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Allele-specific NKX2-5 binding underlies multiple genetic 
associations with human electrocardiographic traits
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Abstract

The cardiac transcription factor (TF) gene NKX2-5 has been associated with electrocardiographic 

(EKG) traits through GWAS, but the extent to which differential binding of NKX2-5 at common 

regulatory variants contributes to these traits has not yet been studied. We analyzed transcriptomic 

and epigenomic data from iPSC-derived cardiomyocytes (iPSC-CMs) from seven related 
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individuals and identified ~2,000 single nucleotide variants (SNVs) associated with allele-specific 

effects (ASE) on NKX2-5 binding. NKX2-5 ASE-SNVs were enriched for altered TF motifs, for 

heart-specific eQTLs, and for EKG GWAS signals. Using fine-mapping combined with 

epigenomic data from iPSC-CMs, we prioritized candidate causal variants for EKG traits, many of 

which were NKX2-5 ASE-SNVs. Experimentally characterizing two NKX2-5 ASE-SNVs 

(rs3807989 and rs590041) showed that they modulate the expression of target genes via 

differential protein binding in cardiac cells, indicating that they are functional variants underlying 

EKG GWAS signals. Our results show that differential NKX2-5 binding at numerous regulatory 

variants across the genome contributes to EKG phenotypes.

Genome-wide association studies (GWAS) for electrocardiographic (EKG) phenotypes have 

found >500 risk variants1, the majority of which are non-coding and enriched in regulatory 

elements of the genome. Detecting the causal variants and the molecular mechanisms that 

drive these associations has been challenging2, and therefore only a handful of genetic 

associations with EKG traits have been explained by variants with clear molecular 

mechanisms3,4.

Altered transcription factor (TF) binding has been proposed as one of the major mechanisms 

by which non-coding regulatory variants are causally associated with complex traits5–7. 

NKX2-5 is an evolutionary conserved, cardiac-specific TF, which, through cooperative 

binding with other core cardiac TFs such as TBX5 and GATA4, regulates heart 

development8–11 and is implicated in a spectrum of human congenital heart defects12. 

Moreover, common non-coding variants near NKX2-5, TBX5, and MEIS1 have been 

associated through GWAS13–17 with EKG phenotypes, indicating that variation in 

developmental pathways plays an important role in these traits. Therefore, it is likely that 

genetic variation affecting the binding of developmental cardiac TFs also influences the 

heritability of EKG traits. However, this hypothesis has not yet been examined on a genome-

wide scale.

Because the function of regulatory variants that contribute to common traits is often cell-

type specific, attention to the appropriate cellular model in which to test the variants is 

important. Human induced pluripotent stem cell (iPSC)-derived cell types have recently 

emerged as a novel platform to analyze the functional consequence of genetic variants on 

molecular phenotypes in target cell types. iPSCs show variation in molecular phenotypes 

associated with their genetic background18–20, making them a suitable model to perform 

expression QTL (eQTL) studies19–24. However, there are only a few studies showing similar 

utility of iPSC-derived cardiomyocytes (iPSC-CMs) to study regulatory variations22, with 

potential limitations being cell-type heterogeneity that arises from directed 

differentiation24–26 and the functional immaturity of iPSC-CMs27. Thus, while human iPSC-

CMs are a promising model system, it has yet to be shown that they could enable the 

identification and characterization of regulatory variants that play important roles in cardiac 

traits.

Here we conducted a genome-wide analysis to identify regulatory variants affecting the 

binding of NKX2-5 and investigated their role in cardiac gene expression and EKG 

phenotypes. We generated iPSC-CM lines from a pedigree of seven whole-genome 
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sequenced individuals and profiled them with a variety of functional genomic assays, 

including RNA-seq, ATAC-seq, and ChIP-seq of both NKX2-5 and histone modification 

H3K27ac. After identifying heterozygous sites that showed ASE, we investigated NKX2-5 

ASE-SNVs in detail by examining whether they altered cardiac TF motifs and whether they 

were enriched for eQTLs and EKG GWAS-SNPs. By applying a fine-mapping statistical 

approach to three GWAS studies (heart rate, atrial fibrillation, and PR interval), we 

prioritized putative causal variants at known (as well as novel) loci. As a proof-of-principle, 

we experimentally interrogated two NKX2-5 ASE-SNVs, providing evidence that they are 

causal variants underlying genetic associations with EKG traits. Our data show that variation 

affecting the binding of NKX2-5 and other cardiac TFs likely serves as a molecular 

mechanism underlying control of numerous EKG loci across the genome, and that fine-

mapping approaches, combined with molecular phenotype data from iPSC-CMs, can be 

used to prioritize causal variants in EKG GWAS loci.

Results

Generation and functional genomic profiling of iPSC-derived cardiomyocytes

We generated iPSC-CMs from seven individuals in a three-generation family that includes 

three genetically unrelated subjects and two parent-offspring quartets (Fig. 1a and 

Supplementary Table 1). In total, we differentiated nine iPSC lines28 into 26 iPSC-CM 

samples: 12 were harvested at day 25 after lactate selection to obtain purer cardiomyocytes, 

and 14 were harvested at day 15, of which one was lactate purified (Fig. 1a). After 

confirming the expression of cardiac markers by flow cytometer and immunofluorescence 

(TNNT2 and MYL7; Supplementary Fig. 1a,b and Supplementary Note), we further 

examined the iPSC-CMs, and the iPSCs from which they were derived, by comparing their 

functional genomics profiles (RNA-seq, ATAC-seq, ChIP-seq of H3K27ac and NKX2-5; 

Supplementary Tables 2 and 3) with those from the Roadmap Epigenomics project14. We 

confirmed that the iPSC-CMs and iPSCs, respectively, expressed cardiac-specific and stem 

cell-specific genes and epigenetic signatures (Fig. 1b, Supplementary Note, and 

Supplementary Figs. 1c and 2).

Genetic background underlies variability of molecular phenotypes in iPSC-CMs

Experimental sources of variation across the iPSC-CMs, such as differentiation efficiency, 

may confound the effects that are driven by different genetic backgrounds24. To identify 

sources of variability in our iPSC-CM datasets, and evaluate the contribution of genetic 

background to this variation compared with the iPSCs, we performed principal components 

(PC) analysis on each of the RNA-seq and ChIP-seq datasets, and tested whether known 

covariates, such as batch, TNNT2 expression (for iPSC-CMs), and subject, were associated 

with each of the top 10 PCs. While we observed variation in both the iPSC-CMs and iPSCs 

due to differentiation efficiencies and/or batch effects (Supplementary Fig. 3), the average 

sample-to-sample Spearman correlation of molecular phenotypes was higher between 

samples of the same individual than between different individuals (Mann Whitney test P < 

0.05); additionally, samples of related individuals tended to be more correlated than samples 

of unrelated individuals (Fig. 1c-g). Of note, the iPSC-CMs showed slightly greater variation 

(i.e. lower correlation values) than the iPSCs, likely due to cellular heterogeneity24–26. 
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These analyses show that genetic background was a major driver of variability in our iPSC-

CM molecular datasets.

NKX2-5 peaks commonly show allele-specific effects

We examined the fraction of genetic variants associated with variable NKX2-5 peaks 

compared with the other molecular phenotypes by identifying heterozygous sites that 

showed ASE within each individual. We first merged the sequencing reads of different 

samples from the same subject and calculated ASE, and then, when multiple individuals 

carried the same heterozygous SNV, we combined the ASE results across individuals in a 

meta-analysis. For each phenotype, we tested between 19,371 (NKX2-5) to 123,151 

(H3K27ac in iPSC-CMs) heterozygous SNVs within 12,492 to 57,631 regions (genes or 

peaks) (Fig. 2a) and identified the fraction of SNVs with significant imbalance at FDR < 

0.05 (ASE-SNVs) (Fig. 2b). The different phenotypes showed over a 30-fold difference in 

the percent of ASE-SNVs, with NKX2-5 ChIP-seq having the highest fraction (10% of 

tested SNVs), while H3K27ac (0.7% in iPSC-CMs) and ATAC-seq (0.3% in iPSC-CMs) had 

considerably lower fractions. The fact that NKX2-5 ChIP-seq was so much more efficient 

for detecting ASE-SNVs was largely due its higher effect sizes, consistent with the fact that 

the assay directly measures differential TF binding, whereas ATAC-seq and H3K27ac 

measure altered chromatin accessibility and histone modification, respectively, which are 

indirect consequences of differential TF binding (Supplementary Note and Supplementary 

Fig. 4). Shared ASE-SNVs between iPSC-CMs and iPSCs (519 in RNA-seq and 43 in 

H3K27ac) showed high concordance of ASE effects (Fig. 2c) – defined as the mean 

proportion of the alternate allele across heterozygous sites (Spearman correlation r > 0.85) – 

indicating consistency of allelic effects between the two cell types. We further tested 

whether the ASE observed in heterozygous individuals was consistent with the overall effect 

size (ß, linear regression) on the phenotype when including homozygous samples and 

observed a significant (P < 0.05), positive relationship for all molecular phenotypes (Fig. 2d-

f), with the highest correlation in NKX2-5 peaks (r = 0.69, Spearman correlation). These 

data demonstrate that the majority of allele-specific effects identified in both iPSC-CMs and 

iPSCs are due to genetic variation, and that, among all molecular phenotypes examined, 

NKX2-5 peaks had substantially more ASE-SNVs and showed the highest consistency 

across individuals.

