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Abstract

When there is interest to study n chemicals using x dose levels each, factorial de-
signs that require xn treatment groups have been put forward as one of the valuable
statistical approaches for hazard assessment of chemical mixtures. Exemplary appli-
cations and cost-efficiency comparisons of full factorial designs and regular fractional
factorial designs in toxicity studies can be found in Nesnow et al. (1995), Narotsky
et al. (1995), and Groten et al. (1996,1997). We introduce nonregular fractional
factorial designs and show their benefits using two studies reported in Groten et
al. (1996). Study 1 shows nonregular designs can provide the same amount of in-
formation using 75% of the experimental costs required in a regular design. Study
2 demonstrates nonregular designs can additionally estimate some partially aliased
effects, which cannot be done using regular designs. We also provide a statistical
method to evaluate the quality of an assumption made by experts in Study 2 of
Groten et al. (1996).
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1 Introduction1

There is considerable scope for reducing resources used in research by de-2

signing more efficient studies. Giles (2006) in a foreword in a recent issue in3

the journal Nature observed that some toxicology studies seemed to lack so-4

phisticated thinking in their designs and wondered whether that had led to5

many inconclusive studies. The importance of a well designed study cannot be6

over-emphasized. Experiments are increasingly complex, in addition to rising7

experimental cost and competing resources. In the extreme case, a poorly-8

designed study may not be able to answer the posited scientific hypotheses.9

Careful design considerations even with only minor variation in traditional10

designs can lead to a more efficient study in terms of more precise estimates11

or able to estimate more effects in the study at the same cost.12

A problem in the risk assessment of chemical mixtures is that the chemical13

interactions hamper prediction of the toxicity of the mixture. It is impossible14

to test each possible chemical interaction individually because of the multi-15

tude of potential interactions. One way to overcome this problem is to treat16

the mixture as a single compound and to test it as a whole. In this type17

of study, the net combined effects of all components in the mixture are re-18

flected. Factorial designs are used to detect interactions between two or more19

chemicals in a chemical mixture. Such designs were suggested by the US En-20

vironmental Protection Agency as one valuable statistical approach for risk21

assessment of chemical mixtures (Svensgaard and Hertzberg 1994). A full fac-22

torial experiment allows all factorial effects to be estimated independently and23

is commonly used in practice (Nesnow et al. 1995, Narotsky et al. 1995). How-24

ever, it is often too costly to perform a full factorial experiment. For example,25

if we have 8 factors to investigate and each factor has two levels, we need to26

have 28 = 256 runs. Instead, a fractional factorial design, which is a subset or27

fraction of a full factorial design, is often preferred because much fewer runs28

are required. When this fraction is properly selected, the resulting design can29

estimate the maximum number of factorial effects of interest with maximum30

precision.31

Fractional factorial designs are classified into two broad types: regular designs32

and nonregular designs. Regular designs are constructed through defining re-33

lations among factors and are described in many textbooks such as Wu and34

Hamada (2000), Box, Hunter and Hunter (2005) and Montgomery (2009).35

These designs are widely used in toxicity studies and other biochemical areas36

because they are simple to construct and to analyze. The run sizes are always37

a power of 2, 3 or the number of dose levels, and thus the “gaps” between38

possible run sizes are getting wider as the power increases. Nonregular designs39

such as Plackett-Burman (1946) designs and other orthogonal arrays are often40

used in various screening experiments for their run size economy and flexibility41
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(Wu and Hamada 2000). They fill the gaps between regular designs in terms42

of various run sizes and are flexible in accommodating various combinations of43

factors with different numbers of levels. Compared to regular designs, nonreg-44

ular designs have a more complex aliasing structure and thus is more difficult45

to analyze because main effects may be partially aliased with some interac-46

tions. Nevertheless, as we will demonstrate, the complex aliasing structure is47

a benefit because partially aliased effects can be estimated together. A key48

step is to disentangle the interactions from the estimates of the main effects.49

