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Abstract

Bayesian Hierarchical Models for Count Data

by

Kurtis Shuler

This dissertation focuses on the development of methodology for the analysis of

multivariate count responses. Such contexts present a number of unique mod-

eling challenges that are not well handled by standard models for count data

which have restrictive mean-variance and correlation structures. In addition to

being high-dimensional, sparse and overdispersed, multivariate count data often

exhibits complicated dependencies across categories and samples that must be

accounted for in order to obtain accurate inference. Three Bayesian modeling

strategies are presented to handle these challenges and produce accurate, inter-

pretable inference with uncertainty quantification. The first model incorporates

novel nonlocal priors for variable selection which outperform existing alternatives,

and introduces a process convolutions sub-model to handle temporally dependent

responses taken over uneven sampling intervals. The second applies Bayesian

nonparametric (BNP) methods based on a dependent Dirichlet process mixture

to flexibly model how category abundance levels and zero inflation are related to

covariates. The BNP approach facilitates community level comparisons across ex-

perimental conditions through density estimates that provide additional insights

over simple statistical tests or ordination analysis. The third model employs a di-

rected acyclic graph (DAG) to identify related response categories. The graphical

model does a better job uncovering network relationships than alternatives based

on simple marginal correlations, and, unlike simpler count data models, handles

cross-category dependence in a principled manner.
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Chapter 1

Introduction

The focus of this work is the analysis of multivariate count responses, where

each observation is a vector of integers representing the counts of some events

of interest. These multivariate response vectors are typically collected into an

observation matrix for analysis, with each row or column of the matrix consisting

of one of the response vectors, and this matrix is used for downstream analysis.

Because tabulating event counts coming from multiple categories is so often the

natural sampling method, such data arises in a wide variety of settings. In applied

ecology species/event counts are used to assess biodiversity and population dy-

namics (Johnson et al., 2010; Richards, 2008). Natural language processing appli-

cations use counts of words or other tokens for topic modeling, sentiment analysis,

and classification (Agarwal et al., 2011; Blei et al., 2003; McCallum et al., 1998;

Joachims, 1998). Read counts produced by RNA sequencing have been crucial in

producing new insights in transcriptomics and genetics (Lowe et al., 2017; Ozso-

lak and Milos, 2011; Robinson and Oshlack, 2010). The datasets analyzed in this

work are taken from microbiome studies, where taxa counts are used to analyze

the community of microbiata in some environment of interest.

Despite their ubiquity, adequately modeling multivariate count responses is
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typically not straightforward. Simple count models can be inadequate because

facets of the data generating processes and sample collection procedures compli-

cate analysis. Count data often exhibit dependence across both the rows and

the columns of the response matrix (Ren et al., 2017b). Across the samples, this

dependence can arise due to spatial or temporal structure, or through correlation

induced by batch/group-effects (Chen and Li, 2016; Li, 2015; Xu et al., 2017).

These effects can manifest via a number of different mechanisms, such as subsets

of the samples being produced by different individuals or labs; or through multiple

samples being taken from the same subject. Dependence is often observed across

the count categories as well (Chen and Li, 2016; Mandal et al., 2015; Ren et al.,

2017a; Weiss et al., 2017). As a result, analyzing the counts from each category

separately rather than jointly may result in reduced statistical power, inferior

uncertainty quantification, and, under the wrong assumptions, biased parameter

estimates (Ren et al., 2017b).

In many count data settings the counts do not reflect absolute abundance, but

rather are an abundance measure relative to the other counts (Grantham et al.,

2017). This is the case for natural language processing applications using “bag-

of-words” assumptions which simply count the occurrences of each word or token

in a document (Blei et al., 2003; Joachims, 1998; Zhang et al., 2010). In bag-of-

words models the features’ observed counts are a function of the document length

(Li et al., 2017). Similarly, the observed counts for RNA sequencing data is a

function of the effort put into the sequencing procedure (Li et al., 2017; Robinson

and Oshlack, 2010). To make them interpretable, such counts typically must be

normalized before analysis (Li et al., 2012, 2017; McMurdie and Holmes, 2014;

Robinson and Oshlack, 2010; Weiss et al., 2017). The choice of normalization

procedure is not simple, and can have a significant impact on the results of count
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data analysis (McMurdie and Holmes, 2014; Rivera-Pinto et al., 2018; Weiss et al.,

2017). Higher count values in these settings may not reflect higher certainty

about the abundances across categories or samples, but rather may be an artifact

of the effort put into the sampling procedure. Conversely, many simple count

models have restrictive mean-variance structures, which, if ignored, may have

inappropriate implications for uncertainty quantification and testing (Li et al.,

2017; Robinson and Smyth, 2007; Zhang et al., 2017b).

Count data is often sparse, exhibiting far more zero counts than would be ex-

pected under standard count distributions (Lee et al., 2018; Jonsson et al., 2018;

Xu et al., 2015; Zhang et al., 2017a). Count data is also often overdispersed, with

the count categories having higher variance than common Poisson or multinomial

models can accommodate (Jonsson et al., 2018; Zhang et al., 2017a). This si-

multaneous sparsity and overdispersion is in part why naively transforming count

data using log-transformations and modeling the data on a continuous scale is not

adequate to obtain sensible inference (O’Hara and Kotze, 2010). Zeros must be

replaced before the log-transformation, often by adding a small value known as a

pseudocount to the entire dataset or to the zero observations. There is no clear

consensus on how to pick the pseudocount, and its influence on the results can be

non-trivial (Weiss et al., 2017).

This work seeks to address these challenges through the development of Bayesian

models for count data with multivariate count responses, which are motivated by

microbiome studies. Methods are developed to handle row/column dependence in

the response matrix through model components that induce temporal and group

dependence across samples, as well as dependence across count categories. Careful

consideration is given to proper normalization procedures, as well as to handling

counts exhibiting zero inflation and overdispersion. These methods are developed
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in regression frameworks so covariate effects can be estimated, and special at-

tention is given to the problem of variable selection in these contexts. The next

section briefly describes the motivation for this dissertation, and §1.2 outlines its

main contributions and organization.

1.1 Motivation and Literature Review

The advent of widely available and, relative to the past, affordable high-

throughput sequencing (HTS) technology has led to a surge in interest in micro-

biome studies (Clooney et al., 2016; Reuter et al., 2015). Ambitious, high visibility

initiatives like the Human Microbiome Project continue to fuel this interest and

have underscored that microbiomes study may be the key to answering crucial

open questions in ecology, biology, and medicine (Knight et al., 2017; Turnbaugh

et al., 2007). In microbiome studies a sample of genetic material is taken from

an environment of interest and profiled to characterize the microbiata present in

that environment. Often, this profile is produced via 16S ribosomal RNA (rRNA)

amplicon sequencing of the genetic material from the sample. The 16S rRNA

gene is widespread and contains both highly conserved regions suitable for broad-

spectrum polymerase chain reaction (PCR) primer pairs and fast evolving regions

which can be used to classify the microbiata present in a sample (Sambo et al.,

2018). The foundation of these analyses consists of grouping together similar ge-

netic sequences to form Operational Taxonomic Units (OTUs) (Buza et al., 2019).

Counts of the similar sequence reads are used as a proxy for the microbiota present

in the sample and their abundance (Kurtz et al., 2015; Wadsworth et al., 2017).

Because of the nature of the data generating process, the total number of reads

for each OTU cannot be used as an absolute measure of the abundance of that

OTU; rather, OTU counts only reflect relative abundance and must be normal-
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ized before comparisons can be made across samples (Li et al., 2012, 2017; Weiss

et al., 2016, 2017). After pre-processing, the collection of OTU counts for each

sample are collected into a multivariate count response vector, and these vectors

are organized into a matrix called an OTU table for downstream analysis. Table

1.1 illustrates the layout of such a table. For an introduction to statistical analysis

of microbiome samples and a more detailed overview of how they are collected and

sequenced see Xia et al. (2018).

OTU 1 OTU 2 . . . OTU J Total
Sample 1 4,928 55 . . . 0 26,819
Sample 2 2,667 21 . . . 12 41,167
... ... ... . . . ... ...
Sample n 119 0 . . . 2 1,743

Table 1.1: Example of an OTU table. Each cell represents the count of a
particular OTU for that sample. The sum total, shown in the right margin, is
commonly used in procedures to normalize the counts across samples.

Broadly speaking, the questions that researchers seek to answer using this

data can be organized into three categories. The first concerns questions about

global interactions between the microbiome and some environmental factor (e.g.

phenotype, experimental condition, etc.). These studies may seek to address

how microbial diversity varies with some covariate, or to perform clustering on

microbiomes based on community composition (Arumugam et al., 2011; Gilbert

et al., 2016; Holmes et al., 2012; Lewis et al., 2015). Second, researchers may be

interested in local interactions like which taxa are associated with a particular

outcome; such as if certain taxa are present in a disease state (Frank et al., 2007;

Gilbert et al., 2016; Kostic et al., 2012; Ley et al., 2006; Mendes et al., 2011; Scher

et al., 2013). Third, questions may be posed regarding the interactions of taxa

within a microbiome (Levy and Borenstein, 2013; Louca et al., 2016; Zelezniak

et al., 2015). Some taxa may have microbe to microbe interactions, and knowing
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if and how taxa abundances fluctuate in tandem may help address key ecological

questions about the how the community functions.

The approaches taken to answer these questions range from classical statistical

tests to sophisticated regression models designed to handle the peculiar challenges

of modeling multivariate count data. Testing procedures, often permutation tests,

are commonly used to address questions of global interactions in the microbiome

(Anderson, 2001; Mann and Whitney, 1947; McArdle and Anderson, 2001; Zhao

et al., 2015); or, for a more qualitative view, ordination analysis, like principal

coordinate analysis (PCoA, also known as multidimensional scaling), to assess

the relative similarity of different microbial communities (Arumugam et al., 2011;

Gower, 1966; Oksanen et al., 2007; Ren et al., 2017a). Parametric tests are used

as for this purpose as well, such as in the popular DESeq2 software package,

which is designed detect changes across experimental conditions using count data

modeled with the negative binomial distribution (Love et al., 2014). To answer

questions about how covariates are related to taxa abundance many of the more

sophisticated statistical approaches involve fitting a generalized linear model to

the counts, or some transformation thereof. The popular software package edgeR,

for example, estimates the effects of environmental factors on abundance using

log-linear models with a negative binomial likelihood for the counts (Robinson

et al., 2010). On the Bayesian side, Wadsworth et al. (2017) suggest a Dirchlet-

Multinomial regression model with a spike-and-slab prior to identify significant

relationships between taxa abundance and environmental factors. The use of

multinomial likelihoods can simplify the problem of normalization across samples,

but it also induces a negative correlation across the count categories, which is often

an unrealistic assumption. To address this limitation, Grantham et al. (2017)

propose a mixed-effects model with a multinomial likelihood that uses a spike-
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and-slab prior for variable selection, but also incorporate additional structure to

allow for positive cross-taxa correlations. Ren et al. (2017b) propose a model with

a Dirichlet process prior on the marginal taxa compositions, such that the number

of taxa present in a sample are not constrained a-priori, and use the composition

vectors to make community level comparisons. Lee et al. (2018) model the counts

directly using a zero inflated Poisson distribution, with spike-and-slab priors for

variable selection and random effects to account for dependence across taxa. Xu

et al. (2017) propose a zero inflated negative binomial model in a longitudinal

context, with random effects to control for dependence structure arising from

samples being taken from related individuals (e.g. individuals from the same

family). Lee and Sison-Mangus (2018) develop a negative binomial regression

model for the counts in a temporal context, using a Laplace shrinkage prior on

the regression coefficients to improve their estimation in high-dimensional settings.

1.2 Contribution and Organization

The contribution of this work is the development of Bayesian models for the

analysis of multivariate count responses. These models address challenging as-

pects of count data analysis. Flexible normalization procedures for the responses

are proposed, and careful adjustments are made to account for dependence struc-

tures within and across samples. Methods to handle excess zero inflation and

overdispersed counts are introduced. Because these models were developed in the

context of microbiome analysis, special attention is given to features that help

address the questions that biologist seek to answer in these settings. Regression

models are proposed to answer questions about global interactions between the

microbiome and environmental factors. OTU abundances are modeled jointly to

facilitate borrowing strength across OTUs, and the relationships between individ-
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ual OTU abundances and covariates are made available as well. Variable selection

procedures are presented which offer superior performance over existing methods.

Bayesian nonparametric approaches which offer a more nuanced way to compare

microbial communities than simple statistical tests or ordination methods are in-

troduced. Inference about taxa interactions is given by a graphical model which

provides a much clearer view of networked taxa than current state of the art

methods which rely on analyzing correlations across taxa abundances.

Chapter 2 describes the development of a Bayesian sparse multivariate regres-

sion method to model the relationship between microbe abundance and environ-

mental factors for microbiome data. OTU abundance counts are modeled with

a negative binomial distribution that relates covariates to the counts through re-

gression. Relevant covariates and their effect directions are efficiently identified

through the construction of asymmetric nonlocal priors for the regression coeffi-

cients which extend conventional nonlocal priors. A hierarchical model is built

which facilitates pooling of information across OTUs and produces parsimonious

results with improved accuracy. Simulation studies compare variable selection

performance under the proposed model to those under Bayesian sparse regression

models with asymmetric and symmetric local priors and two frequentist mod-

els. The simulations show the proposed model identifies important covariates and

yields coefficient estimates with favorable accuracy compared with the alterna-

tives. The proposed model is applied to analyze an ocean microbiome dataset

collected over time to study the association of harmful algal bloom conditions

with microbial communities.

Chapter 3 introduces a Bayesian nonparametric regression model with zero in-

flation to analyze complex multivariate count data from microbiome studies. The

baseline counts of taxa in samples are carefully constructed to obtain improved
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estimates of differential abundance. A Bayesian nonparametric approach flexi-

bly models microbial associations with covariates such as environmental factors

and clinical characteristics. Importantly, the approach provides straightforward

community-level insights into how characteristics of microbial communities such

as taxa richness and diversity are related to covariates. Simulation studies show

the model outperforms popular alternatives. The model is then applied to a

chronic wound microbiome dataset, comparing the microbial communities present

in chronic wounds versus in healthy skin

For many microbiome analyses a key research task is to understand the mi-

crobiome as a whole, whose structure and function can be heavily affected by

microbe-microbe interactions and interactions with its environment. Chapter 4

presents a Bayesian regression model with a graph (BRM-G) for count data to

provide a holistic understanding of complex microbial communities. The model

employs a directed acyclic graph (DAG) to represent microbe-microbe interac-

tions. Inference is summarized through moralization of the DAG and inferred

interactions between microbes can be further validated through additional ex-

periments. A regression component is included to provide insights into how en-

vironmental factors and experimental conditions are related to taxa abundance.

In addition, the model simultaneously accounts for different sample sequencing

depths through model based normalization. A simulation study shows that, com-

pared to BRM-G, alternative methods that do not incorporate the interactions

between microbes or are based on simple marginal correlations among microbes

perform poorly in uncovering the complex interplay among microbial taxa. The

model is also applied to a microbiome dataset to identify groups of related taxa

in chronic wounds and healthy skin in human subjects.

Finally, chapter 5 summarizes the main contributions from chapter 2 to 4, and
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concludes with some possible future extensions.
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Chapter 2

Bayesian Sparse Multivariate

Regression with Asymmetric

Nonlocal Priors for Microbiome

Data Analysis

2.1 Introduction

Microbiome data are widely used in exploring microbial communities across

many disciplines including medicine, toxicology, immunology, ecology and envi-

ronmental sciences (Clooney et al., 2016; Knight et al., 2017; Aguiar-Pulido et al.,

2016). High-throughput sequencing of 16S ribosomal RNA (rRNA) gene ampli-

cons has enabled thorough profiling of the genetic contents of microbial communi-

ties, and provided opportunities to understand the interactions of microbes with

their environment and their hosts. Estimating changes in microbe abundance in

the community with respect to changes in candidate predictors can be formulated
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as a multivariate regression problem. When there are many candidate variables,

some variables may be redundant or irrelevant. Variable selection procedures are

commonly used to identify biologically interpretable and predictive covariates,

and subsequently to quantify their associations with microbial communities. As

a specific example, we consider the ocean microbiome dataset in Lee and Sison-

Mangus (2018) that consists of 263 operational taxonomic units (OTUs) in 150

samples collected at 54 time points. Ten candidate predictor variables, including

abundance levels of harmful algal bloom species (HAB species) as well as nutrient

and physical variables, were recorded to investigate their potential associations

with microbial communities. Nutrients such as ammonia, phosphate, and silicate

in seawater are closely related to each other, as shown in Figure 2.1(a) and (b),

because they are controlled by biological cycling in the ocean. In such contexts,

parsimonious models that include only a subset of the covariates truly associated

with microbial abundances are preferable. Microbiome data is typically high-

dimensional, sparse, and over-dispersed; and sampling procedures can introduce

complex dependencies in the resulting data. Constructing a sparse model that

allows for a flexible dependence structure across samples is crucial to obtain a

better understanding of the underlying biological processes.

An OTU represents a microbial taxa based on DNA sequence similarity of

taxonomic marker genes, such as the 16S rRNA gene, and microbiome data is

typically summarized with an OTU abundance table in a J ×N matrix, where J

and N are the numbers of OTUs and samples, respectively. Such data presents a

number of analytical challenges. The elements of the table are OTU counts which

can be used as a proxy for taxa abundances in a sample. However, the raw OTU

counts depend on the amount of effort put into the sequencing procedure for each

sample (the “sequencing depth”) and do not reflect absolute OTU abundances in

12
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Figure 2.1: [Ocean Microbiome Data] Panels (a) and (b): Scatterplots of selected
environmental factors from the ocean microbiome dataset. Panel (c): Heatmap
of the ocean microbiome OTU counts. Darker shades indicate larger counts.

the environment of interest, making abundance comparisons more difficult. For

statistical analysis OTU counts are commonly converted to normalized counts

(relative abundances) by dividing the raw counts by the total sample count or by

normalizing factors estimated through some other method (Witten, 2011; Zhang

et al., 2017a). While appealing for their simplicity, these normalization procedures

may introduce bias in parameter estimation, and their inflexibility can make in-

ference less robust (Li et al., 2017). Moreover, microbiome data typically has a

large J , and building models that can adequately limit false positive rates but still

can identify significant relationships between OTU abundance and environmental

factors is challenging. In addition, the variance of OTU counts tends to be greater

than the variance of multinomial or Poisson data, and a large proportion of OTUs

have negligible counts in most of the samples.

Many statistical methods have been proposed for microbiome data analysis,

including models to characterize community structure and to identify relationships

between OTUs and covariates. For association studies, Poisson, multinomial, and

negative binomial models are popular for modeling OTU counts, oftentimes with

the distribution means related to covariates through a link function (Paulson et al.,
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2013). Some of those works consider each OTU individually, ignoring community

structure (e.g, edgeR in Robinson et al. (2010) and negative binomial mixed model

(BhGLM) in Zhang et al. (2017a)). More recently, approaches of jointly modeling

all OTUs, mostly through a multinomial distribution, have been developed to

improve inference by borrowing strength across OTUs. See Chen and Li (2013);

Xia et al. (2013); Grantham et al. (2017); Wadsworth et al. (2017); Ren et al.

(2017a,b); Mao et al. (2017); Lee and Sison-Mangus (2018) among many others.

Wadsworth et al. (2017) and Mao et al. (2017) used a multinomial-dirichlet (MD)

regression model to relate a set of covariates to abundance counts. Wadsworth

et al. (2017) used spike-and-slab mixture priors to identify significantly associated

covariates. Mao et al. (2017) exploited a graph with the MD regression model

to efficiently detect difference in microbiome composition across different groups.

Ren et al. (2017a,b) proposed a Bayesian nonparametric approach for microbiome

data analysis using a multinomial likelihood and a Dirichlet process prior. Xia

et al. (2013) assumed a logistic normal multinomial model and used a group `1

penalized likelihood to estimate coefficients with variable selection. Chen and Li

(2013) also used a sparse group `1 penalty with a MD regression model. Lee

and Sison-Mangus (2018) proposed a Bayesian regression model using a negative

binomial likelihood with a Laplace prior for regression coefficients.

To enhance the search for an optimal subset of variables, we build on the model

in Lee and Sison-Mangus (2018) and develop a Bayesian sparse multivariate regres-

sion model equipped with a variable selection method using asymmetric nonlocal

priors (ANLPs), called ANLP-SB. We model counts Yij of OTU j in sample i with

a negative binomial distribution and utilize a log link function to relate the mean

counts µij to covariates. We let log(µij) = gij + x′iβj, where gij represents the

baseline mean count (intercept) of OTU j in sample i and βj is a vector of regres-
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sion parameters of size P for OTU j. The inferential goal is the estimation of a

J × P regression coefficient matrix, where the βjps are sparse and possibly inter-

related across OTUs. Motivated in part by the particular interest that biologists

often place on identifying the directions of covariate effects on OTU abundance in

microbiome studies, we construct ANLPs using a truncation mixture with three

components for βjp, each for exactly zero, positive and negative effects, where the

mixture weights are π?p = (π?p0, π
?
p1, π

?
p2). While assuming a point mass at zero

for βjp = 0, we assume normal distributions truncated below and above at latent

truncation parameter ιp for positive and negative values of βjp. The marginal

prior for nonzero βjp after integrating out ιp defines a valid NLP (Rossell and

Telesca, 2017) and, due to π?p1 6= π?p2, our NLP is asymmetric. NLPs place zero

probability density on {0} (see Figure 2.2 for an illustration) and are competitive

against a suite of other variable selection techniques (Johnson and Rossell, 2012;

Wu, 2016; Shin et al., 2018). Furthermore, NLPs improve both shrinkage and

variable selection in high-dimensional estimation settings (Rossell and Telesca,

2017). In our ocean microbiome data, the abundance levels of many OTUs may

have similar relationships with environmental factors including nutrient concen-

tration and phytoplankton abundances inherently, because these variables are

trophically-linked. Statistical inference can thus be improved by combining the

regression problems of individual OTUs through a hierarchical model. The hierar-

chical structure enables borrowing of information across OTUs, increasing power

for detecting important covariates and estimating their effects. We compare the

proposed ANLPs to the corresponding asymmetric local priors (ALPs) that as-

sume normal distributions truncated below and above at zero for βjp > 0 and

βjp < 0, and conventional symmetric local priors (SLPs) that assume N(0, σ2
p) for

βjp 6= 0. Simulation studies and real data analysis show favorable performance
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of ANLPs in identifying relevant covariates and coefficient estimation. For the

baseline mean count, we decompose gij into terms, each of which accounts for

differences in sequencing depth, variability in baseline OTU abundances, and de-

pendence across samples within an OTU. The model based normalization through

gij alleviates some pitfalls of using plug-in normalizing factors, and can further

improve identification of important covariates and estimation of their effects.

The remainder of the chapter is organized as follows. §2.2 describes the pro-

posed ANLP-SB model. §2.3 reports simulation studies to evaluate ANLP-SB

and compare it to alternative models including Bayesian regression models with

the ALP, SLP, and likelihood based methods. §2.4 summarizes analyses of the

ocean microbiome dataset, and we close with a discussion in §2.5.

2.2 Probability Model

2.2.1 Sampling Model

Samples are collected at n different time points, 0 < t1 < t2 < . . . < tn < T

with Ki replicates at time point ti, i = 1, . . . , n; and a sample is indexed by ti and

k. N = ∑n
i=1 Ki is the total number of samples. We let Yj = [Yt11j, . . . , YtnKnj]′

represent a N−dimensional response vector of OTU j, where Ytikj denotes the

count of OTU j in sample (ti, k). Let xti = [xti1, . . . , xtiP ]′ be a P -dimensional

vector of covariates, where xtip is the value of covariate p at time point ti. In the

remainder of the model description we suppress index i for simpler notation. For

OTU j, we consider a negative binomial (NB) regression model,

Ytkj | xt, µtkj, sj
indep∼ NB(µtkj(xt), sj), j = 1, . . . , J. (2.1)
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The model in (2.1) is parameterized such that the mean and variance of Ytkj are

µtkj and µtkj + µ2
tkjsj, respectively. We consider a log-linear model log(µtkj) =

gtkj + β′jxt, where gtkj represents the baseline mean count of OTU j in sample

(t, k) and βj = [βj1, . . . , βjP ]′ is a P -dimensional regression coefficient vector for

OTU j. The second term β′jxt explains the dependence of µtkj on xt, where each

effect acts multiplicatively on µtkj. Our principal inferential interest lies in the

estimation of the J × P matrix of coefficients βjp. The baseline mean count gtkj

accounts for different sample total counts and different baseline abundances across

OTUs. gtkj may have additional dependence across samples in an OTU, such as

temporal dependence in data collected over time. sj > 0 is an unknown over-

dispersion parameter for OTU j. Unlike a Poisson model for which the variance is

equal to the mean, the NB model has an extra component µ2
tkjsj in the variance.

For count data such as next generation sequencing (NGS) data, it is common

that the observed variance exceeds the assumed variance of the multinomial or

Poisson distributions, and the negative binomial distribution is used as a popular

alternative to accommodate overdispersion of counts (e.g. Robinson et al. (2010);

Zhang et al. (2017a)). In the next section we develop models for βj, gtkj and sj.

2.2.2 Prior

Covariate Effects To achieve a model with parsimony and good predictive

power, we build a prior model for βj, j = 1, . . . , J by employing a variable selection

approach. To effectively combine J related regression problems, we extend NLPs

for βj and construct ANLPs using truncation mixtures. For j = 1, . . . , J and
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p = 1, . . . , P , let

βjp | π?p, σ2
p, ιp

indep∼ π?p0I(βjp = 0) + π?p1
φ(βjp/σp)

σp{1− Φ(ιp)}
I
(
βjp
σp

> ιp

)

+ π?p2
φ(βjp/σp)
σpΦ(−ιp)

I
(
βjp
σp

< −ιp
)
, (2.2)

where φ(·) and Φ(·) represent the pdf and cdf of the standard normal distribution,

respectively, I(β ∈ A) is a binary indicator function taking the value 1 if β ∈ A or

0 otherwise, and ιp > 0 is a truncation parameter. As opposed to a conventional

approach that has two mixture components for variable selection, the model in

(2.2) has three components, each of which represents the cases of no, positive,

and negative effects. We let π?p = (π?p0, π
?
p1, π

?
p2) be a mixture weight vector with∑2

q=0 π
?
pq = 1 and 0 < π?pq < 1, q = 0, 1, 2. The truncation parameter ιp can be

viewed as a practical significance threshold for the pth covariate. For any βjp 6= 0

the signal-to-noise ratio |βjp| /σp is greater than ιp. The mixture model in (2.2)

can be represented with latent indicator variables, γjp ∈ {0, 1, 2}, where the values

of {0, 1, 2} indicate the events of {βjp = 0}, {βjp/σp > ιp} and {βjp/σp < −ιp},

respectively. We let P(γjp = q) = π?pq, q = 0, 1, 2. If γjp = 0, βjp is exactly equal

to 0, meaning that covariate p is irrelevant or redundant to modeling counts of

OTU j. Covariates with γjp 6= 0 are important variables selected for modeling

and have large effects following truncated normal distributions. After integrating

out γjp, we recover the prior for βjp in (2.2). We will specify priors for ιp and πp.

The indicator vector γj = (γj1, . . . , γjP ) defines a model for OTU j that contains

only βjp with γjp 6= 0. The estimation of γj can be viewed as a model selection

problem and (2.2) assigns a priori probability ∏P
p=1

∏2
q=0(π?pq)I(γjp=q) to a model

defined by γj.

Remark 2.2.1. Consider a model with γj for OTU j. Let β?j denote a vector of
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Figure 2.2: Plot of the asymmetric nonlocal prior density function P(β?jp | π?)
(black, solid) and its corresponding asymmetric local prior density function (blue,
dotted). π?p = (0.4, 0.36, 0.24) and ιp ∼ Gamma(2.5, 10) are assumed.

βjp with γjp 6= 0 only. Given γj, the joint prior of β?j can be written as

P(β?j | γj , δ, ι) =
P∏

p=1;γjp 6=0

{
πp1

φ(βjp/σp)
σp{1− Φ(ιp)}

I
(
βjp
σp

> ιp

)
+ πp2

φ(βjp/σp)
σpΦ(−ιp)

I
(
βjp
σp

< −ιp
)}

,(2.3)

where πpq = π?pq/(1− π?p0), q = 1, 2, δ = {σ2
p,πp, p = 1, . . . , P}, and ι = {ιp, p =

1, . . . , P}. We observe P(β?j | γj, δ, ι) ∝ d(β?j)PL(β?j | γj, δ), where a local prior
(LP)

PL(β?j | γj , δ) =
P∏

p=1;γjp 6=0

{
πp1

φ(βjp/σp)
σp{1− Φ(0)} I

(
βjp
σp

> 0
)

+ πp2
φ(βjp/σp)
σpΦ(0) I

(
βjp
σp

< 0
)}

,(2.4)

and a penalty term d(β?j) = ∏P
p=1;γjp 6=0 I(|βjp|/σp > ιp). Following Corollary 1

of Rossell and Telesca (2017), the prior P(β?j | γj, δ) =
∫
P(β?j | γj, δ, ι)P(ι)dι

defines a valid nonlocal prior (NLP) if P(ι) is absolutely continuous. We call the

priors in (2.3) and (2.4) asymmetric nonlocal priors (ANLPs) and asymmetric

local priors (ALPs), respectively.

Figure 2.2 illustrates an example of the ANLP with a gamma prior for ιp (black
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solid line). In contrast with the corresponding ALP (blue dotted line), the ANLP

separates the hypotheses βjp = 0 vs βjp 6= 0 by assigning small probability to val-

ues of βjp close to zero. Furthermore, ANLPs assign different weights to positive

and negative values of β?jp. Under the NLP, the probability assigned to a model

that contains spurious βjp converges to 0 as the sample size grows (Johnson and

Rossell, 2012; Wu, 2016; Rossell and Telesca, 2017). The penalty term d(β?j) facil-

itates model selection (i.e., estimation of γj), and NLPs improve the accuracy of

βj estimates compared to LPs. We assume ιp iid∼ Gamma(aι, bι) with fixed aι and

bι. In (2.2), π?p0 serves as the rate at which the coefficients βjp are exactly zero in

the J regression problems. We let π?p0
iid∼ Be(aπ0, bπ0). We assume the conditional

probability of having a positive effect given a covariate is identified as important,

πp1
iid∼ Be(aπ1, bπ1) with πp2 = 1 − πp1. Priors on π?p provide an automatic multi-

plicity correction in variable selection (Scott and Berger, 2010). Following Rossell

and Telesca (2017), we let aπ0 = P and bπ0 = 1, implying the prior inclusion odds

E((1−π?p0)/π?p0) are 1/(P−1). From simulation studies, we found that with larger

P , an informative prior on π?p0 favoring very large values (i.e., aπ0 � bπ0) yields

better performance. We let σ2
p
iid∼ IG(aσ, bσ) with fixed aσ and bσ. Parameters

σ2
p, π?p and ιp allow variable specific selection processes. The model can easily be

modified to use common σ2, π? and ι for all covariates if the problem domain does

not demand this additional complexity. The hierarchical model construction for

βjp through priors on ιp, π?p and σ2
p facilitates pooling information across OTUs,

and improves accuracy of the inference in detecting a parsimonious association

between OTUs and covariates, especially for OTUs having small counts in many

samples. For example, a large value of π?p1 implies positive effect on the abundance

(i.e., γjp = 1) of most OTUs and the posterior inference on π?p1 is informed from

all OTUs through the hierarchical structure. In this fashion, the model struc-
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ture incorporates biological knowledge that environmental factors may have, on

average, similar effect directions on OTU abundances.