NKX2-5 correlated effects are consistent with dual role as activator and repressor

Genetic loci associated with differential TF binding between individuals often show 

coordinated effects across different molecular traits29. To examine if NKX2-5 loci with ASE 

were correlated with H3K27ac and gene expression ASEs, we compared the effect sizes (ß) 

of ASE-SNVs identified within ChIP-seq peaks with the effect size of the same SNV on 

neighboring regions from different molecular phenotypes (nearest peak or nearest gene) 

(Fig. 2g,h). The strongest positive correlation was found between NKX2-5 and H3K27ac 

genetic effects in iPSC-CMs (Spearman correlation coefficient r = 0.58, P = 1.7 x 10-77 for 

NKX2-5 ASE-SNVs (Fig. 2g), and r = 0.60, P = 1.6 x 10-30 for H3K27ac ASE-SNVs), 

supporting the role of NKX2-5 binding in enhancer and promoter activation in these cells. 

However, genetic effects on NKX2-5 binding were not positively correlated with the 

expression of neighboring genes (Fig. 2h), possibly due to NKX2-5’s dual role as an 
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activator or repressor30,31. We also observed that, when iPSC-CMs or iPSCs had H3K27ac 

ASE, the effect sizes were positively correlated (r = 0.39, P = 3 x 10-13; r = 0.59, P = 1.3 x 

10-11) with H3K27ac peaks in nearby or overlapping regions in the other cell type, 

suggesting conserved genetic effects at shared enhancers and promoters. On the other hand, 

while H3K27ac ASE effect sizes were moderately correlated with gene expression in the 

corresponding cell type, they were not correlated with gene expression in the other cell type 

(r = 0.33, P = 4 x 10-12 and r = 0.41, P = 1.7 x 10-7 within the same cell type, and r = 0.17, P 
= 7 x 10-4 and r = 0.06, P = 0.43 for mismatched comparisons; Fig. 2h). These results show 

that, in both the iPSC-CMs and iPSCs, genetic variation underlies coordinated and cell-type 

specific differences across multiple molecular phenotypes; of note, while NKX2-5 and 

H3K27ac ASE-SNVs were highly correlated, altered NKX2-5 binding was not positively 

correlated with gene expression changes, consistent with a more complex function as both 

an activator and repressor.

Variation in cardiac TF binding motifs underlie NKX2-5 ASE-SNVs

To investigate whether NKX2-5 ASE-SNVs affected sequence motifs of TF binding sites, 

we selected the most enriched motifs in NKX2-5 peaks, which included the NKX2-5 

homeobox motif (cognate motif), as well as motifs of other heart development TFs (GATA4, 

TBX5, TBX20, MEF2A/C and MEIS1; Supplementary Table 4) (secondary motifs). For 

both alleles of all heterozygous SNVs tested for ASE within NKX2-5 peaks, we calculated 

the motif position weight matrix (PWM) score of each motif. We then compared SNVs with 

ASE to SNVs without ASE and observed that the former were enriched for altered motifs 

(Fisher’s exact test FDR < 0.05) (Fig. 3a). Out of the 1,941 NKX2-5 ASE-SNVs, 735 

(37.8%) modified at least one of the twelve tested TF motifs: 94 (4.8%) modified both the 

cognate and a secondary motif, 247 (12.7%) modified only the cognate motif, and 394 

(20.3%) modified one or more secondary motifs. Next, we asked whether the preferred allele 

(highest read count) of each ASE-SNV was associated with a higher predicted motif score. 

For most motifs, the preferred allele increased the motif score in 70-88% of SNVs (Fig. 3b), 

and the allelic proportion of ASE-SNVs positively correlated with the change in motif score, 

supporting an underlying causal effect for the majority of these SNVs (Fig. 3c,d and 

Supplementary Fig. 5). We additionally observed that ASE-SNVs tended to affect core, 

conserved positions within the motif more frequently than they affected less conserved 

positions (Fig. 3e-h), indicating a stronger effect on TF binding affinity. These data indicate 

that ~40% of sites containing NKX2-5 ASE-SNVs have altered motifs for NKX2-5 and/or 

for other known cardiac TFs, suggesting that differential allelic binding of NKX2-5 at these 

sites likely occurred either directly, due to alterations of its own binding sequence, or 

indirectly, via alterations of TF binding sites of co-binding partners.

NKX2-5 ASE-SNVs modulate cardiac-specific gene expression

We examined if NKX2-5 ASE-SNVs were associated with cardiac-specific effects on gene 

regulation by comparing the enrichment of NKX2-5 and H3K27ac ASE-SNVs with 

quantitative trait loci (QTL) from diverse cell types, including DNase hypersensitivity QTLs 

(dsQTLs) in lymphoblastoid cell lines (LCLs)32, expression QTLs (eQTLs) from iPSCs21, 

and eQTLs from 13 combined studies obtained from Haploreg33 (“combined tissues”) (Fig. 

4a-c and Supplementary Table 5). In iPSC-CMs, H3K27ac ASE-SNVs were enriched over 
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SNVs without ASE for all three types of QTLs (Fisher’s exact test P < 0.05); on the other 

hand, H3K27ac ASE-SNVs in iPSCs were only enriched for iPSC eQTLs. Of note, NKX2-5 

ASE-SNVs were significantly depleted for iPSC and combined tissue eQTLs, suggesting 

that they exert regulatory functions only in cardiac tissues.

We therefore investigated if NKX2-5 ASE-SNVs were enriched for heart-specific eQTLs. 

NKX2-5 and H3K27ac ASE-SNVs were compared with SNVs without ASE to assess 

enrichment for tissue-specific eQTLs (defined in methods) in 26 tissue types from the GTEx 

project (v6)34. ASE-SNVs in both NKX2-5 and H3K27ac peaks in iPSC-CMs were more 

enriched for heart-specific eQTLs (Fig. 4d and Supplementary Table 5) than other tissue-

specific eQTLs, while H3K27ac ASE-SNVs in iPSCs were not enriched for any GTEx 

tissue-specific eQTL. Notably, there were 55 NKX2-5 ASE-SNVs that overlapped a heart-

specific eQTL, of which 9 affected the NKX2-5 binding motif, and 13 affected one or more 

of the other cardiac TF motifs in Figure 3 (Supplementary Table 5). These results indicate 

that ASE-SNVs in the iPSC-CM lines are enriched for tissue-specific regulatory variants 

associated with molecular traits in previous studies. Overall, consistent with its importance 

as a cardiac identity transcriptional regulator, we found that SNVs affecting the binding of 

NKX2-5 and other cardiac TFs (with which NKX2-5 cooperatively binds) are likely to 

underlie cardiac-specific eQTLs.

NKX2-5 ASE-SNVs are enriched for GWAS associations with EKG traits

Based on the fact that GWAS variants near the NKX2-5 gene have been previously 

associated with EKG traits13–15,35,36, we hypothesized that the altered binding of NKX2-5 

in other GWAS loci could be causally implicated in these traits. We first examined if 

NKX2-5, H3K27ac, or ATAC peaks from iPSC-CMs were enriched for GWAS-SNPs for six 

EKG traits (heart rate, PR interval, QT interval, QRS duration, atrial fibrillation (AF) and P-

wave duration), compared with GWAS-SNPs from 119 other traits having a comparable 

number of associated SNPs. We observed a strong relative enrichment for several EKG traits 

(Binomial test FDR < 0.05, Fig. 5a-c and Supplementary Fig. 6), with QRS duration GWAS-

SNPs and heart rate GWAS-SNPs being the top two enriched traits in NKX2-5 peaks. We 

also examined H3K27ac and DHS peaks from Roadmap cardiac tissues, which similarly 

showed high enrichment for all EKG GWAS-SNPs, while H3K27ac and DHS peaks from 

iPSCs did not (Supplementary Fig. 6). These data show that enhancer regions in iPSC-CM 

and Roadmap cardiac tissues both show enrichment for EKG trait-specific regulatory 

variants.

