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Abstract

Liaison of curves and bundles

by

Mengyuan Zhang

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor David Eisenbud, Chair

This thesis is devoted to the study of two central objects in algebraic geometry - algebraic
curves and vector bundles - through the unifying lens of liaison theory. The liaison theory of
curves originated in the work of M. Noether in the late XIX century, and has since become
an instrumental tool in the classification of space curves and the study of Hilbert schemes in
general. In Chapter I, we develop a biliaison theory of sheaves and prove several main results
in analogy to those from the liaison theory of codimension two subvarieties. In Chapter II,
we use the liaison of curves on surfaces with ordinary singularities to prove multiple results
about homological invariants of general projections of curves into projective three-space.
In Chapter III, we apply biliaison of sheaves to the study of vector bundles. A general
program is outlined to describe the moduli of bundles on a projective variety of irregularity
zero through a stratification approach. We take the first steps by classifying bundles in the
biliaison class of the zero sheaf on projective spaces and describing the moduli. In particular,
our results give a description of the moduli of bundles on the projective plane.
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Introduction

Algebraic curves and vector bundles are two central objects in algebraic geometry. In
this thesis, we generalize a classical tool in the study of space curves called liaison to the
context of sheaves, and apply it to study vector bundles on projective varieties.

Linkage of curves in P3
C

Every compact connected Riemann surface embeds as a projective curve in P3
C. For this

reason, the classification of space curves has been an important endeavor since the late XIX
century. The technique of linkage, or liaison, originated from Noether’s thesis [80].

Given a smooth curve C ⊂ P3
C, Noether considered two hypersurfaces V (F ) of degree f

and V (G) of degree g containing C, such that V (F ) and V (G) do not share any common
components. The complete intersection V (F ) ∩ V (G) contains C, as well as a (possibly
empty) residual curve D. We say that the curves C and D are linked. For example, let C be
the image of the 3-uple embedding P1

C ↪→ P3
C given by [s : t] 7→ [s3 : s2t : st2 : t3]. As shown

in Figure 1, the two conics F = xz− y2 (red) and G = xw− yz (orange) cut out the twisted
cubic C (blue) and a line D (light yellow). This shows that the twisted cubic C and the line
D are linked. Since C = f ·H −D as (generalized) divisors on the surface V (G), where H

Figure 1: The twisted cubic is linked to a line

is the hyperplane class on V (G), one can deduce the degree and genus of C from those of
D using the adjunction formula (when V (G) is singular we use [51, Prop 2.10] instead). It
turns out that when the degree of C is small, and when the degrees f and g are taken to
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be as small as possible, the residual curve D often has strictly smaller degree than that of
C. This observation enabled Noether to classify smooth curves in P3

C of degree at most 20
using an inductive strategy.

When the degree of C is large, it is possible that the residual curve D has strictly larger
degree than that of C. We define the linkage class of a curve C to consist of all curves that
can be obtained from C using finitely many links. Since the residual curve D of a smooth
curve C in a complete intersection need not be smooth, we must enlarge our definition of a
curve to include any pure codimension two (i.e. all associated points have codimension two)
subschemes of P3

C. Harris [43, p. 80] conjectured that a general smooth curve with large
degree in P3

C (a general smooth curve in Mg with a general g3
d) has minimal degree and

genus in its linkage class. This conjecture was proven by Lazarsfeld and Rao [67]. The same
paper contains an interesting structure theorem which we describe below.

There is a certain duality between two linked curves C and D (see Definition I.1.1), thus
it makes sense to consider curves that are on the “same side” of this duality. We define an
even linkage class, or a biliaison class of a curve C ⊂ P3

C to consist of all curves that can
be obtained from C using an even number of links. If C1 is linked to C2 via the complete
intersection V (F,G), and C2 and C3 are linked via the complete intersection V (F,GH), then
we say C3 is obtained from C1 using the basic double link given by (F,H). Geometrically,
we obtain C3 by attaching to C1 the complete intersection curve V (F,H). Lazarsfeld and
Rao proved that every curve in the even linkage class of a general curve C of large degree
can be obtained from C using finitely many basic double links and a deformation preserving
the first cohomology module. We refer to [67, Figure 1], reproduced here as Figure 2 for a
visual description. The same structure theorem holds more generally for the even linkage

Figure 2: Structure of an even linkage class
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class of any pure codimension two subschemes in Pn
k , where k is any algebraically closed

field. In Section I.1, we state the precise definitions, statements and references and provide
a historical account of related results in liaison theory. We recommend the books [69] and
[77] for introductions to this beautiful subject.

The key insight of our thesis is that a (bi)liaison theory can be developed for sheaves in
analogy to subvarieties. Briefly, we define biliaison as a certain equivalence relation among
coherent sheaves on a projective variety. We prove that there is a natural preorder on a bil-
iaison class, and every biliaison class has minimal members. Moreover, the minimal sheaves
in a biliaison class differ by a rational deformation preserving the intermediate cohomology
modules, and every sheaf can be obtained from a minimal one using finitely many basic
moves. We devote Chapter I to the treatment of this story. A list of our main results related
to the biliaison of sheaves can be found in Chapter I summary.

The Hilbert scheme of smooth space curves

The aforementioned thesis of Noether won him the 1882 Steiner prize, shared with G.
Halphen who also submitted a thesis [42]. The problem posed by the prize committee was to
determine all possible values of degree and genus pairs (d, g) for smooth connected complete
curves in P3

C. The following results were known by the end of the XIX century.

1. There are smooth plane curves of genus g = 1
2
(d− 1)(d− 2) for any degree d ≥ 1.

2. (Castelnuovo [14]) If a smooth curve C ⊂ P3
C does not lie on any plane, then

g ≤
⌊

1

4
d2 − d+ 1

⌋
.

Any curve obtaining this bound lies on a quadric surface.

3. For each a, b > 0, there are smooth curves on the smooth quadric surface in P3
C with

degree d = a+ b and genus g = (a− 1)(b− 1).

4. On the singular quadric cone in P3
C, if d = 2a is even, then there are smooth complete

intersections of the quadric cone with another surface of degree a. If d = 2a + 1 is odd,
then any degree d curve on the quadric cone has genus g = a2 − a.

5. (Halphen [42]) If a curve does not lie on any plane or quadric surface, then

g ≤ 1

6
d(d− 3) + 1.

A complete answer to the original prize problem was only established a century later
by Gruson and Peskine [41]. These results are true more generally for smooth connected
complete curves in P3

k, where k is any algebraically closed field. See Table 1 for a visualization
of these statements.
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6. (Gruson-Peskine [41, Cor 2.3]) For d ≥ 1 and

1√
3
d3/2 − d+ 1 < g ≤ 1

6
d(d− 3) + 1,

there is a smooth curve of degree d and genus g on a smooth cubic surface in P3
k.

7. (Gruson-Peskine [41, Thm 1.1]) For d ≥ 1 and

0 ≤ g ≤ 1

8
(d− 1)2,

there is a smooth curve of degree d and genus g on a smooth quartic surface with a double
line in P3

k. See Figure 3 for an example of such a surface.

Figure 3: A quartic surface with a double line

With the recent advance of computer algebra, it is now possible to encode space curves
explicitly as ideals in the polynomial ring over a finite field or the field of rational numbers.
Our SpaceCurves package [100] in the computer algebra system Macaulay2 [32] can generate
smooth curves of all possible (degree, genus) values in projective spaces. See [97] for a hands-
on introduction to this package.
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Table 1: Degree and genus of smooth space curves

Most plane curves are omitted from this plot. The numbers in the plot indicate how many
distinct types of Divisors are implemented in the SpaceCurves package [100] that obtain
the given (degree, genus) values.
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One main method to produce curves in P3
C is to start with an abstract algebraic curve,

embed it into a high dimensional projective space using the complete linear system of a very
ample line bundle, and then project generally into P3

C. Another important method is to
generate curves as effective divisors in a linear system on a surface in P3

C. In Chapter II, we
combine both viewpoints and study curves lying on hypersurfaces with ordinary singularities
in P3

C. Ordinary surface singularities are exactly those that appear on the general projections
of smooth surfaces from a higher dimensional projective space into P3

C. The quartic surface
with a double line depicted in Figure 3 is an example of a surface with ordinary singularities.
We study the linkage of curves on such surfaces, and prove various results about general
projections of smooth curves in P3

C. See Chapter II summary for a list of our main results
related to curves.

The milestone of determining the (degree, genus) values only marks the first obstacle in
the classification of space curves. In the language of modern algebraic geometry, we would
like to understand the geometry of the Hilbert scheme of curves in P3

k for an algebraically
closed field k. Consider the contravariant functor Csm from the category of k-schemes to the
category of sets, where Csm(T ) is defined to be the set{

CT ⊂ P3
T

∣∣∣∣ CT is flat over T and ∀t ∈ T,
the fiber C(t) is a smooth connected curve of P3

k(t)

}
for any k-scheme T , and the map Csm(T ) → Csm(S) corresponding to a morphism of k-
schemes S → T sends a family CT to its pullback CT ×T S. It follows from a well-known
result of Grothendieck [39] that the functor Csm is represented by a quasi-projective scheme
Hilbsm, i.e. there is an isomorphism of functors Csm ∼= Hom(−,Hilbsm). In particular,
the k-points of Hilbsm are in bijections with smooth connected curves in P3

k. Since every
connected flat family of smooth curves have constant degree and genus, it follows that Hilbsm

can be broken up into connected components Hilbsm
d,g labelled the degree d and genus g. The

above results only tell us the values of (d, g) such that Hilbsm
d,g is non-empty. In principle,

we would like to know the number of irreducible components, as well as the dimensions of
the components of each Hilbsm

d,g. However, even this seems to be out of reach. We know
from deformation theory that dimHilbsm

d,g ≥ 4d, which is a tight bound when d is small.
We do not know of a general upper bound on the dimensions of components in Hilbsm

d,g.
With regards to the number of components, Ein [20] showed that Hilbsm

d,g is irreducible when
d ≥ g+3. It is an open conjecture that Hilbsm

d,g is irreducible for d ≥ (g+9)/2. In the general
case, Ellia-Hirschowitz-Mezzetti [25] proved that the number of components of projectively
normal curves in P3

k with a fixed index of specialty is given by a Fibonacci number. This
surprising result shows that the number of components of Hilbsm

d,g cannot be bounded above
by any polynomial in d and g in general! In addition to having too many components to
keep track of, the Hilbert scheme Hilbsm

d,g can have singularities. Mumford [78] described a
component of Hilbsm

14,24 that parametrizes smooth curves on smooth cubic surfaces in P3
k that

is generically non-reduced. To make matters worse, Vakil [96] proved the striking result that
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every singularity type of finite type over Z appears on the Hilbert scheme of smooth curves
in Pn

Z for some values of n. It is unknown what singularity types can occur on Hilbsm
d,g.

The above discoveries indicate that the global geometry of the Hilbert scheme of space
curves is extremely complicated. However, not all hope is lost. The liaison theory of curves
provides an alternative approach to understand the Hilbert scheme through stratification.
First, let us extend Hilbsm to include all pure codimension two subschemes of P3

k, and let
Hilb denote the corresponding Hilbert scheme. We partition Hilb by even linkage classes,
which have been completely classified. The even linkage classes of curves C in P3

k are in
bijection with isomorphism classes of finite length graded modules M over the polynomial
ring S := k[x0, . . . , x3] up to shift, where the bijection sends the class of the curve C to
the class of the first cohomology module H1

∗ (IC). For each even linkage class represented
by a finite length module M , we denote the corresponding piece of the Hilbert scheme by
HilbM . We can deterministically compute the Hilbert function H of minimal curves in the
even linkage class of M . The structure theorem for even linkage classes allows us to obtain a
systematic classification of the Hilbert functions H that occur in HilbM using the procedure
of ascending elementary biliaisons (see Definition I.1.8) from minimal curves. Finally, it is
known that the points in HilbM corresponding to curves with a given Hilbert function H
form a unirational subspace [see 8], which we denote by HilbM,H . In fact, the space HilbM,H

supports a smooth scheme structure which represents the functor of flat families of curves
in P3

k with constant cohomologies. The dimension of HilbM,H is also computable from the
Hilbert function H and the finite length module M . To summarize, we obtain a stratification

Hilb =
⊔
M

⊔
H

HilbM,H

by smooth unirational schemes HilbM,H , where the nonempty pieces HilbM,H that occur can
be classified. This impressive program has been masterfully carried out in the book [69] by
Martin-Deschamps and Perrin, and gives by far the most complete results to date on the
classification of curves in P3

k.

Our successful extension of the liaison theory of curves to the context of sheaves suggests
the possibility of a similar program for the moduli M of vector bundles (or torsion-free
sheaves, reflexive sheaves etc.) on a projective variety of irregularity zero. In Chapter III,
we take the initial steps by describing the pieceM0 corresponding to bundles in the biliaison
class of the zero sheaf on Pn

k . Since every bundle on P2
k is in the biliaison class of the zero

sheaf, our results give a rather complete classification of bundles on P2
k. In the following, we

provide some historical perspectives on vector bundles to highlight our results.

Vector bundles on projective spaces

Vector bundles are ubiquitous in topology and geometry. Algebraic geometers are par-
ticularly interested in algebraic vector bundles on algebraic varieties. If the ambient variety
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X is smooth and proper over the field of complex numbers C, then algebraic vector bundles
on X are the same as holomorphic vector bundles on the corresponding compact complex
manifold Xan by Serre’s well-known GAGA principle [see 91].

The Picard group of a variety X is the group of isomorphism classes of line bundles on
X, where the group operation is given by the tensor product. Grothendieck [37][38] proved
that the Picard group, considered as a contravariant functor on the category of complete
varieties, is representable by schemes. In other words, the Picard scheme is the moduli space
of line bundles. Since line bundles govern maps to projective spaces, this theorem has far-
reaching consequences in algebraic geometry, e.g. in the Brill-Noether theory of curves. We
refer to Mumford [79] and Kleiman [63] for expositions on the Picard scheme. The effort to
generalize the Picard scheme to a moduli of bundles of arbitrary rank was met with technical
and essential difficulties. It is now well understood that the moduli space of all bundles in
general does not exist as a scheme if we require a weak universal property [74, Theorem 1.7].
On the other hand, Mumford [79] proved that the coarse moduli space of semistable bundles
of arbitrary rank on a smooth projective curve exists as a quasi-projective scheme. The
key takeaway was that the notion of stability for bundles is closely related to the notion of
stability in the context of geometric invariant theory. Around a decade later, Maruyama [71]
proved that the coarse moduli space of rank two semistable bundles on a smooth projective
surface exists as a quasi-projective scheme. A few years later, the existence of the coarse
moduli space of semistable torsion-free sheaves of arbitrary rank on a smooth projective
variety was finally established by Maruyama [72] and [74].

Let us for a moment restrict our attention to rank two bundles on P2
k. Deformation

theory shows that the coarse moduli space M(2, c1, c2)s of stable rank two bundles on P2
k

with given Chern classes c1 and c2 is smooth. Barth [5] showed thatM(2, c1, c2)s is connected
and rational for c1 even, and his student Hulek [58] showed the same for c1 odd. Their
arguments contained gaps which were pointed out and only partially fixed in [73] and [27].
Let E be a stable rank two bundle on P2

k with c1(E ) = 0. The key insight of Barth was that
the multiplication map

α : H0(O(1))⊗H1(E (−2))→ H1(E (−1))

completely determines the bundle E . Since V := H1(E (−2)) and V ∨ := H1(E (−1)) are
Serre dual vector spaces of dimension c2(E ), the map α can be thought of as a map

ψ : H0(O(1))→ Sym2 V ∨,

which is colloquially known as a net of quadrics on V . Barth classified the maps ψ that
can arise from bundles E , and called them rank two nets of quadrics. This way, the coarse
moduli space M(2, c1, c2)s can be constructed as the quotient of the space of rank two nets
of quadrics on a vector space V of dimension c2 by the action of GL(V ). A similar story
holds for stable rank two bundles E with c1(E ) = −1. Since every rank two bundle can be
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normalized to have c1 = 0 or −1, this beautiful unirational parametrization of M(2, c1, c2)s

allows us to produce a random stable rank two bundle on P2
k in practice by taking a random

rank two net of quadrics on a suitable vector space V .

One may ask the following questions.

1. What if we want to produce a random bundle E on P2
k that is not semistable?

2. What if we want a random bundle E of rank r > 2?

3. What if we want a random bundle E where h0(E (3)) ≥ 3?

4. What if we want a random bundle E that is generated in degree ≤ 6?

5. What if we want a random bundle E that satisfies all of the above?

Aside from the fact that Barth and Hulek’s results work only for stable rank two bundles,
which do not apply to bundles of type 1 and 2 above, there is another essential reason why it
would not produce bundles of type 3 and 4 in practice. Since the moduli spaceM(2, c1, c2)s

is irreducible, a random bundle produced from a global parametrization will always exhibit
the generic behavior. Looking for a special bundle that deviates from the general behavior is
comparable to looking for a needle in a haystack. In Chapter III, we describe a stratification
of the moduli space of bundles on P2

k by Betti numbers, which are very fine homological
invariants of bundles, where the pieces of the moduli corresponding to given Betti numbers
are individually unirational.

Our results hold more generally for vector bundles on Pn
k in the biliaison class of the zero

sheaf. In the spirit of the program outlined at the end of the previous section, letM0 denote
the set of isomorphism classes of finite rank bundles on Pn

k in the biliaison class of the zero
sheaf. We classify the possible Hilbert functions H that can occur in M0. For each Hilbert
function H, we define a natural Zariski topology on M0,H , the subset of M0 consisting of
classes of bundles with Hilbert function H. We then describe a stratification of M0,H by
quotients of rational varieties, and prove that the closed strata form a graded lattice given
by the Betti numbers. The subspace Mss

0,H corresponding to semistable bundles support a
subscheme structure of the coarse moduli scheme Mss

χ of semistable bundles with Hilbert
polynomial χ established by Maruyama. A similar stratification ofMss

0,H holds in the coarse
moduli schemeMss

χ . See Chapter III summary for a short list of our main results regarding
bundles on projective spaces.

The above results are implemented in the Macaulay2 package BundlesOnPn [99], which
generates all Betti numbers of bundles in M0 up to bounded regularity, as well as random
bundles with given Betti numbers. In particular, the package can produce bundles with
special features like those in item 1 - 5 listed above.
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Disclaimer

Most figures of surfaces in this thesis are generated using the Surfer program by Oliver
Labs. Chapter I is based on our papers [103] and [101]. Chapter II is based on our paper
[98]. Chapter III is based on our paper [102].
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CHAPTER I

Liaison
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Chapter I summary

We begin our thesis with a study of the biliaison theory of sheaves, which naturally
generalizes the classical subject of even linkage of codimension two subvarieties.

In Section I.1, we survey the main results and history on even linkage classes of codimen-
sion two subvarieties. We also review the notion of Serre correspondence.

In Section I.2, we prove the existence of graded basic elements (Theorem I.2.10), ex-
tending results by Eisenbud-Evans [22] and Bruns [11] to the projective setting. We define
the notion of m-reductions (Definition I.2.14) - the technical heart of the biliaison theory of
sheaves, and prove a factorization theorem (Theorem I.2.15).

In Section I.3, we define biliaison of sheaves and prove the following main results.

(a) There are minimal sheaves in each biliaison class under a suitable preorder (Theo-
rem I.3.26). Those that are minimal can be obtained from each other using a rational
deformation preserving intermediate cohomology modules (Proposition I.3.21).

(b) Any sheaf can be obtained from a minimal one in its biliaison class using rigid defor-
mations and certain basic moves (Theorem I.3.27).

(c) Biliaison classes of sheaves are in bijection with stable equivalence classes of primitive
sheaves. This result is essentially due to Hartshorne [52], extending a well-known result
of Rao [86].

The results (a) - (c) give satisfactory extensions of the main theorems on even linkage classes
of codimension two subvarieties (cf. Theorem I.1.10). Furthermore, we also prove a sufficient
criterion (Theorem I.3.28) for a sheaf to be minimal, generalizing the criterion of Lazarsfeld-
Rao [67] for a curve to be minimal in P3

k.
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I.1. Background

We review the main theorems and history of even linkage classes of codimension two
subvarieties and recall basic facts about the Serre correspondence. Let X denote a Gorenstein
projective variety over an infinite field k. All sheaves considered are coherent on X.

Even linkage of codimension two subvarieties

The notion of linkage originated in the work of M. Noether [80] in 1882. Using this
technique, Noether gave a complete classification of curves in P3

C of degree at most 20. The
modern definition of linkage is crystalized in the paper of Peskine-Szipro [83].

Definition I.1.1. Let Y and Z be two subschemes of X of codimension r. We say Y and
Z are linked if there is a codimension r (global) complete intersection K in X containing Y
and Z such that IY/K

∼= H om(OZ ,OK) and IZ/K
∼= H om(OY ,OK). A linkage class on

X consists of all subschemes that can be obtained from each other using finitely many links.
An even linkage class on X consists of all subschemes that can be obtained from each other
using even numbers of links.

Theorem I.1.2 (Peskine-Szpiro). With notation as above, if Y and Z are linked, then Y
is of pure codimension r (i.e. all associated points have codimension r) in X if and only
if Z is. If Y is of pure codimension r in X and is contained in a complete intersection K
of codimension r, then there is a unique subscheme Z ⊆ K (possibly empty) such that Y is
linked to Z through K. If Y and Z are linked, then Y is (locally) Cohen-Macaulay if and
only if Z is.

The first linkage class that was completely classified was the class of a codimension
two complete intersection in Pn

k . Peskine and Szpiro [83] showed that a codimension two
subscheme Y of Pn

k is in the linkage class (equivalently even linkage class) of a complete inter-
section (equivalently the empty scheme) if and only if Y is arithmetically Cohen-Macaulay
(ACM), i.e. the cone of Y in An+1

k is Cohen-Macaulay. This work generalizes results of
Apery [1] and Gaeta [29]. In the following year, Ellingsrud [26] classified all codimension
two ACM subvarieties of Pn

k , and essentially described the relevant pieces of the Hilbert
scheme. In a parallel spirit, we will classify in Chapter III the vector bundles in the biliaison
class of the zero sheaf on Pn

k and describe their moduli.

When X = P3
k, we call a pure codimension two subscheme a curve. Let S denote the

polynomial ring of X, and let H i
∗(F ) denote the graded S-module

⊕
n∈ZH

i(F (n)). A curve
C is ACM if and only if its first cohomology module H1

∗ (IC) vanishes. The result of Peskine
and Szpiro showed that whether the invariant H1

∗ (IC) is zero determines whether C belongs
to the even linkage class of the empty scheme. Under the advice of Hartshorne, Rao set
out to investigate the next simplest case of the disjoint union of two lines Y = L1 t L2,
where H1

∗ (IY ) = k. Rao [84] proved that a curve C is in the linkage class (equivalently
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even linkage class) of the disjoint union of two lines if and only if H1
∗ (IC) is isomorphic to k

up to shift. When Rao submitted his paper, the referee pointed out that his method works
more generally for any first cohomology module H1

∗ (IC). We have the following beautiful
result connecting the geometric relation of linkage with the algebraic invariant given by the
cohomology module.

Theorem I.1.3 (Rao [85]). Two curves C and D in P3
k are in the same linkage class if

and only if H1
∗ (IC) and H1

∗ (ID) are isomorphic as graded S-modules up to shift and graded
vector space dual. They are in the same even linkage class if and only if H1

∗ (IC) and H1
∗ (ID)

are isomorphic as graded S-modules up to shift.
Moreover, every finite length graded S-module M occurs as H1

∗ (IC) for some curve C
up to shift. In particular, there is a bijection between the even linkage classes of curves in
P3
k and isomorphism classes of finite length graded S-modules up to shift.

A few year later, Rao established a fascinating connection between even linkage classes
and stable equivalence of bundles on Pn

k .

Theorem I.1.4 (Rao [86]). The even linkage classes of Cohen-Macaulay pure codimension
two subschemes of Pn

k are in bijection with the stable equivalence classes of bundles E up to
shift, where Hn−1

∗ (E ) = 0.

We say two bundles E1 and E2 on Pn
k are stably equivalent if H0

∗ (E1) and H0
∗ (E2) are stably

equivalent as graded S-modules, i.e. they become isomorphic after taking direct sums with
graded free S-modules. Note that the original formulation of Rao uses stable equivalence
classes of bundles E where H1

∗ (E ) = 0. We present the dual statement intentionally (see
Definition I.3.13). When X = P3

k, a result of Horrocks [55] states that stable equivalence
class of a bundle E is completely classified by its first cohomology module H1

∗ (E ). This fact
retroactively explains why even linkage classes of curves in P3 are determined by the first
cohomology modules.

Armed with the philosophy that there is no way to get hands on a general curve, Harris
[43, p. 80] conjectured that a general (abstract) curve (with a general g3

d) for large degree d in
P3
k has minimal degree and genus in its linkage class. In particular, the inductive approach

of Noether is doomed to fail for general curves of large degrees in P3
k. This conjecture was

proven by Lazarsfeld and Rao.

Theorem I.1.5 (Lazarsfeld-Rao [67]). If a curve C in P3
k does not lie on a surface of degree

e(C) + 3, where e(C) := inf{n | H1(OC(n)) 6= 0} is the index of specialty of C, then C has
minimal degree and genus in its linkage class. A general (abstract) curve (with a general g3

d)
for d� g satisfies this condition, and thus is minimal in its linkage class.

Apart from settling the conjecture of Harris, the paper [67] included an interesting struc-
ture theorem of even linkage classes of a general curve of large degree. We describe what is
called a basic double link. If C1 is linked to C2 via the complete intersection V (f, g), and C2
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and C3 are linked via the complete intersection V (g, fh), then we say C3 is obtained from C1

using the basic double link given by (g, h). In a suitable sense, we obtain C3 by attaching to
C1 the complete intersection curve V (g, h). This procedure is a particular case of a liaison
addition [see 90]. We refer to Figure 2 for a visual description.

Theorem I.1.6 (Lazarsfeld-Rao [67]). If a curve C in P3
k does not lie on a surface of degree

e(C) + 3, then every curve D in its even linkage class can be obtained from C using finitely
many basic double links and a deformation preserving the first cohomology module.

It is natural to ask whether every even linkage class of curves in P3
k satisfies this structure

theorem, i.e. can every curve be obtained from a curve of minimal degree in the even
linkage class using finitely many basic double links and a deformation preserving the first
cohomology module? The answer is affirmative. The structure theorem was proven for every
even linkage class of curves in P3

k by Martin-Deschamps and Perrin [69]. Independently and
more generally, Ballico, Bolondi and Migliore [3] proved the structure theorem for every even
linkage class of Cohen-Macaulay pure codimension two subvarieties in Pn

k .

Theorem I.1.7 (Ballico-Bolondi-Migliore [3]). Every Cohen-Macaulay pure codimension
two subscheme Y of Pn

k is obtained by from one of minimal degree in its even linkage class
using finitely many basic double links and a deformation preserving intermediate cohomology
modules. In particular, all such subschemes of minimal degree in an even linkage class differ
by a deformation preserving intermediate cohomology modules.

For the case of curves in P3
k, Strano [95] showed that the deformation in the end of the

structure theorem can be subsumed into linear equivalences on suitable surfaces.