Baseline Mean Counts We next construct a model for the baseline mean

counts gtkj similar to Lee and Sison-Mangus (2018). We first decompose gtkj =

rtk + α0j + αtj, where terms rtk, α0j and αtj account for different library sizes,

different baseline abundances between OTUs, and additional dependence in abun-

dances of an OTU across samples, respectively. Due to its multiplicative structure,

the individual terms in gtkj are non-identifiable, whereas gtkj and βj are identifi-

able. Instead of fixing some terms, we let all the terms be random, and we use

distributions with some moment constraints as priors for rtk and α0j to circumvent

poor convergence in posterior Markov Chain Monte Carlo (MCMC) simulation.

Specifically, we consider the mean-constrained distribution in Li et al. (2017) for

rtk and α0j;

rtk
iid∼

Lr∑
`=1

ψr`

{
wr` N(ηr` , u2

r) + (1− wr` ) N
(
υr − wr`ηr`

1− wr`
, u2

r

)}
, (2.5)

α0j
iid∼

Lα∑
`=1

ψα`

{
wα` N(ηα` , u2

α) + (1− wα` ) N
(
υα − wα` ηα`

1− wα`
, u2

α

)}
, (2.6)

where υχ, χ = r and α, are the prespecified values for the mean constraints and

mixture weights ψχ` and wχ` with constraints ∑Lχ

`=1 ψ
χ
` = 1 and 0 < ψχ` , w

χ
` < 1.

We fix the number of components Lχ and variances u2
χ for χ = r, α. The mix-

ture components in (2.5) and (2.6) are convex combinations weighted by wr` and

wα` , respectively. The mixture-of-mixtures formulation encompasses a wide class

of distributions, such as multi-modal and skewed distributions. The substantial

flexibility of the prior is in contrast with inflexible plug-in estimates of normalizing

constants, and this flexibility improves estimation of gtkj and (γj,βj). Following

Lee and Sison-Mangus (2018), we take an empirical approach and use observed
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counts to specify the values of the mean constraints υr and υα. We set υr to the

mean r′tk = log(r̃tk), where r̃tk = ∑
j Ytkj/

∑
tkj Ytkj, and υα to the mean of α′0j,

where α′0j = log( 1
N

∑
tk Ytkj/r̃tk). The particular specification of υr and υα does

not preclude the use of other estimates for the scaling factors. Alternative meth-

ods can be used to empirically estimate the mean constraints of scaling factors,

for example, MLEs or quantiles in Witten (2011). In the absence of prior informa-

tion an empirical approach can yield sensible parameter estimates (Casella, 1985).

Alternatively, the mean constraint can be set to 0 as in Li et al. (2017), which can

be interpreted as no scaling adjustment on average, or if some prior information

is available, priors can be placed on υr and υα to avoid potential problems with

empirical Bayesian approaches (e.g., Scott and Berger (2010)). Our sensitivity

analysis to the specification of υr and υα shows robustness of the model in esti-

mating parameters of interest βjp as well as gtkj; details are in §2.3. We finally let

wχ`
iid∼ Be (awχ , bwχ) with fixed awχ and bwχ , ηχ`

iid∼ N
(
υχ, b

2
ηχ

)
with fixed b2

ηχ , and

ψχ` ∼ Dir(aψχ) with fixed aψχ for χ = r and α.

In the ocean microbiome data the samples were collected over time and the

baseline mean count gtkj of OTU j may be dependent over time since the num-

ber of bacteria is known to depend on the number of bacteria at previous time

points. We model temporal dependence in the baseline mean counts by letting

αtj change over time. We use a process convolution model (Higdon, 2002) and

let αtj = ∑M
m=1 K(t − um)θmj. The process convolution model provides a good

approximation to a continuous underlying process without a large burden in com-

putation (Lee et al., 2005). Accounting for the dependence structure in temporally

adjacent samples can further enhance the estimation of γj and βj. We place the

knots um, m = 1, . . . ,M on a uniform grid spanning the times when the samples

were collected, [−T ′, tn + T ′] with T ′ > 0. We use a Gaussian kernel N(0, τ 2
j )
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for K(·), and following Xiao (2015), fix the variance/range parameter at 2n/M .

Finally, we place independent normal priors centered at zero on the convolution

component coefficients, θmj iid∼ N(0, τ 2
j ), with τ 2

j
iid∼ IG(aτ , bτ ).

We assume OTU specific overdispersion parameters sj iid∼ Log-Normal(h, κ2),

with h ∼ N(ah, b2
h) and κ2 ∼ IG(aκ, bκ), where ah, b2

h, aκ and bκ are fixed hyper-

parameters. NGS data does not have enough information for precise estimation

of individual sj and the hierarchical model can yield improved estimates.

2.2.3 Posterior Computation

To aid in the posterior computation, as is common in finite mixture models, we

introduce auxiliary variables (crtk, λrtk) and (cαj , λαtk), which indicate a mixture com-

ponent for rtk and α0j in (2.5) and (2.6), where cχtk ∈ {1, . . . , Lχ} and λ
χ
tk ∈ {0, 1},

χ = r, α. Similar to γjp, we define the distribution of rtk and α0j conditional

on the auxiliary variables. Let θ = {s,α0,θm,β,γ,π0,π1, h, κ
2, r̃,ψr,ηr,wr, cr,

λα,ψα,ηα,wα, cα,λα, ι} denote the vector of all unknown parameters. In the

ocean microbiome data, some of the categorical covariates were missing at ran-

dom for some samples. For missing values we assume that the categories are

a priori equally likely and impute their values during posterior simulation. Let

Xmiss andXobs denote the missing categorical covariates and observed covariates,

respectively, so that X = {Xobs, Xmiss} a n× P matrix of covariates. The joint

posterior probability model of parameters under the proposed model is

P(θ,Xmiss | Y ,Xobs) ∝ P(Y |X,θ)P(θ, Xmiss),

where Y denotes a N ×J matrix of OTU counts. We use standard MCMC meth-

ods to implement posterior inference on the parameters. Usual MCMC posterior

simulation proceeds by iteratively updating each of the parameters conditional
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on the currently computed values of all other parameters. In addition, we do a

joint update of βjp and γjp through the Metropolis-Hastings algorithm for better

mixing.

We assessed convergence and mixing of posterior MCMC simulation and found

no evidence of practical convergence problems for the simulation examples and

the data analysis in §2.3 and §2.4. Details of the posterior simulation are in

Appendix §A.1. In the appendix, we also include full conditional derivations and

some suggestions to improve mixing and convergence. An R package, anlpsb, is

also available from https://github.com/kurtis-s/anlpsb.

2.3 Simulation Studies

2.3.1 Simulation 1

Data Simulation We performed simulation studies to assess the performance

of the proposed ANLP-SB model and compared it to alternative models. We

assumed J = 200 OTUs. We used time points ti, i = 1, . . . n, the number of

replicates Ki and some covariates from the ocean microbiome dataset described

in §2.4. Like the ocean microbiome dataset, the simulated data has n = 54

time points and total number of samples N = ∑
iKi = 150. We included three

continuous covariates, x1 (silicate), x2 (water temperature) and x3 (chlorophyll),

and created binary indicator variables for two categorical covariates, the Alexan-

drium (Ax) abundance level and the domoic acid (DA) concentration level. Using

the “none” category as the reference category, x4 − x6 are binary indicators for

low, medium, and high abundance levels of Ax, respectively; and x7 − x10 for

low, medium, high, and very high concentration levels of DA, respectively. Us-

ing these covariates results in P = 10. For missing values of Ax, we randomly
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generated a category for the simulation truth. For the simulation studies and

the ocean microbiome data analysis in the following section, the continuous co-

variates were standardized to have mean 0 and variance 1 before applying the

model, as is common in other variable selection techniques. In the ocean micro-

biome data, covariates were measured in different units (e.g., silicate in µg and

water temperature in degree Celsius), and the means and standard deviations of

the raw values greatly vary across covariates. The standardization can prevent

covariates from being included or discarded purely as a consequence of scale. In

our model, common hyperpriors for ιp and σp are used for all p, and use of un-

standardized covariates may require more complicated hyperpriors. We used the

ocean microbiome data to set rTR
tk and αTR

0j . We used the OTU counts from the

ocean microbiome dataset and computed r′tk, and α′0j as defined in §2.2. rTR
tk were

then set by randomly permuting {r′tk; i = 1, . . . , n, k = 1, . . . , Ki}, and αTR
0j was

specified by drawing a random sample of size J = 200 from {α′0j}. We simu-

lated π?,TR
p0

iid∼ Be (10, 10) and πTR
p1

iid∼ Be (5, 10). We then let γTR
jp = 0, 1 or 2 with

probabilities, π?,TR
p = (π?,TR

p0 , (1 − π?,TR
p0 )πTR

p1 , (1 − π
?,TR
p0 )(1 − πTR

p1 )). We generated

σ2
p

TR iid∼ Unif(1/2, 1) and ιTR
p

iid∼ Unif(1/10, 3/10). We then simulated βTR
jp condi-

tional on γTR
jp ; if γTR

jp = 0, let then βTR
jp = 0. For the cases of γTR

jp 6= 0, we generated

βTR
jp from the normal distributions with mean 0 and variance σ2,TR

p truncated from

below at ιTR
p σTR

p if γTR
jp = 1 and from above at −ιTR

p σTR
p if γTR

jp = 2. We induced

dependence across samples in an OTU using a linear combination of trigono-

metric functions, αTR
tj = Aj sin

(
2π
T
hjati − aj

)
+ Bj sin

(
2π
T
hjbti − bj

)
, 0 ≤ t ≤ T .

The amplitudes, Aj and Bj, and the frequencies, hja and hjb, were iid draws from

Unif(1, 2) and the phase offsets, aj and bj iid draws from Unif(0, T ). We generated

OTU specific over-dispersion parameters from sTR
j

iid∼ Log-Normal (−1/2, 1/102).

Finally, OTU counts were drawn from Ytkj | µTR
tkj, s

TR
j

indep∼ NB(µTR
tkj(xt), sTR

j ),
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where log(µTR
tkj(xt)) = rTR

tk + αTR
0j + αTR

tj + x′tβTR
j .

Posterior Inference To fit the proposed model, we fix the hyperparameters as

follows; let aσ = 1, bσ = 1, aι = 2.5, bι = 10, aπ0 = 1, bπ0 = P , aπ1 = 5, and

bπ1 = 5. For the prior on rtk, α0j and αtj, we let arφ = 1, arw = 0.5, brw = 0.5,

u2
r = 0.1, b2

ηr = 0.3, aαψ = 1, aαw = 0.5, bαw = 0.5 and b2
ηα = 1, hyperparameters

for αtj, aτ = 1 and bτ = 1. We set the number of knot points to M = 70, and

the mixture truncation levels to Lr = Lα = 50. For the prior on over-dispersion

parameter sj, we set ah = −10, b2
h = 100, aκ = 10−5 and bκ = 10−5. We initialized

θmj and βjp using observed ytkj. We generated initial values for σ2
p by taking the

variance of the initial values for βjp. We ran the MCMC simulation over 50,000

iterations, discarding the first 10,000 iterations as initial burn-in and choosing

every fifth sample as thinning. Assessment of MCMC simulation convergence is

discussed in Supplementary §A.2.

Figure 2.3(a) and (b) show histograms of posterior estimates of d̂jp = P̂(γjp =

γTR
jp | Y ), the probabilities that βjp is correctly selected and its effect direction

identified for selected covariates x1 (continuous) and x5 (binary). Recall that γjp

takes a value of {0, 1, 2} representing no, positive, and negative effects. The his-

tograms have a high spike near 1 indicating that ANLP-SB identifies important

covariates with their true effect direction with high accuracy. d̂jp tends to be

closer to 1 for continuous covariates, while less concentrated around 1 for binary

covariates due to small counts for each level. Figure 2.3(c) and (d) compare poste-

rior mean estimates β̂jp of βjp to their true values βTR
jp with posterior 95% credible

interval estimates. The plots show that the model also provides good estimates

of βjp. Similar to d̂jp, β̂jp is closer to βTR
jp with narrower interval estimates for the

continuous covariates. Supplementary Figures A.1 and A.2 show histograms of

d̂jp and plots of β̂jp versus βTR
jp for all covariates. We next compare posterior esti-
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Figure 2.3: [Simulation 1] Panels (a) and (b): Histograms of the posterior esti-
mates of d̂jp = P̂(γjp = γTR

jp ) for x1 (Silicate) and x5 (low concentration of Alexan-
drium). Panels (c) and (d): Posterior means of the regression coefficients β̂jp
versus their true values βTR

jp for x1 (Silicate) and x5 (low concentration of Alexan-
drium). The dashed blue lines show 95% posterior credible intervals, and the solid
red lines are 45 degree reference lines.

mates ĝtkj of the baseline mean counts to their true values. Supplementary Figure

A.3(a) shows that gtkj are well estimated, which enables the model to produce

good estimates of γjp and βjp. Recall that terms rtk, α0j and αtj in gtkj are not

identifiable. Supplementary Figures A.3(b)-(f) compare the estimates of rtk, α0j

and αtj to the true values. From the figures, the model recovers the parameters
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only up to a scaling factor and does a good job of capturing the dependence across

samples in the truth. In addition, we performed sensitivity analysis to the specifi-

cation of values of some parameters including (aι, bι), (aσ, bσ), υr, υα and M . We

found that any reasonable choice of those fixed parameters has little impact on

the posterior inference, showing robustness of our model. Details of the sensitivity

analysis are summarized in Supplementary §A.2.

We further assessed the performance of our model by considering variable

selection results from applying the model to 100 replicated datasets. For each

dataset, we used the posterior distribution of γjp and computed the Matthews

correlation coefficient (MCC), accuracy (ACC), area under the receiver operating

curve (AUC), Brier score (Brier, 1950), and F1 score. MCC is a combined measure

of overall variable selection performance that accounts for an unbalanced number

of true positive and false positive cases. MCC ranges between −1 and 1, with

MCC = 1 indicating perfect selection performance. MCC = 0 is expected under

random selection, and MCC = −1 indicates perfect disagreement between the

model’s selections and the truth. MCC is defined as

MCC = (TP× TN)− (FP× FN)√
(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)

,

where TP, TN, FP, and FN denote true positives, true negatives, false positives,

and false negatives, respectively. The Brier score is a probability score metric

for categorical prediction, defined as BS = 1
J×P

∑
jpq

(
ẑjpq − I(γTR

jp = q)
)2
∈ [0, 1],

where ẑjpq is the posterior probability that γjp = q, q ∈ {0, 1, 2}. The Brier score

is a proper scoring rule (Gneiting and Raftery, 2007), and a lower Brier score

indicates better performance. The F1 score is a metric for binary classification

defined as the harmonic mean of the proportion of true positives among “selected”

covariates (also called precision) and the proportion of “selected” covariates among
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Model MCC ACC AUC Brier Score F1
ANLP-SB 0.615 (0.049) 0.802 (0.023) 0.885 (0.024) 0.287 (0.038) 0.786 (0.026)
ALP-SB 0.302 (0.038) 0.609 (0.030) 0.781 (0.023) 0.546 (0.049) 0.712 (0.027)
SLP-SB 0.295 (0.038) 0.606 (0.029) 0.774 (0.021) – 0.710 (0.027)

BayesReg 0.539 (0.040) 0.744 (0.026) 0.800 (0.020) – 0.678 (0.028)
edgeR-L -0.001 (0.028) 0.499 (0.015) 0.498 (0.017) – 0.443 (0.028)
edgeR-Q 0.000 (0.029) 0.500 (0.015) 0.498 (0.018) – 0.472 (0.026)
BhGLM 0.227 (0.049) 0.601 (0.026) 0.632 (0.028) – 0.488 (0.034)

(a) Variable Selection

Model RMSE DIC LPML
βjp π?p0 gtkj

ANLP-SB 0.279 (0.023) 0.092 (0.030) 0.328 (0.043) 240,430 (6331) -4.011 (0.105)
ALP-SB 0.298 (0.018) 0.282 (0.033) 0.341 (0.017) 240,525 (6335) -4.013 (0.106)
SLP-SB 0.303 (0.015) 0.281 (0.032) 0.353 (0.021) 240,554 (6333) -4.013 (0.106)

BayesReg 0.302 (0.016) – 0.356 (0.031) 240,688 (6356) -4.020 (0.107)
edgeR-L 0.873 (0.030) – – – –
edgeR-Q 0.864 (0.028) – – – –
BhGLM 0.979 (0.071) – – – –

(b) Parameter Estimation and Model Fit

Table 2.1: [Simulation 1: Comparison] Performance metric averages over 100
simulated datasets with standard deviations in parenthesis. The best perfor-
mances are in bold.

true positive covariates (also called recall). The F1 score ranges between 0 and 1,

with a higher score indicating better performance. For MCC, AUC and F1, we

identified covariates as selected if their posterior probability of (γjp = 0) was less

than 0.5. Results from ANLP-SB are summarized in the first row of Table 2.1(a),

where the numbers are averages over the 100 datasets with standard deviations

in parenthesis. The scores show ANLP-SB performs well in terms of variable

selection and in terms of identifying effect directions.

Comparison We compared the performance of ANLP-SB based on the 100 sim-

ulated dataset to alternative models. We include three Bayesian models, sparse

regression models with the ALP in (2.4) (called ALP-SB) and with the symmetric

LP for βjp (called SLP-SB) and BayesReg in Lee and Sison-Mangus (2018). For
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SLP-SB, we assumed equal probability for effect directions, γjp
indep∼ Ber(π?p0) and

βjp | γjp = 1 indep∼ N(0, σ2
p) while letting βjp = 0 for γjp = 0. BayesReg assumes

Laplace priors for βjp for more shrinkage of the coefficients of insignificant covari-

ates towards zero. We also include the likelihood-based methods edgeR in Robin-

son et al. (2010) (one of the popular models in practice for NGS data analysis)

and the generalized linear regression model with mixed effects (called BhGLM) in

Zhang et al. (2017a), for comparison. Both methods assume a negative binomial

likelihood and use a generalized linear model to accommodate covariate effects

similar to the ANLP-SB model. edgeR normalizes raw counts using the trimmed

mean of M-values normalization method (Robinson and Oshlack, 2010) to adjust

library sizes. It estimates OTU specific overdispersion parameters prior to analysis

through an empirical Bayes approach and uses these estimates to fit the model.

edgeR does not explicitly handle dependence structure among samples such as

temporal dependence, and we included a term linear in time (edgeR-L) and terms

linear and quadratic in time (edgeR-Q) as additional covariates. BhGLM uses

the total counts for library size adjustment and induces dependence in samples

with shared random effects. The Bayesian comparators hierarchically combine

J regression problems similar to ANLP-SB, but edgeR and BhGLM separately

analyze each of the OTUs. R package BhGLM and Bioconductor package edgeR

are available for those models. Because edgeR and BhGLM do not handle missing

covariates, the true covariate values were used in their simulations.

Under each of the comparators, we computed MCC, ACC, AUC, Brier scores

and F1. The results are summarized in Table 2.1(a). BayesReg, edgeR, and

BhGLM do not explicitly perform variable selection. For BayesReg, we used pos-

terior 95% credible intervals for selection. We considered a variable “selected” if

its posterior 95% credible interval did not include zero. For edgeR and BhGLM,
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selection was performed using p-values with the multiple testing correction of

Benjamini and Hochberg (1995) at an α level of 0.05. Brier scores are applicable

only for ANLP-SB and ALP-SB, which have a ternary indicator γjp. The results

show that ANLP-SB outperforms the comparators under all metrics. In particu-

lar, comparison of ANLP-SB to ALP-SB shows that the performance in variable

selection can be greatly improved by the NLP. We also computed estimates of βjp,

gtkj, and π?p0, and used them to evaluate root-mean-square error (RMSE) based on

the 100 datasets, e.g,
√∑

jp(β̂jp − βTR
jp )2/(100JP ). Columns 1-3 of Table 2.1(b)

show that the model with the ANLP also provides better estimates of the pa-

rameters, especially for the overall sparsity parameter π?p0. For more comparison

among the Bayesian models, the deviance information criterion (DIC) (Spiegel-

halter et al., 2002) and log pseudo marginal likelihood (LPML) (Gelfand et al.,

1992; Gelfand and Dey, 1994) are computed. DIC measures posterior prediction

error based on deviance penalized by model complexity, similar to the Akaike

information criterion, where lower values are preferable. LPML is a metric based

on cross validated posterior predictive probability with higher values indicating

a better model fit. It is defined as the sum of the logarithms of conditional pre-

dictive ordinates (CPOs) (Geisser and Eddy, 1979; Geisser, 1993). Columns 4-5

of Table 2.1(b) show DIC and LPML averaged over the replicated datasets with

the standard deviation in parenthesis. DIC and LPML indicate that ANLP-SB

provides a better fit to the data than the competing Bayesian models.

2.3.2 Simulations 2 and 3

We conducted additional simulations for further examination of the proposed

ANLP-SB model. The simulation setup for Simulations 2 and 3 is similar to Sim-

ulation 1’s setup, including the specification for xt, rTR
tk and αTR

0j . Simulation 2 was
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Model MCC ACC AUC Brier-Score F1
ANLP-SB 0.613 (0.044) 0.802 (0.021) 0.886 (0.018) 0.286 (0.031) 0.788 (0.021)
ALP-SB 0.294 (0.042) 0.606 (0.029) 0.781 (0.025) 0.547 (0.047) 0.710 (0.026)
SLP-SB 0.288 (0.039) 0.604 (0.028) 0.775 (0.023) – 0.708 (0.026)

BayesReg 0.530 (0.035) 0.741 (0.023) 0.799 (0.019) – 0.676 (0.024)
edgeR-L -0.003 (0.031) 0.498 (0.016) 0.499 (0.020) – 0.442 (0.027)
edgeR-Q 0.002 (0.031) 0.501 (0.016) 0.502 (0.019) – 0.474 (0.025)
BhGLM 0.231 (0.043) 0.602 (0.024) 0.635 (0.026) – 0.491 (0.032)

(a) Variable Selection

Model RMSE DIC LPML
βjp π?p0 gtkj

ANLP-SB 0.280 (0.023) 0.088 (0.025) 0.322 (0.030) 241,947 (6,214) -4.036 (0.104)
ALP-SB 0.297 (0.017) 0.282 (0.031) 0.339 (0.015) 242,030 (6,210) -4.038 (0.104)
SLP-SB 0.303 (0.016) 0.281 (0.031) 0.350 (0.018) 242,058 (6,209) -4.039 (0.104)

BayesReg 0.304 (0.016) – 0.355 (0.029) 242,177 (6,219) -4.044 (0.104)
edgeR-L 0.870 (0.032) – – – –
edgeR-Q 0.861 (0.028) – – – –
BhGLM 0.976 (0.063) – – – –

(b) Parameter Estimation and Model Fit

Table 2.2: [Simulation 2: Comparison] Performance metric averages over 100
simulated datasets with standard deviations in parenthesis. The best perfor-
mances are in bold.

setup to investigate the models’ performance when the regression coefficients for ir-

relevant covariates are not exactly zero. In particular, we let βTR
jp

indep∼ N(0, (ιp/6)2)

for covariates with γTR
jp 6= 0, giving these covariates negligible but non-zero effects

on OTU abundance. Recall that the model assumes βTR
jp = 0 when γTR

jp = 0. For

Simulation 3, we let αTR
tj

indep∼ N(0, (2/3)2); that is, no temporal dependence in

the simulation truth was assumed. Tables 2.2 and 2.3 show performance metrics

for Simulations 2 and 3, respectively. In both simulations, ANLP-SB outperforms

the competing models, especially with regard to variable selection. ANLP-SB

performs notably better than the other Bayesian models in terms of the RMSE of

π?p0, MCC, AUC, and Brier score. The four Bayesian models have similar perfor-

mance for parameter estimation based on the RMSE and similar model fit based

on DIC and LPML.
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Model MCC ACC AUC Brier-Score F1
ANLP-SB 0.461 (0.038) 0.730 (0.019) 0.826 (0.016) 0.393 (0.027) 0.739 (0.018)
ALP-SB 0.247 (0.037) 0.587 (0.028) 0.743 (0.021) 0.609 (0.043) 0.698 (0.027)
SLP-SB 0.240 (0.037) 0.584 (0.028) 0.736 (0.019) – 0.696 (0.027)

BayesReg 0.450 (0.035) 0.711 (0.022) 0.759 (0.020) – 0.652 (0.024)
edgeR-L -0.003 (0.033) 0.498 (0.022) 0.498 (0.018) – 0.328 (0.034)
edgeR-Q 0.001 (0.031) 0.499 (0.023) 0.502 (0.017) – 0.282 (0.029)
BhGLM 0.389 (0.064) 0.665 (0.029) 0.732 (0.038) – 0.549 (0.039)

(a) Variable Selection

Model RMSE DIC LPML
βjp π?p0 gtkj

ANLP-SB 0.393 (0.021) 0.102 (0.030) 0.716 (0.014) 247,071 (6,073) -4.124 (0.101)
ALP-SB 0.390 (0.019) 0.285 (0.031) 0.712 (0.012) 247,078 (6,070) -4.124 (0.101)
SLP-SB 0.393 (0.016) 0.285 (0.031) 0.703 (0.011) 247,089 (6,073) -4.125 (0.101)

BayesReg 0.390 (0.016) – 0.707 (0.015) 247,742 (6,089) -4.140 (0.102)
edgeR-L 0.487 (0.014) – – – –
edgeR-Q 0.491 (0.014) – – – –
BhGLM 0.526 (0.062) – – – –

(b) Parameter Estimation and Model Fit

Table 2.3: [Simulation 3: Comparison] Performance metric averages over 100
simulated datasets with standard deviations in parenthesis. The best perfor-
mances are in bold.

J P n N Run-time
Simulation 1 200 10 54 150 9
Simulation 2 200 10 54 150 8
Simulation 3 200 10 54 150 9
Simulation 4 400 10 50 100 12
Simulation 5 400 20 50 100 16
Simulation 6 400 10 100 200 23
Simulation 7 400 20 100 200 29
Simulation 8 200 50 100 200 22

Table 2.4: Simulation setups (J, P, n,N) for Simulations 1–8. The run-times (in
minutes) for 1,000 MCMC iterations are reported in the last column.

2.3.3 Simulations 4–8

We performed Simulations 4–8 to examine the models’ performance in higher

dimensional settings by using different numbers of OTUs (J), covariates (P ), and

samples (N). We fixed K = 2 and used values of (J, P,N) in Table 2.4. For all
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Model MCC ACC AUC Brier-Score F1
ANLP-SB 0.703 (0.137) 0.853 (0.073) 0.925 (0.062) 0.253 (0.141) 0.851 (0.076)
ALP-SB 0.298 (0.093) 0.595 (0.128) 0.785 (0.025) 0.647 (0.193) 0.687 (0.127)
SLP-SB 0.298 (0.095) 0.588 (0.135) 0.799 (0.026) – 0.687 (0.128)

BayesReg 0.589 (0.078) 0.788 (0.059) 0.831 (0.027) – 0.744 (0.032)
edgeR-L -0.043 (0.098) 0.501 (0.087) 0.475 (0.062) – 0.301 (0.106)
edgeR-Q -0.038 (0.113) 0.501 (0.081) 0.477 (0.071) – 0.335 (0.109)
BhGLM 0.337 (0.054) 0.621 (0.105) 0.720 (0.042) – 0.386 (0.058)

(a) Variable Selection

Model RMSE DIC LPML
βjp π?p0 gtkj

ANLP-SB 0.125 (0.028) 0.246 (0.130) 0.368 (0.071) 359,138 (8,220) -4.506 (0.103)
ALP-SB 0.157 (0.020) 0.474 (0.113) 0.476 (0.099) 359,381 (8,188) -4.512 (0.103)
SLP-SB 0.176 (0.035) 0.462 (0.112) 0.633 (0.187) 359,515 (8,187) -4.514 (0.103)

BayesReg 0.217 (0.037) – 0.815 (0.214) 361,391 (8,196) -4.545 (0.102)
edgeR-L 0.341 (0.031) – – – –
edgeR-Q 0.313 (0.031) – – – –
BhGLM 0.357 (0.044) – – – –

(b) Parameter Estimation and Model Fit

Table 2.5: [Simulation 4: Comparison] Results from the simulation study with
N = 100 samples taken at n = 50 time points with J = 400 OTUs and P = 10
covariates.

simulations, we let xt iid∼ N (0, Σ), where the diagonal of Σ was 1, and the off

diagonals were 1/4. Similar to Simulations 2-3, we used r′tk and α′0j computed

from the ocean microbiome data to set rTR
tk and αTR

0j ; let rTR
tk = log(r′′tk + εrtk)

and αTR
0j = log(α′′0j + εαj ), where r′′tk and α

′′
0j were random draws from {r′tk} and{

α′0j
}
, respectively, εrtk

iid∼ N(0, 10−5) and εαj
iid∼ N(0, 1/10). We let π?,TR

p0 = 0.95

or 0.05 with equal probability, and πTR
p1

iid∼ Be (5, 10). We let γTR
jp = 0, 1 or

2 with probabilities, π?,TR
p = (π?,TR

p0 , (1 − π?,TR
p0 )πTR

p1 , (1 − π?,TR
p0 )(1 − πTR

p1 )). We

generated σ2
p

TR iid∼ Unif(3/10, 4/10) and ιTR
p

iid∼ Unif(1/10, 3/10). We simulated

βTR
jp conditional on γTR

jp ; if γTR
jp = 0, then βTR

jp = 0. For the cases of γTR
jp 6= 0,

we generated βTR
jp from the normal distributions with mean 0 and variance σ2,TR

p

truncated from below at ιTR
p σTR

p if γTR
jp = 1 and from above at −ιTR

p σTR
p if γTR

jp = 2.