To examine if differential binding of NKX2-5 might have a role in EKG phenotypes, we 

determined if NKX2-5 ASE-SNVs were enriched for being EKG GWAS-SNPs. In total, 

there were 121 SNPs that were associated with any of the six EKG traits and were within 

NKX2-5 peaks, of which 81 were heterozygous in the family and had sufficient read 

coverage to be tested for ASE. Fourteen of these GWAS-SNPs (17%) were NKX2-5 ASE-

SNVs (Table 1), which were significantly enriched compared with the proportion of 

NKX2-5 ASE-SNVs overlapping heterozygous non-GWAS-SNPs (1,926/19,290 (10%), 

Fisher’s exact test, OR = 1.88, P = 0.0392, Fig. 5d). Among these 14 NKX2-5 ASE-SNVs at 

EKG GWAS loci, seven were evolutionary conserved in mammals (SiPhy conservation33) 
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and/or altered a cardiac TF motif (Table 1), and three overlapped heart-specific eQTLs from 

GTEx. These results suggest a functional link between NKX2-5 binding, cardiac-specific 

gene expression, and EKG phenotypes at these loci.

Validation of NKX2-5 ASE-SNV in the SSBP3 locus as a functional regulatory variant

To provide evidence that NKX2-5 ASE-SNVs within EKG GWAS loci could be functional, 

we experimentally investigated the SNV that showed the strongest evidence for allelic 

imbalance: rs590041 (NC_000001.10:g.54742471T>C) (Table 1). Two SNPs in the 

transcription factor SSBP3 locus are in perfect LD and showed ASE in the same peak; while 

rs562408 (NC_000001.10:g.54742618A>G) was the lead variant in a P-wave duration 

GWAS37, our data suggested that rs590041 is the likely functional variant, as it is more 

centrally located in the peak and alters both TBX5 and NKX2-5 motifs (Fig. 5e). We 

confirmed that rs590041 had a direct causal effect on NKX2-5 binding by electrophoretic 

mobility shift assay (EMSA), showing that the alternate (C) allele, which creates an 

NKX2-5 motif, had stronger binding to nuclear extract from iPSC-CMs (Fig. 5f), consistent 

with the allelic imbalance that we identified in NKX2-5 ChIP-Seq (Fig. 5e). Interestingly, 

the stronger NKX2-5 binding C allele was associated with lower SSBP3 expression in 

human atrial appendages (GTEx) (Fig. 5g), suggesting a repressive function of the 

regulatory element harboring rs590041. In luciferase assays in iPSC-CMs (Fig. 5h), 

sequences encoding both alleles showed lower expression than the control, but the stronger 

NKX2-5 binding C allele was significantly lower than the T allele, additionally supporting a 

repressive function of NKX2-5 binding in this region. This hypothesis was further 

substantiated by the fact that specific dCas9-KRAB blocking (CRISPRi) of the region 

resulted in increased expression of SSBP3 in iPSC-CMs (Fig. 5i). Of note, there is no 

previously described role for SSBP3 in EKG phenotypes. Altogether, these data show that 

rs590041 is a regulatory variant that represses the expression of SSBP3 in cardiac cells, and 

suggest that it likely underlies the association of P-wave duration in this locus.

NKX2-5 ASE-SNVs prioritize causal variants in heart-rate GWAS loci

To examine more broadly whether NKX2-5 ASE-SNVs could help prioritize causal variants 

for EKG traits, we utilized fgwas38, a statistical framework that integrates functional 

genomics annotations and GWAS summary statistics to identify putative causal variants at 

know loci, as well as at potentially novel loci. We initially applied a single annotation model 

to examine a heart rate15 meta-analysis to determine if genetic associations were enriched 

within each individual iPSC-CM genomic annotation (NKX2-5, H3K27ac, and ATAC-seq 

peaks, and NKX2-5 ASE-SNVs and H3K27ac ASE-SNVs). We found NKX2-5 ASE-SNVs 

were the most enriched annotation, followed by NKX2-5 peaks (Supplementary Fig. 7). We 

next applied a joint model, where the association enrichment was quantified simultaneously 

for all five annotations and refined using 10-fold cross-validation, and found again NKX2-5 

ASE-SNVs to be the most significantly enriched, followed by H3K27ac peaks (Fig. 6a). 

Then, to prioritize causal variants, we used the enrichment estimates from the joint model as 

priors to update the probability for a variant to be causal (posterior probability of 

association, PPA) within consecutive 1-Mb windows across the genome. We found 21 

variants with greater than 30% probability of being causal, of which seven (30%) were 

NKX2-5 ASE-SNVs (Supplementary Table 6), suggesting that altered binding of NKX2-5 
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accounts for a considerable fraction of the genome-wide genetic contribution underlying 

variable heart rate. Out of these seven NKX2-5 ASE-SNVs (Fig. 6b), four were from “sub-

threshold” loci that did not reach genome-wide significance in the heart rate15 meta-analysis. 

One of these variants, rs6801957 (NC_000003.11:g.38767315T>C), identified with a 35% 

PPA, did not reach genome-wide significance in the heart rate15 meta-analysis, but was 

significantly associated in a larger heart-rate GWAS39, as well as in several GWAS for 

multiple EKG traits13,14,40–44. While we predicted that rs6801957 altered a T-box binding 

sequence and resulted in differential co-binding of NKX2-5 (Fig. 6c), previous functional 

experiments showed that this variant affects binding of TBX3 and TBX5 and expression of 

SCN5A, the main cardiac sodium channel3,45. Thus, rs6801957 serves as a proof of 

principle for using NKX2-5 ASE-SNVs to identify causal variants at known EKG trait 

GWAS loci as well as identify novel associated loci.

To further investigate the mechanisms of association between heart rate and NKX2-5 ASE-

SNVs identified as candidate causal variants by fgwas (Fig. 6b), we followed up three loci 

previously associated with heart rate (rs7612445, NC_000003.11:g.179172979G>T; 

rs8044595, NC_000016.9:g.15906130A>G; and rs6606689, NC_000012.11:g.

110975675T>C) and a potential novel locus (rs176107, NC_000005.9:g.89392662A>G) 

with additional experimental data (Supplementary Note). These data included Hi-C 

chromatin conformation maps from the same iPSC-CM samples46 (Supplementary Table 

2a), and RNA-seq data from iPSC-CMs from an additional 128 whole-genome-sequenced 

subjects26, to examine associations between the putative causal NKX2-5 ASE-SNVs and 

expression of nearby or distal candidate target genes. For rs7612445 (98% PPA), which 

altered a T-box motif in the GNB4 locus, we validated that the two alleles have differential 

binding using EMSA, and that it is associated with differential expression in iPSC-CMs of 

several genes, including GNB4 (heart specific eQTL in GTEx) and MFN1 (influencing heart 

rate in zebrafish and Drosophila15; Supplementary Fig. 8a-c). rs8044595 (89% PPA) was 

associated with expression of multiple genes within the same chromatin loop in iPSC-CMs, 

including a strong candidate NOMO3 (nodal signaling protein associated with heart defects) 

(Supplementary Fig. 8d,e). rs6606689 (86% PPA) was associated with ARPC3 gene 

expression, an actin cytoskeleton regulator (Supplementary Fig. 8f,g). For rs176107 (35% 

PPA), Hi-C showed numerous long-range interactions including with the key cardiac TF 

MEF2C (~1.2 Mb distal) and it was also associated with expression of MEF2C in iPSC-

CMs (Supplementary Fig. 8h,i). Overall, these results uncover plausible molecular 

mechanism underlying variability in heart rate, both at novel and previously identified 

GWAS loci.

Validation of NKX2-5 ASE-SNV rs3807989 as a functional variant at the CAV1 locus

To examine other EKG traits, we applied the fgwas fine-mapping framework to both atrial 

fibrillation47 and PR interval17 GWAS studies (Fig. 7a and Supplementary Fig. 7), and 

identified 26 and 102 SNPs, respectively, with greater than 30% probability of being causal, 

of which 8% (2/26) and 14% (14/102) were NKX2-5 ASE-SNVs (Supplementary Table 6). 

In both the AF and PR interval fgwas analyses, rs3807989 (NC_000007.13:g.

116186241A>G) had the highest probability of being causal (>99% PPA) (Fig. 7b,c), and 

therefore, we experimentally investigated potential mechanisms underlying these 
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associations. rs3807989, located within the CAV1 associated interval, has been reported as 

an eQTL for both CAV1 and CAV2 (encoding caveolins, scaffolding proteins involved in 

various signaling pathways) in multiple tissues34,48,49, including left atrial samples17. This 

eQTL was reproduced in our 128 iPSC-CMs (Fig. 7d), confirming that there is a clear 

genetic association between rs3807989 and expression levels of CAV1 and CAV2 in 

cardiomyocytes. To provide evidence that this SNP is directly responsible for differential 

regulatory activity, we performed EMSA using iPSC-CM nuclear extracts, which 

demonstrated that oligonucleotide probes for the reference allele (A) bound more strongly 

than those for the alternate allele (G), consistent with the allelic imbalance that we identified 

in NKX2-5 ChIP-seq (Fig. 7e). Although rs3807989 was not predicted to directly modify a 

motif for NKX2-5 or other cardiac TFs, the SNV is located 6 bp from a NKX2-5 motif (Fig. 

