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ABSTRACT

The léading Regge tfajectories generated by two Yukawa
potentials of different ranges are sfudied by both analytical and
nﬁmeriCal methods. We find that severél new features appear which
are not present in the siﬁgle Yukawa case. We investigate in detail
the behavior of the trajectories as we change gradually from thev
single to the two Yukawa potential case, paying close attention to
thé appearance of branch cuts other than the usual right hand cut
in the leading trajectories. We notice that these cuts, if
presenf in relativistic theory, can play important roles in ex-
plaining effects such as the polarizafion in the n_p charge

exchange reaction.



UCRL-17475

-]~

I. INTRODUCTION

Regge'trajecfories for a single attractive or repulsive
Yukaws potential haﬁe been extensively investigated both by |
analytical and by numerical methods.l-u Studies of potential
theotry have served as one of the main sources:of intuition
concerning Regge trajectories in strong intefaction physics. How-
ever, 1t is extremely unlikely thét single attractive or repulsive
Yukawa potentials are a good approximation to nuclear forces. Such
potentials are unable to model attractive forces with repulsive
cores or long range repulsions; these forces are believed to be
important components of the strong intera,ction.5 |

This paper describes a study of the behavidr‘of Regge
trajectories that arise from a superposition of two Yukawa
potentials of different ranges. Inlbarticular, we shall be
interested in the behavior of the-trajectories for negative
energies, as this is the region which, in the relativistic case,
controls the asymptotic behavior,of the crossed channel, and thus
has direct experimental consequences. Our technique will be to
use analytical methods to investigate the features in the weak
coupling limit, and then use numerical solutions of the Schrodinger
equation to ascertain which features remain true in the more
realistic strong coupling case. We will be éble to determine the

positions of the singularities of the trajectory functions, which
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‘are qﬁite-diffefent from the single Yukawa case. This, in tumn,

will affect phenomenological formulae used in high eneigy data

| fitting.

In Section II we review, for'compleﬁeness, the equations
for the trajectories in the weak coupling limit. In Section III,

we exhibit the main results of the weak'couplihg limit, which are

'jﬁstified in Section IV. Seétion V includes numerical calculations

of the strong couplihg.case.
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TT. MATHEMATICAL PRELIMINARTES

For scattering of a spinless particle of mass m by a
central poténtial V(r), the ¢th partial wave S-matrix ele-
ment is uniquely determined by the Jost function f;(&,k),

through the_equation6

£ (e,x) £ (4k)
£ (e E(LK)

S(e,k) = (11.1)
For our purposes, we assume the potential to be sufficieﬂtly analytic
at the origin so that the Jost function f+(t,k)' is an analytic
function of ¢, with fixed polesbpossibly for Rel < =~ %. The
Jost function can be defined in terms of the radial wave function

B(osk,r):

£(6K) =15 %lﬁ%%%[ @nv(x))=2 H(l) (k) Busk,z) ar

(11.2)

where the Hankel fvnétionvis related to the Bessel function

J&4%(kr) by:

kr) = (Ltan ¢n + 1) .3 1 (kr) + S J 5 (xr). (I1.3)
| g+s

(5
Hpp
13,+l cos 1ix -i-5
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 The wave function ¢(L;k,r) is normalized to satisfy the boundary

condition:

1im 23:93:9 NN N - (11.4)
r -0 ‘ rz+l
This normalization together with the fact that Jh(z) = J_)\(z) “at
integral values of A ensures that fi(z,k) will nbt have fixed
poles at negative half-integral values6 of <.

The singularities of £,(1,k) 1in the ¢ -plaﬁe come from
the dixfe.rgen‘ce of the integral in Eg. (II.2) at its lower limit.'
For Ret > - %; this will not happen. :As we go into the.ieft-
half ¢ 'plane, f+(&,k) can have simple poles. TFor potentials
that behavé like r2nal + f(rg) near origin, n an integer
greater or equal to O, we see thét f;(a,k) "has simple poles
at ¢ = -n-1, -n-2,¥'-. The residues of these poles, of course,
depend on the potential. In particular, some of them may be equal
to zero for special values of k. |

The analytic properties of f#(z,k) in the. k plane
are well known. The Jost function £_(1,k) has a left-hand cut
along the negative imaginary axis in the k plane. t also
has a root type branch point of order 2¢ + 1 at k = O.

