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EQUIVALENT-POTENTIAL CALCULATION OF =N SCATTERING
3J¢r0me Finkelstein

B Lawrence Radiation Laboratory
“University of California
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August 26,>l966

- ABSTRACT

Thé'équivaleht-potentialimethod is extended to‘permit'a

calculation of (nN) states with J = ¢ + % . With the potential

, , % ' - : . .
" ‘given by nucleon and N (1238) exchange, therc are no frec parameters’

1

. ’ ) . X ) . .
in the calculation. The N  is then "predicted" at a mass of

+

1100 MeV. The nonresonant phase shifts also agree.in a.genéral
way with»the resﬁlts'of phase—shift_analysis; in particular, the

5.y scattering length has the correct.sign, while ‘N/D calculations

'produce the”wfong sign. ‘It is argued that_this result ‘indicates

that the force due to iteration of the potential, included in this

method but. not in N/D , can be important.




UCRL-17093

-1-

I. INTRODUCTION

An important problem in strong interaction physics has been
the calculation of scattering amplitudes from input "forces," wﬁich'
. arc assumed known. One way of doing this is the N/D approximetion.
A fewvyéars ago Charap and Fubinil and Balézsg suggested an alternative
procedure for these calculations. In a previous pdpey3 I reported
an application of this procedure to = and sK scattering. In
this paper I extend the method to apply to the N amplitude.

At moderate energies the "force, " or at least the long-range
. part of it; may be considered to arise from the exchange of simple
systems in thé crossed chanhel., Let us suppose that we have written
dbwh a satisfactory representation of the force, and wish to chstruct
the'corresponding scattering‘amplitude. More ﬁrecisely, suppose that
B

(

ve believe we know the nearby t discontinuity A 5,t) (where s

t
and t‘ are the squareS'ofbthe conter-of-mass eﬁergy and of the
momen£um transfer, resPectively, and all amplitudés have definite
éxchﬁnge parity), and that we will séttle for an.amPlitude Als,t)
thch (a) satisfies‘elastic unitarity, and (b) ha§ its tvdiscon—
Finuity equal to AtB, at least for small t . Thg reason‘that
such an amplitude miéht be satisfactory is, of céufse, that the
closest'singularitieé are inciuded correctly. We can certainly use
the N/D equations to insure requiremehts (a) and (b). However,

t

since A B does not contain the iterations of the input forces,

the amplitude we. obtain will not have some of the properties that
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it.would if the iterations were included: 'for_exanplé, correct
“threshold behayiorvwill not automatically appear.

As an alternative to ﬁﬁc »N/D approximation, we could
'cbnsider,.for spinless external particles, the amplitude f(s,t)
obtained from a SchrSdingef equation with’the energy-dependent

potential

-1

| wealen e, @

V(r{s)r =

‘o

MR being the reduced mass. This potential is actually the first
term (the long-range part) of dn iteratively constructed potential
discussed in Refs. 1 and 2 vhich, vhen inserted into the Schrddinger
equation, would reproduce exactly the scattering amplitudc generated
. in
by the Mandelstam unitarity iteration. lHowever, the amplitude f
alrecady satisfies requirements (a) and (b); moreover, since it comes
from a Schrodinger eguation, it will, under one stipulation, have
correct threshold behavior and the structure in t which we expect
from the Mandelstam representation. This stipulation is that
' . -2 I . -
V(r,s) be less singular than r = .at the origih, which from (1)
. B ‘ P _:]‘/2 - SN -
means AT gocs to zerc faster than t at love . VWhenever
‘the input forces are given as pole terms, this requirement is surely
. . ‘

satisfied.