Definition I.1.8. We say a subscheme Y of X is minimal if it has minimal degree in its
even linkage class. If Y and Z are two pure codimension two subschemes of X, then an
elementary biliaison of height h from Y to Z is given by a hypersurface K of X containing
Y and Z such that IY/K

∼= IZ/K ⊗ O(h) for some integer h. An elementary biliaison is
ascending if the height is positive, and descending otherwise. It is easy to check that if there
is an elementary biliaison from Y to Z, then Y and Z are in the same even linkage class.

If C3 is obtained from C1 using a basic double link (g, h) as above, then C3 is clearly
linearly equivalent to C1 plus V (g, h) considered as (generalized) divisors on the surface
V (g). We see that the notion of elementary biliaison has linear equivalence built-in, where
we have the flexibility of taking any curve linearly equivalent to C3 on V (g).

Theorem I.1.9 (Strano[95]). Any curve C in P3
k is obtained from one of minimal degree in

its even linkage class using finitely many ascending elementary biliaisons.

In another direction, Nollet [81] removed the Cohen-Macaulay assumption for even linkage
classes of pure codimension two in Pn

k . Combining the progress made by Strano and Nollet,
Hartshorne [52, 51] further generalized the structure theorem for even linkage classes of pure
codimension two subschemes on an arithmetically Gorenstein scheme.
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Theorem I.1.10 (Hartshorne [51, 52]). Let X be a Gorenstein variety over an infinite field
k and assume that H1

∗ (OX) = 0.

1. Any two pure codimension two minimal subschemes in an even linkage class lie on an
irreducible family.

2. Every pure codimension two subscheme Y can be obtained from a minimal one in its even
linkage class using finitely many ascending elementary biliaisons.

3. Even linkage classes of pure codimension two subschemes of X are in bijection with stable
equivalence classes of extraverti sheaves up to twist.

We will use the more general notion of primitive sheaves instead of extraverti sheaves
in this thesis (see Definition I.3.13). Although attributed to Hartshorne, the above theorem
clearly crystalized decades of work by numerous mathematicians. We refer to the book [77]
for a more complete story on this beautiful subject.

Our goal in Chapter I is to generalize the results in this section to biliaison of sheaves.

The Serre correspondence

The simplest Serre correspondence is between points and rank two bundles on a smooth
surface. Let E be a rank two bundle and let O

s−→ E be a section. The image of the dual

map E ∗
s∗−→ O is an ideal sheaf I . If I = O, then we have an extension

0→ ∧2E ∗ → E ∗ → O → 0

given by the Koszul complex. If I 6= O, then the subscheme V (I ) defined by I has
codimension at most two since it is locally defined by two equations. If V (I ) has codimension

one, let Y be the largest codimension one component of V (I ). The map E ∗
s∗−→ O factors

as E ∗ → I (Y )→ O. Twisting by the line bundle O(Y ), we obtain an exact sequence

0→ ∧2E ∗ ⊗ O(Y )→ E ∗ ⊗ O(Y )→J → 0

where J is the image ideal of the map E ∗ ⊗ O(Y ) → O. It follows that the subscheme
defined by J , if nonempty, has codimension exactly two. We say V (J ) is the vanishing
scheme of a section of E ⊗I (Y ).

Definition I.1.11. Let X be a smooth surface, i.e. a smooth integral variety of dimension
two over a field k. A zero dimensional subscheme Z of X satisfies the Cayley-Bacharach
property with respect to the line bundle L if every effective divisor D in the complete linear
system of |L | that contains a subscheme Z ′ ⊂ Z of co-length one must contain Z.

Theorem I.1.12 (Griffith-Harris [35]). With assumptions as above, a zero dimension sub-
scheme Z of X is the vanishing of a rank two bundle E where ∧2E = L , i.e. IZ admits an
extension of the form

0→ L ∗ → E → IZ → 0
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if and only if Z is a local complete intersection (l.c.i.) and satisfies the Cayley-Bacharach
property with respect to the line bundle L ⊗ ωX .

The case when Z is non-reduced is proven by Catanese [15]. There are analogous results
in higher dimensions due to Serre [93], Horrocks [56] and Hartshorne [44].

Theorem I.1.13 (Serre, Horrocks, Hartshorne). A codimension two subscheme Y of a
smooth scheme X is the vanishing scheme of a section of a rank two bundle E where
∧2E = L , i.e. IY admits an extension of the form

0→ L ∗ → E ∗ → IY → 0

if and only if Y is a l.c.i. and ωY ∼= L ⊗ ωX ⊗ OY .

This result sets up a correspondence, called the Serre correspondence, between codi-
mension two local complete intersections and rank two bundles on a smooth variety. It is
Hartshorne’s insight to relax the locally-free condition and consider reflexive sheaves instead.
Recall that a coherent sheaf is reflexive if the natural map F → F ∗∗ is an isomorphism.
The following theorem of Hartshorne extended the Serre correspondence to a correspondence
between rank two reflexive sheaves and generic local complete intersections curves in P3

k.

Theorem I.1.14 (Hartshorne [48]). Fix an integer c1. There is a bijection between

1. pairs (E , s), where E is a rank two reflexive sheaf on P3
k with c1(E ) = c1, and

2. pairs (Y, ξ), where Y is a generic l.c.i. curve in P3
k and ξ ∈ H0(ωY (4− c1)) is a section

that generates the sheaf ωY (4− c1) everywhere except at finitely many points.

We will extend the above definition in Definition I.3.10.

Notations and conventions

For the remainder of this chapter, we fix X to be a (locally) Cohen-Macaulay projective
variety over an infinite field k, and let O(1) be a fixed very ample line bundle of X over k.
All sheaves F in consideration are assumed to be coherent on X. We always use underlined
letters such as a to denote a finite sequence of integers (ai)

u
i=1, and write O(a) instead of⊕u

i=1 O(−ai) for brevity.

Sections of F (l) := F ⊗ O(1)⊗l are called sections of F in degree l, or twisted sections
of F . If s1, . . . , su are sections of F in degrees a1, . . . , au, then we denote by (s1, . . . , su)

the image subsheaf of the morphism ϕ : O(a)
s1,...,su−−−−→ F . For a point p ∈ X, let Fp denote

the stalk of F at p, and let F(p) denote the fiber at p. We write µ(F , p) for the dimension
of the fiber F(p) over the residue field k(p). By Nakayama’s lemma, the number of minimal
generators of Fp over the local ring Op is equal to µ(F , p).
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I.2. Graded Basic Elements

A basic element of a module is an element that is part of a minimal system of generators
of the module at each prime. We also consider elements that are basic at primes up to a
certain codimension or depth. In the affine case, results of Eisenbud-Evans [23] guarantee
the existence of a basic element in a submodule if it contains enough minimal generators of
the ambient module at each point. The theory surrounding basic elements has always been
very technical, but its applications have shown themselves to be extremely useful to those
willing to understand the material. To name a few consequences of the existence theorems,
one can prove the Bass’ cancellation theorem, the Forster-Swan theorem, Bass’ stable range
theorem and a theorem of Serre on free summands of a projective module [see 22].

We encounter new difficulties and new features in the projective setting. The heart
of the proofs of the above theorems is [23, Lemma 3], which we call the “finite shrinking
lemma”. It states that after a unipotent change of coordinates, one can drop a generator
of a submodule while maintaining basicness to a maximal extent over finitely many points.
The original proof of this lemma does not go through in the projective case. We were able to
find a different approach to prove the finite shrinking lemma in the projective setting, thus
obtaining analogous results of Eisenbud-Evans [23] and Bruns [11] for projective schemes.

Furthermore, we prove a criterion on the factorization of what we call an m-reduction,
yielding several geometric applications in codimension two. We define the Caylay-Bacharach
index of a set of points in P2

k, and provide upper and lower bounds of this invariant in terms of
the second Betti numbers of the points. We also prove that the Lazarsfeld-Rao procedure [67]
of producing a curve in P3

k from a bundle factors through a Serre correspondence if and only
if the curve is a generic complete intersection. Finally, we show that every pure codimension
two l.c.i. subscheme of Pn

k is the degeneracy locus of (n−1) generically independent sections
of a rank n bundle.

One key new feature of graded basic elements is the existence of degrees. In practice we
often strive to find graded basic elements of smallest degrees possible. We will expand on
this idea in Section I.3.

The finite shrinking lemma

For any p ∈ X, there exists a linear form L ∈ H0(O(1)) not vanishing at p since O(1)
is very ample. If s1, . . . , su are sections of a sheaf F in degrees a1, . . . , au corresponding to
the map ϕ : O(a) → F , then the image of ϕp is generated by (s1/L

a1)p, . . . , (su/L
au)p in

Fp. A different choice of the dehomogenization L would result in the scaling by units of
Op. The image of ϕ(p) in F(p) is generated by (s1/L

a1)(p), . . . , (su/L
au)(p), which is a k(p)
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vector-subspace of dimension µ(F , p)− µ(F/(s1, . . . , su), p) by the right exact sequence

l⊕
i=u

O(−ai)(p)

ϕ(p)−−→ F(p) → (F/(s1, . . . , su))(p) → 0.

Definition I.2.1. A subsheaf F ′ of F is w-basic in F at p ∈ X if

µ(F/F ′, p) ≤ µ(F , p)− w.

If s1, . . . , su are twisted sections of F , then we say they are basic in F at p ∈ X if (s1, . . . , su)
is u-basic in F at p.

By Nakayama’s lemma, a subsheaf F ′ is w-basic in F at p if and only if F ′
p contains w

members of a minimal system of generators of Fp over Op.

The finite shrinking lemma says that we may, after a unipotent coordinate change, drop
one section of the lowest degree while maintaining basicness to the maximal possible extent
at finitely many points.

Lemma I.2.2 (Finite shrinking lemma). Let s1, . . . , su be sections of a coherent sheaf F
on X in degrees a1 ≤ · · · ≤ au. If (s1, . . . , su) is wi-basic in F at pi ∈ X for 1 ≤ i ≤ v,
then there are rj ∈ H0(O(aj − a1)) for 2 ≤ j ≤ u such that (s2 + r2 · s1, . . . , su + ru · s1) is
min(u− 1, wi)-basic in F at pi for all i.

Lemma I.2.2 is the projective version of Lemma 3 of [23], which is crucial in the proof
of [11, Theorem 1]. The original proof breaks down in the projective case and requires a
different strategy. The key difficulty is that the forms rj must now be homogeneous of degrees
aj−a1, as opposed to any forms in the affine case. The original proof involved finding a form
rj that vanishes on p1, . . . , pv−1 but not on pv, assuming pv is minimal. Such a form always
exists in high enough degrees, but there is no guarantee for it to exist in degree aj − a1. We
overcome this difficulty with the following lemma from linear algebra.

Lemma I.2.3. Let v2, . . . , vu be vectors in a vector space V over a field K. For any 2 ≤
j ≤ u, there is at most one λ ∈ K where

dim span{v2, . . . , vj + λ · v1, . . . , vu} < dim span{v2, . . . , vu}.

Proof. If vj ∈ span{v2, . . . , v̂j, . . . , vu}, then clearly

dim span{v2, . . . , vj + λ · v1, . . . , vu} ≥ dim span{v2, . . . , v̂j, . . . vu} = dim span{v2, . . . , vu}.

Suppose vj 6∈ span{v2, . . . , v̂j, . . . , vu}. We may quotient V by span{v2, . . . , v̂j, . . . , vu} and
denote the images of v1 and vj by v1 and vj. If the inequality in the statement holds, then
we must have vj + λ · v1 = 0. It follows that v1 is a nonzero multiple of vj and λ is uniquely
determined.
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For clarity of exposition, we use the following lemma to make a consistent choice of
dehomogenization at finitely many points.

Lemma I.2.4. Let p1, . . . , pv ∈ X be finitely many points. There is a linear form L ∈
H0(O(1)) that does not vanish on any pi.

Proof. Sections that vanish on pi form a proper subspace of H0(O(1)) for any i. The conclu-
sion follows from the fact that a vector space over an infinite field is not the union of finitely
many proper subspaces.

Proof of Lemma I.2.2. Let L ∈ H0(O(1)) be a form that does not vanish at pi for any i as
in Lemma I.2.4. We prove the lemma by induction on v. Suppose v = 1, and (s1, . . . , su) is
w1-basic at p1. If u = w1, then any choice of rj’s would work. We may suppose u > w1. If
(s2, . . . , su) is w1-basic, then we may choose rj = 0 for all j. If not, then there exists some
2 ≤ l ≤ u such that (sl/L

al)(p1) is in the span of (sl+1/L
al+1)(p1), . . . , (su/L

au)(p1). In this
case, we may take rj = 0 for every j 6= l, and choose rl = Laj−a1 . Since rl has the image a
nonzero unit in k(p1), we see µ(F/(s2, . . . , sl + rls1, . . . , su), p1) = µ(F/(s1, . . . , su), p1). It
follows that (s2, . . . , sl + rls1, . . . , su) is w1-basic at p1.

Now we prove the case v > 1. If wi = u for some i, then any choice of rj’s would satisfy the
requirement at pi. Thus we may consider the same problem at fewer points, and induction
on the number of points v takes care of this case. Thus we may assume that u > wi for all i.
By the induction hypothesis, there exist r′j ∈ H0(O(aj − a1)) for 2 ≤ j ≤ u such that s′j :=
sj + r′js1 generate a subsheaf that is wi-basic in F at p1, . . . , pv−1. If (s′2, . . . , s

′
u) is wv-basic

at pv, then we are done. Suppose not, then (s′2, . . . , s
′
u) is (wv − 1)-basic in F at pv. There

exists 2 ≤ l ≤ u such that (s′l/L
al)(pv) is in the span of (s′l+1/L

al+1)(pv), . . . , (s
′
u/L

au+1)(pv). We
choose r′′l := λ·Lal−a1 for a nonzero λ ∈ k yet to be determined. By the same reasoning in the
paragraph above, the image of r′′l in k(pv) is a nonzero unit and thus (s′2, . . . , s

′
l+r

′′
l s1, . . . , s

′
u)

is wv-basic at pv for any nonzero λ ∈ k. At each of the p1, . . . , pv−1, there exists at most one
λ ∈ k where (s′2, . . . , s

′
l + r′′l s1, . . . , s

′
u) fails to be wi-basic at pi by Lemma I.2.3. Since k is

an infinite field, we may choose a nonzero λ ∈ k such that (s′2, . . . , s
′
l + r′′l s1, . . . , s

′
u) remains

wi-basic at pi for all 1 ≤ i ≤ v − 1.

We do not know if Lemma I.2.2 remains true when k is finite.

Existence of graded basic elements

We now use the finite shrinking lemma to extend the results of [23] and [11] to the
projective setting. We slightly generalize the existence theorem to “catch” multiple basic
elements at once. Aside from that, our contribution here is mostly that of a translation. We
include the complete proofs for the sake of rigor and being self-contained.

For any sheaf F on X, there is a presentation of the form E1 → E0 → F → 0, where E1

and E0 are locally free. The sheaves Ei can be chosen to be the direct sums of tensor powers
of the very ample line bundle O(1).
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Definition I.2.5. Let E1
ϕ−→ E0 be a map of locally free sheaves on X. The i-th minor ideal

sheaf Ii(ϕ) is defined as the image ideal of the map ∧iE1⊗∧iE ∗0 → O corresponding to the
i-th exterior map ∧iE1 → ∧iE0.

Let F be a sheaf on X and let E1
ϕ−→ E0 → F → 0 be a presentation of F by locally free

sheaves E1 and E0. We define the i-th Fitting ideal Fitti(F ) of F to be In−i(ϕ), where
n = rank E0. Let Zi(F ) be the subscheme corresponding to Fitti(F ).

Proposition I.2.6. With notations as above, the ideal sheaf Fitti(F ) is well-defined and
does not depend on the presentation chosen for any i. Furthermore, the subscheme Zi(F )
contains exactly the points p ∈ X where µ(F , p) > i.

Proof. See [21, §20] for basic facts on Fitting ideals.

Lemma I.2.7 ([cf 23, Lemma 4]). Let C be a set of points in X and let F ′ be a subsheaf
of F . Suppose F ′ is w-basic in F at all points that are the generalization of a point in C,
then F ′ is w-basic at all but finitely many points in C.

Proof. We claim that if F ′ is not w-basic at p ∈ C, then p is the generic point of a component
of Zi(F ) for some i. Since there are only finitely many ideals Fitti(F/F ′), and each Zi(F )
has only finitely many components by the noetherian property, the conclusion follows. Let
p ∈ C and µ(F/F ′, p) = s. It follows that p ∈ Zs−1(F/F ′) and p 6∈ Zs(F/F ′). Suppose
p is not the generic point of a component, then there exists a point q ∈ Zs−1(F/F ′) that
is a proper generalization of p. By assumption µ(F/F ′, q) ≤ µ(F , q) − w. Since q is
a generalization of p, it follows that q 6∈ Zs(F/F ′). We conclude that µ(F/F ′, q) =
µ(F/F ′, p) = s. On the other hand µ(F , q) ≤ µ(F , p) since q is a generalization of p. It
follows that F ′ is w-basic at p.

For an integer m ≥ 0, let Cm := {p ∈ X | dim Op ≤ m} to be the collection of all points
of X of codimension at most m.

Lemma I.2.8. Let s1, . . . , su be sections of a sheaf F on X in degrees a1 ≤ · · · ≤ au. Let
t ≥ 1 be an integer, and suppose (s1, . . . , su) is min(u,m + t− dim Op)-basic at all p ∈ Cm.
The subsheaf (s1, . . . , su) is min(u,m+ t+ 1−dim Op)-basic at all but finitely many p ∈ Cm.

Proof. Fix 0 ≤ i ≤ m and set C := Ci−Ci−1 be the set of points in X of codimension exactly
i. If q is a generalization of a point in C, then F ′ is min(u,m + t− dim Oq)-basic at q and
therefore is min(u,m + t + 1 − i)-basic at q. By Lemma I.2.7, there are only finitely many
points p in C where F ′ is not min(u,m+ t+ 1− dim Op)-basic at p.

Theorem I.2.9. Let s1, . . . , su be sections of a coherent sheaf F on X in degrees a1 ≤ · · · ≤
au. If t ≥ 1 is an integer such that (s1, . . . , su) is min(u,m + t− dim Op)-basic in F at all
p ∈ Cm, then there are rj ∈ H0(O(aj −a1)) for 2 ≤ j ≤ u such that (s2 + r2s1, . . . , su + rus1)
is min(u− 1,m+ t− dim Op)-basic in F at all p ∈ Cm.
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Proof. By Lemma I.2.8, there are only finitely many points p1, . . . , pv in Cm where (s1, . . . , su)
is not min(u,m+t+1−dim Op)-basic. We apply Lemma I.2.2 and find forms rj ∈ H0(O(aj−
a1)) for 2 ≤ j ≤ u such that (s2 + r2s1, . . . , su + rus1) is min(u− 1,m+ t− dim Op)-basic at
p1, . . . , pv. At all points p in Cm−{p1, . . . , pv}, the subsheaf (s2 + r2s1, . . . , su + rus1) is also
min(u−1,m+t−dim Op)-basic in F since (s1, . . . , su) is min(u,m+t+1−dim Op)-basic.

Theorem I.2.10 (Existence of graded basic elements). Let s1, . . . , su be sections of a sheaf
F on X in degrees a1 ≤ · · · ≤ au. Suppose t ≥ 1 is an integer such that (s1, . . . , su) is
min(u,m+ t− dim Op)-basic in F at all p ∈ Cm. One of the following holds.

1. If u ≤ t, then s1, . . . , su are basic in F at all p ∈ Cm.

2. If u > t, then there are t sections s′u−t+1, . . . , s
′
u of F in degrees au−t+1, . . . , au that are

basic in F at all p ∈ Cm. Moreover, for each u − t + 1 ≤ i ≤ u, the section s′i can be
chosen to be of the form si + ri−1si−1 + · · ·+ r1s1 for some rj ∈ H0(O(ai − aj)).

Proof. If u ≤ t, then u ≤ m+ t−dim Op for all p ∈ Cm and the statement is trivial. If u > t,
then we may apply Theorem I.2.9 (u− t)-times to obtain the desired t sections.

Factorization of reductions

Definition I.2.11. A sheaf F on X satisfies Serre’s condition (Sm) if depth Fp is at least
min(m, dim Op) for all p ∈ X. We say F satisfies (S+

m) if Fp is free over Op for all p ∈ Cm
in addition to F satisfying (Sm).

Note that if Fp has finite projective dimension over Op for all p ∈ Cm, then (S+
m) is

implied by (Sm) by the Auslander-Buchsbaum formula. For example, this is the case for all
sheaves F if X is regular in codimension m.

Other than the case of bundles, the following (S+
m) sheaves are of interest to us. If X

is regular in codimension one, then E satisfies (S+
1 ) if and only if it is torsion-free. In this

case, a rank one sheaf E satisfies (S+
1 ) if and only if it is isomorphic to I ⊗L , where I

is a nonzero ideal sheaf and L is a line bundle. If X is regular in codimension two, then E
satisfies (S+

2 ) if and only if E is reflexive, i.e. the natural map E → E ∗∗ is an isomorphism.

The following proposition relates the property of being (S+
m) with the notion of basicness.

Proposition I.2.12. Let s1, . . . , su be twisted sections of an (S+
m) sheaf F of rank r. The

sections s1, . . . , su are basic in F at all p ∈ Cm if and only if the quotient F/(s1, . . . , su)
has rank (r − u) and satisfies (S+

m).

Proof. If F/(s1, . . . , su) has rank r − u and satisfies (S+
m), then F/(s1, . . . , su) locally gen-

erated by r − u elements at each p ∈ Cm. Since (s1, . . . , su) is at most u-basic in F at any
p ∈ X, it follows that s1, . . . , su are basic in F at all p ∈ Cm.
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Conversely, suppose s1, . . . , su are basic in F at all p ∈ Cm. Since s1/L
a1 , . . . , su/L

au

form part of a basis of the free module Fp over Op for all p ∈ Cm, the corresponding map

ϕ : O(a)
s1,...,su−−−−→ F is injective and F/(s1, . . . , su) is locally-free at all points p ∈ Cm. Since

X is Cohen-Macaulay, all associated points of X are minimal, and thus ϕ is injective globally.
An application of the depth lemma to the exact sequence

0→ O(a)
ϕ−→ F → F/(s1, . . . , su)→ 0

yields the conclusion that F/(s1, . . . , su) satisfies (Sm) and hence (S+
m).

Corollary I.2.13. Let m ≥ 0 be an integer and let F be an (S+
m) sheaf on X of rank

r > m. If ϕ : O(a)
ϕ−→ F is a surjective map for some a = (ai)

u
i=1, then there is a rank

(r−m) summand L of O(a), involving the smallest (r−m) integers ai, such that L → F
is injective and F/L has rank m and satisfies (S+

m).

Proof. Let (s1, . . . , su) be the sections of F in degrees a1 ≤ · · · ≤ au corresponding to ϕ.
Since (s1, . . . , su) is min(u, r)-basic in F at all p ∈ Cm, it is min(u,m+(r−m)−dim Op)-basic
at all p ∈ Cm. By Theorem I.2.10, there is a rank (r −m) summand L of O(a) mapping
to F , corresponding to (r −m) sections that are basic in F at all p ∈ Cm. The conclusion
follows from Proposition I.2.12.

The affine version of the above corollary is due to Bruns [11].

Definition I.2.14. An m-reduction of F is an injective map of the form ϕ : O(a)→ F for
some a such that cokerϕ satisfies (S+

m). The rank of the reduction is the rank of the map ϕ
(over the generic fiber). The corank of the reduction is defined to be rank cokerϕ.

We say an m-reduction ϕ : O(a) → F factors through an n-reduction ψ : O(b) → F
if there is an injective map ι : O(b) → O(a) such that ψ = ϕ ◦ ι and coker ι ∼= O(c) for
some c. In this case, the induced map coker ι→ cokerψ is an m-reduction whose cokernel is
isomorphic to cokerϕ by an application of the snake lemma to the commutative diagram:

0 O(b) F cokerψ 0

0 O(a) F cokerϕ 0.

ψ

ι

ϕ

In order for a sheaf E to admit an m-reduction, it must satisfy (S+
m) itself. Corollary I.2.13

states that if E has rank r ≥ m and satisfies (S+
m), then it admits an m-reduction of corank

m. The next theorem gives us a sufficient criterion when an m-reduction factors through
another n-reduction.

Theorem I.2.15 (Factorization theorem). Let ϕ : O(a)→ F be an m-reduction of corank
u. There is an n-reduction of F of corank v through which ϕ factors if the following hold:
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1. u ≤ v and m ≤ n,

2. F satisfies (S+
n ),

3. µ(cokerϕ, p) ≤ v − n+ dim Op for all p ∈ X such that m ≤ dim Op ≤ n.

We may take the factor map ι : O(b) → O(a) to be a summand of O(a) consisting of the
smallest (rank F − v) integers ai.

Proof. Set rank F = r and let s1, . . . , sr−u be twisted sections of F corresponding to
ϕ. By Proposition I.2.12, the sections s1, . . . , sr−u are basic in F at all p ∈ Cm. Since
µ(cokerϕ, p) ≤ v − n + dim Op at all p ∈ Cn − Cm and F satisfies (S+

n ), we see that
(s1, . . . , sr−u) is min(r − u, n + (r − v) − dim Op)-basic in F at these points. It follows
that (s1, . . . , sr−u) is min(r − u, n + (r − v) − dim Op)-basic in F at all p ∈ Cn. By Theo-
rem I.2.10, we can find a summand ι : O(b) → O(a) consisting of (r − v) smallest ai such
that ϕ ◦ ι : O(b)→ F is an n-reduction of F of corank v.

In the following, we explore some geometric applications of the factorization theorem.

Lemma I.2.16. A coherent sheaf F on Pn
k is isomorphic to a nonzero ideal sheaf up to

twisting by O(l) if and only if F has rank one and satisfies (S+
1 ).

Proof. If I is a nonzero ideal sheaf of a subscheme Z, then rank I = 1. If Z contains a one
dimensional component, then we may twisted I down by the equation of the corresponding
hypersurface and assume that Z is empty or has codimension at least two. If Z is empty
then I ∼= O(l) which clearly satisfies (S+

1 ). If Z has codimension at least two, then I is
locally-free in codimension one and the exact sequence

0→ I → O → OZ → 0

shows that I satisfies (S+
1 ) by the depth lemma.

Conversely, suppose F has rank one and satisfies (S+
1 ). The natural map F → F ∗∗ is

an injection, where F ∗∗ is a rank one reflexive sheaf. Since Pic(Pn
k) = Z, it follows that

F ∗∗ ∼= O(l) for some l. It follows that F (−l) is isomorphic to an ideal sheaf.

If a zero dimensional subscheme Z of P2
k satisfies Cayley-Bacharach property with respect

to the line bundle O(l) (see Definition I.1.11), then we write Z satisfies (CBl) for brevity.

Proposition I.2.17. With notations as above, if Z satisfies (CBl) then Z satisfies (CBl−1).

Proof. Let Z ′ ⊂ Z be a subscheme of colength one. Suppose f ∈ H0(O(l−1)) gives a divisor
V (f) that contains Z ′. Let l ∈ H0(O(1)) cut out a hyperplane avoiding Z. It follows that
the hypersurface cut out by V (f · l) contains Z ′ and thus contains Z. By the choice of l, we
conclude that Z is contained in V (f).