From Eq. (II.1l), one sees that the poles of 5(1,k) are

given by the zeros of f (¢,k). Consequently, the Regge trajectory
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. function 'a(ke) is a multi-valued function of ke, satisfying
9

_the following equation’

f_<£;= a(k?), E)’_= 0 for all k. _ | (11.5)

By the implicit function theorem, a(ke) has all the
singularities of £ (1,k)' and also has additional root-type

branch points, whenever

1 (m),
ar (e,k) artr (,k)
' @(k ) J < >_oc(k S NP O /e °

(11.6)

This correspohds to the coincidence of ‘zeros of f_(&,k). It is
this possibility of multiple zeros'that allqws a(kg) to have the
special singularity struéture that will be described below.

For our analysis, we shallvevaluate the Jost function
f (a k) for a superposition of Yukawa potentlals in the weak

10 e st
coupling limit. Let V(r) = Z: g, and approximate

¢(&;k,r) by a free wave function, with the normalization of

(II.4). We immediately find, from Eq..(II.2), that

~lnyg

Omgg © 1 mg
fk) =1 - ) s 1le+"‘ Z
e :
_1 - _s_
x FSETZ Rzé + 2k2> (1T.7)
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wheréll
Qz@ t=p )= (k) e Ty () ax ~ (11.8)
2k 5 .
and }
_}f_ ’ : : —'J_X’ v . .
Rla(l +f2k2 =.'(“k) e I (kex) e (kx) ax .  (II.9)

49)

Since Ra is an entire function of ¢ and Q, = R, at half
integral value . of i, we seé that,the»only'singularities of
f;(z,k) in ¢ come from poles of"QL 6t 1 = =1, '2,'é°. The

. O mg : K
residues at £ = =N are given by -21-(1Ei Py_1 <£-+ —35
. 3 : 2k
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III. PROPERTIES OF a(x®) IN THE WEAK COUPLING LIMIT :
? DESCRIPTION

In this section we shall describe, without proof, the main
features of a(kg) in the weak coupling limit. Our discussion
will be, for the most part, qualitative, yet all of the features
described have been.observea in numerical galculations for weak
yotentials. ~

Our.résults can be summarized most easily by considering
what'ha@peﬁs to a given set of trajectories when the poteﬁtial
strengths are variéd. As a matter of procedure, we shall start
with a pure short range cbﬁponent.of the poteﬁtial, then introduce
a long.range componéﬁt gradually until the strengths are equal, and
finally redﬁce the strength of the short range component to zero.
We shallAstudy.thé effect of these vériaﬁions iﬁ the potential on
the tfajectory_configurations. Thé initial and final configurations
'of ﬁhis sequence have been described in greét detail,2 and some
information on the intermediate,stagés exis‘cs,-lg’l3 We shéll attempt
to make this more systematic, and we expect to gaih some under-
standing of the singularity étructure‘of a(kz).

The potential under consideration is the following:

V(r) = v (r) + V,(x) , | ’ | (TII.1)
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where Vi(r) = 8 —F— fof"i =,l; 2. We shall always’
" take My < p2,'i.e.; V, will be the long'rangé.component of
the potentiéi.' There are.thén'four poséible cases to consider,
with the one used deﬁending on the Signs Qf, gl and 8s- We

use the convention that 8; < 0 corresponds to an attractive

poteﬂtial,

(A) & <0, g,> 0

This is the case of long rgnge:attractive and shorf rangé
repulsion,.corfésponding ﬁq'an attractive force with a repulsive
core. - The complete sequence is shown_in Fig. 1, where we also
indicate fhe cuté sfructure in the »kg plane of one of the
trajectories.

' he initial configuration (Fig. la) is that of apwe re-
pulsive Qotegtial.e One trajectqrylgoes to each negative integer
for k° - - w. As k- increases from - w, the polés at the even
negative integers move to the right and collide with those at
the odd:negative integers which move to the left. After the
chlisiOn,the'poles "bounce" into the complex ¢ plane as complex

conjugate pairs,lh and reach ¢ = - 1 from above and below as

k2 - 0. Above thfeshold, haif the poles return to the negative

integers and half of them go off to infinity in the second quadrant;
At the other extreme of the sequence (Fig. 2i), the.purely

attractive case, the pattern is quite similar except that.evgg

poles now move to the left. The pole: which starts at ¢ = -1

does not collide with any other pole, and reaches a point on the
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real axis beyond { = —'% at k2 = 0. Above threshold, this pole

returns tQ L = =1 ‘through an excursion in the upper half ¢ plane.
This is the léading trajectory. It is the only one that satisfies

a dispersion rélation.with‘a cut from threshold to infinity'.l5 A1l
the other poles behave in a way similar to éhe repuléive case.