Although solving a Schrdodinger equation implies going off the

mass shell, it is not necessary in this method to assume anything
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| about'off-sh811'scattering, since the oniy iﬁbﬁt is the on-shell
poténtial Atg' Blankenbecler aﬁd Sugar5 hafe recently prpposed
a method 6f.mqking dynamical caléulationé wﬁiéh shares with this
onevthe feature of including thé forée due fﬁ iterated exéhange,
but which requires the off-shell poténtial. |

If the external particles do have spih, there may be séverai
éouﬁled amplitudes, in which case Eq. (1) becomes more complicated.
Balé;s has iried to write a Schrddinger equation for the sl
amplitude wﬁich is:a matrix in spin space.6 ‘He found that the
attractive poﬁential correspoﬁding to nucleon exchange behnved-

3

like r ” at the drigin,'which he proposed to haﬁdle with a cutoff.

My épproach will be different: to define a sihgle, unitury amplitude,

B

which I will call F(s,t) , and its nearby t discontinuity F,

I can then use (1) together with the Schrédinger cquation to recover
F from.avknowledge of FtB . In Section II belOW'I‘construct this
amplitude, discuss its crossing relations, and discover that my
method is applicable to alN states with J = ¢ + % but not those

with J = ¢ - % . In Section III I aisplay the potentials
‘corresponding to N . and N that I have used, and in Section IV

present nunerical results and a few conclusions.
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II. SPIN-INDEPENDENT AMPLITUDES

The kirematics off =N scattering have been summarized by,
for example, Frautschi and Wuleckn,( whose notation I shall use,
Consider the partial-wave amplitudes £ +(s) for orbital angular

: o : o , I . ,

o 4+ L : e is . .
momentum ¢ wnd J = ¢ % 5 s which are normalivwed to e sin O/q

under the assumption of elastic unitarity. Then let ¥, be defined

by
Fi(s0) - ) (2t 1) 5 a(s) B, <ift/z‘q?>' S (2)

in the physical region, and by analytic continuation whercver the
swn in (2) does not converge. - The sum deTining F. begins at & =0,
the sum for F  at ¢ =1 . .Since the f + satisfy the unitarity

- , Ty » .

of spinless particles, so will ‘P and TF_ . That is, we have the.

" familiar relations
. - 0 ' ‘ 'X_ ' ‘v . .
Im Fy(s,t) = (-Q/“n-)f a0 Fu(s,t') Fy (s,8") (3)

F, and  F_ are not'coupledAby'unitaritj.

The price we pay for eliminating spin from the uﬁitarity
equatioﬁ is ﬁhat th¢'cfo$sing relétions become complicated. In
the Appendix, the fbllowing points are establishgd: the exchunge of
a particle contributes to Fi(s,t) 'hot only a p§1e, but.also a cut

extending from the pole position to t =+ e .- Thug It+B

corresponding to a single-particle exchange force can be written
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Fa(s,t) = ege) 86 - 1) e ny(e) Buls,t) (W)

vhere g, and h, are kinematic factors, tp' is the position
of the pole in F,, and @$, 1is zero if t < tp . Also, at
large t , | ¢+(s,t)| < const. x t-?’/a and $ (s,t) > const. >0 .

“From Eq. (1), this means that the potential corresponding

“to Ft;B behaves like vr-3 at the origin. Thus I cann@t use a
(nonsiﬁgular) Schrodinger equatioﬁvté satisfy.réquirémenés (a) and
(b) applied ﬁo F_ .(as could élso have been seen from the fact that |

:F: has no s wave). For this reason my méﬁhod does not enablé me |
fo calculate scéttering in those statés Qith J = L.— % . ~However,
the‘potghtial correspéndiﬁé to Ft+B behaves l;ke. r-l at the
origin, and so I am able to produce an amplitude.satisfying (a) and
(b). 1In fact, it will turn out-tha£ Tor the range of eﬁeréies
considered, the_effeqt on .the amplitude of ¢+ is very small and
might asvwell héve been neglected; this is consistentvwiﬁh the hope

“that for moderate energles we nced only consider the long-range parts
of forces.v

