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Ferns have shaped life on Earth since divergence from their 
common ancestor with seed plants over 360 million years 
ago (Ma)1. Ferns can be found across diverse ecosystems as 

colonizers2, keystone species3, invasives4 and agricultural supple-
ments5, and with over 10,500 extant species, they are the second 
most species-rich clade of vascular plants behind angiosperms6. 
Accompanying enormous morphological and ecological diversity,  

ferns have evolved numerous adaptations for protection from envi-
ronmental stresses7. Fern secondary metabolites and their associated 
genes provide valuable resources for bioremediation, agricultural 
applications and lifesaving drugs8–10.

Ferns have notoriously immense genomes (average 1C, 12.3 bil-
lion bases (Gb); maximum 1C, 147 Gb) and very high chromosome 
numbers (average, 40.5; maximum, 720)11, hypothesized to be the 
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The large size and complexity of most fern genomes have hampered efforts to elucidate fundamental aspects of fern biology 
and land plant evolution through genome-enabled research. Here we present a chromosomal genome assembly and associated 
methylome, transcriptome and metabolome analyses for the model fern species Ceratopteris richardii. The assembly reveals a 
history of remarkably dynamic genome evolution including rapid changes in genome content and structure following the most 
recent whole-genome duplication approximately 60 million years ago. These changes include massive gene loss, rampant tan-
dem duplications and multiple horizontal gene transfers from bacteria, contributing to the diversification of defence-related 
gene families. The insertion of transposable elements into introns has led to the large size of the Ceratopteris genome and to 
exceptionally long genes relative to other plants. Gene family analyses indicate that genes directing seed development were 
co-opted from those controlling the development of fern sporangia, providing insights into seed plant evolution. Our findings 
and annotated genome assembly extend the utility of Ceratopteris as a model for investigating and teaching plant biology.
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consequences of repeated rounds of whole-genome duplication 
(WGD)12,13. However, genetic and genomic signatures of rampant 
WGD in ferns have not been documented14–16. Unfurling the genetic 
complexities and processes that have shaped fern genomes will illu-
minate not only the evolutionary history of this phylogenetically 
pivotal plant clade, but also the evolution of genome features and 
gene function in seed plants.

Ceratopteris richardii (hereafter Ceratopteris) has long been a 
model for investigating and teaching plant biology (for example, 
C-Fern Curriculum)17. Ceratopteris is typical of most ferns in 
being homosporous (producing a single spore type with potentially 
bisexual gametophytes) and having a large genome with numerous 
chromosomes (1C = 9.6 Gb; n = 39) relative to most eukaryotes. By 
contrast, all seed plants (flowering plants and gymnosperms) are het-
erosporous (producing both male and female spores with unisexual 
gametophytes). Ceratopteris and other homosporous ferns as well as 
lycophytes also have independent, free-living haploid gametophytes 
and diploid sporophytes (Fig. 1a), unlike seed plants in which the 
gametophyte is dependent upon the dominant sporophyte. As such, 
plant research laboratories globally have incorporated Ceratopteris 
to investigate life history traits, reproductive biology, development, 
evolution, space biology and genome biology18,19. Heterosporous 
water ferns (Salviniales; <1% of all fern species), characterized by 
relatively small, compact genomes, are represented by two genome 
assemblies, Azolla filiculoides (1C = 0.75 Gb, n = 22) and Salvinia 
cucullata (1C = 0.26 Gb, n = 9). These two genomes serve as ideal 
heterosporous fern counterparts to Ceratopteris20, but are not repre-
sentative of the vast majority of ferns.

Here we present the chromosome-level genome assembly and 
associated genetic resources for Ceratopteris. We investigated the 
composition and evolution of the large genome typical of ferns, 
analysed DNA methylation, documented horizontal gene transfer 
(HGT) events, investigated the evolution of gene families essential 
to flower and seed development, and characterized genes of poten-
tial economic, medicinal and environmental importance. The refer-
ence genome assembly, annotation and associated datasets extend 
the utility of Ceratopteris as a foundational model species for inte-
gration of comparative genomics into plant science research and 
education.

Results and discussion
The impact of transposons on genome size and intron length. 
We sequenced and assembled 7.46 Gb of the Ceratopteris richardii 
genotype Hn-n genome (https://phytozome-next.jgi.doe.gov/info/
Crichardii_v2_1) (Fig. 1b). The k-mer analyses yielded a genome size 
estimate of 9.6 Gb, 15% smaller than previous estimates by flow cytom-
etry15 but within the error range of such estimates for large genomes21,22. 
The assembly contains 10,785 contigs with a contig N50 of 2.3 Mb and 
scaffold N50 of 182 Mb, with 93.5% of the assembled sequence con-
tained in the 39 Ceratopteris chromosomes (Table 1). This is one of 
the largest haploid genomes with a chromosomal assembly to date, 
surpassed only by the assembly of the giant sequoia (Sequoiadendron 
giganteum) genome, which totals 8.125 Gb in 11 chromosomes but 
with a contig N50 of 348 kb and scaffold N50 of 690 Mb23.

Transposable elements vary wildly in number and proportion of 
the genome among major lineages of life, among related species and 
even among populations24. Long terminal repeat (LTR) retrotrans-
posons (Class I RNA transposable elements), which copy and paste 
throughout the genome when active, are often the dominant group 
of repeat elements in plants25. Although the transposition of LTR 
retrotransposons into genes or regulatory regions can disrupt gene 
function, they can alternatively generate novelty at the genetic, reg-
ulatory, expression or isoform levels, providing genetic material for 
evolution and adaptation26.

We found over seven million repetitive elements that account for 
85.2% of the Ceratopteris assembly (Supplementary Table 1). LTR 

retrotransposons represented the majority (67.0%) of the genome 
assembly, with the Ty3 superfamily making up 23.8% of the genome 
and the Ty1 superfamily making up 28.2%. LTR retrotransposons 
within these superfamilies averaged 2,301 and 1,492 bp in length, 
respectively. The Class II DNA transposable elements composed 
only 6.9% of the genome, with the highest representation from the 
CMC-En/Spm family, whereas 6.3% of the assembled genome was 
made up of simple repeat elements (Fig. 1c).

Protein-coding regions were annotated using a combination of ab 
initio prediction and transcript evidence from isoform sequencing 
(Iso-Seq) and RNA sequencing (RNA-seq) derived from ten tissues 
and developmental stages of Ceratopteris (Fig. 1a). The annotation 
of the total genome assembly contains 36,857 protein-coding genes 
and 38,397 alternative transcripts with 33,567 (91%) protein-coding 
loci anchored to the 39 chromosomes (Supplementary Table 2). 
Of the 410 genes in the Viridiplantae (Odb10) Benchmarking 
Universal Single-Copy Orthologs (BUSCO; v.4.1.1) dataset, 94.8% 
were identified in the annotation of Ceratopteris27. The chromosome 
assembly has, on average, a gene density of 4.81 per Mb, gene length 
of 14,457 bp, exon length of 363 bp and intron length of 5,555 bp 
(Supplementary Table 2). Among the extreme outliers, we identified 
706 genes in Ceratopteris over 100 kb in length. Remarkably, introns 
account for 30% of the Ceratopteris genome with 17,745 introns 
over 10 kb in length. Although exon length varied little among the 
major lineages of plants, intron length in Ceratopteris had the larg-
est range, beyond even that of the 22-Gb genome of Pinus taeda28 
(Fig. 1d).