As the attractive long-range poteﬁtial is turned on, so that
b1 8,1 '

g ‘

Ei > 2 , the trajectories which start at ¢ = -1 and -2
Al -3 , ‘
no longer reach 4 = - 3 but collide on the real axis to the left
of ¢ = -3 as shown in Fig. 1b. ‘After that, the one from -2

goes on.to the right and reaches

e e
+ (oL - 22N s . 1, » (1IT.2)
My Mo/ .

&~
Il
I .
oj-

at threshold, while the one from -1 turns back and reaches

8
ln(f-—i

N
M P
)
Mo

at threshold. These threshold values are marked with a dot A(III.2) and a

4= -1 + % (T11.3)

0

cross (TII.3) in Fig: 1. The leading trajectory, which in this case
is the one from ¢ = -2, now has a finite cut for K2 < 0, which
can extend arbitrarily close to threshold, due to the collisions

with the pole from ¢ = -1.
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<Increésing theiattfaction further %akes us to ‘]gl[ = lg2|;

‘at which point the trajectory startihg at & = -1 completely
_disappears, since ﬁhe potential no longer has a % singularity

at the'origin. Thg disappearance is achieved by the collapse of

the "bubble" wﬁich surrounded ¢ = -1 as shown in Figs. 1b and le.
.Equivalently the‘two.branch points of the finite cut for k2 <0

of the trajectory from & = -2 coincide. At this point, if we f
start reduéiﬁg the-fepulsion, the roles of the trajectories from

5 = =1 and -2 become interéhanged.l This "ihterchange"'cén be
bestlunderstood 5y noticiné that in the k2 >piane, the trajectory
from ¢ % -2 .- has two ﬂew complex.branch points (Fig. 14), so a
pzth along the negati\(éu_k2 axis necéssarily goes above one and
2elow the other.

AUpon further reduction of the repulsion; the threshold value

»f the trajectory from ¢ = -2 decreases until it is below :-2,
while two complex conjugate branch points, corresponding to its
collisioﬁ with trajectories from -3, apprdach the negative .kz

axis (Fig. le). In Fig. 1f, the ﬁwo branch points have collided
and diverged along the real axis. The trajectory from ¢ = -2

now ccllides with the ore from -b, since'the latter interchanged
its role with the one from =3 after the two bfanch points collided.
If we continue decreasing the repulsion the story repeats itself:
the bubble surrounding 4 = -3 collapses and the poles from ¢ = -3 and

-4 switch roles. In the end as the repulsion goes to zero, this
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mechanism has propagated itself to & = - « and we arrive at
the configuration of pure attraction2 as shown in Fig. 1li.
There is a further complication to the switch over described

exceeds .

Aol Mo
go to complex7value§ ‘ of ¢ at %k = 0. These zeros of f_(&,k)

above. When

.en infinite number of poles

accompany the one on the real axis mentioned above and marked by
"x" in Fig. 1. Their real paft at threshold is the same and is
given by Eq. (III.3). They are equally spaced along the imaginary

axlis. Their imaginary parts are:’

Im-a(0) = n : ___g___;:\\. for n = 03 #L; #23..... (ITI.4)
In —
S My

As_~k2. approabhes‘zero, eaéh‘trajectory spirals an infinite number
. of fiﬁes around its threshold valuel3.as shown in Fig. 2. There
are stiil>an infihite:humbervof trajectories going tO"t = - %.a#
kg = 0. As‘thé verticai,line of threshold values moves to the
left, as shown by the advance of the mark "x" in Fig. 1, the
spiraiing trajéctgries coilide with neighboriﬁg ones, and switch
roles, much in the'ééme way as the trajectories of real threshold
values do. .As the‘repu;sion is reduced thé.complex—threshold
trajectories coﬁnect to largei énd larger negative integers.

Finally, as the potential is made purely attractive, the vertical

line of threshold values, and the connecting trajectories are
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- all swept'to the left to infinity, and all trajectories except

the leading one go to ¢ = - & at threshold.

(B) & >0, 8,<0

_In this case we. are dealing'with a shorﬁfrénge aﬁtraction
gnd a long range repuléion; The sequence now~rﬁns'from-pﬁre
atﬁraction to pure‘reptlSioﬁ. | |
The.détailed manner in which the switch over takes place.

is analogous toicase A, and thus we shall discuss it only briefly.

Unlike case (A), however, there are no branch points on the

N

negative real ,k2 axis for the‘trajectory which ﬁasses L= =

for ko

<0 (leading;like ﬁrajectory).  Tt also does not have
coﬁplexrﬁrédch points until ngl >ig2!, for it could not "lie
.rdown"lahd‘disappear‘when. ]gl] = Tngf Once Igll > Iggl, complex
branch pointg will appear in the ¢ plane which are necessary to
carry ouf'the switch over 6f~trajéctéries. The entire seduence
similar to that ofﬁFig, 1 is‘shown in Fig. 3.