To summarize this section, the plan is as follows: to

- construct the potential corresponding to particle exchange according

to Egs. (1) and (4) with the + sign, and to numerically s§lve

the resulting Schrodinger equation for the amplitﬁde f . This

amplitude will, within the limitations of the‘approximations

implicit in my method, coincide with F+(s,t), whose partial waves

are the physical partial waves F,,
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ITITI. THE POTENTIAL

I consider the forces duc to the exchange of the nucleon
and the N*(1238). The couplings of the »p arevsomewhat uncertain,
and in any case the .p contribution is gxpected to be small.8
Since one of the virtues of the méthod I use is tﬁat there neéd be
no adjustdbie parameters, I simply neglectvthe. p force.

Thé contributions of N éndv N* exchange‘in the u channel
to fhe invarianf amplitudes A and B-.have been given by Ball
and Wong.9 For the amplitu@es of isotopic spin .(% , %) thesek

contributions are

AB(s,t,u)

i

(W3, 1/3) g’ (ay-ape)/(a5u)

BB(s,t,u) - ()3, 1/3)'gN*2 (bl-bgs)/(ag-u) +(1,-2) ENQ/(M%-U) ,

where in units in which m.o=c = =1, the ¥ muss A is
. - . 3 .
8' 2 /8 6 2 l . l l . ey 3 )
.9, ng% /Br = 0.06, g Jhr = by a. = 8h2,) &, = 23.4,
B '
b1_= -157 and b2 =1.5 . Projecfing the partial waves of definite

exchange parity from (5), we have
£e p p)
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~
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-
i
I+

(h/3, 1/3) gN%2 i(a a s /q }_ l + t x/2q ),

w
~

i

+

. 2 0 2] 2

£(1,-2) g° [1a®) @ (1 + 1 /20%) , (e

where, because of the unequal mass kinematics, the pole positions

tN and tN* depgnd on s i

ct
il

o2 2 .\2/.
q = M- (M) s,

a2 - (M?"-l)g/s . ) (7)

&
!

N *

I now drop the subscript * from F

ot 2 since I can work only

with Ft+B , and adopt a superscript -t to indicate exchange parity,

s0 that FtB+ is physical for J - X even, and T B- for .

_ 2 t
J - % odd. Then from Eqs. (6) and (A13),
Bt _ | 2]
F,~o (s,t) = i{(l,-E) ey [( 10" p2/B ) 2n b(t - tN)

- (cog/qg) In S(1 + t/29°, 1 + tN/zqe) o (t —'tN)]

+

(4/3, 1/3) " [((ag-2,8) (Cy- dl/a )+ (b -b,5)

x (- -0y 4 22/6 2n 8(t - tyx)

(Equation 8 cont'd)
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+ (l/qe)‘(- (a.-a,.5) Coy + (bl-ﬁgs) ¢22)

1 2
m Q1+ 6/20%, 1 1/20) 8 (o -ty )} . ®
- 24 /. 2‘]‘1/2 | | ’
where Bp =1 + t/2q" + {(2 + t/2q ),(t/QqY)J' , the C's are given

. ' A : : ' o, ' o
by Eq. (A3), and S 1is given by Eq. (Al2). The Schrodinger equation

potential is_giveh by"

-1 -, Bt/
(

+ .
V(r,s) = :

ve‘-I'»Vt/r ) R . . (11)

the 25 /e normalization factor in Eq._(l)-bcing already.contained

‘ R S . : S A
“in FtB_ . The numerical values of 'V depend only on the experimentally
determined masses M and A éndﬂcoupling constants gNg and

gpr -
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IV. RESULTS AND CONCLUSIONS

As mentioned above, only the phase shifts for the states
with J = ¢ + % could be calculated. Below 1500 MeV total energy,

the calculations show one resonance, in the P33 state at llOQ MeV,
just above threshold. Its width I’ is 1.% McV; this corresponds
to a reduced width A = m2 P/q3 of 6.2, to be comparcd Qith the
experimental value of 13.5. Thé nonresonant phase shifts also agree
in a general way with the results of phzseQShift analysis, even
though there were no parameters that were adjusted:to make them_agree}
,in Figs. 1 and 2 the nonresorant phage shifts with ¢ <2 are compared
“with the O- to T00-MeV phase-shiflt énalysis.by Roper.lo