We kept the same simulation setup for αTR
tj and sj. We then drew the OTU counts
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Model MCC ACC AUC Brier-Score F1
ANLP-SB 0.741 (0.089) 0.872 (0.043) 0.957 (0.034) 0.204 (0.075) 0.860 (0.042)
ALP-SB 0.227 (0.061) 0.553 (0.106) 0.811 (0.020) 0.668 (0.154) 0.672 (0.102)
SLP-SB 0.202 (0.067) 0.538 (0.111) 0.832 (0.022) – 0.667 (0.103)

BayesReg 0.567 (0.052) 0.768 (0.051) 0.815 (0.018) – 0.704 (0.024)
edgeR-L -0.028 (0.060) 0.505 (0.069) 0.483 (0.037) – 0.272 (0.078)
edgeR-Q -0.003 (0.082) 0.514 (0.068) 0.496 (0.052) – 0.307 (0.085)
BhGLM 0.285 (0.042) 0.602 (0.086) 0.683 (0.030) – 0.331 (0.056)

(a) Variable Selection

Model RMSE DIC LPML
βjp π?p0 gtkj

ANLP-SB 0.140 (0.030) 0.194 (0.066) 0.491 (0.103) 366,347 (13,317) -4.611 (0.168)
ALP-SB 0.167 (0.017) 0.492 (0.077) 0.618 (0.110) 366,577 (13,222) -4.625 (0.167)
SLP-SB 0.185 (0.025) 0.483 (0.077) 0.975 (0.260) 366,873 (13,318) -4.629 (0.167)

BayesReg 0.222 (0.024) – 1.198 (0.269) 368,725 (13,276) -4.669 (0.167)
edgeR-L 0.407 (0.031) – – – –
edgeR-Q 0.377 (0.033) – – – –
BhGLM 0.439 (0.066) – – – –

(b) Parameter Estimation and Model Fit

Table 2.6: [Simulation 5: Comparison] Results from the simulation study with
N = 100 samples taken at n = 50 time points with J = 400 OTUs and P = 20
covariates.

from Ytkj | µTR
tkj, s

TR
j

indep∼ NB(µTR
tkj(xt), sTR

j ), where µTR
tkj(xt) = exp(rTR

tk +αTR
0j +αTR

tj +

x′tβ
TR
j ). A total of 100 datasets were simulated under each scenario. The models,

including ANLP-SB and the competing models, are compared under eight criteria.

Tables 2.5-2.9 summarize results for Scenarios 4-8, respectively. The averages for

the metrics are listed in the table along with standard deviations in parenthesis.

Under all scenarios, ANLP-SB outperforms the other models in terms of variable

selection. For Scenarios 4-7, ANLP-SB yields better parameter estimates as well.

In Simulation 8, ALP-SB and SLP-SB obtain better RMSE for βjp, ALP-SB for

RMSE for gtkj, and BayeReg for DIC, while ANLP-SB is still very close to the

best performers under those criteria. The results demonstrate that ANLP-SB is

well-suited for scaling up to higher dimensional settings.

The last column of Table 2.4 lists the run-times in minutes for 1,000 MCMC
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Model MCC ACC AUC Brier-Score F1
ANLP-SB 0.754 (0.148) 0.879 (0.076) 0.930 (0.063) 0.218 (0.150) 0.876 (0.095)
ALP-SB 0.378 (0.091) 0.643 (0.121) 0.837 (0.018) 0.581 (0.193) 0.717 (0.132)
SLP-SB 0.388 (0.096) 0.640 (0.129) 0.852 (0.020) – 0.718 (0.134)

BayesReg 0.671 (0.065) 0.838 (0.040) 0.878 (0.021) – 0.818 (0.031)
edgeR-L -0.043 (0.137) 0.505 (0.085) 0.474 (0.084) – 0.392 (0.145)
edgeR-Q -0.043 (0.146) 0.503 (0.078) 0.475 (0.090) – 0.422 (0.150)
BhGLM 0.467 (0.064) 0.697 (0.081) 0.788 (0.033) – 0.578 (0.041)

(a) Variable Selection

Model RMSE DIC LPML
βjp π?p0 gtkj

ANLP-SB 0.097 (0.025) 0.231 (0.144) 0.302 (0.072) 616,719 (13,581) -3.859 (0.085)
ALP-SB 0.125 (0.019) 0.439 (0.115) 0.398 (0.075) 617,165 (13,543) -3.864 (0.085)
SLP-SB 0.144 (0.031) 0.421 (0.113) 0.520 (0.143) 617,280 (13,526) -3.865 (0.085)

BayesReg 0.187 (0.032) – 0.695 (0.169) 617,529 (13,513) -3.868 (0.085)
edgeR-L 0.222 (0.021) – – – –
edgeR-Q 0.205 (0.020) – – – –
BhGLM 0.266 (0.039) – – – –

(b) Parameter Estimation and Model Fit

Table 2.7: [Simulation 6: Comparison] Results from the simulation study with
N = 200 samples taken at n = 100 time points with J = 400 OTUs and P = 10
covariates.

iterations using the setups from Simulations 1-8. Run times of ANLP-SB depend

on the size of the data (J , P , n, N) as well as some fixed hyperparameters (Lr, Lα,

M). The number of time points (n) and replicates at a time point (Ki) determine

the total number of samples (N). Comparing the run times of Simulation 4 and 5

to those of Simulations 6 and 7, respectively, shows the impact of an increase in n

on the computational cost. The number of sample-specific size factors rtk increases

in N , and updating them involves updating two mixture indicators, crtk and λrtk for

each rtk, potentially resulting in a substantial increase in the computational cost.

The computational cost for α0j scales in a similar way to that of rtk, but with

respect to the number of OTUs J . Another factor that may significantly increase

the computational cost of the model is the number of candidate covariates, P ,

especially with large J , as indicated from comparing run times of Simulations 4
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Model MCC ACC AUC Brier-Score F1
ANLP-SB 0.752 (0.112) 0.878 (0.056) 0.937 (0.051) 0.213 (0.108) 0.878 (0.056)
ALP-SB 0.334 (0.075) 0.609 (0.099) 0.873 (0.017) 0.618 (0.156) 0.705 (0.095)
SLP-SB 0.314 (0.079) 0.591 (0.107) 0.894 (0.018) – 0.698 (0.098)

BayesReg 0.681 (0.058) 0.837 (0.037) 0.877 (0.018) – 0.815 (0.020)
edgeR-L -0.026 (0.104) 0.502 (0.060) 0.484 (0.061) – 0.378 (0.105)
edgeR-Q -0.032 (0.095) 0.498 (0.058) 0.480 (0.058) – 0.399 (0.092)
BhGLM 0.437 (0.051) 0.678 (0.069) 0.766 (0.028) – 0.533 (0.031)

(a) Variable Selection

Model RMSE DIC LPML
βjp π?p0 gtkj

ANLP-SB 0.111 (0.024) 0.224 (0.099) 0.426 (0.102) 633,665 (18,953) -3.971 (0.119)
ALP-SB 0.126 (0.011) 0.470 (0.083) 0.495 (0.084) 634,361 (18,864) -3.979 (0.118)
SLP-SB 0.145 (0.025) 0.452 (0.081) 0.800 (0.268) 634,656 (18,839) -3.981 (0.118)

BayesReg 0.183 (0.026) – 1.088 (0.302) 635,145 (18,811) -3.989 (0.118)
edgeR-L 0.245 (0.017) – – – –
edgeR-Q 0.224 (0.017) – – – –
BhGLM 0.291 (0.032) – – – –

(b) Parameter Estimation and Model Fit

Table 2.8: [Simulation 7: Comparison] Results from simulation study with N =
200 samples taken at n = 100 time points with J = 400 OTUs and P = 20
covariates.

and 6 to those of Simulations 5 and 7, respectively. The computation time for

βjp and γjp scales with both J and P . A large P also increases the number of

other parameters such as σ2
p, ιp and πp. The amount of computation required

may rapidly escalate with increasing P when J is large. We note that compared

to N and J , the values of Lr, Lα, and M do not significantly impact run times

because they are related to hyperparameters at a high level of the model. Also,

parameters αtj = ∑M
m=1 K(t− um)θmj are deterministically calculated given θmj

and prespecified kernel K, and the computation time for αtj scales with M and

J .
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Model MCC ACC AUC Brier-Score F1
ANLP-SB 0.744 (0.033) 0.866 (0.023) 0.959 (0.007) 0.236 (0.041) 0.835 (0.015)
ALP-SB 0.081 (0.035) 0.480 (0.051) 0.817 (0.014) 0.699 (0.072) 0.630 (0.050)
SLP-SB 0.038 (0.029) 0.466 (0.054) 0.840 (0.019) – 0.627 (0.051)

BayesReg 0.645 (0.032) 0.813 (0.026) 0.850 (0.013) – 0.756 (0.017)
edgeR-L -0.001 (0.048) 0.522 (0.035) 0.498 (0.029) – 0.334 (0.051)
edgeR-Q -0.015 ()0.050 0.515 (0.038) 0.491 (0.030) – 0.336 (0.046)
BhGLM 0.321 (0.037) 0.646 (0.042) 0.687 (0.022) – 0.426 (0.042)

(a) Variable Selection

Model RMSE DIC LPML
βjp π?p0 gtkj

ANLP-SB 0.171 (0.022) 0.249 (0.023) 1.087 (0.261) 334,422 (15,563) -4.211 (0.196)
ALP-SB 0.152 (0.011) 0.456 (0.023) 0.655 (0.078) 334,196 (15,512) -4.232 (0.195)
SLP-SB 0.153 (0.017) 0.449 (0.023) 1.120 (0.323) 334,599 (15,495) -4.238 (0.195)

BayesReg 0.185 (0.016) – 1.742 (0.353) 334,161 (15,526) -4.252 (0.195)
edgeR-L 0.344 (0.022) – – – –
edgeR-Q 0.320 (0.021) – – – –
BhGLM 0.423 (0.035) – – – –

(b) Parameter Estimation and Model Fit

Table 2.9: [Simulation 8: Comparison] Results from simulation study with N =
200 samples taken at n = 100 time points with J = 200 OTUs and P = 50
covariates.

2.4 Ocean Microbiome Data Analysis

In this section, we summarize our analyses of the ocean microbiome dataset in

Lee and Sison-Mangus (2018). Bacterial RNA samples were collected at a total of

54 time points between April 2014 and November 2015 with two or three replicates

at a time point, resulting in N = 150 samples. Microbial 16s rRNA in the samples

was sequenced and a 39,823×150 OTU table was obtained after post-processing

of the sequences. We removed OTUs having smaller than 5 counts on average and

included J = 263 OTUs for our analysis. Figure 2.1(c) shows a heatmap of the

OTU counts in our ocean microbiome data.

The dataset also has continuous and categorical covariates recorded at the

same time points. Continuous variables include ammonia (NH4), silicate (Si),

nitrate (N), phosphate (P), temperature (T) and chlorophyll (Chl); and categorical
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Figure 2.4: [Ocean Microbiome Data] Panel (a): Boxplots of the posterior dis-
tributions of π?p0, the probability of a non-zero effect on OTU abundance. Panel
(b): Boxplots the posterior distributions of πp1, the conditional probability of a
positive effect direction given the covariate has a non-zero effect.

variables include abundance levels of Alexandrium (Ax), Dinophysis (Dp) and

Pseudo-nitzschia (Pn), and the domoic acid (DA) concentration level. Binary

indicators were created to represent low (`), medium (m), high (h) and very high

(H) levels of the categorical variables with the ‘none’ category used as the reference

group. In total, we have P = 20 covariates. Supplementary Table A.2 lists all

covariates. For more details of the dataset, see Lee and Sison-Mangus (2018)

and Sison-Mangus et al. (2016). The primary goal of this study is to identify

important covariates related to changes in OTU abundance levels and to quantify

the effects of those identified covariates.
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Figure 2.5: [Ocean Microbiome Data] Simplex plots of the posterior means
ẑjp = (ẑjp0, ẑjp1, ẑjp2) of γjp = 0, (no effect), γjp = 1, (positive effect) and γjp = 2,
(negative effect). The colors, blue, red and green, indicate no relationship, a neg-
ative relationship, and a positive relationship with OTU abundance, respectively.

We specified hyperparameters similar to those in the simulations for the Bayesian

models. The MCMC simulation was run over 125,000 iterations, with the first

25,000 iterations discarded as burn-in and every fifth sample kept as thinning and

used for inference. It took about 21 minutes for 1,000 iterations on a 3.20GHz

Intel i5-6500 processor. Figure 2.4 summarizes posterior inferences on overall

sparsity parameter π?p0, and on conditional probability πp1 that a covariate has

a positive effect given that it has a significant effect. Panel (a) shows that low,

medium, and very high DA concentration levels have estimates of π?p0 smaller

than 0.5, implying that they are significantly related to OTU abundance with

probability greater than 0.5. From panel (b), the low and very high concentration

levels of DA are associated with depressed OTU abundance with larger proba-

bility when they are identified as significant. DA is a chemical secreted by toxic

Pseudo-nitzschia species whose ecological role is currently unknown. However,

previous reports suggest that it could have antibacterial activities (Bates et al.,
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1995). Both our preliminary laboratory and ocean studies suggest that it can

depress the abundance and growth of some bacterial taxa, while promoting others

(Sison-Mangus et al. unpublished). Panel (a) also indicates that silicate is identi-

fied as irrelevant with probability π̂?0 = 0.67, and when it is significant, its effect is

positive with probability π̂1 = 0.75. Silicate concentration is normally associated

with diatom growth as this nutrient is required for silica frustule formation. The

breakdown of diatom organic carbon and silicate matter is enhanced by particu-

lar groups of bacteria from Flavobacteriales (Bacteroidetes) and Alteromonadales

family (Gamma-proteobacteria) (Bidle and Azam, 2001). Moreover, bacterial

production is intimately tied to diatom primary production, which biologically

explains positive effects of silicate to abundance of some bacterial OTUs.

Figure 2.5 has simplex plots of a probability vector ẑjp = (ẑjp0, ẑjp1, ẑjp2) with

ẑjpq being a posterior probability estimate that γjp = q, q ∈ {0, 1, 2} for silicate

and for the very high concentration level of DA. Circles represent individual OTUs.

OTUs having no association with a covariate lie in the bottom-left corner of the

plot, those with negative relationships in the bottom-right corner, and those with

positive relationships at the apex. Similar to Figure 2.4(b), the figure indicates

silicate tends to not be associated with abundance for many OTUs, while very

high DA concentration tends to be negatively associated with abundance for many

OTUs. Supplementary Figure A.7 has simplex plots for all covariates. Supplemen-

tary Figure A.8 illustrates posterior inference of βjp and P(γjp = 2) for the OTUs

belonging to class Gamma-proteobacteria. The figure shows that many of those

OTUs have negative associations with DA, especially with the very high concentra-

tion level of DA, compared to the reference level, ‘none.’ The findings were further

validated through a lab experiment using a cultured Gamma-proteobacteria strain.

This bacterial isolate was exposed to different concentrations of DA for 24 to 48
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hours followed by growth measurement (Optical Density at 600 nm). We found

that the bacteria was significantly affected by DA at concentrations ranging from

25 to 50 µg/ml, suggesting that DA can indeed inhibit the growth of bacteria

(Supplementary Figure A.9).

For comparison, we fit the alternative Bayesian models to the dataset. Pos-

terior inferences on π?p0 and πp1 under ALP-SB and SLP-SB are summarized in

Supplementary Figure A.11. Under those models, the posterior distributions of

π?p0 are mostly concentrated in the region between 0.2 and 0.4 for all covariates.

ANLP-SB encourages a more parsimonious fit, which is desirable as a sparser fit

may better elucidate the biological mechanisms at play. Supplementary Table

A.3 shows DIC and LPML for the Bayesian models. Both criteria indicate that

ANLP-SB gives a better fit to the data.

2.5 Discussion

We have presented a Bayesian sparse multivariate regression model for mi-

crobiome data analysis. We extended NLPs to allow asymmetric probabilities for

a coefficient being negative/positive and used the extended ANLPs as a prior for

regression coefficients to yield good performance in identification of important co-

variates related to changes in OTU abundances. By assuming common threshold

parameters and overall sparsity parameters, the proposed method makes use of

information from all OTUs and yields improved statistical inferences on all OTUs.

Taking a probabilistic modeling approach, our model propagates uncertainties at

all levels and provides an assessment of the uncertainty of the selection process.

In addition, ANLP-SB simultaneously adjusts for differences in library sizes and

accounts for dependence structure in samples via process convolutions.

Our simulation studies and analysis of the ocean microbiome data show that
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utilizing the ANLPs greatly improves posterior inferences in terms of variable se-

lection and in terms of identifying the direction of relationships between covariates

and OTU abundance. In the simulations, ANLP-SB showed robustness to mild

violations of the modeling assumptions on effect sizes of irrelevant variables and on

dependence structure in samples. ANLP-SB compared favorably to two Bayesian

models that used an ALP and an SLP, and to the likelihood-based methods, edgeR

and BhGLM. ANLP-SB also appears to yield improved parameter estimates, both

at the community and individual OTU levels.

Our ANLP-SB model can be used for analyses of any count data in various

fields such as biomedical sciences and economics and can be further extended to

accommodate more complex data structures. For example, interaction effects be-

tween OTUs can be modeled through graphical models. In particular, Gaussian

graphical models use a covariance matrix to represent conditional interdependen-

cies between OTUs and can provide a convenient framework for analyzing and

interpreting relationships between OTUs (Dempster, 1972). These are potential

areas for future research.
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Chapter 3

A Bayesian Nonparametric

Analysis for Zero Inflated

Multivariate Count Data with

Application to Microbiome Study

3.1 Introduction

The statistical community has increasingly focused on developing techniques

to model high-throughput sequencing (HTS) data produced by microbiome stud-

ies. Although HTS data has been successfully used to profile complex microbial

communities, analysis of such data remains challenging. In this work, we focus

on the analysis of multivariate count data with excess zeros, in particular, read

count data of taxa produced by 16S ribosomal RNA (rRNA) sequencing. As a

motivating example, we consider the chronic wound microbiome data in Verbanic

et al. (2019), which consists of microbiome samples taken from human subjects’
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chronic wounds, both pre- and post-debridement, as well as from their healthy

skin. Verbanic et al. (2019) studied changes to the chronic wound microbiome by

debridement, which is known to be an effective treatment for chronic wounds. We

present a Bayesian nonparametric regression model that includes a submodel for

zero inflation and flexibly accommodates covariates such as environmental fac-

tors and clinical characteristics for differential abundance analysis. The model

provides an inferential framework to gain further insights into complex microbial

communities.

In microbiome studies samples are taken from some environment of interest,

and the 16S rRNA gene in DNA extracts of the samples is amplified and sequenced

using HTS. Counts of the resulting sequence reads are produced by comparing the

reads to a database and grouping them into operational taxonomic units (OTUs)

that exhibit some degree of similarity. The data from each sample is summa-

rized in a multivariate vector of OTU counts. These counts commonly exhibit

zero inflation and overdispersion, making their analysis more complicated. Stan-

dard errors will be underestimated if the model does not properly accommodate

overdispersion, and failing to account for zero inflation can bias estimation of the

relationship between covariates and OTU abundance and lead to incorrect pre-

dictions. Total counts in samples vary due to experimental artifacts such as the

sequencing depth, and raw counts do not reflect the actual microbial abundance

in the samples. Consequently, the OTU counts need to be normalized for mean-

ingful comparison across samples, and determining whether a zero count is due

to an OTU truly being absent from the environment versus a detection failure is

not straightforward.

Various statistical models haven been proposed for microbiome data analysis

that take these features into account. Zero-inflated count models including zero
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inflated Poisson (ZIP) and zero inflated negative binomial (ZINB) are common

choices to address the problem of excessive zeros. To detect associations or dif-

ferential abundance, these models generally relate OTU abundance to a set of

covariates by modeling the mean counts or some transformation of the counts via

a link function. Some of these models, such as Chen and Li (2016) analyze each

OTU individually, while many more recent models analyze OTUs jointly through

some hierarchical structure. Hierarchical models allow for borrowing strength

across taxa for enhanced estimation of covariate effects or increased power to de-

tect differential abundance. In this vein, Jonsson et al. (2018) model the counts

directly using a ZIP model with OTU and sample specific random effects to ac-

count for overdispersion. Lee et al. (2018) use a ZIP model with spike-and-slab

priors for variable selection on regression parameters related to taxa abundances

and zero inflation. This model also includes a multivariate random effect to ac-

count for interdependence among OTU counts in a sample. See Sankaran and

Holmes (2018), Tang and Chen (2018) and Kaul et al. (2017) among many others

for more examples of using zero inflated models.

We develop a Bayesian nonparametric multivariate regression model with zero

inflation that enables assessment of taxa richness and diversity that potentially

varies with covariates. We use a ZINB distribution for OTU counts and assume

an OTU count is either equal to zero or follows a NB distribution. The ZINB

model properly accounts for the overdispersion and excess zeros that are common

in HTS data. We build nonparametric regression prior models on the probability

of an OTU count being zero and the mean count of an OTU to study the effects

of covariates x on microbial communities. The probit of the probability of an

OTU count being zero, ξ, and the logarithm of the OTU’s differential abundance

compared to the baseline counts, θ, are assumed to follow unknown distribution
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functions indexed by x, F ξ
x and F θ

x , respectively. We use a dependent Dirich-

let process (DDP) (MacEachern, 1999, 2000), a flexible nonparametric Bayesian

model to model F ξ
x and F θ

x . The DDP is a popular choice to model a set of

random functions related through x. Our model is highly flexible with regard

to the nature of the relationship of the covariates and an OTU’s abundance and

presence. In addition to inference on the association of individual taxa with co-

variates through ξ and θ, F ξ
x and F θ

x provide community-level insights related to

alpha-diversity and species evenness, which distinguishes our method from other

commonly used models for differential abundance analysis. To improve the infer-

ence on F ξ
x and F θ

x , we construct an elaborate model for the baseline abundance

of OTUs in samples. The baseline count of an OTU in a sample is modeled as a

function of a sample size factor and an OTU baseline abundance factor to account

for count variation related to sequencing depth and different baseline abundances

of OTUs. The baseline abundance factors are shared by samples from a group,

such as the subject or location where each sample was collected, to reflect the

dependent taxa abundance levels shared across these samples. These two factors

constitute a basis for the estimation and meaningful interpretation of ξ and θ.

In the remainder of the chapter we describe the model and its applications.

§3.2 describes the proposed Bayesian nonparametric multivariate NB regression

model with zero inflation (called “BNP-ZIMNR”), §3.3 has results from the model

applied to some simulation studies, §3.4 has results from the model applied to a

chronic wound microbiome dataset, and §3.5 concludes with some discussion of

the results and areas of future research.
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3.2 Probability Model

3.2.1 Sampling Model

Assume that non-negative integer counts Yij are observed for OTU j in sample

i, j = 1, . . . , J and i = 1, . . . , n, and are organized in a n × J table, Y = [Yij].

Let a sample have a categorical covariate xi ∈ X = {1, . . . , K} and a grouping

factor ui ∈ U = {1, . . . ,M}. In our motivating dataset skin type provides three

levels of a covariate, i.e., X = {1, 2, 3}. The samples were taken from 18 subjects,

which we use as a grouping factor, U = {1, . . . , 18} with M = 18. Although

we use a setting with one categorical covariate to present the model, it can be

easily extended to accommodate more factors and continuous covariates. We use

a zero inflated negative binomial (ZINB) regression model. For OTU count Yij

with covariate level xi and grouping factor ui,

Yij | εj,xi , µij, sj
indep∼ εj,xiδ{0}(Yij) + (1− εj,xi) NB (µij(xi, ui), sj) , (3.1)

where δA(·) is the Dirac measure at A and NB(µ, s) the negative binomial (NB)

distribution with mean µ and dispersion parameter s (so the variance is µ+ sµ2).

The zero inflated model in (3.1) assumes that abundance is conditional on the

presence of an OTU. (1− εj,xi) is the probability of presence for OTU j in sample

i, and is a function of covariate xi. With probability (1− εj,xi) the NB generates

counts, some of which can be zero. The model specification implies that a zero

count can be produced in two ways. An OTU may truly be absent in a sample

with xi. Conversely, zero counts may be produced for rare OTUs even when those

OTUs are truly present if the sequencing effort is not sufficient to surface their

presence. HTS data is commonly modeled using NB models, as in (3.1), which are

more flexible than their Poisson counterparts in accommodating overdispersion.
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Overdispersion parameter sj controls the amount of overdispersion, with larger sj

indicating a greater amount of overdispersion, and the equivalent Poisson model

with mean µij is recovered as sj → 0. We let the overdispersion parameters

sj
iid∼ Log-Normal(as, b2

s) with as and b2
s fixed. The mixture model in (3.1) can be

represented with latent indicator variables δij ∈ {0, 1} for presence and absence

of OTU j in sample i. We assume δij
indep∼ Ber(1− εj,xi), and let Yij = 0 for δij = 0

and Yij
indep∼ NB (µij(xi, ui), sj) for δij = 1.

We decompose the mean abundance µij for OTU j present in sample i as

follows: For sample with xi = k and ui = m,

log(µij(k,m)) = αjm + ri + θjk. (3.2)

A baseline abundance factor of OTU j for samples from group m, αjm accounts

for different baseline abundances of OTUs. It is shared by the samples from group

ui = m and induces dependence among Yij with ui = m. ri is a sample specific

normalization factor to account for different library sizes across samples. Param-

eters αjm and ri together form the baseline count of OTU j in sample i. It is

common that ri is set to the logarithm of the total counts Yi• = ∑J
j=1 Yij as an

offset variable (e.g., see Lee et al. (2018) and Zhang et al. (2017a)). We instead let

ri be random, which enables full model-based inference with appropriate uncer-

tainty quantification. θjk in (3.2) represents a multiplicative change in abundance

of OTU j for covariate level k compared to its baseline abundance. A value of

θjk close to zero implies that the abundance of an OTU is close to the baseline

abundance, i.e., non-differentially abundant, and positive or negative values of θjk

imply low or high abundance of OTU j in a sample with xi = k, respectively.

Comparison of θjk across k can be used to infer differential abundance of OTU j.

Similarly, comparison of θjk across j provides insights on relative abundances of
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OTUs in a sample with level k, such as species diversity compared to the baseline.

Using regression models for εjk and θjk is common to quantify covariate ef-

fects on the occurrence of excess zeros and differential abundances. Using our

motivating dataset as a specific example, one may choose one k′ of the levels as

a reference and let θjk′ = 0. θjk, k 6= k′ is then interpreted as an effect size rel-

ative to the abundance of OTU j under the reference. A potential drawback of

this approach is that θjk, k 6= k′ cannot be meaningfully estimated if an OTU is

absent under the reference level. A common workaround to address this issue is

to replace zeros with a small value, known as pseudo count, if an OTU has zeros

in all samples of the reference level. However, this arbitrary modification of the

data may result in biased inference. On the other hand, the decomposition of µ

in (3.2) can avoid potential biases because θjk represents differential abundance

compared to the baseline abundance ri +αjm. The baseline count of an OTU can

be estimated if an OTU exists for at least one k. We let θjk = 0 if an OTU is

present only for one level of k so that θjk can be fully interpreted. For εjk, we

use a probit link function, Φ−1 (εjk) = ξjk, where Φ−1(·) is a inverse cumulative

distribution function of the standard normal distribution. In the presence of a

high proportion of zeros, including random group effects for ε may produce highly

unstable model fitting and computational intractability (Agarwal et al., 2002),

and for this reason we let εjk be a function of xi only. The dependence of εjk on

xi only is in contrast with µij, which depends on both ui and xi. In the following,

we consider a flexible BNP approach to model ξjk and θjk to improve inference on

presence/absence and differential abundance.

50



3.2.2 Prior

We assume ξjk iid∼ F ξ
k and θjk iid∼ F θ

k , and use a BNP approach to build a model

for F ξ
k and F θ

k . In addition to inference on individual OTUs through ξjk and

θjk, their distributions F ξ
k and F θ

k capture useful information relating microbial

communities with different levels of the covariate, and provide biological insights

into community changes in k. In particular, F ξ
x describes the distribution of the

probabilities of OTUs in a community under condition x, and is closely related

to species richness (number of different species in a community). For F ξ
k that

assigns more probability mass to small values, OTUs in a sample with xi = k are

more likely to be present and have non-zero counts, potentially implying higher

microbial species richness for the sample. Similarly, F θ
k captures the distribution

of differential abundance of OTUs present in a sample with xi = k. If F θ
k is

greatly concentrated around zero, many OTUs in a sample with xi = k are not

differentially abundant compared to their baseline counts. Comparison of F ξ
k and

F θ
k across k tells how community composition changes by covariates. To build a

flexible prior model for F ξ
k and F θ

k that are possibly related across different k, we

consider a dependent Dirichlet process (DDP) model in a Dirichlet process (DP)

mixture model. For OTU j in a sample with xi = k, we assume

ξjk
iid∼ F ξ

k =
∞∑
`=1

ψξ` N
(
ξ?k`, σ

2
ξk

)
and θjk

iid∼ F θ
k =

∞∑
`=1

ψθ` N
(
θ?k`, σ

2
θk

)
. (3.3)

The mixture locations ξ?k` and θ?k` depend on k and we let ξ?k`
iid∼ N(ξ̄?, τ 2

ξ ) and

θ?k`
iid∼ N(θ̄?, τ 2

θ ). The covariate independent weights ψχ` , χ ∈ {θ, ξ} take the form

ψχ` = vχ`
∏`−1
`′=1 (1− vχ`′) with vχ`

iid∼ Be(1, ρχ). That is, the “single-p” DDPs that

assume predictor independent weights are used in (3.3) as priors over the distri-

butions of the mixture locations. MacEachern (1999, 2000) proposed the DDP to
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model related random probability distributions. When flexible point mass pro-

cesses are considered for θ?` = {θ?x`, x ∈ X} and ξ?` = {ξx`, x ∈ X}, the “single-p”

DDP has full weak support, implying that the prior model is flexible enough to

generate sample paths sufficiently close to any probability distribution. DDP and

its variations have been successfully used to model related probability distributions

in many applications including ANOVA (De Iorio et al., 2004), survival (De Iorio

et al., 2009; Jara et al., 2010), time series analysis (Griffin and Steel, 2011; Nieto-

Barajas et al., 2012) and spatial modeling (Gelfand et al., 2005) among many

others. The DDP mixture formulation in (3.3) allows us to flexibly specify and,

after fitting the model, analyze and compare, F θ
x and F ξ

x without restrictive para-

metric assumptions about their functional forms. We assume σ2
χk

iid∼ IG(aχσ, bχσ),

χ ∈ {ξ, θ}. With minimal changes, (3.3) can accommodate multiple covariates

and continuous covariates; as a simple example, we may consider θ?` (xi) = a′θ,`xi

and ξ?` (xi) = a′ξ,`xi with aχ,`
iid∼ N (āχ,Bχ) with Bχ > 0, χ ∈ {θ, ξ}.