As Hamada and Wu (1992) pointed out, ignoring non-negligble interactions50

can lead to (i) important effects being missed, (ii) spurious effects being de-51

tected, and (iii) estimated effects having reversed signs resulting in incorrectly52

recommended factor levels.53

This paper aims at demonstrating the advantages of nonregular designs over54

regular designs in two subacute toxicity studies reported in the literature. In55

particular, we use a 12-run Plackett-Burman design in the first study and a56

16-run quaternary-code design in the second study. Both Plackett-Burman57

and quaternary-code designs are special classes of nonregular designs. These58

demonstrations show that nonregular designs are able to (i) further reduce59

the cost of regular designs, (ii) estimate additional interactions besides those60

that can be done with regular designs, and (iii) further reduce the biases in61

the effect estimates.62

2 Methods63

We first use two studies to demonstrate the differences in analyzing data from64

regular designs and nonregular designs. In particular, we use Groten et al.65

(1991, 1996) to demonstrate how nonregular designs can be more cost efficient66

than regular designs. Our second study is taken from Groten et al. (1996, 1997)67

and we show that nonregular designs can provide additional information on68

the estimates of some effects that regular designs are unable to do.69

Example 1 Interaction of eight minerals with the oral toxicity of cadmium70

in rats: application of a 12-run Plackett-Burman design.71

Groten et al. (1991, 1996) performed an 8-week toxicity study in Wistar rats72

to investigate the effect of several mineral supplements, all of which had been73

suggested to interact with the accumulation and toxicity of cadmium chloride74

(CC). The 8 minerals to be tested were calcium (Ca), phosphorus (P ), man-75

ganese (Mn), magnesium (Mg), selenium (Se), copper (Cn), zinc (Zn) and76

iron (Fe). In their study, the researchers kept the ratio between Ca and P con-77

stant to avoid the interactive effects of each other’s bioavailability. Accordingly,78

the two minerals Ca and P were always treated as one supplement resulting in79
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a total of 7 mineral supplements under investigation. The experiment used a80

regular fractional factorial design with 8 test groups. The chemical Cadmium81

(Cd) was present in all test groups and so we may ignore its contribution to82

all statistical analyses. The responses included clinical chemistry parameters83

and mineral content in liver and kidneys. Groten et al. (1996) analyzed the84

main effects first and then further tested the significant main effects and their85

aliased two-factor interactions in a subsequent experiment. Further details of86

the experimental setting and conditions were given in Groten et al. (1996).87

Although combining Ca and P as a single mineral supplement enabled the88

researchers to study eight minerals in eight test groups, their design has two89

major drawbacks. First, Ca and P were fully aliased and their effects could90

not be separated. Two effects are fully aliasing if the correlation between them91

is either −1 or +1. When the ratio of Ca and P was kept constant, one could92

neither distinguish the effects between them nor discover how they would93

interact with each other. This might not be a concern for Groten et al. (1996),94

but this is not desirable in general. Second, the design with 8 test groups for95

testing 7 mineral supplements is saturated, so there is no degree of freedom96

left for estimating the error variance or interactions. In their design each main97

effect is aliased with 3 two-factor interactions. The estimate of the main effect98

was biased and could be misleading if any of the interactions were significant.99

As a result, the researchers had to use follow-up experiments to resolve the100

ambiguity of the interpretation of significant effects, adding the overall cost.101

To overcome these drawbacks, one has to use a larger design with more test102

groups.103

One possible design would consist of 16 test groups shown in Table 1(a). For104

instance, the first test group involves four mineral supplements Ca, P,Mg,Cu,105

in addition to the common mineral Cd. In statistical design terminology, this106

is a regular 1/16th fraction of a 28 design or a 28−4 design. In this design none107

of the main effects is aliased with two-factor interactions; therefore, all of the108

eight main effects can be estimated even if some two-factor interactions are109

non-negligible. Furthermore, there are 7 degrees of freedom left for estimating110

the error variance or potential significant interactions. One disadvantage of111

this design is that it doubles the number of test groups. However, to study 8112

minerals together (i.e. treat Ca and P separately) , a regular design requires113

a minimum of 16 test groups.114

To reduce the number of test groups, we suggest to use a nonregular design115

with 12 test groups shown in Table 1(b). This design is an example of the116

Plackett-Burman designs available from the large collection of orthogonal ar-117

rays given by Plackett and Burman (1946). Since there are only 8 mineral118

supplements in the study, we choose the first 8 columns in the design, and119

treat the remaining 3 columns as dummy variables that are negligible. Table120

2 gives the units, levels and level assignments of each factor.121
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An obvious advantage of the new plan is the cost efficiency. The Plackett-122

Burman design uses only 12 test groups, a 25% saving over the regular design123

with 16 test groups given in Table 1(a). Like the regular design, the Plackett-124