At higher energies the results were not consistent with
experiment, " Between 1500 and 2500 MeV, tﬁe only resonances to

appear were a sccond P at 1600, and an 5., at 21k0, and this

33 11

is clearly wrong.‘ In particular, the Regge recurrences of the
N*(1238) never appear; the trajectory rises cnly to & = 2.1 @t
1920 MeV. Howevér, thé_slope of the trajectory at the resonant
energy_is 0.9 (CeV)-g{ which is the same slope as that obtained from
a straight-line fit to the N* -and its observed'recurrences.ll

This result 1is not surprising if‘we believe that, while at 1qw
enercies the A‘ trajectory is primarily coupled to the alN channel,
b‘ ot higher energies channels with higher tﬁresholds (and probably
higher oxternal spin);aré important. In general, my method could
not be expected to be corfect at high,eﬁergies, for at least three

reasons: at high energies (i) the simple form of the peneralized
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poténtial is not Jjustified, (ii) the assumption of elastic unifarity
is wrong, and (1i1) the differences between the present calculation
and the full Mandelstam iteration becomes more acute. Therefore it
is understahdable £hat the calculation should fail above 1500 MeV
vand still produce reasonubie resulis at‘lowef energies, where these
three faults seem not to be so ilmportant.

The reported results were all obtained from the pdtential
given by Eq. (8). If the cut in F°  has been neglectedi(gh set
equal to zero), noné of the qualitative features would havé been
‘changed.

It is interesting to try to understand the relation between
the calculation reported here and-elastic ‘N/D calculations. For
this purpose let us sﬁppose'that ﬁhe assumptions common to both
methods, such as elastic unitarity and the particular choice of the
generalized potential, were correct. Urder this supposition, the
appfoximation involved in N/D is to neglect contributioﬁs to the
left-hand cut of all but the lowest Mandelstam unitarity iteration.
As mentioned in Section I, solving the Schrédinge; equation means
including ail the_terms of the unitarity iteration. Only the
lowest term is included exactly (wvith relativistic kinematics)~;
to include them all would reéuire an infinite iteration just to
construct- the potential--but it scems reasonable to hope thatvthis
is bettervthan'neglécting them altogether. If this bc correct,

then a given (attractive) generalized potential should produce more
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scattering in. the present method than in .N/D 5 whiéh neglects
the attraction pfoduced.by iteration of thé potential. For a
repulsive potential, the iterations élternate in sign, and hence
tend to caﬁcei; taking only the lowest-drder contribution to the
‘left—hand chf meané using too much repulsion. We would expect,v
then, that in.the calculation described in this papér attréctive
forces would appear strdngér; and repuléive forces weéker; than
in N/D  cﬁlculatioﬁs.

Unfortunately,vthis comparison is made difficult by the fact
that with an adjustable cutoff, ény fgrce can be made as strong as
one pleaseé} We then have to push’the‘argumenf furthér:‘ if N/D
neglects important attractive contributions to the 1éft-hand cut,
then in_ofder.to'obtain a resonance or bound staté at the correct
mass, it is necessary to'make'the cutoff higher than if the extra
éttfaption werebincluaed. This means that the D function would
change more sldwly with energy, and residues would thus be greater.
So if the method used.in this paper is a reiiaﬁle abproximation to
the unitarity iféraﬁion, we would éxpect it to produce smaller
residues than N/D calculations. Indeed, this is the case. The
residue of the N* reported hefe is only one half of the physical

vglue, while N/D calculations predict it to be too larg@.9,l¢

Also, in a previous study of =nx scattering using the same methods,3

" the residues, although larger than the experimental values,
came out smaller (and the trajectories came out‘steeper) than in