Parameters ri and αjm construct the baseline count of OTU j in a sample

with ui = m, and serve as an “overall mean.” Observe that the parameters

in (3.2) are not identifiable due to the multiplicative structure, E(Yij | δij =

0) = eri+αjm+θjk . We place constraints on the distributions of both ri and αjm to

circumvent the identifiability issue in estimating the baseline counts, exp(ri+αjm).

More importantly, the constraints allow parameters of primary interest θjk and

F θ
k to be identified. Specifically, we use mean-constrained priors with a mixture-

of-mixtures structure (Li et al., 2017) for ri and αjm,

ri
iid∼

Lr∑
`=1

ψr`

{
wr` N(ηr` , u2

r) + (1− wr` ) N
(
υr − wr`ηr`

1− wr`
, u2

r

)}
,

αjm
iid∼

Lα∑
`=1

ψα`

{
wα` N(ηα` , u2

α) + (1− wα` ) N
(
υα − wα` ηα`

1− wα`
, u2

α

)}
,

(3.4)
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where υχ, χ ∈ {r, α} are the distribution’s fixed, prespecified mean constraints,

and ψχ` and wχ` are mixture weights with ∑Lχ

`=1 ψ
χ
` = 1 and 0 < ψχ` , w

χ
` < 1.

Although mean-constrained, the mixture-of-mixture formulation provides signif-

icant flexibility, as it can accurately characterize a wide range of distributions,

including multi-modal and skewed distributions. Lee and Sison-Mangus (2018)

and Shuler et al. (2019a) used the distributions in (3.4) for model based nor-

malization in similar settings, and their results indicate the baseline abundance

and covariate effects can be estimated without issues related to identifiability.

In contrast to using plug-in empirical estimates for normalizing factors, the flex-

ible model based approach can further improve estimation of ξjk and θjk, and

thus enhance estimation of F ξ
k and F θ

k . We follow Li et al. (2017) and set

υr = 0, which can be interpreted as on average no scaling adjustment; although

other approaches are available, such as using an empirical estimate like in Shuler

et al. (2019a) or setting the constraint using prior information if it is available.

We use an empirical approach to set υα. We compute r̃i = log (Yi•/Y••) −
1
N

∑
i′ log (Yi′•/Y••) with Y•• = ∑

i,j Yij as mean zero empirical estimates of ri

and set υα =
[∑

i,j|Yij>0 {log(Yij)− r̃i}
]
/
{∑

i,j 1(Yij > 0)
}
. Inference on θ and

ε is not sensitive to specification of υr and υα (Lee and Sison-Mangus, 2018;

Shuler et al., 2019a). Our simulation studies and real data analyses also show

robustness of inference to different specifications of υr and υα. We place a Dirich-

let prior on the outer mixture weights and a beta prior on the inner mixture

weights, letting ψχ
` = (ψχ1 , . . . , ψχLχ) ∼ Dir(aχψ) and wχ`

iid∼ Be(aχw, bχw), χ ∈ {r, α},

where aχψ = (aχψ1, . . . , a
χ
ψ,Lχ), aχw and bχw are fixed hyperparameters. We let

ηχ`
iid∼ N(υχ, b2

ηχ) with b2
ηχ fixed.
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3.2.3 Posterior Computation

Let θ = [sj, δij, ri, αjm, ξjk, θjk, (χ?k`, v
χ
` , σ

2
χk, χ ∈ {θ, ξ}), (ψ

χ
` , w

χ
` , η

χ
` , χ ∈ {r, α})]

denote the vector of all unknown parameters. The joint posterior distribution

is P (θ | Y ,x,u) ∝ P (Y | θ,x,u) P (θ). We use standard Markov chain Monte

Carlo (MCMC) methods consisting of Gibbs and Metropolis steps to draw samples

from the posterior distribution. As is standard in mixture modeling we introduce

auxiliary variables to indicate the mixture components from which the parameters

of interest belong. We add auxiliary variables of this type to aid in the posterior

computation for ri, αjm, θjk, and ξjk. For computational convenience, when fitting

the model we approximate the DDP in (3.3) by truncating the number of mixture

components of F χ
k to Lχ, χ ∈ {ξ, θ}. The final weight ψχLχ = 1−∑Lχ−1

`=1 ψχ` is set to

ensure F ξ
k is proper. With large enough Lχ the truncated process produces infer-

ence almost identical to that with the infinite process (Ishwaran and James, 2001;

Rodriguez and Dunson, 2011). As discussed in Rodriguez and Dunson (2011) if

there is discrepancy between the posterior distributions under the truncated and

infinite processes, the model is typically sensitive to the choice of Lχ. We exam-

ined the posterior distribution of ψχLχ and the sensitivity of the model to a choice

of Lχ. We found that the truncated process is robust to a choice of Lχ if Lχ

is sufficiently large. We diagnose convergence and mixing of the described pos-

terior MCMC simulation using trace plots and autocorrelation plots of imputed

parameters. For both the upcoming simulation examples and the data analysis,

we found no evidence of practical convergence problems. An R package for the

model, bnpzimnr, is available at https://github.com/kurtis-s/bnpzimnr. Details

of posterior computation are given in Supplementary §B.1.
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3.3 Simulation Studies

3.3.1 Simulation 1

To assess the performance of the proposed model, BNP-ZIMNR, we performed

simulation studies and compared its performance to that of alternative models.

We included a factor with three levels and simulated data for 100 OTUs from

20 subjects, i.e., J = 100, M = 20, and K = 3, resulting in n = 60 samples,

a covariate xi ∈ {1, 2, 3}, i = 1, . . . , N and a grouping factor ui ∈ {1, . . . , 20}.

We used Gaussian mixtures to set the simulation truth for F ξ,TR
k and F θ,TR

k , k =

1, 2, 3; let F ξ,TR
1 = 0.6 N(−2, 0.25) + 0.4 N(−1, 0.5), F ξ,TR

2 = 0.2 N(−0.5, 0.25) +

0.8 N(0.5, 0.5), and F ξ,TR
3 = 0.5 N(0, 0.25) + 0.5 N(1, 0.5). Similarly, we set to

F θ,TR
1 = 0.3 N(3, 0.25) + 0.6 N(2, 0.25) + 0.1 N(−1.5, 0.5), F θ,TR

2 = 0.3 N(2, 0.5) +

0.6 N(−1, 0.25) + 0.1 N(−2, 0.25), and F θ,TR
3 = 0.3 N(2, 0.5) + 0.35 N(−1, 0.25) +

0.35 N(−2, 0.25). F ξ,TR
k and F θ,TR

k are illustrated with the solid black lines in

Figure 3.3. F ξ
1 generally favors smaller values of ξjk, indicating greater species

richness in level 1 than in the other levels. When an OTU is present in a sample

with k = 1, it tends to have a value of θjk greater than zero, i.e., a higher

abundance. On the other hand, for levels k = 2, 3, OTUs are likely to be absent,

and when they are present, their abundances are low with large probability. In

a simulated dataset, the three levels of xi approximately have 9%, 59% and 69%

of Yij being equal to 0, respectively. We drew ξTR
jk independently from F ξ,TR

k and

generated δTR
ij

indep∼ Ber(1−εTR
jk ) for a sample with xi = k, where εTR

jk = Φ(ξTR
jk ). If an

OTU is present for two or more levels of the factor, i.e., differential abundance can

be meaningfully defined, then we drew θTR
jk from F θ,TR

k . If an OTU is present for

only one level θTR
jk = 0. Otherwise, θTR

jk is not defined. We simulated group factors

αTR
j,ui

iid∼ N(10, 1), normalization factors (exp(rTR
1 ), . . . , exp(rTR

N )) ∼ Dir(5, . . . , 5),
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and dispersion parameters sTR
j

iid∼ Log-Normal (−2, (1/10)2). For (i, j) with δTR
ij =

1, we simulated OTU counts Yij using the NB distribution with mean µTR
ij =

exp(αTR
j,ui

+ rTR
i + θTR

j,xi
) and dispersion sTR

j . When δTR
ij = 0, we set µTR

ij = 0 and

Yij = 0.

Posterior Inference When fitting the model, we set the hyperparameters as

follows: For the mean-constrained distribution of normalization factors ri, let

υr = 0, Lr = 20, arψ = 1, arw = 5, brw = 5, u2
r = 0.05, and b2

ηr = 0.25. Similarly, for

the group specific baseline abundance of OTU j αjm, let υα be specified using the

empirical approach described in § 3.2.2, Lα = 150, aαψ = 1, aαw = 1, bαw = 1, u2
α = 2

and b2
ηα = 1. For the DDP priors, we let ρθ = 1, θ̄? = 0 and τ 2

θ = 10. For the DDP

prior of ξjk, we used ρξ = 1, ξ̄? = 2 and τ 2
ξ = 1, which encourages a preference for

a higher probability for zero inflation, but is still flexible enough to accommodate

OTUs with little sparsity. For the mixtures’ kernel dispersions let aχσ = bχσ = 1,

χ ∈ {ξ, θ}. We set the DDP truncation levels to Lθ = Lξ = 50. Finally, we

used as = 0.25, b2
s = 0.25 for the prior of OTU-specific dispersion parameters

sj. To run the MCMC simulation, we used data to initialize the parameters. For

example, we initialized ri with the empirical sample size factors r̃i used to set υr.

Empirical proportions of zero counts, pjk = 1
M

∑n
i=1|xi=k 1(yij = 0) were used to set

initial values of εjk and ξ?k`. We ran the MCMC for 70,000 iterations, discarding

the first 20,000 iterations, and thinned to use every fifth sample, resulting in

10,000 samples from the posterior distribution. On a 3.2GHz Intel i5-6500 CPU

running Ubuntu Linux the MCMC took approximately 12 minutes for every 5,000

iterations of the MCMC.

We first examine the inference on species richness in samples with k. Recall

that δij = 1 implies the presence of OTU j in sample i. We used posterior

means of δij as their point estimates δ̂ij = P̂(δij = 1 | y). The model recovers
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Figure 3.1: [Simulation 1] Panels (a) and (b): Histograms of δ̂ij = P̂(δij = 1)
when δTR

ij = 0 and δTR
ij = 1. Panel (c): Posterior means of εjk plotted against the

simulation truth. Colors/shapes indicate the factor levels: k = 1, red squares;
k = 2, green circles; k = 3, blue triangles.

the indicators for zero inflation well, as shown by the histograms of δ̂ij when

δTR
ij = 0 and 1 in Figure 3.1(a) and (b), respectively. The model yields good

estimates of εTR
jk , as seen in Figure 3.1(c), which shows posterior estimates of εjk

plotted against the simulation truth. Figure 3.2 shows the resulting posterior

inference on θjk for individual OTUs. To account for zero inflation, we define

κjk = 1{∑N
i=1;xi=k 1(δij = 1) > 0}, a binary indicator taking 0 if OTU j is absent

in all samples from level k, or 1 otherwise. Note that θjk is defined only when

κjk = 1. We incorporate κjk and compute point posterior estimates of θjk; θ̂jk =∑B
b=1 κ

(b)
jk × θ

(b)
jk /

∑B
b=1 κ

(b)
jk , where b = 1, . . . , B indexes the posterior samples and

κ
(b)
jk = 1{∑N

i=1|xi=k 1(δ(b)
jk = 0) > 0}. θ̂jk along with 95% credible intervals (CIs)

are shown. The plots show that the model provides good estimates for differential

abundance in different levels of the factor. The differences between the estimates

and truth and CI lengths are greater for levels k = 2 and 3 because fewer non-zero

counts are observed due to high prevalence of absence. Panel (d) shows posterior

estimates of κ̂jk = 1
B

∑B
b=1 κ

(b)
jk when κTR

jk = 0 in the simulation truth. The plot

illustrates the model does a good job of identifying absence in factor levels and
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Figure 3.2: [Simulation 1] Panels (a)-(c): Posterior means of differential abun-
dances θjk for k = 1, 2, 3, respectively, along with 95% credible intervals and ref-
erence lines. Panel (d): Posterior estimates of κjk for cases of (j, k) with κTR

jk = 0,
i.e., when OTU j is absent in all samples with level k.

further enhances the estimation of θjk. Figure 3.3 shows posterior inference for

communities through f̂ ξk and f̂ θk . In each panel, the posterior estimates are shown

by dashed colored lines with shaded 95% pointwise CIs, and the simulation truth is

shown in solid black. From the plot, the BNP regression approach flexibly captures

non-Gaussian patterns such as bimodality and skewness in the distributions. Even

for levels k = 2, 3, where many OTUs are not present, the model produces good
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Figure 3.3: [Simulation 1] Panels (a)-(c) shows posterior estimates of f ξk for each
k, k = 1, 2, 3, and panels (d)-(f) of f θk . Dashed colored lines are estimates with
shaded 95% pointwise credible intervals. Black solid lines represent the simulation
truth. Rugs show ξTR

jk and θTR
jk .

estimates of f θk , potentially because it borrows information across different levels

through the DDP as well as across different OTUs. We also examined estimates

of baseline counts of OTU j in sample i, ri + αjm. These estimates are shown

in supplementary Figure B.1. The posterior estimates recover the true baseline

counts well. There is no indication that the model suffers identifiability problems.

Posterior predictive performance indicates reasonable model fit. Replications Y rep
ij

from the posterior predictive distribution were compared to the observed counts

Yij. Figure 3.4 compares the average value of these replicates Ŷ rep
ij to Yij on the

log scale. An offset of 0.1 was added so that the zero counts could be visualized.
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Figure 3.4: [Simulation 1] Average value of replicated counts Y rep
ij drawn from

the posterior predictive distribution compared to Yij.

The figure provides no evidence indicating serious failings of the model. We also

computed 95% posterior predictive intervals and compared them to the observed

values. We observed that the posterior predictive intervals are conservative.

The model is complex and we performed prior robustness diagnostics. From

the diagnostics, specification of the prior for ξ?k may need careful attention. The

empirical proportion of zero counts in data commonly is pjk = 1
M

∑n
i=1|xi=k 1(Yij =

0) = 0 or 1. For such cases, a wide range of small/large values of ξjk can almost

equally well explain the observed pjk, and a large value of τ 2
ξ may result in un-

desirable inference on f ξk . We also re-fit the model with different values of the

fixed parameters including Lr, Lα, Lθ and Lξ, and examined the robustness of

the model. Changes in the posterior inference by specification of other param-

eters such as Lr, Lα, Lθ and Lξ are minimal. We did not observe evidence of

convergence or mixing problems. In addition, the model shows robustness to the

estimation of the baseline counts ri +αjm with different specifications of the fixed

hyperparameter values. A discussion including more details of sensitivity analyses,

the chain’s convergence and run-time is in Appendix §B.2.
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Comparison We used 100 simulated datasets to compare results of our BNP-

ZIMNR to those of alternative models: A Bayesian nonparametric multivariate

regression model with NB (BNP-MNR), a Bayesian nonparametric multivariate

Poisson regression model with zero inflation (BNP-ZIMPR), a Bayesian nonpara-

metric multivariate NB regression model with zero inflation but with fixed normal-

ization factors (FN-BNP-ZIMNR), the zero inflated overdispersed Poisson (ZoP)

model (Jonsson et al., 2018) and edgeR (Robinson et al., 2010). BNP-MNR is

similar to our BNP-ZIMNR, but does not include the submodel in (3.1) for zero

inflation. BNP-ZIMPR is likewise similar to BNP-ZIMNR, but uses a Poisson like-

lihood instead of a negative binomial likelihood. FN-BNP-ZIMNR incorporates

the same elements as BNP-ZIMNR, but uses fixed normalization (FN) factors

ri = log(Yi•) rather than using the mean-constrained prior specification of (3.4).

ZoP is a Bayesian generalized linear model that uses a zero inflated Poisson dis-

tribution for OTU counts, and beta and normal priors for the probability of being

zero and the regression coefficients, respectively. Under ZoP, each Yij has a ran-

dom effect, i.e., sample and OTU specific random effects to handle overdispersion.

EdgeR, one of popular likelihood based methods, uses a NB generalized linear re-

gression approach. It uses OTU specific plugin estimates for the normalization

factors produced by an empirical Bayes strategy and analyzes individual OTUs

separately. EdgeR does not include random effects for the group factor and does

not account for the dependence among samples taken from the same subject. ZoP

and edgeR set one level of a factor as a reference level to formulate the regression,

and their regression coefficients represent differential abundance compared to the

abundance in the reference level. ZoP uses the pseudo count approach when all

samples of the reference level have zeros. Both methods include library sizes Yi•

as plugin offsets for normalization. EdgeR has an option to use empirically pre-
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Model δij θj2 − θj1 θj3 − θj1 µij
BNP-ZIMNR 0.019 (0.005) 0.308 (0.060) 0.325 (0.057) 3,154 (818)
BNP-MNR – 3.909 (0.504) 4.762 (0.504) 6,5190,628 (89,816,163)

FN-BNP-ZIMNR 0.021 (0.005) 2.234 (0.279) 2.386 (0.263) 4,680 (2,032)
BNP-ZIMPR 0.022 (0.006) 1.650 (0.282) 1.706 (0.258) 3,686 (1,289)

ZoP 0.200 (0.033) 2.759 (0.278) 3.156 (0.249) 3,769 (1,281)
edgeR – 2.218 (0.303) 2.693 (0.303) 7,924 (1,860)

(a) Parameter Estimation

Model θj1 − θj3 θj2 − θj3
BNP-ZIMNR 0.325 (0.057) 0.393 (0.054)
BNP-MNR 4.762 (0.504) 4.468 (0.446)

FN-BNP-ZIMNR 2.386 (0.263) 0.610 (0.182)
BNP-ZIMPR 1.706 (0.258) 0.617 (0.126)

ZoP 4.348 (0.356) 3.636 (0.388)
edgeR 2.693 (0.303) 3.302 (0.380)

(b) Estimation of Difference in θ with k = 3 as a Reference

Table 3.1: [Simulation 1: Comparison] RMSEs of δij, θjk − θj1, k = 2, 3, and
µij are shown in (a). Performance metric averages over 100 simulated datasets
with standard deviations in parenthesis. k = 1 is used as the reference group for
the difference in θ. For (b), k = 3 is used as the reference group and RMSE of
θjk − θj3, k = 1, 2 is given.

estimated sample size factors instead of Yi•, but we used their default option using

Yi•.

For comparison, we fit each of the models and compared parameter estimates

to their truth using root mean square error (RMSE). The different formulation

for the regression model under ZoP and edgeR precludes a direct comparison of

their differential abundance estimates to θTR
jk . As an alternative, we arbitrarily set

the reference to the first level k = 1 and compare the model performances on the

estimation of differences θjk−θj1, k = 2, 3. The RMSE computed for δjk, θjk−θj1

and µjk is shown in Table 3.1(a). For BNP-MNR, we used the posterior mean

estimates of µij as a point estimate µ̂ij . For the zero inflated models, similar

to θ̂ we computed µ̂ij = ∑B
b=1 δ

(b)
ij × µ

(b)
ij /B. BNP-ZIMNR outperforms the other

methods in comparison for estimating δij and (θjk−θj1). BNP-ZIMNR is the best
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performer in terms of estimating µij, closely followed by ZoP and BNP-ZIMPR.

Due to OTU and sample specific random effects under ZoP, it obtains good es-

timates of µij, but may tend to overfit the data, leading to worse estimates for

(θjk − θj1), as is indicated by model comparison described later. The detrimental

impact of excluding zero inflation can be seen by the much larger RMSE of µij for

the BNP-MNR. Failing to account for overdispersion biases the estimates of θjk,

as can be seen from the performance of BNP-ZIMPR. Fixed normalization fac-

tors, like those used in FN-BNP-ZIMNR, lead to poorer estimates of both θjk and

µij. Since selecting a level for the reference is arbitrary, we re-fit the data using a

different level of the factor as the reference for ZoP and edgeR and computed the

RMSE of the differences in θjk. Table 3.1(b) illustrates the RMSE of (θjk − θj3)

with k = 3 instead of k=1 as the reference level. Recall that level k=3 has a

higher degree of zero inflation than level k=1 in the truth. The performances

of ZoP and edgeR degrade when using this sparser factor level as the reference,

indicating bias in the estimation of θ due to using arbitrary pseudo counts. In

contrast, the inference on θjk under BNP-ZIMNR and BNP-MNR is invariant to

the choice of reference level.

For further comparison of model fit among the Bayesian models, the log

pseudo marginal likelihood (LPML) and the deviance information criterion (DIC)

were calculated for BNP-ZIMNR, BNP-MNR, FN-BNP-ZIMNR, BNP-ZIMPR

and ZoP. These metrics are summarized in Table 3.2(a). Similar to other infor-

mation criterion, DIC assesses model performance based on the model’s predic-

tive accuracy with a penalty for model complexity (Spiegelhalter et al., 2002).

Lower values of DIC are preferred. LPML is the sum of the logarithms of con-

ditional predictive ordinates (Gelfand et al., 1992; Gelfand and Dey, 1994). It

gives a measure of the leave-one-out cross validated posterior predictive prob-
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Model DIC LPML
BNP-ZIMNR 50,994 (1,107) -26,391 (528)
BNP-MNR 62,909 (1,317) -32,328 (647)

FN-BNP-ZIMNR 51,780 (1,098) -26,964 (529)
BNP-ZIMPR 128,182 (11,411) -74,781 (6,319)

ZoP 2,598,963 (90,051) -486,810 (30,653)
(a) DIC and LPML

Model F θ
1 F θ

2 F θ
3

BNP-ZIMNR 0.158 (0.063) 0.195 (0.073) 0.163 (0.060)
BNP-MNR 0.209 (0.069) 0.489 (0.033) 0.510 (0.039)

FN-BNP-ZIMNR 0.775 (0.029) 0.269 (0.108) 0.304 (0.116)
BNP-ZIMPR 0.795 (0.020) 0.317 (0.045) 0.278 (0.050)

(b) Total Variation Distance between F θ,TR
k and F̂ θ

k

Table 3.2: [Simulation 1: Comparison] (a) Average model comparison metrics
over 100 simulated datasets with standard deviations in parenthesis. (b) Average
total variation distance of F θ

k as compared to the simulation truth both with and
without zero inflation. Standard deviations in parenthesis.

ability, with higher values preferred. For more reliable comparison, we evalu-

ated DIC and LPML based on the partially marginalized likelihood that inte-

grates out random effects at the observation level for the ZoP (Millar, 2009).

The table shows BNP-ZIMNR has greatly improved model fit compared to BNP-

MNR, BNP-ZIMPR and ZoP. DIC and LPML based on the partially marginalized

likelihood indicate that BNP-ZIMNR fits the data better, potentially implying

overfit under ZoP. Different from ZoP and edgeR, the BNP models also provide

community-level inferences. To assess the impact of omitting zero inflation, us-

ing fixed normalization factors, or using a Poisson likelihood in the estimation of

F θ
k , we considered the total variation distance between F θ,TR

k and F̂ θ
k estimated

from BNP-ZIMNR and its variants. Letting B denote the class of all Borel sets

in R, the total variation distance measures the closeness between two densities

as supB∈B
∣∣∣∫B f θ,TR

k dθ −
∫
B f̂

θ
kdθ

∣∣∣ = 1
2
∫ ∣∣∣f θ,TR

k − f̂ θk
∣∣∣ dθ, where f θ,TR

k and f̂ θk denote

the densities of F θ,TR
k and F̂ θ

k (Devroye and Lugosi, 2001). Table 3.2(b) shows the
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computed total variation distances. We use median estimates of f θk as our point

estimate f̂ θk . The benefits of incorporating zero inflation into the model are clearly

observed for estimating a distribution of differential abundances. The total vari-

ation distance under BNP-ZIMNR is notably reduced, especially for k = 2 and 3,

the levels with higher probability of OTU absence. The use of fixed normalization

factors or failing to accommodate overdispersion hinders estimation of F θ
k as well,

as seen by the inferior performance of FNP-BNP-ZIMNR and BNP-ZIMPR.

3.3.2 Simulation 2

In this section we present results from Simulation 2, which we performed

as an additional assessment of the model’s performance and scalability. The

setup for Simulation 2 was similar to Simulation 1, but includes K = 6 dif-

ferent factor levels instead of K = 3 as was done in Simulation 1. We sim-

ulated data for 100 OTUs for 20 subjects, i.e., J = 100, M = 20, resulting

in n = 120 samples, a covariate xi ∈ {1, . . . , 6}, i = 1, . . . , n and a group-

ing factor ui ∈ {1, . . . , 20}. We used Gaussian mixtures to set the simulation

truth for F ξ,TR
k and F θ,TR

k , k = 1, . . . , 6. We let F ξ,TR
k = 0.6 N(−2, 0.25) +

0.4 N(−1, 0.5) for k = 1 and 6, F ξ,TR
k = 0.2 N(−0.5, 0.25) + 0.8 N(0.5, 0.5) for

k = 2 and 4, and F ξ,TR
k = 0.5 N(0, 0.25) + 0.5 N(1, 0.5), k = 3 and 5. We let

F θ,TR
k = 0.3 N(3, 0.25) + 0.6 N(2, 0.25) + 0.1 N(−1.5, 0.5), k = 1 and 4, F θ,TR

k =

0.3 N(2, 0.5) + 0.6 N(−1, 0.25) + 0.1 N(−2, 0.25), k = 2 and 5, and F θ,TR
k =

0.3 N(2, 0.5) + 0.35 N(−1, 0.25) + 0.35 N(−2, 0.25), k = 3 and 6. In the dataset

used for the second simulation 10%, 58%, 62%, 57%, 66% and 14% of Yij were

equal to 0, respectively, for the 6 factor levels. The hyperparameter and trun-

cation levels were set in a manner similar to Simulation 1: Lr = 20, arψ = 1,

arw = 5, brw = 5, u2
r = 0.05, b2

ηr = 0.25, Lα = 150, aαψ = 1, aαw = 1, bαw = 1,
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u2
α = 2, b2

ηα = 1, Lθ = 50, ρθ = 1, θ̄? = 0, τ 2
θ = 10, Lξ = 50, ρξ = 1, ξ̄? = 2,

τ 2
ξ = 1, aξσ = bξσ = aθσ = bθσ = 1, as = 0.3, and b2

s = 0.1. υr = 0 is set and υα

was specified using the empirical approach described in §3.2.2. The MCMC was

run for 70,000 iterations, discarding the first 20,000 iterations, and thinned to use

every fifth sample, resulting in 10,000 samples from the posterior distribution. For

this larger simulation every 5, 000 iterations of the MCMC took approximately 21

minutes on a 3.2GHz Intel i5-6500 CPU running Ubuntu Linux.

Figure 3.5 shows the resulting posterior inference on differential abundance

parameters θjk for individual OTUs. The figure shows the model is able to pro-

vide good estimates for differential abundance under the larger simulation study.

Figure 3.6(a) considers estimates of κjk = 1{∑N
i=1;xi=k 1(δij = 1) > 0}, letting

κ̂jk = 1
B

∑B
b=1 κ

(b)
jk when κTR

jk = 0 in the simulation truth (and b indices the MCMC

iteration). Panel(b) shows εjk plotted against the simulation truth. The results

indicate the model continues to do a good job handling zero inflation and OTU

absence when fit on the larger dataset. Figures 3.7 and 3.8 show posterior in-

ference on F θ
k and F ξ

k . As in simulation 1, the BNP approach is able to provide

accurate community level inference, capturing the bimodality and skewness in the

distributions. Figure 3.9 shows the average Ŷ rep
ij value of replicates drawn from

the posterior predictive distribution plotted against the observed counts on the log

scale. Like in simulation 1 we find the posterior predictive inference is reasonable.

Comparison We used 100 simulated datasets with K = 6 levels to compare re-

sults from BNP-ZIMNR to those from the alternative models. For ZoP and edgeR

we set the reference to the first level k = 1. The method produces estimates of

difference between θjk and θj1, i.e., θjk − θj1, k = 2, . . . , 6. As in Simulation 1,

we compared parameter estimates to their truth using the root mean square error

(RMSE) of θjk−θj1, k 6= 1, δij, and µij. Table 3.3(a) and (b) summarize the results.
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Model δij µij
BNP-ZIMNR 0.033 (0.004) 1,025 (210)
BNP-MNR – 3,891,833 (3,865,212)

FN-BNP-ZIMNR 0.035 (0.005) 2,212 (1,220)
BNP-ZIMPR 0.035 (0.004) 1,547 (426)

ZoP 0.180 (0.020) 1,697 (423)
edgeR – 3,652 (800)

(a) RMSE of δ and µ

Model θj2 − θj1 θj3 − θj1 θj4 − θj1 θj5 − θj1 θj6 − θj1
BNP-ZIMNR 0.278 (0.056) 0.283 (0.051) 0.263 (0.047) 0.286 (0.058) 0.194 (0.057)
BNP-MNR 3.165 (0.434) 4.054 (0.528) 3.627 (0.537) 4.069 (0.505) 0.570 (0.120)

FN-BNP-ZIMNR 2.205 (0.268) 2.373 (0.281) 0.934 (0.157) 2.342 (0.235) 1.393 (0.225)
BNP-ZIMPR 1.661 (0.253) 1.760 (0.263) 0.654 (0.146) 1.749 (0.229) 1.345 (0.245)

ZoP 2.590 (0.223) 2.942 (0.216) 2.099 (0.419) 2.922 (0.198) 1.424 (0.232)
edgeR 2.109 (0.238) 2.505 (0.259) 1.801 (0.296) 2.473 (0.254) 1.486 (0.223)

(b) RMSE of θjk′ − θj1, k′ 6= 1 with k = 1 as a Reference

Model θj1 − θj3 θj2 − θj3 θj4 − θj3 θj5 − θj3 θj6 − θj3
BNP-ZIMNR 0.283 (0.051) 0.336 (0.050) 0.325 (0.045) 0.345 (0.043) 0.282 (0.047)
BNP-MNR 4.054 (0.528) 3.903 (0.469) 4.131 (0.450) 4.274 (0.471) 4.059 (0.538)

FN-BNP-ZIMNR 2.373 (0.281) 0.597 (0.167) 1.542 (0.299) 0.637 (0.297) 1.039 (0.300)
BNP-ZIMPR 1.760 (0.263) 0.572 (0.120) 1.472 (0.243) 0.591 (0.129) 0.569 (0.186)

ZoP 4.179 (0.336) 3.417 (0.268) 3.346 (0.356) 3.475 (0.358) 2.551 (0.287)
edgeR 2.505 (0.259) 3.083 (0.325) 3.166 (0.303) 3.400 (0.319) 2.568 (0.320)

(c) RMSE of θjk′ − θj3, k′ 6= 3 with k = 3 as a Reference

Table 3.3: [Simulation 2: Comparison] Performance metric averages over 100
simulated datasets with standard deviations in parenthesis. k = 1 is used the
reference group and RMSE of δ, µ and θjk − θj1, k 6= 1 are shown in (a) and (b).
For (c), k = 3 is used as the reference and RMSE of θjk − θj3, k 6= 3 is computed.