Burman design allows all eight main effects to be separately estimated. It125

also provides 3 degrees of freedom to estimate the error variance or potential126

interactions.127

Example 2 Interactive effects of nine chemicals in a 4-week toxicity study:128

application of a 16-run quarternary-code design.129

Groten et al. (1996, 1997) performed a 4-week oral/inhalatory study in which130

the toxicity of combinations of nine compounds was examined in male Wis-131

tar rats. The nine chemicals tested were dichloromethane (MC), formalde-132

hyde (For), aspirin (Asp), di-(ethylhexyl) phthalate (DEHP ), cadmium chlo-133

ride (CC), stannous chloride (Sn), butylated hydroxyanisole (BHA), lop-134

eramide (Lop) and spermine (Sper) at a concentration equal to the “minimum-135

observed-adverse-effect level” (MOAEL). Their experiment had 16 test groups136

(Table 3(a)), which is 1/32nd fraction of a 29 design. Besides assuming that137

three-factor or higher-order interactions were negligible, Groten et al. (1996,138

1997) further assumed that there were no interactions between formaldehyde139

and other compounds in the study and so they deliberately chose a design140

such that the main effect of formaldehyde was fully aliased with four two-141

factor interactions. The aliasing pattern, experimental setting and conditions142

were reported in Groten et al. (1997).143

The responses in their study included body weights, organ weights, hematol-144

ogy, clinical chemistry and biochemistry values. They first analyzed the main145

effects, and then analyzed the significant main effects together with their two-146

factor interactions in a subsequent analysis. These analyses resulted in equa-147

tions that describe all hematological and clinical responses in terms of the148

variables tested. For example, using the aspartate aminotransferase (ASAT )149

activity (in Table 3(a)) as a response, the fitted regression equation is:150

ASAT (units/liter) = 75.31 + 3.44 ∗ Asp+ 5.19 ∗ CC − 2.44 ∗ Sn
+2.56 ∗ Lop+ 2.19 ∗ (For + CC × Lop)− 2.56 ∗ CC × Sn

151

where CC ×Lop is the interaction between CC and Lop and CC × Sn is the152

interaction between CC and Sn. Note that we have substituted the two-factor153

interaction CC×Lop in the original equation in Groten et al. (1996) by a term154

denoted by (For + CC × Lop) in the above equation, because the coefficient155

+2.19 is a mixed estimate from two fully aliased effects For and CC × Lop.156

Because For and CC × Lop are fully aliased, it is impossible to distinguish157

between them in the analyisis. Groten et al. (1996, 1997) ignored the main158

effect of For in this aliased pattern mainly because they assumed For was159

not active based on their expert opinion. However, as we will show below, by160
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using a nonregular design, we can estimate For and CC × Lop together and161

question the validity of the expert opinion on statistical grounds.162

For this study, we propose a nonregular design with 16 test groups displayed163

in Table 3(b). This design is one of the quaternary-code designs constructed164

by Xu and Wong (2007, design 9-5.ac in Table 2). The mixtures in all test165

groups of the nonregular design are the same as those in the regular design,166

except for test groups #2, #7, #10 and #15. In test groups #2 and #15, we167

have added For into the original mixture, while in test groups #7 and #10,168

we have deleted For from the original mixture. Table 4 gives the units, levels169

and level assignments of each factor.170

For illustrative purposes, we focus on the ASAT activity as the only response171

in this study. Data from Groten et al. (1996) for the study are shown in Table172

3(a). To compare our proposed design with the design used in Groten et al.173

(1996), we have to generate reasonable responses from runs in our design but174

were not used in Groten’s design. Fortunately by construction, we can predict175

how the set of responses will be for our design. Specifically, the only changes we176

expect are shown in the column of ASAT in Table 3(b), where there are now177

“±a” in test groups #2, #7, #10 and #15. Here the value of “a” represents178

the hypothetical effect of For on the response ASAT when we add For into179

the original mixture.180

Clearly the value of a is unknown without running a real study using our181

design. We can however provide realistic guesses of likely values for a. In this182

case, we consider likely values of a to be −4, −2, 0, 2 and 4. The rationale183

for picking these values of a is consistent with the magnitude of the observed184

effects from the real experiment. The values of a may be interpreted as follows:185

for example, if a = −2, this reflects a significant negative effect, meaning186

that when we add For into the mixture, the ASAT is expected to decrease187

significantly, other things being equal. Likewise, a value of a = 2 implies that188