7f), and could modify a sequence important for the recognition of the binding site, such as 

those affecting DNA shape50–52. Furthermore, we observed consistent allele-specific 

enhancer activity in iPSC-CMs by luciferase assays (Fig. 7g). Finally, by repressing the 

rs3807989-containing genomic region using dCas9-KRAB (CRISPRi), we observed a 

significant reduction in the expression levels of both CAV1 and CAV2 in iPSC-CMs (Fig. 7h 

and Supplementary Fig. 10). Altogether, these results demonstrate that rs3807989 is a 

regulatory variant that modulates the expression levels of CAV1 and CAV2 via differential 

protein binding, and as such, is highly likely the causal variant underlying the AF and PR 

interval GWAS signals in the CAV1 interval.

Discussion

Our study shows that differential binding of NKX2-5 likely underlies the molecular 

mechanisms of numerous genetic associations with EKG traits across the genome. 

Additionally, we showed that molecular phenotype data from iPSC-CMs combined with 

fine-mapping statistical approaches can be used to prioritize putative causal variants 

underlying genetic associations with cardiac-specific traits. Furthermore, our study 

demonstrates the effectiveness of using iPSC-derived cells as a model system for 

understanding the genetic basis of complex human traits and diseases by conducting 

genome-wide genotype-phenotype analyses as well as interrogating the function of 

individual variants.

Within ~38,000 NKX2-5 binding sites, we identified 1,941 genetic variants that altered 

binding of the transcription factor. Because we investigated seven individuals in a three-

generational family, the statistical power for identifying ASE-SNVs was increased as there 

were multiple replicates of allelic imbalance at the same heterozygous SNV. However, we 

anticipate that analyzing a larger sample size would identify a greater fraction of the 

NKX2-5 sites affected by genetic variants. For the NKX2-5 sites with differential binding, 

~40% had genetic variants that altered the cognate TF motif and/or motifs of functionally 

related cardiac TFs, suggesting that a large fraction of the observed allelic binding of 

NKX2-5 was either a direct consequence of the SNV, or an indirect consequence resulting 

from the differential binding of a known co-factor. ASE-SNVs that were not associated with 

core cardiac TF motifs could: (i) affect consensus motifs from TFs that were not included in 

our targeted analysis; (ii) affect important sequences that impact DNA shape or an as of yet 

unknown regulatory mechanism50–52; or (iii) be non-functional. Combinatorial interactions 
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between key cardiac TFs is known to be an important mechanism for orchestrating the 

cardiac gene expression program during development8–11. While genetic variation has been 

shown to affect collaborative binding of lineage determining TFs in mice53, our study is the 

first that we are aware of to show these effects in humans.

Coding mutations in and non-coding variants near NKX2-5 have, respectively, been 

associated with congenital heart defects12, as well as heart rate, atrial fibrillation and PR 

interval13–15, implicating this TF in a range of cardiac disease in both development and adult 

stages. Here, our analysis of genome-wide NKX2-5 binding enabled us to investigate its role 

in cardiac phenotypes through a different genetic mechanism, i.e. variation in TF binding 

sites resulting in differential expression of target genes. We showed that differential NKX2-5 

binding was positively correlated with H3K27ac peaks at iPSC-CM enhancers, but not iPSC 

enhancers, suggesting that NKX2-5 ASE-SNVs altered cardiac specific enhancer activity. 

These findings are consistent with the fact that we found enrichment for GTEx heart-specific 

eQTLs in both NKX2-5 and H3K27ac ASE-SNVs in iPSC-CMs. Importantly, out of all the 

molecular phenotypes examined, NKX2-5 ASE-SNVs were the more strongly enriched 

within EKG loci, thereby implicating NKX2-5 in the development of these traits, and 

indicating that NKX2-5 ASE-SNVs could be used to prioritize putative causal variants.

Analyzing GWASs for heart rate, atrial fibrillation and PR interval using a fine-mapping 

method that integrates functional annotations with GWAS summary statistics (fgwas) 

revealed several NKX2-5 ASE-SNVs with a high probability of causality at known loci as 

well as potentially novel sub-threshold GWAS signals. As a proof that this approach was 

effective to prioritize causal variants, one of the NKX2-5 ASE-SNVs (rs6801957 at the 

SCN10A-SCN5A locus) had been previously investigated in detail and had been shown to 

be functionally implicated in the association with EKG3,45. Further investigation of NKX2-5 

ASE-SNVs heart rate loci using Hi-C generated from the same iPSC-CMs and gene 

expression in iPSC-CMs derived from 128 individuals revealed an association between the 

putative causal NKX2-5 ASE-SNVs and expression of nearby or distal candidate target 

genes. As a notable example, one of the prioritized variants (rs176107) at a sub-threshold 

locus showed long-range (~1.2 Mb) interaction with MEF2C, a key cardiac morphogenesis 

regulator, and was associated with its expression, thus providing a plausible mechanism 

underlying associations between differential NKX2-5 binding and heart rate.

We further followed up two NKX2-5 ASE-SNVs that were potential causal variants 

underlying associations with EKG traits with experimental validation including EMSA, 

luciferase assay, and CRISPRi. These analyses demonstrated that the two common SNPs, 

rs590041 (associated with P-wave duration) and rs3807989 (associated with PR interval and 

atrial fibrillation), are functional regulatory variants that influence the expression of SSBP3 
and CAV1-CAV2 genes, respectively, via differential TF binding. Interestingly, while the 

rs3807989 stronger TF binding allele was associated with higher gene expression, the 

rs590041 stronger TF binding allele was associated with reduced gene expression, indicating 

that NKX2-5 binding is associated with both activating and repressing regulatory elements. 

Although future experimental studies are needed to elucidate the function of SSBP3 and 

CAV1-CAV2 with respect to the associated EKG phenotypes, our results provide novel 
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insights into the role differential binding of NKX2-5 and other cardiac TFs play in the 

genetic underpinnings of EKG traits.

Finally, our study demonstrates that analyzing the allelic binding of master developmental 

TFs in iPSC-CMs is highly effective to pinpoint genetic variation important for cardiac 

traits, and suggests that expanding this approach to study other cardiac TF (such as TBX5, 

GATA4, and MEF2C) in larger sample sizes could potentially identify and characterize 

many of the regulatory variants that play a role in cardiac traits and diseases.

Methods

Additional details are provided in the Supplementary Note and in the Reporting Summary.

Subjects and iPSC derivation

We selected seven individuals that are part of a three-generational family (three genetically 

unrelated subjects and two parent-offspring quartets) in the iPSCORE resource28 

(Supplementary Table 1). Fibroblasts from skin biopsies of each subject were reprogrammed 

using non-integrative Sendai virus61 and analyzed for pluripotency as described in 

Panopulos et al.28. For five individuals, we analyzed one iPSC line (“clone”), and for two 

individuals we analyzed two iPSC lines (Fig. 1). The nine iPSC lines were harvested in 

multiple replicates between passages 12 to 40; a total of 35 different iPSC harvests were 

used in this study (Supplementary Table 2). This study was approved by the Institutional 

Review Boards of the University of California at San Diego (Project #110776ZF).

Differentiation of iPSCs into cardiomyocytes

The nine iPSCs were each differentiated multiple times using a monolayer protocol62, 

resulting in a total of 26 iPSC-CM samples (Supplementary Table 2). Twelve of the iPSC-

CM samples were subjected to selection using 4 mM sodium L-lactate media63 and 

collected at day 25. Fourteen iPSC-CM samples were collected at day 15, of which one was 

subjected to lactate purification at day 11. At the day of collection, iPSC-CMs were 

dissociated using Accutase (Thermo Scientific), pooled, counted and separated into different 

aliquots. About 6 x 107 cells were fixed with formaldehyde and frozen for ChIP-seq. Cells 

(2 x 107) were lysed and stored in RLT plus buffer (Qiagen) for RNA extraction. Nuclei 

from 2 x 105 cells were frozen for ATAC-seq. Differentiation efficiency was measured by the 

percentage of cells that stained positive for the cardiac marker cardiac troponin T (TNNT2) 

(Thermo Scientific MA5-12960) using flow cytometry (FACSCanto system, BD 

Biosciences). The same protocols of dissociation and collection of samples for RNA-seq, 

ChIP-seq and ATAC-seq were applied to non-differentiated iPSC lines.

Whole-genome sequencing

Genomic DNA was whole genome sequenced as a part of the iPSCORE collection, as 

described by DeBoever et al.21. Briefly, reads were aligned against human genome b37 with 

decoy sequences64 using BWA-MEM and default parameters65. The resulting BAM files 

were sorted using Sambamba66 and duplicate reads were marked using biobambam267. 
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Variant calling was performed using the GATK best-practices pipeline68,69 on BAM files 

separated into individual chromosomes.

RNA-seq

We generated and analyzed 56 RNA-seq (iPSCs: 29 independent samples; iPSC-CMs: 26 

independent samples and 1 technical replicate). Total RNA was isolated using the Qiagen 

RNAeasy Mini Kit from frozen RTL plus pellets, and run on a Bioanalyzer (Agilent). 

