Maxwell counting assuming the 8-N rule.

Composition effect

The same methodology has been applied on five selected compositions of GexSe1−x, a family of systems being
flexible, rigid or isostatic depending on the composition [10]. Fig. 6 shows the standard deviations of the PBADs for
Ge and Se atoms. As predicted by a direct Maxwell counting, the 6 angles of the Ge tetrahedron and the one of Se
are found to be associated to active BB constraints. A more detailed inspection shows that there is a clear difference
between flexible and intermediate compositions (x=0.10, 0.20, 0.25), having the six standard deviation σGe nearly
equal, and stressed-rigid compositions (x=0.33, 0.40), which have different σGe according to the value of the neighbor,
indicative that the angular motion around Ge is not symetric in stressed-rigid glasses. The deviations σGe involving
the 4th neighbor of Ge atoms are found to be higher in the stressed-rigid phase (see Fig.7). This highlights the fact
that, in stressed-rigid systems, not all constraints can be fulfilled at the same time. These results provide the first
structural evidence (from angular distributions) for the onset of stressed rigidity.

TEMPERATURE-DEPENDENT CONSTRAINTS

Enumerating of BS and BB constraints works well in fully connected networks at T = 0K. In practice, this situation
if fulfilled as long as T is low compared to the glass transition temperature Tg, i.e. when thermal activation is too low
to break a constraint. Extension of topological constraint theory to the liquid phase creates new scientific challenges
but can lead to a better understanding of the liquid phase, based on the knowledge of the underlying low temprature
network. Recently, rigidity theory has been extended by Gupta and Mauro [11] to account for the temperature effect
using an energy landscape approach. In this development, the behavior of each constraint is characterized by a step
function q(T) so that nc(T ) = q(T )nc(T = 0). At low temperature, all constraints are considered as rigid (q→1).
On the other hand, at high temperature, all constraints are effectively inactive (q→0) because nearly all bonds can
be easily broken by thermal activation. This approach has met great success by describing accurately the fragility of
liquids and the glass transition temperature in different binary liquids. [12, 13]

We have used Molecular Dynamics to derive a physical basis for the function q(T) and, more generally, to provide
an atomic scale picture to account for the behavior of the number of rigid constraints with temperature. [9] Using
the same methodology than in glasses permits to track the behavior of each constraint with temperature by following
the standard deviations σr(T ) and σθ(T ). Fig. 8 shows the radial excursion of the four O atoms around central Si for
the three previously presented alkali silicates. The limit between intact and broken constraints can be approximated
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FIG. 5. Standard deviations σtheta of Si-, BO-, NBO- and M-centered (M=Na,K,Li) partial bond angle distributions as
a function of the angle number for the three alkali silicates NS2, KS2 ans LS2. The broken horizontal line represents an
approximate limit between intact and broken angular constraints (see text for details).

relying on the limit that was found in the glass (see section 2.2). These results show that the BS constraint involving
the fourth oxygen neighbor becomes broken around 3000K, while the constraints coming from the three other oxygen
atoms remain intact until T=4500K.

One can use the same method to track the behavior of BB constraints. However, to gain deeper insights into which
constraints are relevant (low σ, intact) from those who are irrelevant (large σ, broken), we have analyzed the angular
excursion of each individual BO by computing the angular standard deviation σθ of each BO in the system along
the simulation time. A distribution of all the computed individual σθ is therefore obtained at each temperature.
Fig. 9 shows such distributions for temperature in the 300K-4500K range. At 300K, all BB constraints are intact
(rather sharp distribution centered at low σθ value). On the other hand, at 4500K, all BB constraints must be broken
because of thermal activation (as indicated by the broad distribution centered at large σθ value). Around Tg, the
liquid displays a bimodal distribution, with one contribution corresponding to broken constraints (large σθ) and the
other, arising from the low temperature system, to intact constraints. The latter progressively disappears as the
temperature increases. Note that this feature is also observed for the Si angle distributions. Using a double Gaussian
fit, the fraction q(T) of intact BB constraints has been computed and is displayed on Fig. 10 for the three investigated
liquids. These results exhibit the clear dichotomy between intact and broken constraints, thus offering an atomic scale
foundation to count relevant constraints and to use rigidity theory on a firm basis. Finally, we have found that the
approximate limit between broken and intact constraints (σθ '17◦ on Fig. 5) can be defined from the inspection of
Fig. 9, the minimum value in the bimodal distribution allowing to define the broken-intact boundary.
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PRESSURE EFFECT

As composition and temperature, it is obvious that pressure can induce a rigidity transition. Indeed, it is well-
known that pressure tends to increase coordination numbers in silicates and, thus, to repolymerize the network and
to create new constraints [14]. In a preliminary work, we have investigated the transport properties (diffusion and
viscosity) in a NS2 liquid at T=2000K. [15, 16]

As shown on Fig. 11a, results show that 3 regions can be observed in the diffusion of sodium atoms. In the first
regime, at low density, the diffusion constant of sodium atoms DNa hardly depends on the density. In the intermediate
regime, between ρ = 2.1 and 3.5 g/cm3, DNa decreases with the density. Finally, in the third regime, DNa decreases
even more rapidly. Inside the intermediate regime, we observe a maximum of the diffusion of O and Si network
forming atoms, similar to the well-known example of water or silica [17, 18], and the viscosity is found to display a
deep minimum (see Fig. 11b).

Looking for a structural signature of this density window, we have computed the neutron total structure factor
SN (Q). Fig. 12 shows the full width at half maximum (FWHM) of the first diffraction peak (FSDP). Interestingly, it
exhibits a density window which correlates very well with the window found from the diffusion. Note that the FWHM
of the FSDP can be associated to a correlation length L= 2π/FWHM which is therefore found to be maximum in this
window.

We are now in position to study combined effects with pressure and composition. These will be considered for the
completion of the PhD thesis. [8, 9, 15, 16, 19–33]
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