we can expect a significant increase in the mean ASAT level when For is189

included in the mixture. As an illustration, suppose a = −2. Our responses190

in test groups #2, #7, #10 and #15 will change from 71, 96, 71, 72 to 69,191

98, 73, 70 respectively, and other responses remain unchanged. Note that the192

added effect “±a” only changes the estimate of the main effect of For and its193

aliased interactions including CC × Lop, but it will not affect the estimates194

of other main effects and interactions. For example, one can verify that the195

estimate of Sn is always −2.44 for any choice of a.196

The main reason that regular designs are incapable of estimating some in-197

teractions is that these interactions are fully aliased with the main effects or198

other interactions. This is a property of the regular design where fully aliasing199

is the only possible kind of aliasing. In nonregular designs, partial aliasing is200

possible, that is, the correlation between two effects is strictly between −1201
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and 0 or between 0 and +1. For example, the correlation between For and202

CC ×Lop is 0.5 and they are partially aliased in the nonregular design. Since203

For is only partially aliased with other interactions including CC ×Lop, it is204

not necessary to assume that For is not active as Groten et al. (1996, 1997)205

did. In addition, partial aliasing reduces the bias of the estimation of main206

effects from non-negligible two-factor interactions.207

3 Results208

Groten et al. (1996) did a 4-week toxicity study with nine chemicals and209

showed that combined exposure to nine compounds at the “minimum-observed-210

adverse-effect level”(MOAEL) of the individual compounds resulted in a wide211

range of adverse effects. Their factorial analysis suggested that the main ef-212

fects of Sn, CC, Lop, Asp and the interactions between CC and Lop and be-213

tween CC and Sn were significant to the response aminotransferase (ASAT )214

activity. If the significant level were increased to 15%, the main effect of buty-215

lated hydroxyanisole (BHA) would also be significant to the response. They216

purposely designed their experiment such that formaldehyde (For) was fully217

aliased with four two-factor interactions, including the significant interaction218

between CC and Lop. Then they suggested choosing the interaction, rather219

than the main effect, as one of the significant effects based on their expert220

knowledge, even though the analysis failed to distinguish between them.221

The nonregular design has a distinct advantage over the regular design be-222

cause it allows the estimation of all of the main effects, even when they are223

partially aliased with some two-factor interactions. In our case, we were able to224

identify the significance of For and its partially aliased two-factor interactions225

together. For example, six compounds were found to affect the ASAT activity226

when we generated the response with a = −2: there was a decrease in ASAT227

activity due to Sn or BHA or For, and an increase in ASAT activity caused228

by CC, Asp or Lop. Two interactions (CC × Lop and CC × Sn) included in229

the original analysis of the regular design were also found to be significant in230

our analysis.231

Following Groten et al. (1996), we have a final equation to describe the value232

of the response in any particular mixture in terms of the compounds tested.233

The final equation for the ASAT activity with a = −2 is:234

ASAT (units/liter) = 75.31 + 3.44 ∗ Asp+ 5.19 ∗ CC − 2.44 ∗ Sn
+2.56 ∗ Lop− 1.94 ∗BHA− 3.54 ∗ For

+4.46 ∗ CC × Lop− 2.56 ∗ CC × Sn

235

where Asp, CC, Sn, Lop, BHA and For are the level assignments of the236
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corresponding compounds in the mixture, having a value of either +1 (pres-237

ence) or −1 (absence). For every random selection of mixtures from the nine238

compounds tested, it is possible to predict the overall effect for the ASAT239

activity with the final equation.240

This equation can be interpreted as follows. When 5000mg acetyl salicylic acid241

per 1kg diet is added and the exposure levels of other chemicals are fixed, the242

ASAT activity increases by 6.88(= 3.44×2) units/liter. The interpretations for243

For and BHA are similar. However, the interpretations for Sn, Lop and CC244

are more complicated because of the existence of two-factor interactions. When245

3000mg stannous chloride per 1kg diet without cadmium chloride is added and246

the exposure levels of other chemicals are fixed, the ASAT activity increases by247