Illumina Truseq Stranded mRNA libraries were prepared and sequenced on HiSeq2500, to 

an average of 40 million 100 bp paired-end reads per sample. RNA-seq reads were aligned 

using STAR70 with a splice junction database built from the Gencode v19 gene annotation71. 

Gene-based expression values were quantified using the RSEM package72 and normalized to 

transcript per million bp (TPM).

ChIP-seq

We generated and analyzed 48 ChIP-seq of histone modification H3K27ac (iPSCs: 17 

samples and 4 technical replicates; iPSC-CMs: 25 samples and 2 technical replicates), and 

15 ChIP-seq of NKX2-5 (iPSC-CMs: 12 samples and 3 technical replicates) (Supplementary 

Tables 2 and 3), using anti-H3K27ac (Abcam ab4729) and anti-NKX2-5 (Santa Cruz 

Biotechnology, sc-8697x) antibodies. Libraries were sequenced to an average of 35 million 

100 bp paired-end reads per sample. ChIP-seq reads were mapped to the hg19 reference 

using BWA65. Duplicate reads, reads mapping to blacklisted regions and read-pairs with 

mapping quality Q < 30 were filtered. Peak calling was performed using MACS273 with 

reads derived from sonicated chromatin not subjected to IP (i.e. input chromatin) from a 

pool of samples used as negative control. For each data type, peak coordinates were called 

from combined BAM files across all samples of either iPSCs or iPSC-CMs. Quantification 

of the signal at peaks in each sample was performed using featureCounts74. Motif 

enrichment analysis was performed using HOMER75 and, for NKX2-5, also using MEME 

ChIP76.

ATAC-seq

We generated 37 ATAC-seq libraries (iPSCs: 12 samples and 5 technical replicates; iPSC-

CMs: 11 samples and 9 technical replicates) using an adapted protocol from Buenrostro et 

al.77. Libraries were sequenced to an average depth of 20 million 100-150 bp paired end 

reads. ATAC-seq reads were aligned using STAR to hg19 and filtered using the same 

protocol as for ChIP-seq. In addition, to restrict analysis to regions spanning only one 

nucleosome, we required an insert size no larger than 140 bp. Peak calling was performed 

using MACS2 on combined BAM files of either iPSC or iPSC-CM samples.

Analysis of gene expression differences between iPSCs and iPSC-CMs

A matrix of raw gene expression values from 64 RNA-seq samples (29 iPSCs, 27 iPSC-

CMs, and 8 RNA-seq samples from Roadmap including H1-hESC, HUES64, iPS-20b, 

iPS-18, Right Atrium, Right Ventricle, Left Ventricle, and Fetal Heart) was created from the 

RSEM expected counts, filtered for > 1 TPM on average samples, and rounded to integer 

values. After filtering, 15,725 genes remained from the initial 57,820. Expression values 

Benaglio et al. Page 12

Nat Genet. Author manuscript; available in PMC 2020 March 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



were normalized using variance stabilizing transformation (vst) implemented in DESeq278. 

Hierarchical clustering and the heatmap in Supplementary Figure 1 were generated using 

vst-normalized read counts for a panel of 61 selected genes using ‘pheatmap’ package in R. 

Analysis and plotting of principal components of all 15,725 genes were performed in R (Fig. 

1).

To identify differentially expressed genes (DEGs) between iPSCs and iPSC-CMs, we used a 

matrix of raw expression counts from 56 RNA-seq (29 iPSCs and 27 iPSC-CMs), filtered for 

average TPM > 1 (22,447 genes), and applied DESeq2 with default settings to identify 

DEGs more than 2-fold and at a BH (Benjamini & Hochberg) FDR of 5%.

Normalization and analysis of variability of molecular phenotypes

For RNA-seq, we restricted the analysis to autosomal genes that had on average a minimum 

of 1 TPM per sample (14,933 and 15,167 genes for iPSCs and iPSC-CMs, respectively) and 

integer-rounded RSEM expected counts were used as expression levels. For ChIP-seq, we 

excluded peaks > 5 kb long and those located on sex chromosomes, resulting in 110,345 

H3K27ac peaks analyzed in iPSCs and 83,689 H3K27ac peaks and 37,994 NKX2-5 peaks 

analyzed in iPSC-CMs (Supplementary Table 3). Matrices of raw expression levels or peak 

coverage for each of the 5 datasets were vst-normalized using DESeq2 and analyzed for 

principal components using R. To investigate the major sources of variability within each 

dataset, values for the first 10 PCs were correlated with known covariates across samples 

(for iPSCs: sequencing batch, passage and subject; for iPSC-CMs: TNNT2 expression, 

protocol of differentiation and subject; for ChIP-seq of both cell types, we also included the 

fraction of reads mapping to peaks, or FRiP) using ANOVA. We corrected the respective 

datasets by fitting a model including the covariates that were most associated with the first 

PC (batch for iPSCs; TNNT2 expression and protocol/batch for iPSC-CMs; and FrIP for all 

ChIP-seq datasets) using the ‘lmFit’ function from ‘limma’ package and calculating the 

residuals using the ‘residuals’ function in R. Mean expression and coverage values for each 

gene/peak were added back to the residuals. Residual-corrected values were used in all 

subsequent analyses.

To assess the consistency of data generated from cell lines derived from the same individual 

versus cell lines from different individuals, we selected the 1,000 most variable genes or 

peaks and computed matrices of Spearman correlation values across all pairs of samples for 

each molecular phenotype. We then separated correlation values between pairs of samples 

from the same, different, related or unrelated individuals and calculated the average 

correlation per sample. Technical replicates were excluded for the comparisons between 

samples of the same subject. We tested for significant increase in correlation between 

samples from the same subject using a one-tailed Mann-Whitney test (Fig. 1c-g and 

Supplementary Fig. 3k-o).

Allelic-specific effect (ASE) analysis

ASE analysis was performed as previously described21. To increase sensitivity of ASE and 

maximize the number of genes/peaks to analyze, reads from all samples from each 

individual per assay were merged. Heterozygous SNVs were identified by intersecting 
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variant calls from WGS with either exonic regions from Gencode v19 or regions identified 

by each ChIP-seq or ATAC-seq dataset. The WASP pipeline79 was employed to reduce 

reference allele bias at heterozygous sites. The number of read pairs supporting each allele 

was counted using the ASEReadCounter from GATK80. Heterozygous SNVs were then 

filtered to keep SNVs where the reference or alternate allele had more than 8 supporting 

read pairs, the reference allele frequency was between 2-98%, the SNV was located in 

unique mappability regions according to wgEncodeCrgMapabilityAlign100mer track, and 

not located within 10 bp of another variant in a particular subject (heterozygous or 

homozygous alternative)49,81,82. ASE P-values for each SNV were calculated in each sample 

using a binomial test method49,82. To combine ASE results at each SNV across samples, we 

performed a meta-analysis on all samples that were heterozygous for a given SNV and for 

which ASE could be tested. The binomial P-values of heterozygous SNVs were combined 

using the Stouffer z-score method83, using the formula Z ∼
∑i = 1

k Zi
k , where Z is the z-score 

derived from P-values and signed according to the direction of the effect, and k is the 

number of individuals for each SNV. The combined z-scores were transformed to P-values 

and a BH FDR was calculated using ‘p.adjust’ in R. The alternate allele frequency was 

averaged across all heterozygous samples.

Correlation of ASEs across all individuals

The direction of ASE effects across all family members (including homozygous individuals) 

was estimated using the ß coefficient of a linear model testing association between the 

corrected gene expression or peak coverage (normalized to z-scores across individuals) and 

the genotype of the seven family members (0, 1 or 2, testing only one ASE-SNV per region). 

Spearman correlation was used to compare ß to the average allele proportion of ASE-SNVs 

to estimate the consistency of effects (Fig. 2d-f).

Correlation of ASEs across different molecular phenotypes

To test if the direction of ASE of SNVs within ChIP-seq peaks correlated with changes in 

peak coverage of other ChIP-seq peaks or with gene expression, we performed a linear 

regression between the ASE-SNV genotypes and each phenotype. ChIP-seq peaks were 

paired with the closest gene or peak within 500 bp using ‘bedtools closest’. Using linear 

regression, we tested the association between the individual genotypes (0, 1, 2, testing only 

one ASE-SNV per region) of the ASE-SNVs (FDR < 0.05) and either the corresponding 

corrected and z-score normalized peak coverage or gene expression or those of the closest 

feature. In both peak/gene and peak/peak pairs, Spearman correlation was calculated 

between the two slopes (ß) of linear regression (Fig. 2g,h).