Compiex threshold_values‘will again accompany the reél
threshold value marked ﬂy ?”X" in Fig. 3. The positions of the

complex threshold are still given'by formulas ITI.3 and III.L.

(c) g, <0, 8, <0 or g >0, g, >0

These: cases include the combination of attractive or repulsive
potentials of different ranges, and are quite similar to the single

Yukawa potential. Wé want to note only that complex threshold values
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“21 ‘

‘The line of the complex threshold values mowes left as {gl] in-

g

Hq

for some trajectories are again possible once >

creases. Its position is given by

-~

In .—;

&2
Re ¢, =-1-3 (111.5)

0 K

In | —

Ho

The imaginary parts of the complex thresholds are

Im ¢, = (n+ %) L for no=0; £1; 42,00 . (111.6)
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IV. PROPERTIES OF a(ke) IN THE WEAK COUPLING LIMIT:.
JUSTIFICATION
As noted in Sec. II, the Regge trajectory function a(kg)]

.is given by the solution of the following equation:
G-k, ®=-0. | (1v.1)

" Our discussion will be‘divided,into.two'partg, In paft A, we study.
- the properties of a(k?), for finite kg.,‘In part B, we discuss the
- situation when kg' approaches threshold; From these we can get a

‘qualitative picture of a(k?) as described in the previous section.

~(a) _Collision of Poles

For a finite reglon 1n the L and k2 planes not including

_k2 =0, we can subtract out the flxed poles of £ (4, k) and expand
. ) A- . 2
‘what remains in s multiple power series in a(L-to) and (kg—ko ).
2
, Mg '
}: g o “pd 1 +- —2k2 i 5 »n
£_(e,k) + T el = (& % ™ (k ko) 5 (1V.2)
n,s. m,n=0
where a,. . is of order 1, and all fhé other a's are of order g.

.00
We subtract out the poles af. L = -1 and -2 to study the be-

havior of the Jost function in this region. When’qnly‘the’fiTSt term
of Eq. (IV.2) is.kept,: '~ Eq. (IV.1l) reduces to a quadratic

equation in 'L. In the case of two Yﬁkawé potentials we have
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- 2mvv mv : 3m v o m.v ’i) ‘ -
2 o -7 " o 2 . ,
85'+<iin B ) * é> ¢ +<:: ko o +-§ =0 ‘ (1v.3)

: . - ‘ 2 2y :
: = - = V = 1
where 'k = -1k, Vb. gl + 52’ and 5 2(gl e + g5 “2 ). The

solutions‘of‘this equation give us two Regge tfgjectories. . They are:

o) = - 3EE (7 - be)T (1. 1)
where |

.2m vO m v2

R - R R
K K

3m V o omv . , ' :

¢ = O —2 4. : - (1IV.5)
K YKB - S

Equation (IV.L4) shows explicitly: that two Regge trajectories are
different branches of the same analytic function. The branch points

are given by the zeros of the disériminaht D(k) = b2 - he, or

' o m v, 2 hvo m2 ' v, | :
D(K) =Q»— 5 ] - —2—— 60 -. -§)= 0 . N (IV.6)
K . K. K :

Let us look at the behavior of a(kg)' as we vary K> from - w,

to the threshold along the real axis. For large «, D(k)=1 > 0,
S0 a(kg) is real. When & - o, a(kg) approaches ¢ = -1 and
-2, IfVD(K) becomes negative as we decrease k, these two
-:trajectories first come togethef at the point D(k) =.O, and then
bounce off into a pair of complexvconjugate poles in the ¢ plane.
The singularity Struéture of a(kg)‘ can be found by étudying the

location of zeros of D(k). Before we proceed further, a word of
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caution is in order}, Since Eg. (IV.3) is an_apProximation, one

Ve

 has to examine its validity when. going “ to smali values of k-

2
It will be incorrect when EE << 1. But the information contained
. ) H . . *
in the solution of Eq. (IV.3) 4is rich enough for our discussion.
. 2 o : < ' :
. The behavior when_&EE ~ 0 will be discussed in part B of this section.

M . o
- Let us see how the positions of the branCh points depend on the

relative value'of g and . 8- Take, for example; case A of Sec. IIT
We heve a combination of long range attraction and short range re-

pulsion, i.e., ,gl'< 0, g, > 0.