0.24(= (−2.44+(−2.56)(−1))×2) units/liter. If cadmium chloride exists in the248

diet, then the addition of stannous chloride leads to a decrease in the ASAT249

activity by 10.00 units/liter because (−2.44 + (−2.56)(+1)) × 2 = −10.00.250

Similarly, the interpretation for Lop depends the presence of CC while the251

interpretation for CC depends the presence or absence of both Sn and Lop.252

4 Discussion253

Our first study illustrates the run size economy of nonregular designs without254

sacrificing the estimation abilities of the designs. The number of test groups or255

trials in an experiment using regular designs is always a power of the number256

of dose levels. To study 8 mineral supplements, each with two dose levels, a257

regular design requires at least 16 test groups while a nonregular design uses258

only 12 test groups. Nonregular designs are also flexible in accommodating259

various combinations of factors with different numbers of dose levels.260

Our second study illustrates how a nonregular design provides additional in-261

formation of the interactions through their partially aliasing with the main ef-262

fects. Groten et al. (1996) noticed that the combined effects of two compounds263

were not a simple summation of responses of the individual compounds. In264

a regular design, independent estimates of a fully aliased pair of factorial ef-265

fects are impossible without additional assumptions on the significance of the266

aliased factorial effects. However, by proper choice of a nonregular design,267

we were able to decouple the partial aliasing between main effects and two-268

factor interactions and so able to estimate both effects simultaneously. This is269

possible as long as there are enough degrees of freedom left in the model.270

We demonstrate this advantage via Study 2. The analysis of Groten et al.271

(1996) showed the significance of the CC × Lop interaction under the as-272

sumption that For were negligible due to their expert knowledge. Figure 1273

provides a test on the significance of the estimates of the main effect of For274
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and the CC × Lop interaction. We use the original equation from Groten et275

al. (1996) and vary different values of a. In Figure 1, For and CC × Lop276

represent the estimates of the individual effects using the nonregular design,277

while (For+CC×Lop) represents the estimates of the fully aliased effects of278

For and CC × Lop using the regular design.279

One of the most surprising results is that when a = 0, For has a negative effect,280

CC × Lop has a positive effect, and both For and CC × Lop are significant281

at 5% level while (For+CC ×Lop) is not. Recall that the value of “a” is the282

additional hypothetical effect of For on the response ASAT when we add For283

into the original mixture. Groten et al. (1996) assumed that the main effect of284

For was negligible in their analysis. If their assumption was correct, we would285

expect that For is not significant when a = 0. The contradiction provides286

statistical evidence to question their expert opinion on the insignificance of287

For. Our finding further suggests that the interaction CC × Lop could be288

underestimated by Groten et al. (1996) because For had a negative effect.289

When we deliberately add a negative effect (like a = −2 or a = −4) to290

For, both For and CC × Lop are significant at 1% significance level while291

(For + CC × Lop) is not significant at 10% significance level. This shows292

how the nonregular design correctly identifies the significance of both For293

and CC ×Lop individually but the regular design fails to do so. On the other294

hand, when we add a positive effect a = 2 to For, CC × Lop is significant at295

5% level but For and For+CC×Lop are not. This is not surprising because296

the additional positive effect cancels the original negative effect of For.297

Furthermore, the nonregular design can reduce the bias in the estimates of298

the main effects when not all two-factor interactions are negligible. If it is299

not known in advance which interactions can be considered as negligible, a300

conservative approach is to minimize the maximum possible bias arising from301

the existence of two-factor interactions in the true model. Because main effects302

are partially aliased with two-factor interactions in nonregular designs but not303

in regular designs, it follows that the maximum value of the bias could be304

relatively small in nonregular designs. This implies that the estimates of the305

main effects suffer a smaller bias in nonregular designs than in regular designs.306

To fix ideas, consider the bias of the estimate of a main effect from both the307

regular design and the nonregular design. In the regular design, the expected308

value of the estimate of the main effect of For is309

E(β̂For) = βFor + βMC×DEHP + βAsp×BHA + βCC×Lop + βSn×Sper310

This expression includes the main effect of For and four two-factor interac-311

tions with coefficients all equal to 1. The aliasing structure of the nonregular312

design is more complicated than that of the regular design. Table 5 gives the313

expected value of the estimate of each main effect when two-factor interac-314
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tions are present. All the expressions include some two-factor interactions with315

coefficients all equal to ±1/2. Therefore, if there is no prior information on316

which interactions can be considered as negligible, a conservative approach in317