Analysis of SNVs altering TFBS motifs

The effect of NKX2-5 ASE-SNVs on TFBS motifs was estimated using position probability 

matrices (PPMs) of the 12 most enriched families of motifs identified using HOMER 

(Supplementary Table 4), from a library of known motifs. For NKX2, GATA, TEAD, MEF2, 

TBX20 and PDX1, we also used PPMs derived from a de-novo analysis. All PPMs are 

provided in Supplementary Table 4. Position weight matrices (PWMs) were calculated from 
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the PPMs using a background nucleotide frequency of 0.25 for each base. Using a custom R 

script, a 40-bp window centered on each SNV tested for ASE was scanned with PWMs for 

each motif, and the position with the highest score was identified. For SNVs where either the 

reference or the alternate sequence matched or exceeded the log odds detection threshold 

reported by HOMER PPMs, the difference between the scores of the two alleles was 

calculated. In cases where a SNV matched multiple motifs from the same family, we kept 

only the motif with the highest score for either of the alleles. Fisher’s exact test was used to 

calculate enrichment for motif-altering SNVs in variants with ASE compared to variants 

without ASE (Fig. 3a). For each of the 12 motifs, we also calculated Spearman correlation 

between the allelic imbalance proportion of the reference allele and the difference in motif 

score between the reference and the alternate allele (Fig. 3c,d and Supplementary Fig. 5). 

Motifs that were altered at NKX2-5 ASE-SNVs are indicated in Supplementary Table 5.

Enrichment of ASE-SNVs for known quantitative trait loci

To examine the enrichment of ASE-SNVs in known quantitative trait loci across different 

tissues, we obtained dsQTLs in LCLs from Degner et al.32, eQTLs from iPSCs from 

DeBoever et al.21, and eQTLs from HaploReg v4.133, which contained combined results 

from 13 different studies including GTEx v.682. To identify tissue-specific eQTLs (Fig. 4d), 

the 44 tissues from GTEx were classified into 26 groups by merging similar tissues (adipose 

(n = 2), artery (n = 3), brain (n = 10), cell lines (n = 2), colon (n = 2), esophagus (n = 3), 

heart (n = 2), skin (n = 2), and the remaining 18 tissues were n = 1). A gene-eQTL 

combination was defined as tissue-specific if 50% or more of the significant associations 

were in a single tissue group. All SNVs tested for ASE in ChIP-seq datasets (H3K27ac in 

iPSCs and H3K27ac and NKX2-5 in iPSC-CMs) were intersected with these annotations, 

and enrichment between heterozygous SNVs with and without ASE was calculated using 

Fisher’s exact test in R. In cases where multiple SNPs overlapped a peak, we counted only 

one SNP per peak. The complete Fisher’s exact test statistics including P-values, odds ratios 

and number of SNVs analyzed are reported in Supplementary Table 5.

Enrichment of GWAS-SNPs in regulatory regions in iPSC-CMs

To calculate enrichment for GWAS-SNPs in ChIP-seq and ATAC-seq peaks, we extracted 

sets of SNPs associated with six EKG traits (heart rate, PR interval, QT interval, QRS 

duration, atrial fibrillation and P-wave duration) from the GWAS catalog1 and 119 non-EKG 

traits that were associated with a similar number of SNPs. We used GREGOR84 to test each 

of these 125 SNP sets for enrichment in ChIP-seq and ATAC-seq peaks from iPSCs and 

iPSC-CMs from this study as well as in peaks from cardiac tissues from Roadmap as a 

control (Fig. 5a-c and Supplementary Fig. 6). To calculate the enrichment for EKG GWAS-

SNPs in NKX2-5 ASE-SNVs, we obtained the SNVs overlapping NKX2-5 peaks and 

associated with any of the six EKG traits. For the SNVs that could be tested for ASE, we 

calculated the proportion with and without ASE and tested their relative enrichment using 

Fisher’s exact test (Fig. 5d).
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Estimating GWAS enrichment in molecular phenotypes and prioritizing putative causal 
variants

To determine the enrichment of genetic variants influencing EKG traits within the different 

iPSC-CM molecular phenotypes and to identify putative causal variants and novel 

associations, we employed the fgwas framework, as described by Pickrell et al.38. We 

obtained summary statistics from the den Hoed et al.15 heart-rate GWAS meta-analysis 

(2,516,407 SNPs analyzed) from LD hub (http://ldsc.broadinstitute.org/ldhub/), the 

Christophersen et al. atrial fibrillation meta-analysis47 (11,779,664 SNPs) from the CVD 

portal (http://broadcvdi.org/), and the van Setten at al. PR-interval17 GWAS (2,712,310 

SNPs) as a collaboration with the authors. For each GWAS, we annotated each variant with 

the type of molecular phenotype it overlapped: peaks (ATAC-seq, H3K27ac, and NKX2-5 

peaks) and/or ASE-SNVs (H3K27ac and NKX2-5), and applied a single annotation model 

followed by a joint model, where the association enrichment was quantified simultaneously 

for all five annotations. To prioritize causal variants, we used the enrichment estimates from 

the joint model as priors to estimate the probability for a variant to be causal (posterior 

probability of association, PPA) within consecutive 1-Mb windows across the genome. We 

report all variants with PPA > 0.3 in Supplementary Table 6.

Gene expression analysis of 128 iPSC-CMs

We used RNA-seq of iPSC-CMs from 128 different individuals26. Subjects included 43 

males and 85 females, between 9 and 88 years of age, of diverse ethnicities (Europeans, n = 

78, and Asians, n = 23). iPSCs were differentiated into day-25 cardiomyocytes using the 

method described above, including a 4 mM sodium L-lactate enrichment step at day 15, and 

yielded on average 83.9 +/- 13.6 % cTNT-positive populations. RNA-seq was generated and 

processed as described above. Raw gene expression data were first filtered for genes with 

TPM ≥ 2 in at least 5% of the samples and then quantile-normalized. From these values we 

calculated PEER factors85 and used the residuals of the first 10 factors as normalized gene 

expression values. We extracted the individuals’ genotypes from WGS and performed linear 

regression for the specific SNV-gene expression associations in R.

Electrophoretic mobility shift assay (EMSA)

EMSAs were performed using the LightShift™ Chemiluminescent EMSA Kit (Thermo 

Scientific) with biotinylated and non-biotinylated single-stranded oligonucleotides 

corresponding to 33-34 genomic fragments containing the SNPs rs590041, rs3807989, and 

rs7512445 (Supplementary Table 7). Both forward and reverse strand were tested; the 

forward strand was bound in case of rs590041 and rs3807989 and the reverse strand was 

bound in case of rs7512445. Nuclear extract from day-30-33 iPSC-CMs was extracted using 

the NE-PER Nuclear and Cytoplasmic Extraction Reagents (Thermo Scientific) with 1X 

Halt™ Protease Inhibitor Cocktail (Thermo Scientific). The binding reaction was carried in 

10 μl volume containing 1 μl of 10X Binding Buffer (100 mM Tris pH 7.5, 500 mM KCl and 

10 mM DTT), 2.5% glycerol, 5 mM MgCl2, 0.05% NP40, 50 ng Poly(dI:dC), 1 pmol of 

biotin-labeled probe, and 15.3-16.8 μg nuclear extract. For competition experiments, a 200-

fold molar excess of unlabeled probe was added. Binding reactions were incubated at room 

temperature for 20 min and loaded onto a 6% polyacrylamide 0.5X TBE gel. After sample 
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electrophoresis and transfer to a Biodine B Pre-Cut Modified Nylon Membrane, 0.45 μm 

(Thermo Scientific), DNA was UV-crosslinked for 15 min, and the biotinylated probes were 

detected using Chemiluminescent Nucleic Acid Detection Module (Thermo Scientific). 

Membranes were acquired using C-DiGit Blot scanner (LI-COR Biosciences).

Luciferase assay

Candidate functional variants rs590041 (SSBP3 intron) and rs3807989 (CAV1 intron) were 

tested for differential transcriptional activity using luciferase reporter assay. ~1.7-kb regions 

centered on each SNP were amplified from genomic DNA and cloned into pGL4.23 Firefly 

Luciferase reporter vectors (Promega) using Kpn I restriction sites, with primers given in 

Supplementary Table 7. For rs590041, the two allelic variants were obtained using site-

directed mutagenesis of a homozygous alternate genomic DNA, while for rs3807989, they 

were obtained by sub-cloning DNA with heterozygous genotype. Cryopreserved day-25 

iPSC-CMs were seeded onto a matrigel-coated 96-w plate at a density of 30-40 x 106cells 

per well and cultured in RPMI + Insulin for 5-10 days prior to transfection, when media was 

exchanged to Opti-MEM (Life Technologies). Each well was transfected with a mix of 120 

ng of Firefly Luciferase reporter vector, 30 ng of Renilla Luciferase control vector (pRL-TK, 

Promega), and 0.6 μl of Viafect transfection reagent (Promega) in 10 μl of Opti-MEM. We 

transfected six wells per construct. Luciferase activity was measured 24 hours after 

transfection using the Dual-Luciferase® Reporter Assay System (Promega).