Analyses of compact flowering plant genomes, such as 
Arabidopsis and rice, with average intron lengths of 152 and 
387 bp, respectively29, document a positive correlation between 
intron length and gene expression29,30. However, we found no cor-
relation between total gene length and expression in Ceratopteris 
(r2 = 0.00004, P > 0.05; Fig. 1e). Ceratopteris may serve as a model 
for investigating functional aspects of intron length and content on 
gene expression and messenger RNA maturation.

WGD is masked by rapid genome evolution. Polyploidy has con-
tributed to the complexity and gene content of all green plants31,32; 
however, its frequency in the evolutionary history of ferns has been 
contentious for decades12,14,33,34. The large size and numerous chro-
mosomes of fern genomes have long been considered evidence that 
repeated polyploidy and subsequent gene loss/silencing have con-
tributed to the diversification of molecular and ecological function 
across fern evolutionary history34–37. However, analyses of angio-
sperm genomes have demonstrated that chromosome number is 
a poor predictor of WGD frequency31,38. Surprisingly, the limited 
genetic and genomic data now available for ferns have pointed 
towards polyploidy being less frequent and genome content being 
less dynamic compared with angiosperms14–16,39,40.

To clarify the impact of WGD on the evolutionary history of 
Ceratopteris and ferns more generally, we employed divergence- 
based, genomic and phylogenomic approaches. A single WGD 
event could be inferred from the paralogue synonymous substitu-
tion (Ks) distribution analysis of Ceratopteris with a Ks peak at 1.3 
(Fig. 2a). Phylogenetic analyses using Multi-tAxon Paleopolyploidy 
Search (MAPS)41 and NOTUNG42,43 of more than 5,000 gene fami-
lies, including protein sequences from Ceratopteris and other fern 
species, implicated two WGDs on the lineage leading to Ceratopteris 
within the last 300 million years (Myr) as inferred previously31  
(Fig. 2b). These analyses placed the most recent WGD (CERAα) after 
the divergence of Ceratopteris from its sister genus, Acrostichum, at 
just 62 Ma (ref. 44; Fig. 2b and Extended Data Fig. 1), and queries 
of gene trees indicated that this was the only WGD event repre-
sented in the 1.3 peak observed in the Ks plot (Fig. 2a). Both phy-
logenetic analyses of fern gene sequences also supported a putative 
earlier WGD before divergence of the Polypodiales and Salviniales 
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lineages 230 Ma (CYATγ), consistent with other fern WGD analy-
ses (Fig. 2b)45–47. MAPS also inferred a third ancient WGD in the 
ancestry of the Polypodiales (PTERα)31, but this was not observed 
in the NOTUNG analyses or another recent analysis using a differ-
ent set of phylogenomic methods47. Additional genomes from the 
Polypodiales are needed to resolve the ultimate number and posi-
tion of WGDs in this region of the fern phylogeny.

We expected to find numerous, large syntenic subgenome blocks 
of paralogous genes among the chromosomes of Ceratopteris, the 
typical genomic signature of WGD. However, only 45 syntenic 
blocks of ten or more genes, totalling 367 genes, were found within 
the 39 Ceratopteris chromosomes (Extended Data Fig. 2). For 
comparison, the paralogue Ks distribution for Arabidopsis thali-
ana (1C = 135 Mb, n = 5) exhibits median peak values of 0.7, 1.7 
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are not to scale. b, Genome assembly of Ceratopteris with: (A) chromosomes, (B) gene density in a 3-Mb sliding window, maximum value of 139; (C) 
mRNA expression density in a 3-Mb sliding window, maximum value of 170; (D) long terminal repeat retrotransposon density in a 3-Mb sliding window, 
orange and blue bands represent Ty3 and Ty1 LTRs, respectively, maximum value of 970; and (E) intragenomic syntenic regions of ten or more genes. 
Green horizontal lines represent the 5th percentile, red horizontal lines represent the 95th percentile. c, Genome composition of Ceratopteris. LTR, long 
terminal repareat; TE, transposable element. d, Intron and exon lengths from a green alga (n = 166,499 exons; 147,269 introns), liverwort (n = 137,019 
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Table 1 | Final summary statistics for chromosome-scale 
assembly

Genome assembly statistics Number/size

Scaffold total 6,185

Contig total 10,785

Scaffold sequence total 7,463.3 Mb

Chromosome sequence 6,932.2 Mb

Contig sequence total 7,417.3 Mb (0.6% gap)

Scaffold L/N50 19/182.0 Mb

Contig L/N50 908/2.3 Mb
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and 2.7 for the At-α, At-β and At-γ paleopolyploidy events dated 
at 23.3 Ma (ref. 38) to 50.1 Ma (ref. 48), 61.2 Ma (ref. 48) and >125 Ma 
(ref. 38) respectively. Syntenic subgenome blocks are evident for all 
three events, although At-γ blocks are highly fragmented relative 
to syntenic segments of Arabidopsis subgenomes attributed to the 
At-α and At-β WGDs49. Similarly, three independent WGD events 
(ρ, σ and τ) can be discerned via phylogenetics and synteny in the 
lineage leading to rice (Oryza sativa; 1C = 430 Mb, n = 12)31. We 
further tested the scale of retained synteny across fern genomes by 
comparing the genome of Ceratopteris with that of the water fern 
Salvinia cucullata, which last shared a common ancestor 230 Ma 
(ref. 20). Virtually no syntenic blocks were detected between the two 
fern species (Extended Data Fig. 3).

Diploidization, the process of returning a polyploid genome to 
a genetically diploid state via fractionation (loss) and silencing of 
WGD-derived genes, transposition events and genome rearrange-
ments, can vary in rate among plant lineages50–52. To assess the degree 
of synteny in Ceratopteris relative to other land plant genomes, we 
compared syntenic block lengths in Ceratopteris, the two sequenced 
water ferns (Azolla filiculoides and Salvinia cucullata), a gymnosperm 
(Ginkgo biloba) and 27 angiosperms ranging in WGD history53. 
Only the grass Oropetium thomaeum had a smaller average length 
of syntenic blocks among the angiosperms sampled compared with 
Ceratopteris (Fig. 2c); however, it also has a small genome of 245 Mb 
and nine chromosomes. All four non-angiosperms had smaller syn-
tenic blocks than the angiosperms other than O. thomaeum. These 
results suggest that although retention of synteny can be highly vari-
able among land plants, the genomes of Ceratopteris and the other 
analysed non-angiosperms are much more fractionated relative to 
angiosperms. Tandem gene duplications have highly influenced the 
genome content and structure of Ceratopteris because recent tan-
dem duplications account for a large proportion of the paralogue 
pairs included in the Ks distribution (>6,000 genes) (Fig. 2a). Taken 
together, we document rapid rates of genome evolution in Ceratopteris 
relative to those of angiosperms that serve to mask WGD events.