Definition I.2.18. Let Z be a zero dimensional subscheme of P2
k. The Cayley-Bacharach

index of Z, denoted by CB(Z), is the largest integer l such that Z satisfies (CBl).
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The next theorem says that the Cayley-Bacharach index of points in P2
k, a geometric

invariant, can be bounded below and above in terms of the degrees of the second syzygies,
which are algebraic invariants.

Theorem I.2.19 (Bounds on the Cayley-Bacharach index). Let Z be a zero dimensional
l.c.i. subscheme of P2

k. Let S be the polynomial ring of P2
k and let

0→
u⊕
i=1

S(−ai)→
u+1⊕
i=1

S(−bi)→ IZ → 0 (∗)

be a minimal graded free S-resolution of the homogeneous ideal IZ. Suppose a1 ≤ · · · ≤ au,
then a1 − 3 ≤ CB(Z) ≤ au − 3.

Proof. We sheafify the minimal free S-resolutions to obtain a 1-reduction of
⊕u+1

i=1 O(−bi).
Since µ(IZ , p) ≤ 2 for all p ∈ X by the assumption that Z is a l.c.i., it follows from
Theorem I.2.15 that there is an extension of the form

0→ O(−a1)→ E → IZ → 0

where E is (S+
2 ) of rank 2. Since dimX = 2, it follows that E is locally-free and Z satisfies

(CBa1−3) by Theorem I.1.12.
Conversely, suppose Z satisfies (CBl−3) and thus 0 → O(−l) → E → IZ → 0 is an

extension where E is locally free of rank 2. It follows that we have an exact sequence

0→
u⊕
i=1

O(−ai)
ϕ−→ O(−l)⊕

u+1⊕
i=1

O(−bi)→ E → 0.

If l > au then the map
⊕u

i=1 O(−ai)→ O(−l) is zero. This would mean that ϕ drops rank
on Z, a contradiction to the fact that ϕ drops rank nowhere since E is locally-free.

As a consequence, we see that the Cayley-Bacharach index of an (a, b)-complete intersec-
tion in P2

k is exactly a+ b− 3. Let Z be a zero dimensional l.c.i. subscheme of P2
k of degree

8. Then Z lies on at least two linearly independent cubics C1 and C2. If Z does not lie on
any conic, then C1 and C2 cut out a complete intersection K. It follows that Z is residual to
one point p in K. Since K satisfies (CB3), it follows that every cubic containing Z contains
the residual point p as well. This is the classical Cayley-Bacharach theorem.

The next theorem says that the Lazarsfeld-Rao procedure [67] of producing a curve from
a bundle factors through a Serre correspondence (see Theorem I.1.14) if and only if the curve
is a generic complete intersection.

Theorem I.2.20. Let C be a pure codimension two curve in P3
k, and let

e(C) := sup{l | H1(OC(l)) 6= 0}
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be the index of specialty of C. There is an extension of the form

0→ O(a)→ E → IC → 0,

for some a = (ai)
u
i=1 where ai ≤ e(C) + 4, and E is locally-free of rank u + 1 such that

H2
∗ (E ) = 0. The 1-reduction O(a) → E factors through a 2-reduction of E of corank two if

and only if C is a generic complete intersection.

Proof. The existence of the extension 0 → O(a) → E
p−→ IC → 0 is a result of Lazarsfeld-

Rao [67, Lemma 1.1]. The map O(a) → E a 1-reduction of E . The pure codimension two
subscheme C is a generic complete intersection if and only if µ(IC , p) ≤ 2 for all p ∈ C2. If
a Serre correspondence exits, then IC is the quotient of a rank two reflexive sheaf and thus
µ(IC , p) ≤ 2 for all p ∈ C2. The converse follows from Theorem I.2.15.

Theorem I.2.21. Let V be a pure codimension two l.c.i. subscheme of Pn
k . There exists a

rank n bundle E and an exact sequence 0→ O(a)→ E → IV → 0 for some a.

Proof. Let Z be linked to V by an (s, t)-complete intersection K as in Definition I.1.1.

Since V is of pure codimension two and Cohen-Macaulay, so is Z. Let O(b)
ϕ−→ IZ be a

surjection. Since Z is Cohen-Macaulay of codimension two, it follows that (kerϕ)p is free
for all p ∈ Pn

k , i.e. kerϕ is locally-free. Let K• be the Koszul complex of OK , and let
F• : 0 → kerϕ → O(b) → O be a locally free resolution of OZ . The mapping cone of
the natural map α : K• → F• dualizes to a locally free resolution of OV after shifting by
O(−s− t) [see 83, Proposition 2.5]. We obtain an exact sequence of sheaves

0→ O(a)∗(−s− t)→ E ∗(−s− t)⊕ O(−s)⊕ O(−t)→ IV → 0.

If rank E + 2 < n, then we may add trivial complexes of the form 0→ O
∼−→ O → 0→ 0. If

rank E +2 > n, then the conclusion follows from Theorem I.2.15 since IV is locally generated
by at most 2 elements.

In particular, any smooth curve in P3
k is the degeneracy locus of two sections of a rank

3 bundle on P3
k. In fact, we only need to require that the curve is pure codimension two

Cohen-Macaulay, a generic complete intersection and locally an almost complete intersection.
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I.3. Biliaison of Sheaves

In this section, we define the notion of biliaison of sheaves and extend the classical results
reviewed in Section I.1 to the context of sheaves.

For readers who are interested in vector bundles on projective varieties, and who wish to
get a gist of the ideas in this article without too much commutative algebra, it is advisable
to replace all occurrences of “(S+

m) sheaves” with “bundles”.

The biliaison theory for the special case of rank two reflexive sheaves on X = P3
k was

established by Buraggina in [13] using the Serre correspondence and results from the linkage
theory of curves. Our method provides a substantially simplified treatment as well as stronger
theorems even in this special case.

Lattice structure

Definition I.3.1. Recall from Definition I.2.14 that an m-reduction of a sheaf E is an
injective map of the form ϕ : O(a) → E where cokerϕ satisfies (S+

m). We define the shape
of the reduction ϕ to be the sequence a sorted in ascending order.

If we consider the shapes of all m-reductions φ : O(a) → E of the same sheaf E , we see
that they are partially ordered in a natural way. We define this partial order more generally
on the set of finite non-decreasing sequences of integers.

Definition I.3.2. Let a and b be two finite non-decreasing sequences of integers.

1. For an integer l, we define Σ(a, l) to be the number of entries of a that is ≤ l.
Note that the non-decreasing function Σ(a,−) : Z → N determines the non-decreasing
sequence a.

2. We write a ≤ b if Σ(a, l) ≤ Σ(b, l) for all l ∈ Z.

3. Let a ∨ b be the non-decreasing sequence c determined by the property that

Σ(c, l) = min(Σ(a, l),Σ(b, l)), ∀l ∈ Z.

4. Let a ∧ b be the non-decreasing sequence c determined by the property that

Σ(c, l) = max(Σ(a, l),Σ(b, l)), ∀l ∈ Z.

Let S denote the set of finite non-decreasing sequences of integers.
It is easy to see that the poset (S,≤) is a lattice with meet ∨ and join ∧.

Example I.3.3. If a = (1, 3, 4) and b = (2, 2), then a ∧ b = (1, 2, 4) and a ∨ b = (2, 3).
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Here is an equivalent way to determine a∨ b and a∧ b without writing down Σ(a,−) and
Σ(b,−). We illustrate on the previous example. First append ∞ to the shorter sequence till
the lengths match up: a = (1, 3, 4) and b = (2, 2,∞). Then a ∨ b and a ∧ b are given by the
position-wise maximum and minimum, with ∞ interpreted as a non-entry.

Theorem I.3.4 (Semilattice theorem). For a fixed m ≥ 1, the shapes of m-reductions of a
given sheaf E is a subsemilattice of S. When m = 1, the shapes of 1-reductions of a given
sheaf E is a sublattice of S.

A semilattice is a partially ordered set (poset) with meet. A subsemilattice is a subposet
inheriting the same meet from the ambient semilattice, analogously for a sublattice. The
conclusions of Theorem I.3.4 follow immediately from Theorem I.3.6 and Theorem I.3.7,
whose proofs will occupy the remainder of the subsection.

The next lemma is a generalization of [81, Lemma 3.6], where the quotients are required
to have rank one and satisfy (S+

1 ). Essentially we prove that m-reductions are open among
the affine variety of morphisms.

Lemma I.3.5. Let φ, ψ be m-reduction of E with shapes (ai)
u
i=1 and (bi)

v
i=1. Denote by

J ⊆ {1, . . . ,min(u, v)} the subset of indices where aj = bj for all j ∈ J . There are m-
reductions φ′, ψ′ of E with shapes (ai)

u
i=1 and (bi)

v
i=1, such that if s′1, . . . , s

′
u and t′1, . . . , t

′
v are

twisted sections of E corresponding to φ′ and ψ′ respectively, then s′j = t′j for all j ∈ J .

Proof. Let s1, . . . , su be sections of E in degrees a1, . . . , au corresponding to φ. Let ε be an
arbitrary index. We claim that for a general choice of sections s′ε of E in degree aε, the map
φ′ : O(a) → E given by s1, . . . , s

′
ε, . . . , su is an m-reduction of E . The conclusion of the

lemma then follows by replacing the sections sj and tj by a common general section of E of
degree aj = bj for every j ∈ J .

Let V be the finite dimensional k-vector space H0(E (aε)), and let A = Spec SymV ∗ be
the affine space parametrizing these sections. Consider the scheme X ′ = X ×k A and the
pullback sheaves E ′ of E as well as O(a)′ of O(a) from X. There is a map Φ : O(a)′ → E ′

defined by the following property. Suppose p is a k-point of A corresponding to the sections
s′ε in V , then the fiber Φp : O(a) → E at p is given by the sections s1, . . . , s

′
ε, . . . , su. Let

Z denote the subscheme of X ′ cut out by the Fitting ideal Fittr−u(coker Φ) (see Defini-
tion I.2.5). The subscheme Z contains points in X ′ where coker Φ cannot be generated by
≤ r − u elements locally. Since X ′ is proper over A, semicontinuity of fiber dimensions
over the target implies that the points p ∈ A such that Zp has dimension < dimX − m
are open in A. Since X is a projective variety over a field, dimension and codimension are
complementary by Noether normalization. It follows that the set of points p ∈ A such that
codim(Zp, X ⊗k k(p)) > m form an open set U . If p ∈ A is such a point, then coker Φp has
rank r on X ⊗k k(p) and therefore we have an exact sequence

0→
u⊕
i=1

O(−ai)⊗k k(p)→ E ⊗k k(p)→ coker Φp → 0.
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Since coker Φp is locally-free in codimension m, it satisfies (S+
m) by an application of the

depth lemma to the above sequence. Finally, the existence of φ gives us a k-point of U .
Since k is infinite, it follows that the k-points of U are dense in V .

Theorem I.3.6. For a fixed m ≥ 1, if there are m-reductions φ, ψ of E with shapes (ai)
u
i=1

and (bi)
v
i=1, then there is an m-reduction ξ of E with shape (ai)

u
i=1 ∧ (bi)

v
i=1.

Proof. By induction, we may reduce to proving the following statement. Set ε to be the
largest integer in the interval [0,min(u, v)] such that ai = bi for all 1 ≤ i ≤ ε. If ε = min(u, v),
then (ai)

u
i=1 is a subsequence of (bi)

v
i=1 or vice versa, and their join is just the longer sequence

among the two. The statement of the theorem is true in this case. Assume without loss of
generality that ε < min(u, v) and bε+1 > aε+1. We claim that there exists an m-reduction of
E with shape a1, . . . , aε+1, bε+2, . . . , bv.

Step 1: Using Lemma I.3.5, we may assume φ and ψ are given by twisted sections
s1, . . . , su and t1, . . . , tv respectively, such that sj = tj for all 1 ≤ j ≤ ε.

Step 2: Let Y be any subvariety of X of codimension < m, we claim that (cokerψ)Y
is torsion-free on Y . Since cokerψ satisfies (S+

m), we see that (cokerψ)Y is locally-free in
codimension one on Y . By Krull’s principal ideal theorem, if a module M has a zerodivisor
r, then any minimal prime P above (r) has height one. In particular, the image of r in the
localization would remain a zerodivisor onMP . Since (cokerψ)Y is locally-free in codimension
one on Y , we conclude that (cokerψ)Y must be torsion-free on Y .

Step 3: We claim that t1, . . . , tv, sε+1 are basic in E at all points of codimension ≤ m−1.
Suppose not, let y ∈ X be a point of codimension ≤ m − 1 and let Y = {y} be the
corresponding subvariety. If t1, . . . , tv, sε+1 are not basic in E at y, then the image of the
corresponding map ψ′Y :

⊕v
i=1 OY (−bi)⊕OY (−aε+1)→ EY has rank v on Y , the same rank

as imψY . We obtain the following commutative diagram of exact sequences

0
⊕v

i=1 OY (−bi) EY (cokerψ)Y 0

0 imψ′Y EY cokerψ′Y 0.

α

ψY

β

The upper complex is exact because it is exact at the generic point y of Y and
⊕v

i=1 OY (−bi)
is torsion-free. The snake lemma implies that cokerα ∼= ker β, which vanishes at the generic
point y of Y since rank imψ′Y = v, therefore ker β is torsion on Y . Since (cokerψ)Y is torsion-
free by the above step, we conclude that ker β = 0. This means that ψ′Y factors through ψY .
However, any map from OY (−aε+1) to OY (−bi) is zero for i > ε since X is integral and O(1)
is very ample. It follows that OY (−aε+1) → EY factors through

⊕ε
i=1 OY (−bi) → EY . This

means that t1, . . . , tε, sε+1 are not basic at y, which is a contradiction since tj = sj for all
1 ≤ j ≤ ε and s1, . . . , sε+1 are basic at y.

Step 4: Let Z be the subscheme defined by the Fitting ideal Fittr−1(E /(t1, . . . , tv, sε+1)),
where r = rank cokerψ. The subscheme Z contains all points in X where E /(t1, . . . , tv, sε+1)
cannot be generated by ≤ r − 1 elements. Since E is locally-free in codimension m, we see
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that Z contains no point in X of codimension ≤ m − 1 by the previous step. Therefore Z
contains at most finitely many points in X of codimension m. Let B denote this finite set
of points of codimension m in X where t1, . . . , tv, sε+1 are not basic in E .

The idea is to fix the basicness of s1, . . . , sε+1, tε+2, . . . , tv at one point in B at a time by
modifying a section ti to ti+ritε+1 for some suitable ri ∈ H0(O(bi−bε+1)), without worsening
the basicness at the remaining points in B.

At each point x ∈ B, if s1, . . . , sε+1, tε+2, . . . , tv are basic in E then we do nothing.
If not, we can find ti for ε + 2 ≤ i ≤ v such that s1, . . . , sε+1, tε+2, . . . , ti have the same
basicness in E at x as s1, . . . , sε+1, tε+2, . . . , ti−1. Since O(1) is very ample, there exists a
form ri ∈ H0(O(bi−bε+1)) that does not vanish at x. Let λ ∈ k be an undetermined nonzero
scalar, then s1, . . . , sε+1, tε+2, . . . , t

′
i, . . . , tv are basic in E at x, where t′i = ti + λritε+1. By

Lemma I.2.3, for all but finitely many choices of λ the sections s1, . . . , sε+1, tε+2, . . . , t
′
i, . . . , tv

maintain the same amount of basicness as s1, . . . , sε+1, tε+2, . . . , tv at the remaining points in
B. We choose such a nonzero λ and go to the next point in B with the modified sections
s1, . . . , sε+1, tε+2, . . . , t

′
i, . . . , tv as input, and carry out the same procedure. Eventually, we

arrive at sections s1, . . . , sε+1, t
′
ε+2, . . . , t

′
v that are basic in E at all points in B, where t′i =

ti + ritε+1 for some ri ∈ H0(O(bi − bε+1)). The sections s1, . . . , sε+1, t
′
ε+2, . . . , t

′
v are basic in

E at all points of codimension ≤ m outside of B since t1, . . . , tv, sε+1 are basic in E at these
points. It follows that the map ξ :

⊕ε+1
i=1 O(−ai) ⊕

⊕v
i=ε+2 O(−bi) → E corresponding to

s1, . . . , sε+1, t
′
ε+2, . . . , t

′
v is an m-reduction of E .

Theorem I.3.6 is a generalization of [3, Lemma 2.1]. The above proof for (S+
m) sheaves

is more subtle. At its core, Theorem I.3.6 is about the codimension of the ideal of certain
minors of matrix extensions. Note that this procedure gives us a way to construct new
bundles from old ones.

The next theorem is similar in spirit with Theorem I.3.6, but the proof requires a slightly
different approach. We include the proof here for the sake of completeness.

Theorem I.3.7. If there are 1-reductions φ, ψ of E with shapes (ai)
u
i=1 and (bi)

v
i=1, then

there is a 1-reduction ξ of E with shape (ai)
u
i=1 ∨ (bi)

v
i=1.

Proof. Without loss of generality, assume that u ≤ v. By the remark below Example I.3.3,
we see that (ai)

u
1=1 ∨ (bi)

v
i=1 = (ai)

u
1=1 ∨ (bi)

u
i=1. Certainly ψ′ :

⊕v
i=1 O(−ai) → E is an

m-reduction of E if ψ is. We thus reduce to the case where u = v.
Let D(φ, ψ) denote the number of indicies where the shapes of φ and ψ differ. We

prove the assertion by induction on D(φ, ψ). When D(φ, ψ) = 0 there is nothing to prove.
Suppose D(φ, ψ) > 0. Let s1, . . . , su and t1, . . . , tu be sections of E corresponding to φ
and ψ respectively. Let J ⊆ {1, . . . , u} be the subset of indicies j where aj = bj. By
Lemma I.3.5, we may assume that sj = tj for all j ∈ J . We claim that there is an index
ε ∈ {1, . . . , u} − J where s1, . . . , su, tε are basic in E at the generic point η of X. Suppose
not, then every map O(a) ⊕ O(−bi) → E factors through φ : O(a) → E by the same
argument in step 3 of Theorem I.3.7. This would mean that ψ : O(b) → E factors through
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φ : O(a) → E . But the factor map O(b) → O(a) must drop rank along the determinant
hypersurface since a 6= b, and thus so must ψ. This is a contradiction to the fact that ψ
does not drop rank in codimension one. Thus we find ε such that s1, . . . , su, tε are basic in
E at the generic point. We may assume without loss of generality that bε > aε, otherwise
we reverse the role of φ and ψ. The same argument in step 4 of Theorem I.3.6 shows that
s1, . . . , su, tε are basic in E at all but finitely many codimension one points in X, and thus so
are s1, . . . , ŝε, . . . , su, tε. Carrying out the same procedure in step 4 of Theorem I.3.6, we can
find a suitable r ∈ H0(O(bε−aε)) such that s1, . . . , ŝε, . . . , su, t

′
ε are basic at all points in X of

codimension≤ 1, where t′ε = tε+r·sε. The corresponding map ξ : O(−bε)⊕
⊕

i 6=ε O(−ai)→ E
is thus a 1-reduction. Since D(φ, ξ) < D(φ, ψ), by induction we find a 1-reduction η of E
with shape a ∨ c = a ∨ b, where c is the shape of ξ.

Example I.3.8. Continuing Example I.3.3. Suppose there are extensions

0→ O(−1)⊕ O(−3)⊕ O(−4)→ E → F → 0

0→ O(−2)⊕ O(−2)→ E → F ′ → 0

where F ,F ′ are locally-free. By Theorem I.3.6, there is an extension of the form

0→ O(−1)⊕ O(−2)⊕ O(−4)→ E → F ′′ → 0

where F ′′ is locally-free. By Theorem I.3.7, there is an extension of the form

0→ O(−2)⊕ O(−3)→ E → F ′′′ → 0

where F ′′′ is (S+
1 ). We do not know if we can always make F ′′′ locally-free.

The weak structure theorem

In this subsection, we define the biliaison equivalence of sheaves. We prove a weak version
of the structure theorem for a biliaison class, which says that (S+

m) sheaves in a biliaison class
can be obtained from one another using rigid deformations and other basic moves.

Definition I.3.9. If there is an extension of the form

0→ O(a)→ E ⊕ O(b)→ F → 0,

then we say F is a descendant of E and E is an ancestor of F . Let D(E ) denote the
collection of all descendants of E , and let Dm(E ) denote the collection of all descendants
of E that satisfy (S+

m). Two sheaves F and G are related, written F ∼ G , if they share a
common ancestor. The equivalence relation among sheaves on X generated by ∼ is called
biliaison equivalence.
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Note that if F ∈ Dm(E ), then E ⊕O(a) satisfies (S+
m) for some a. By the characterization

of depth using vanishing of local cohomologies, we have depth Ex = depth(E ⊕ O(a))x for
any x ∈ X. We see that E satisfies (S+

m) if and only if E ⊕ O(a) satisfies (S+
m) for some a.

Therefore a sufficient and necessary condition for Dm(E ) to be nonempty is that E satisfies
(S+

m).

Definition I.3.9 is motivated by the following well-known theorem of Rao [86], strength-
ened in [81] and [52].

Theorem (Rao-Nollet-Hartshorne). Suppose H1
∗ (OX) = 0. Two pure codimension two sub-

schemes Y, Z of X are evenly linked if and only if IY ,IZ(δ) ∈ D1(F ) for a sheaf F and
an integer δ. If X is Gorenstein in codimension two, then F can be chosen to be reflexive.
If X is regular, then Y is Cohen-Macaulay if and only if Z is Cohen-Macaulay if and only
if F can be chosen to be locally-free.

In order to discuss the structure theorem for a biliaison class of sheaves, we need to
generalize the notions of Serre correspondence (cf. Theorem I.1.14) and elementary biliaison
(cf. Definition I.1.8).

Definition I.3.10. An (S+
m)-Serre correspondence is an m-reduction of a sheaf E of the

form ϕ : O(−a)→ E for some integer a.
An elementary (S+

m)-biliaison from F to G is a pair of (S+
m)-Serre correspondences φ :

O(−a) → F and ψ : O(−b) → G where cokerφ ∼= cokerψ. The height of the elementary
biliaison (φ, ψ) is the integer a− b. The elementary (S+

m)-biliaison is increasing if the height
is positive, and decreasing otherwise.

Let E be a sheaf on X, let T be a rational variety and let p : X×k T → X be the natural
projection. If for some a there is a map ΦT : p∗O(a)→ p∗E that is fiber-wise injective over
T , then we call coker ΦT a rigid family of sheaves on X.

If there are extensions 0 → O(a) → E → F → 0 and 0 → O(a) → E → G → 0 for the
same a and sheaf E , then F and G belong in a rigid family by the proof of Lemma I.3.5.
The converse is true trivially. In particular, if there is an elementary biliaison of height zero
from F to G , then F and G belong in a rigid family.

Example I.3.11. There is an elementary (S+
1 )-biliaison between two rank two reflexive

sheaves E and E ′ in P3
k if and only if they correspond to the same curve C in P3

k as in
Theorem I.1.14.

We briefly explain how elementary (S+
m)-biliaisons of sheaves generalize elementary bili-

aisons of codimension two subvarieties (see Definition I.1.8). Let IY and IZ be ideal sheaves
of pure codimension two subschemes Y and Z of X. If there is an elementary (S+

0 )-biliaison
between IY and IZ(δ), then we have exact sequences

0→ O(−a)→ IY → IY/K → 0
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0→ O(−a+ δ)→ IZ(δ)→ IZ/K(δ)→ 0,

where K is a hypersurface in the linear system |O(a)| containing Y, Z such that IY/K
∼=

IZ/K(δ) [52, Prop 3.5]. Conversely, if there is a hypersurface K in |O(a)| containing Y, Z
such that IY/K

∼= IZ/K(δ), the maps O(−a) → IY and O(−a + δ) → IZ(δ) form an
elementary (S+

0 )-biliaison of height δ from IY to IZ(δ).

The main result of this section is that (S+
m) sheaves in a biliaison class can be obtained

from one another using finitely many elementary biliaisons, rigid deformations and at most
one m-reduction.

Theorem I.3.12 (Weak structure theorem). For m ≥ 1, if F and G are (S+
m) sheaves in

the same biliaison class, then there are (S+
m) sheaves F = F0, . . . ,Fl = G , such that Fi

and Fi+1 are related in one of the following ways:

(a) there is an elementary (S+
m−1)-biliaison from Fi to Fi+1,

(b) Fi and Fi+1 belong in a rigid family,

(c) there is an m-reduction φ : O(a)→ Fi+1 with cokerφ ∼= Fi or vice versa.

We need (c) at most once. If rank F = rank G , then we do not need (c).

Proof. Since biliaison equivalence is generated by the relation ∼, it is enough to prove the
assertion when F and G have the same ancestor. By definition, there are extensions

0→ O(a)
φ−→ E ⊕ O(b)→ F → 0

0→ O(a′)
ψ−→ E ⊕ O(b′)→ G → 0.

We may consider two m-reductions of the same sheaf E ′ := E ⊕ O(b)⊕ O(b′) given by

φ⊕ Id : O(a)⊕ O(b′)→ E ′

ψ ⊕ Id : O(a′)⊕ O(b)→ E ′.

In doing so, we reduce to the following: the cokernels of two m-reductions φ : O(a)→ E and
ψ : O(b)→ E of the same sheaf E are related by finitely many steps in the manner (a)− (c).

Let a = (ai)
u
i=1 and b = (bi)

v
i=1, and let s1, . . . , su and t1, . . . , tv be twisted sections of E

corresponding to φ and ψ respectively. We proceed by induction on D(φ, ψ), the number of
indices where (ai)

u
i=1 and (bi)

v
i=1 differ, including those i where only one of ai, bi is defined. If

D(φ, ψ) = 0, then cokerφ and cokerψ are related in manner (b) by the proof of Lemma I.3.5.
Suppose D(φ, ψ) > 0. Let ε be the largest integer in [0,min(u, v)] where ai = bi for all

1 ≤ i ≤ ε. By Lemma I.3.5 again, we may replace φ and ψ in manner (b) and assume that
si = ti for 1 ≤ i ≤ ε. If ε = min(u, v), then (ai)

u
i=1 is a subsequence of (bi)

v
i=1 (or vice versa),

and we see that cokerφ and cokerψ are related in manner (c).
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We now discuss the case where ε < min(u, v). Interchanging φ and ψ if necessary, we may
assume aε+1 < bε+1. By the proof of Theorem I.3.7, there is an m-reduction ξ : O(c) → E
corresponding to twisted sections s1, . . . , sε+1, t

′
ε+2, . . . , t

′
v, where t′i = ti + ri · tε+1 for some

ri ∈ H0(O(−bi − bε+1)). Since D(φ, ξ) is smaller than D(φ, ψ), by the induction hypothesis
the sheaves cokerφ and coker ξ are related by finitely many steps of manner (a)− (c).