CRISPRi experiments

Two gRNAs targeting CAV1 and SSBP3 regulatory elements were designed using the online 

software CHOPCHOP (http://chopchop.cbu.uib.no/index.php) and cloned into the lentiviral 

vector pLKO.1-U6-2sgRNA-ccdB-EF1a-Puromycin. Lentiviral gRNAs or Lenti-dCas9-

KRAB-blast plasmids (Addgene #89567) were co-transfected with packaging plasmids 

(psPAX2 and pMD2.G) into human 293T cells. Culture medium containing lentivirus 

particles for gRNA and dCas9-KRAB was harvested, mixed well with polybrene (10 μg/ml), 

and added to a 24-well plate. Day-30 iPSC-CMs (cell lines iPSCORE_1_5 and 

iPSCORE_75_1) were dissociated and added into the virus-containing media at around 80% 

confluence. For higher infection efficiency, a new collection of lentiviral particles mixed 

with polybrene was added to the medium after 24 hours. Medium was exchanged after 24 

hours to regular culture medium and changed to selection medium containing 0.2 μg/ml 

puromycin and 6 μg/ml blasticidin after another 24 hours. Cells were cultured for 6 days 

when all cells from the non-infected control died, and then harvested. RNA was isolated 

with Quick-RNA kit (Zymo Research) and reverse-transcribed using SuperScript III Reverse 

Transcriptase (Life Technologies). qPCR reactions were performed in StepOne™ Real-Time 

PCR Systems (Applied Biosystems) using 2X Affymetrix qPCR master mix. Relative 

quantities of gene expression levels were normalized to the METTL2B gene. Guide RNAs 

and primers for qPCR are given in Supplementary Table 7.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Editorial summary

Analysis of iPSC-derived cardiomyocytes identifies variants associated with allele-

specific effects on NKX2-5 binding. Fine-mapping and functional studies suggest that 

such variants underlie cardiac-specific expression quantitative trait loci and associations 

with electrocardiographic traits.
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Figure 1. Generation and characterization of iPSCs and iPSC-CMs by gene expression and 
epigenetic profiling.
a, Pedigree showing the relationships of the seven individuals and summary of derived cell 

types analyzed. b, Principal component 1 and 2 of RNA-seq (15,725 genes) from iPSCs (29 

samples from 7 individuals), iPSC-CMs (27 samples from 7 individuals), Roadmap stem cell 

lines (H1, HUES64, iPS-20b and iPS18), and human tissues (right ventricle, left ventricle, 

right atrium, and fetal heart). c-g, Distributions of the average Spearman correlation 

coefficients between pairs of samples across the 1,000 most variable genes (c,d) or peaks (e-
g) for the indicated molecular phenotypes. Median (white dot), interquartile range (thick 

bar), and the rest of the distributions (line) are shown within each violin plot, with each 

sample size reported below. P-values of significant (P < 0.05) one-tailed Mann-Whitney tests 

are shown.
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Figure 2. Identification of coordinated allele-specific effects (ASE) in gene expression, H3K27 
acetylation, chromatin accessibility, and NKX2-5 binding in iPSCs and iPSC-CMs.
a, Total number of regions and heterozygous SNVs tested for ASE across all individuals and 

samples in each dataset. b, Total number of heterozygous SNVs and corresponding regions 

across all individuals and samples with ASE at FDR < 0.05. The number of ASE shared 

between iPSCs and iPSC-CMs is indicated by hatches. c, Scatterplot of the alternate allele 

proportion at shared ASE-SNVs between iPSCs and iPSC-CMs for RNA-seq (n = 516 

SNVs) and H3K27ac (n = 43 SNVs). Spearman correlation statistics are indicated. d-f, 
Scatterplots of the mean proportion of the alternate allele of SNVs with ASE in 

heterozygous individuals and the effect size of each ASE-SNV, expressed as the slope of 
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linear regression (ß) between gene expression or peak density and genotypes of all seven 

individuals. Spearman correlation statistics are indicated. The number of SNVs analyzed in 

d are: 970 for iPSCs and 799 for iPSC-CMs; in e: 255 for iPSCs and 550 for iPSC-CMs; in 

f: 1,714. g, Scatterplot showing relationship between effect sizes (ß’s) of ASE-SNVs in 

NKX2-5 peaks on both NKX2-5 and H3K27ac phenotypes (n = 854 SNPs). h, Table 

showing Spearman correlation coefficients of effect sizes between pairs of different 

molecular phenotypes. Correlations were calculated between ß’s of SNVs that showed ASE 

in ChIP-seq datasets (rows) and ß’s of the same variant for the closest gene or peak in a 

different molecular phenotype dataset (columns).
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Figure 3. Transcription factor binding motifs are altered by SNVs with ASE in NKX2-5 ChIP-
seq.
a, Odds ratios from two-sided Fisher’s exact test comparing the proportion of motif-altering 

SNVs between variants with ASE (n = 1,941) and variants without ASE (n = 19,371) in 

NKX2-5 ChIP-seq peaks from combined iPSC-CM samples. Asterisks indicate enrichment 

at FDR corrected P-value < 0.05. b, Number of TFBS motifs that were strengthened (red) or 

weakened (blue) by the preferred allele of ASE-SNVs identified in NKX2-5 ChIP-seq. c, 

Scatterplot of the reference allele proportion at ASE-SNVs (n = 341) and the difference of 

NKX2-5 motif score between reference and alternate alleles. Spearman correlation 

coefficient and P-value are indicated at the bottom. Dots are color-coded as in b. d, 

Summary table of Spearman correlation statistics calculated as in c for all motifs tested (see 

Supplementary Fig. 4 for the other scatterplots). e-h, Frequency of ASE-SNVs altering 

different positions within the motifs of NKX2-5 (e), GATA (f), MEIS1 (g), and TBX20 (h). 

NKX2-5, GATA and TBX20 PWMs were obtained using de-novo motif finding. Bars are 

color-coded as in b. Blue bars overlap the red ones (i.e. they are not stacked).
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Figure 4. Enrichment of ChIP-seq ASE variants for known QTLs.
a-c, Histograms showing the percentage of SNVs with and without ASE in each ChIP-seq 

(from combined iPSC or iPSC-CM samples) and overlapping dsQTLs from LCLs32 (a), 

eQTLs from iPSCs21 (b), and combined eQTLs identified in different tissues33 (c). Two-

sided Fisher’s exact test P-values are shown in red or blue for enrichment or depletion, 

respectively. d, Heatmap showing enrichment of ASE variants for tissue-specific eQTLs34 

(similar tissues in GTEx were merged; see Methods). Asterisks indicate two-sided Fisher’s 

exact test FDR corrected P-value < 0.05. Heatmap is colored based on -log10 of FDR 

corrected P-values, with negative sign if odds ratio was < 1. The complete Fisher’s exact test 

statistics including P-values, odds ratios and number of SNVs analyzed are reported in 

Supplementary Table 5.
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Figure 5. Enrichment of NKX2-5 SNVs at GWAS loci and validation of rs590041 as a regulatory 
variant in the SSBP3 locus for p-wave duration.
a-c, Volcano plots showing -log10 P-values and fold enrichment for GWAS loci in NKX2-5 

(a), H3K27ac (b), and ATAC-seq (c) peaks from combined iPSC-CM samples. Red symbols 

indicate significant enrichment at FDR corrected P-value < 0.05, calculated using GREGOR. 

In total n = 125 GWAS traits were tested, of which 6 were for EKG traits. d, Percentage of 

NKX2-5 ASE-SNVs overlapping an EKG GWAS-SNP versus overlapping a non-GWAS-

SNP. Two-sided Fisher’s exact test P-value and the number of SNVs are given. e, Top panel: 

regional plot of association P-values with P-wave duration37, color coded based on r2 

values54. Second panel: regional plot of eQTLs for SSBP3 in atrial appendage samples from 

GTEx. NKX2-5 allelic imbalance (pie chart) for rs590041 is shown. Panels three through 

five: epigenetic tracks from iPSC-CM combined samples. Bottom panel: UCSC genome 

browser tracks for Roadmap fetal heart ChromHMM, DHS, and gene annotations. f, EMSA 

with nuclear extract from iPSC-CM using probes containing two allelic variants of 

rs590041. Similar results were obtained in two independent experiments. The full scans of 

the blots are shown in Supplementary Figure 9. g, Screenshot from the GTEx portal (https://

Benaglio et al. Page 29

Nat Genet. Author manuscript; available in PMC 2020 March 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://gtexportal.org/home/index.html


gtexportal.org) showing association between rs590041 genotypes and expression levels of 

SSBP3 in heart atrial appendage samples. h, Luciferase assay in iPSC-CMs for rs590041, in 

both forward and reverse orientations. RLUs are normalized to cells transfected with the 

empty vector (pgl4.23). Lines indicate median, lower and upper quartiles of 6 transfection 

replicates per plasmid. P-values from two-tailed t-tests are shown, comparing expression 

from the two alleles. i, qPCR expression of SSBP3 in iPSC-CMs (id: iPSCORE_1_5) stably 

expressing dCas9-KRAB (CRISPRi) and either a control guide RNA (gCTL) or two guide 