DNA methylation in Ceratopteris. Whole-genome bisulfite 
sequencing54,55 enabled fine-scale resolution of DNA methylation in 
the Ceratopteris genome. CG and CHG methylation (H = A, C or 
T) were found throughout most genomic features; however, CHG 
methylation was especially enriched in repeats as well as the unusu-
ally large introns (Fig. 3a–e). Interestingly, CHH methylation initially 
appeared absent in the Ceratopteris genome because it could not be 
readily distinguished from background (Fig. 3a). In angiosperms, 
CHH methylation results from activities of the RNA-directed DNA 
methylation pathway and/or CHROMOMETHYLASE 2 (CMT2). 
In Arabidopsis, CMT2 has a preference for CWA (W = A or T) 
sites56. Closer examination of the CHH methylation results revealed 
CWA sites to be more highly methylated compared with other CHH 
contexts, albeit at low levels (Fig. 3d). Previous studies have shown 
that CMT2 is not present in ferns because it evolved in the common 
ancestor of angiosperms57. However, there are two CMT genes pres-
ent in Ceratopteris; at least one of these ancient CMTs presumably 
possesses the ability to methylate CWA sites. Our data suggest that 
CMT-associated CWA methylation is present in Ceratopteris, but 
the RNA-directed DNA methylation pathway is not active, consis-
tent with its loss in certain fern species58.

Curiously, gene body DNA methylation (gbM), which is com-
mon in angiosperms59, is also present in Ceratopteris (Fig. 3e). gbM is 
associated with methylation of CG sites only and is present in genes 
that are often expressed constitutively, evolving slowly and pos-
sess ‘housekeeping’ functions60. Although it has been hypothesized 
that gbM could be present outside angiosperms57,60, notably within 
certain gymnosperms and ferns, high coverage genome-wide data 
were lacking until now to confirm its presence. We therefore pro-
vide unambiguous documentation of gbM outside of angiosperms.

Gene family evolution across green plants. The identification of 
genes contributing to reproduction in homosporous ferns and their 
expression patterns can elucidate the evolution and potential origin 
of genes driving shifts in the reproductive biology of heterosporous 
ferns and seed plants18. Despite the considerable morphological and 
physiological differences between the Ceratopteris gametophyte and 
sporophyte (plus the respective haploidy versus diploidy of these 
alternating generations), only 273 and 1,397 genes were specifically 
expressed in the gametophyte and sporophyte, respectively (Fig. 4a). 
Similarly, 346 genes were solely expressed in meiotic tissues (fertile 
leaf and sporangia), whereas 1,270 genes were solely expressed in 
non-meiotic tissues and over 30,000 genes were expressed in both 
datasets (Fig. 4b). This low level of specificity supports recent work 
suggesting that leaf and seed developmental genes are co-opted 
from sporangia developmental networks61–64.

To better understand the evolutionary transition from seedless 
plants to the production of seeds, flowers and fruits, we identi-
fied and analysed gene families in Ceratopteris known to be criti-
cal to flower induction in Arabidopsis and other angiosperms. The 
phosphatidyl-ethanolamine binding protein family is well con-
served across green plants and animals controlling a variety of bio-
logical processes65. In angiosperms, the phosphatidyl-ethanolamine 
binding proteins FLOWERING LOCUS T (FT) and MOTHER 
OF FT (MFT) regulate flowering time and flower architecture66. 
We identified ten FT genes in Ceratopteris, compared with six in 
Arabidopsis and four in Azolla filiculoides (Fig. 4c). Of those ten, 
nine Ceratopteris FT homologues are present in subfamilies that are 
absent in flowering plants, whereas the one remaining, and most 
generally expressed, Ceratopteris FT gene was in the clade con-
taining the Arabidopsis gene AtMFT (Fig. 4c). The three generally 
expressed Ceratopteris FT genes likely play major roles in the many 
phase changes of the fern life cycle. Interestingly, seven Ceratopteris 
FT homologues were highly expressed only in meiotic tissue (fertile 
leaf and sporangia), suggesting that these FT homologues may be 
associated with spore development in ferns, predating the function 
of regulating flowering in angiosperms (Fig. 4c).

The evolution of plant architecture. MADS-box genes have been 
identified in almost all eukaryotes, but have expanded most in 
green plants, where they are well known for their roles in numerous 
aspects of plant architecture and development67. More than 20 years 
ago, the first MADS-box genes were identified in Ceratopteris68–70, 
but owing due to the lack of genomic data, the entire complement of 
MADS-box genes in a homosporous fern genome has been unclear 
until now. We identified 35 MADS-box genes in the Ceratopteris 
genome, classified into 8 Type I and 27 Type II MADS-box genes 
based on phylogeny reconstruction. Type II genes were further 
subdivided into MIKCC- and MIKC*-group genes based on a sepa-
rate phylogenetic analysis of Type II genes (Fig. 4d). MIKCC-group 
genes are of special interest owing to their crucial importance for 
flower development and evolution71. Studies on Ceratopteris in the 
pre-genomics era had already identified three clades of fern-specific 
genes (CRM1-, CRM3- and CRM6/CRM7-like genes), with each 
clade containing several paralogues68,72. Twenty-one Type II genes 
belong to the clade of MIKCC-group genes, and six are MIKC*-group 
genes. Surprisingly, recent analyses based on comparative tran-
scriptomics additionally identified a large ‘orphan’ clade of previ-
ously unknown fern-specific MIKCC-group genes for which no 
Ceratopteris representative was previously known31. Analysis of the 
Ceratopteris genome corroborates the view that there are no orphan 
clade members in this species. Because representatives exist in all 
major groups of ferns31, these genes must have been established 
early in fern evolution and lost relatively recently in the lineage that 
led to Ceratopteris. Interestingly, even though MIKC*-group genes 
have more exons (9–12) than MIKCC-group genes (6–8 exons), all of 
the genomic loci of MIKC*-group genes were smaller (<40 kb) than 
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all of the genomic loci of MIKCC-group genes. Nine MIKCC-type 
genes are encoded by genomic loci spanning 100,000 to 216,247 bp. 
The first intron, known to include regulatory elements in other 
plants73–76, is often the largest intron of Ceratopteris MADS-box 
genes. Notably, we also found two MIKCC-group MADS-box genes 
each encompassing two alternative MADS boxes. For one of these 
genes, we found mRNAs including one or the other, but not both 
MADS boxes. For the other gene, unfortunately, there is not enough 
mRNA data to judge which mRNAs are formed. The generation 
of mRNAs from these loci with multiple MADS boxes potentially 
involves alternative promoters and differential splicing. A simi-
lar phenomenon has so far only been described for a number of 
MADS-box genes in Norway spruce, Picea abies77.

HGT and the evolution of defence genes. Novel biopesticides 
have been discovered in a number of fern species and have ben-
efited sustainable agriculture and food security10,78. For example, a 

gene encoding a novel insecticidal protein, Tma12, was identified 
in the fern Tectaria macrodonta and cloned into cotton to battle 
phytophagous whiteflies10. Tma12 was also identified in the genome 
of Salvinia cucullata and in the transcriptomes of other ferns20. 
Phylogenetic placement of the fern Tma12 genes among bacte-
rial sequences suggests that the fern genes originated from HGT 
from bacteria to ferns20 (Extended Data Fig. 4a). We identified two 
homologues of Tma12 in Ceratopteris, expression of which differed 
dramatically between tissues and developmental stages, with spo-
rangia showing over 3,000 times greater expression compared with 
the rest of the RNA-seq samples (Extended Data Fig. 4b). Similar to 
increased defensive metabolite production in unripe fruits79, Tma12 
expression in Ceratopteris may be an adaptation that protects the 
sporangia from insect attack before spore dispersal.