Model DIC LPML
BNP-ZIMNR 84,548 (1,685) -43,038 (832)
BNP-MNR 112,868 (2,063) -57,383 (1,004)

FN-BNP-ZIMNR 87,089 (1,738) -44,667 (873)
BNP-ZIMPR 319,745 (19,183) -186,249 (10298)

ZoP 3,892,519 (128,904) -615,820 (29,828)
(a) DIC and LPML

Model F θ1 F θ2 F θ3 F θ4 F θ5 F θ6
BNP-ZIMNR 0.126 (0.052) 0.157 (0.058) 0.132 (0.046) 0.133 (0.049) 0.157 (0.059) 0.126 (0.047)
BNP-MNR 0.203 (0.062) 0.453 (0.034) 0.472 (0.039) 0.432 (0.061) 0.493 (0.030) 0.182 (0.059)

FN-BNP-ZIMNR 0.749 (0.026) 0.296 (0.110) 0.337 (0.107) 0.450 (0.056) 0.369 (0.110) 0.168 (0.064)
BNP-ZIMPR 0.801 (0.018) 0.374 (0.073) 0.308 (0.081) 0.781 (0.025) 0.346 (0.071) 0.414 (0.065)

(b) Total Variation Distance between F θ,TR
k and F̂ θk

Table 3.4: [Simulation 2: Comparison] (a) Average model comparison metrics
over 100 simulated datasets with standard deviations in parenthesis. (b) Average
total variation distance of F θ

k as compared to the simulation truth both with and
without zero inflation. Standard deviations in parenthesis.
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Figure 3.5: [Simulation 2] Posterior means of θjk for the six levels of the factor
along with 95% credible intervals.

For each RMSE metric BNP-ZIMNR outperforms the alternative models. We ex-

amined the sensitivity of selecting k as the reference for ZoP and edgeR. For these

two models we consider using k = 3 an alternative reference group and provide the

RMSE for θjk − θj3, k 6= 3. The results are shown in Table 3.4(c). BNP-ZIMNR,

BNP-MNR, FN-BNP-ZIMNR and BNP-ZIMPR do not require a reference group.

BNP-ZIMNR’s superior performance in terms of estimating θjk−θj3, k 6= 3 is even

greater when the reference group is set to k = 3, which has greater zero inflation

than the k = 1 level. DIC and LPML for BNP-ZIMNR, BNP-MNR, FN-BNP-

ZIMNR, BNP-ZIMPR and ZoP are shown in the first panel of Table 3.4. For

the DIC and LPML calculations the random effects from ZoP were marginalized
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Figure 3.6: [Simulation 2] Panel (a): Posterior estimates of κjk for cases of (j, k)
with κTR

jk = 0, i.e., when OTU j is absent in all samples with level k. Panel
(b): Posterior means of εjk plotted against the simulation truth. Shapes/colors
indicate factor levels.

out as in Simulation 1, like is described in §3.3. BNP-ZIMNR outperformed the

other models in terms of these predictive metrics. The advantage of BNP-ZIMNR

over the alternative models is further illustrated by the second panel of Table 3.4

which lists the total variation distance of F θ
k for the BNP-ZIMNR, BNP-MNR,

FN-BNP-ZIMNR and BNP-ZIMPR. BNP-ZIMNR outperforms the model with-

out zero inflation, the model with fixed normalization factors, and the model with

a Poisson likelihood for all six of the regression coefficient distributions.

3.4 Chronic Wound Microbiome Data Analysis

In this section we apply BNP-ZIMNR to study chronic wound microbiomes

using the dataset in Verbanic et al. (2019). The dataset consists of microbiome

samples collected fromM = 18 subjects with chronic wounds. Swab samples were

collected from chronic wounds pre- and post-debridement, along with a healthy
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Figure 3.7: [Simulation 2] Posterior estimates of F ξ
k for each k, k = 1, . . . , 6.

Solid black lines are the simulation truth. Shaded regions represent 95% pointwise
credible intervals. Rugs show ξTR

jk .

skin swab sample from a control site, for each of the subjects. The K = 3 exper-

imental conditions result in n = 54 samples in total. We let k = 1, 2, and 3 rep-

resent healthy skin, pre-debridement wound swabs, and post-debridement wound

swabs, respectively. The study aims to investigate how debridement influences the

composition of the microbial community of the wound, and also to compare the

microbial composition of the wound surface to that of healthy skin. We analyzed

the data to infer changes in the community-level microbial richness and diversity

as well as differential abundances of individual OTUs. Better understanding of

the wound microbiome and the effects of debridement on the wound microbiota

can further elucidate the role of the microbiome on wound healing. From the

70



−4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

θjx

f xθ

−4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

θjx

f xθ

−4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

θjx

f xθ

(a) F θ for k = 1 (b) F θ for k = 2 (c) F θ for k = 3

−4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

θjx

f xθ

−4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

θjx

f xθ

−4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

θjx

f xθ

(d) F θ for k = 4 (e) F θ for k = 5 (f) F θ for k = 6

Figure 3.8: [Simulation 2] Posterior estimates of F θ
k for each k, k = 1, . . . , 6.

Solid black lines are the simulation truth. Shaded regions represent 95% pointwise
credible intervals. Rugs show θTR

jk .

swab samples, the 16S rRNA gene was amplified by PCR and sequenced using

high throughput sequencing, and the sequence reads were organized into an OTU

table for analysis. A total of 22,753 OTUs were observed after removing single-

tons. We restricted our attention to OTUs with nonzero counts in more than

20% of the samples for at least one experimental condition. After pre-processing,

J = 92 OTUs were included in the analysis. The degree of zero inflation varies

widely by experimental condition, with 8% of the OTU counts equal to zero from

the healthy skin samples, versus 65% and 67% of the OTU counts equal to zero in

the pre-debridement and post-debridement conditions, respectively. Figure 3.10

(a)-(c) illustrates histograms of the empirical proportions pjk of zero counts in
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Figure 3.9: [Simulation 2] Average value of replicated counts Y rep
ij drawn from

the posterior predictive distribution compared to simulated counts Yij.

the samples for the conditions. Panels (d)-(f) show histograms of total counts

Yi• in samples for each k. From the figures, the samples from conditions k = 2

and 3 have more zeros and have lower total counts. The observed zeros in the

pre/post-debridement conditions may be due to the absence of the OTUs under

those conditions. Figure 3.12(a) compares the posterior mean estimates ε̂jk of εjk

with the empirical proportions pjk. For many OTUs in conditions k = 2 or 3

(green or blue), differences between ε̂jk and pjk are relatively large for some (j, k).

That is, the model infers that some zeros were observed even when OTUs were

present, possibly because of the small total counts under those conditions as seen

from Figure 3.10(e) and (f).

We specified hyperparameters similar to those in the simulations. The MCMC

simulation was run over 140,000 iterations, with the first 40,000 iterations dis-

carded as burn-in and every fifth sample kept as thinning and used for infer-

ence. The MCMC took approximately 11 minutes for every 5,000 iterations of the

MCMC on a 3.2GHz Intel i5-6500 CPU running Ubuntu Linux.

Community level inference provided by f ξk and f θk is shown in Figure 3.11.
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Figure 3.10: [Chronic Wound Data] Panels (a)-(c): Histograms of empirical
proportions of zero counts for each condition, pjk = 1

M

∑n
i=1|xi=k 1(Yij = 0), k =

1, 2, 3, where k = 1, 2, 3 represents the healthy skin, pre- and post-debridement,
respectively. Panels (d)-(f): Histograms of total OTU counts of samples for each
experimental condition, Yi• for xi = k, k = 1, 2, 3.

Posterior estimates of f ξk and f θk are shown by the colored lines, with pointwise 95%

CIs shown by the shaded regions, where the colors, red, blue and green, represents

the healthy skin (k = 1), pre-debridement wound (k = 2), and post-debridement

wound (k = 3), respectively. The differences between the estimates under the

healthy skin condition and those under the wound conditions are substantial, but

the wound microbial community does not change immediately after debridement,

similar to the previous findings in Gardiner et al. (2017); Verbanic et al. (2019).

In panel (a), f̂ ξk is stochastically lower for the healthy skin condition, suggesting

greater species richness in a healthy skin sample than in a wound sample. For the

wound conditions, f̂ ξk assigns more density to larger values and also has higher
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Figure 3.11: [Chronic Wound Data] Estimates of f ξk and f θk are shown in pan-
els (a) and (b). The three experimental conditions, healthy skin (k = 1), pre-
debridement (k = 2) and post-debridement (k = 3), are indicated by the colors
red, green and blue, respectively. 95% pointwise credible intervals for each condi-
tion are shown by the shaded areas.

dispersion. Panel (b) shows that f̂ θk assigns more density to higher values in the

healthy skin condition than in the pre-/post-debridement conditions. The bulk

of the density for the wound conditions is given to values less than zero and the

density estimates have long left tails. The distributions imply that on average

OTUs in the wound conditions tend to have low abundance compared to their

baseline.

The model also provides inference for individual OTUs. Figure 3.13 illustrates

the posterior distributions of εjk and θjk for some selected OTUs, j = 28, 34

and 75. From panels (b), (c), (e) and (f), OTUs 34 and 75 that belong to genus

Micrococcus and Corynebacterium, respectively, are highly abundant in skin, but

not in wounds. The OTUs are absent in wounds with high probability. The

increased likelihood of absence from wound samples and the depleted abundance in
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wound samples when present are consistent with the previous findings in Verbanic

et al. (2019) and Grice et al. (2009), indicating these OTUs are associated with

a healthy skin microbiome. OTU j = 28 belonging to genus Pseudomonas is

noted to be significantly associated with wounds (Verbanic et al., 2019), and is

also known to be a pathogen in chronic wounds (Wolcott et al., 2016; Loesche

et al., 2017; Kalan et al., 2019). However, panels (a) and (d) do not show a

significant association with wounds. The lack of significant differences may be due

to the high variability of wound composition among patients and small sample size.

Posterior predictive checks indicate the model produces sensible inference. Figure

3.14 shows the average value of replicated counts Y rep
ij drawn from the posterior

predictive distribution plotted against the true counts on the log scale. An offset

of 0.1 was added to Y rep
ij and Yij so that zero values could be visualized. 97.5% of

the true OTU counts were covered by their respective 95% credible intervals from

the posterior predictive distribution, suggesting reasonable model fit. We also

conducted sensitivity analyses to the specification of some fixed hyperparameters,

Lθ, Lξ, Lr, Lα, υr and υα. Changes in the posterior inference was minimal under

these alternative specifications. More details are discussed in Supplementary §B.3.

The comparators are applied to the chronic wound data and their inferences

are compared to the posterior inference under our BNP-ZIMNR. The healthy skin

condition is used as the reference group for ZoP and edgeR to infer differential

abundance for individual OTUs. Figure 3.12(b)-(f) compare estimates of θjk−θj1,

k = 2 and 3, from the comparators to those from BNP-ZIMNR. In the figure,

θjk − θj1’s are denoted by symbols + and x in green and blue for k = 2 and 3,

respectively. From panels (b) and (e), OTUs that are less abundant in the wound

conditions under BNP-ZIMNR tend to be less abundant to a greater degree under

BNP-MNR and ZoP. FN-BNP-ZIMNR in panel (c), on the other hand, tends to
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Model DIC LPML
BNP-ZIMNR 28,271 -15,984
BNP-MNR 30,904 -17,318

FN-BNP-ZIMNR 28,689 -16,262
BNP-ZIMPR 133,899 -73,816

ZoP 1,415,594 -249,758

Table 3.5: [Chronic Wound Data] Model comparison metrics for the chronic
wound microbiome dataset.

predict higher OTU abundance under the wound conditions than BNP-ZIMNR.

Panel (f) shows that edgeR also indicates greater abundance in the wound condi-

tions for more OTUs, though less consistently than FN-BNP-ZIMNR. Table 3.5

shows DIC and LPML under the Bayesian models, BNP-ZIMNR, BNP-MNR, FN-

BNP-ZIMNR, BNP-ZIMPR and ZoP for the chronic wound microbiome dataset.

The metrics reported for ZoP were calculated using the partially marginalized

likelihoods as was done in the simulation studies. BNP-ZIMNR outperforms the

other models using both metrics. A possible explanation for the notably worse

performance metrics for ZoP is most of the variability in the data is explained by

sample and OTU specific random effects under that model. Because the model fit

evaluation is based on marginalization over the random effects ZoP’s performance

metrics suffer.

3.5 Discussion

We have presented a Bayesian nonparametric regression approach to model

count data in the presence of high zero inflation, with application to microbiome

studies. The model incorporates a DDP which avoids restrictive distributional

assumptions, and flexibly estimates the degree of zero inflation and differential

abundance across covariates and OTUs. Through this development we introduce
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convenient methods for community level inference through examination of dis-

tributions related to taxa richness and differential abundance. Furthermore, by

carefully considering the parameters’ identifiability we remove the need to set

a reference condition, allowing such community level inference to be made even

when it is unclear which experimental condition should serve as the baseline, or

when it is inconvenient to set an experimental condition as the baseline.

Our simulation studies showed that BNP-ZIMNR provides better estimation

of differential abundance across different environmental factors or experimental

conditions as compared to popular alternative models. The results indicate incor-

porating zero inflation into the model provided better estimation of OTU abun-

dance and community level inference. The application of BNP-ZIMNR to ana-

lyze chronic wound microbiomes illustrates that the model successfully facilitates

community-level inference.

BNP-ZIMNRmay be extended to accommodate more complex data structures,

such as spatial and temporal dependence. Spatial and temporal changes in human

microbiota were studied in Parfrey and Knight (2012) and Galloway-Peña et al.

(2017). An extended variation of our BNP-ZIMNR can be used to characterize

variability in microbiome over time and/or space at the community level as well

as at the individual taxa level. The DDP has been successfully applied as a prior

for a time series of random probability distributions (e.g., Griffin and Steel (2011)

and Nieto-Barajas et al. (2012)). Also, Gelfand et al. (2005) and Duan et al.

(2007) developed a variation of the DDP to flexibly model spatial dependence for

point-referenced data. These are potential areas for future research.
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Figure 3.12: [Chronic Wound Data] Panel (a) shows a plot of empirical propor-
tions pjk of zero counts for each condition versus posterior mean estimates of εkj.
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θjk − θj1, k = 2 and 3, under the comparators vs BNP-ZIMNR. Differences of the
conditions, pre-debridement (k = 2) and post-debridement (k = 3), are indicated
by the colors green and blue, respectively.
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Figure 3.14: [Chronic Wound Data] Average value of replicated counts Y rep
ij

drawn from the posterior predictive distribution compared to the real OTU counts
Yij.

79



Chapter 4

Bayesian Graphical Modeling of

Microbial Community

Composition

4.1 Introduction

Next generation sequencing technology has provided an advanced way to pro-

file and analyze microbial communities and their environments. A typical analysis

pipeline involves taking samples from the environment of interest and applying

high-throughput sequencing (HTS) to produce read count data on the 16S rRNA

gene of the taxa present in the environment. After sequencing, similar reads are

grouped together into operational taxonomic units (OTUs), and the read counts of

these OTUs are used for further downstream analysis. Such data can potentially

answer key open research questions in biology, including the relationships among

microbiota present in microbiomes and the effects of environmental factors on their

abundances (Banerjee et al., 2018; Gilbert et al., 2018, 2012; Huttenhower et al.,
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2012; Consortium, 2012). In many cases, the abundance levels of taxa present

in the microbiome are not believed to be independent, but identifying symbi-

otic/antagonistic relationships among OTUs is challenging (Cirri and Pohnert,

2019; Faust and Raes, 2012; Kurtz et al., 2015; Weiss et al., 2016; Zhou et al.,

2010). Learning the latent dependence structure between OTUs from noisy data

is oftentimes of primary interest to biologists, and accounting for the structure

may further enhance inference on other parameters.

Graphical models are powerful tools in genomics and other studies of learning

biological systems where network relationships are expected (for example, see Ro-

dríguez et al. (2011); Ni et al. (2015); Peterson et al. (2015) among many others),

but less so in microbiome studies. Graphical models allow for the mathematical

expression of conditional independence structure between a set of random vari-

ables θ = (θ1, . . . , θJ)′, and provide estimates on the interaction patterns with

associated uncertainties from noisy data. In a graphical model, variables are rep-

resented by a set of nodes corresponding to the variables V = {1, . . . , J} and their

associated interactions are represented by edges E. A graph G is defined with a set

of nodes V and a set of edges E. A graph characterizes conditional independence

structure through presence or absence of edges between pairs of variables. The

absence of an edge usually represents the conditional independence between the

corresponding pair of random variables given a certain set of other variables. The

certain set of other variables are defined by a chosen graph. Among various kinds

of graphs, undirected graphs (UG) and directed acyclic graphs (DAG) are most

commonly used because they can successfully learn the dependence structure in

biological processes even with small sample sizes (Altomare et al., 2013).

Although well suited to genomic studies, Gaussian graphical models typically

cannot be directly applied to microbiome studies as the responses in microbiome
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analysis are often multivariate count data coming from HTS. Furthermore, HTS

samples must be normalized before analysis, otherwise spurious graphical relation-

ships may be inferred (Faust and Raes, 2012; Faust et al., 2012). For graphical

analysis normalization must be applied both across samples, to account for vary-

ing levels of effort in the sequencing procedures; and across OTUs, to account

for different abundance rates across taxa. Common approaches to normalization

are to include total OTU counts as an offset in the model (e.g., Zhang et al.

(2017a); Lee et al. (2018)) or to use a multinomial likelihood for the OTU counts

conditioning on the total counts (e.g., Wadsworth et al. (2017); Tang and Chen

(2018)). However, these may lead to undesirable inferences such as underesti-

mated uncertainty with the resulting inference or an unappealing assumption on

the relationship between OTUs. In particular, a multinomial model inherently

induces a negative correlations between taxa OTU counts, which is at odds with

biological knowledge suggesting some taxa will have mutualistic relationships. A

simple and common approach to identify graphical structure is using marginal

correlations between OTU counts or normalized counts (e.g., see Faust and Raes

(2012); Berry and Widder (2014); Layeghifard et al. (2017) among many others).

Deng et al. (2012) empirically standardized OTU counts to have mean zero and

variance one in a sample and built a network between OTUs based on Pearson

correlations between the standardized counts. They used random matrix theory

to automatically select a threshold for similarity scores based on the correlations.

Another example is Lee et al. (2018), which models the OTU counts through a

zero inflated Poisson regression model. They incorporated correlation matrices

to account for the taxa dependence structure for zero inflation and abundances.

Likely due to their simplicity, marginal correlation based methods are the most

common method, but often fail to infer complex interplay between OTUs. Our
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simulation studies indicate that the use of marginal correlations to identify graph-

ical structure may lead to noisier estimates of OTU relationships than encoding

those through a graph directly, which may be related to the paucity of samples

as compared to taxa. Oftentimes analyses of microbiome data is further com-

plicated due to dependence structure arising from the sampling procedure, such

dependence from samples taken across time/space, or dependence coming from

multiple samples taken from the same subject, must be accounted for before the

graphical structure can be accurately inferred.

In this work, we develop a Bayesian regression model with a graph (called

BRM-G) to to simultaneously identify interactions between OTUs and estimate

effects of covariates on OTUs’ abundances. Our BRM-G assumes a negative bi-

nomial model to properly model OTU counts with potential overdispersion. The

model normalizes mean counts across samples to reflect the data’s compositional

nature, as well as across taxa to account for different taxa abundance rates, using

the mean-constrained mixture-of-mixtures model in Li et al. (2017). The model-

based normalization allows accurate quantification of inferential uncertainty for

the underlying microbioal structure. BRM-G utilizes a DAG (Pearl, 1988) through

normalized OTU abundances for theoretical and computational convenience. A

DAG directly encodes conditional dependence/independence relationships among

OTUs, and assumes that the prevalence of one OTU may influence the expected

prevalence of another OTU in a conditionally independent manner. Careful nor-

malization prevents spurious edge detection in the graph and helps answer key

biological questions with higher accuracy. Conditional independence relationships

do not uniquely specify a DAG, and DAGs with the same set of conditional inde-

pendence relationships are said to be Markov equivalent (Pearl, 1988). Without

outside knowledge such as the prior ordering of OTUs or experimental intervention
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the underlying DAG structure can only be recovered up to Markov equivalence

(Altomare et al., 2013; Ni et al., 2015, 2018; Radhakrishnan et al., 2018). For this

reason we focus on recovery of the DAG’s ‘moralized’ counterpart. The model also

simultaneously infers the association of the normalized abundances with covariates

through regression. BRM-G builds a hierarchical model to integrate information

across OTUs and samples for improved inference. We show the advantages of the

graphical approach we propose by comparing it to similar models that either omit

this graphical component or use marginal correlations between OTUs through

simulation studies. We illustrate the method with the chronic wound microbiome

dataset in Verbanic et al. (2019). They studied the effects of debridement, a treat-

ment for chronic wounds, on the microbiome of human subjects with stalled skin

healing.

The remainder of the chapter describes BRM-G and its application to the

chronic wound microbiome dataset. We describe the model, its assumptions,

and the procedures we used for fitting the model in §4.2. In §4.3 we illustrate

the performance of the model on synthetic experiments and compare it to other

models for microbiome analysis. §4.4 describes the results from fitting the model

to the chronic wound microbiome dataset, and we conclude with §4.5 with a brief

discussion and potential areas for further research.

4.2 Probability Model

4.2.1 Sampling Model

Assume that non-negative counts Yij for each of the OTUs under consideration

are observed in n samples, where i = 1, . . . , n and j = 1, . . . , J . Each sample has

an associated covariate vector x′i = [xi1, . . . , xip], such as experimental conditions
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associated with sample i, and an associated grouping factor ui ∈ U = {1, . . . ,M},

such as the subject from which the sample was obtained. The OTU counts are

organized into an n×J table of counts, Y . The pattern over OTUs may be similar

in the samples taken from a subject or in the samples collected under the same

experimental conditions. Also, the counts of an OTU may depend on those of the

other OTUs due to their interactions in a sample. We model the counts using a

negative binomial (NB) model as

Yij | µij, sj
indep∼ NB(µij(xi, ui,µi,−j), sj), (4.1)

where µij(xi, ui,µi,−j) is the mean abundance of OTU j in sample i, and µi,−j
the vector of µij′ with µij removed, i.e., µi,−j = (µi1, . . . , µi,j−1, µi,j+1, . . . , µiJ).

µij(xi, ui,µi,−j) is sample and OTU specific, and is a function of covariates (xi),

subjects (ui) and the abundances (µi,−j) of the other OTUs in the sample. For

notational simplicity in the following we denote the mean µij = µij(xi, ui,µi,−j)

if it is self-contained. We parameterize the model as

P(Yij | µij, sj) = Γ (Yij + 1/sj)
Yij! Γ (1/sj)

(
µijsj

1 + µijsj

)Yij ( 1
1 + µijsj

)1/sj
,

enabling the overdispersion of each OTU to be modeled separately from the mean,

with Var(Yij) = µij+sjµ2
ij, and the equivalent Poisson model recovered as sj → 0.

HTS data is known to exhibit a high degree of overdispersion, with the OTU

counts across samples sometimes varying by several orders of magnitude. The

Poisson distribution’s mean is necessarily equal to its variance, potentially leading

to biased parameter estimates or underestimated estimation uncertainty when the

counts are overdispersed. As a result, models that do not account for potential

overdispersion, such as the Poisson distribution, may not be well suited to model
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OTU counts. Models based on the negative binomial distribution are more flexible

in this regard, as the additional parameter sj models overdispersion separately.

We create a log-linear model for the average OTU abundance by decomposing

µij to

log
(
µij(xi, ui,µi,−j)

)
= ri + αj + θmj(µi,−j) + x′iβj. (4.2)

The factor ri represents a sample size factor to account for different library sizes

across the samples, and allows for meaningful comparison across samples. The

intercept term αj accounts for different baseline abundances across OTUs. To-

gether ri and αj represent the baseline rate of occurrence for the jth OTU in

the ith sample. Correction for a sample specific factor ri and an OTU-specific

factor αj facilitates meaningful comparison of OTU abundances across samples

and OTUs. {log
(
µij(xi, ui,µi,−j)

)
− ri − αj} can be viewed as a normalized

factor of relative abundance of OTU j in a sample from subject ui on the log-

arithmic scale. θmj(µi,−j) is a random effect of OTU j in a sample taken from

subject ui, and allows for variability in OTU abundances across subjects. We as-

sume dependence between OTU abundances through the normalized factors, i.e.,

θmj(µi,−j) = θmj(θm,−j), and consider a graphical model through θmj to encode

dependencies among OTUs. Oftentimes, the dependence structure and effects of

covariates are of primary inferential interest in microbiome studies.

4.2.2 Prior

A key feature of the model is a graphical component to characterize depen-

dence between J OTUs. θmj in (4.2) forms the basis for the graphical component

of the model. For large problems, such as large J , inferring the interaction pattern

between OTUs is challenging. We utilize a DAG since it is flexible yet compu-
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tationally tractable. Under a DAG, all the edges of the graph are directed and

the graph has no cycles. We encode a DAG G = {V, E}, where V = {1, . . . , J}

represents the set of J OTUs and and E ⊆ {(` → j), `, j ∈ V, ` 6= j} the set of

edges characterizing G. Under DAGs, edge (` → j) ∈ E indicates that OTU `

is a parent of OTU j, and let Pa(j) be the set {` : (`→ j) ∈ E} of OTUs which

are parents of OTU j. DAGs assume that OTU j is conditionally independent

of all of its nondescendants in G given its parents Pa(j). In turn, it implies that

an OTU is independent of all other OTUs given the set of OTUs consisting of its

parents, its children, and the other parents of its children (Friedman and Koller,

2003). Given a DAG, the joint distribution of θm can be written as the product

of conditional densities of each of θmj conditioned on their parents. We thus have,

for subject m,

θmj | G,γ,θm,−j, σ2 indep∼ N
 ∑
`∈Pa(j)

γ`jθm`, σ
2

 , j = 1, . . . , J, (4.3)

where θm,−j is the set of θm,j′ values with θmj removed. Through the structure

in (4.3), the normalized relative abundance of OTU j in a sample from subject

m depends on those of the other OTUs having a directed edge towards OTU j.

The strength and direction of these associations are controlled by coefficients γ`j.

We consider the normal-inverse-gamma prior for γ and σ2; let γ`j | G, σ2, κ
iid∼

N(0, κσ2), and σ2 ∼ IG(aσ, bσ), where κ, aσ and bσ are fixed hyperparameters.

Estimating G can be viewed as a model selection problem for the linear regression

model in (4.3). Specifying the fixed hyperparameter values such as κ, aσ and

bσ is closely tied with the regularization problem (Chipman et al., 2001; Raftery

et al., 1997). When expert information is available, subjective elicitation of those

parameters is desirable. If not, we choose their values such that the prior is

relatively flat over the region of plausible values of γ. In particular, we choose a
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large enough value for κ to reduce prior influence on the estimation of G. Such a

value of κ can also yield parsimonious and interpretable estimates of G by ignoring

edges with negligible γ`j. For example, Raftery et al. (1997) suggests κ = 2.852.

We let p(G) ∝ P
|E|
G , where PG ∈ (0, 1) is a fixed probability for including an edge

and |E| is the number of edges in the graph. Our prior on G is similar to the

prior in Telesca et al. (2012) a priori assuming no edge and penalizing for adding

edges. With small PG, it induces parsimony in G. When expert knowledge on

interactions in microbiome is available, one can construct G0 using the information

and define an informative prior p(G) centered around G0. For details, see Telesca

et al. (2012). Another simple and common choice of p(G) is a uniform prior over

G. Together κ and pG determine the complexity of G, and we conduct sensitivity

analyses to examine robustness to changes in those.

Recall we use a log-linear regression model to accommodate effects of covari-

ates on the OTU abundances. We let βjp | τ 2
p

indep∼ N(0, τ 2
p ), and τ 2

p
iid∼ IG (aτ , bτ ),

where aτ and bτ are fixed hyperparameters. τ 2
p is indexed by p but shared by

all j. This prior allows for borrowing strength across OTUs and enhance infer-

ences on βjp. We next build priors for the sample scale factor ri and the baseline

abundance factor of an OTU, αj. The raw OTU counts from HTS data do not

reflect absolute OTU abundance in a sample, as the magnitude of the counts

depends on the effort put into the sequencing procedure. In order to account

for sequencing depth, the OTU counts must be normalized. Many normalization

methods have been proposed, including rarefying the OTU counts to induce sim-

ilar library sizes across samples before analysis, and using fixed plug-in estimates

for ri. A common choice is to let ri be equal to the logarithm of the library

size (e.g. Lee et al. (2018); Robinson et al. (2010); Zhang et al. (2017a), among

others), although many other plug-in estimates have been proposed (Anders and
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Huber, 2010; Bullard et al., 2010; Weiss et al., 2017; Witten, 2011). In order

to avoid bias in posterior uncertainties that can accompany such approaches, we

instead employ a model-based method for estimating ri, imposing a moment con-

straint on its distribution to avoid identifiability issues. Due to the multiplicative

structure of E(Yij) = exp(ri + αj + x′iβj + θmj) the individual factors ri and αj

are not identifiable. To avoid issues in their estimation we use mean-constrained

mixture-of-mixtures priors of Li et al. (2017) for ri and αj

ri
iid∼

Lr∑
`=1

ψr`

{
wr` N(ηr` , u2

r) + (1− wr` ) N
(
υr − wr`ηr`

1− wr`
, u2

r

)}
,

αj
iid∼

Lα∑
`=1

ψα`

{
wα` N(ηα` , u2

α) + (1− wα` ) N
(
υα − wα` ηα`

1− wα`
, u2

α

)}
.

(4.4)

The inner mixture component of these distributions is a convex combination

of Gaussian distributions, with wχ` ∈ (0, 1) , χ ∈ {r, α}, and outer mixture

weights ∑Lχ

` ψχ` = 1, with a fixed, marginal mean of υχ. Following Li et al.

(2017) we set the mean constraint for ri to have no scaling adjustment and let

υr = 0. We use an empirical approach to set υα. We use r̃i = log (Yi•/Y••) −
1
N

∑
i′ log (Yi′•/Y••) with Y•• = ∑

i,j Yij as mean zero empirical estimates of ri and

let υα =
[∑

i,j {log(Yij + 1)− r̃i}
]
/(n × J). We have found inference is robust

to misspecification of the mean constraints (Lee and Sison-Mangus, 2018; Shuler

et al., 2019a,b); a more detailed sensitivity analysis of the effects of the mean con-

straints on inference on G and βjp is shown in Appendix §C.2.1. We fix the kernel

variances u2
χ, noting their specification is not critical, though the number of mix-

ture components required to accurately describe the distribution may be larger if

u2
χ does not match the scale of χ well. We let ψχ

` = (ψχ1 , . . . , ψχLχ) ∼ Dir(aχψ) and

wχ`
iid∼ Be(aχw, bχw), where aχψ = (aχψ1, . . . , a

χ
ψ,Lχ), aχw and bχw are fixed hyperparame-

ters, and let ηχ`
iid∼ N(υχ, b2

ηχ) with b2
ηχ fixed. The mixture-of-mixtures formulation
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is highly flexible, and enables the estimation of ri and αj despite their lack of

identifiability with minimal assumptions about their distributions. We complete

the model by letting overdispersion parameters sj iid∼ Log-Normal(as, b2
s), where

as and b2
s are fixed hyperparameters.