RNAs targeting the region encompassing rs590041. Bars and error bars represent the mean 

and the standard deviation from three qPCR measurements, respectively; two-tailed t-test P-

value is shown. Similar results were obtained in an independent cell line (Supplementary 

Fig. 10). All iPSC-CMs used in f, h, and i were lactate-purified.
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Figure 6. Prioritization of candidate causal variants at heart rate loci using fgwas.
a, fgwas natural log fold enrichment of GWAS-SNPs for heart rate15 in iPSC-CM genomic 

annotations (y-axis). The bars indicate 95% confidence intervals. b, Table showing 11 SNPs 

with > 0.3 fgwas posterior probability of causality (PPA) and that overlapped at least two of 

the indicated iPSC-CM genomic annotations. SNPs that showed genome-wide significance 

(P < 10-8) for each trait in the corresponding studies are indicated, while those with P >10-8 

are sub-threshold, and thus novel, GWAS loci. c, Functional annotation of rs6801957 

associated with heart rate15. Top panel: regional plot of association P-values; SNPs are color 

coded based on r2 values from the 1000 Genome Project CEU population54; lead GWAS 

variants from other studies in the locus are indicated by a diamond. Second panel: fgwas 

PPA of the variants in the locus. Panels three through five: epigenetic tracks from iPSC-CM 

combined samples. Bottom panels: Roadmap fetal heart ChromHMM and genes from UCSC 

genome browser. Inner panel: allelic imbalance (pie chart) of NKX2-5 ASE with FRD-

corrected P-values, and altered TF motif.
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Figure 7. Functional characterization of rs3807989 as candidate causal variants for PR interval 
and atrial fibrillation.
a, fgwas natural log fold enrichment of GWAS-SNPs for atrial fibrillation (AF) and PR 

interval (PR) in iPSC-CM genomic annotations (y-axis). Bars indicate 95% confidence 

intervals. b, Tables showing the top 5 SNPs ordered by fgwas posterior probability of 

causality (PPA) and overlapping at least two of the indicated iPSC-CM genomic annotations. 

c, Top panel: regional plot of association P-values with PR interval17, color coded based on 

r2 values54. NKX2-5 allelic imbalance (pie chart) for rs3807989 is shown. Second panel: 

fgwas PPA of the variants in the locus. Panels three through five: epigenetic tracks from 

iPSC-CM combined samples. Bottom panel: UCSC genome browser tracks for Roadmap 

fetal heart ChromHMM, DHS, and gene annotations. d, Association between rs3807989 

genotypes and gene expression of CAV1 and CAV2 genes in 128 iPSC-CMs from different 

individuals26. Boxplot elements: median (thick line), lower and upper quartiles (box), 

maximum and minimum (whiskers). P-value of linear regression is shown. e, EMSA with 

iPSC-CMs nuclear extract using probes containing two allelic variants of rs3807989. A 

second blot from an independent experiment with similar results and full scans of the blots 
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are shown in Supplementary Figure 9. f, Position of rs3807989 with respect to the NKX2-5 

motif. g, Luciferase assays in iPSC-CMs for rs3807989, in both forward and reverse 

orientations. RLUs are normalized to cells transfected with the empty vector (pGL4.23). Plot 

lines indicate median, lower and upper quartiles of 6 transfection replicates per plasmid. P-
values from two-tailed t-tests are shown. h, qPCR expression of CAV1 and CAV2 genes in 

iPSC-CMs stably expressing dCas9-KRAB (CRISPRi) (id: iPSCORE_1_5) and either a 

control guide RNA (gCTL) or two guide RNAs targeting the region encompassing 

rs3807989. Bars and error bars represent the mean and the standard deviation from three 

qPCR measurements, respectively; two-tailed t-test P-value is shown. The result was 

replicated in an independent cell line (Supplementary Fig. 10). All iPSC-CMs used in d-h 
were lactate-purified.
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Table 1
Allelic binding of NKX2-5 at GWAS loci for EKG traits

dbSNP ID ASE FDR
ASE 

reference 
allele ratio

Gene locus eQTL GWAS traits Altered 
motifs Conserved Functional 

validation

rs590041 2.5E-105 0.07 SSBP3 (intron) Heart-
specific

P wave duration 
(Lead = 
rs562408)37

Tbx5, 
Nkx2.5 - EMSA, 

luciferase 
assay, 

CRISPRi
-

rs562408 7.9E-04 0.05 - -

rs35176054 3.4E-18 0.16 SH3PXD2A 
(intron) -

Atrial fibrillation 
(Lead)47 Gata, Yes -

rs7612445 2.1E-15 0.08 GNB4 (>3 kb) Heart-
specific

Heart rate 
(Lead)15,39

Meis1, 
Tbx5 - EMSA

rs4890490 2.1E-12 0.29 SETBP1 (intron) - QRS duration55–57 - - -

rs4657167 3.5E-12 0.74 NOS1AP 
(intron) - QT interval42 - - -

rs6606689 3.8E-09 0.29 PPTC7 (intron) Other Heart rate15 - Yes -

rs7132327 4.9E-04 0.68 TBX3 (>130 kb) -

PR segment14

PR interval13

QRS duration 
(Lead)56

- - -

rs3807989 6.9E-04 0.66 CAV1 (intron) Other

PR segment 
(Lead)14

PR interval 
(Lead)13,41,43

Atrial fibrillation 
(Lead)58

- Yes

EMSA, 
luciferase 

assay, 
CRISPRi

rs8044595 1.4E-03 0.62 MYH11 (intron) - Resting heart rate39 - -

rs6932481 2.0E-03 0.79 SAMD3 (intron) Other PR interval59 - - -

rs6801957 4.2E-03 0.37 SCN10A 
(intron) -

PR segment 
(Lead)14

PR interval 
(Lead)13,40,41

QT interval 
(Lead)42

P wave duration 
(Lead)14

QRS duration 
(Lead)43,44

Brugada syndrome60

Resting heart rate39

Meis1 Yes

EMSA, 
reporter 

assays, from 
45

rs7986508 1.0E-02 0.65 LRCH1 (intron) Heart-
specific PR segment14 - - ,-

rs10841486 1.2E-02 0.28 PDE3A (>49 kb) Other
Resting heart rate 
(Lead)39 Eomes - -

rs6569252 1.7E-02 0.63 GJA1 (>7 Mb) - Atrial fibrillation47 - -
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Fourteen GWAS loci for EKG traits overlapping NKX2-5 ASE-SNVs, ordered by P-value for imbalance. For each SNV, we indicate the dbSNP ID 
(build 137), ASE corrected P-value (FDR) combined across heterozygous samples from the seven individuals, ASE reference allele ratio, the 
closest genes and relative location of the SNV, known association with gene expression (eQTL) and in which tissue (heart-specific = restricted to 
left ventricle and/or atrial appendage in GTEx; other = any other tissue or cell line), associated EKG GWAS traits and if the SNV is the lead 
variant, altered motifs, conservation in mammals and experiments performed for functional validation in this or previous studies. Additional 
annotations are reported in Supplementary Table 5.

Nat Genet. Author manuscript; available in PMC 2020 March 30.


	Abstract
	Results
	Generation and functional genomic profiling of iPSC-derived
cardiomyocytes
	Genetic background underlies variability of molecular phenotypes in
iPSC-CMs
	NKX2-5 peaks commonly show allele-specific effects
	NKX2-5 correlated effects are consistent with dual role as activator and
repressor
	Variation in cardiac TF binding motifs underlie NKX2-5 ASE-SNVs
	NKX2-5 ASE-SNVs modulate cardiac-specific gene expression
	NKX2-5 ASE-SNVs are enriched for GWAS associations with EKG traits
	Validation of NKX2-5 ASE-SNV in the SSBP3 locus as a
functional regulatory variant
	NKX2-5 ASE-SNVs prioritize causal variants in heart-rate GWAS loci
	Validation of NKX2-5 ASE-SNV rs3807989 as a functional variant at the
CAV1 locus

	Discussion
	Methods
	Subjects and iPSC derivation
	Differentiation of iPSCs into cardiomyocytes
	Whole-genome sequencing
	RNA-seq
	ChIP-seq
	ATAC-seq
	Analysis of gene expression differences between iPSCs and iPSC-CMs
	Normalization and analysis of variability of molecular phenotypes
	Allelic-specific effect (ASE) analysis
	Correlation of ASEs across all individuals
	Correlation of ASEs across different molecular phenotypes
	Analysis of SNVs altering TFBS motifs
	Enrichment of ASE-SNVs for known quantitative trait loci
	Enrichment of GWAS-SNPs in regulatory regions in iPSC-CMs
	Estimating GWAS enrichment in molecular phenotypes and prioritizing putative
causal variants
	Gene expression analysis of 128 iPSC-CMs
	Electrophoretic mobility shift assay (EMSA)
	Luciferase assay
	CRISPRi experiments

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1