minimizing the coefficients is to minimize their maximum value, which is 1 in318

the case of the regular design and 1/2 in the case of the nonregular design.319

This shows that there is a larger bias in the regular design than in the non-320

regular design. Further details on bias reduction are given in Wu and Hamada321

(2000) and Deng and Tang (2002).322

The second study shows a potential drawback of a nonregular design is that323

its aliasing pattern can be more complicated than that from a regular design.324

However, we feel that the advantages of nonregular designs outweigh their325

disadvantages.326

As a final note, all the designs discussed here are two-level designs. While327

two-level designs are cost-effective in screening variables, they cannot identify328

nonlinear relationship between the response and factors. A linear relationship329

is good approximation when the high and low dose levels are close enough. The330

approximation becomes worse when the distance between two levels increases.331

One way to cope with this concern is to add a few (3–5) runs at the center.332

Adding center points to a two-level design can not only provide a check on a333

curvature effect but also provide an unbiased estimate of the error variance. If a334

curvature effect is present, the researchers should conduct further experiments335

to investigate the nonlinear relationship.336
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Appendix: Statistical Analysis Strategy340

We provide more details on how we perform analysis in study 2. We adopt341

one of the analysis strategies suggested by Hamada and Wu (2000, p. 356).342

The procedure is as follows.343

Step 1 For each factor X, consider X and all its two-factor interactions XY344

with other factors. Use a stepwise regression procedure to identify significant345

effects from the candidate variables and denote the selected model by MX .346

Repeat this for each of the factors and then choose the best model.347
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Step 2 Use a stepwise regression procedure to identify significant effects among348

the effects identified in the previous step as well as all the main effects.349

Step 3 Consider (i) the effects identified in step 2 and (ii) the two-factor350

interactions that have at least one component factor appearing among the main351

effects in (i). Use a stepwise regression procedure to identify significant effects352

among effects in (i) and (ii).353

We iterate between steps 2 and 3 until the selected model does not change. We354

may have an over-parameterized model, i.e., more variables than the number355

of runs, in steps 2 and 3. In such a case we replace stepwise regression with356

forward selection.357

In step 1 we compare nine different models, each consisting of a main effect and358

some two-factor interactions selected via stepwise regression. Guided by the359

prior information that For does not interact with other compounds, we choose360

a model consisting of the main effect of CC and three two-factor interactions361

CC×Lop, CC×Sn and CC×Asp. In step 2 we consider all main effects and362

the three interactions suggested in step 1. When stepwise regression is applied,363

there are eight significant effects at the 5% significance level. They are Asp,364

CC, Sn, Lop, BHA, For, CC×Lop and CC×Sn. Note that CC×Asp is no365

longer significant. In step 3 we consider the eight significant effects identified in366

step 2 together with two-factor interactions that have at least one component367

factor appearing among the six main effects in step 2. Forward selection does368

not find any additional significant effects and thus there is no need to iterate369

between steps 2 and 3. The final model consisting of the eight effects has a370

multiple R-squared of 0.97, indicating a good fit.371

The analysis strategy works well under the following two conditions: (1) only372

a few effects are statistically significant and (2) when a two-factor interaction373

is significant, at least one of the corresponding factor main effects is also374

significant. In practice it is possible to obtain uninterpretable models that375

consist of an interaction term without any of its parent main effects. It is also376

possible that the analysis procedure finds several incompatible models that377

are equally plausible. When these happen, it is a strong indication that the378

information provided in the data and design is limited and no analysis method379

can rescue. One solution is to conduct follow-up experiments using additional380

runs. See Wu and Hadamard (2000, Section 4.4) and Box, Hunter and Hunter381

(2005, Section 7.2) for choosing follow-up runs.382
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Table 1: Test groups in Study 1: Interaction of mineral supplements with the425

toxicity of CC: (a) Test groups of a regular design and (b) Test groups of a426

nonregular design.427

Table (a): 1/16th fraction of a 28 design (Regular Design)

1. + Cd + Ca, P, Mg, Cu 2. + Cd + Ca, P, Fe, Zn

3. + Cd + Ca, P, Se, Mn 4. + Cd + Ca, Mg, Fe, Se

5. + Cd + Ca, Mg, Zn, Mn 6. + Cd + Ca, Fe, Cu, Mn

7. + Cd + Ca, Cu, Zn, Se 8. + Cd + all minerals at a high level

9. + Cd + Mn, Se, Zn, Fe 10. + Cd + Mn, Mg, Se, Cu

11. + Cd + Mg, Cu, Zn, Fe 12. + Cd + P, Mn, Cu, Zn

13. + Cd + P, Se, Cu, Fe 14. + Cd + P, Mg, Se, Zn

15. + Cd + P, Mn, Mg, Cu 16. + Cd + all minerals at a low level

Table (b): 12-run Plackett-Burman design (Nonregular Design)