To finish the proof, we show that cokerψ and coker ξ are related in manner (a). In step
(3) of the proof of Theorem I.3.7, we showed that t1, . . . , tv, sε+1 are basic in E at all points
of codimension ≤ m− 1. There are (S+

m−1)-Serre correspondences

u : O(−aε+1)
sε+1−−→ cokerψ, v : O(−bε+1)

tε+1−−→ coker ξ

such that

cokeru =
E

(t1, . . . , tv, sε+1)
∼=

E

(s1, . . . , sε+1, tε+1, t′ε+2, . . . , t
′
v)

= coker v.

The converse of Theorem I.3.12 is obviously true, i.e. if two (S+
m) sheaves are related by

finitely many steps of (a) - (c), then they belong to the same biliaison class.

There is a dual notion of elementary biliaisons, see for example [13, Definition 4.7].
A word of caution that this dual notion does not generalize elementary biliaisons of
subvarieties. We say there is a dual elementary (S+

m)-biliaison from F to G if there is a pair
of (S+

m)-Serre correspondences φ : O(−a) → E and ψ : O(−b) → E for some sheaf E and
integers a, b such that cokerφ ∼= F and cokerψ ∼= G . We remark that Theorem I.3.12 holds
trivially with dual elementary (S+

m)-biliaisons instead, due to the fact that an m-reduction
remains an m-reduction when we restrict to a summand. Our results in Theorem I.3.27 give
stronger statements than those in [13] even for the special case of rank two reflexive sheaves
in X = P3

k.

If we restrict to the speical case of rank one (S+
1 ) sheaves on Pn

k , then Theorem I.3.12
recovers a weak version of the structure theorem for even linkage classes of codimension two
subvarieties (cf. Theorem I.1.7). In the next subsection, we will prove a stronger structure
theorem under an additional assumption on X which we now define.

Definition I.3.13. The following are defined relative to the very ample line bundle O(1).

1. We say a sheaf F is primitive if Ext1(F ,O(l)) = 0 for all l ∈ Z.

2. We say X is primitive if OX is primitive.

3. Two sheaves F and F ′ are stably equivalent if F ⊕ O(a) ∼= F ′ ⊕ O(b) for some a, b.

If H1(OX) = 0, then X is primitive relative to any large enough multiple of an ample
line bundle by Serre vanishing and Serre duality. If X is subcanonical, i.e. ωX ∼= O(l) for
some integer l, then a sheaf F is primitive if and only if Hn−1

∗ (F ) = 0 by Serre duality,
where n = dimX.
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Note that X is primitive if and only if H1
∗ (OX) = 0. Under this assumption, biliaison

equivalence is also called psi-equivalence in [52], and is closely related to stable equivalence.
We recall some useful facts from the same paper.

Proposition I.3.14. Suppose X is primitive.

1. If F is a descendant of E and G is a descendant of F , then G is a descendant of E .

2. If F and G have a common descendant, then F and G have a common ancestor.

3. The relation ∼ is an equivalence relation, thus coincides with biliaison equivalence.

4. If E is primitive and shares a common descendant with F , then F is a descendant of E .
Thus all sheaves in the biliaison class of a primitive sheaf E are descendants of E .

5. Two primitive sheaves in the same biliaison class are stably equivalent.

6. If E is primitive and F is a sheaf in the biliaison class of E that satisfy (S+
m), then E

also satisfies (S+
m).

7. If X is Gorenstein in codimension one (G1) and F satisfies (S+
1 ), then F is the descen-

dant of a primitive sheaf. In particular, biliaison classes that contain an (S+
1 ) sheaf are

in bijection with the stable equivalence classes of primitive (S+
1 ) sheaves.

Proof. 1. [52, Lemma 2.4].

2. [52, Lemma 2.5].

3. The relation ∼ is evidently reflexive and symmetric. (1) and (2) show that ∼ is transitive.

4. Given 0→ O(a)→ E ⊕O(b)→ G → 0 and 0→ O(a′)→ F ⊕O(b′)→ G → 0, the map
E ⊕ O(b) → G lifts to a map E ⊕ O(b) → F ⊕ O(b′) since Ext1(E ⊕ O(b),O(a′)) = 0.
By the horseshoe lemma we have an extension

0→ O(a)→ E ⊕ O(b)⊕ O(a′)→ F ⊕ O(b′)→ 0.

It follows that F ⊕ O(b′) is a descendant of E . Since F is a descendant of F ⊕ O(b′),
we conclude from (1) that F is a descendant of E .

5. By (4) we have an exact sequence 0 → O(a) → E ⊕ O(b) → E ′ → 0. This sequence is
split since Ext1(E ′,O(a)) = 0. We conclude that E ⊕ O(b) ∼= E ′ ⊕ O(a).

6. By (4), the sheaf F is a descendant of E . Thus E satisfies (S+
m) by the remark below

Definition I.3.9.

7. Consider a surjection O(a)→ F with kernel K . There is a surjection Hom∗(K ,OX)→
Ext1

∗(F ,OX). Since X satisfies (G1) and (S2), and K satisfies (S2), we see that K
is reflexive. We conclude that Hom∗(K ,OX) and Ext1

∗(F ,OX) are finitely generated
modules over H0

∗ (OX). We may then find an extension

0→ O(a)→ E → F → 0,
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where the map α in the long exact sequence

· · · → Hom∗(O(a),OX)
α−→ Ext1

∗(F ,OX)→ Ext1
∗(E ,OX)→ 0

corresponds to generators of the module Ext1
∗(F ,OX) [see 52, Prop 2.1].

From the lower terms of the spectral sequence of Ext

0→ H1
∗ (E

∗)→ Ext1
∗(E ,OX)→ H0

∗ (Ext
1(E ,OX))→ H2

∗ (E
∗)→ . . .

we see that extraverti sheaves in the sense of [52] are primitive. The converse need not be
true as extraverti sheaves are exactly primitive sheaves whose classes contain the ideal sheaf
of a pure codimension two subvariety up to twist. In our article, we are not concerned with
the properties of the varieties defined by the ideal sheaves in a biliaison class, thus we resort
to the more general definition of primitive sheaves.

Minimal sheaves

In this subsection, we assume that X is primitive and Gorenstein in codimension one
(G1). We define a natural preorder among sheaves in a biliaison class and prove that there
is always a minimal (S+

m) member, generalizing the fact that there is always a minimal
subvariety in an even linkage class. We then prove a stronger structure theorem for (S+

m)
sheaves in a biliaison class, which is an analogue of Theorem I.1.7. Finally, we deduce a
sufficient criterion for an (S+

m) sheaf to be minimal.

Definition I.3.15. We say a sheaf F is very primitive if F is primitive and does not admit
a non-trivial direct summand of the form O(a).

Recall that coherent sheaves on X form a Krull-Schimdt category [2]. Thus any primitive
sheaf F is of the form F ′⊕O(a) for some very primitive sheaf F ′ and finite integer sequence
a, and this decomposition is unique up to isomorphism. It follows from Proposition I.3.14
that a very primitive sheaf is unique up to isomorphism in its biliaison class.

We define the following invariant for sheaves in the biliaison class of a primitive sheaf.

Definition I.3.16. Let E be a very primitive sheaf, and let F be in the biliaison class of
E . It follows from Proposition I.3.14 that F ∈ D(E ), i.e. there is an extension of the form

0→ O(a)→ E ⊕ O(b)→ F → 0.

We define the Σ function of F to be Σ(F , l) := Σ(b, l)− Σ(a, l).

Proposition I.3.17. The function Σ(F ,−) is well-defined for any sheaf F in the biliaison
class of a primitive sheaf. In particular, the Σ function is well defined for any sheaf F in
the biliaison class of an (S+

1 ) sheaf.
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Proof. We need to show that the function Σ(F ,−) does not depend on the extension

0→ O(a)→ E ⊕ O(b)→ F → 0.

Suppose 0→ O(a′)→ E ′⊕O(b′)→ F → 0 is another extension where E ′ is very primitive.
The surjection E ′ ⊕ O(b′) → F lifts to a map E ′ ⊕ O(b′) → E ⊕ O(b) since E is primitive
and X is primitive. We have a surjection E ′ ⊕ O(b′)⊕ O(a)→ E ⊕ O(b) with kernel O(a′)
by the horseshoe lemma. Since Ext1(E ⊕ O(b),O(a′)) = 0, the above surjection splits and
we obtain an isomorphism

E ′ ⊕ O(b′)⊕ O(a) ∼= E ⊕ O(b)⊕ O(a′).

Since E and E ′ are both very primitive, we have that O(b′) ⊕ O(a) ∼= O(b) ⊕ O(a′) by the
uniqueness of the Krull-Schimdt decomposition. It follows that Σ(F , l) = Σ(b, l)−Σ(a, l) =
Σ(b′, l)− Σ(a′, l). The last statement follows from Proposition I.3.14 (7).

Given the Hilbert function of a very primitive sheaf E , the data of the Σ function of a
sheaf F in the biliaison class of E is equivalent to the data of the Hilbert function of F .
The next proposition says we can compute the Σ function of F from the Σ function of any
ancestor of F .

Proposition I.3.18. Suppose F ,G ∈ D(E ) for some very primitive sheaf E . If there is an
extension 0→ O(a)→ G ⊕ O(b)→ F → 0, then

Σ(F ⊕ O(a), l) = Σ(G ⊕ O(b), l), ∀l ∈ Z.

Proof. Given an extension 0→ O(a′)→ E ⊕O(b′)→ F → 0, the map E ⊕O(b′)→ F lifts
to a map E ⊕ O(b′)→ G ⊕ O(b) and we obtain an exact sequence

0→ O(a′)→ E ⊕ O(b′)⊕ O(a)→ G ⊕ O(b)→ 0.

We conclude that Σ(G ⊕ O(b), l) = Σ(b′, l) + Σ(a, l)− Σ(a′, l) = Σ(F ⊕ O(a), l).

We now prove some simple but important observations on Σ functions of (S+
1 ) sheaves.

For every sheaf F there is a natural surjection
⊕

l∈Z O(−l)f(l) → F given by sections of
F in all degrees, where f(l) = h0(F (l)). For any integer a ∈ Z, we define F≤a to be the
image subsheaf of the restriction

⊕
l≤a O(−l)f(l) → F . We say F≤a is the subsheaf of F

generated by sections of degree ≤ a. Our notations were chosen to be consistent in the sense
that Σ(O(a), l) = Σ(a, l) = rank O(a)≤l.

Proposition I.3.19. Let m ≥ 1 and let F ∈ Dm(E ) for a very primitive sheaf E . Let r be
the minimal rank of all sheaves in Dm(E ), and define e := inf{l | H0(E (l)) 6= 0}.

1. If E 6= 0, then e is an integer.
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2. Σ(F , l) = 0 for l� 0 and Σ(F , l) ≥ 0 for all l < e.

3. Σ(F , l) ≥ r − rank E for all l ≥ e.

4. Σ(F , l) = rank F − rank E for all l� 0.

Proof. 1. Since E satisfies (S+
1 ), the map E → E ∗∗ is injective. We have H0(E ∗∗(l)) = 0 for

l� 0 by Serre duality and Serre vanishing. It follows that H0(E (l)) = 0 for l� 0 and e
is an integer.

2. Let 0 → O(a) → E ⊕ O(b) → F → 0 be an extension. It is clear that the restricted
map φ : O(a)≤l → E ⊕ O(b) is an m-reduction. In fact, O(a)≤l maps into O(b)≤l since
E ⊕ O(b)>l has no sections of degree ≤ l. It follows that ψ : O(a)≤l → O(b)≤l is an
m-reduction, as its cokernel fits in an exact sequence

0→ cokerψ → cokerφ→ O(b)>l → 0.

We conclude that Σ(F , l) = rank O(b)≤l − rank O(a)≤l ≥ 0.

3. Suppose l ≥ e. Similar to the above, there is an m-reduction ψ : O(a)≤l → E ⊕ O(b)≤l.
Since Σ(F , l) + rank E = rank cokerψ ≥ r, we see that Σ(F , l) ≥ r − rank E .

4. This is true for any l greater than the maximum of all entries of a and b.

The invariant Σ allows us to define a preorder on the biliaison class of a primitive sheaf.

Definition I.3.20. If E is a very primitive sheaf and F ,G ∈ D(E ), we write F � G if
Σ(F , l) ≤ Σ(G , l) for all l ∈ Z. This defines a preorder on the biliaison class of E .

A preorder is a relation that is reflexive and transitive. Every preorder has an associated
partial order, obtained by modding out equivalences where F � G and G � F . The
associated poset of a biliaison class with respect to the preorder � is exactly the poset
of Σ functions under the partial order of point-wise comparison. The next proposition
characterizes when two sheaves in a biliaison class have the same Σ function.

Proposition I.3.21. The following are equivalent for two sheaves F and G whose biliaison
classes admit primitive sheaves.

1. F and G are in a rigid family,

2. F and G are in the same biliaison class, and F � G as well as G � F .

Proof. If F and G are in the same biliaison class and have the same Σ functions, then there
are extensions

0→ O(a)→ E ⊕ O(b)→ F → 0

0→ O(a)→ E ⊕ O(b)→ G → 0
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for a very primitive sheaf E by the proof of Proposition I.3.17. The proof of Lemma I.3.5
shows that F and G lie in a rigid family, parametrized by an open subscheme of the affine
scheme Hom(O(a),E ⊕ O(b)).

Conversely, if F and G lie in a rigid family, then there is a not necessarily primitive sheaf
E and extensions

0→ O(a)→ E → F → 0

0→ O(a)→ E → G → 0.

It follows from Proposition I.3.18 that Σ(F , l) = Σ(G , l) = Σ(E , l)−Σ(a, l) for all l ∈ Z.

As a direct corollary to Theorem I.3.4, we see that the associated poset of (S+
m) sheaves

in a biliaison class is a meet-semilattice.

Theorem I.3.22. For m ≥ 1, the Σ functions of (S+
m) sheaves in a biliaison class form a

meet-semilattice, i.e. a poset with meet. For m = 1, the Σ functions of (S+
1 ) sheaves in a

biliaison class form a lattice.

Proof. Let F and G be two (S+
m) sheaves in the same biliaison class. We find a sheaf E and

m-reductions φ : O(a) → E and ψ : O(b) → E where cokerφ ∼= F and cokerψ ∼= G by
Proposition I.3.14. By Theorem I.3.6, we find an m-reduction ξ : O(c)→ E where c = a∧ b.
By Proposition I.3.18, we see that Σ(coker ξ, l) = min(Σ(F , l),Σ(G , l)). The first conclusion
follows. The second conclusion follows analogously from Theorem I.3.7.

In the following, we show that the meet-semilattice of Σ functions of (S+
m) sheaves in a

biliaison class is always bounded below.

Definition I.3.23. For m ≥ 1, a minimal (S+
m) sheaf is a sheaf that is minimal among all

(S+
m) sheaves in its biliaison class with respect to the preorder �.

We make several remarks regarding this definition.
First, any two minimal (S+

m) sheaves in a biliaison class lie in a rigid family by Proposi-
tion I.3.21. Since we assume that X is primitive in this section, all minimal (S+

m) sheaves in
a biliaison class have the same intermediate cohomology modules and Hilbert functions.

Second, note that the Chern classes of minimal sheaves have smallest degrees (with
respect to pairing with complementary powers of the hyperplane class H) among all (S+

m)
sheaves in their biliaison classes. This can be seen by an elementary computation from short
exact sequences.

Third, since rank F = rank E + Σ(F , l) for l � 0, where E is a very primitive sheaf in
the biliaison class of F , we conclude that F � G implies rank F ≤ rank G . In particular,
minimal (S+

m) sheaves must have minimal rank among all (S+
m) sheaves in its biliaison class.

Fourth, one might ask if there is a minimal member among (S+
m) sheaves of a given

rank in a biliaison class. However, such a sheaf might not exist unless the given rank is
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minimal. Consider the biliaison class of the zero sheaf, one immediately sees that there is
no minimal rank one bundle as we have the bundle O(l) for any l� 0.

Last but not least, in the linkage theory of pure codimension two subvarieties of Pn
k , a

variety is minimal in its even linkage class if and only if its ideal sheaf is minimal among all
rank one (S+

1 ) sheaves in its biliaison class with respect to the preorder �. We will see from
the next proposition that these ideal sheaves are in fact minimal among (S+

1 ) sheaves of all
ranks in its biliaison class, i.e. they are minimal (S+

1 ) sheaves.

Proposition I.3.24. If m ≥ 1 and F � G for all (S+
m) sheaves G of minimal rank in the

biliaison class of F , then F is a minimal (S+
m) sheaf.

Proof. Clearly the condition implies that F has minimal rank among (S+
m) sheaves in its

biliaison class. Suppose E is any (S+
m) sheaf in the biliaison class of F , then can find a sheaf

G where G � E and G � F by Theorem I.3.22. Since rank F = rank G is minimal, by
assumption we see that F � G , and thus F � E .

Migliore [76] proved that every even linkage class of curves in P3
k has a minimal member.

This result was extended in [10] to every even linkage class of pure codimension two Cohen-
Macaulay subvarieties of Pn

k has a minimal member. Nollet [81] generalized this further to
pure codimension r subvarieties and removed the Cohen-Macaulay assumption, and described
an algorithm to construct the minimal ideal sheaves given a primitive sheaf as input. This
algorithm was based on calculations in [69] for the case of space curves. Combined with
Proposition I.3.24, we obtain many examples of minimal sheaves.

Corollary I.3.25. There is a minimal (S+
1 ) sheaf in every biliaison class that admits an

(S+
1 ) sheaf on Pn

k .

We prove a generalization of the above result for (S+
m) sheaves on any projective variety

X satisfying our assumptions.

Theorem I.3.26 (Existence of minimal sheaves). For m ≥ 1, there is a minimal (S+
m) sheaf

in every biliaison class that admits an (S+
m) sheaf.

Proof. Let E be a very primitive sheaf satisfying (S+
m). If E = 0, then the zero sheaf is

the minimal (S+
m) sheaf. If E 6= 0, then the zero sheaf is not in Dm(E ). Since m ≥ 1,

any sheaf in Dm(E ) is torsion-free and thus has positive rank. Let r be the minimal rank
of sheaves in Dm(E ). Let F1 ∈ Dm(E ) be a sheaf of rank r. If F1 is not minimal, then
there exists a sheaf G ∈ Dm(E ) where F1 6� G . By Theorem I.3.22, there exists a sheaf
F2 ∈ Dm(E ) such that F2 � F1 and F2 � G . Since F 6� G , we must have F2 ≺ F1.
Since rank F2 ≤ rank F1, we see that rank F2 = r as well. Suppose to the contrary that
Dm(E ) has no minimal member, arguing analogously, we obtain an infinite descending chain
of rank r sheaves F1 � F2 � · · · . They give an infinite descending chain of Σ functions
Σ(F1,−) > Σ(F2,−) > · · · . Set e := inf{l | H0(E (l)) 6= 0}. By Proposition I.3.19, e is an
integer and Σ(Fi, l) = 0 for l� 0, Σ(Fi, l) ≥ 0 for l < e, Σ(Fi, l) ≥ r−rank E for l ≥ e and
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Σ(Fi, l) = r − rank E for l � 0. We see that it is impossible to have an infinite descending
chain of such functions Σ(F1,−) > Σ(F2,−) > · · · satisfying the above properties. The
assertion of the theorem follows.

The existence of minimal sheaves allows us to strengthen the structure theorem.

Theorem I.3.27 (Strong structure theorem). Suppose X is primitive and F is an (S+
m)

sheaf for m ≥ 1. There are (S+
m) sheaves F = F0, . . . ,Fl in the biliaison class of F , such

that Fl is a minimal (S+
m) sheaf, and Fi,Fi+1 are related in one of the following manner:

(a) there is a descending elementary (S+
m−1)-biliaison from Fi to Fi+1,

(b) Fi and Fi+1 belong in a rigid family,

(c) there is an m-reduction φ : O(a)→ Fi with cokerφ ∼= Fi+1 for some a.

If F is of minimal rank among (S+
m) sheaves in its biliaison class, then we do not need (c).

Note that a rigid family preserves Hilbert functions and intermediate cohomology modules.

Proof. Let G be a minimal (S+
m) sheaf in the biliaison class of F , whose existence follows

from Theorem I.3.26. If we follow the proof of Theorem I.3.12, we see that the elementary
(S+

m−1)-biliaison involved at every step is decreasing.

In fact, when m = 1, we do not need deformations by rigid families in manner (b) at all.
A proof of this can be given based on [52, Proposition 3.6].

Although Theorem I.3.26 gives us a theoretical guarantee that minimal (S+
m) sheaves

exist, it does not tell us how to produce or identify them in practice. The next theorem
solves this problem by giving a sufficient condition for a sheaf to be a minimal (S+

m) sheaf.
This generalizes the sufficient condition for a curve in P3

k to be minimal proven in [67].

Theorem I.3.28 (Sufficient condition for minimal sheaves). Let m ≥ 1, and let F be an
(S+

m) of minimal rank in its biliaison class. If F admits an extension

0→ O(a)→ E → F → 0

where E is primitive and H0(F (l)) = 0 for all l < max(a), then F is a minimal (S+
m) sheaf.

Proof. If G is another (S+
m) sheaf in the biliaison class of F , then it admits an extension of

the form
0→ O(c)→ E ⊕ O(d)→ G → 0

for some c and d since E is primitive. By Proposition I.3.18, we need to show that

rank(O(a)⊕ O(d))≤l ≥ rank O(c)≤l, ∀l ∈ Z.

We separate into two cases, where l ≥ max(a) and l < max(a).
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Case l ≥ max(a): We have an exact sequence 0→ O(c)≤l → E ⊕O(d)→ G ′ → 0, where
G ′ is an extension of G with O(c)>l := O(c)/O(c)≤l. In particular, the sheaf G ′ satisfies (S+

m).
Since any map O(c)≤l → O(d)>l := O(d)/O(d)≤l is zero, the injection O(c)≤l → E ⊕ O(d)
lands inside E ⊕O(d)≤l. We obtain an exact sequence 0→ O(c)≤l → E ⊕O(d)≤l → G ′′ → 0,
where G ′′ sits in an exact sequence 0 → G ′′ → G ′ → O(d)>l → 0. By the depth lemma,
the sheaf G ′′ also satisfies (S+

m). Now rank O(a)≤l = rank O(a) = rank E − rank F by the
assumption on a. Since F has minimal rank among sheaves in Dm(E ), we conclude that

rank E + rank O(d)≤l − rank O(c)≤l = rank G ′′ ≥ rank F = rank E − rank O(a)≤l.

It follows that rank(O(a)⊕ O(d))≤l ≥ rank O(c)≤l.
Case l < max(a): The cokernel F ′ of O(a)≤l → E is an extension of F by O(a)>l.

Since H0(F (n)) = 0 for all n ≤ l, the same is true for F ′. We have the exact sequence

0→ O(a)≤l ⊕ O(d)≤l → E ⊕ O(d)→ F ′ ⊕ O(d)>l → 0.

The composition O(c)≤l → E ⊕ O(d) → F ′ ⊕ O(d)>l is zero since F ′ has no sections in
degree ≤ l. It follows that the injection O(c)≤l → E factors through O(a)≤l ⊕ O(d)≤l, and
we conclude that rank(O(a)⊕ O(d))≤l ≥ rank O(c)≤l.

The next theorem is a necessary condition for an (S+
m) sheaf of minimal rank in its

biliaison class to be a minimal (S+
m) sheaf.

Theorem I.3.29 (Necessary condition for minimal sheaves). Suppose F is a minimal (S+
m)

sheaf for some m ≥ 1. Let 0→ O(a)→ E → F → 0 be an extension, where E is primitive
of rank ≥ m. If O(c) → E is any surjection, then O(c′) � O(a), where c′ consists of the
largest (rank E −m) entries of c.

Proof. By Corollary I.2.13, there is always an m-reduction φ : O(c′) → E of corank m. It
follows that O(c′) � O(a) since F is a minimal (S+

m) sheaf.

We remark that the necessary condition in Theorem I.3.29 is not tight in general. The
following is an example on how one could use this theorem in practice.

Example I.3.30. Suppose F is a sheaf of minimal rank r in Dm(E ), where E is primitive
of rank ≥ m. Let there be an extension of the form

0→ O(−2)v → E → F → 0.

If E is generated in degree 1, then there is a surjection O(−1)N → E for some large N . Since
there is an m-reduction of the form φ : O(−1)u → E , where u = rank E−m ≤ rank E−r = v,
Theorem I.3.29 says that F cannot be a minimal (S+

m) sheaf since there must be an m-
reduction of E with shape (1, . . . , 1︸ ︷︷ ︸

u

) ∧ (2, . . . , 2︸ ︷︷ ︸
v

) = (1, . . . , 1︸ ︷︷ ︸
u

, 2, . . . , 2︸ ︷︷ ︸
v−u

).
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Chapter II summary

In this chapter, we study general projections of curves from higher dimensional projective
spaces into P3 via the linkage theory of curves on surfaces with ordinary singularities.

In Section II.1, we review necessary background for this chapter. We state the multiple-
point formulas proven by Kleiman [60] and Kleiman-Lipman-Ulrich [59], and revisit the
classical theorem on the singularities of general projections of smooth projective surfaces into
P3. We also briefly introduce the theory of generalized divisors developed by Hartshorne
[51] in order for us to discuss divisors on singular surfaces.

In Section II.2, we describe of the geometry of linked curves on a surface X with ordi-
nary singularities (Theorem II.2.4). We show that smooth curves that are evenly linked on
X are in fact linearly equivalent if X is singular (Corollary II.2.10), a drastic contrast to the
case when X is smooth. We compute certain homological invariants of a curve C on X in
terms of cohomologies of divisors on S, provided that C is preserved by the normalization
of the surface or is linked to such a curve. Examples of homological invariants of C include
the Hilbert function h0(IC(n)) (Proposition II.2.15), the Rao function h1(IC(n)) (Propo-
sition II.2.16), the specialty function h1(OC(n)) (Proposition II.2.14) and the dimension of
the tangent space h0(NC) in the Hilbert scheme (Proposition II.2.17).

In Section II.3, we use the results in Section II.2 to study general projections of curves
lying on a rational normal scroll S(a, b) ⊆ Pa+b+1. We compute the dimension of the family
of curves in P3 arising from various projections of curves varying in a given linear system
on S(a, b), as well as the dimension of the tangent spaces in the Hilbert scheme. We show
that the difference between these two dimensions is a linear function in a and b, which does
not depend on the linear system chosen (Theorem II.3.4). Last but not least, we determine
all maximal rank curves on a ruled cubic surface (Theorem II.3.12). Consequently, we find
that the linear projections of all but finitely many linear equivalence classes of arithmetically
Cohen-Macaulay (ACM) curves on the cubic scroll S(1, 2) ⊆ P4 fail to have maximal rank
in P3. These examples are interesting in view of the recent progress made on the Maximal
Rank Conjecture by Larson [66].

Throughout this chapter, we work over the field of complex numbers C, which we suppress
from our notations. By a curve we mean a one-dimensional projective scheme without point
components, isolated or embedded. By a point on a finite type C-scheme we always mean a
closed point. We use g(C) to denote the arithmetic genus of a curve C.
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II.1. Background

This section contains the necessary background for this chapter. First, we recall the
multiple-point formulas proven by Kleiman [60] and Kleiman-Lipman-Ulrich [59]. Next, we
revisit the classical theorem on the singularities of general projections of smooth projec-
tive surfaces into P3. Finally, we review the theory of generalized divisors developed by
Hartshorne [51] in order for us to discuss divisors on singular surfaces.