(1) -gy > 8y > 0y [y | Zilepaptlsdies v <0, v, > O

Here we have a long fange attraction with small repulsive core.
Sinéé- D(k) ‘is“élways fositive for 0 < k<K o, we do nét have real
branch pointsi'instéad,,there are two compiex conjugété branch points
(Fig. ;d, but notice that in.this appraximation the.collision with

the trajectory from -3 is not described.) .

=0, v, >0

0 2

(ii) -8, =8, >0,.1.e., v
As we decrease the attraétion, these two branch points

move onto the real axis. The coinéidence of two branch points, at

K = m Vs, haé the effect of "decou@ling" these two trajectories
(Figr le). In'fact,'Eq.'(IV.j) factors into\the form

(¢ +1) (¢ +2 - i ;2 = Ol, 'so- that one pole remains at

L = -1, and the oze from ¢ = -2 actually does not have a‘branbh_

point. .Wéuéeeﬁthat"D(K) has_a,double;zeroﬁ<but,remains positive



UCRL~17475

-17-

‘along the-hégatiVew k2 axis.

(iii) lO < - g <182y ‘gl/“]_l > ]gE/p'El

As we further decrease the attraction, D(k)  will have a
pair of zeros on the real axis (Fig. 1b); thus a(ke) has two

real branch points.

(iv) g =0, 8, >0
When we'rempve the attraction completely, one of the two
branch points will have moved to threshold (Fig. la). There will

- 2 2 1/3
be one branch point at k ~ (2g2 Mo )

where the two trajectories
from ¢ = -1 and =2 collide.
Sihilarly, we can study other combinations of Yukawa

pdtentials, or the behavior of trajectoriés from‘other negative

integral values of ¢, using tye above technique.

(B) Threshold Behavior

To complete the picture, we have to examine the Jost function

f;(&,k) near k2 0. We have the following asymptotic behaviorll

& R K - 0
for Qa an R& as .

. 2 R 2‘ t+l
Y N oMy + L k- ’
o €L o e &

g\ _ sinfr(2e + 1)]
Ry é . Grri) | w

I

(1v.8)
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_,Substitﬁtingl(lvg?){ana;(IVﬂB)”iﬁtorEq. (IT.7), we have

( A

1C2(JZ,) 24+ l\’

ﬂf_(l,‘}{)l = Cl(z) il + E;-m K:» ){ . - (IV.9)
where |
_ -4- m sinf(2s. + l) 7] <:§£ fg .
C,(2) =1+ e T el + i - (zv.20)
- _m - (e +1 -21-2 252
02(&)} alrree) Vr T+ 32 Gl My + 8y My > (Iv.11)

Equation' (IV.1) thénfredﬁces,tql6

A 2+ 1

o. (v

The solutions of Eq. (IV.1l') can be classified according to whether

Re [o&(k2 =0)] is greater;thén,,équal,to;qr smaller than - 1.

(1) Real solution to the right of % = - %

. “Since 27 l:»,O as k >0 for Ret> -3, Eq. (IV.1')
has solutions only at poles of Cg(z)/dl(§£>, which are given by
the zeros of Cl(&). In the weak coupling limit it will be near .

£ = - 3. Solving ‘Cl(L) = 0, we obtain

\ v . g g -
tw-t-m( 2+ 2) 7 (Iv.12)
a Ho ‘ ,
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Since we require ¢ > - %, we see that there will be a pole moving

%o the right of ¢ = -3 as k° -0, provided
g g | |
L 4 2 <o, (See Fig. 1b).
by Ko T
(11) Real solutions at ¢ = - &

This is the commoniy known threshold behavior that has been

discussed in many places.)4 ‘We discuss here the features of two

Yukawa, poteﬁtials; ‘Letting ¢ = - 1 + A, the constant cl(z)
and .C2(L) have the following behavior near ¢ = - 5 :
g g
v n L 2
(-3 +8)xl+ = (— + —
1 AL Hl Mo
o1 Lmo ) =l-2Ag . —l-EAJ |
Col= 2 + L) = 27 (8 1y + 8y My j o (1)
g
(a) 1If L, = 4 .0, we have
1 Ho.
c, (- %) -
i SR : (Iv.1L)

(-8

It then follows from Eq. (IV.1') that

ote _ _ |
L==3 + - glp s p=1, 2, 3,0 (1v.15)
- 1n (67 mm,)
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1';Ihus.all poles approach { = -5 in a compléx direction

in the . plane.

8 8 S

(v) If 2 L 2 0, Eq. (IV.14) will no longer be true.
m H ? :

1 2 S ‘ , ‘
We find ,

o anfe (= 1) /6 (- 3)] sonip S
¢ = _%_ + [ 12 2. 2 2] —— . p - 0, l, '2,...;. ] (IV_]_6)
T In (ki) o | - .