analogous N/D calculations.
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However,‘a comﬁariSon of the effective strengths of forces
in my method gnd in N/D can be made in a ﬁorc direct way.
E Coﬁsider the case of two forces, of opposite signs but comparable
hagnitudes. IT the forces #relof the. same range,‘then they will
cancel within the qun term.. 17 théy ére Of different runges, the
iteration will makgvthe attfactive bne stronger,.and the repulsive
one weaker, although thhgihg the>cutqff mi ght nétvuffect the re-
lative strengths of.thé two forces. |

" An exanple of such a case can be found in the nN Sll

- partial wave, where N* éxchahge is fepulsive and N -is‘attfactive.
Abers and ZemachB.estimaie the magnitude of the N% force to be

| 1.1 times that of the | il fo'rcé; the imp'qrtant point is that they

be comﬁarabie. Also, the ranges are quite different: because of the
' uhequal .ﬁ aﬁd N masses, tﬁe‘ratio of fhe ranges pf the two

forces is:not' M/A ~ 0.7% _bUt rather 1is tN/tN% which at

thresliold is about O.4L. The Tacts thdt the ehergy dependence of

, the two forces is differcnt, and that the coupled P amplitude,

11

although far away, is strong, make difficult the application of the

above reasoning to the N/D “calculation of the -S Nevertheless,

11
N/D calculations do produce a regative scattering length (i.e., a

. . 9,12
net repulsive force),

10,13 12 | :
’=2  Coulter and Shaw =~ obtained a negative

althouprh it is known that the scattering
length is positive.
scdttering léngth even vhen they took account of inelasticity.

As can be seen from Fig. la, the scattering length predicted

by my calculations is positive. Its value turns out to be
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0.29 mﬂ[-l ; Hamilton and WOolcock13 give a value of 0.17 mn.l .

The poténtial I used differed from that used in Refs. 9 and 12

in that T did not include the force due to p exchange. However,'
since the o force is attractive in the' Sll state, including

it would not have decreased the attraction.

One might suspect that the failure of N/D calculations
for the Sll ctate indicates a failure of the assumptions, in
particular that unknown short-range forces ére very importanf, at
least for ihe s wave. The results presented here suggest the
opposite: th;;zwhen itemtions of the potentidl are taken into.
 aCcount, simple' N and N% exchange is adequate to obtain a

reasonable fit to low-energy ‘nN scattering.
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APPENDIX

We need to know the contribution to Fti of.g particle
pole in the crossed_reaction. The invarlant amplitudes A and
B satisfy simple crossing relatibné, so this COntfibﬁtioh.to A
and - B Iis a pole in t or u . The partial waves will then bé

~given by expressions of the form

K,(s) a,(z,)

>
oo
~~
[
~—
it

K (s) Q,(z,) - o (A1)

o
&
—
[}
N
it

Comparison with Eq. (6) shows, for example, for nucleon exchange,
2,2 2
- . = t - = .
Kl(s) O) Kg(s) (l) 2) gN /q ‘) ZO l + tN<S)/2q In
this appendix we determine F, when A& and Be' are givenh by

(A1).

From Ref. T,
in(s) = ClleL(s) +Cip Bé(s) +Cpy Aail(s) +Cop B&tl(s) s (A2)

the matrix C Ybeing given by
N,

//f\(W+M)2.- uZ { [(W+M)2 - ug] {w - MJ f\
0 32;lrw2 { - I : E

/

7/

\«-_k wan)® +, [wa? - 2] lwew) [ )

with W = s and i = plon mass. Substituting (Al) and (A2)

into the definition
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F,(s,t) ='§: (20 + 1) P,(1 + t/qu) £ouls), o (ak)

we get

| e 2 | | -
Fyls,t) = (K Cpq + K2012)§5:<?"+ 1) Py(3 + t/207) leg) + (KyCoy + KCop)
o L ' |
X E:(24;+ 1) Pb(;_+ £/207) Q4 (24) - (a0)

The'firstzgum is easy:
j} f (é& + 1) P(2) Q,(z5) = 1/(z, - 2) - (46)
¢ = 0 S : : ' - .