Multiple point formulas

Let f : X → Y of a finite morphism between finite type C-schemes.

Definition II.1.1 (Multiple-point and ramification loci). Let Nr denote the subset of points
y ∈ Y such that f−1(y) := X×Y k(y) contains a zero dimensional subscheme of length r. By
fiber continuity, the subset Nr is closed in Y . Let Mr := f−1(Nr) denote the closed subset
in X. We call Mr and Nr the source and target r-fold points of f respectively.

The central theme of the theory of multiple-point formulas is to find appropriate scheme
structures on Mr and Nr, and to determine the classes [Mr] and [Nr] in the Chow ring (or
other cohomology rings). For example, such a formula can give the degree and genus of the
curve of trisecant lines of a given space curve C, as well as the number of quadrisecant lines.
This subject started in 1850 and still inspires current research, see [60, §V] for a survey on
the subject of multiple-point formulas, see [61] for an approach using iterations and see [62]
for an approach using Hilbert schemes.

In codimension one, Kleiman-Lipman-Ulrich [59] considered the subscheme structures on
Nr given by the Fitting ideals FittOYr−1(f∗OX) (see Definition I.2.5) and the corresponding
preimage subscheme structures on Mr. Under mild assumptions, the subschemes Mr and Nr

are Cohen-Macaulay, and their classes [Mr] and [Nr] are compatible with those coming from
iteration [61]. We summarize here some of the results of [61] and [59].

Definition II.1.2. With notations as above, let Ri be the subscheme of X defined by the
fitting ideal FittOXi−1(ΩX/Y ). From the conormal sequence f ∗Ω1

Y/C → Ω1
X/C → ΩX/Y → 0, we

see that the scheme Ri is supported at points in X where the differential ∂f drops rank by
at least i. We call R := R1 the ramification locus.

Theorem II.1.3 (Kleiman-Lipman-Ulrich).

(i) Suppose f is locally of flat dimension 1 and birational onto its image, then N1 is equal
to the scheme-theoretical image f(X) and f∗[M1] = [N1].

(ii) Suppose furthermore that Y satisfies Serre’s condition (S2). The ideal sheaf IN2/Y is
equal to annOY (f∗OX/OY ) and the ideal sheaf IN2/N1 is equal to annON1

(f∗OX/ON1).
Each component of M2 has codimension 1 and maps onto a component of N2. Each
component of N2 has codimension 2. The fundamental cycles of these two schemes are
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related by the equation f∗[M2] = 2[N2]. The OY -modules ON2 and f∗OM2 are perfect
of grade 2.

(iii) For r > 0, suppose furthermore that Y satisfies Serre’s condition (Sr) and R2 = ∅. If
each component of Nr has codimension r, then ONr and f∗OMr are perfect OY -modules
of grade r. Each component of Mr has codimension r− 1 and maps onto a component
of Nr, and the fundamental cycles of these two schemes are related by the equation
f∗[Mr] = r[Nr].

Suppose f satisfies all the assumptions above for all r > 0. If f is a local complete intersection
and X has no embedded components, then

[Mr+1] = f ∗f∗[Mr]− rc1(ν)[Mr].

Here ν = f ∗TY − TX is the virtual normal bundle in the Grothendieck group K(X).

General linear projections of smooth surfaces into P3

Every smooth projective surface S ⊆ PN for N > 5 can be projected isomorphically into
P5, but not further down in general. The following is a summary of the classical results on
the singularities of general linear projections of S into P3.

Theorem II.1.4 (Classical projection theorem). Let S ⊆ P5 be a non-degenerate smooth
projective surface that is not the Veronese surface, then the following are true for a general
linear projection f : S → P3.

1. The map f is birational onto its scheme-theoretical image X, which is an integral hyper-
surface in P3.

2. The second ramification locus R2 and the quadruple-point loci M4 and N4 are empty.
3. The target double-point locus N2 is an integral curve and is exactly the singular locus of

X. The target triple-point locus N3 is a reduced set of points and is exactly the singular
locus of N2. Each point of N3 is an ordinary triple point of N2 and of X.

4. The source double-point locus M2 is an integral curve mapping generically 2-1 to N2. The
source triple-point locus M3 is a reduced set of points and is exactly the singular locus of
M2. Each point of M3 is a simple node of M2. Three distinct points of M3 map to each
point of N3.

5. The ramification locus R is a set of reduced points and consisting exactly of the ramifi-
cation points of the double cover M2 → N2. The images of points in R are exactly the
pinch points of X.

6. Every point of N2 −N3 − f(R1) is an ordinary double point of X.

If S is the Veronese surface, then a general linear projection of S into P3
C is called a Steiner

surface (see Figure 4). In this case, the scheme N2 is the union of three reduced lines
L1, L2, L3 meeting at a point p. The scheme M2 is three reduced conics C1, C2, C3 meeting
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each other at one point, where the three intersection points all map to p. The conic Ci maps
2-1 to Li with two ramification points. The six branch points are the pinch points of X. In
particular, all the results above are true except that M2 and N2 are reducible.

Proof. See [35], [75] and [88] for modern expositions of these classical facts.

Figure 4: The Steiner surface

The following definition is made for surfaces whose singularities resemble those occurring
on the general linear projections of smooth surfaces into P3

C.

Definition II.1.5. An integral hypersurface X ⊆ P3 is said to have ordinary singularities
if the singular locus of X is a curve C, such that if we put the reduced structure on C then
the following hold.

1. Singular points of C are ordinary triple points (i.e. the origins of three linear branches of
C with three distinct non-coplanar tangent directions).

2. A point on C is either a nodal point of X (i.e. the origins of two linear branches of X
with two distinct tangent planes) or a pinch point of X (i.e analytically isomorphic to
x2 − yz = 0 at origin), and there are only finitely many pinch points on X.

3. Every triple point of C is an ordinary triple point of X (analytically isomorphic to xyz = 0
at origin).

An integral hypersurface X ⊆ P3 with ordinary singularities has a smooth normalization.
The normalization may not be embedded in a projective space of which X is a linear pro-
jection, i.e. the pull back of the OX(1) may not be very ample on the normalization. Such
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an example is given by the quartic surface with a double line considered by Gruson-Peskine
[41] in order to determine all possible (degree, genus) pairs for smooth curves in P3.

Since S is smooth and P3 is Cohen-Macaulay, Theorem II.1.4 implies that a general
linear projection f : S → P3 satisfies all the assumptions in Theorem II.1.3. In particular,
we have the following enumerative formulas.

Corollary II.1.6. With notations be as above, let h be the class of f ∗OP3(1) in the Chow
ring A(S), and let ci denote the Chern classes of tangent bundle TS. For two divisor classes
a, b ∈ A1(S), let a.b denote the intersection number. The following are true.

(a) The class of M2 in A1(S) is (h.h− 4)h+ c1.

(b) The degree of the curve N2 is 1
2
((h.h)2 − 4h.h+ c1.h).

(c) There are short exact sequences

0→ OX → f∗OS → ωN2(4− h.h)→ 0, (A)

0→ ON2 → f∗OM2 → ωN2(4− h.h)→ 0. (B)

(d) The arithmetic genus of N2 is equal to

1

3
(h.h)3−3(h.h)2+

37

6
(h.h)+

1

2
(h.h)(h.c1)−2(h.c1)+

1

12
(c1.c1+deg c2)+1.

(e) The class of M3 in A0(S) is equal to

((h.h)2−12h.h+c1.h+44)h2+(2h.h−24)c1h+4c2
1−2c2.

The number of triple points of X is one third the degree of [M3].

(f) The class of R1 in A0(S) is equal to 6h2 − 4hc1 + c2
1 − c2. The number of pinch points

of X is the degree of R1.

Proof. (a) [M2] = f ∗f∗[M1]− c1(ν) = (h.h− 4)h+ c1.
(b) By push-pull formula, we have M2.h = 2 degN2 = (h.h− 4)h.h+ c1.h.
(c) The OX-dual of the exact sequence 0 → IN2/X → OX → ON2 → 0 gives an exact
sequence 0 → OX → H omOX (IN2/X ,OX) → Ext1OX (ON2 ,OX) → 0. Note that IN2/X =
H omOX (f∗OS,OX), and that f∗OS is a reflexive OX-module since it satisfies (S2) and X is
Gorenstein. It follows that we have isomorphisms

H omOX (IN2/X ,OX) = H omOX (H omOX (f∗OS,OX),OX) = f∗OS.

Since N2 is Cohen-Macaulay, the third term in the exact sequence is isomorphic to

Ext1OX (ON2 ,OX) ∼= ωN2 ⊗ ω−1
X
∼= ωN2(4− h.h).
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We obtain the first exact sequence. Since f∗IM2/S = IN2/X , and Rif∗ = 0 for i > 0 because
f is affine, the snake lemma gives the second exact sequence. These two sequences are due
to Roberts [89].
(d) This is a computation derived from sequence (A).

g(N2) = 1−χ(ON2)

= 1+χ(ωN2)

= 1+χ((f∗OS)(h.h−4))−χ(ON1(h.h−4))

= 1+χ(OS((h.h−4)h))−χ(OP3(h.h−4))+χ(OP3(−4))

= 1+
1

2
(h.h−4)h.((h.h−4)h+c1)+

1

12
(c1.c1+deg c2)−1

6
(h.h−1)(h.h−2)(h.h−3)−1

=
1

3
(h.h)3−3(h.h)2+

37

6
(h.h)+

1

2
(h.h)(h.c1)−2(h.c1)+

1

12
(c1.c1+deg c2)+1

In the second line, we used the fact that N2 is Cohen-Macaulay and Serre duality holds. In
the third line, we used the exact sequence (A). In the fourth line, we use the projection
formula to conclude that

hi((f∗OS)(h.h−4)) = hi(f∗(OS((h.h−4)h))) = hi(OS((h.h−4)h)

since π is affine. Since N1 is a hypersurface of degree h.h, there is an exact sequence

0→ OP3(−4)→ OP3(h.h−4)→ ON1(h.h−4)→ 0.

On the next line, we applied Hirzebruch-Riemann-Roch on the smooth surface S to the line
bundle (h.h− 4)h and used the fact that χ(OP3(d)) = 1

6
(d+ 3)(d+ 2)(d+ 1). It is somewhat

curious that this expression always ends up being an integer.
(e) The triple-point formula yields

[M3] = f ∗f∗[M2]−2c1(ν)[M2]+2c2(ν)

= ((h.h)2−12h.h+c1.h+44)h2+(2h.h−24)c1h+4c2
1−2c2.

The number of triple points is the degree of [N3], which is one third the degree of [M3] since
f∗[M3] = 3[N3].
(f) Applying Porteous formula to the transpose of the map ∂f : f ∗ΩP3/C → ΩS/C yields the
result. Since ramification points map bijectively to pinch points, the number of pinch points
is given by the degree of [R1].

Generalized divisors

Let π : S → X be a finite birational morphism from a smooth projective surface to an
integral singular hypersurface in P3. Let h denote the class of π∗OX(1) in A1(S). We briefly
review the definitions and basic operations of generalized divisors established in [51].
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Definition II.1.7. Generalized divisors on a Gorenstein scheme X are reflexive fractional
ideals of rank one. In particular, curves on Gorenstein surfaces are exactly the effective
generalized divisors. An almost Cartier divisor is a generalized divisor that is locally principal
away from a closed subset of codimension at least two. Let Cart, ACart and GDiv denote
the group of Cartier divisors, the group of almost Cartier divisors and the set of generalized
divisors. Let Pic, APic and GPic be the corresponding isomorphism classes.

For example, any curve not supported on any components of the singular locus of a
Gorenstein surface in dimension zero is an almost Cartier divisor, but may not be Cartier.

There is a pullback map π∗ : ACart(X) → ACart(S) = Cart(S) defined by sending
a reflexive fractional ideal I of rank one to ((OS · I )−1)−1. Here J −1 is defined to be
(OS :KS

J ) for a fractional ideal J , and is isomorphic to its dual J ∗. One can verify that
π∗ is a group homomorphism that descends to π∗ : APic(X)→ Pic(S).

Theorem II.1.8 (Hartshorne-Polini [53, Thm 4.1]).

1. There is a morphism of groups ϕ : APic(X)→ CartM2/π
∗CartN2.

2. There is an exact sequence of groups

0→ APic(X)→ Pic(S)⊕ CartM2/π
∗CartN2 → PicM2/π

∗ PicN2 → 0.

The first map of the short exact sequence is given by π∗ ⊕ ϕ and the second map is given
by the difference of the two maps

Pic(S)→ PicM2/π
∗ PicN2 and CartM2/π

∗CartN2 → PicM2/π
∗ PicN2.

The map ϕ : APic(X)→ CartM2/π
∗CartN2 is rather important, so we review how it is

defined. First we need to observe the following.

Proposition II.1.9. The map π : S → X is the blowup of X with center N2.

Proof. Recall that IN2/X is the conductor of the normalization and thus π∗IM2/S = IN2/X .
There is an isomorphism of schemes:

BlN2 X = Proj
∞⊕
i=0

I i
N2/X

∼= Proj
∞⊕
i=0

I i
M2/S

= BlM2 S.

But BlM2 S = S since M2 is a divisor.

If C is a curve on X not supported on any components of N2, then we reserve the notation
C̃ for the proper transform of C on S.

Let D be an almost Cartier divisor, then [D] = [C1]− [C2] for two almost Cartier divisors

C1 and C2 not supported on any components of N2 by [51, Prop 2.11]. Then C̃1 and C̃2

are two Cartier divisors on S intersecting M2 properly, and thus restricts to Cartier divisors
α1 = C̃1 ∩M2|M2 and α2 = C̃2 ∩M2|M2 on M2. We define ϕ[D] to be the image of α1−α2 in
CartM2/N2. The map ϕ : APic(X)→ CartM2/π

∗CartN2 is well-defined by [53, Prop 2.3].
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II.2. Curves on Surfaces with Ordinary Singularities

In this section, let X be an integral hypersurface with ordinary singularities in P3 and
let π : S → X be its normalization. We use the Mr and Nr to denote the source and target
r-fold points of the composition f : S → X ↪→ P3. We determine the homological invariants
of a curve C on X in terms of those of its preimage on S.

Linkage on surfaces with ordinary singularities

Recall from Section I.1 that two curves C and D are said to be linked on X if D and
OX(m)−C are linearly equivalent as generalized divisors on X for some positive integer m.

As before, we use C̃ ⊆ S to denote the proper transform of a curve C ⊆ X only when C is
not supported on any components of N2.

Proposition II.2.1. If C is a curve on X not supported on any components of N2, then
π∗C and C̃ coincide as Cartier divisors on S.

Proof. Recall that any reflexive sheaf over S extends uniquely from an open set with a
codimension 2 complement [51, Prop 1.11]. Since π−1(C ∩N2) is codimension two in S and

C̃ is equal to π∗C on the open set S − π−1(C ∩N2), it follows that C̃ is equal to π∗C on the
whole of S.

Corollary II.2.2. If D is an effective almost Cartier divisor on X, then π∗π
∗[D] = [D] as

Chow classes on X. In particular (π∗[D]).h = degD.

Proof. Since D is almost Cartier, by [51, Prop 2.11] D is linearly equivalent to C1 − C2,
where C1, C2 are effective almost Cartier divisors not supported on any components of N2.
Then [D] = [C1] − [C2] as Chow classes. Now π∗π

∗[Ci] = π∗[C̃i] = [Ci] since C̃i → Ci is
degree one on every component. It follows that π∗π

∗[D] = [D], and the push-pull formula
yields the last claim.

If N2 were almost Cartier on X, then π∗π
∗[N2] = [N2] by the above proposition. How-

ever, since OS · IN2/X = IM2/S, we must have π∗[N2] = [M2]. This contradicts the fact
that f∗[M2] = 2[N2]. Therefore the generalized divisor N2 is not almost Cartier on X.
Consequently, neither is N2 + C for any almost Cartier divisor C.

Lemma II.2.3. If D is a Cartier divisor on X not supported on any components of N2,
then π∗(D ∩N2) = (π∗D) ∩M2 = D̃ ∩M2 as Cartier divisors of M2.

Proof. Suppose D is defined locally by (Ui, fi). Since D is not supported on N2, the local
sections fi restrict to non-zerodivisors in H0(Ui∩N2,KN2). The corresponding local sections
(π−1(Ui), π

#fi) of KS define a Cartier divisor π∗D not supported on M2, and thus restrict
to non-zerodivisors in H0(π−1(Ui) ∩M2,KM2). The three Cartier divisors on M2 are equal
because they are all defined by the data (π−1(Ui) ∩M2, π

#fi).
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Theorem II.2.4. Let C and D be two curves on X not supported on any components of
N2, then C and D are linked by OX(m) if and only if

1. [C̃] + [D̃] = mh, where h is the class of π∗OX(1);

2. C̃ ∩M2 + D̃ ∩M2 is a Cartier divisor of M2 in π∗CartN2.

Proof. Suppose C and D are linked by OX(m), where neither are supported on any com-
ponent of N2. Since both are almost Cartier divisors and the pullback of almost Cartier
divisors is a group homomorphism, we must have (1). Lemma II.2.3 implies we must have
(2). Conversely, C and D satisfy (1) and (2). For any codimension 2 point x ∈ X, the map
ϕx : APic(OX,x)→ CartM2,x/π

∗CartN2,x is an isomorphism by [53, Thm 3.1]. Since (2) is
satisfied, C + D has image 0 in APic(OX,x) for every codimension 2 point x ∈ X and thus
C +D is Cartier. Since both C +D and OX(m) pull back to mh, we conclude that they are
isomorphic since the map π∗ : Pic(X) → Pic(S) is injective over the complex numbers by
[53, Thm 4.5]. We refer to Figure 5 for an illustration.

Figure 5: Linked curves must meet at involution points

Theorem II.2.5. Suppose π : S → X is induced by a general linear projection f : S → P3

of a nondegenerate smooth surface S in P5. Suppose C is an integral curve on S meeting
M2 transversely avoiding R1. If m = 2C.M2/h.M2 is a positive integer such that mH − C
is effective and h0(OS(mH −C)) > C.M2, then there is a curve D on S such that π(C) and
π(D) are linked on X.
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Proof. Since C is a Cartier divisor on S, it meets M2 at a Cartier divisor. Since C meets
M2 transversely, the intersection C ∩M2 is a reduced set of points p1, . . . , pn outside R1 and
M3 where n = C.M2. Thus each point pi has precisely one corresponding reduced point qi
in f−1f(pi). It follows that pi + qi = π−1π(pi) is a Cartier divisor on M2 in the image of
π∗CartN2. By the proposition above, we need to find an effective divisor D in the class of
mH −C which meets M2 at q1, . . . , qn. The choice of m guarantees that D.M2 = C.M2 = n.
This is always possible if h0(OS(mH − C)) > n considering the exact sequence

0→ H0(IQ(mH − C))→ H0(OS(mH − C))→ H0(OQ),

where Q is the subscheme of S consisting of the reduced points q1, . . . , qn.

Preserved curves

Definition II.2.6. We say a curve C on X is preserved if a curve C ′ on S maps isomorphi-
cally to C.

Proposition II.2.7. Let C be a preserved curve on X. If M2 is irreducible, then so is N2,
and C is not supported on N2.

Proof. The map M2 → N2 is not injective on the level of topological spaces. If it were,
then π : S → X would be a homeomorphism of topological spaces. But both S and X
are reduced, which would imply that π is an isomorphism, contrary to our assumption. If
C contains N2 set-theoretically, then any curve C ′ on S mapping onto C must contain M2

set-theoretically, and thus cannot be mapped isomorphically to C.

Preserved curves may be supported on N2 when M2 is not irreducible. If X is the union
of two planes meeting at a line L = N2 in P3, and S is its normalization given by the disjoint
union of two planes, then L is preserved since it is the isomorphic image of any one of the
two lines on S.

Proposition II.2.8. Let C be a curve on X not supported on any component of N2, then
C is preserved if and only if C̃ → C is an isomorphism if and only if C ∩ N2 is a Cartier
divisor on C. In particular, smooth curves on X not supported on any components of N2

are preserved.

Proof. Since C is not supported on any components of N2, the proper transform C̃ on S is
isomorphic to the blowup of C at C ∩ N2 by the universal property of the blowup. If C is
a preserved curve, then the curve on S that maps isomorphically to C must be its proper
transform C̃. It follows that C̃ is isomorphic to C if and only if C ∩N2 is a Cartier divisor
on C.

Theorem II.2.9. For an almost Cartier curve C on X, we define the rational number

m :=
2(π∗C).M2 − 2(g(C)− g(π∗C))

h.M2

.
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Here the genus of a divisor is defined by the adjunction formula, which agrees with the
arithmetic genus when the divisor is effective.

1. If C is linked to a preserved curve D by OX(n) for some n > 0, then n = m.

2. Conversely, if m is a positive integer, then any nonzero section of IC/X(m) defines a
curve D that is either preserved or is supported on a component of N2.

Proof. Suppose C is linked to a preserved curve D by OX(n) for some n. Then the arithmetic
genus of C and D are related by

g(D)−g(C) =
1

2
(h2+n−4)(degD−degC) =

1

2
(h2+n−4)(h2n−2 degC) (II.1)

using liaison theory, see for example [69, III Prop.1.2]. Since π∗ : APic(X) → Pic(S) is a

group homomorphism, we have D̃ = nh − π∗C in Pic(S). The adjunction formula on S
yields

2g(D̃)− 2 = D̃.(D̃ + c1) = (nh− π∗C).(nh− π∗C + c1). (II.2)

Since D̃ → D is an isomorphism, we have g(D̃) = g(D). Combining (1) and (2), we have an
equality

(h2+n−4)(nh2−2 degC)+2g(C)−2 = (nh−π∗C).(nh−π∗C+c1).

Now π∗C.h = degC since C is almost Cartier by Corollary II.2.2 and M2 = (h2 − 4)h − c1

by Theorem II.1.3. After substitution, we arrive at the linear equation in n

nh.M2 = 2M2.π
∗C − 2(g(C)− g(π∗C)).

Since h.M2 = 2 degN2 6= 0, we see that n must be equal to

n =
M2.π

∗C − (g(C)− g(π∗C))

h.M2

.

This proves the necessary direction of the theorem.
Conversely, suppose m is a positive integer and let D be defined by a nonzero section of

IC/X(m). If D is not supported on any components of N2, then we have an exact sequence
of sheaves on D

0→ OD → π∗OD̃ → K → 0,

where K is supported on the zero dimension scheme D∩N2. By the choice of m, we see that
g(D) = g(D̃) by the same computation as above. Therefore χ(OD) = χ(OD̃) and χ(K ) = 0.
Since K is supported on a dimension zero subscheme it follows that K = 0. We conclude
that D̃ → D is an isomorphism.

Note that we do not write C̃ since C could be supported on a component of N2 although
it is almost Cartier, in which case the strict transform C̃ is undefined.
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Corollary II.2.10. For an almost Cartier divisor D on X, there is at most one integer m
where [D + OX(m)] contains a preserved curve.

Proof. Suppose [D1] = [D + OX(n1)] and [D2] = [D + OX(n2)] are two classes that contain
preserved curves D1 and D2. Then for l � 0, the class [OX(l) − D1] contains an almost
Cartier curve C. Since C is linked to both D1 and D2, we must have n1 = n2 by Theorem
II.2.9 (1).

Corollary II.2.11. Let X ⊂ P3 be an integral hypersurface with ordinary surface singu-
larities. If the singular locus of X is irreducible, then any two smooth curves in the same
biliaison class on X are linearly equivalent.

Proof. This is true for two smooth curves not supported on the singular locus N2 by the
previous corollary. If two smooth curves are supported on N2, since N2 is irreducible, the
two curves must be the same.

The situation is very different on a smooth projective surface S with an ample divisor h.
If C is any divisor on S, then for any m � 0, the linear system |C + mh| is basepoint-free
and contains a smooth curve by Bertini’s theorem.

Homological invariants

In this subsection, we study homological invariants of curves on the singular surface X.

Lemma II.2.12. Let C be a curve with an effective line bundle L . If C is reduced, then
h0(L −1) = 0.

Proof. Let p : C̃ → C be the normalization, then C̃ is a disjoint union of nonsingular curves.
Since p∗L is effective on each component of C̃, it follows that h0(C̃, (p∗L )−1) = 0. There
is an injection of OC ↪→ p∗OC̃ and therefore

H0(C,L −1) ↪→ H0(C, (p∗OC̃)⊗L −1) ∼= H0(C̃, (p∗L )−1) = 0.

The assumption that C is of pure dimension 1 and reduced cannot be dropped, as the
following two counter-examples demonstrate. (1) A line with an embedded point has sections
in infinitely many negative degrees. (2) Let E be the exceptional curve of the blowup of P2

at origin, then any curve D in |3E| is non-reduced. If H is the very ample line bundle of
conics through the origin, then h0(OD(−H)) 6= 0 by a simple computation.

Corollary II.2.13. Let S be a smooth surface with a very ample line bundle L whose class
in A1(S) is h. If h0(L ) = 4 or h0(L ) ≥ 6, then h1(L n) = h2(L n) = 0 for n > h.h− 4.
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Proof. If h0(L ) = 4, then S can be embedded as a hypersurface in P3 and h1(L n) = 0
for all n. If h0(L ) ≥ 6, then a general choice of four sections gives map f : S → P3 that
satisfies the Corollary II.1.6. Let X be the image hypersurface and consider the short exact
sequence

0→ OX → f∗OS → ωN2(4− h.h)→ 0.

The long exact sequence of cohomologies yields

0→ H1((f∗OS)⊗ OX(n))→ H1(ωN2(4− h.h+ n)).

Since f∗(OS ⊗ f ∗OX(n)) = (f∗OS) ⊗ OX(n) and f is affine, it follows that the left term is
just H1(L n). Since N2 is Cohen-Macaulay, the right term is dual to H0(ON2(−n+h.h−4)),
which vanishes if N2 is reduced and n > h.h − 4 by the previous lemma. Since X is a
hypersurface of degree h.h, we have h2(OX(n)) = h0(OX(−n + h.h − 4)), which vanishes if
n > h.h − 4. It follows from the long exact sequence of cohomologies that h2(L n) = for
n > h.h− 4 since ωN2 has one-dimesional support.

Proposition II.2.14. If D is a preserved curve on X and h1(OS(nh)) = 0 for some n, then

h1(OD(n)) = h2(OS(nh− D̃))− h2(OS(nh)).

Proof. We have an exact sequence

H1(OS(nh))→ H1(OD̃(nh))→ H2(ID̃/S(nh))→ H2(OS(nh))→ 0.

Note that H1(OD̃(nh)) = H1(OD(n)) since D is preserved.

Proposition II.2.15. If C is a curve linked to a preserved curve D on X by OX(m) and
h1(OS((h.h+m−n−4)h) = 0, then

h0(IC/P3(n)) = h0(IT (n))+h0(OS(nh−π∗C−M2))−h0(OS((n−m)h−M2)).

Here T is the (h.h,m)-complete intersection in P3 linking C and D, and

h0(IT (n)) =

(
n−m+3

3

)
+

(
n−h.h+3

3

)
−
(
n−m−h.h+3

3

)
.