1. + Cd + Mn, Zn, Fe 2. + Cd + P, Cu, Zn, Fe

3. + Cd + Ca, Se, Cu, Zn 4. + Cd + Mg, Se, Cu, Fe

5. + Cd + Mn, Mg, Se, Zn 6. + Cd + P, Mn, Mg, Cu

7. + Cd + Ca, P, Mn, Se, Fe 8. + Cd + Ca, P, Mg, Zn

9. + Cd + Ca, Mn, Cu 10.+ Cd + P, Se

11.+ Cd + Ca, Mg, Fe 12.+ Cd + all minerals at a high level

428
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Table 2: Study 1: (a) Factors and levels; (b) Test groups and exposure levels (D1,429

D2, D3 are dummy).430

431

(a)

Factor Unit Low (−) High (+)

Ca % 0.64− 0.66 1.28− 1.30

P % 0.59− 0.60 1.30− 1.35

Zn mg/kg 28− 29 125− 140

Cu mg/kg 7− 11 46− 70

Fe mg/kg 35− 46 185− 245

Mg % 0.046− 0.047 0.24− 0.26

Mn mg/kg 45− 60 235− 270

Se mg/kg 0.09− 0.11 0.62− 0.88

(b)

Compounds Ca P Mn Mg Se Cu Zn Fe D1 D2 D3

+Cd+Mn, Zn, Fe − − + − − − + + + − +

+Cd+P, Cu, Zn, Fe − + − − − + + + − + −

+Cd+Ca, Se, Cu, Zn + − − − + + + − + − −

+Cd+Mg, Se, Cu, Fe − − − + + + − + − − +

+Cd+Mn, Mg, Se, Zn − − + + + − + − − + −

+Cd+P, Mn, Mg, Cu − + + + − + − − + − −

+Cd+Ca, P, Mn, Se, Fe + + + − + − − + − − −

+Cd+Ca, P, Mg, Zn + + − + − − + − − − +

+Cd+Ca, Mn, Cu + − + − − + − − − + +

+Cd+P, Se − + − − + − − − + + +

+Cd+Ca, Mg, Fe + − − + − − − + + + −

+all minerals at a high level + + + + + + + + + + +

432
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Table 3: Test groups in Study 2: Interactive effects between nine chemicals in 4-week433

toxicity study with the response ASAT : (a) Test groups of a regular design and (b)434

Test groups of a nonregular design.435

436

Table (a): 1/32nd fraction of a 29 design (Regular Design)

Mixture Components ASAT Mixture Components ASAT

1. +For 70 2. +Sn, MC, Lop, Asp 71

3. +CC, MC, Sper, Asp 86 4. +Sn, CC, Sper, Lop, For 75

5. +BHA, MC, Sper, Lop 65 6. +Sn, BHA, Sper, Asp, For 70

7. +CC, BHA, Lop, Asp, For 96 8. +Sn, CC, BHA, MC 65

9. +DEHP, Sper, Lop, Asp 77 10. +Sn, DEHP, MC, Sper, For 71

11. +CC, DEHP, MC, Lop, For 88 12. +Sn, CC, DEHP, Asp 80

13. +BHA, DEHP, MC, Asp, For 68 14. +Sn, BHA, DEHP, Lop 69

15. +CC, BHA, DEHP, Sper 72 16. +All nine compounds at MOAEL 82

Table (b): 1/32nd fraction of a 29 design (Nonregular Design)

Mixture Components ASAT Mixture Components ASAT

1. +For 70 2. +Sn, MC, Lop, Asp, For 71 + a

3. +CC, MC, Sper, Asp 86 4. +Sn, CC, Sper, Lop, For 75

5. +BHA, MC, Sper, Lop 65 6. +Sn, BHA, Sper, Asp, For 70

7. +CC, BHA, Lop, Asp 96− a 8. +Sn, CC, BHA, MC 65

9. +DEHP, Sper, Lop, Asp 77 10. +Sn, DEHP, MC, Sper 71− a

11. +CC, DEHP, MC, Lop, For 88 12. +Sn, CC, DEHP, Asp 80

13. +BHA, DEHP, MC, Asp, For 68 14. +Sn, BHA, DEHP, Lop 69

15. +CC, BHA, DEHP, Sper, For 72 + a 16. +All nine compounds at MOAEL 82

437
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Table 4: Study 2: (a) Factors and levels; (b) Test groups and exposure levels.438