Now we have one trajeétory approaching £’; - %' along the

real axis. This agrees with the solution given in (i).

(i1i) Solutions to the left of Ret = - 3 and complex thresholds

Since k- +.l'» ©» as k -0 for Ret< -3, solutions of

Eg. (IV.1') must have threshold valuéé'atlthe_zeros of Cg(ﬁ). These

are the points %O suéh that

21-2 - -2y, -2

.50 A ' .

We distinguish the féildwihé'cdses:
(a)' é1_<'o’ gy > Q;i,or _?1 >0, g2.< 0 (See Sections TTIA, IIIB).
'.”ﬁqﬁafioﬁ(IV.l7)_éi§es ué
-1 +

o p”.
) Aln<;-j=> .

Imp, = + —2E—" p=0,1, 2,5 . | (1v.18)

Rey

]

o
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Since these points are constrained by the fact that
Reao < = % and .“l <'ué by convention, we see that they exist
only if either lgl| > ]ggl, or“.lgl! < [ggl and lgl/“ll < |g2/p2J.
In either case there is a solution on the negative real 5 axis.
(b) 8 >0, 8,>0; or g <0,8,<0 (See Sec. III C)

In this case, we have no solution on the real ¢ axis.. All
solutions are complex with the same real part asbgiven by Eq. (IV.18).
The imaginary parts are given by

@),

Ime, =~ 2 <L 5-0,1,2, " . (1v.19)

o =k =
o V)
1n (:—jl)
. o

~ Near ¢ the' behavior of thehtfajectories as k>0 1is
given by
5 _ (225 + 1) :
a(k™) = ¢, + const. x(x) : (IV.20)

0

o L . 13 :
We see that a(kg) executes. infinitely many spirals3in approaching

the point tog
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V. STRONG COUPLING CONFIGURATION
Tﬁé énalytic methods used in thé preceding séctions to study
j fhé weak coﬁpling Iimit for two Yukawa potentials cannot be uéed
'whéﬂ'the coup;iﬁg becomes stroﬂg. Tt is clear that the realistic
potentials are in fact quite stroﬁg,.so it is éf’interest to as-
A ceftain.what features of the wéak'couplingliiﬁif remain valid in
this case, and whether new‘featuies'déVelop..VTQVClarify this point,
we haﬁe’carried out exténsive numerical investigation-df'the two-
YukawéFpotential Sphr6aingeriequation using a Qariational met'hod.17
'These investigations allowéd.ﬁs to conclude that most of the featuresr
describéd‘in the preceding éections remain frue.‘ One important |
differeﬁce; hoWever; is that if the attraction is sufficiently strong,
several leading-like trajectories can be present. We shall describe
thé sfrong coupling case by -giving a féw'examéies Qf the typical

tfajectory configurations that have been studied.

(4) & <0, 8,>0
As in the weak cbupling limit, the configuration of a short
range repuision with_a.lQng range attraction can give rise to

\'leading trajectories_whiéh collide:with neighboring ones and have

real branch points for k2 < 0. Such a case is exhibited in
Figs. 4-6. Trajectory from £ = -2 is now the leading one. It
5 .

, o2
. has branch points at k¥ = - 0.35 and k2 = = 0.02, besides the
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usual branch point at k2 = 0. Another example of this phenomenon,

,.but corresponding fo a longer rangeémtraction is shown‘in Fig. 7.
Trajectory from ¢ = -2 reaches much further.into the right half

¢ plane. Thé trajectory frém. Lv=_¥5 is also a leading_trajectory'
with extra branch points. As K2 S 4 o the trajectories from

£ = -1 and -3 have switched roles, indicating tﬁat each irajectory
has a compiex’branch point in the k2 plané. A path in the k2
pléne which goes from - o t0 + o along the redl axis will have

circled this branech cut once. The trajectoriesmfromx { =.-1.and -3

* are therefore not closed.

The configuration of a long range repuision and a short fange
attraction is alsb_very'interesfing, as we expect that the effect
of inelastiC‘chgnnels can be modeled by‘avlong_range repulsion. An
example: of such trajector& is shéwn in Fig. 6.. One optstanding_
feature of theée trajectories is that even though the k? = 0 Inter-
cept is to the léft of ¢ =0, they are still able to reach past
L= O,-fofmingan.s-wave resonance.lg 'This can be easily understood
by noticing that the long range repulsion and a short raﬁge
attraction can form‘a weli tO'contain.resonances. In Fig. 8 we give
an example of such an S-wave resonance in the leading trajectory,
together with a leading-like trajectory from ¢ = 42.’