We discovered a block of 36 recently tandemly dupli-
cated aerolysin-like protein-coding genes on chromosome 9 of 
Ceratopteris (Fig. 5a). These genes are well-studied in bacteria 
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because they encode a pore-forming cytolytic toxin that forms 
channels in plasma membranes and has been widely incorporated 
into biological nanopore research80,81. Aerolysin-like genes are 
hypothesized to have recurrently undergone HGT among differ-
ent kingdoms82. Searches of plant transcriptomic datasets31,83 found 
aerolysin-like transcripts in the transcriptomes of each major lin-
eage of land plants with the exception of seed plants (Extended 
Data Fig. 5). However, when we confined our search to gene mod-
els from reference genome assemblies, aerolysin-like genes were 
found only in Ceratopteris and the lycophyte Selaginella moellen-
dorffii, as well as diverse algae, fungi, bacteria and fish. HiC data 
anchored the large array of aerolysin-like genes on chromosome 9 
(Extended Data Fig. 4c), refuting the possibility of contamination 
in Ceratopteris. Four and three additional copies of aerolysin-like 
genes were found on chromosomes 2 and 34, respectively. We found 
subfunctionalization of the aerolysin-like genes among the different 
tissues of Ceratopteris; 34 of the aerolysin-like genes on chromo-
some 9 were highly expressed in the stem and roots, and all three of 
the aerolysin-like genes on chromosome 34 were highly expressed in 
sterile leaves. One aerolysin-like gene on chromosome 2 was highly 
expressed in stem, roots and young sporophytes, and the remain-
ing aerolysin-like genes were generally expressed across all tissues 
(Extended Data Fig. 4d). Similar to Tma12, these aerolysin-like 
genes are likely the result of HGT, possibly recurrent, from bacteria  

to early land plants. We expect future non-angiosperm reference 
genomes will provide support for the presence of these genes in 
plants beyond Ceratopteris and Selaginella and clarify their evolu-
tionary history.

A second block of tandemly duplicated genes was found on  
chromosome 11. These genes were annotated as phenolic acid 
decarboxylases (PADs), which are of particular interest because 
they catalyse the non-oxidative decarboxylation of potentially 
toxic phenolic acids to their p-vinyl derivatives84. PADs are of dis-
tinct interest to bioengineering because they have been proposed 
as biocatalysts given that these vinyl derivative compounds can 
be used as polymer precursors and flavour/fragrance additives 
in the food-processing industry84. To date, PAD genes have only  
been documented in bacteria; however, we discovered 26 PAD  
genes in Ceratopteris, 21 of which originated from tandem dupli-
cations on chromosome 11 (43–45 cM). We further searched  
plant transcriptomic datasets for PADs and found them solely in 
leptosporangiate ferns with bacteria as the sister clade (Fig. 5b). 
Similar to the aerolysin-like genes, the PADs have subfunctional-
ized because 20 genes were highly expressed in fertile leaves, spo-
rangia and gametophytes, whereas the remaining six were generally 
expressed across all tissues and developmental stages (Fig. 5c). HGT 
coupled with rapid diversification via tandem duplications and sub-
functionalization of these genes in Ceratopteris together provide 
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Fig. 4 | Transcriptome profiling and evolution of gene families for plant reproduction and architecture. a, Venn diagram of gametophyte- and 
sporophyte-specific genes and associated expression heatmaps with log2(transcripts per million). b, Venn diagram of meiotic- and non-meiotic-specific 
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unique insight into land plant evolution and the integration of  
novel genes.

The medicinal potential of fern genomics. Ferns have long been 
used in traditional medicine worldwide and more recently have 
been a source for bioprospecting medicinal compounds to treat 
cancer, diabetes and osteoarthritis9,85–87. However, the lack of a 
high-quality reference genome of a homosporous fern species has 
hindered the research and development of novel fern compounds 
for medicinal application. Here we leveraged the genomic resources 
from Ceratopteris and performed metabolite profiling of sporo-
phytic tissue to investigate potentially medicinal compounds pro-
duced by Ceratopteris and the genes underlying their production.

Metabolite profiling of Ceratopteris fertile leaf tissue identified 
several known medicinal compounds, including eight pterosides, 
seven flavonoids, three caffeic acids and two kauranes (Fig. 5d and 
Supplementary Table 3). We identified 906 high-confidence metab-
olites in Ceratopteris, compared with 644 metabolites in wheat and 

rice88 (Supplementary Table 3). Of those 906 metabolites, 57 were 
unique compounds only detected in Ceratopteris and 131 were 
novel because they could not be annotated using known metabo-
lome databases.

High-confidence compounds related to the treatment of 
human diseases were identified in Ceratopteris, with enrichment 
in pathways such as flavonoid biosynthesis, endocrine and meta-
bolic disease, and antimicrobial function (Extended Data Fig. 6). 
Flavonoids are vital for human nutrition, healthcare and medicine89. 
The flavonoid biosynthesis pathway is specific to land plants and 
arose when plants colonized land over 470 Ma (ref. 90,91). In angio-
sperms, flavonoids play crucial roles in abiotic stress tolerance and 
are also important for pollination and seed dispersal signalling91. 
Our combined analyses identified the genes, expression patterns 
and metabolites that compose the flavonoid biosynthesis pathway 
in Ceratopteris (Extended Data Fig. 6c). Alongside such metabolic 
analyses, our high-quality Ceratopteris genome will readily advance 
our understanding of the molecular origins and functions of these 
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Fig. 5 | HGTs and medicinal compounds in Ceratopteris. a, Phylogeny of aerolysin-like genes suggests an HGT from bacteria to early vascular plants and a 
second HGT specifically to ferns, followed by tandem duplications on chromosome 9 in Ceratopteris (highlighted). Fern genes are blue, lycophyte genes are 
orange, fish are purple, bacteria are cyan, fungi are brown, archaea are magenta, chlorophytic algae are dark green and red algae are rust. b, Phylogeny of 
PAD genes in Ceratopteris and leptosporangiate ferns suggests an HGT from bacteria to ferns followed by rampant tandem duplication across chromosome 
11 (highlighted). Polypodiales are blue, Schizaeales are red, Salviniales are light green, Gleicheniales are cyan, Cyatheales are orange and bacteria are 
pink. c, Expression of Ceratopteris PAD genes (CrPADS) across tissues/life stages. d, Metabolic profile of previously identified medicinal compounds in 
Ceratopteris. CADGS, casuarine 6-alpha-d-glucoside; CGS, casuarine 3-glucoside; 5-CQA, cis-5-caffeoylquinic acid; 3,5-DCQA, 3,5-di-O-caffeoylquinic 
acid; 3,4-DICQA, 4,5-di-O-caffeoylquinic acid; eDHKO, ent-7alpha,12beta-dihydroxy-16-kauren-19,6beta-olide; eHKOC, ent-17-hydroxy-15-kauren-19-oic 
acid; FNBG, flavanone_7-O-beta-d-glucoside; KAFRP, kaempferol 3-arabinofuranoside 7-rhamnofuranoside; KFRX, kaempferol 3-rhamnoside 7-xyloside; 
luteolin, 2,4′,5,7-tetrahydroxyflavanone; 7-OLRP, 7-O-alpha-l-rhamnopyranoside. Data are presented as means ± s.e.m. (n = 6).
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known and novel compounds to benefit drug discovery in ferns to 
improve human health.