Proof. By the linkage theory of curves [see 69, Prop 1.2], we have

h0(IC/P3(n)) = h0(IT (n))+h1(OD(h2+m−n−4)).

From the Koszul complex

0→ OP3(−m−h2)→ OP3(−m)⊕OP3(−h2)→ IT → 0

it follows that

h0(IT (n)) =

(
n−m+3

3

)
+

(
n−h2+3

3

)
−
(
n−m−h2+3

3

)
.
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By Proposition II.2.14, if h1(OS((h2+m−n−4)h)) = 0, then

h1(OD(h2+m−n−4)) = h2(OS((h2+m−n−4)h−D̃)−h2(OS((h2+m−n−4)h)

= h0(OS(D̃−(h2+m−n−4)h−c1))−h0(OS(−(h2+m−n−4)h−c1))

= h0(OS(nh−π∗C−M2))−h0(OS((n−m)h−M2)).

Proposition II.2.16. Let C be a preserved curve on X that is linked to a preserved curve
D by OX(m). If h1(OS(lh)) = 0 for all l, then

h1(IC/P3(n)) =h0(OS(nh))−h0(OS(nh−C̃))+h1(OS(nh−C̃))−h0(OT (n))

+h0(OS(nh−C̃−M2))−h0(OS((n−m)h−M2))

Here T is a (m,h.h)-complete intersection curve in P3 as before.

Proof. Since h1(OS(lh)) = 0 for all l by assumption, the formulas for h0(IC/P3(n)) and
h2(IC/P3(n)) = h1(OC(n)) are given by the previous two propositions. Thus we have

h1(IC/P3(n)) = h0(OC(n))−h0(OP3(n))+h0(IC/P3(n))

= h0(OC(n))−h0(OP3(n))+h0(IT (n))+h1(OD(h.h+m−n−4))

= h0(OC(n))−h0(OT (n))+h1(OD(h.h+m−n−4)).

Since h1(OS(l)) = 0 for all l, we have

h0(OC(n)) = h0(OC(nh)) = h0(OS(nh))−h0(IC̃/S(nh))+h1(IC̃/S(nh)).

We also rewrite h1(OD(h.h+m−n−4)) as in the proof of the previous proposition.

The following useful proposition by Gruson-Peskine allows us to compute the dimension
of the sections of the normal bundle of a smooth curve on the singular surface X. By
deformation theory, this is equal to the dimension of the tangent space of the Hilbert scheme
at the closed point corresponding to the curve.

Proposition II.2.17 (Gruson-Peskine). Let C be a smooth connected curve on X not sup-

ported on N2, whose proper transform C̃ avoids R1. Then there is an exact sequence of
bundles

0→ NC̃/S → NC/P3 → OS(4h− c1)⊗ OC̃ → 0.

Proof. Technically we should pullback all sheaves to C̃ or pushforward all sheaves to C, but
we omit this from the notations since π : C̃ → C is an isomorphism. The map of sheaves

TS ⊗ OC̃ → TX ⊗ OC
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is injective and locally split since the map S → X is an immersion away from R1. Thus the
dual morphism

ΩX ⊗ OC → ΩS ⊗ OC̃

is surjective. On the other hand, we have a surjection of sheaves

ΩP3 ⊗ OC → ΩX ⊗ OC

and thus the composition
ΩP3 ⊗ OC → ΩS ⊗ OC̃

is surjective. Applying the snake lemma to the diagram of exact sequences

0 IC/P3 ⊗ OC ΩP3 ⊗ OC ΩC 0

0 IC̃/S ⊗ OC̃ ΩS ⊗ OC̃ ΩC̃ 0,

we conclude that IC/P3 ⊗OC → IC̃/S ⊗OC̃ is a surjection of bundles. Dualizing, we obtain
a locally split exact sequence of bundles

0→ NC̃/S → NC/P3 → N1 → 0.

Taking top wedge power, we see that

∧2NC/P3 = NC/S ⊗N1.

Taking third wedge power of the conormal sequence

0→ N ∗
C/P3 → ΩP3 ⊗ OC → ΩC → 0,

it follows that

OC(−4) = ωP3 ⊗ OC = ∧3(ΩP3 ⊗ OC) = ∧2N ∗
C/P3 ⊗ ωC .

Combining, we arrive at

N1 = (∧2NC)⊗N ∗
C/S = IC/S⊗ωC(4) = IC/S⊗OS(C)⊗ωS⊗OC(4) = OS(4h−c1)⊗OC .
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II.3. Projections of Curves on Rational Normal Scrolls

In this section, we apply results of Section II.2 to study rational normal scrolls S(a, b) ⊆
Pa+b+1 and their general linear projections f : S(a, b) → P3. We refer the readers to [24]
and [45, §V.2] for basic facts of rational normal scrolls and ruled surfaces.

Let a ≤ b be two positive integers and let E be the rank two bundle OP1(a)⊕OP1(b) on
P1. Then p : Proj(Sym E ) → P1 is a ruled surface over P1. The surface S := Proj(Sym E )
has a tautological bundle OS(1) which is very ample and embeds S into Pa+b+1 with image
S(a, b). The surface S is isomorphic to the Hirzebruch surface He where e := b − a. Let η
denote the unique (−e)-curve on S and let f denote the class of a fiber of p : S → P1, then
the Chow ring of S is given by

A(S) = A(P1)[η]/(η2 − c1(E )η + c2(E )) = Z[f, η]/(η2 + (b− a)fη, f2).

In the following, we express the divisors in the coordinates given by the basis {η, f} and use
the shorthand OS(c, d) for OS(cη + df). In particular, the class of OS(1) is h = η + bf. From
the exact sequences

0→ TS/P1 → TS → TP1 → 0

0→ OS → (p∗E ∗)(1)→ TS/P1 → 0,

we conclude that

c(TS) = p∗c(TP1)c((p∗E ∗)(1))

= (1+2f)(1+(b−a)f+2η+(b−a)fη+η2)

= (1+2f)(1+(b−a)f+2η)

= 1+(b−a+2)f+2η+4ηf.

Therefore c1 = 2η+(b−a+2)f and c2 = 4ηf.
A straightforward substitution of the above calculations into the formulas of Corol-

lary II.1.6 yields the following.

Proposition II.3.1. Suppose (a, b) 6= (1, 1). Let f : S → P3 be a general linear projection
of S(a, b) ⊆ Pa+b+1 with image X. Then

degN2 =
1

2
(b+a−2)(b+a−1),

g(N2) =
1

6
(b+a−3)(b+a−4)(2b+2a−1),

degN3 =
1

3
(b+a−2)(b+a−3)(b+a−4),

degR1 = 2b+2a−4.

The curve N2 is integral of degree degN2 and genus g(N2), and the number of singular
points of N2 is equal to degN3. The curve M2 is reduced and connected and maps 2-1 to N2,
ramified over 2a+ 2b− 4 pinch points of X.
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The next proposition is a well-known fact about rational normal scrolls.

Proposition II.3.2. Let S = S(a, b) ⊆ Pa+b+1, then

H1(IS(l)) = H2(IS(l)) = H1(OS(l)) = 0, ∀ ∈ Z.

Proof. The ideal I of S(a, b) in Pa+b+1 is defined by the maximal minors of the matrix(
x0 . . . xa−1 y0 . . . yb−1

x1 . . . xa y1 . . . yb

)
in the ring R := C[x0, . . . , xa, y1, . . . , yb]. Since the matrix is 1-generic, the R-module R/I
admits a minimal free R-resolution given by the Eagon-Northcott complex which is of length
a+ b− 1. In particular, it follows from local duality that

H i
m(R/I) = Exta+b+2−i

R (R/I,R(−a− b− 2))∨ = 0, i = 1, 2.

Here H i
m(−) denotes the i-th local cohomology supported on the irrelevant ideal m of

R. The local-to-sheaf exact sequence gives H1
m(R/I) ∼=

⊕
l∈ZH

1(IS(n)) and H2
m(R/I) ∼=⊕

l∈ZH
1(OS(l)). We conclude that H1(IS(l)) = H1(OS(l)) = 0 for all integers l. It also

follows that H2(IS(l)) = 0 for all l by the short exact sequence

0→ IS → OPa+b+1 → OS → 0.

Lemma II.3.3. A nontrivial divisor D = cη + df on S(a, b) is effective if and only if c ≥
0, d ≥ 0. An effective divisor D has natural cohomology, i.e. h1(OS(D)) = h2(OS(D)) = 0,
if and only if d ≥ c(b− a)− 1.

Proof. Suppose D is effective and c < 0, then p(D) is a finite set of points on P1 since
D.f < 0. It follows that D is concentrated on finitely many fibers, and is thus linearly
equivalent to df for some d > 0. This is a contradiction to c < 0. It follows that effective
divisors must have c ≥ 0.

Suppose D = cη + df is divisor where c ≥ 0. Since D.f ≥ 0, Grauert’s theorem implies
that Rip∗(L (D)) = 0 for all i > 0. Therefore the Lerray spectral sequence degenerates and
H i(L (D)) ∼= H i(π∗L (D)). By projection formula, we have

hi(π∗L (D)) = hi(π∗(OS(c)⊗ π∗OP1(d)))

= hi((Symc E )⊗ OP1(d))

=
c∑
i=0

hi(OP1(−i(b− a) + d)).

It follows that D is effective if and only if d ≥ 0. It also follows that an effective divisor D
has natural cohomology if and only if d− c(b− a) > −2.
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Theorem II.3.4. Let C be a smooth connected curve on X not supported on N2 and whose
proper transform C̃ avoids R1. Suppose C̃ is of class cη+df, then h0(NC/P3) and h1(NC/P3)
can be computed explicitly in terms of a, b, c, d. In particular, if c ≤ 3 or d < 4b, then
h1(NC/P3) = 0 and C corresponds to a smooth point in the Hilbert scheme of curves in P3.
If c ≥ 4 and d ≥ c(b− a)− 1 + 4a, then

h0(NC/P3) =
1

2
(ac2−bc2+ac−bc)+cd+6a+6b+c+d−3

= dim |C|+6a+6b−3−4 degC.

h1(NC/P3) =
1

2
(ac2−bc2−7ac−bc)+cd+6a+6b+c−3d−3

= dim |C|+6a+6b−3.

Proof. Since C̃ is a smooth curve, we have d ≥ c(b − a) by [45, Cor V.2.18]. Lemma II.3.3

implies that OS(C̃) has natural cohomology. The short exact sequence

0→ OS → OS(C̃)→ OC̃ ⊗ OS(C̃)→ 0

implies that H1(NC̃/S) = H1(OC̃ ⊗ OS(C̃)) = 0 since H1(OS) = H2(OS) = 0. The short
exact sequence from Proposition II.2.17

0→ NC̃/S → NC/P3 → OS(4h− c1)⊗ OC̃ → 0

thus implies that H1(NC/P3) = H1(OS(4h− c1)⊗OC̃) since the sheaves are supported on a
curve. Finally, consider the short exact sequence

0→ IC̃/S(4h− c1)→ OS(4h− c1)→ OS(4h− c1)⊗ OC̃ → 0.

The divisor 4h− c1 has coordinates (2, 3b+ a− 2) in the basis {η, f}, which is effective with
natural cohomology by Lemma II.3.3. We conclude that

H1(NC/P3) ∼= H1(OS(4h− c1)⊗ OC̃) ∼= H2(IC̃/S(4h− c1)) ∼= H0(OS(C − 4h))∨.

If either c < 4 or d < 4b, then h0(OS(C − 4h)) = 0. If c ≥ 4, then

h0(OS(C − 4h)) = h0(OS(c− 4, d− 4b)) =
c−4∑
i=0

h0(OP1(−i(b− a) + d− 4b)).

Since χ(NC/P3) = 4 degC, it follows that

h0(NC/P3) = 4(d+ ac) +
c−4∑
i=0

h0(OP1(−i(b− a) + d− 4b)).
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If d ≥ c(b − a) − 1 + 4a, then OS(c − 4, d − 4b) is effective with natural cohomology by
Lemma II.3.3. We apply Riemann-Roch formula on S to obtain

h1(NC/P3) = χ(OS(C − 4h)) =
1

2
(ac2 − bc2 − 7ac− bc) + cd+ 6a+ 6b+ c− 3d− 3.

Recall that the intersection formula states that

(−C).4h = χ(OS)− χ(OS(C))− χ(−4h) + χ(OS(C − 4h)).

It follows that h1(NC/P3) = dim |C|+ 6a+ 6b− 3− 4 degC and h0(NC/P3) = dim |C|+ 6a+
6b− 3.

The dimension of the family of surfaces X obtained from linear projections of S(a, b) ⊆
Pa+b+1 into P3 is given by

dimGr(a+b−3, a+b+1)+dim PGL(3,C)−dim Aut(S(a, b)).

Recall that there is an exact sequence of groups for the Hirzebruch surface He

0→ H0(OP1(e)) oC∗ → Aut(He)→ PGL(2,C)→ 0.

In particular, we deduce that dim Aut(S(a, b)) = b − a + 5. It follows that there is a
(5a + 3b + 2)-dimension family of integral surfaces of degree a + b in P3 arising as general

linear projections of the scroll S(a, b) ⊆ Pa+b+1. If we vary the curve C̃ in the linear system
as well, we end up with a family of curves in P3 of dimension dim |C|+ 5a+ 3b+ 2. Suppose

linear system C̃ = cη + df satisfies c ≥ 4 and d ≥ c(b − a) − 1 + 4a, then the difference
between h0(NC/P3) and the dimension of the family of the curves is a + 3b− 5, which does

not depend on the class of C̃. There are two possibilities in this situation. Either the family
of curves are not dense in the component of the Hilbert scheme they belong to, or there is a
highly nonreduced component of the Hilbert scheme whose general member is given by such
a curve. We are not able to determine which is the case.

Maximal rank curves on the ruled cubic surface

In this subsection, we continue the study of curves on a ruled cubic surface initiated
by Hartshorne [51]. Consider the general projection of S(1, 2) ⊆ P4 into P3, its image X
is a ruled cubic surface with singularity a double line N2 that has 2 pinch points on it by
Proposition II.3.1. The map π : S → X is an isomorphism away from the conic M2 and the
line N2, and maps M2 generically 2-1 to N2 branched over the two pinch points of X (see
Figure 6).

Since all integral ruled cubic surfaces that are not cones all differ by a coordinate change
in P3 [see 41], we can afford to work explicitly. In doing so, we verify the formulas and
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Figure 6: The ruled cubic surface

see the geometry more clearly. Let S be the blowup of P2 = ProjC[s, t, u] at the point
O = V (s, t), embedded by the complete linear system h of proper transforms of conics
passing through O. Then S is parametrized as [tu : t2 : st : su : s2], and its defining
equations in P4 = ProjC[x, y, z, w, v] are given by the 2× 2-minors of the matrix

M =

[
x y z
w z v

]
.

Let π : S → ProjC[x, y, w, v] be the projection of S away from the point V (x, y, w, v). The
image X is parametrized by [tu : t2 : su : s2] and has the defining equation x2v − y2w. The
double locus M2 on S is defined by V (x,w) ∩ S = [0 : t2 : st : 0 : t2] which maps 2-1 to the
line N2 = V (x,w) = [0 : t2 : 0 : s2]. Since X is the image of the ruled surface S, X itself is
spanned by lines and thus the name ruled cubic surface. Let σ : M2 → N2 be the involution
defined by

[0 : t2 : st : 0 : t2] 7→ [0 : t2 : −st : 0 : t2].

The locus R1 consists of the two ramification points of M2 → N2, which are V (x, z, w, v)
and V (x, y, z, w).

By [53, Thm 4.1, 4.5], there is an exact sequence of groups

0→ APic(X)→ Pic(S)⊕ CartM2/π
∗CartN2 → PicM2/π

∗ PicN2︸ ︷︷ ︸
Z/2Z

→ 0.
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In this way, we describe an almost Cartier divisor on X by a triple (c, d, α), where (c, d) is
the class cη+df in Pic(S) as before and α is a Cartier divisor of M2, subject to the constraint
that d ≡ degαmod 2.

Definition II.3.5. For any divisor α ∈ CartM2, we set α ∈ CartM2 to be the effective
divisor of least degree such that α ≡ αmod π∗CartN2. More explicitly, if α =

∑
i Pi−

∑
j Qj

where Pi 6= Qj, then we remove all the pairs P + σ(P ) from
∑

i Pi +
∑

j σ(Qj) to obtain α.

Proposition II.3.6 (Hartshorne [51, Prop 6.5]). A class (c, d, α) ∈ APic(X) is effective if
and only if one of the following is true:

1. c > 0, d > 0, or

2. d = α = 0, c > 0, or

3. c = 0, d > 0 and degα ≤ d.

A word of caution that the basis {f+ η,−η} instead of {η, f} was used for Pic(S) in [51].

With the effectiveness criterion in hand, it is relatively easy to classify classes that contain
a preserved curve on X.

Proposition II.3.7. A class (c, d, α) contains a preserved curve if and only if one of the
following is true:

1. c > 0, d > 0 and d = degα, or

2. d = α = 0, c > 0, or

3. c = 0, d > 0 and d = degα.

Proof. For (3), take c disjoint points on M2 that contain no pairs of involution points, then
the sum of the c-fibers through them will be preserved. For (2) take a multiple structure
on the (−1)-curve, which does not intersect M2 and is therefore preserved. For (1) take the
union of curves in (2) and (3).

Now we argue that (1) - (3) is necessary. Suppose D is a preserved curve, then the linear

system corresponding to the projection separates points and tangent vectors on D̃. Thus
D̃ cannot meet pairs of involution points Pi 6= σ(Pi). If D̃ meets a point Q in the branch

locus Ri, then it must meet it with multiplicity one. Otherwise the tangent space of D̃ will
contain the tangent line of Γ at Q, which is the line OQ where O is the point of projection.
In this case the linear system H would fail to separate tangent vectors of D̃ at Q. Taking
α = D̃ ∩M2, it is clear that degα = degα = d.

Theorem II.3.8. Every smooth connected curve C on X is linked to a preserved curve D
except for the line N2 and the (−1)-curve η.
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Proof. Every link of N2 is not almost Cartier, and thus must be supported on N2. In
particular, no such curve can be preserved. Let C be a smooth irreducible curve of the class
(c, d, α). Then either (1) c > 0, d > 0, degα = d, or (2) C is the exceptional curve where
d = α = 0 and c = 1, or (3) C is a ruling where c = 0, d > 0 and degα = d. The linked
divisor D = dH −C = (d− c, d, σ(α)) contains a preserved curve for case (1) and (3) by the
previous proposition.

More explicitly, let C 6= N2 be a smooth connected curve in the class (c, d, α). If C is not

E then d > 0 and its proper transform C̃ meets M2 at d points α on M2 containing no pairs
of involution points. The preserved curve D can be constructed as the image of the sum of
d fibers passing through σ(α) and (d− c) multiples of the exceptional curve η that does not
meet the double curve M2.

Definition II.3.9. A closed subscheme V of Pn is said to have maximal rank if for every
d ≥ 0 the map

H0(OPn(d))→ H0(OV (d))

has maximal rank, i.e. is either injective or surjective.

Note that having maximal rank is the same as having eitherH0(IV (d)) = 0 orH1(IV (d)) =
0 for every d ≥ 0. Examples of maximal rank varieties include ACM curves C in P3

k, which
are characterized by the vanishing of H1(IC(d)) for all d.

Proposition II.3.10. Let C be a curve of class (c, d) on S(1, 2) ⊆ P4, then

h1(IC/P4(c−1)) = 0,

h1(IC/P4(n)) =
n−c∑
i=0

h0(OP1(d+i−2n−2)), ∀n ≥ c, (A)

h1(IC/P4(n)) =
c−n−2∑
i=0

h0(OP1(2n+i+1−d)), ∀n ≤ c−2. (B)

Proof. First we note that there is a short exact sequence

0→ IS/P4 → IC/P4 → j∗IC/S → 0

where j : S ↪→ P4 is the inclusion. Since H1(IS/P4(n)) = H2(IS/P4(n)) = 0 for all n
by Proposition II.3.2, we conclude that H1(IC/P4(n) ∼= H1(IC/S(n)) for all n. Neither
(c− 1)h−C nor C− (c− 1)h− c1 are effective since their first coordinates are −1. It follows
that

h1(IC/S(c−1)) = h1(OS((c−1)h−C)

= −χ(OS((c−1)h−C))

=
1

2
((c−1)h−C).((c−1)h−C+c1)+1 = 0.
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If n ≥ c, then the first coordinate of nh− C is nonnegative and thus h1(IC(n)) is given by

h1(OS(n− c, 2n− d)) =
n−c∑
i=0

h1(OP1(2n− d− i)) =
n−c∑
i=0

h0(OP1(d+ i− 2n− 2))

using the same computations in Lemma II.3.3. If n ≤ c − 2, then the first coordinate of
C − nh− c1 is nonnegative and thus

h1(IC/S(n)) = h1(OS(nh− C))

= h1(OS(C − nh− c1))

= h1(OS(c− n− 2, d− 2n− 3))

=
c−n−2∑
i=0

h1(OP1(d− 2n− 3− i))

=
c−n−2∑
i=0

h0(OP1(2n+ i+ 1− d)).

Corollary II.3.11. Let C be a curve of class (c, d) on S(1, 2).

1. If d ≥ 2c + 2, then h1(IC/P4(n)) is nonzero and strictly decreasing on the interval
[c, d− c− 2] with value (A) and vanishes elsewhere.

2. If b < 2c + 2, then h1(IC/P4(n)) is nonzero and strictly increasing on the interval
[d− c+ 1, c− 2] with value (B) and vanishes elsewhere.

In particular, C is ACM if and only if 2c− 2 ≤ d ≤ 2c+ 1.

Theorem II.3.12 (Classification of maximal curves). Apart from N2, which is obviously of
maximal rank, a smooth curve C of the class (c, d, α) on X has maximal rank if and only if
(c, d) is one of the following:

{(1, 0), (1, 1), (1, 2), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4)}.

Among them only (1, 0), (1, 1) and (1, 2) are ACM.

Proof. Let C be a smooth curve on X that is not N2. Suppose c > 3. Since C̃ is smooth, it
follows that d ≥ c by [45, Cor V.2.18]. The expressions of Proposition II.2.16 simplifies to

h1(IC/P3(3)) =h0(OS(3h))−
���

���
���:0

h0(OS(3h−C̃))+h1(OS(3h−C̃))−h0(OT (3))

+
���

���
���

��:0

h0(OS(3h−C̃−M2))−
���

���
���

���:0

h0(OS((3−d)h−M2))

=22+h1(OS(3−c, 6−d))−19 ≥ 3.
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Since C lies on a cubic surface, it follows that if C is maximal rank then we must have c ≤ 3.
On the other hand,

h1(IC/P3(3)) = h0(OC(3))−h0(OP3(3))+h0(IC/P3(3))

≥ χ(OC(3))−20+h0(IC/P3(3)).

It remains to estimate H0(OC(3)). By Riemann-Roch, we have

h0(OC(3)) ≥ χ(OC(3)) = 3C̃.h+ 1− g(C) =
1

2
c2 +

7

2
c+ (4− c)d.

This is an increasing function in d, thus if d ≥ 5 then

h0(OC(3)) ≥ 1

2
c2 − 3

2
c+ 20.

Since c ≤ 3, it follows that h0(OC(3)) ≥ 20 unless c = 1, d = 5. But for (c, d) = (1, 5), we
see that 3h− C is effective and thus C lies on another cubic surface, i.e. h0(IC/P3(3)) ≥ 2.
This shows that if c ≤ 3 and d ≥ 5 then h1(IC(3)) > 0, therefore a maximal rank curve C
must satisfy c ≤ 3 and d ≤ 4. We compute h0(IC/P3(n)) and h1(IC/P3(n)) by hand using
Proposition II.2.15 and Proposition II.2.16 for these finitely many cases and verify the claim.
We omit these computations.

It follows that for c > 3 and 2c−2 ≤ d ≤ 2c+1, the general projections C of smooth ACM
curves in the linear system |cη+df| on S(1, 2) do not have maximal rank in P3. Since having
maximal rank is an open condition, it follows that no projection of these smooth ACM curves
into P3 have maximal rank. These curves have degree c+d and genus −1

2
c2 +cd− 1

2
c−d+1.

Since d ∼ 2c, we see that g(C) ∼ 1
6
(degC)2 for c� 0.

The computations in this chapter are rather involved, and a priori leave lots of room
for error. Fortunately, we were able to verify the formulas and computations using the
Macaulay2 package SpaceCurves developed by the author. We invite the readers who are
interested in computer algebra to explore this package with the article [97].
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CHAPTER III

Bundles
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Chapter III summary

In the final chapter of this thesis, we use the biliaison theory of sheaves developed in
Chapter I to study vector bundles on projective spaces.

In Section III.1, we provide a conceptual proof of a result of Buraggina [13] that indecom-
posable rank two bundles on P3

k are minimal reflexive sheaves (Theorem III.1.1). We also
prove that the Horrock-Mumford bundle on P4

C is a minimal reflexive sheaf (Theorem III.1.2).

In Section III.2, we study bundles in the biliaison class of the zero sheaf on Pn
k . These

are exactly the bundles E such that

H i(E (t)) = 0, ∀t ∈ Z, ∀1 ≤ i ≤ n− 2. (†)

For example, all bundles on P2
k satisfy this condition trivially. We classify the Betti numbers

of bundles on Pn
k satisfying (†) for any rank r (Theorem III.2.4), generalizing results from

Bohnhorst and Spindler [7] where r = n. Accordingly, we classify the Hilbert functions
of such bundles (Theorem III.2.11), and introduce a compact way to represent (Defini-
tion III.2.12) and to generate them up to a bounded regularity (Proposition III.2.15). We
then give an example to show that the semistability of such a bundle is not determined by
its Betti numbers in general (Example III.2.18), in contrast to the case when r = n discussed
in [7].

In Section III.3, we describe the moduli of bundles in the biliaison class of the zero sheaf.
We define a natural topology on M0(H), the set of isomorphism classes of bundles in the
biliaison class of the zero sheaf on Pn

k with Hilbert function H. We show that M0(H)
is irreducible and unirational (Proposition III.3.16). We then describe a stratification of
M0(H) by quotients of rational varieties and show that the closed strata form a graded
lattice given by the Betti numbers (Theorem III.3.17). If we restrict to semistable bundles,
then we obtain a corresponding stratification of the coarse moduli space.

For the remainder of this chapter, we work on the projective space Pn
k , where k is an

algebraically closed field. All sheaves in consideration are coherent on Pn
k .
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III.1. Minimal Bundles

We say a bundle is minimal if it is a minimal (S+
n ) sheaf where n = dim Pn

k . The next
theorem is due to Buraggina [13], based on computations in [70]. We provide a conceptual
proof of the same result.

Theorem III.1.1 (Buraggina [13]). A rank two bundle E on P3
k is a minimal (S+

2 ) (i.e.
reflexive) sheaf if and only if it is indecomposable.

Proof. If E is decomposable, then it is the direct sum of two line bundles. In this case, the
minimal reflexive sheaf in the class of E is the zero sheaf. Suppose E is indecomposable,
then the zero sheaf is not in the biliaison class of E since H1

∗ (E ) 6= 0. First we show that E
is a minimal bundle. By Proposition I.3.24, we only need to show that E � E ′ for any other
rank two bundle E ′ in its biliaison class.