439

(a)
Factor (Symbol) Unit Low (−) High (+)
Aspirin (Asp) mg/kg 0 5000
Cadmium Chloride (CC) mg/kg 0 50
Stannous Chloride (Sn) mg/kg 0 3000
Loperamine (Lop) mg/kg 0 30
Spermine (Sper) mg/kg 0 2000
Butyl hydroxyanisol (BHA) mg/kg 0 3000
di(2-ethylhexyl)phthalate (DEHP) mg/kg 0 1000
Dichloromethane (MC) ppm 0 500
Formaldehyde (For) ppm 0 3

(b)
Compounds For MC Asp CC Sn Lop Sper BHA DEHP ASAT
+For + − − − − − − − − 70
+Sn,MC,Lop,Asp,For + + + − + + − − − 71 + a

+CC,MC,Sper,Asp − + + + − − + − − 86
+Sn,CC,Sper,Lop,For + − − + + + + − − 75
+BHA,MC,Sper,Lop − + − − − + + + − 65
+Sn,BHA,Sper,Asp,For + − + − + − + + − 70
+CC,BHA,Lop,Asp − − + + − + − + − 96− a

+Sn,CC,BHA,MC − + − + + − − + − 65
+DEHP,Sper,Lop,Asp − − + − − + + − + 77
+Sn,DEHP,MC,Sper − + − − + − + − + 71− a

+CC,DEHP,MC,Lop,For + + − + − + − − + 88
+Sn,CC,DEHP,Asp − − + + + − − − + 80
+BHA,DEHP,MC,Asp,For + + + − − − − + + 68
+Sn,BHA,DEHP,Lop − − − − + + − + + 69
+CC,BHA,DEHP,Sper,For + − − + − − + + + 72 + a

+all compounds at MOAEL + + + + + + + + + 82

440
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Table 5: Aliasing structure between each main effect and two-factor interactions in441

the quaternary-code design used in Study 2.442

E(β̂For) = βFor +
1
2

(βMC×Asp + βMC×Lop − βMC×Sper + βMC×DEHP

−βAsp×CC + βAsp×Sn + βAsp×BHA + βCC×Lop

+βCC×Sper + βCC×DEHP + βSn×Lop + βSn×Sper

−βSn×DEHP − βLop×BHA + βSper×BHA + βBHA×DEHP )

443

E(β̂MC) = βMC +
1
2

(βFor×Asp + βFor×Lop − βFor×Sper + βFor×DEHP )444

E(β̂Asp) = βAsp +
1
2

(βFor×MC − βFor×CC + βFor×Sn + βFor×BHA)445

E(β̂CC) = βCC +
1
2

(−βFor×Asp + βFor×Lop + βFor×Sper + βFor×DEHP )446

E(β̂Sn) = βSn +
1
2

(βFor×Asp + βFor×Lop + βFor×Sper − βFor×DEHP )447

E(β̂Lop) = βLop +
1
2

(βFor×MC + βFor×CC + βFor×Sn − βFor×BHA)448

E(β̂Sper) = βSper +
1
2

(−βFor×MC + βFor×CC + βFor×Sn + βFor×BHA)449

E(β̂BHA) = βBHA +
1
2

(βFor×Asp − βFor×Lop + βFor×Sper + βFor×DEHP )450

E(β̂DEHP ) = βDEHP +
1
2

(βFor×MC + βFor×CC − βFor×Sn + βFor×BHA)451
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Figure 1. A comparison of the magnitudes and the significance of the estimated452

coefficients of, (For + CC × Lop) in the final equation of ASAT using the regular453

design with the corresponding magnitudes and coefficients for For and CC × Lop454

in the final equation of ASAT using the nonregular design when the value of “a”455

varies from +4, +2, 0, −2 to −4. The height of a bar represents the magnitude of456

the estimate and the number of asterisks represents the significance level (0.01 <∗
457

P < 0.05, 0.001 <∗∗ P < 0.01 and ∗∗∗P < 0.001).

C
oe

ffi
ci

en
t

−
4

−
2

0
2

4
6

a=+4 a=+2 a=0 a=−2 a=−4

*
**

***
***

*
**

***

For+CC*Lop
For
CC*Lop

458

18