4.2.3 Posterior Computation

Let θ = [sj, ri, αj, (ψχ` , w
χ
` , η

χ
` , χ ∈ {r, α}), βjp, τ 2

p , θmj, σ
2, γ`j, G] be the vector

of all unknown parameters. By Bayes’ rule the joint posterior distribution of

θ is given by P(θ | Y , X) ∝ P(θ)P(Y | X, θ). We sample from the joint

posterior using MCMC methods, the majority of which are straightforward Gibbs

and Metropolis-within Gibbs parameter updates. The space of graphs requires

efficient algorithms, especially for high dimensional problems. To this end, we

exploit MC3 in Madigan et al. (1995); Giudici and Castelo (2003). Here we briefly

describe the steps to update the graph. We split the graph update into three cases

and update via a Metropolis step on a selected edge resulting in a proposed: (1)

birth, (2) death, or (3) switch of the edge. At each MCMC iteration we choose

an edge (` → j) at random. If (` → j) /∈ E & (j → `) /∈ E we propose birth

through the addition of (` → j) to E. If (` → j) ∈ E we propose death by

removing (` → j) from E. Finally, if (` → j) /∈ E & (` ← j) ∈ E, we propose

switching the edge direction by removing (`← j) and adding (`→ j) to E. When

necessary, we propose new values for γ`j by drawing them from its prior, and the

acceptance probability can be easily evaluated. For better mixing we repeat the

edge selection and graph update procedure several times at each iteration. At

each iteration we also consider updating the graph by proposing a move of death

of an existing edge for an OTU jointly with a birth of an edge for the OTU, i.e.,

proposing a switch of a parent. Our empirical examination of the performance of
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the algorithm through simulated data and real data does not indicate bad mixing

or poor convergence. To improve convergence and mixing further, other methods

can be considered. For example, see Grzegorczyk and Husmeier (2008), Barker

et al. (2010) and Goudie and Mukherjee (2016). More details about the graph

update and the other parameter updates are described in Appendix §C.1.

Although a DAG is an efficient tool for structure learning, our model cannot

distinguish the DAGs in a Markov equivalence class, where all DAGs induce the

same set of conditional independence structure relationships, from observation

data (Chickering, 2002; Castelletti et al., 2019). For more meaningful posterior

inference, we learn the dependence structure encoded in DAGs through moral

graphs Gm. A moral graph can be formed by ‘marrying’ parents nodes having a

common child and then removing the graph’s edge directions. Using the posterior

Monte Carlo sample we approximately evaluate the marginal posterior p(Gm | y)

and determine a point estimate Ĝm for Gm. Specifically, we construct the moral

graph Gm,(b) from each MCMC sample of G, G(b) indexed by b = 1, . . . , B. We let

m
(b)
`j ∈ {0, 1} indicate whether Gm,(b) has an edge between OTUs ` and j. We let

Ĝm be the point estimate obtained by including an edge if its posterior probability

of inclusion m̄`j = 1
B

∑B
b=1 m

(b)
`j is > 0.5.

4.3 Simulation Studies

4.3.1 Simulation 1

We evaluated the model’s performance through simulation studies and com-

pared the proposed model to alternative models. We consider a dataset comprised

of simulated OTU counts for J = 50 OTUs from M = 20 subjects. As in the

Chronic Wound Microbiome dataset we assume three experimental conditions,
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Figure 4.1: [Simulation 1 Truth] True DAG GTR with its associated coefficients
γTR
`j is shown in (a), where positive effects are in red and negative effects in blue.

Panels (b) and (c) show the true moral graph Gm,TR and its posterior point esti-
mate Ĝm, respectively.
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with one sample from each subject in each condition, resulting in n = M ×3 = 60

samples in total and P = 2 dichotomous covariates indicating the experimental

condition corresponding to each sample. We note that the model accommodates

any covariate type. The true DAG GTR assumed to generate data is shown in Fig-

ure 4.1(a). The true values γTR
`j are shown along the edges of GTR. We evaluate the

model’s ability to uncover relationships among OTUs by recasting the DAG into

its corresponding moral graph, Gm,TR and comparing it to a moral graph estimate

Ĝm recovered by the model. Gm,TR is illustrated in Figure 4.1(b). For OTUs with

Pa(j) = ∅ and j ∈ Pa(`) for any ` 6= j, we set θTR
mj by sampling uniformly from

{−3, 0, 3}; for OTUs with Pa(j) 6= ∅ we set θTR
mj as in equation (4.3), with γTR

`,j

specified above and σ2,TR = 1/2; for the remaining OTUs with Pa(j) = ∅ and

j /∈ Pa(`) for any ` 6= j we let θTR
mj ∼ N (umj, 0.25) with umj sampled uniformly

from {−1.5, 1.5}. We generated the true values for the regression coefficients

by letting βTR
jp

iid∼ N(0, τ 2
p ), with τTR

p
iid∼ Gamma(5, 5) parameterized such that

E(τ 2
p ) = 1. We let αTR

j
iid∼ N(7, 22), rTR

i
iid∼ N(−5, 1), sTR

j
iid∼ Log-Normal(−2, 0.01).

OTU counts were generated by setting µTR
ij using (4.2) and drawing Yij from the

NB distribution with µTR
ij and sTR

j .

For the model fit we set the hyperparameters to as = log(0.01), b2
s = 0.02,

arψ = 1, arw = brw = 5, u2
r = 0.05, b2

ηr = 0.25, aαψ = 1, aαw = bαw = 5, u2
α = 2,

b2
ηα = 2, aτ = 1, bτ = 1, aσ = bσ = 1, κ = 10, and Pg = 0.05; and we set the

number of mixture components for the mean-constrained priors for ri and αj to

Lr = 15 and Lα = 5. We used empirical partial correlations of log(Yij + 1) to

initialize G; letting (` → j) ∈ E, ` < j if the absolute value of a partial correla-

tion is > 0.5. We only consider edges with OTUs ` < j to ensure the resulting

G is a DAG. We then initialized γ`j iid∼ N (0, 0.12) for the edges in the initial G.

We also used the empirical estimates r̃ = [r̃1, . . . , r̃n]′ to initialize the normal-
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ization factors. To initialize αj, βjp, and θmj we used estimates obtained from a

likelihood-based fit of a linear mixed-effects model of xi onto (log(Yij +1)− r̃i) in-

dividually for each OTU, with a random-intercept term for each subject. Because

of the large number of potential OTU interactions we run the graph update step

625 times each MCMC iteration. We ran the MCMC chain for 140,000 iterations,

discarding the first 40,000 iterations as burn-in and thinning every 10 iterations,

resulting in 10,000 samples from the joint posterior distribution. On our 3.2GHz

Intel i5-6500 machine it took approximately 7.5 minutes for every 10,000 draws.

We analyzed the chain’s convergence by examining parameter traceplots and com-

paring multiple chains with different initial values for the random parameters. We

did not find evidence in this analysis suggesting the chain did not converge. More

details about the chain’s convergence are described in Appendix §C.2.1.

A point estimate Ĝm for the moral graph Gm and posterior inclusion probabili-

ties of the edges [m̄`j] are illustrated in Fig 4.1(c) and Fig 4.2(a), respectively. Ĝm

recovers conditional independence structure reasonably well, but misses the edge

between OTUs 20 and 21. m̄`j’s are larger for the edges with mTR
`j = 1, while small

for the edges with mTR
`j = 0 as shown Fig 4.2(b) and (c). Fig 4.3(b) illustrates pos-

terior estimates of γ`j given the directed edge (`→ j) is included for the pairs of

OTUs with mTR
`j = 1. In particular, we compute γ̂`j = (∑B

b=1 a
(b)
`j γ

(b)
`j )/(∑B

b=1 a
(b)
`j ),

where a(b)
`j is a binary indicator taking 1 if edge (` → j) is included in G(b),

or 0 otherwise. The posterior probability estimates of including directed edges

(` → j) ā`j = ∑B
b=1 a

(b)
`j /B, are shown in (a) of the figure. Although the direc-

tions of the edges are not recovered with high accuracy, γ̂`j are very close to their

truth conditional on the inclusion of the directed edges. Posterior inference on

βjp is shown in Figure 4.4 (a) and (d). We use the posterior mean β̂jp as a point

estimate and use vertical lines to illustrate the associated 95% credible intervals.
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Figure 4.2: [Simulation 1] (a) [m̄`j] under BRM-G is shown in the the lower
triangle and mTR

`j in the upper triangle, where blue and white represent mTR
`j = 1

and 0, respectively. Histograms of m̄`j are in panels (b) and (c), separately for
mTR
`j = 1 and mTR

`j = 0, respectively.
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Figure 4.3: [Simulation 1] Posterior estimates ā`j of the probabilities of including
the directed edges (`→ j) for the pairs with mTR

`j = 1 are in panel (a). Panel (b)
has the posterior mean estimates of γ`j given that (`→ j) is included. The OTUs
with j ≤ 26 only are shown for better illustration.

The model yields reasonable estimates for the regression coefficients, accurately

characterizing the direction and effect size of the different experimental conditions

on OTU abundance. Individually ri and αj are not identifiable, but the baseline

abundance ri + αj can be recovered. The estimation of ri and αj is shown in

Figure 4.5, which shows the posterior means of those parameters plotted against

the simulation truth. The estimates for αj are smaller than the simulation truth,

but this underestimation is compensated by estimates for ri which are higher than

the simulation truth. The central tendencies implied by υr and υα can be seen

in the figure, with the estimates of ri and αj clustering around their respective

mean constraints. On average the estimates for the baseline abundance ri + αj

are unbiased, as is seen in the last panel of the figure. Unlike with plug-in nor-

malizing factors uncertainty is propagated, resulting in more honest uncertainty

quantification for the parameters of interest, βjp and θmj.

We assess the sensitivity of our inference with respect to the specifications
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BRM-G are plotted against the simulation truth βTR

jp in (a) and (b) for p = 1 and
2, respectively.
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of υr, υα, κ and PG by repeating our analysis for a range of those values. We

found that our inference on Gm is robust to varying the values of κ and PG over

reasonable ranges. Also, we observed that the specification of the values of υr

and υα only minimally affects the baseline abundance estimation. More details

are discussed in Supplementary §C.2.1.

We compare BRM-G to two alternative models. We consider a model that re-

places the graph in BRM-G with a covaraince matrix S for a J-dim vector θm =

[θm1, . . . θmJ ]′, while keeping the remaining parts of BRM-G the same. We call it a

Bayesian regression model with a covariance matrix for interactions between OTUs

(BRM-Cov). We let a J-dim vector of random effects θm | S iid∼ NJ(0, S) and a

J × J positive definite matrix S ∼ IW (J, diag(10, . . . , 10)). BRM-Cov is similar

to our BRM-G, but omits the graph component in favor of subject-specific random

effects for the OTU abundances. We simulated posterior samples from BRM-Cov

using MCMC, similar to that used for BRM-G. For the second comparator, we in-

clude edgeR, a popular likelihood based method for microbiome analysis that does

not include features for recovering graphical relationships among OTUs (Robinson

et al., 2010). edgeR is a negative binomial generalized log-linear model which uses

the sample library sizes to generate plug-in estimates for the normalization factors

and an empirical Bayes procedure to produce estimates for the OTUs’ degrees of

overdispersion. Posterior inference under BRM-Cov is summarized in Figure 4.6.

We consider the pairwise correlations between OTUs produced by BRM-Cov as

point estimates to infer OTUs’ interactions. Specifically, we produce elementwise

averages of posterior correlation samples, ρ̄`j = 1
B

∑B
b=1 ρ

(b)
`j , where ρ

(b)
`j is the pair-

wise correlation of OTUs ` and j computed from the b-th sample of S, S(b). [ρ̄`j]

is shown in panel (a) of the figure. For an easy comparison to the truth, mTR
`j is in

the upper triangle. |ρ̄`j|’s are large for the pairs of OTUs ` and j with mTR
`j = 1.
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Figure 4.6: [Simulation 1- BRM-Cov] (a) Elementwise posterior mean of pair-
wise correlations [ρ̄`j] under BM-Cov is shown in the the lower triangle and mTR

`j

in the upper triangle, where blue and white represent mTR
`j = 1 and 0, respec-

tively. Histograms of |ρ̄`j| are in panels (b) and (c), for mTR
`j = 1 and mTR

`j = 0,
respectively.
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Model βj1 βj2 µij
BRM-G 0.261 (0.065) 0.260 (0.054) 10,533 (28,451)

BRM-Cov 0.262 (0.064) 0.260 (0.055) 10,478 (27,981)
edgeR 0.555 (0.313) 0.556 (0.236) 33,449 (83,049)

(a) Parameter Estimation
Model DIC LPML

BRM-G -1394 (168) -11341 (869)
BRM-Cov -1382 (167) -11,365 (865)

(b) Model Fit

Table 4.1: [Simulation 1] Performance metrics on 100 simulated datasets.
RMSE’s for βj1, βj2, and µij are shown in (a). DIC and LPML for the Bayesian
models are in (b). Standard deviations in parenthesis.

However, inference on the dependence structure among OTUs using ρ`j fails to re-

cover important features of the true structure. In particular, ρ̄2,3 = 0.65 although

OTUs 2 and 3 are conditional independent given OTU 1 in the truth. Similarly,

ρ̄6,8 = −0.86 is far from satisfactory to infer their conditional independence given

OTU 7. Furthermore, the v-structure among OTUs 10, 11 and 12 in the truth

is not noticeable, whereas our Ĝm successfully detects such relationships. Panels

(b) and (c) have histograms of ρ̄`j for the pairs with mTR
`j = 1 and 0, respectively.

Compared to m̄`j under BRM-G, |ρ̄`j|’s are more dispersed and a thresholding ap-

proach based on |ρ̄`j| may lead to more incorrect conclusions. On the other hand,

the inference on individual βjp under BRM-Cov is almost the same as that under

BRM-G, as shown in Figure 4.4(b) and (e). EdgeR produces estimates of βjp but

dose not attempt to infer any dependence structure between OTUs. Figure 4.4(c)

and (f) compares the estimates of βjp by edgeR to the truth.

To further compare the performance of BRM-G to that of the other models

we fit each model to 100 simulated datasets. We investigated BRM-G’s ability

to recover the true graph on average as follows; we find Ĝm
k , k = 1, . . . , 100 for

the simulated dataset as described earlier, and compute proportions of inclusion
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Figure 4.7: [Simulation 1] Results based on 100 simulated datasets. Proportions
of edge inclusions over Ĝm

k , k = 1, . . . , 100 computed under BRM-G are in the
lower triangle. Averages of ρ̄`,j,k, k = 1, . . . , 100 computed under BRM-Cov are in
the upper triangle.

of individual edges in Ĝm
k ’s. We let m?

`j denote the proportion of inclusion of

the edge between ` and j in Ĝm
k . Similarly, we compute ρ?`,j by taking averages

of ρ̄`,j,k computed for the k-th simulated dataset over all datasets. Figure 4.7

illustrates [m?
`j] and [ρ?`j] in the lower and upper triangles of a J × J matrix,

respectively. The advantages of utilizing a graph over correlations are evident

from its performance of recovering subgraphs with more than 2 OTUs. The nature

of the relationships among OTUs in these groups is clearer under BRM-G than

under BRM-Cov. In particular, BRM-G recovers the conditional independence

structures well, e.g., dependence structures among OTUs 1, 2 and 3. Also, it

detects the interrelationship between three OTUs in a v-shape form most of time,
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Figure 4.8: [Simulation 1] Variability of the OTU dependence structure over 100
simulated datasets. Standard deviation of posterior probabilities of edge inclusion
under BRM-G and of the correlation estimates under BRM-Cov are shown in the
lower and upper triangles, respectively.

e.g., dependence structures among OTUs 10- 12, and among 15-17. Figure 4.8

shows the standard deviations of the posterior correlation estimates ρ̄`,j,k for BRM-

Cov and of the posterior edge probabilities m̄`,j,k for BRM-G. Note that their

scales are different. Variability in the OTU relationships indicated by the models

is higher for BRM-Cov than for BRM-G. The correlation estimates are notably

noisier than the posterior edge probability estimates, especially when there is not

an edge in the simulation truth. For some, but not all, of the OTU groups BRM-

G’s estimates are noisier when there is an edge in the simulation truth, suggesting

BRM-G tends to be conservative with regard to identifying related OTUs than

BRM-Cov.
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As additional criteria to evaluate their performance we considered the root

mean square error (RMSE) on βj1, βj2 and µij. For the Bayesian models we used

the posterior means as point estimates for the parameter values. For BRM-G

and BRM-Cov in addition to RMSE we also include model the Deviance In-

formation Criterion (DIC) and log pseudo marginal likelihood (LPML). DIC is

an information criterion similar to AIC for hierarchical models which simulta-

neously considers model fit and model complexity, with lower values indicating

super model performance (Spiegelhalter et al., 2002). LPML is a measure of the

model’s leave-one-out cross validation performance, using the likelihood as the

evaluation criterion (Gelfand et al., 1992; Gelfand and Dey, 1994). For LPML

higher values indicate superior performance. The results of the model fits on

the 100 simulated datasets are shown in Table 4.1. Both BRM-G and BRM-Cov

produce better estimates for the regression coefficients and OTU abundance than

edgeR. The performance of the two Bayesian models is very similar across all of

the evaluation criteria, demonstrating it is possible for BRM-G to recover graph-

ical relationships among the OTUs without diminishing its ability to estimate

covariate effects on OTU abundance.

4.3.2 Simulation 2

In this section we present results from Simulation 2, which incorporates a

larger graph with more complicated structure than the graph from Simulation

1. As in Simulation 1, in Simulation 2 we produce simulated OTU counts for

J = 50 OTUs from M = 20 patients. We assume three experimental conditions

and P = 2 dichotomous covariates for a total of n = 60 samples. For Simulation 2

we use a more complicated graph than Simulation 1 that has a greater number of

relationships among OTUs and different sizes for the network effects. Simulation
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Figure 4.9: [Simulation 2 Truth] (a) True DAG and associated coefficients γTR
lj .

Positive effects in red, negative effects in blue. (b) True moral graph.

2’s true DAG and its corresponding moral graph are shown in Figure 4.9. The true

moral graph and the corresponding posterior edge probabilities are illustrated in

Figure 4.10. For comparison the point estimate for the correlation matrix [ρ̄`j] pro-

duced by BRM-Cov using the methods described is also shown. The moral graph

point estimate produced by BRM-G by including edges with posterior probability

> 0.5 is shown in Figure 4.11. BRM-G generally does a good job recovering

the graphical structure, although there are spurious edges between OTUs 9 and

28, and between OTUs 35 and 44. An edge between OTUs 17 and 18 is missing.

Nonetheless, the OTU relationships are better recovered and more well defined

under BRM-G than under BRM-Cov. Histograms of the posterior probabilities

of edge inclusion under BRM-G and the pairwise correlations ρ̄lj conditional on

the true graph having/lacking an edge are shown in Figure 4.12. BRM-G more

clearly discriminates when OTUs have/lack abundance relationships with other

OTUs as compared to BRM-Cov. Estimates of the regression coefficients βjp and
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Figure 4.10: [Simulation 2] (a) Upper-diagonal: Edges of the true moral graph
MTR. Lower-diagonal: Posterior probabilities of edge inclusion m̄lj under BRM-
G. (b) Elementwise posterior mean of pairwise correlations [ρ̄`j] under BM-Cov
is shown in the the lower triangle and mTR

`j in the upper triangle, where blue and
white represent mTR

`j = 1 and 0, respectively.
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Figure 4.11: [Simulation 2] Estimated moral graph Ĝm

corresponding 95% credible intervals are shown in Figure 4.13. Even with the
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Figure 4.12: [Simulation 2] Posterior probabilities of edge inclusion from BRM-
G ((a) and (b)) and pairwise correlations from BRM-Cov ((c) an (d)) for l < j
conditional on the true moral graph having ((a) and (c)) or not having ((b and
(d)) an edge .

more complicated graph of Simulation 2 BRM-G is able to recover reasonable

estimates for the regression coefficients.

Sensitivity analysis and details of the chain’s convergence for Simulation 2 are
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Figure 4.13: [Simulation 2] Posterior means β̂jp and 95% credible intervals plot-
ted against the simulation truth βTR

jp .

given in §C.2.2.

As in Simulation 1, for Simulation 2 we produced 100 replicated datasets and

compare the performance of BRM-G to edgeR and BRM-Cov. We considered

the models’ performances through averages of the point estimates for the moral

graph and for the correlation matrix using BRM-G and BRM-Cov, respectively.

The results for BRM-G and BRM-Cov are show in Figure 4.14. The graph struc-

ture is more well defined, on average, using the graphical analysis produced by

BRM-G than using inference on the correlation matrix produced by BRM-Cov.

Figure 4.15 shows the standard deviations of the absolute values of the posterior

correlations for BRM-Cov and of the posterior edge probabilities for BRM-G. The

results from Simulation 2 are consistent with those of Simulation 1 in that the es-

timates for OTU relationships using correlations from BRM-Cov are noisier than

the estimates produced by BRM-G.

The RMSEs for βj1, βj2, and µij under BRM-G, BRM-Cov, and edgeR are
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Figure 4.14: [Simulation 2] Results based on 100 simulated datasets. Propor-
tions of edge inclusions over Ĝm

k , k = 1, . . . , 100 computed under BRM-G are in
the lower triangle. Averages of ρ̂`,j,k, k = 1, . . . , 100 computed under BRM-Cov
are in the upper triangle.

shown in Table 4.2. Both BRM-G and BRM-Cov outperform edgeR when estimat-

ing the regression coefficients and the mean OTU abundances. For the Bayesian

models we include DIC and LPML for model comparison. The performances of

BRM-G and BRM-Cov are very similar, both in terms of RMSE and in terms

of the model comparison metrics, confirming the findings of Simulation 1 where

BRM-G and BRM-Cov also had similar performance.
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Figure 4.15: [Simulation 2] Variability of the OTU dependence structure over
100 simulated datasets. Standard deviation of posterior probabilities of edge in-
clusion under BRM-G and of the correlation estimates under BRM-Cov are shown
in the lower and upper triangles, respectively.

4.4 Chronic Wound Microbiome Data Analysis

In this section we discuss the application of BRM-G to the microbiome dataset

of Verbanic et al. (2019) and Shuler et al. (2019b). Different from the previ-

ous works, we applied BRM-G to a genus-collapsed OTU table produced by the

Phyloseq R package (McMurdie and Holmes, 2013) to obtain reliable inferences

on individual OTUs. Such agglomeration yields larger counts for individual OTUs

and reduces the prevalence of small counts. The dataset consists of microbiome

samples taken from M = 20 patients with chronic wounds. Swab samples were

taken from the wounds pre- and post-debridement, as well as from sites with
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Model βj1 βj2 µij DIC LPML
BRM-G 0.263 (0.074) 0.257 (0.054) 574,475 (2,079,977) -1,419 (171) -11,412 (871)

BRM-Cov 0.265 (0.080) 0.261 (0.063) 574,347 (2,098,460) -1,410 (170) -11,436 (867)
edgeR 0.613 (0.279) 0.607 (0.250) 1,943,481 (5,021,776) – –

Table 4.2: [Simulation 2] Performance metrics on 100 simulated datasets. Stan-
dard deviations in parenthesis. RMSE shown for βj1, βj2, and µij. DIC and LPML
shown for the Bayesian models.

healthy skin as a control, for a total of n = M × 3 = 60 samples. We removed

OTUs whose counts are zero in all experimental conditions for more than one

subjects, for reliable estimates of θmj. After pre-processing a total of J = 46

OTUs were included for analysis. Empirical partial correlations of log(Yij + ε)

with ε = 0.1 are shown in the upper triangle in Figure 4.16. We found that

the empirical partial correlation estimates are sensitive to the choice of ε due to

overdispersion. We set the hyperparameters and fit BRM-G to the chronic wound

microbiome dataset using the same procedures described in §4.3. We checked the

chain for convergence by inspecting traceplots and comparing the model’s results

to another chain using different initial conditions and a different random seed. We

did not find evidence suggesting the chain failed to converge. More details about

the chain’s convergence and diagnostics are described in Supplementary §C.3.1.

As in the simulation studies, we computed posterior probabilities m̄`j of in-

cluding individual edges in the moral graph and produced a point estimate Ĝm

for the moral graph by including an edge if m̄`j > 0.5. The estimates of posterior

edge inclusion probabilities m̄`j and its resulting moral graph estimate Ĝm are

shown in Figures 4.16 and 4.17(a), respectively. The genus names correspond-

ing to the OTUs in the subgraphs inferred by Ĝm are shown in Figure 4.17(b).

Compared to the empirical partial correlations, m̄`j’s have a notably different

pattern, underscoring the importance of appropriate modeling of the interaction

structure of OTUs. The graph contains seven subgraphs, each with 2 or 3 related
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Figure 4.16: [Chronic Wound Data] Posterior probabilities of edge inclusion,
m̄`j under BRM-G and empirical partial correlations of log(Yij + 0.1) are shown
in the lower triangle and upper triangle, respectively.
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OTU		#	 Genus	
1	 		Micrococcus	
26	 		Enhydrobacter	
37	 		Brevundimonas	
2	 		Pseudomonas	
5	 		Bacteroides	
3	 		Anaerococcus	
28	 		NA	
29	 		Peptoniphilus	
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(a) Ĝm (b) Genus

Figure 4.17: [Chronic Wound Data] (a) Moral graph point estimate, Ĝm and
(b) Genus names of the OTUs connected through the edges in Ĝm.
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Figure 4.18: [Chronic Wound Data] Posterior estimates ā`j of the probabilities
of including the directed edges (` → j) for the pairs with m̄`j > 0.5 are in panel
(a). Panel (b) has the posterior mean estimates of γ`j given that (` → j) is
included.

OTUs. ā`j and γ̂`j are also illustrated in Figure 4.18(a) and (b), respectively, for

the OTUs in any of the subgraphs in Ĝm to infer the signs associated with the

interactions along with the probability estimates of a directed edge inclusion. The

inferred graph exhibits experimentally and/or biologically relevant features. Pre-

vious work has identified the co-occurrence of Micrococcus, Enhydrobacter, and

Brevundimonas (OTUs 1, 26, 37) in polymicrobial biofilms isolated from a variety

of sources, including Timke et al. (2004, 2005); Vornhagen et al. (2013); Callewaert

et al. (2015), though others argue they may be common contaminants in molecu-

lar biology reagents (Salter et al., 2014). Pseudomonas and Bacteroides (OTUs 2

and 5) are both gram-negative, rod-shaped bacteria that form biofilms (Jang and

Eom, 2019; Mulcahy et al., 2014) and are implicated in chronic wound infections

and necrotizing fasciitis (Sarani et al., 2009). Similarly, Anaerococcus and Pep-

toniphilus (OTUs 3 and 29) are both clinically-relevant gram-positive anaerobic

cocci (Murphy and Frick, 2013), which frequently co-colonize wounds and may
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Figure 4.19: [Chronic Wound Data] Elementwise posterior means of pairwise
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be associated with impaired healing of diabetic foot ulcers. Previous work has

established several interactions between Actinomyces, Campylobacter, and Por-

phyromonas (OTUs 10, 17, 18), especially in the oral microbiome. Actinomyces

is known to form biofilms with Porphyromonas on tooth enamel (Periasamy and

Kolenbrander, 2009), in both healthy and diseased states, and Porphyromonas

specifically suppresses host immune response to Campylobacter (Bostanci et al.,

2007), which may allow the pair to evade or overcome an inflammatory response

to colonization or infection. Two pairs of OTUs had negative interactions. Helco-

coccus and Propionibacterium (OTUs 4 and 42), have been implicated in diabetic

osteomyelitis (bone infection) (Van Asten et al., 2016), though specific interac-

tions between these bacteria have not been reported. Similarly, Haemophilus and

Ralstonia (OTUs 25 and 32) have been identified in the lung microbiome of cystic

fibrosis patients, but their interactions remain unresolved (Green et al., 2017).

BRM-G provides useful insights on the dependence structure between OTUs. To

further investigate causal relationships between the inferred OTUs, experimental

validations are needed.

We conducted sensitivity analysis with respect to the specification of κ, Pg, υα

and υr. Across a range of values for these parameters we found that inference on

Gm was robust. The signs associated with the OTU interactions and the probabil-

ities of directed edge inclusion were also insensitive to the choice of these param-

eters. Details of the sensitivity analysis and figures showing the results of fitting

BRM-G using these alternative specifications are described in Appendix §C.3.1.

For comparison, we fit BRM-Cov. Figure 4.19 shows elementwise posterior

means ρ̄`j of pairwise correlations produced by BRM-Cov. The estimate ρ̄`j pro-

duced by BRM-Cov reasonably agrees with the moral graph estimate produced

by BRM-G, though the nature of the relationships among the OTUs is less clear
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Figure 4.20: [Chronic Wound Data] Regression coefficient estimates βjp for (a)
BRM-G versus BRM-Cov and (b) BRM-G versus edgeR.

Model DIC LPML
BRM-G -1,361 -16,617

BRM-Cov -1,359 -16,618

Table 4.3: [Chronic Wound Data] Model fit metrics for the chronic wound
microbiome dataset.
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under BRM-Cov. In Figure 4.20 we compare the regression coefficient estimates

produced by BRM-G, BRM-Cov, and edgeR. For the Bayesian models we use

the posterior mean of βjp as a point estimate. The estimates produced by BRM-

G and BRM-Cov are very similar, confirming that incorporating the graphical

structure into the model does not interfere with the estimation of the covariate

effects. The estimates of βjp produced by edgeR trend similarly to the estimates

produced by BRM-G, with a correlation of 0.82, although for small values of βjp

BRM-G tends to produce estimates less than those produced by edgeR. BRM-G

and BRM-Cov produced very similar model comparison metrics when fit to the

chronic wound microbiome dataset. LPML and DIC values for the two models

are listed in Table 4.3. The similar metrics mirrors the results of the simulation

studies, where BRM-G and BRM-Cov also had similar LPML and DIC scores

across replicated datasets. The similar scores suggest that adding the graphical

component to BRM-G does not interfere with its ability to explain the chronic

wound microbiome data.