The effects‘of loﬁg range repulsion are élso present for

resonances of ¢ > 0, since it enhances the barrier that contains them.
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In parﬁicular, if we consider a resonance at k2 = kR2 -and we

incréaée the repuléion and»correspdndingly the attraction, so
that the resonance energy remains constant, we find that

thé:width“becomesﬁhéfrower;: ' We have defined the width as:

P a'dgl_"_"? : — o . v.1)
<€k—2 [,R,eo‘ie‘.:' k2

In Tablé T we give an actual ekémple.' As in the wéak coupling case,
we exﬁect the leadihg trajectory to have no‘cémplek branch poiﬁt
és-long.as‘the strength of the repulsién is,»in absolute value, -

less than the strength of the attraction. (

(c) gy < O,'g2_< O;' g >0, 8>0

-"Thé behavior of'thevtrajectorieéwwhen both potentials are
bf the same éign dbes not:have any important new feature nof preéent
in the weak coupling case, except, éf éourse, ﬁe may have several

leading-liké trajectories for attractive potentials.
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VI. CONCLUSION

Not all the features described in the precéding seétions will
have direct éonsequences for high energy Regge-polé fitting~since
the-quantitative relation between realistic trajectories and those
calculated from non-reiativistic models is obscure to say the least.
However, thé presencelof extra branch cuts in the leading trajectoriés
. and their‘proximity to L=~ % may very well remain trﬁe. This
would hé&e important exﬁeriﬁentél implications.

'It is wéll knownLL that the t?ajeétory function can have :
no.cut in E”,if 8. S: - %t It was shown in Secs. IIT and IV
that we can have branch pointsvfo the left of &v= - 1, with one
‘ of them close £o L= -3 for. an éifracﬁive potential with a strong
repulsive cbré. This wouid imply that for the high ranking
trajectories such as b, R, P and P! these . cuts could be present,
but only for rather 1aige‘momentum transfer. However,'if the
particles involved have spin; these branch cuts are allowed to

the right of J = - 4. TFor example if a given Regge pole

communicates with a spin % - spin- % two particle channel
(e.g., the p meson as a bound'state,df NN), the trajectory can
have a branch point up'to J=+% in the 2 =J - 1 spin state.

In the case of p, this would be right in the region important

for Regge-pble fitting.
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This featu£e méy‘be used to expiain spch puzzies as thé
-polarization in‘the reacﬁion .n_p - ndn. In this case‘the‘oﬁiy
‘known high ranking trajectory is thé o. If we assume that the
’ p—trajectofy' function is real below threshold, there can be noi
polarizatipn because the helicity flip and non-flip émplitudes are
‘in phase. ‘if we allow e#tra branéh cuts in'the ‘p=trajectory, as
megtionéd above, the asymptotic behavior of the_amplitﬁde will
2

necessarily be dominated by the two poles apl' and ap

corresponding to the colliding trajectories which give rise to

the branch points. Bétween the two branch points,, a;L .and apg
. C ¥
are complex conjugatesof each other, i.e., abl =‘a02 uzfqp.
If we write the spin % - spin- 0 differential cross section
19

as:

2 2

do [fj+[ + |f3_]" s o T (VI.1)

dat
. t o ot . P . :
with f+_' and, f++ the flip and non-flip amplitudes respectively,
then the pdlarization is given by:
- do e ¥ . '
Pox O Im(f++ f+_) . (Vr.2)
In the case of a p trajectory with'extra braﬁch'points, we have,

vetween the branch points
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f . = - : -
o+ Byv sinmQ By sinnC ?

-(VI.;)

where Bt is the appropriate residue functions. There will be
a similar formula for fj-' The cross section can then be written

as:

" uv , y N {1 + cosh(2ﬁa ) 2 COS(“aR) COSh(“aIi

T (B++ Bre * P §+;) cosh(zna ) - cos(2n0ﬁ)
(6,, B, *B,_B,) 2
+ Re{ it f+ ;- - exp! 21aI 1n s@ aR (Tv.L)
, . (SinnOCp) ‘ .

where OE =op + iaI,- (Outside the cut region the cross section is
given by thevusual formula_for two real Regge poles 0%1 and apg.)
It is clear from Eq. (VI.L4) that the differential cross section

has an 030111atory component superlmposed on the power behavior

e

P because of the imaginary part of o . However, this. con-

tribution would not be noticeable, even at extremely high energy,

provided that"aI is not too large. .The polarization can be written

as:

do s1nh(2naI) + 2‘cos(xoh) s1nh(ﬂaI

P it & 4 T Tae 51n(e++ - e}ﬁ)zcosh(Eﬁcx)- cos(EﬂaR) {

S )

(Iv.5)

where r e

)j 20!