Conclusions
Homosporous ferns have been the last frontier in green plant genom-
ics owing to their notoriously large genomes and numerous chro-
mosomes; the mechanisms driving the evolution of these genomes 
have been debated for decades. Despite longstanding hypotheses of 
rampant WGD in ferns, the Ceratopteris genome assembly revealed 
evidence for at least two WGD events distributed over 300 Myr of 
fern evolution. By contrast, the Arabidopsis and rice genomes each 
exhibit evidence for three independent sets of WGD events over 
roughly 125 Myr of flowering plant evolution31. Surprisingly, syn-
tenic genomic segments were not evident for even the most recent 
WGD in Ceratopteris owing to frequent tandem duplications, high 
rates of fractionation and genome rearrangements. Defence-related 
gene families expanded via extensive tandem duplications and 
probably originated from separate HGTs from bacteria. In addi-
tion, we document CMT-associated CWA methylation and provide 
unambiguous evidence of gbM in a fern. Importantly, we traced 
the evolution of genes involved in flower and seed development 
and overall plant architecture to homologues in fern genes. Ferns 
have been underutilized as sources of novel genetic material for 
applications in ecological remediation, medicine and bioprospect-
ing; we demonstrate the potential of these resources. Beyond these 
scientific discoveries, Ceratopteris has long been utilized in biology 
classrooms as a model for teaching the alternation of generations 
in green plants17,92. With the genetic, genomic and metabolomic 
resources provided in this study, Ceratopteris can become the pri-
mary plant system for teaching next-generation plant biology. In 
conclusion, the Ceratopteris genome data provide critical resources 
for future investigations of gene function in this fern model, and 
support research in plant biology, genome evolution, biotechnology 
and medicine, as well as advancing plant biology curricula.

Methods
Genome sequencing. We sequenced Ceratopteris richardii genotype Hn-n using a 
range of sequencing technologies, including single-molecule real-time long-read 
sequencing from Pacific Biosciences (PacBio), chromosome conformation capture 
using HiC sequencing, Illumina short-read sequencing, bisulfite sequencing, 
PacBio Iso-Seq and RNA-seq (Supplementary Table 4). High molecular mass DNA 
was isolated from fresh leaf tissue at the Arizona Genomics Institute. Sequencing 
reads were collected using Illumina and PacBio platforms. Illumina and PacBio 
reads were sequenced at the Department of Energy Joint Genome Institute in 
Walnut Creek, CA, USA and the HudsonAlpha Institute for Biotechnology in 
Huntsville, AL, USA. Illumina reads were sequenced using the Illumina NovaSeq 
platform, and the PacBio reads were sequenced using the SEQUEL platform. 
Before assembly, Illumina fragment reads were screened for PhiX contamination. 
Reads composed of >95% simple sequences were removed. Illumina reads <50 bp 
after trimming for adaptor and quality (q < 20) were removed. The final read set 
consists of 2,438,428,350 reads for a total of 47.27× of high-quality Illumina bases. 
For the PacBio sequencing, a total of 93 PB chemistry 2.1 chips (10-h movie time) 
was sequenced with a sequence yield of 777.1 Gb, with a total coverage of 69.02× 
(Supplementary Table 5).

RNA-seq. Total RNA was isolated from ten tissues and developmental stages of 
Ceratopteris richardii genotype Hn-n (Fig. 1a) using the RNeasy Plant Mini kit 
(Qiagen). Plate-based RNA sample preparation was performed on the PerkinElmer 
Sciclone NGS robotic liquid handling system using Illumina’s TruSeq Stranded 
mRNA HT sample prep kit utilizing poly-A selection of mRNA following the 
protocol outlined by Illumina in their user guide (https://support.illumina.com/
sequencing/sequencing_kits/truseq-stranded-mrna.html) with the following 
conditions: total RNA starting material was 1 µg per sample and eight cycles of 
PCR were used for library amplification. There are four biological replicates for 
each tissue and developmental stage of the RNA-seq experiment.

Iso-Seq. With 1 µg of total RNA as input, full-length complementary DNA was 
synthesized using template switching technology with the SMARTer PCR cDNA 
Synthesis kit (Clontech). The first-strand cDNA was amplified with PrimeSTAR 
GL DNA polymerase (Clontech) using template switching oligos to make 
double-stranded cDNA. Double-stranded cDNA was purified with non-size 
selected AMPure PB beads (PacBio). The amplified cDNA was end-repaired and 

ligated with blunt-end PacBio sequencing adaptors using SMRTbell Template Prep 
Kit 1.0. The ligated products were treated by exonuclease to remove unligated 
products and purified by AMPure PB beads (PacBio).

Genome assembly and construction of pseudomolecule chromosomes. The v.2.0 
assembly was generated by error correcting the 52,299,716 PacBio reads (69.02× 
sequence coverage) using MECAT assembler v.1.1 (ref. 93), followed by assembly 
with the Canu assembler v.1.8 (ref. 94) and subsequent polishing using ARROW95. 
This produced an initial assembly of 35,249 contigs, with a contig N50 of 1.5 Mb, 
11,081 scaffolds larger than 100 kb and a total assembled size of 9,204.7 Mb 
(Supplementary Table 6).

Misjoins in the assembly were identified using HiC data as part of the JUICER 
pipeline96. A total of 44 misjoins was identified in the polished assembly. The 
contigs were then oriented, ordered and joined together using HiC data. In all, 
5,031 joins were applied to the broken assembly to form the final assembly of  
39 chromosomes. Each chromosome join is padded with 10,000 Ns (placeholders 
representing any base). A substantial amount of telomeric sequence was identified 
using the (TTAGGG)n repeat, and care was taken to make sure that contigs 
terminating in telomeres were properly oriented in the production assembly. 
The remaining scaffolds were screened against bacterial proteins, organelle 
sequences and GenBank nr (non-redundant proteins) and removed if found to be a 
contaminant. Additional scaffolds were classified as repetitive (>95% masked with 
24mers that occur more than four times in the genome) (21 scaffolds, 784.5 kb), 
prokaryote (158 scaffolds, 8.4 Mb), low quality (composed of <70% PACBIO 
polished bases) (5 scaffolds, 26.3 kb), redundant (409 scaffolds, 15.2 Mb) and 
contaminant (361 scaffolds, 4.8 Mb).

Chromosomal scaffolding and validation were enabled with HiC sequencing of 
the Hn-n genotype and genome skimming of the 58 double haploid lines derived 
from a HαPQ45 (paraquat-tolerant mutant of Hn-n) × ΦN8 cross15. Homozygous 
single nucleotide polymorphisms (SNPs) and insertions/deletions (INDELs) 
were corrected in the release consensus sequence using 42× of Illumina reads 
(2 × 150, 400 bp insert) by aligning the reads using bwa mem97 and identifying 
homozygous SNPs and INDELs with GATK’s UnifiedGenotyper tool98. A total of 
676 homozygous SNPs and 13,913 homozygous INDELs were corrected in the 
release. The final v.2.0 release contains 7,417.3 Mb of sequence, consisting of 10,785 
contigs with a contig N50 of 2.3 Mb and a total of 93.5% of assembled bases in the 
39 chromosomes.