4.5 Discussion

We have presented a Bayesian graphical model to infer graphical structure

from count data with applications to microbiome analysis. Our simulation stud-

ies indicate BRM-G identifies groups of related OTUs and accurately estimates

covariate effects. In these simulations BRM-G outperforms the popular alter-

native edgeR, which does not incorporate methods for inferring graphical struc-

ture. Analysis of the simulation study results indicate the additional complexity

of BRM-G over BRM-Cov is warranted, as BRM-G detects network structure

better than a the simpler approach of using BRM-Cov’s inference on the corre-

lation structure to identify related groups of OTUs. Application of BRM-G to
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the chronic wound microbiome dataset demonstrates the model’s utility for mi-

crobiome studies. BRM-G identified several groups of OTUs whose relationships

were not clearly identifiable from inspection of the empirical correlation estimates

of the OTU counts. BRM-G may be extended by incorporating more general

graphs, for example graphs that account for spatiotemporal structure in the data

or allowing the graph to vary by experimental condition. These are potential areas

of future research.
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Chapter 5

Conclusion

This work introduced Bayesian models for multivariate count data. New

strategies for handling challenging aspects of count data analysis, such as nor-

malization, zero inflation, overdispersion, and dependent samples were introduced.

The models were created in the context of microbiome analysis, with a focus on an-

swering questions posed by biologists conducting metagenomics studies. Bayesian

regression models were developed to compare microbiome communities, relate

taxa abundance to environmental factors and experimental conditions, and iden-

tify related taxa.

Chapter 2 described the development of a Bayesian regression model using

novel non-local priors to identify important covariates related to taxa abundance.

These priors provide superior variable selection performance over existing alter-

natives. The model produces convenient summaries of the effect directions of

environmental factors on OTU abundances, allowing researchers to easily evalu-

ate how covariates are related to the microbial community. Unlike other popular

models, the OTU abundances were modeled jointly using a Bayesian hierarchical

model, allowing information to be pooled across OTUs to improve inference. The

samples’ complicated temporal dependence structure was accounted for through a
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process convolutions component that describes how OTU abundances evolve over

time. The model’s utility was confirmed by its application to an ocean microbiome

dataset which found that domoic acid affects microbiome composition, and these

findings were validated through further lab experiments.

The model presented in chapter 3 provided a way to compare microbiomes at

the community level. The model used a Bayesian nonparametric approach to get

estimates for the distributions of OTU abundance levels and of the probabilities

of OTU presence across experimental conditions. These distributions provide a

clearer, more nuanced way to compare different microbiomes than simple signif-

icance tests or distance metrics, and the use of a dependent Dirichlet Process

(DDP) approach to infer these distributions avoids restrictive and potentially un-

realistic parametric assumptions. Importantly, the model carefully handles excess

zero inflation in the OTU counts which improves inference on OTU abundance

levels and community structure. The model was applied to a chronic wound micro-

biome dataset and the results were consistent with previous work finding greater

species richness and abundance in healthy skin versus the wound conditions.

Chapter 4 introduced a Bayesian graphical model to identify OTU interactions.

The model used a directed acyclic graph (DAG) component to identify such rela-

tionships. The performance of the DAG approach is superior to existing methods

based on marginal correlations among taxa, and provides clearer insight into the

OTUs’ network structure than methods using empirical correlations. A regres-

sion component gives insight into how OTU abundances vary across experimental

conditions, and provides more accurate estimates and uncertainty quantification

for these effects than alternative models. The model was applied to a chronic

wound microbiome dataset aggregated at the genus level, and the relationships it

detected were confirmed as biologically relevant by previous literature.
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Although the models presented here help address some of the most challenging

aspects of modeling multivariate count data there is still more work to be done.

In some cases the relationships of OTU abundance may not be log-linear with

the covariates, and a more flexible regression structure structure may be desir-

able. The graphical model of chapter 4 may be extended by explicitly modeling

zero inflation to better handle sparse OTU tables. Furthermore, the graphical

assumptions may be relaxed by allowing spatiotemporal variation in the graph, or

allowing it to vary with experimental conditions. A Bayesian hierarchical model

on the graph may allow for such flexibility while allowing strength to be borrowed

across the graphs. To some degree, it is already possible to explicitly incorpo-

rate information about metabolic pathways across OTUs into the graph through

its prior, but future additions may make incorporating such information into the

model easier and more flexible. Bi-directional relationships among OTUs may be

added as well, allowing for explicit mutualistic relationships across OTUs such as

through reciprocal graphical models in the spirit of Koster and Others (1996) and

Ni et al. (2018). These areas may be addressed in future research.
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Appendix A

Bayesian Sparse Multivariate

Regression with Asymmetric

Nonlocal Priors for Microbiome

Data Analysis Supplementary

Material

A.1 MCMC Algorithm

We obtain a sample from the posterior distribution using an MCMC comprised

of a combination of Gibbs and Metropolis-within-Gibbs steps. Recall that we have

mixture-of-mixtures distributions for the priors of rtk and α0j in (5) and (6) of

the main text, respectively. For easy posterior simulation, we introduce latent

variables that indicate which mixture component rtk and α0j are from, and do

categorical/Bernoulli draws to update these latent variables. Specifically, for rtk,

136



we let crtk = `, ` = 1, . . . , Lr if and only if rtk came from the `th mixture component.

Conditional on crtk, we introduce another indicator variable λrtk ∈ {0, 1} to indicate

the Gaussian component from which rtk came, N(ηr` , u2
r) or N

(
υr−wr`η

r
`

1−wr
`
, u2

r

)
. Let

P(crtk = ` | ψr) = ψr` and P(λrtk = 1 | crtk = `, wr` ) = wr` . The joint prior

distribution of r, cr and λr can be written as

P(cr,λr, r | ψr,wr,ηr) =
∏
t,k

P(crtk | ψr)P(λrtk | crtk,wr)P(rtk | crtk, λrtk,ηr)

=
Lr∏
`=1

(ψr` )
dr`
∏
t,k

(wrctk)
λrtk(1− wrctk)

1−λrtk

×
∏
t,k

N
(
rtk | ηrctk , u

2
r

)λrtk N
(
rtk |

υr − wrctkη
r
ctk

1− wrctk
, u2

r

)1−λrtk
,

where dr` = ∑
t

∑Ki
k=1 I(ctk = `) denotes the number of elements in the `th mixture

component. We update mixture locations ηr` and mixture weights ψr and wr`

conditional on λrtk and crtk using Gibbs steps. Similar to the method used to sample

rtk, we also introduce auxiliary variables cαj ∈ {1, . . . , Lα} and λαj ∈ {0, 1} to

specify the mixture components from which α0j came, and we let dα` = ∑J
j=1 I(cαj =

`) denote the number of elements assigned to the `th mixture component. Again,

we do categorical/Bernoulli draws for cαj and λαj and then update α0j conditional

on these assignments, and update mixture locations ηα` and mixture weights ψα

and wα` conditional on mixture labels λαj and cαj using Gibbs steps. Letting θ

denote the vector of all unknown parameters and Ω denote the model’s fixed

hyperparameters, the joint posterior distribution of all unknown parameters up

to proportionality is

P(θ, Xmiss|Xobs, Y , Ω) ∝ P(θ, Xmiss|Ω)P(Y |θ, X, Ω),
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whereXmiss denotes the missing covariates, Xobs denotes the observed covariates,

and X = {Xobs,Xmiss}. At each MCMC iteration we impute missing values

through categorical draws for covariates whose values are missing at random in

some samples. We treat each category as equally likely a priori, and the proba-

bilities for the categories are proportional to the likelihood induced by selecting

each of those categories.

To improve mixing, at each MCMC iteration we use multiple steps to update

βjp, γjp and ιp. We update βjp conditional on all other parameters including γjp

and ιp. We also do a joint update of γjp and βjp as follows; We use a method similar

to that in Carlin and Chib (1995) and generate the joint proposal of (γjp, βjp) using

a linking density,

J(β̂jp | γ0
jp, β

0
jp) =


TruncNorm(0, σ2

p, −ιpσp, ιpσp) if γ0
jp = 0

β0
jp if γ0

jp 6= 0
(A.1)

where β0
jp and γ0

jp are the current values of βjp and γjp. We then set β̂′jp = β̂jp+eβjp,

where eβjp is a perturbation drawn from a normal distribution with mean 0 and

fixed variance. The joint proposal β?jp and γ?jp is generated as a function of β̂′jp,

F (β?jp, γ?jp|β̂′jp) =



β?jp = 0, γ?jp = 0 if ιpσp ≥
∣∣∣β̂′jp∣∣∣

β?jp = β̂′jp, γ
?
jp = 1 if ιpσp < β̂′jp

β?jp = β̂′jp, γ
?
jp = 2 if − ιpσp > β̂′jp

(A.2)

The proposal is accepted with probability min(mMH , 1), with the algorithm’s
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Metropolis-Hastings acceptance ratio mMH is given by

mMH =
P(Yj | γ?jp, β?jp, · · · )P(γ?jp)P(β?jp | γ?jp)
P(Yj | γ0

jp, β
0
jp, · · · )P(γ0

jp)P(β0
jp | γ0

jp)
(A.3)

×
J(β̂jp|γ?jp, β?jp)G(β̂′jp|β̂jp)F (β0

jp, γ
0
jp | β̂′jp)

J(β̂jp|γ0
jp, β

0
jp)G(β̂′jp|β̂jp)F (β?jp, γ?jp | β̂′jp)

=
P(Yj | γ?jp, β?jp, · · · )P(γ?jp)P(β?jp | γ?jp)
P(Yj | γ0

jp, β
0
jp, · · · )P(γ0

jp)P(β0
jp | γ0

jp)
J(β̂jp|γ?jp, β?jp)
J(β̂jp|γ0

jp, β
0
jp)

(A.4)

where G(β̂′jp|β̂jp) denotes the Gaussian probability density induced by eβjp of going

from β̂jp to β̂′jp. The simplification in the second line can be seen by noting that

F (βjp, γjp|β̂′jp) is degenerate. In addition to doing this update individually for

each combination of j and p, we do a joint update of βjp and γjp across all j

as well using the straightforward extension of the same algorithm. Lastly, we do

a joint update of βjp and γjp using a method similar to the ‘swap’ step of the

add/swap/delete algorithm in Li et al. (2017). In this approach, we first choose

some covariate p1 at random, and then randomly choose a different covariate p2

with γj,p2 6= γj,p1 . In our proposal, we swap γ for the two selected covariates

so that γ?j,p1 = γ0
j,p2 and γ?j,p2 = γ0

j,p1 . Then, conditional on the proposed γ?j,p1

and γ?j,p2 , we generate β?j,p1 and β?j,p2 from their respective priors. We accept the

proposal (γ?j,p1 , β
?
j,p1) and (γ?j,p2 , β

?
j,p2) with probability min(mMH , 1) where

mMH =
P(Yj | γ?j,p1 , β

?
j,p1 , γ

?
j,p2 , β

?
j,p2 , · · · )P(γ?j,p1)p(γ?j,p2)P(β?j,p1 | γ

?
j,p1)P(β?j,p2 | γ

?
j,p2)

P(Yj | γ0
j,p1 , β

0
j,p1 , γ

0
j,p2 , β

0
j,p2 , · · · )P(γ0

j,p1)P(γ0
j,p2)P(β0

j,p1 | γ0
j,p1)P(β0

j,p2 | γ0
j,p2)

×
Q({(γ?j,p1 , β

?
j,p1), (γ?j,p2 , β

?
j,p2)} → {(γ0

j,p1 , β
0
j,p1), (γ0

j,p2 , β
0
j,p2)})

Q({(γ0
j,p1 , β

0
j,p1), (γ0

j,p2 , β
0
j,p2)} → {(γ?j,p1 , β

?
j,p1), (γ?j,p2 , β

?
j,p2)})

=
P(Yj | γ?j,p1 , β

?
j,p1 , γ

?
j,p2 , β

?
j,p2 , · · · )P(γ?j,p1)P(γ?j,p2)

P(Yj | γ0
j,p1 , β

0
j,p1 , γ

0
j,p2 , β

0
j,p2 , · · · )P(γ0

j,p1)P(γ0
j,p2)

where Q is the proposal distribution. We repeat this swap step 10 times within
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each MCMC iteration.

The details of the remaining MCMC simulation steps are described below.

1. sj, h, κ2 (parameters related to overdispersion parameters): We perform in-

dividual metropolis udpates for the over-dispersion parameters s̃j = log(sj).

The updates for h and κ2 are conjugate conditional on s̃j. These updates

are the standard Gibbs steps of a normal-normal model with known variance

and normal-inverse-gamma with known mean.

• sj

P(s̃j | −) ∝ N
(
s̃j
∣∣∣h, κ2

)
×
∏
t

Ki∏
k=1

Γ(ytkj + s−1
j )

ytkj!Γ(s−1
j )

(
µtkjsj

1 + µtkjsj

)ytkj ( 1
1 + µtkjsj

)s−1
j

,

where ‘−’ represents all other parameters and data. Update via random

walk Metropolis-Hastings.

• h

h | − ∼ N
 1

b2
h
ah + J

κ2 s̄

1
b2
h

+ J
κ2

,

(
1
b2
h

+ J

κ2

)−1


where s̄ = ∑J
j=1 s̃j.

• κ2

κ2 | − ∼ IG
aκ + J

2 , bκ + 1
2

J∑
j=1

(s̃j − h)2



2. ψr, wr, ηr (parameters related to library size adjustment):
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• ψr

P(ψr | −) ∝
Lr∏
`=1

(ψr` )a
ψr

`
+dr`−1

Draw from Dirichlet distribution with concentration parameters aψ
r

` +

dr` .

• wr`

P(wr` | −) ∝
∏

t,k|cr
tk

=`
(wr` )

λrtk(1− wr` )
1−λrtk

×
∏

t,k|cr
tk

=` and λr
tk

=0

N
(
rtk

∣∣∣∣∣υr − wr`ηr`1− wr`
, u2

r

)

× (wr` )a
r
w−1(1− wr` )b

r
w−1

∝ (wr` )
arw+

[∑
tk|cr

tk
=` λ

r
tk

]
−1

(1− wr` )
brw+

[∑
tk|cr

tk
=`(1−λ

r
tk)
]
−1

×
∏

t,k|cr
tk

=` and λr
tk

=0

N
(
rtk

∣∣∣∣∣υr − wr`ηr`1− wr`
, u2

r

)

Update via random walk Metropolis-Hastings.

• ηr`

ηr` | − ∼ N
(
ρr1
` m

r1
` + ρr2

` m
r2
` + ρr3mr3

ρr1
` + ρr2

` + ρr3
, (ρr1

` + ρr2
` + ρr3)−1

)
,

where

ρr1
` = 1

u2
r

|Ar` |, ρr2
` = 1

u2
r

(
wr`

1− wr`

)2

|Br
` |, ρr3 = 1

b2
ηr
,
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and

mr1
` = 1

|Ar` |
∑
Ar
`

rtk, mr2
` = 1

|Br
` |
∑
Br
`

υr − (1− wr` )rtk
wr`

, mr3 = υr,

with Ar` = {t, k|crtk = ` and λrtk = 1}; and |Ar` | is the cardinality of this

set, |Ar` | =
∑
t, k I(crtk = `)I(λrtk = 1). Similarly,

Br
` = {t, k|crtk = ` and λrtk = 0}; and |Br

` | is the cardinality of this set,

|Br
` | =

∑
t, k I(crtk = `)I(λrtk = 0).

• crtk

p(crtk = ` | −) ∝ ψr`

[
wr` N

(
rtk
∣∣∣ηr` , u2

r

)
+ (1− wr` ) N

(
rtk

∣∣∣∣∣υr − wr`ηr`1− wr`
, u2

r

)]

Update by drawing from the multinomial distribution with probabilities

p(crtk = ` | −).

• λrtk

P(λrtk = 1|−) ∝ wctk N
(
rtk
∣∣∣ηcr

tk
, u2
r

)
P(λrtk = 0|−) ∝ (1− wctk) N

rtk
∣∣∣∣∣∣
υr − wrcr

tk
ηrcr
tk

1− wrcr
tk

, u2
r


Update by drawing from the Bernoulli distribution with probability

P(λrtk = 1|−).

• rtk

P(rtk | ctk = `,−) ∝ N
(
rtk
∣∣∣ηr` , u2

r

)λrtk N
(
rtk

∣∣∣∣∣υr − wr`ηr`1− wr`
, u2

r

)1−λrtk

×
J∏
j=1

(
µtkjsj

1 + µtkjsj

)ytkj ( 1
1 + µtkjsj

)s−1
j
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Update via random walk Metropolis-Hastings.

3. ψα, wα, ηα (OTU baseline abundance parameters)

• ψα

P(ψα|−) ∝
Lα∏
`=1

(ψα` )a
α
` +dα` −1

Draw from the Dirichlet distribution with concentration parameters

aα` + dα` .

• wα`

P(wα` |−) ∝
∏

j|cαj =`
(wα` )λ

α
j (1− wα` )1−λαj

×
∏

j|cαj =` and λαj =0

N
(
α0j

∣∣∣∣∣υα − wα` ηα`1− wα`
, u2

α

)

× (wα` )aαw−1(1− wα` )bαw−1

∝ (wα` )
aαw+

[∑
j|cα
j

=` λ
α
j

]
−1

(1− wα` )
bαw+

[∑
j|cα
j

=`(1−λ
α
j )
]
−1

×
∏

j|cαj =` and λαj =0

N
(
α0j

∣∣∣∣∣υα − wα` ηα`1− wα`
, u2

α

)

• ηα`

ηα` | − ∼ N
(
ρα1
` m

α1
` + ρα2

` m
α2
` + ρα3mα3

ρα1
` + ρα2

` + ρα3
, (ρα1

` + ρα2
` + ρα3)−1

)
,

where

ρα1
` = 1

u2
α

|Aα` |, ρα2
` = 1

u2
α

(
wα`

1− wα`

)2

|Bα
` |, ρα3 = 1

b2
ηα
,
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and

mα1
` = 1

|Aα` |
∑
Aα
`

α0j, mα2
` = 1

|Bα
` |
∑
Bα
`

υα − (1− wα` )α0j

wα`
, mα3 = υα,

with Aα` =
{
j
∣∣∣cαj = ` and λαj = 1

}
; and |Aα` | is the cardinality of this

set, |Aα` | =
∑J
j=1 I(cαj = `)I(λαj = 1). Similarly, Bα

` =
{
j
∣∣∣cαj = ` and λαj = 0

}
;

and |Bα
` | is the cardinality of this set, |Bα

` | =
∑J
j=1 I(cαj = `)I(λαj = 0).

• cαj

P(cαj = `|−) ∝ ψα`

[
wα` N

(
α0j

∣∣∣ηα` , u2
α

)
+ (1− wα` ) N

(
α0j

∣∣∣∣∣υα − wα` ηα`1− wα`
, u2

α

)]

Update by drawing from the multinomial distribution with probabilities

p(cαj = ` | −).

• λαj

P(λαj = 1 | cαj = `,−) ∝ wα` N
(
α0j

∣∣∣ηα` , u2
α

)
P(λαj = 0|cαj = `,−) ∝ (1− wα` ) N

(
α0j

∣∣∣∣∣υα − wα` ηα`1− wα`
, u2

α

)

Update by drawing from the Bernoulli distribution with probability

P(λαj = 1|−).
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• α0j

P(α0j | cαj = `,−) ∝ N
(
α0j | ηα` , u2

α

)λαj N
(
α0j |

υα − wα` ηα`
1− wα`

, u2
α

)1−λαj

×
∏
t

Ki∏
k=1

(
µtkjsj

1 + µtkjsj

)ytkj ( 1
1 + µtkjsj

)s−1
j

Update via random walk Metropolis-Hastings.

4. θmj and τ 2
j (parameters for process convolution)

• θmj

P(θmj|−) ∝ N(θmj|0, τ 2
j )
∏
t

Ki∏
k=1

(
µtkjsj

1 + µtkjsj

)ytkj ( 1
1 + µtkjsj

)s−1
j

Update via random walk Metropolis-Hastings.

• τ 2
j

τ 2
j |− ∼ IG

(
aτ + M

2 , bτ + 1
2

M∑
m=1

θ2
mj

)

5. π?p0, πp1, βjp, γjp, ιp and σ2
j (parameters related to covariate effects)

• π?p0

π?p0 | − ∼ Be
aπ0 +

J∑
j=1

I (γjp = 0) , bπ0 +
J∑
j=1

I (γjp 6= 0)


• πp1

πp1|− ∼ Be
aπ1 +

J∑
j=1

I (γjp = 1) , bπ1 +
J∑
j=1

I (γjp = 2)

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• σ2
p

P(σ2
p|−) ∝ (σ2

p)−aσ−1 exp
(
− bσ
σ2
p

)

×
J∏
j=1

[
N(βjp|0, σ2

p)
]I(γjp=2) [

N(βjp|0, σ2
p)
]I(γjp=1)

× I(σ2
p < Uσ2

p
)

where Uσ2
p
is an upper bound given by min {(βjp/ιp)2, for j with γjp 6= 0}.

Update by drawing σ2
p from IG

(
aσ +∑J

j=1 I(γjp 6= 0)/2, bσ +∑J
j=1 β

2
jp/2

)
,

but truncated at Uσ2
p
.

• ιp

P(ιp|−) ∝ ιaι−1
p exp (−bιιp)

×
(

1
Φ (−ιp)

)∑J

j=1 I(γjp=2)

×
(

1
1− Φ (ιp)

)∑J

j=1 I(γjp=1)

× I(ιp > Uιp),

where Uιp = min{|βjp|/σp, for j with γjp 6= 0}. Update via random

walk Metropolis-Hastings.

• βjp

We do not update βjp if γjp = 0. For βjp with γjp=1:

P(βjp|γjp = 1, −) ∝
φ(βjp|0, σ2

p)
1− Φ(ιp)

I(βjp
σp

> ιp)

×
n∏
i=1

Ki∏
k=1

(
µtkjsj

1 + µtkjsj

)ytkj ( 1
1 + µtkjsj

)s−1
j
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Use a Metropolis-Hastings algorithm to update using proposal

TruncNorm(β?jp, (σ2)′, ιpσp,∞),

where (σ2)′ is a fixed proposal variance. For βjp with γjp=2:

P(βjp|γjp = 2, −) ∝
φ(βjp|0, σ2

p)
Φ(−ιp)

I(βjp
σp

< −ιp)

×
n∏
i=1

Ki∏
k=1

(
µtkjsj

1 + µtkjsj

)ytkj ( 1
1 + µtkjsj

)s−1
j

Do a metropolis update using proposal TruncNorm(β?jp, (σ2)′,−∞,−ιpσp),

where (σ2)′ is a fixed proposal variance.

aσ bσ aι bι
Case 1 1 1 2.5 10
Case 2 0.1 0.1 2.5 10
Case 3 1 1 1 10
Case 4 0.1 0.1 1 10
Case 5 1 1 5 20
Case 6 0.1 0.1 5 20

Table A.1: Prior specifications for ιp and σ2
p. ιp

iid∼ Gamma(aι, bι) and σ2
p
iid∼

IG(aσ, bσ) are assumed.

A.2 Additional Results for Simulation 1

In this section we present additional results from Simulation 1 in §2.3 of the

main text. Figure A.1 has histograms of posterior estimates d̂jp = P̂(γjp = γTR
jp |

Y ), the probabilities that βjp is correctly selected with its true direction. Figure

147



djp
^

F
re

qu
en

cy
0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

djp
^

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

60
10

0

djp
^

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

(a) x1 (b) x2 (c) x3

djp
^

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

djp
^

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0
0

10
30

50

djp
^

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

30
50

(d) x4 (e) x5 (f) x6

djp
^

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

30
50

djp
^

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

30
50

djp
^

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

djp
^

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

(g) x7 (h) x8 (i) x9 (j) x10

Figure A.1: [Simulation 1] Histograms of d̂jp = P̂(γjp = γTR
jp | Y ).

A.2 compares the posterior mean estimates β̂jp to their true values βTR
jp for all

covariates. Note that covariates x1−x3 are continuous covariates and x4−x10 are

binary indicators to represent different concentration levels of Alexandrium (Ax)

and domoic acid (DA). Figure A.3(a) compares posterior estimates ĝtkj of baseline

mean counts to their true values. The difference of gTR
tkj− ĝtkj is distributed tightly

around zero, indicating the baseline counts are well estimated. Figure A.3(b)

and (c) compare posterior estimates r̂tk and α̂0j of library size adjustment factors

rtk and OTU specific baseline abundance α0j to their true values, respectively.

We observe vertical shifts from the true values in opposite directions; that is,
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Figure A.2: [Simulation 1] Posterior means of the regression coefficients β̂jp
versus their true values βTR

jp . The dashed blue lines show 95% posterior credible
intervals, and the solid red lines are 45 degree reference lines.

rtks are underestimated for all OTUs and α0j are overestimated due to the lack

of identifiability in the construction of gtkj. Figure A.3(d)-(f) show posterior

estimates α̂tj of the temporal structure. In the figure, we plot αTR
0j + α̂tj over t

for some selected OTUs. For easy comparison to the truth, αTR
0j is used instead

of posterior estimates of α0j. The red line in the figure represents the simulation

truth. Sample time points are shown by open black circles, and the posterior

mean is shown by a black line with pointwise 95% credible intervals (blue dashed
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Figure A.3: [Simulation 1] Panel (a): Histogram of the differences between the
posterior means of the baseline mean counts ĝtkj and their true values gTR

tkj. Panel
(b): Posterior means of the sample scale factors r̂tk versus their true values rTR

tk .
Panel (c): Posterior means of the OTU-specific baseline abundance α̂0j versus
their true values αTR

0j . Panels (d) through (f): Posterior means α̂tj of αtj (black,
solid) compared to the simulation truth (red, solid) for some selected OTUs with
95% credible intervals (blue, dotted).

lines). Overall, the model does a good job of capturing the temporal dependence

introduced by the sampling procedure.

We examined the sensitivity of the estimation of βjp and γjp to the prior

specification of ιp and σp for ANLP-SB. Recall that ιp iid∼ Gamma(aι, bι) and

σ2
p

iid∼ IG(aσ, bσ) are assumed. Six different specifications of (aι, bι, aσ, bσ) are

given in Table A.1, including the specification used in §3 of the main text to

facilitate easy comparison. Results are illustrated in Figure A.4 for x1 and x3, the
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Figure A.4: [Simulation 1] Histograms of posterior estimates of d̂jp = P̂(γjp =
γTR
jp ) for selected covariates x1 and x5 under the six different specifications of

(aι, bι, aσ, bσ) in Table A.1. Panels (a)-(f) show results from x1 (Silicate), and
panels (g)-(`) show results from x5 (low concentration of Alexandrium).
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Figure A.5: [Simulation 1] Histograms of differences between the true baseline
mean counts and their estimates, gTR

tkj − ĝtkj, under different specifications for υr,
υα and M .

same covariates in Figure 2.3 in the main text. The figures show that the model

is not overly sensitive to the prior specification of ιp and σ2
p within a reasonable

range. We found that overdispersed priors for ιp may lead to poor convergence

and/or inference (results are not shown). We also examined the sensitivity of the

estimation of gtkj by varying the number of knot points M and the values of the

prespecified mean constraints υr and υα. We tried M = 50 and M = 90 and

compared the results to those with M = 70. We found relatively little impact

on the posterior inference. The model is more sensitive to changes in the range

parameter, as the range parameter can be chosen in such a way that the temporal

dependence between sample points is too strong. We also specified υr and υα
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Figure A.6: [Simulation 1] Trace plots of the log-likelihood under different prior
specifications. The plots are over the course of the entire MCMC (left), and after
2,000 samples (right).

by ±2 and ∓2 to the values empirically specified as described in the main text.

We found that these changes had little impact on the posterior estimates of gtkj.

Histograms of the differences between the true baseline mean counts gTR
tkj and

their posterior estimates ĝtkj under the different simulation conditions are shown

in Figure A.5.

We diagnosed the convergence of the posterior MCMC simulation using trace

plots of the log-likelihood. Figure A.6 shows trace plots of the log-likehood based

on imputed parameters under the six different hyperparameter specifications in

Table A.1. The chains converge to similar log-likelihood ranges regardless of the

hyperparameter specification, which provides no evidence of poor convergence

or poor mixing. Examination of trace plots and autoccorrelation plots for some

parameters also show practical evidence of posterior convergence and good mixing

(not shown).
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A.3 Additional Results for Ocean Microbiome

Data Analysis

In this section, we present additional results from the ocean microbiome data

analysis in §2.4 of the main text. Table A.2 shows the names of the covariates. Fig-

ure A.7 has simplex plots of the posterior probability vectors ẑjp = (ẑjp0, ẑjp1, ẑjp2),

where ẑjpq is an posterior estimate of the probability that γjp = q, q ∈ {0, 1, 2}

for the complete set of covariates under ANLP-SB. Each point on the simplex plot

represents the posterior probabilities of no effect (bottom left tip)/positive effect

(apex)/negative effect (bottom right tip) of that covariate for an OTU. These plots

provide insights into how the covariates are associated with community dynamics.

For some covariates the effect directions on the OTU abundances are relatively

homogeneous, while other covariates have more varied effects. Figure A.8 illus-

trates posterior inference for the OTUs belonging to class Gamma-proteobacteria.

The figure has histograms of posterior estimates of regression coefficients (β̂jp)

and probabilities of γjp = 2 (ẑjp2) for the different DA concentration levels. Fig-

ure A.9 shows results on bacterial growth of a lab experiment using a cultured

Gamma-proteobacteria strain. The results show that the bacteria was significantly

affected by DA at concentrations ranging from 25 to 50 µg/ml, which validates

our findings from Figure A.8. To assess the convergence of the posterior MCMC

simulation, we re-ran the data analysis under the six different hyperparameter

specifications given in Table A.1. The trace plots in Figure A.10 illustrate that

the log-likehood converges to similar states under the different prior specifications

and different random seeds. The results provide practical evidence of posterior

convergence and indicate robustness of ANLP-SB to the prior specification.

For comparison, we applied the competing models to the ocean microbiome
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Covariate Name Short Name Levels
Alexandrium (x1 − x3) Ax low/medium/high
Dinophysis (x4 − x6) Dp low/medium/high
Pseudo-nitzschia (x7 − x10) Pn low/medium/high/very high
Domoic acid (x11 − x14) DA low/medium/high/very high
Ammonia (x15) NH4 continuous
Nitrate (x16) N continuous
Phosphate (x17) P continuous
Silicate (x18) Si continuous
Water Temperature (x19) T continuous
Chlorophyll (x20) Chl continuous

Table A.2: Covariate names in the ocean microbiome dataset. Categories are
listed for the discretized covariates.

Model DIC LPML
ANLP-SB 256,189 -3.252
ALP-SB 256,238 -3.254
SLP-SB 256,330 -3.254

BayesReg 267,010 -3.609

Table A.3: Performance metrics of the Bayesian models applied to the ocean
microbiome dataset. Best performances are in bold.

data. Figure A.11(a)-(b) have the posterior distributions of π?p0 probabilities that

a covariate has no effect on OTU abundance and of πp1 conditional probabilities

that a covariate has a positive effect given it has a significant effect under ALP-SB,

respectively. Figure A.11(c) shows posterior distributions of π?p0 under SLP-SB.