Let M := H1
∗ (E ) and c1 := c1(E ). The Horrocks’ technique of eliminating homology

shows that there are universal extensions killing H1
∗ (E ) and H2

∗ (E )

0→ E → F → O(a)→ 0

0→ O(−a+ c1)→ G → E → 0,

which fit into the display

0 0

0 O(−a+ c1) G E 0

0 O(−a+ c1) H F 0

O(a) O(a)

0 0

d

of a monad O(−a+ c1)→H → O(a) [6].
By Horrocks’ criterion of splitting, we see that H ∼= O(b) for some b as it has no H1

∗
nor H2

∗ . If we chose H0
∗ (O(a)) → M to be a minimal system of generators, then a result

in [54] shows that the map d : G → H would not split off summands. It follows that
0 → H0

∗ (G ) → H0
∗ (H ) → H0

∗ (O(a) → M are the first steps of a minimal free resolution

of M , and G ∼= Ω̃2M , where Ω2M denotes the second minimal syzygy of M . The same
statements apply to E ′, and H1

∗ (E
′) ∼= H1

∗ (E ) = M . Since G is primitive, we conclude from
Proposition I.3.18 that Σ(E , l) = Σ(E ′, l).

If F is a reflexive sheaf in the biliaison class of E such that F � E , then F has rank
at most two. Since F is neither zero or O(l), it must have rank exactly two. Since E is
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obtained using finitely many ascending elementary (S+
2 )-biliaison and rigid deformations by

Theorem I.3.27, we see that c3(F ) ≤ c3(E ). It follows from [48, Prop. 2.6] that F is in fact
a bundle, and thus E � F by the above.

Let us summarize the three distinct cases of biliaison classes of bundles on P3
k. The finite

length module M = H1
∗ (E ) uniquely determines the stable equivalence class of a primitive

bundle E [55], and therefore uniquely determines the biliaison class of a bundle E on P3
k.

There are three possibilities.

1. The minimal bundles of a biliaison class have rank two if and only if M satisfies the
condition in [16].

2. The minimal bundle of a biliaison class is the zero sheaf if and only if M = 0.

3. The minimal bundles of all other biliaison classes have rank three.

Perhaps not surprisingly, we show that the Horrocks-Mumford bundle is minimal.

Theorem III.1.2. The Horrocks-Mumford bundle F on P4
C is minimal, both as a bundle

and as an (S+
2 ) (i.e. reflexive) sheaf.

Proof. Since rank one reflexive sheaves on Pn
k are just line bundles O(l), and F is not in the

biliaison class of the zero sheaf, it has minimal rank among reflexive sheaves in its biliaison
class. Let H ⊆ SL(5,C) be the Heisenberg group. Let V = Map(Z/5,C) and let V1, . . . , V4 be
the four irreducible representations of H arising from V as in [57]. Let W = HomH(V1,∧2V ).
The Horrocks-Mumford bundle F is the homology of the monad

O(2)⊗ V1
p−→ ∧2T ⊗W q−→ O(3)⊗ V3.

We show that ker q is primitive. By the short exact sequence

0→ ker q → ∧2T ⊗W → O(3)⊗ V3 → 0,

it suffices to show that ∧2T is primitive. Consider the Koszul complex

0→ O → O(1)⊗ V → O(2)⊗ ∧2V → O(3)⊗ ∧3V
d−→ O(4)⊗ ∧4V → O(5)⊗ ∧5V → 0,

where ker d ∼= ∧2T . We see that Ext2(im d,O(l)) = 0 for all l by the short exact sequence

0→ im d→ O(4)⊗ ∧4V → O(5)⊗ ∧5V → 0,

and thus Ext1(∧2T ,O(l)) = 0 for all l by the short exact sequence

0→ ∧2T → O(3)⊗ ∧3V → im d→ 0.

Finally, we have H0(F (l)) = 0 for l < 0 [57, §4]. Since the maximum degree of O(2)⊗ V1 is
−2, the conclusion follows from Theorem I.3.28 applied to the extension

0→ O(2)⊗ V1 → ker q → F → 0.
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Note that H0(ker q(−2)) ∼= V1, thus all minimal bundles in the biliaison class of F are
equivalent under the action of PGL(5,C). In particular, all reflexive sheaves in the biliaison
class of the Horrocks-Mumford bundle are constructed from it using finitely many ascending
elementary (S+

1 )-biliaisons, rigid deformations and extensions by line bundles.
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III.2. Bundles on Pn
k with Vanishing Lower Cohomologies

Our work in Chapter I paves the way for a program to describe the moduliM (in a broad
sense) of (e.g. semistable, stable) torsion-free sheaves (or bundles) on a smooth projective
variety X with irregularity zero.

Program. First, we partitionM by biliaison equivalence into piecesME that are labeled by
stable equivalence classes of primitive sheaves. The major difficulty here is that we need to
wisely choose a very ample line bundle and classify the stable equivalence classes of primitive
sheaves on X. Next, we partition each ME into pieces ME ,Σ by the discrete invariant of
Σ functions, which form a bounded below semilattice. Another major difficulty here is the
classification of the Σ functions of sheaves in each biliaison class, especially those of minimal
sheaves (or bundles). If we know the Σ function of a minimal sheaf (or bundle) inME , then
we can systematically determine the numerical invariants of sheaves (or bundles) inME , as
well as the dimensions of the pieces ME ,Σ, and the dimensions of tangent spaces etc.

If we restrict to rank one torsion free sheaves on X = P3
k, which are exactly the ideal

sheaves of curves up to twist, then the appropriate moduliM is the Hilbert scheme of curves
and this program has been successfully carried out in [69]. The goal of the remainder of this
chapter is to describe M0, the moduli of bundles in the biliaison class of the zero sheaf on
X = Pn

k . Since we restrict to the biliaison class of the zero sheaf, we may consider Hilbert
functions H instead of the Σ functions as they encode the same information.

From here on we work on Pn
k , and use R := k[x0, . . . , xn] to denote the polynomial ring

of Pn
k . As before, we write H i

∗(F ) for the R-module
⊕

t∈ZH
i(F (t)). For a finite integer

sequence a = (ai)
u
i=1, we write R(a) instead of

⊕u
i=1R(−ai) and write O(a) instead of⊕u

i=1 O(−ai). We denote byM0 the set of isomorphism classes of finite rank bundles in the
biliaison class of the zero sheaf on Pn

k . We shall slightly abuse the terminology by saying
E ∈M0 to mean that a bundle E is in the biliaison class of the zero sheaf.

We start with a standard observation on the relation between the vanishing of lower
cohomologies of a coherent sheaf and the projective dimension of its section module.

Proposition III.2.1. Let M be a finitely generated graded R-module. Then proj. dimRM ≤
1 if and only if M ∼= H0

∗ (M̃) and H i
∗(M̃) = 0 for all 1 ≤ i ≤ n− 2.

Proof. Let H i
m(−) denote the i-th local cohomology module supported at the homogeneous

maximal ideal m of R. There is a four-term exact sequence

0→ H0
m(M)→M → H0

∗ (M̃)→ H1
m(M)→ 0

along with isomorphisms H i+1
m (M) ∼= H i

∗(M̃) for 1 ≤ i ≤ n. By the vanishing criterion
of local cohomology, we have depthM = inf{i | H i

m(M) 6= 0}. Finally, the Auslander-
Buchsbaum formula states that proj. dimM = n+ 1− depthM . The statement follows.



CHAPTER III. BUNDLES 64

Corollary III.2.2. A bundle E on Pn
k is in M0 if and only if E satisfies (†).

Definition III.2.3. Let E be a rank r bundle on Pn
k satisfying (†). By Proposition III.2.1,

the R-module H0
∗ (E ) admits a unique (up to isomorphism) minimal graded free R-resolution

0→ R(a)
φ−→ R(b)→ H0

∗ (E )→ 0 (∗)

for some a = (ai)
l
i=1 and b = (bi)

l+r
i=1. We make the convention to always sort a and b in

ascending order, and define (a, b) to be the Betti numbers of E .

Note that E is isomorphic to a direct sum of line bundles if and only if H0
∗ (E ) is a free

R-module if and only if l = 0 and the sequence a is empty.

The resolution (∗) of graded R-modules sheafifies to a resolution

0→ O(a)
ϕ−→ O(b)→ E → 0 (?)

of E by direct sums of line bundles. Conversely, a resolution (?) of E by direct sums of
line bundles gives rise to a free resolution (∗) of the R-module H0

∗ (E ) under the functor
H0
∗ (−). With this understanding, we shall speak of these two resolutions of modules and

sheaves interchangeably. In particular, the morphism ϕ is called minimal if and only if the
corresponding map of R-modules φ is minimal, i.e. φ⊗R k = 0.

Classification of Betti numbers

In this subsection we classify the Betti numbers of bundles in M0. For a pair (a, b), we
write M0(a, b) for the subset of isomorphism classes of bundles with Betti numbers (a, b).

Theorem III.2.4 (Classification of Betti numbers). Let a = (a1, . . . , al) and b = (b1, . . . , bl+r)
be two sequences of integers in ascending order for some l ≥ 0 and r > 0. The set M0(a, b)
is nonempty if and only if a is empty or

r ≥ n and ai > bn+i for i = 1, . . . , l. (A)

In this case, we have cokerϕ ∈M0(a, b) for a general minimal map ϕ ∈ Hom(O(a),O(b)).

This generalizes the results of Bohnhorst and Spindler [7] for r = n. Likewise, we say
a pair of ascending sequences of integers (a, b) is admissible if it satisfies the equivalent
conditions of Theorem III.2.4. The fact that a bundle E satisfying (†) that is not a direct
sum of line bundles must have rank r ≥ n also follows from the Evans-Griffith splitting
criterion [28, Theorem 2.4].

In order to prove Theorem III.2.4, we need two lemmas regarding depth of minors of
matrices.
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Let S denote a noetherian ring and let φ : Sp → Sq be a map between two free S-modules.
For any integer r, the ideal Ir(φ) of (r × r)-minors of φ is defined as the image of the map
∧rSp ⊗S (∧rSq)∗ → S, which is induced by the map ∧rφ : ∧rSp → ∧rSq.

Similarly, let ϕ :
⊕p

i=1 OPnA
(−ai)→

⊕q
i=1 OPnA

(−bi) be a morphism of sheaves on Pn
A over

a noetherian ring A. Set S := A[x0, . . . , xn] and let φ :
⊕p

i=1 S(−ai)→
⊕q

i=1 S(−bi) denote
the corresponding morphism of graded free S-modules given by H0

∗ (ϕ). For any integer r,
we define Ir(ϕ) = Ir(φ) as an ideal in S.

The depth of a proper ideal I in a noetherian ring S is defined to be the length of a
maximal regular sequence in I. The depth of the unit ideal is by convention +∞. Recall
that if S is Cohen-Macaulay, then depth I = codim I for every proper ideal I.

Lemma III.2.5. Let A be a finitely generated integral domain over k, and let S be a finitely
generated A-algebra. Suppose φ : Sq → Sp is a morphism of free S-modules with p ≥ q. For
a prime P of A, let φP denote the morphism φ⊗A k(P ) over the fiber ring S ⊗A k(P ). For
any integer d, the set of primes P in A such that depth Iq(φP ) ≥ d is open in A.

Proof. Note that Iq(φ) = Iq(φ
∗). Let K•(φ∗) be the Eagon-Northcott complex associated to

φ∗ as in [19]. Note that the formation of the Eagon-Northcott complex is compatible with
taking fibers, i.e. K•(φ∗)⊗A k(P ) = K•(φ∗⊗A k(P )). For each prime ideal P of A, we have
depth Iq(φ

∗
P ) ≥ d if and only if K•(φ∗)⊗A k(P ) is exact after position p− q + 1− d by the

main theorem in [19]. The statement of the lemma follows from the general fact that the
exactness locus of a family of complexes is open, see E.G.A. IV 9.4.2 [36].

Lemma III.2.6. Let S be a standard graded finitely generated k-algebra, i.e. S is generated
in degree 1 over S0 = k. Let φ :

⊕q
i=1 S(−ai)→

⊕p
i=1 S(−bi) be a morphism of graded free

S-modules with p ≥ q, and assume that φ is minimal, i.e. φ ⊗S k = 0. If relative to some
bases, the matrix of φ has a block of zeros of size u× v, then

codim Iq(φ) ≤ p− q + 1− inf(u+ v, p+ 1) + inf(u+ v, q).

Proof. For the case of generic matrices over an algebraically closed field, this is a result
of Giusti-Merle [31]. We fix once for all bases of the domain and target of φ, and let
Z ⊂ {1, . . . , p} × {1, . . . , q} be the u × v rectangle where the matrix of φ has zero entries.

Consider the polynomial ring A := k
[
{xij}1≤i≤p

1≤j≤q

]
/(xij | (i, j) ∈ Z), which is the coordinate

ring of the affine space of (p× q)-matrices with a zero block of size u× v in position Z. Let
ψ : A(−1)q → Ap be the morphism given by the generic matrix (xij), then

codim Iq(ψ) = p− q + 1− inf(u+ v, p+ 1) + inf(u+ v, q)

by [31, Theorem 1.3].
The general case follows from a theorem of Serre. The map φ corresponds to a morphism

of k-algebras A → S, where xij is sent to the entry of the matrix of φ relative to the fixed
bases. In particular, note that Iq(φ) = SIq(ψ). Let m and m′ denote the homogeneous
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maximal ideals of A and S respectively. Since all entries of φ are in m′ by assumption,
we have an induced morphism on the localizations Am → Sm′ where Sm′m ⊆ m′. Let P
be a prime above AmIq(ψ) of the least codimension. Since Sm′P ⊆ m′, Serre’s result on
superheight on prime ideals in a regular local ring [94] implies that codimSm′P ≤ codimP .
Now Iq(ψ) and SIq(ψ) are homogeneous and Sm′Iq(ψ) ⊆ Sm′P , therefore we conclude that

codimSIq(ψ) = codimSm′Iq(ψ)

≤ codimSm′P

≤ codimP

= codimAmIq(ψ)

= codim Iq(ψ)

= p− q + 1− inf(u+ v, p+ 1) + inf(u+ v, q).

The following is a simple fact that allows us to translate between bundles and homoge-
neous matrices whose ideals of maximal minors have maximal depth.

Proposition III.2.7. Let a = (a1, . . . , al) and b = (b1, . . . , bl+r) for some integers l > 0 and
r ≥ 0. For a map ϕ ∈ Hom(O(a),O(b)), the cokernel of ϕ is a rank r bundle on Pn

k if and
only if depth Il(ϕ) ≥ n+ 1. In this case, we have a resolution of E := cokerϕ by direct sums
of line bundles

0→ O(a)
ϕ−→ O(b)→ E → 0.

Proof. The rank of cokerϕ is r if and only if Ir(ϕ) is nonzero if and only if ϕ is injective at
the generic point of Pn

k if and only if ϕ is injective. The ideal Ir(ϕ) cuts out points on Pn
k

where cokerϕ is not locally free of rank r. Thus cokerϕ is a rank r bundle if and only if
Ir(ϕ) is the unit ideal or is m-primary, where m is the homogeneous maximal ideal of R. In
either case depth Ir(ϕ) ≥ n+ 1.

Proof of Theorem III.2.4. If a is empty, then E ∼= O(b) has Betti numbers (a, b). Suppose a
is nonempty and (a, b) satisfies condition (A). Consider the minimal map ϕ : O(a)→ O(b)
given by the following matrix

a1 · · · al



b1 xa1−b10 0 0 b1
...

...
. . . 0

...
...

... xal−bl0 bl

bn+1 xa1−bn+1
n

...
...

... 0
. . .

...
...

... 0 0 x
al−bl+n
n bl+n

... 0 0 0
...

bl+r 0 0 0 bl+r.
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Since ϕ drops rank nowhere on Pn
k , we conclude that E := cokerϕ is a rank r bundle with

a resolution by direct sums of line bundles

0→ O(a)
ϕ−→ O(b)→ E → 0

by Proposition III.2.7. Since ϕ is minimal, it follows from Proposition III.2.1 that E repre-
sents an isomorphism class in M0(a, b).

Conversely, suppose M0(a, b) is nonempty and a is nonempty. Then there is a minimal
map ϕ ∈ Hom(O(a),O(b)) where cokerϕ is a rank r bundle E . Since ϕ is minimal, it follows
that Il(ϕ) ⊆ I1(ϕ) ⊆ m is a proper ideal. By Proposition III.2.7, we have depth Il(ϕ) = n+1.
By the main theorem in [19], we have depth Il(ϕ) ≤ l + r − l + 1 = r + 1. It follows that
we must have r ≥ n. Now suppose on the contrary that there is an index 1 ≤ i ≤ l where
ai ≤ bn+i. Since ϕ is minimal, we see that the (n + i, i)-th entry in the matrix of ϕ must
be zero. In fact, since a and b are in ascending order, we must have a block of zeros of size
(l + r − n− i+ 1)× i as the following

a1 · · · ai · · · al



b1
...
...

bn+i 0 · · · 0
...

...
...

...
...

...
...

...
...

bl+r 0 · · · 0

.

By Lemma III.2.6, we conclude that

depth Il(ϕ) ≤ l + r − l + 1− inf(l + r − n+ 1, l + r + 1) + inf(l + r − n+ 1, l)

= r + 1− (l + r − n+ 1) + l

= n.

This is a contradiction to the fact that depth Il(ϕ) = n+ 1.
Now we prove the last statement. It is obvious when a is empty, so we assume a is

nonempty. The set Hom(O(a),O(b)) has the structure of the closed points of an affine space
AN . The subset of minimal maps is an affine subspace AM . There is a tautological morphism

Φ :
l⊕

i=1

OPn
AM

(−ai)→
l+r⊕
i=1

OPn
AM

(−bi),

where the fiber ΦP for a closed point P of AM is given by the minimal map that P corresponds
to. By Lemma III.2.5, the set U of points in AM where depth Il(ΦP ) ≥ n+ 1 is open. Since
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there is a morphism ϕ ∈ Hom(O(a),O(b)) whose cokernel is a bundle E ∈ M0(a, b), by
Proposition III.2.7 the map ϕ corresponds to a closed point in U . It follows that U is open
and dense in AM .

Recall that the category of bundles on Pn
k is a Krull-Schmidt category [2], i.e. every

bundle E admits a decomposition E ∼= E0 ⊕ O(c), unique up to isomorphism, where E0 has
no line bundle summands.

Corollary III.2.8. Let E ∈ M0(a, b) for some a nonempty. If E ∼= E0 ⊕ O(c) is the
Krull-Schmidt decomposition of E , then n ≤ rank E0 ≤ max{j | al > bl+j}.

Proof. Set s := max{j | al > bl+j} and define b′ := b1, . . . , bs. Let π : O(b) → O(b′) be the
coordinate projection. If ϕ ∈ Hom(O(a),O(b′)) is a minimal map whose cokernel is a bundle
E , then we claim that ϕ′ := π ◦ϕ is a minimal map in Hom(O(a),O(b)) whose cokernel is a
bundle E ′. To see this, observe that since al ≤ bl+i for s < i ≤ r and ϕ is minimal, the last
(r−s) rows of the matrix representing ϕ relative to any bases are zero. In particular, we have
Il(ϕ) = Il(π ◦ ϕ). By Proposition III.2.7, the cokernel of ϕ′ is a bundle. It follows from the
snake lemma that E ∼= E ′ ⊕L , where L is the kernel of the projection π. This shows that
rank E0 ≤ s. Observe that E0 also satisfies (†) and thus rank E0 ≥ n by Theorem III.2.4.

Finiteness

In this subsection, we show that there are only finitely many possible Betti numbers for
bundles in M0 with given rank, first Chern class and bounded regularity.

Recall that a coherent sheaf F on Pn
k is said to be d-regular if H i(F (d− i)) = 0 for all

i > 0 [see 79, Lecture 14]. The Castelnuovo-Mumford regularity (shorthand regularity) of
F is the least integer d such that F is d-regular. By the semicontinuity of cohomologies,
being d-regular is an open condition for a family of coherent sheaves on Pn

k . The notion of
regularity also exists for graded R-modules [see 21].

If E ∈ M0(a, b), then reg E = max(b, a − 1). Since the regularity depends only on the
Betti numbers, we define reg(a, b) := max(b, a− 1) for any admissible pair (a, b).

Proposition III.2.9. There are only finitely many possible Betti numbers (a, b) of rank r
bundles on Pn

k satisfying (†) with fixed first Chern class c1 and regularity ≤ d.

Proof. Set a = (ai)
l
i=1 and b = (bi)

l+r
i=1 for some l ≥ 0. Since c1 =

∑l
i=1 ai −

∑l+r
i=1 bi, the

statement is evidently true for direct sums of line bundles. Thus we may consider the case
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l > 0. Since ai and bi are bounded above by d + 1, we only need to show that l is bounded
above and b1 is bounded below. Consider the following inequalities

l ≤
l∑

i=1

(ai − bi+n)

= c1 +
n∑
i=1

bi +
l+r∑

i=l+n+1

bi

≤ c1 + r · d.

And similarly,

b1 = −c1 −
n∑
i=2

bi −
l+r∑

i=l+n+1

bi +
l∑

i=1

(ai − bi)

≥ −c1 − (r − 1) · d+ l.

This generalizes the observation of Dionisi-Maggesi [17] for the case n = r = 2.

Hilbert functions of bundles

In this subsection, we classify the Hilbert functions of bundles in M0. We introduce an
efficient way to represent and generate them up to a bounded regularity.

Recall that the Hilbert function of a bundle E on Pn
k is the function HE (t) : Z→ Z given

by HE (t) := dimkH
0(E (t)). For any function H : Z→ Z, we defineM0(H) to be the subset

of M0 consisting of isomorphism classes of bundles with Hilbert function H.

Definition III.2.10. The numerical difference of a function H : Z → Z is a function
∂H : Z→ Z given by ∂H(t) := H(t)−H(t− 1). We inductively define ∂i+1H := ∂∂iH.

Note that if H : Z → Z is a function such that H(t) = 0 for t � 0, then H can be
recovered by its i-th difference ∂iH for any i ≥ 0.

Theorem III.2.11. A function H : Z → Z is the Hilbert function of a rank r bundle
E ∈M0 if and only if

1. ∂nH(t) = 0 for t� 0 and ∂nH(t) = r for t� 0,

2. ∂nH(t+ 1) < ∂nH(t) implies that ∂nH(t+ 1) ≥ n.

Proof. Let µ(d, t) denote the number of times an integer t occurs in the sequence d.
(=⇒): Suppose E is a rank r bundle in M0(H). The Grothendieck-Riemann-Roch

formula states that

χ(E (t)) =

∫
Pn

ch(E (t)) · td(TPn).
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A routine computation shows that the leading coefficient of the Hilbert polynomial χ(E (t))
is r · tn/n!. Since the Hilbert function H eventually agrees with the Hilbert polynomial, we
see that ∂nH(t) = 0 for t� 0 and ∂nH(t) = r for t� 0.

Let (a, b) be the Betti numbers of E . If a is empty, then E is a direct sum of line bundles
and ∂nH is monotone nondecreasing and thus satisfies both conditions. We prove the case
where a is non-empty. Consider the minimal free resolution

0→ R(a)→ R(b)→ H0
∗ (E )→ 0.

A simple calculation shows that ∂n+1H(R(−a), t) is the delta function at a. It follows from
the minimal resolution that ∂n+1H(t) = µ(b, t)− µ(a, t). Suppose ∂nH(t + 1) < ∂nH(t) for
some t, then ∂n+1H(t + 1) < 0 and thus µ(a, t + 1) > 0. Let j be the largest index where
aj = t+ 1. By Theorem III.2.4, we have aj > bj+n and therefore

∂nH(t+ 1) =
∑
i≤t+1

∂n+1H(i) =
∑
i≤t+1

(µ(b, i)− µ(a, i)) ≥ j + n− j = n.

(⇐=): Conversely, suppose H satisfies the conditions of the theorem. We define the
ascending sequences of integers α and β by the property that for all t ∈ Z,

µ(α, t) = max{0, ∂nH(t− 1)− ∂nH(t)}, µ(β, t) = max{0, ∂nH(t− 1)− ∂nH(t)}.

By the first condition on H, the sequences α and β are finite. Furthermore, if α has length l
then β has length l + r. The second condition on H implies that ai ≥ bi+n for all 1 ≤ i ≤ l.
Since α and β share no common entries by construction, it follows that ai > bi+n for all
1 ≤ i ≤ l. By Theorem III.2.4, there is a rank r bundle E inM0 with Betti numbers (α, β).
The Hilbert function of E is H by the reasoning of the previous direction.

The above theorem suggests that we use the finitely many intermediate values of ∂nH to
encode the infinitely many values of the Hilbert function H.

Definition III.2.12. A finite sequence of integers B = B1, . . . , Bm for some m ≥ 1 is called
a bundle sequence of rank r on Pn

k if it satisfies the following:

1. Bi > 0 for 1 ≤ i ≤ m,

2. Bm = r and Bm−1 6= r,

3. Bi+1 < Bi implies Bi+1 ≥ n.

If E is a rank r bundle in M0(H) for some Hilbert function H, then we set

s0 := inf{t | ∂nH(t) 6= 0}, s1 := sup{t | ∂nH(t) 6= r}.

The sequence ∂nH(s0), ∂nH(s0 + 1), . . . , ∂nH(s1 + 1) is a bundle sequence of rank r by
Theorem III.2.11, which we call the bundle sequence of H and of E .
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By Theorem III.2.11, there is a one-to-one correspondence between the set of Hilbert
functions of rank r bundles in M0 up to shift and the set of bundles sequences of rank r.
The ambiguity of shift disappears if we deal with normalized bundles.

Definition III.2.13. We say a rank r bundle on Pn
k is normalized if −r < c1(E ) ≤ 0. Since

c1(E (t)) = c1(E ) + r · t, it follows that every bundle can be normalized after twisting by the
line bundle O(−dc1(E )/re).

We define the degree of a bundle sequence B = B1, . . . , Bm, denoted by degB, to be the
sum B1 + · · ·+Bm.

Proposition III.2.14. If a normalized rank r bundle E ∈M0 has bundle sequence B, then
reg E ≥ ddegB/re − 2.

Proof. Suppose E has Betti numbers (a, b) and Hilbert function H. We set c := max(al, bl+r)
and s1 := sup{t | ∂nH(t) 6= r}. It follows from the short exact sequence

0→ R(a)→ R(b)→ H0
∗ (E )→ 0

that s1 < c. We have

c1(E ) =
l∑

i=1

ai −
l+r∑
i=1

bi = −
∑
t

t · ∂n+1H(t) = −
∑
t

t · (∂nH(t)− ∂nH(t− 1))

=
∑

t≤s1+1

t · ∂nH(t− 1)−
∑

t≤s1+1

t · ∂nH(t)

=
∑
t≤s1

∂nH(t)− (s1 + 1) · r = degB − (s1 + 2) · r ≥ degB − (c+ 1) · r.

Since E is normalized, we must have c ≥ ddegB/re − 1. Finally, regularity E is c or c − 1
depending on whether bl+r ≥ al − 1 or not.

Proposition III.2.15. If B = B1, . . . , Bm is a bundle sequence of rank r and degree d, then
B′ = B2, . . . , Bm is a bundle sequence of rank r and degree d−B1.