R
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Comparihg Eq. (VI;j) and Eq; (VI:6), we notice that the polarization
w;ll have an vs dependence giyen'dniybby theAéscillations~i§ %% .'
As.these are preéumed to be not too significant, we,conclﬁde that
in this schene, théipolariéation will‘be esséntially donstant'in
energy. | | |

A moré striking'phenomeﬁon that might be expiained by extra
‘branch points in fhe trajectory‘fungﬁioh hés-been pointed out by
Ringland andaThewsgo iﬁ_the n_p - pon‘ reéctionﬂ They have been
able to obtain'an upper béund for tﬁe spin density-matrix element
Re o

10
by making the usual‘Regge pole dominance hypothesis. This bound is

of the above reaction (effectively, the p. polarization),

seVerely‘éXceedéd by the expérimental data. One possibie'explanation
is thevéxiSﬁeﬁce of extra branch poinﬁs in the trajectory énd res;due
_functions; “
It‘is very.likely‘that ekgmples'similar.to the two mentioned

abové wili.be found as more processes involving spinning particles
are invéstigated. There' are, of course, alterhativé explanations
to these'appareﬁt puzzles. Indeed béth TP »»non and 7D - o°n
polarization effects can also be expiaiﬁéd by -assuming an appropriate
- set of sfcﬁannél resonances, or the-éxistencg”of_Regge cuts, or

by adding allow-lying‘trajectory to the amplitude.el ﬁowevér,

each of these alternative hypothesis will prediét a distinctive
energyAdependence-which eventually may allow us td choose between them.
The effect éf the long range repglsion, aé was shown in Section v,

is to make the Regge trajectories of potential theory more like
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the ones we expect to find in the relativistic probiemd The
trajectories now do.not teﬁd tp turn over immediafely above
'threshold, and they do not develop large imagipary parts close
.to k2 = 0. To the extent that we can extend to relativistic
problems intuition gained frém potential situations, this be-

havior of the trajectories. could be taken to indicate that the

nuclear force has a large long’range repulsive component.2
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Table I: Slope and imaginary part of two trajectories that have an

4 =1 resonance at kz = 2.0k, cbmputed at the resonance pbint.-
Case 1, g = 20.0, p, = 0.5, gé = —55.63' (O = 1. case 2,
.gl = 16.41, by = 0.5, g5 = -30, p,=71.
Slope o . Im % r
Case 1 10.13 0.043 ; | 6466,
Case 2 0.1% | . 0.087 % 1.34 |
' i




e

- 'FIGURE CAPTTIONS

© UCRL-17475

Fig. 1. Trajectory switch over from short range repulsion to long -

range attraction, (gl <0, g, >0), showing the complex -

t-plane and the analytic structure of the complex kg-plane

for the branch of a(kg) that goes to -2 as Ikgl'é w .

 partners.

Tig. 2.

Fig. 3.

. g Er |
o el <ol |24
() gyl = gyl » |

S (a) - (h)" decreasing &

(1) 8, =0

This configuration corresponds to Figure 1d.

" The numbers’at the branch points indicate the collision-

vSpiraling of complex threshold txajectorieé as -k2 -0 .

Trajectory switch 6ver:from short range attraqtion to long

range repulsion (gl >0, g, < 0) , showing the complex

. t-plane and the analytic structure of the complex . kg-plane

for the branch of a(kg) that goes to -2 as [kgl_—> o .

(a) gy - 0

AN 5] | &2
LRI o Bl
(c). le;| = ls,l

() - (h) decreasing g5

(@) gy =0
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Complex &-plane' for trajectories from -2- and -1, for

‘potential g, = -L.0, up = 0.5;5 g, = L.5, by = 1.

Real part of 'a(k2) versus k2 for trajectories in Fig. L.

Dotted line indicates region where trajectories are complex

-
s

conjugates.

Imaginary part of a(ke) versus ko for trajectories in

Fig. 4. Dotted line is the trajectory from -2, solid

line is trajectory from -1.

Complex ¢-plane for trajectories from -1, -2, -3, for

the potential g, = -, My = 0.25, g, = h.5, by = 1.
Complex 4{-plane for trajectories.from -1, -2, for
the potential g = l5.0{ Ky = 0.5, g, = -20.0, By = 1.0

showing an S-wave resonance.
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