The posterior distributions of π?p0 and πp1 under ANLP-SB are shown in Figure 2.4

of the main text. The models with local priors have posterior mean estimates of

π?p0 between 0.2 and 0.4 for all covariates, while those values are above or around

0.5 under ANLP-SB. The ANLP induces more sparsity than the ALP and the SLP,

resulting in more parsimonious models. Table A.3 has DIC and LPML for the

Bayesian models. ANLP-SB has the best fit according to both criteria, followed

by ALP-SB, and then SLP-SB. Figure A.12 shows the proportion of OTUs that
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Figure A.7: [Ocean Microbiome Data] Simplex plots of the posterior means
ẑjp = (ẑjp0, ẑjp1, ẑjp2) of γjp = 0, (no effect), γjp = 1, (positive effect) and γjp = 2,
(negative effect). The colors, blue, red and green, indicate no relationship, a nega-
tive relationship, and a positive relationship with OTU abundances, respectively.

have a significant relationship with each covariate, where the criteria used to

define a variable as ‘selected’ is the same as was described in §2.3 of the main

text. For ANLP-SB, a variable is ‘selected’ when P(γjp 6= 0 | Y ) > 0.5. For

BayesReg, the 95% posterior credible intervals were used to select a variable. For

the frequentist models, we selected a variable when the adjusted p-value for that

regression coefficient was less than 0.05.
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[Ocean Microbiome Data - Supplementary Figure A.7 continued] Simplex plots of
the posterior means ẑjp = (ẑjp0, ẑjp1, ẑjp2) of γjp = 0, (no effect), γjp = 1, (positive
effect) and γjp = 2, (negative effect). The colors, blue, red and green, indicate
no relationship, a negative relationship, and a positive relationship with OTU
abundances, respectively.
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Figure A.8: [Ocean Microbiome Data] Histograms of β̂jp and ẑjp2 for different
DA concentration levels for OTUs belonging to the class Gamma-proteobacteria.
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Figure A.9: [Ocean Microbiome Data] Plots of growth measurements (Opti-
cal Density at 600 nm) of a bacterial cultured isolate belonging to Gamma-
proteobacteria measured after 48 hours of exposure to different concentration
levels of domoic acid (DA).
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Figure A.10: [Ocean Microbiome Data] Trace plots of the log-likelihood under
different prior specifications. The plots are over the course of the entire MCMC
(left), and after 2,000 samples (right).
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(c) Posterior distributions of π?p0 under SLP-SB

Figure A.11: [Ocean Microbiome Data] Panels (a) and (c): Boxplots of the pos-
terior distributions of π?p0, the probability of a non-zero effect on OTU abundance,
under ALP-SB and SLP-SB, respectively. Panel (b): Boxplots of the posterior
distributions of πp1, the conditional probability of a positive effect direction given
the covariate has a non-zero effect under ALP-SB.
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Figure A.12: [Ocean Microbiome Data] Proportions that each covariate is se-
lected under ANLP-SB, BayesReg, BhGLM, edgeR-L and edgeR-Q.
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Appendix B

A Bayesian Nonparametric

Analysis for Zero Inflated

Multivariate Count Data with

Application to Microbiome Study

Supplementary Material

B.1 MCMC Algorithm

We obtain samples from the posterior distribution using an MCMC algorithm.

Let θ = [sj, δij, ri, αjm, ξjk, θjk, (χ?k`, v
χ
` , σ

2
χk, χ ∈ {θ, ξ}), (ψ

χ
` , w

χ
` , η

χ
` , χ ∈ {r, α})]

denote the vector of all unknown parameters. The joint posterior distribution is
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given by

P (θ | Y ,x,u) ∝ P (Y | θ,x,u) P (θ)

∝
n∏
i=1

J∏
j=1
{p(yij | δij, µij(xi, ui), sj) · π(δij | εjxi)}

J∏
j=1

π(sj | as, b2
s)

×
J∏
j=1

M∏
m=1

π(αjm | δ,ψα,wα,ηα) · π(ψα,wα,ηα | υα, u2
α)

×
n∏
i=1

π(ri | δ,ψr,wr,ηr) · π(ψr,wr,ηr | υr, u2
r)

×
K∏
k=1


J∏
j=1

π(ξjk | ψξ, ξ?k, σ
2
ξk)

 π(σ2
ξk | aξσ, bξσ)

×
K∏
k=1


J∏
j=1

π(θjk | δ,ψθ,θ?k, σ
2
θk)

 π(σ2
θk | aθσ, bθσ)

×
Lξ∏
`=1

{
K∏
k=1

{
π(ξ?k` | ξ̄?, τ 2

ξ )
}
π(vξ` | ρξ)

}

×
Lθ∏
`=1

{
K∏
k=1

π(θ?k` | θ̄?, τ 2
θ )π(vθ` | ρθ)

}
.

The majority of the MCMC steps consist of straightforward Gibbs and Metropolis-

within-Gibbs steps. Recall that parameters αmj, ri, θjk and ξjk are from the

mixture models. For easy posterior simulation, we introduce latent variables that

indicate which mixture component those parameters are from. We easily draw

those latent indicators from categorical distributions. The mixture weights and

locations can be easily updated conditioning on the indicators.

The sampling procedure for δij, the OTU presence/absence indicators, is com-

plicated because the indicator may have implications for the existence of θjk and

αjm. More specifically, θjk is only meaningful if there exists at least one δij = 1

for {i : xi = k}. In words, estimating how an OTU’s abundance differs in level k

as compared to that OTU’s baseline abundance requires that the OTU be present
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in at least one sample having covariate level k. Otherwise, we conclude simply

that the OTU is absent in that condition. Similarly, αjm can only be estimated or

interpreted if there exists at least one δij = 1 for {i : ui = m}, that is, estimating

the group-specific random effect of an OTU requires the OTU to be present for

at least one sample from that group. In addition, we perform a joint update of

θjk and αjm with δij in the MCMC using a Metropolis-Hastings step because the

full conditionals of θjk and αjm greatly depend on δij, . Let Ω = {δij, θjk, αjm},

and let Ω0 denote the parameter set from the previous MCMC iteration and Ω1

the proposed parameter set. The proposal is accepted/rejected in the usual way,

with the Metropolis-Hastings acceptance ratio given by

P(Yj | Ω1, . . .)P(Ω1)
P(Yj | Ω0, . . .)P(Ω0)

Q(Ω0 | Ω1)
Q(Ω1 | Ω0) , (B.1)

where Yj is the n-length vector of counts from each sample for OTU j, and Q(b | a)

a conditional distribution of proposing b given a. Let δ0
ij and δ1

ij denote the current

and proposed values of δij, respectively. We define δ1
ij conditional on δ0

ij by letting

δ1
ij =


1, if δ0

ij = 0,

0, if δ0
ij = 1.

As indicated previously, changing the value of δij has implications for αjm and

θjk. Letting δ1
ij = 1 may require new values for θjk, αjm, or both. If αjm was

defined in the previous MCMC iteration (i.e. α0
jm) we use that value for the

proposal, otherwise we draw α1
jm from its prior distribution, as defined in equation

(3.4) of the main text. This draw consists of first drawing the auxiliary variables

indicating which mixture components α1
jm belongs to (conditional on the sets of
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mixture weights {ψα` } and {wα` }), and then drawing α1
jm from the appropriate

Gaussian distribution. Similarly, when proposing δ1
ij = 1 demands a value for θjk,

we draw θ1
jk from the prior if θ0

jk was undefined in the previous MCMC iteration.

Otherwise we let θ1
jk = θ0

jk for the proposal. If a prior draw is necessary, θ1
jk = 0

if an OTU is present for only one level of k, otherwise θ1
jk is drawn from the

distribution defined in equation (3.3) of the main text. This draw is simple when

using the finite truncation of the DDP. First an auxiliary variable indicating θjk’s

mixture membership is drawn conditional on the set of mixture weights
{

Ψθ
`

}
,

and then θ1
jk is drawn from the indicated Gaussian distribution. Because θ1

jk = 0

if an OTU is present for only one level of k, changing δij may also require a new

value for θ1
jk′ , k′ 6= k. Proposing δ1

ij = 1 may indicate that an OTU is present

for multiple levels of k where previously it was only present in k′, in which case

the proposal for θ1
jk′ must be some non-zero value. As we do for θ1

jk, we handle

this case by drawing θ1
jk′ from the prior F 1

k′ . Likewise, proposing δ1
ij = 0 may

imply θ1
jk′ = 0 if the OTU was previously present for multiple levels of k but

now is present for only k′. In many cases there is substantial cancellation in the

Metropolis-Hastings ratio in (B.1), which can be used to reduce the computation

time when sampling δij. Using the prior distributions to draw proposals for θjk

and αjm often results in P(Ω) canceling with the transition probabilities. When

the proposals θ1
jk and α1

jm can be set to θ0
jk and α0

jm, as is typically the case when

the data is not overly sparse, there is considerable cancellation in the likelihood.

These cancellations can reduce the computational burden of updating the set of

{δij}, which is high-dimensional in most microbiome settings.
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Figure B.1: [Simulation 1] Panel (a): Posterior medians of ri + αjm plotted
against the simulation truth. Panel (b): Histogram of the residuals of ri + αjm.
Panels (c)-(d): Results when +2 is added to υα and −2 is added to υr. Panels
(e)-(f): Results when −2 is added to υα and +2 is added to υr.
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B.2 Additional Simulation 1 Results

In this section we present additional results from Simulation 1, described in

§3.3 of the main text. Figure B.1 shows posterior estimates of the baseline counts

r̂i + α̂jm of OTU j in sample i compared to the simulation truth. We use the

posterior median as their point estimates. The figure illustrates that the quan-

tity ri + αjm is identifiable, with the residuals between the model estimates and

the simulation truth centered roughly at zero. The identifiability of the baseline

counts enables differential abundance parameters θjk to be estimated accurately.

We also analyzed the model’s sensitivity to specification of the mean constraints

υα and υr. For this sensitivity analysis we set υα and υr using the procedure

described in §3.2.2 of the main text, but with added offsets of ±2 and ∓2. The

baseline counts r̂i + α̂jm compared to the simulation truth under these alternative

prior specifications are also shown in Figure B.1(c)-(f). The model is relatively

robust to these alternative prior specifications, with the baseline counts well es-

timated and the residuals centered roughly at zero. Estimates of θjk under these

alternative specifications were similar to the estimates obtained under the original

prior specification (not shown).

We also examined the model’s convergence and sensitivity to different mixture

truncation levels. For the results shown in the main text the truncation specifi-

cation was Lα = 150, Lr = 20, Lθ = 50, and Lξ = 50 (Config. I). In addition to

this specification we also considered two additional truncation specifications: (1)

Lα = 75, Lr = 10, Lθ = 25, Lξ = 25 (Config. II) and (2) Lα = 300, Lr = 40,

Lθ = 100, Lξ = 100 (Config. III). We found minimal difference in the inference

on the parameters of interest produced by the model with these alternative spec-

ifications; Figure B.2 shows inference on θjk is very similar under the different
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Figure B.2: [Simulation 1] Posterior means of differential abundances θjk for
k = 1, 2, 3, along with 95% credible intervals and reference lines. Panels (a)-
(c): Original configuration of the truncation levels Lα = 150, Lr = 20, Lθ = 50
and Lξ = 50 (Config. I). Panels (d)-(f): a configuration of truncation levels halved
Lα = 75, Lr = 10, Lθ = 25 and Lξ = 25 (Config. II). Panels (g)-(i): a configuration
L3 of truncation levels doubled Lα = 300, Lr = 40, Lθ = 100 and Lξ = 100
(Config. III).
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Figure B.3: [Simulation 1] Traceplots of the log-likelihood before burn-in (a)
and after burn-in (b). The model specification from the main text (red line) as
well as alternative specifications with different random seeds and initializations
(other colors) are shown.

truncation specifications. The model was run under different initializations and

random seeds for each configuration of the truncation levels. Traceplots of the

log-likelihood shown in Figure B.3 provide practical evidence of the model’s con-

vergence under these different specifications. As the log-likelihood plots suggest,

we found that the model converged to a similar state under these alternative

specifications.

B.3 Additional Chronic Wound Microbiome Re-

sults

We examined the model’s sensitivity to the specification of the mean con-

straints υr and υα. Similar to the simulation studies, we added offsets of ±2 and

∓2 to υr and υα, respectively, and reanalyzed the chronic wound data. Estimates
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of f ξk and f θk with the different specifications of υr and υα are shown in Figure B.4.

Compared to the estimates with the previous specification in Figure 3.11 of the

main text, the inference remains almost unchanged. We found that changes in

estimation of εjk and θjk for individual OTUs are also minimal. We conducted

a sensitivity analysis to the specification of mixture truncation levels. In addi-

tion to the original specification of Lα = 150, Lr = 20, Lθ = 50, and Lξ = 50,

we considered Lα = 75, Lr = 10, Lθ = 25, Lξ = 25 and Lα = 300, Lr = 40,

Lθ = 100, and Lξ = 100. We found that the inference produced by the model was

robust with respect to these alternative specifications. We also ran the model on

the chronic wound microbiome dataset with different initializations and random

seeds for the MCMC chain and did not find evidence suggesting the Markov chain

failed to converge. Traceplots of the log-likelihood under the different truncation

specifications and different random seeds and initializations are shown in Figure

B.5. The figure shows the MCMC converges to similar log-likelihood ranges under

these alternative specifications.

169



−4 −2 0 2 4

0.
0

0.
4

0.
8

ξjx

f xξ

1
2
3

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

θjx

f xθ

1
2
3

(a) f̂ ξk with υr + 2 & υα − 2 (b) f̂ θk with υr + 2 & υα − 2

−4 −2 0 2 4

0.
0

0.
4

0.
8

ξjx

f xξ

1
2
3

−10 −5 0 5 10

0.
00

0.
10

0.
20

0.
30

θjx

f xθ

1
2
3

(c) f̂ ξk with υr − 2 & υα + 2 (d) f̂ θk with υr − 2 & υα + 2

Figure B.4: [Chronic Wound Data - Sensitivity to the specification of υr and
υα] Panels (a) and (b) illustrate estimates of f ξk and f θk , respectively, when +2 is
added to υα and −2 is added to υr. In panels (c) and (d), estimates of f ξk and f θk
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Figure B.5: [Chronic Wound Data] Traceplots of the log-likelihood before burn-
in (a) and after burn-in (b). The model specification from the main text (red line)
as well as alternative specifications with different random seeds and initializations
(other colors) are shown.
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Appendix C

Bayesian Graphical Modeling of

Microbial Community

Composition Supplementary

Material

C.1 MCMC Algorithm

In this section we outline the steps used to draw samples from the joint pos-

terior distribution via MCMC. Let

θ = [sj, ri, αj, (ψχ` , w
χ
` , η

χ
` , χ ∈ {r, α}), βjp, τ 2

p , θmj, σ
2, γ`j, G] be the vector of all

unknown parameters. The target distribution is the joint posterior, given by

Bayes’ rule, P(θ | Y , X) ∝ P(θ)P(Y | X, θ). We use a combination of Gibbs

and Metropolis-within-Gibbs steps to obtain draws from the target distribution.

The MCMC steps for the parameters and the graph are described below. Let

Pa(j) denote the set of parents of the jth OTU, and Ch(j) denote the set of
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children.

• sj

Let s̃j = log(sj).

P(s̃j | −) ∝ N
(
s̃j | as, b2

s

) n∏
i=1

Γ(Yij + 1/sj)
Γ(1/sj)

(
µijsj

1 + µijsj

)Yij ( 1
1 + µijsj

)1/sj

sj is updated via random-walk Metropolis-Hastings steps.

• χ ∈ {r, α}, wχ` , η
χ
`

The prior distribution for the normalization parameters comes from a mixture-

of-mixtures distribution as described in the main text. As is common in

finite mixture models, we introduce latent variables indicating from which

mixture components the parameter belongs. The mixture component indi-

cators are updated via categorical draws, and ri and αj are updated using

random-walk Metropolis-Hastings steps conditional on their mixture mem-

berships. For more specifics we refer the reader to Shuler et al. (2019a)

which describes the algorithm in more detail.

• βjp

P(βjp | −) ∝ N(βjp|0, τ 2
p )

n∏
i=1

(
µijsj

1 + µijsj

)Yij ( 1
1 + µijsj

)1/sj

βjp is updated via random-walk Metropolis-Hastings steps.

• τ 2
p
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τ 2
p ∼ IG

aτ + J/2, bτ +
J∑
j=1

β2
jp/2



• θmj

P(θmj | −) ∝ N
θmj | ∑

l∈Pa(j)
γljθml, σ

2

 ∏
j′∈Ch(j)

N
θmj′ | ∑

l′∈Pa(j′)
γl′j′θml′ , σ

2


×

∏
i|ui=m

(
µijsj

1 + µijsj

)Yij ( 1
1 + µijsj

)1/sj

θmj is updated via random-walk Metropolis-Hastings steps.

• σ2
j

σ2
j |− ∼ IG

aσ + M

2 + 1
2

J∑
l=1

alj , bσ + 1
2
∑

i|ui=m

θmj − ∑
l∈Pa(j)

γljθml

2

+ 1
2κ

∑
l∈Pa(j)

γ2
lj


• γlj

If OTU l is not a parent of OTU j, no update is necessary. Otherwise:

γlj | − ∼ N

(σ2 + κσ2
M∑
m=1

θ2
ml

)−1

κσ2
M∑
m=1

θmltmj ,

(
σ2 + κσ2

M∑
m=1

θ2
ml

)−1

κ
(
σ2)2


where

tmj = θmj −
∑

l′∈Pa(j),
l′ 6=l

γl′jθml′

• G: Update edges individually.

Repeat this step multiple times within one MCMC iteration.
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Select an edge (j′ → j) at random. Let ‘Ar’ be the Metropolis acceptance

ratio.

1. Birth: If (j′ → j) /∈ E & (j → j′) /∈ E, propose addition to E.

Draw a new γ?j′j from the prior P(γj′j) and let γ?lj = γ0
lj for all l ∈ Pa0(j).

Check that the proposed graph is acyclic, if it is not, reject the proposal.

Otherwise,

Ar =
Pg
∏M
m=1 N

(
θmj |

∑
l∈Pa?(j) γ

?
ljθml, σ

2
)

∏M
m=1 N

(
θmj |

∑
l∈Pa0(j) γ

0
ljθml, σ

2
)

where Pa?(j) denotes the parents in the proposed graph, and Pa0(j)

the parents in the current graph. If the birth move is accepted, we

update γlj from its full conditionals for l ∈ Pa(j) of the updated G.

2. Death: If (j′ → j) ∈ E, propose removal.

Ar =
∏M
m=1 N

(
θmj |

∑
l∈Pa?(j) γ

?
ljθml, σ

2
)

Pg
∏M
m=1 N

(
θmj |

∑
l∈Pa0(j) γ

0
ljθml, σ

2
)

Let γ?lj = γlj for all l ∈ Pa?(j). If the death move is accepted, we

update γlj from its full conditionals for l ∈ pa(j) of the updated G.

3. Switch: If (j′ → j) /∈ E & (j′ ← j) ∈ E, propose to remove (j′ ← j)

and add (j′ → j):

Draw a new γ?j′j from the prior P(γj′j) and let γ?lj = γ0
lj for all l ∈ Pa0(j)

and γ?lj′ = γ0
lj′ for all l ∈ Pa0(j′).

Check that the proposed graph is acyclic, if it is not, reject the proposal.

175



Otherwise,

Ar =
∏M
m=1 N

(
θmj′ |

∑
l∈Pa?(j′) γ

?
lj′θml, σ

2
)

N
(
θmj |

∑
l∈Pa?(j) γ

?
ljθml, σ

2
)

∏M
m=1 N

(
θmj′ |

∑
l∈Pa0(j′) γ

0
lj′θml, σ

2
)

N
(
θmj |

∑
l∈Pa0(j) γ

0
ljθml, σ

2
)

If the switch move is accepted, we update γlj from its full conditionals

for l ∈ pa(j) of the updated G and γlj′ for l ∈ pa(j′).

Acyclic check:

Let |E| be the number of edges in the graph. If diag
(
Ak
)
6= 0, for any

k ∈ {1, . . . ,min(J, |E|)}, where Ak is the matrix exponent, then G is

not acyclic (i.e., has a cycle).

• G: Update by edge swap.

1. Select an OTU having at least one parent, Pa(j) 6= ∅

2. Choose j′ from Pa(j) at random (probability 1/ |Pa(j)|)

3. Choose j′′ from Pa(j)c at random (probability 1/(J−|Pa(J)|) and add

(j′′ → j)

4. If G is acyclic, draw γj′′,j from P(γ`j) and accept G? with probability

Ar =
∏M
m=1 P(θij | G?, γ?j′′,j)∏M
m=1 P(θij | G0, γ0

j′,j)
=
∏M
m=1 N

(
θmj |

∑
l∈Pa?(j) γ

?
ljθml, σ

2
)

∏M
m=1 N

(
θmj |

∑
l∈Pa0(j) γ

0
ljθml, σ

2
)

5. Update γj′′,j several times if G? is accepted
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C.2 Additional Simulation 1 Results

C.2.1 Sensitivity and Convergence

We analyzed the model’s sensitivity to different specifications of the fixed scal-

ing factor κ and the edge inclusion probability PG, as well as to misspecification

of υα and υr. In the results presented in the main text we set κ = 10 and

Pg = 0.05. Here, we consider alternative specifications using κ = 5 and κ = 20,

and using Pg = 0.1 and Pg = 0.01. The remainder of the hyperparameters were

set to the same values as in the main text. For the mean constraints we consid-

ered alternative specifications where offsets of ±2 and ∓2 were added to υα and

υr. We found that the alternative specifications had minimal impact on the infer-

ence on the graph and regression coefficients. Figure C.1 shows the moral graph

edge inclusion probabilities m̄lj using the alternative specifications. The values

of m̄lj change very little using alternative specifications of κ and when the mean

constraints are misspecified. Figure C.2 shows how the estimates of αj and ri

change in response to the alternative mean constraint specifications. In each case

estimates for the baseline abundances ri + αj are on average unbiased, showing

the model is robust to misspecification of the mean constraints. Pg has a larger

impact on the edge inclusion probabilities, with lower values of Pg yielding lower

probabilities of edge inclusion and larger values yielding larger probabilities of

edge inclusion, as would be expected from the model specification. Nonetheless,

the point estimates for the moral graph obtained from BRM-G remain robust.

For all of the specifications we tried the moral graph point estimate Ĝm remained

the same as the point estimate obtained using the model specification described

in the main text. Estimates obtained for the regression coefficients βjp likewise

are robust, with similar estimate obtained across the different specifications we

177



considered, as shown in Figure C.3 and Figure C.4.

We assessed the chain’s convergence by looking at traceplots of the model pa-

rameters and comparing the model results to an alternative MCMC chain using

a different random seed and having a different initialization. For this alternative

chain, rather than using the empirical partial correlations, no edges were included

in the graph for the initialization. Also, the regression coefficients βjp were all

initialized to 0, and sj was initialized using sj iid∼ Log-Normal(10−4, 10−4) instead

of sj iid∼ Log-Normal(0.3, 10−4). Using this alternative initialization BRM-G pro-

duces the same moral graph point estimate as the original initialization, and the

regression coefficients are well recovered. The two chain results are very similar

across all of the model’s parameters, suggesting good convergence. Because it is

not possible to include traceplots for all of the model’s many parameters, we show

traceplots of the posterior log-likelihood before and after burn-in as a proxy as

evidence of the chain’s convergence. These traceplots are shown both for the orig-

inal initialization and the alternative initialization in Figure C.5. The number of

edges in the DAG for the two chains is also shown in the figure. The chains quickly

converge to including a similar number of edges in the DAG despite using very

different initialization procedures. Overall we did not find evidence suggesting the

chains did not converge.

C.2.2 Sensitivity and Convergence

As in Simulation 1 we conducted sensitivity analysis for Simulation 2 via alter-

native specifications of κ and Pg, and to misspecification of the mean constraints

υr and υα. As before we found the model was robust to alternative specifications,

with the largest impact coming from different values of Pg which lead to different
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Figure C.1: [Simulation 1 Sensitivity] Lower-diagonals: Posterior probabilities
of edge inclusion using different model specifications. Upper-diagonals: Edges of
the true moral graph MTR.

edge inclusion probabilities. Figure C.11 shows estimates for ri and αj using the

alternative mean constraint specifications. Again we find estimates for the base-
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Figure C.2: [Simulation 1] Estimated baseline abundance levels under different
specifications for the mean constraints υα and υr. Columns 1 and 2 show pos-
terior means α̂j and r̂i plotted against the simulation truth. Column 3 shows
differences of the baseline abundance from the simulation truth compared to the
baseline abundance estimated by α̂j + r̂i. Row 1 is the original mean constraint
specification. Row 2 shows results using υα−2, υr + 2. Row 3 shows results using
υα + 2, υr − 2.

line abundances are, on average, unbiased using these alternative specifications

for the mean constraints. Figures showing the edge inclusion probabilities under
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Figure C.3: [Simulation 1 Sensitivity] Posterior means β̂j1 and 95% credible
intervals plotted against the simulation truth βTR

j1 using different model specifica-
tions.

the alternative specifications are shown in Figure C.6, and figures showing the

resulting estimates for the regression coefficients βjp are shown in Figures C.8 and
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Figure C.4: [Simulation 1 Sensitivity] Posterior means β̂j2 and 95% credible
intervals plotted against the simulation truth βTR

j2 using different model specifica-
tions.

C.9. The impact of Pg on point estimates of the moral graph produced by includ-

ing edges with posterior probability > 0.5 can be see in Figure C.7, which shows
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Figure C.5: [Simulation 1] (a) and (b) Traceplots of the posterior log-likelihood
using two different initializations and random seeds for the MCMC chain. (c)
Number of edges in the DAG

the point estimates Ĝm under the alternative specifications. The estimate using

the specification with Pg = 0.1 contains an additional edge, while using Pg = 0.01

produces a slightly sparser graph. Overall, however, we find the estimated graph

fairly robust to alternative choices of Pg. We observed very little impact of the

model specification on βjp; plots showing their estimates against their true values

across the different model specifications are shown in Figures C.8 and C.9.

As in Simulation 1 we assessed the chain’s convergence using traceplots and

compared the model results to an alternative MCMC chain initialization with a

different random seed. We initialized the alternative chain using the same manner

as in Simulation 1. Traceplots of the resulting posterior log-likelihoods under the

two chains are shown in Figure C.10. The number of edges in the DAG across

the MCMC iterations is shown as well. Again we did not find evidence suggesting

poor convergence. The alternative chain produced the same point estimate for

the moral graph as the original chain, and the regression coefficients were well

recovered.
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Figure C.6: [Simulation 2 Sensitivity] Lower-diagonals: Posterior probabilities
of edge inclusion using different model specifications. Upper-diagonals: Edges of
the true moral graph MTR.
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Figure C.7: [Simulation 2 Sensitivity] Moral graph point estimates Ĝm under
different model specifications.

C.3 Additional Chronic Wound Microbiome Re-

sults

C.3.1 Sensitivity and Convergence

We conducted sensitivity analysis with respect to the graph inferred by BRM-G

when applied to the chronic wound dataset by considering alternative specifica-
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Figure C.8: [Simulation 2 Sensitivity] Posterior means β̂j1 and 95% credible
intervals plotted against the simulation truth βTR

j1 using different model specifica-
tions.

tions of the fixed scaling factor κ and the edge inclusion probability PG, as well

as to alternative choices for υα and υr. In the run presented in the main text
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Figure C.9: [Simulation 2 Sensitivity] Posterior means β̂j2 and 95% credible
intervals plotted against the simulation truth βTR

j2 using different model specifica-
tions.

we set κ = 10 and Pg = 0.05. Here, we consider alternative specifications using

κ = 5 and κ = 20, and to Pg = 0.1 and Pg = 0.01. The other hyperparameters
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Figure C.10: [Simulation 2] (a) and (b) Traceplots of the posterior log-likelihood
using two different initializations and random seeds for the MCMC chain. (c)
Number of edges in the DAG

were set to the same values as before. For the mean constraints we used alter-

native specifications where offsets of ±2 and ∓2 were added to υα and υr. Point

estimates for the moral graph under these alternative specifications are shown in

Figure C.12. The results produced by BRM-G are fairly robust across these alter-

native specifications. Four of the six point estimates for the moral graph exactly

match the graph produced by the original specification. The graphs produced

using κ = 5 and Pg = 0.1 are the same and are very similar to the other four

graphs. These two graphs have two additional edges as compared to the others –

one edge between OTU 3 and 4, and one between OTU 4 and 42. The directed

edge probabilities and effect directions also appear to be robust to the choice of

these hyperparameters. Figures C.13 and C.14 show the posterior probabilities

of the directed edges ā`j, and the posterior mean estimates of γ`j given (` → j),

for the OTUs having m̄`j > 0.5 in the original MCMC run in the main text. The

results agree well the results obtained using the original specifications of κ, Pg, υα

and υr.

As we did in the simulation studies we assess the chain’s convergence by com-

paring it to another chain using an alternative initialization and different random
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Figure C.11: [Simulation 2] Estimated baseline abundance levels under differ-
ent specifications for the mean constraints υα and υr. Columns 1 and 2 show
posterior means α̂j and r̂i plotted against the simulation truth. Column 3 shows
differences of the baseline abundance from the simulation truth compared to the
baseline abundance estimated by α̂j + r̂i. Row 1 is the original mean constraint
specification. Row 2 shows results using υα−2, υr + 2. Row 3 shows results using
υα + 2, υr − 2.

seed. We initialized this alternative chain using the same procedure that we used

for Simulation 1 and Simulation 2. Using the alternative chain we obtained the
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Figure C.12: [Chronic Wound Data] Moral graph point estimates Ĝm under
different model specifications.

same point estimate for the moral graph as we obtained using the original chain.

Traceplots of the posterior log-likelihood and the number of edges in the graph us-

ing both the original and alternative chains are shown in Figure C.15. Both chains
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Figure C.13: [Chronic Wound Data] Posterior estimates of ālj of the probabilities
of including the directed edges (`← j) for selected OTUs.

quickly converge to similar values despite their very different initializations. As

in the simulation studies we did not find evidence suggesting the chains failed to

converge.
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Figure C.14: [Chronic Wound Data] Posterior mean estimates of γ`j given
(`→ j) for selected OTUs
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Figure C.15: [Chronic Wound Data] (a) and (b) Traceplots of the posterior
log-likelihood using two different initializations and random seeds for the MCMC
chain. (c) Number of edges in the DAG
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