" The second sum is nof’sd casy. Define
Si(z’ zo) =z—_ (2¢ + 1) Pz(z> Qefl’(zo)f. - _ (AT)

For s fixed in the physical region, Zg

‘will be fixed and gfeater
than 1. We shall need to e?aluate the discontinuities and the
'asymptoﬁic behavior of S, in‘the. ., plane for fi#édf:zo . The
sums.in (A7) converge only in an ellipse passing throu@h ZO ; 50
it is necessarybto do the sums where they donverge; and then
continue‘in ‘é .[this‘continuation is implied in‘writing (A6)] .

Léﬁ us first Sum S+, fofv l‘ < z ‘< Z |

o - IWG can use

Laplace's integrdl_representations.fbr Pé and Q& :

=~y
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P&(z) = (1/x) [. de [a(z,@)}L , a= z’b-i~.‘(142--l)'l cos 6 ,
20 : v '
" 1/2

Qyzg) = ax (xP-1)

)y

[B(ZO)X)].-L-l = 2y

(A8)
Although P& is an entire function, let us choose to stay on
the sheet of (z° - 1) in whick (27 - 1) - =z at large
lz| . From (A6) and (AT),
Sz,2.) =8 (2,0 ) -2 =2 2N (20 +1) P.(2) Q. (2)
YT T T+ 0 BR ‘zo’— Z LT L 1Mo
L) (o) p ) alny) - 9)
- a (28 + z) Q (=, .
Pr L ARG
5 1/2
The choice By =z + (z7-1) will mean that & has no pole.
‘Now substitute (A8) into (A9):
Bla,n ) =% E: (2¢ + 1) O] s (2 - Lyat it
1 o/ T % , )P BB,
1 0 '
(A10)
The sum can be done inside the integrals,
\" ¢ -1 1 s o _
_2_(2a +1)a B 5T * =, : - (Aal)

since ;la/ﬁl < 1 " throughout the region of double integration.

. We can now do the integral over © +to get
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[e 4]
2 .
/S\(Zz)_"l _dX 6".]. 1
’ T Bl 2 .\L/2
0 PR 1 (>c2-l)l/2 6(62-262+l)1/2 B -z + (z,-l)l/
(A12)
It is straightforward to show that this intcgral exists for
all =z except for z = z4 and =€ [-l,+ij , that IS! —-» const x|z|-3/2
at large | 2 1 s, and that S8 has & cut from -1 to 41
(which does not appear in S+) and another from z, to + @ .
Combining (AS), (A6), and (AY), we have '
F+(s,t) = [(chll + Kgcle) + (chlg-+ KECQQ)/BR] /(zo—z).
A
Q (e . ¢
+ (Kj_c2l + KQCQQ) S (A,ZO) ;- (A13)
: . 1i/2
with 2z =1 + t/2q2 and B =z + (za-l) . § can be evaluated

| PR
Cnumericolly Trom (Al2). FTB is the imagl"ry part of (Al3), which

is 0 if z < 2z . !
0 i
We can sum S_(z,zo) in a similar way, and obtain

B
R ax 1
S (Z;Z ) =7 _ + b 5 . 3
07 % ® L GE)? T (8Peepe )M
2 _\1/2 , e _\1/2
< Bz =1 (27-1) /_ 'ﬁ—xf(x -1) / )

B -z + (zﬂ_l)l/E B -z - (Za‘l)l/g‘+ (52—06z+l)l/2

(ALL)

but the imaginary part of this integral is ‘B, n/h at large =z
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This report was prepared as an account of Government
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implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
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-

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, '"person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.