Over 371,000 transcript assemblies were made from 1.5 billion pairs of 
2 × 150 stranded paired-end Illumina RNA-seq reads using PERTRAN, which 
conducts genome-guided transcriptome short-read assembly via GSNAP99 and 
builds splice alignment graphs after alignment validation, realignment and 
correction on transcript assemblies from PASA100. About 15 million PacBio Iso-Seq 
circular consensus sequences were corrected and collapsed by a genome-guided 
correction pipeline to obtain >819,000 putative full-length transcripts. Loci 
were determined by transcript assembly alignments and/or EXONERATE 
alignments of proteins from Arabidopsis thaliana, Glycine max, Sorghum bicolor, 
Oryza sativa, Setaria viridis, Solanum lycopersicum, Aquilegia coerulea, Vitis 
vinifera, Marchantia polymorpha, Spaghnum magellanicum, Ceratodon purpureus, 
Selaginella moellendorffii, Physcomitrium patens, Nymphaea colorata, Amborella 
trichopoda, Papaver somniferum, Azolla filiculoides, Salvinia cucullata, and 
Swiss-Prot proteomes to repeat-soft-mask the Ceratopteris richardii genome using 
RepeatMasker101 with up to 2,000 bp extension on both ends unless extending into 
another locus on the same strand. A repeat library consisting of de novo repeats 
by RepeatModeler102 and repeats in RepBase was constructed. Gene models were 
predicted by homology-based predictors, FGENESH+103, FGENESH_EST (similar 
to FGENESH+, but using expressed sequence tags, ESTs, to compute splice 
sites and intron input instead of protein/translated open reading frames, ORFs), 
EXONERATE104 and PASA assembly ORFs (in-house homology constrained ORF 
finder). The best-scored predictions for each locus were selected using multiple 
positive factors including EST and protein support, and one negative factor, overlap 
with repeats. The selected gene predictions were improved by PASA. Improvement 
included adding untranslated regions, splicing correction and adding alternative 
transcripts. PASA-improved gene model proteins were subject to protein similarity 
analysis to obtain Cscore and protein coverage. Cscore is a protein BLASTP 
score ratio to mutual best hit BLASTP score, and protein coverage is the highest 
percentage of protein aligned to the best homologue. PASA-improved transcripts 
were selected based on Cscore, protein coverage, EST coverage and its coding 
sequence (CDS) overlapping with repeats. A transcript was selected if its Cscore was 
≥0.5 and protein coverage was ≥0.5, or it had EST coverage, but its CDS overlapping 
with repeats was <20%. For a gene model whose CDS overlaps with repeats for more 
than 20%, its Cscore must be at least 0.9 and homology coverage at least 70% to be 
selected. The selected gene models were subject to Pfam analysis, and gene models 
whose proteins were >30% in Pfam transposable element domains were removed. 
Incomplete gene models, gene models with low homology support without full 
transcriptome support and gene models based on short single exons (<300 bp CDS) 
without protein domain or good expression were manually filtered out.

Completeness of the euchromatic portion of the assembly was assessed using 
39,078 annotated genes from the v.1.0 release of Ceratopteris. The aim of this 
analysis is to obtain a measure of completeness of the assembly, rather than a 
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comprehensive examination of gene space. The transcripts were aligned to the 
assembly using BLAT105, and alignments with ≥95% base pair identity and ≥95% 
coverage were retained. The screened alignments indicate that 38,458 (98.40%) 
of the previously annotated Ceratopteris genes aligned to the v.2.0 release. Of the 
remaining annotated genes, 126 (0.32%) aligned at <50% coverage and 68 (0.19%) 
were not found in the v.2.0 release. The predicted proteome showed that there 
are 37,263 putative proteins and 3,841 predicted signal peptides in Ceratopteris 
(Supplementary Table 7).

Transcriptome analysis. Clean reads of different transcriptome tissues were 
mapped to the genome reference by HISAT2 v.2.2.1 (ref. 106), then sorted by 
samtools (v.1.11)107. Stringtie v.2.1.4 (ref. 108) and the R package ballgown v.2.20.0 
(ref. 109) were used in quantification of each tissue based on the bam file generated 
by HISAT2. Tissue/developmental stage-specific genes were those that were 
only expressed in a single tissue/developmental stage. For example, the 273 
gametophyte-specific genes identified in Fig. 4a were expressed in either the 
mature or immature gametophyte RNA-seq data, but not at all expressed in any of 
the sporophyte RNA-seq samples. The clusterProfiler package v.3.16.1 (ref. 110)  
in R was used to enrich cluster analysis and the Vennerable v.3.0 package 
(https://R-Forge.R-project.org/projects/vennerable/) was used in Venn diagram 
analysis. The heatmaps of transcripts per million in different tissues were 
generated by the R package pheatmap v.1.0.12 (https://CRAN.R-project.org/
package=pheatmap).

Comparative genomics. Syntenic orthologous and homeologous regions 
were defined with the GENESPACE pipeline (https://code.jgi.doe.gov/plant/
genespace-r)111. In short, GENESPACE accomplishes synteny-constrained 
orthology inference across multiples species, permitting variable ploidy by 
parsing protein similarity scores into syntenic blocks with MCScanX112 and 
runs Orthofinder113 on synteny-constrained BLAST results. The resulting 
block coordinates and syntenic orthogroups give high-confidence anchors for 
evolutionary inference. We used default parameters for intergenomic comparisons 
and very relaxed thresholds for within-Ceratopteris WGD tests (no constraint to 
orthogroups, minimum block size, 5; maximum gaps, 25).

Ks distributions. Ks distribution analysis was implemented using the wgd (https://
github.com/arzwa/wgd) pipeline114. Briefly, all-versus-all BLASTp115 was used for 
similarity searches, and the results were then clustered in paralogous families by 
MCL116. Estimation of Ks for all pairs of paralogous genes and tandemly duplicated 
paralogous genes was performed using the codeml program in the PAML117 
package with the F3X4 model. In further analyses, we used only gene pairs with Ks 
values in the range of 0.05–3.0. Histograms of Ks distributions were generated by 
the ggplot2 package v.3.3.3 (ref. 118) in R.

MAPS and NOTUNG analyses. To determine the phylogenetic placement of 
ancient WGD events detected in the Ceratopteris genome, we used the Ceratopteris 
richardii genome and other fern transcriptomes for MAPS and NOTUNG 
analyses. For MAPS, orthologous groups for the selected species were obtained 
from Orthofinder113 with the default parameters and only retained gene families 
that contained at least one gene copy from each taxon. The phylogenetic trees 
for gene families constructed by PASTA119 were analysed by MAPS. Both null 
and positive simulations of the background gene birth and death rates were 
performed to compare with the observed number of duplications at each node. 
For null simulations, we estimated the gene birth rate (λ) and death rate (μ) for the 
selected species with WGDgc120. Gene count data of each gene family for all species 
were obtained from Orthofinder113. The species tree for each MAPS analysis was 
obtained based on previous phylogenetic analyses31. The estimated parameters λ 
and μ were configured in MAPS, and the gene trees were then simulated within 
the species tree using the ‘GuestTreeGen’ program from GenPhyloData121. For each 
species tree, we simulated 3,000 gene trees with at least one tip per species: 1,000 
gene trees at the estimated λ and μ, 1,000 gene trees at half of the estimated λ and 
μ, and 1,000 trees at three times λ and μ31,122. We then randomly resampled 1,000 
trees without replacement from the total pool of gene trees 100 times to provide a 
measure of uncertainty on the percentage of subtrees at each node. A Fisher’s exact 
test was used to identify locations with significant increases in gene duplication 
compared with a null simulation. For positive simulations, we simulated gene 
trees using the same methods described above. However, we incorporated WGDs 
at the location in the MAPS phylogeny with significantly larger numbers of gene 
duplications compared with the null simulation. We allowed at least 20% of the 
genes to be retained following the simulated WGD31,122.