It follows from Proposition III.2.14 and Proposition III.2.15 that we can inductively
generate, in the form of bundle sequences, all Hilbert functions of normalized bundles inM0

up to any bounded regularity. The generation of these bundle sequences can be reduced to
a partition problem with constraints.

Example III.2.16. The following are all bundles sequences of rank 4 and degree 9 on P3
k

{(15, 4), (13, 2, 4), (12, 3, 4), (1, 22, 4), (2, 3, 4), (5, 4)}.

Here we use tj to denote the sequence of j copies of t.
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Table 2: All rank 2 bundle sequences on P2
k of regularity ≤ 2

c1 = 0
c2 Bundle sequence reg semistable
-4 1,1,1,1 2 no
-1 1,1 1 no
0 ∅ 0 yes
0 1,1,1,3 2 no
1 1,3 1 yes
2 1,2,3 2 yes
2 4 1 yes
3 1,1,4 2 yes
3 3,3 2 yes
4 2,4 2 yes
5 1,5 2 yes
6 6 2 yes

c1 = −1
c2 Bundle sequence reg semistable
-6 1,1,1,1,1 2 no
-2 1,1,1 1 no
0 1 0 no
1 1,1,3 2 no
1 3 1 yes
2 2,3 2 yes
3 1,4 2 yes
5 5 2 yes

Example III.2.17. Table 2 lists all the rank 2 bundles sequences of regularity ≤ 2 on P2
k.

These completely classify the Hilbert functions of normalized rank two bundles of regularity
≤ 2 on P2

k.

Semistability

In this subsection, we address the following question. Do the Betti numbers determine
the semistability of a bundle in M0? If so, is there a criterion?

Here we use µ-semistability, where µ(F ) := c1(F )/ rank(F ) for any torsion-free coherent
sheaf F on Pn

k . The results are similar for Hilbert polynomial semistability as in [72].

For r < n, all rank r bundles E ∈M0 are direct sums of line bundles by Theorem III.2.4,
which are not semistable except for O(d)r. The main result in [7] states that if E ∈M0 has
rank r = n, then E is semistable if and only if its Betti numbers (a, b) satisfy b1 ≥ µ(E ) =
(
∑l

i=1 ai −
∑l+n

i=1 bi)/n. The latter condition is obviously necessary.

The following example demonstrates that for r > n, the semistability of a bundle inM0

is not determined by its Betti numbers in general.

Example III.2.18. For any r > n, consider (a, b) where

a1 = 2, bi =

{
0 1 ≤ i < r
1 r ≤ i ≤ r + 1.
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Let ϕ and ψ be two maps in Hom(O(a),O(b)) defined by the matrices

(0, . . . , x2
0, . . . , x

2
n−1, xn, 0)T , (0, . . . , x2

0, . . . , x
2
n−2, xn−1, xn)T

respectively. Then E1 := cokerϕ and E2 := cokerψ are rank r bundles satisfying (†) with
Betti numbers (a, b) by Proposition III.2.7. Furthermore, it is easy to see that E1

∼= E ′1 ⊕
O(−1)⊕Or−n−1 and E2

∼= E ′2 ⊕Or−n for some rank n bundles E ′1 and E ′2 respectively. Since
µ(E1) = µ(E2) = 0, it is clear that E1 is not semistable. On the other hand, the bundle E ′2
is semistable by the criterion for the case r = n stated above. Since both E ′2 and Or−n are
semistable bundles with µ = 0, it follows that so is E2.

The main reason to discuss semistability is that we might hope for a coarse moduli
structure on the set M0(a, b). However, the above example illustrates the difficulty. In
Section III.3 we will define a topology on M0(a, b), where the semistable bundles form an
open subspace M0(a, b)ss. The space M0(a, b)ss supports the structure of a subscheme of
M(χ), the coarse moduli space of semistable torsion-free sheaves with Hilbert polynomial
χ, whose existence is established by Maruyama [see 72].
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III.3. A Description of the Moduli

The setM0 is the disjoint union ofM0(H) for all possible Hilbert functions H which are
classified by Theorem III.2.11. In this section we define a natural topology on M0(H) and
study how M0(H) is stratified by bundles with different Betti numbers. In the following,
we fix a Hilbert function H satisfying the conditions of Theorem III.2.11.

The graded lattice of Betti numbers

In this subsection we show that all possible Betti numbers of bundles in M0(H) form a
graded lattice, such that those with bounded regularity form a finite sublattice.

Definition III.3.1. We define Betti(H) to be the set of Betti numbers (a, b) of bundles in
M0(H). There is a grading Betti(H) =

⊔
q Bettiq(H), where

Bettiq(H) := {(a, b) ∈ Betti(H) | a and b have exactly q entries in common}.

We remark that Betti(H) is infinite in general without restrictions on regularity. This is
due to the fact that the Hilbert function H only bounds regularity from below (see Propo-
sition III.2.14) but not above, as the following example demonstrates.

Example III.3.2. Let (a, b) ∈ Betti(H). For some arbitrarily large integer c, regarded as a
singleton sequence, the pair (a, b)+ c, defined in according to Definition III.3.4, is admissible
by Theorem III.2.4. Note that any bundle with these Betti numbers has a line bundle
summand by Corollary III.2.8.

Proposition III.3.3. There is a unique element in Betti0(H), which we denote by (α, β).

Proof. The construction of an element in Betti0(H) is given in the proof of Theorem III.2.11.
Recall from the proof of Theorem III.2.11 that ∂n+1H(t) = µ(α, t)−µ(β, t). The uniqueness
of (α, β) follows from the fact that either µ(α, t) = 0 or µ(β, t) = 0 by assumption.

We now define a partial order on all pairs of increasing sequences of integers.

Definition III.3.4. Let a, b, c be three finite sequences of integers in ascending order. The
sum a+ c is defined be the sequence obtained by appending c to a and sorting in ascending
order. It is clear that this operation is associative.

We define (a, b) + c to be the pair (a+ c, b+ c). If (a′, b′) = (a, b) + c for some c, then we
say (a, b) is a generalization of (a′, b′) and write (a, b) (a′, b′).

It is a consequence of Theorem III.2.4 that admissibility is stable under generalization.

Lemma III.3.5. If (a, b) (a′, b′) and (a′, b′) is admissible, then so is (a, b).
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Proof. By induction, it suffices to prove the case where a′ and b′ have a common entry c at
index p and q respectively, and that (a, b) is obtained from (a′, b′) by removing a′p and b′q.
We may assume that p and q are the largest indices where a′p = c and b′q = c respectively.
For i < p, we have ai = a′i. But i + n < q and bi+n = b′i+n for i < p since q > n + p by
Theorem III.2.4. Therefore ai > bi+n for i < p. In this case, bl+n = b′l+n and al > bl+n. For
i > p, we have ai−1 = a′i > c. In this case, either i+n ≤ q, in which case bi+n−1 ≤ c < ai−1; or
i+n > q, and bi+n−1 = b′i+n thus bi+n−1 < ai−1. We conclude that (a, b) is also admissible.

Corollary III.3.6. Every (a, b) in Betti(H) is of the form (α, β) + c for some c.

The main theorem of this subsection is the following.

Theorem III.3.7. The set Betti(H) has the structure of a graded lattice given by the partial
order  and the grading Betti(H) =

⊔
q Bettiq(H).

For the clarity of the proof, we first establish two lemmas.

Lemma III.3.8. If c and d are two distinct integers (considered as singleton sequences)
such that both (a, b) + c and (a, b) + d are admissible, then so is (a, b) + c+ d.

Proof. The lemma is simple, but the notations may make it appear more complicated than
it is. Nonetheless, we include a proof here for the sake of completeness.

For an ascending sequence d and an integer t, let p(d, t) denote the largest index i where
di = t. We may assume c < d, and write (a′, b′) := (a, b) + c, (a′′, b′′) := (a, b) + d and
(a′′′, b′′′) := (a, b) + c+ d.

Since (a′, b′) is admissible, we have p(a′, c) < p(b′, c) − n. Since c < d, it follows that
p(a′′′, c) = p(a′, c) and p(b′′′, c) = p(b′, c). We conclude that p(a′′′, c) < p(b′′′, c) − n. Since
(a′′, b′′) is admissible, we have p(a′′, d) < p(b′′, d)− n. Since c < d, it follows that p(a′′′, d) =
p(a′′, d) + 1 and p(b′′′, d) = p(b′′, d) + 1. We conclude that p(a′′′, d) < p(b′′′, d) − n. Finally,
we show that (a′′′, b′′′) is admissible. For i < p(a′′′, d), we have i + n < p(b′′′, d) and thus
a′′′i = a′i > b′i+n = b′′′i+n. For p(b′′′, c) − n < i, we have p(a′′′, c) < i and thus a′′′i = a′′i−1 >
b′′i+n−1 = b′′′i+n. For p(a′′′, d) ≤ i ≤ p(b′′′, c)− n, we have ai ≥ d > c ≥ bi+n.

Lemma III.3.9. If c is an integer sequence and d is an integer (considered as a singleton
sequence) not appearing in c, such that both (a, b) + c and (a, b) + d are admissible, then so
is (a, b) + c+ d.

Proof. By Lemma III.3.5 and Lemma III.3.8, the pair (a, b) + c1 + d is admissible. Applying
Lemma III.3.8 again with (a, b) + c1 in place of (a, b), we see that (a, b) + c1 + c2 + d is
admissible. By induction it follows that (a, b) + c+ d is admissible.

Proof of Theorem III.3.7. If (a′, b′) ∈ Bettii(H) and (a, b) ∈ Bettij(H) such that (a′, b′) =
(a, b) + c for some c, then obviously i ≥ j. The cover relations in Betti(H) are given exactly
by adding singleton sequences. It follows that (Betti(H), ) is a graded poset.
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Suppose (a, b) and (a′, b′) are in Betti(H). By Corollary III.3.6, there are sequences c
and c′ such that (a, b) = (α, β) + c and (a′, b′) = (α, β) + c′. We define min(c, c′) to be
the descending integer sequence where an integer t occurs min(µ(c, t), µ(c′, t)) times, and
similarly for max(c, c′).

Clearly (a, b) + min(c, c′) (a, b) + c and thus is admissible by Lemma III.3.5. It follows
that (a, b) + min(c, c′) is the meet of (a, b) and (a′, b′) in Betti(H).

We claim that (a, b) + max(c, c′) is admissible, and thus it is the join of (a, b) and (a′, b′)
in Betti(H). To see this, we may replace (a, b) by (a, b) + min(c, c′) and assume that c and c′

have no common entries. By Lemma III.3.9, we see that (a, b)+c+c′1 is admissible. Applying
Lemma III.3.9 again with (a, b) + c′1 in place of (a, b), we conclude that (a, b) + c′1 + c+ c′2 is
admissible. By induction, it follows that (a, b) + c′ + c is admissible.

For any integer d, let Betti(H)≤d denote the subset of Betti numbers of bundles that are
d-regular. The set Betti(H)≤d inherits a grading

⊕
q≥0 Bettiq(H)≤d, where Bettiq(H)≤d :=

Bettiq(H) ∩ Betti(H)≤d.

Corollary III.3.10. For any integer d, the set Betti(H)≤d is a finite graded lattice isomor-
phic to the lattice of subsequences of some sequence c.

Proof. If (a, b) (a′, b′), then reg(a, b) ≤ (a′, b′). If (a′′, b′′) is the join of (a, b) and (a′, b′) in
Betti(H), then the regularity of (a′′, b′′) is the maximum of those of (a, b) and (a′, b′) by the
construction in the proof of Theorem III.3.7. It follows that Betti(H)≤d is a graded lattice.
The finiteness of Betti(H)≤d follows from Proposition III.2.9. Thus there is a maximum
element of the form (α, β) + c for some sequence c. By Lemma III.3.5, we see that

Bettiq(H)≤d = {(α, β) + c′ | c′ is a subsequence of c of length q}.

Example III.3.11. Let H be the Hilbert function of a normalized bundle on P3
k with

bundle sequence (5, 4). With the same notation as in Example III.2.16, the minimal element
of Betti(H) is given by α = (0) and β = (−15). The maximum element of Betti(H)≤2 is
(α, β) + c, where c = (0, 1, 2). In particular,

Bettiq(H)≤2 = {(α, β) + c′ | c′ is a subsequence of (0, 1, 2) of length q}

and Betti(H)≤2 is isomorphic to the lattice of subsequences of (0, 1, 2).

The stratification

In this subsection, we define a natural topology on M0(H). We then describe the strat-
ification of M0(H) by locally closed subspaces M0(a, b).
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Definition III.3.12. Let (a, b) ∈ Betti(H). Let A(a, b) denote the structure of the affine
space on the vector space Hom(O(a),O(b)). The minimal maps form an affine subspace
A0(a, b) in A(a, b). We define the subset of matrices whose maximal minors have maximal
depth

Mat(a, b) := {ϕ ∈ A(a, b) | depth Il(ϕ) ≥ n+ 1},

Mat0(a, b) := {ϕ ∈ A0(a, b) | depth Il(ϕ) ≥ n+ 1}.

As in the proof of Theorem III.2.4, the subset Mat(a, b) and Mat0(a, b) are open subvarieties
of A(a, b) and A0(a, b) respectively. For A = A(a, b) and A0(a, b), the tautological morphism

Φ :
l⊕

i=1

OPnA
(−ai)→

l+r⊕
i=1

OPnA
(−bi)

gives a tautological family of sheaves E := coker Φ over A, which pulls back to a family
of bundles E (a, b) and E 0(a, b) satisfying (†) over Mat(a, b) and Mat0(a, b) respectively by
Proposition III.2.7.

Let G(a, b) denote the algebraic group Aut(O(a)) × Aut(O(b)). The natural action ρ :
G(a, b)×A(O(a),O(b))→ A(O(a),O(b)) given by (f, g)× ϕ 7→ f ◦ ϕ ◦ g is a morphism of
algebraic varieties. The action ρ leaves the subspace of minimal maps invariant. Since the
change of coordinates does not change the ideal of maximal minors, it follows that the open
subvarieties Mat(a, b) and Mat0(a, b) are stable under the G(a, b)-action.

Lemma III.3.13. Two maps ϕ, ψ ∈ Mat(a, b) are in the same G(a, b)-orbit if and only if
cokerϕ ∼= cokerψ.

Proof. Clearly if ϕ, ψ are in the same G(a, b)-orbit then cokerϕ ∼= cokerψ. Conversely, let
E := cokerϕ and E ′ := cokerψ. Then the isomorphism of the R-modules H0

∗ (E ) ∼= H0
∗ (E

′)
lifts to an isomorphism of free resolutions

0 R(a) R(b) H0
∗ (E ) 0

0 R(a) R(b) H0
∗ (E

′) 0.

f ∼=

ϕ

g ∼= ∼=

ϕ′

It follows that ϕ, ϕ′ are in the same G(a, b)-orbit.

Proposition III.2.7 and Lemma III.3.13 imply that the setM0(a, b) supports the structure
of the quotient topological space Mat0(a, b)/G(a, b). Similarly, we letM0(a, b) denote the
subset of M0 consisting of isomorphism classes of bundles E that admit a (not necessarily
minimal) free resolution of the form

0→ R(a)→ R(b)→ H0
∗ (E )→ 0.
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Then Lemma III.3.13 also implies that the setM0(a, b) supports the structure of the quo-
tient topological space Mat(a, b)/G(a, b). Clearly the inclusion of setsM0(a, b) ⊆M0(a, b) 

is an inclusion of topological spaces.

Lemma III.3.14. If (a, b) (a′, b′) in Betti(H), thenM0(a, b) is a subspace ofM0(a′, b′) .
In particular, M0(a, b) is a subspace of M0(a′, b′) .

Proof. Let (a′, b′) = (a, b) + c for some c. Consider an injective morphism ι : Mat(a, b) →
Mat(a′, b′) given by ϕ 7→ ϕ⊕ IdL (c). It is not hard to see that the ideal of maximal minors
does not change under this map, and thus ι is well-defined. Suppose ϕ, ψ are two morphisms
in Mat(a, b) such that ϕ ⊕ IdL (c) and ψ ⊕ IdL (c) are in the same G(a′, b′)-orbit. It follows
that cokerϕ ⊕ IdL (c)

∼= cokerψ ⊕ IdL (c). Since cokerϕ ∼= cokerϕ ⊕ IdL (c) and cokerψ ∼=
cokerψ⊕ IdL (c), we conclude that cokerϕ ∼= cokerψ. It follows from Lemma III.3.13 that ϕ
and ψ are in the same G(a, b)-orbit. This shows that the composition

Mat(a, b)→Mat(a′, b′)→M0(a′, b′) 

induces an injection of topological spaces on the quotient M0(a, b) ↪→M0(a′, b′) .

For each integer d, the set Betti(H)≤d is a finite lattice by Corollary III.3.10 and thus
has a maximum element (a′, b′). It follows from Lemma III.3.14 that every d-regular bundle
E in M0(H) admits a (not necessarily minimal) free resolution of the form

0→ L(a′)→ L(b′)→ H0
∗ (E )→ 0.

Let M0(H)≤d be the subspace of M0(H) consisting of isomorphism classes of d-regular
bundles. Then by Lemma III.3.13, the set M0(H)≤d supports the structure of the quotient
topological space Mat(a′, b′)/G(a′, b′).

It follows from Lemma III.3.14 and the construction above that if d < d′, thenM0(H)≤d
is a subspace of M0(H)≤d′ . Finally, we can now define a topology on M0(H) by

M0(H) = lim−→
d

M0(H)≤d.

Proposition III.3.15. For each integer d, the subspace M0(H)≤d is open in M0(H).

Proof. We need to show that M0(H)≤d is open in M0(H)≤d′ for any d′. Let (a′, b′) be the
maximum element in Betti(H)≤d′ , and consider the quotient map π :M(a′, b′)→M0(H)≤d′ .
By the semicontinuity of cohomologies, the fibers of the tautological family E (a′, b′) are d-
regular over an open subset of M(a′, b′). It follows that M0(H)≤d is the image of this open
subset under π, and thus is an open subspace of M0(H)≤d′ .

Proposition III.3.16. The topological space M0(H) is irreducible and unirational.
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Proof. For d� 0, the subspaceM0(H)≤d is dense inM0(H). SinceM0(H)≤d is the quotient
of Mat(a′, b′), where (a′, b′) is the maximum element of Betti(H)≤d, it follows thatM0(H)≤d
is irreducible and unirational, and thus so is M0(H).

The main result of this subsection is the following.

Theorem III.3.17. The closed strata M0(a, b) in M0(H) form a graded lattice dual to
Betti(H) under the partial order of inclusion. Furthermore, the intersection of two closed

strataM0(a, b) andM0(a′, b′) is again a closed stratumM0(a′′, b′′), where (a′′, b′′) is the join
of (a, b) and (a′, b′) in the lattice Betti(H).

The theorem needs several standard lemmas on the behavior of resolutions in families
with constant Hilbert functions. We include proofs here for the lack of appropriate references.

Lemma III.3.18. Let E ′ ∈ M0(a′, b′) and suppose (a, b)  (a′, b′). Then there is a family
of bundles E on Pn

k over a dense open set U ⊂ A1 containing the origin 0 ∈ A1, such that
E0
∼= E ′ and Et ∈M0(a, b) for any closed point 0 6= t ∈ U .

Proof. Suppose (a′, b′) = (a, b) + c. By Lemma III.3.5, the pair (a, b) is admissible. Let
ψ ∈ Mat0(a′, b′) be a minimal presentation of E ′, and let ϕ ∈ Mat0(a, b) be a minimal
presentation of a bundle E . Set ϕ′ = ϕ⊕ IdO(c) and consider the morphism Φ : O(b′)×A1 →
O(a′)×A1 whose fiber over a closed point t ∈ A1 is given by Φt := ψ+t·ϕ′. By Lemma III.2.5,
the morphism Φt ∈Mat(a′, b′) for all closed points t in an open dense set U ⊂ A1 containing
0. This shows that coker Φt ∈M0(a, b) for t ∈ U . We show that in fact coker Φt ∈M0(a, b)
for all 0 6= t ∈ U . Let t 6= 0 be any closed point of U . Since ψ is minimal and ϕ′ induces an
isomorphism on the common summand O(c)

∼−→ O(c), it follows that Φt also splits off the

common summand O(c)
t−→ O(c). Since ϕ does not split off any common summands other

than those of O(c), neither does Φt by Nakayama’s lemma. It follows that the free resolution

0→ R(a′)
Φt−→ R(b′)→ H0(Et)→ 0

contains a minimal one of the form

0→ R(a)→ R(b)→ H0
∗ (Et)→ 0.

Lemma III.3.19. Let E be a family of bundles on Pn
k satisfying (†) parametrized by a

variety T . If all fibers of E have the same Hilbert function H, then general fibers have the
same Betti numbers (a, b), and (a, b) (a′, b′) for the Betti numbers (a′, b′) of any fiber Et.

Proof. Let t ∈ T be a closed point. We may base change to Spec OT,t and reduce to the case
where T is an affine local domain. Letm be the maximal ideal of T with residue field k and set
RT := T [x, y, z] and R := k[x, y, z]. The module E :=

⊕
l∈ZH

0(E (l)) is finitely generated
over RT since E is a bundle. Since the fibers over T have the same Hilbert functions, it



CHAPTER III. BUNDLES 80

follows that E is flat over T . If
⊕l+r

i=1R(−b′i)
d−→ E ⊗T k is a minimal system of generators,

then by Nakayama’s lemma over generalized local rings, it lifts to a system of generators⊕l+r
i=1RT (−b′i)

dT−→ E. Since E is flat over T , so is ker dT and thus (ker dT ) ⊗T k ∼= ker d.
Applying this procedure again, we find a free resolution of E

F• : 0→
l⊕

i=1

RT (−a′i)→
l+r⊕
i=1

RT (−b′i)→ E → 0

that specializes to a minimal free resolution of E ⊗T k. It follows that F• ⊗T k(T ) is a free
resolution of the generic fiber which contains a minimal free resolution of the form

0→
j⊕
i=1

RT (−ai)⊗T k(T )→
j+r⊕
i=1

RT (−bi)⊗T k(T )→ E ⊗T k(T )→ 0.

We conclude that the general fibers Et have the Betti numbers (a, b) (a′, b′).

Lemma III.3.20. For (a, b), (a′, b′) ∈ Betti(H) the following are equivalent.

1. (a, b) (a′, b′),

2. M0(a, b) ⊇M0(a′, b′),

3. M0(a′, b′) ∩M0(a, b) 6= ∅,

4. M0(a, b) ⊆M0(a′, b′) .

Here all closures are taken within M0(H).

Proof. (1) =⇒ (2): Suppose (a′, b′) = (a, b) + c. Let ϕ ∈ Mat0(a, b) and ψ ∈ Mat0(a′, b′).
Consider the line Φ : A1 ↪→ A(a′, b′) defined Φ(t) := ψ+ t ·ϕ′, where ϕ′ = ϕ⊕ IdL (c). For an
open set U ⊂ A1 containing 0, the image Φ(t) is contained in Mat(a′, b′). By Lemma III.3.18,
the image of Φ(t) in the quotient M0(a′, b′) lies in M0(a, b) for t 6= 0. It follows that the
image of ψ inM0(a′, b′) is contained in the closure ofM0(a, b) inside the spaceM0(a′, b′) .
Since ψ represents an arbitrary point ofM0(a′, b′), we conclude thatM0(a′, b′) is contained
in the closure of M0(a, b) in M0(a′, b′) , and therefore the same is true inside M0(H).

(2) =⇒ (3) is trivial.
(1) =⇒ (4) is proven in Lemma III.3.14.
(3) =⇒ (1): Let d := max(reg(a, b), reg(a′, b′)). Let (a′′, b′′) denote the maximum element

of Betti(H)≤d. Let π : Mat(a′′, b′′) → M0(H)≤d be the quotient map and set V to be

the preimage of M0(a, b) under π, endowed with the structure of a (reduced) subvariety
of Mat(a′′, b′′). Let E be the pullback of the tautological family of bundles E (a′′, b′′) on
Mat(a′′, b′′) to V . Since M0(a, b) is dense in M0(a, b), it follows that the fiber Ev over a
general point v ∈ V has Betti numbers (a, b). If p is a point in M0(a′, b′) that is in the
closure ofM0(a, b) and q is a point in π−1(p), then q ∈ V and Eq has Betti numbers (a′, b′).
Finally, an application of Lemma III.3.19 to the family E gives (a, b) (a′, b′).
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(4) =⇒ (1): If E is a bundle with a free resolution of the form

0→ L(b′)→ L(a′)→ H0
∗ (E)→ 0,

then it contains as a summand the minimal free resolution of E

0→ L(b)→ L(a)→ H0
∗ (E)→ 0

with a direct complement of the form

0→ L(c)
∼−→ L(c)→ 0

for some (a′, b′) = (a, b) + c. It follows that (a, b) (a′, b′).

Proof of Theorem III.3.17. The first statement follows directly from Lemma III.3.20. For
the same reason, it is clear thatM0(a′′, b′′) is in the intersection ofM0(a, b) andM0(a′, b′).

Let p be a closed point in the intersection of M0(a, b) and M0(a′, b′). We assume p ∈
M0(c, d) for some (c, d) ∈ Betti(H) sinceM0(H) is the disjoint union of these subspaces. By
Lemma III.3.20, it follows that (a, b) (c, d) and (a′, b′) (c, d). Since (a′′, b′′) (c, d) by

the definition of join, another application of Lemma III.3.20 shows that p ∈M0(a′′, b′′).

Last but not least, we discuss the semistable case where the description of the stratifica-
tion holds within the coarse moduli space.

By [73, Theorem 4.2], semistability is open for a family of torsion-free sheaves. Further-
more, the set of semistable torsion sheaves with a given Hilbert polynomial χ is bounded
in the sense of Maruyama, and thus have bounded regularity by [73, Theorem 3.11]. Let
M0(H)ss and M0(a, b)ss denote the subset of isomorphism classes of semistable bundles
in M0(H) and M0(a, b) respectively. It follows that M0(H)ss and all M0(a, b)ss are con-
tained in M0(H)≤d for some large enough integer d. Since M0(a, b)ss is open in M0(a, b)
and M0(H)ss is open in M0(H) by the similar reasoning as in Theorem III.3.15, it fol-
lows that the stratification of M0(H)ss by M0(a, b)ss has the same description as given in
Theorem III.3.17.

Let M(χ) denote the coarse moduli space of semistable sheaves on Pn
k with Hilbert

polynomial χ. We show that the spaces M0(H)ss and M0(a, b)ss are subschemes of M(χ).
Let Mat0(a, b)ss denote the open subscheme of Mat0(a, b) over which the fibers of the
tautological family of bundles E 0(a, b) are semistable. By the property of the coarse moduli
space, there is a map p0 : Mat0(a, b)ss →M(χ) inducing the family of semistable bundles.
By Lemma III.3.13, the isomorphism classes of the fibers are exactly given by the G(a, b)-
orbits. ThereforeM0(a, b)ss is a subscheme ofM(χ) with the image subscheme structure of
p0. Similarly, the space M0(H)≤d is also a subscheme of M(χ). Since M0(H)ss is an open
subspace of M0(H)≤d for some d� 0, the same is true for M0(H)ss.
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