We also performed gene tree reconciliation using NOTUNG v.2.9.1.5 (ref. 123)  
with a model of gene duplication and loss without HGTs. We used protein 
alignments from PASTA119 as described above. RAxML v.8.2.11 (ref. 124) was used 
to generate gene family phylogenies with 100 bootstraps. The species trees were 
rerooted with an outgroup under the ‘-reroot’ function in NOTUNG. The 80% 
bootstrap value was used as a threshold to rearrange branches with low support on 
gene trees based on the species tree topology under the ‘-rearrange’ function. The 
gene tree reconciliation was performed using all gene family phylogenies. The cost 
of loss was set to 0.1 to account for missing data of transcriptomes125.

Paleologue identification using Frackify. We used Frackify to identify 
paleologues in the Ceratopteris genome originating from the WGD peak at Ks 1.3 
(ref. 53). Frackify is a machine learning approach that uses multiple features from 
gene age distributions and synteny to identify paleologues in genomes53. Syntenic 
blocks were identified using MCScanX112 set to a minimum match size (-s) of 
three based on Zhoa and Shranz126. This analysis recovered 193 syntenic blocks 
representing 923 collinear genes. Given that Ceratopteris does not have a closely 
related outgroup with a high-quality reference genome available, we used a version 
of Frackify trained without an outgroup (https://gitlab.com/barker-lab/frackify). 
For this analysis, Frackify identified a total of 395 paleologues within the syntenic 
blocks identified by MCScanX.

To assess the relative rate of fractionation in the Ceratopteris genome compared 
with other plant genomes, we compared the distribution of syntenic block sizes 
and WGD age for Ceratopteris, Azolla filiculoides, Salvinia cucullata, Ginkgo 
biloba and 27 flowering plant genomes (Supplementary Table 8)53. We used 
MCScanX set to minimum match size (-s) of three to identify synteny blocks 
in the 31 plant species126. We then compared the distribution of syntenic block 
lengths in Ceratopteris against the entire dataset (Fig. 2c). Finally, we used the 
fitdistr() function from the MASS R library to fit a log normal distribution to the 
distribution of syntenic block lengths in each species127. We compared the standard 
deviation of the log normal distribution in each species against the mean Ks of the 
focal WGD (Fig. 2c).

Whole-genome bisulfite sequencing and DNA methylation patterns on genes 
and repeats. The Ceratopteris bisulfite sequencing data used in this study were 
processed by Methylpy v.1.4.2 as described in Schultz et al.128. Quality filtering and 
adaptor trimming were performed using cutadapt v.1.18 (ref. 129). Qualified reads 
were aligned to the Ceratopteris v.2.1 reference genome using bowtie v.2.4.1 (ref. 130).  
Only uniquely aligned and non-clonal reads were retained (Supplementary  
Table 9). Lambda genomic DNA was used as a control to calculate the sodium 
bisulfite reaction conversion rate of unmodified cytosines, which was >99.9% 
for this sample. A binomial test was used to determine the methylation status of 
cytosines with a minimum coverage of three reads.

The gene or repeat body was divided into 20 windows. Additionally, regions 
1,000 bp upstream and downstream were each divided into twenty 50 bp windows. 
Methylation levels were calculated for each window according to previous 
recommendations128. The mean methylation level for each window was then 
calculated for all genes and all repeats, respectively. Locations of genes and repeats 
were obtained from the annotated gff files of the Ceratopteris v.2.0 reference.

The two CMT genes (Ceric.34G031800, Ceric.12G007000) were identified from 
our annotations (PFAM, PANTHER, KEGG) and possess the BAH, CHROMO and 
C-5 cytosine-specific DNA methylase domains.

Evolutionary analysis of gene families. Unless noted otherwise, comparative 
genetic similarity analysis of gene families across the major green plant lineages 
and algae was described in Chen et al.131. Briefly, the candidate protein sequence 
was searched in the Arabidopsis protein sequences database with the criteria 
of E-value <10−5 and paired with the Arabidopsis protein in the first hit (with 
highest BLAST score). The number and protein similarity of gene families in each 
plant species were calculated using the Arabidopsis gene family as a reference. 
Genome sequence data of all species were obtained from the National Center for 
Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov) and Ensembl 
Plants (http://plants.ensembl.org/index.html). Transcriptomic sequence data 
of plants were obtained from the One Thousand Plant Transcriptomes (1KP) 
database31 and a recent fern transcriptome analysis83. The sequences were aligned 
with MAFFT132, the best model was estimated with IQ-Tree, and the phylogeny was 
constructed with 1,000 fast-bootstrap replicates133.

MADS-box identification and phylogeny. To identify MADS-box genes in 
Ceratopteris, we first searched for MADS domains in the predicted proteins 
using HMMER 3.1b2 with a customized hidden Markov model for the MADS 
domain134. To also detect MADS-box genes that may have escaped automatic 
annotation, the Ceratopteris genome was translated in all six possible reading 
frames into amino acid sequences, and HMMER 3.1b2 searches were repeated 
on the translated genome. Genomic regions for which new MADS domains were 
recognized were extracted, including 100,000 nucleotides up- and downstream 
of the sequence potentially encoding a MADS domain. Genes were predicted 
on these genomic regions using AUGUSTUS 3.3.2 (ref. 135) with the parameters 
‘--strand=forward--codingseq=on --species=arabidopsis’.

BLAST searches136 of the identified MADS-domain proteins were conducted 
on NCBI using ‘non-redundant’ protein sequences as the database. In cases 
where the BLAST results indicated suboptimal gene models, an improved 
similarity-based gene prediction was attempted using FGENESH+137 with the 
most similar protein as a guide. In some cases, the similarity-based gene prediction 
also failed, presumably due to the presence of large introns. In these cases, we 
manually annotated the MADS-box genes. To do so, we compared the genomic 
regions with the most similar MADS-domain protein using BLAST with the 
option ‘Align two or more sequences’ and then annotated exons complying with 
conventional splice sites and keeping an open reading frame. The plausibility of the 
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manually annotated MADS-box genes was checked by searching these sequences 
in short-read archive data138 for Ceratopteris transcriptomes on NCBI. We initially 
identified 39 MADS-box genes in Ceratopteris (Supplementary Table 10). Four 
of these were classified as potential pseudogenes, whereas 16 of the 35 potential 
genuine MADS-box genes correspond to previously identified MADS-box genes in 
Ceratopteris (Supplementary Table 10)68–70,139.

Protein sequences of MADS-domain proteins were aligned using Probalign140 
on the CIPRES Science Gateway v.3.3 (ref. 141). Alignment of the complete set of  
MADS-domain proteins was trimmed using trimAl 1.2rev59t142 with the parameters  
‘-gt .9 -st .00001’ to remove positions with low conservation. For the alignment 
of the Type II MADS-domain proteins, we used the parameters ‘-gt .8 -st .0001’ 
for the first trimming. Both trimmed alignments were then trimmed with 
the parameters ‘-seqoverlap 75 -resoverlap 0.7’ to remove sequences with low 
conservation. Phylogenies were reconstructed using RAxML v.8.2.12 (ref. 124)  
on the CIPRES Science Gateway141. Based on the phylogeny of the complete set 
of MADS-domain proteins, Type I and Type II MADS-domain proteins were 
separated, and a phylogeny of Type II MADS-domain proteins was reconstructed.

Identification of Tma12 in ferns. We used BLASTp to search for Tma12 
(JQ438776 in GenBank) homologues in 1KP transcriptomes31 and 69 fern 
transcriptomes83, as well as the published water fern genomes of Azolla filiculoides 
and Salvinia cucullata20, using an E-value <10−10. HMMER 3.1b2 was also used in 
conserved domain building based on the fungal Tma12 orthologue sequences and 
predicted protein searching. After removing the alternative isoforms and filtering 
the sequences in which the length is shorter than one-third of the reference 
sequence length, we found six Tma12 orthologous genes in the fern transcriptomes 
database, and two in Ceratopteris (Ceric.24G052800, Ceric.1Z115600) that have 
the same amino acid sequences but no hits were found in the 1KP database. In 
Salvinia cucullata, the only hit was found in the genome data, but not in annotated 
protein sequences. To explore the phylogeny of Tma12 in ferns, we selected three 
fungal Tma12 sequences (Streptosporangium subroseum, Thermopolyspora flexuosa, 
Actinomadura echinospora) as the outgroup. The protein sequences were aligned 
with MAFFT132, the best model was estimated with IQ-Tree, and the phylogeny was 
constructed with 1,000 fast-bootstrap replicates133.

Identification of aerolysin-like genes and evolution. We initially identified the 
aerolysin-like genes on chromosome 9 while investigating blocks of tandemly 
duplicated genes based on our Panther annotations (PTHR34007). We used 
BLASTp to search for aerolysin-like homologues for other fern species in 69 fern 
transcriptomes83, for algae in 1KP transcriptomes31 and for bacteria in NCBI using 
an E-value <10−5. We then restricted our search to the Ceratopteris genome and 
published genomes as described in the gene family analysis section. The sequences 
were aligned with MAFFT132, the best model was estimated with IQ-Tree and the 
phylogeny was constructed with 1,000 fast-bootstrap replicates133.

Identification of PADs genes and evolution. We used BLASTp to search for 
PAD-like homologues in 69 fern transcriptomes83 and published genomes (species 
used in the gene family analysis section) using an E-value <10−5. The sequences 
were aligned with MAFFT132, the best model was estimated with IQ-Tree, and the 
phylogeny was constructed with 1,000 fast-bootstrap replicates133.

Analysis of metabolites. Young sporophytes of Ceratopteris were collected 
with six replicates, and metabolites were extracted with 1:1 methanol:water 
buffer. The samples were stored at −80°C before liquid chromatography–mass 
spectrometry analysis. Pooled quality control (QC) samples were also prepared 
by combining 10 μl of each extract. All samples were analysed using a TripleTOF 
5600 Plus high-resolution tandem mass spectrometer (SCIEX) with both positive 
and negative ion modes. Chromatographic separation was performed using an 
ultra-performance liquid chromatography system (SCIEX). An ACQUITY UPLC 
T3 column (100 mm × 2.1 mm, 1.8 µm) was used for the reversed-phase separation.

The TripleTOF 5600 Plus system was used to detect metabolites eluted from 
the column. The ion spray floating voltages were set at 5 and −4.5 kV for the 
positive ion mode and negative ion mode, respectively. The mass spectrometry 
data were acquired in the IDA mode. The TOF mass range was 60–1,200 Da. A 
QC sample was analysed every ten samples to evaluate the stability of the liquid 
chromatography–mass spectrometry.

Raw data files were converted into mzXML format and then processed using 
the XCMS, CAMERA and metaX toolbox in R. Each ion was identified by the 
comprehensive information of retention time and m/z. The open access databases, 
KEGG143 and HMDB144, were used to annotate the metabolites by matching the 
exact molecular mass data (m/z) to those from the database within a threshold of 
10 ppm. The peak intensity data were further preprocessed using metaX. Features 
that were detected in <50% of QC samples or 80% of test samples were removed, 
and values for missing peaks were extrapolated with the k‐nearest neighbour 
algorithm to improve the data quality further. Data normalization was performed 
on all samples using the probabilistic quotient normalization algorithm. Then, 
QC-robust spline batch correction was performed using the QC samples. P values 
from Student’s t‐tests were adjusted for multiple tests using an FDR correction 
(Benjamini–Hochberg) for the metabolite selection. The VIP cut‐off value of 1.0 
was set to select important features (Supplementary Table 11).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw genomic sequences and assemblies have been deposited in the NCBI SRA 
under BioProject PRJNA729743. Genome and transcriptome assemblies and 
annotations can be found in Phytozome (https://phytozome-next.jgi.doe.gov/
info/Crichardii_v2_1). Publicly available data were collected from Ensembl Plants 
(plants.ensembl.org), NCBI (ncbi.nlm.nih.gov), Swiss-Prot (uniprot.org), RepBase 
(girinst.org/repbase), One Thousand Plant Transcriptomes (1KP) database (OTPT 
Initiative, 2019), fern transcriptome database83, water fern genomes (fernbase.org), 
spruce genome (congenie.org), TAIR (arabidopsis.org). Source data are provided 
with this paper.
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Extended Data Fig. 1 | MAPS; observed results and null and positive simulations. Percentage of subtrees that contain a gene duplication shared by 
descendant species at each node, results from observed data (red line), 100 resampled sets of null simulations (black lines), and positive simulations (gray 
lines). The red oval corresponds to the putative ancient WGD.
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Extended Data Fig. 2 | Self-synteny analysis of Ceratopteris by chromosome (gene rank order). Syntenic blocks (≥10 genes) are identified in red.
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Extended Data Fig. 3 | Synteny analysis of Ceratopteris chromosomes and Salvinia cucullata scaffolds. Syntenic anchor BLAST hits are black points, 
nearby non-anchor BLAST hits are blue points, and non-syntenic reciprocal best score BLAST hits are orange points.
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Extended Data Fig. 4 | Horizontal gene transfers (HGTs) and their evolution among ferns. A, Phylogeny of Tma12 with protein conservation analysis of 
the chitin-binding domain. B, expression heatmap in tissues of Ceratopteris. C, HiC anchoring of Chromosome 9 with the region where the aerolysin-like 
genes are located outlined in black, confirming their presence in the Ceratopteris genome assembly. D, Expression patterns of the aerolysin-like genes in 
Ceratopteris.
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Extended Data Fig. 5 | Transcriptome-based phylogeny of aerolysin-like genes. Two horizontal gene transfers are evident, one fern-specific and one in 
early land plants. Aerolysin-like genes that were tandemly duplicated on Chromosome 9 are highlighted. Fern genes are blue, lycophyte genes are orange, 
bryophyte genes are light green, fish genes are purple, bacteria genes are cyan, fungal genes are brown, archaea genes are magenta, streptophytic algae 
genes are black, chlorophytic algae genes are dark green, and red algae genes are rust.
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Extended Data Fig. 6 | Analysis of Ceratopteris genes and metabolites for applications in environment and medicine. The metabolites identified in all 6 
biological replications were used in this study. A, Overview of the metabolomics dataset of Ceratopteris based on HMDB (Human Metabolome Database, 
https://hmdb.ca). All compounds were divided into 11 clades according to the HMDB superclass. The compound numbers in each superclass were 
separated as positive and negative metabolites. B, KEGG enrichment of putative compounds related to human diseases. C, The Flavonoid Biosynthesis 
pathway in Ceratopteris. 4CL, 4-coumarate:CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; F3’H, flavonoid 
3’-hydroxylase; FLS, flavonol synthase; OMT1, O-methyltransferase; UGT, UDPdependent glycosyltransferase; DFR, dihydroflavonol 4-reductase; LDOX/
ANS, leucoanthocyanidin dioxygenase/anthocyanidin synthase; AAT, anthocyanin acyltransferase.
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