
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Language Techniques for Automated Verifiction of Web Security

Permalink
https://escholarship.org/uc/item/8b61j8gc

Author
Renner, John

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8b61j8gc
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Language Techniques for Automated Verifiction of Web Security

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

John Renner

Committee in charge:

Professor Deian Stefan, Chair
Professor Nadia Heninger
Professor Ranjit Jhala
Professor Farinaz Koushanfar

2022

Copyright

John Renner, 2022

All rights reserved.

The dissertation of John Renner is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically.

University of California San Diego

2022

iii

DEDICATION

This dissertation is dedicated to my teachers without whom I would have neither the will nor the

skill to have accomplished this,

To my mom, who didn’t notice I learned TI-BASIC in the back of her Geometry class.

To Mr. Steuben, whose nigh-sadistic intro CS class got me hooked.

To Mr. Majeske, who taught me to be a “stuff-knower” and a troublemaker.

This dissertation is dedicated to my D&D group, whose weekly games filled these past years with

creativity and friendship,

To David Coy, my once again dear friend who I’m lucky to have held onto.

To Caroline Coy, my fast friend whose chaotic energy is unmatched except by her cats.

To John Grischuk, whose name is the same as mine, and who formerly ruled Wesnoth.

To Mark Renner, my brother who housed me during some tough years.

To Jeff Renner, one of the most genuine souls I’ve ever met. He also plays a mean cowboy.

This dissertation is dedicated to my friends in San Diego who made this city feel like home,

To Alex Sanchez-Stern, who built a community around friendship, art, and socal chill.

To Andi Frank, my long-lost sister, my pumpkin-obsessed, ride-or-die roommate.

To Valentin Robert, who did nothing wrong and whose presence improves all situations.

To Kyle Ford, who is one of the warmest genuinely good people I’ve ever met.

To Mia Trautz, who is endlessly supportive, and my fellow tennis-trainee.

To Erik Moyer, whose determination in all things inspires me.

To Tristan Knoth, the gentlest giant whose immense chillness I can only aspire to.

To Ariana Mirian, who I used to be scared of but whose friendship is indispensable.

To Anish Tondwalkar, the most lovable teddy bear of a man who I somehow found again.

To Elizabeth, whose patio hangs and Death Cab roadtrips gave me life.

To Matt Kolosick, whose food, company, and vibes are unparalleled.

To Michael James, my adventuring buddy whose conversations and company I will miss.

iv

This dissertation is dedicated to the people and places that kept me caffeinated,

To Subterranean Coffee, the former shared living room for all grad students in Hillcrest

To Art of Espresso, the site of daily pilgrimages and valuable research conversations

To Coppertop Coffee, which had neither good coffee nor good donuts, but was close

This dissertation is dedicated to my siblings legal and otherwise,

To Scott Renner, who I don’t see enough of but whom I love.

To Mark Renner, who shared a room with me for years but somehow still likes me.

To Jeff Renner, whose natural joy I always enjoy and admire.

To John Grischuk, my best friend, confidant, and forever-friend.

To David Coy, [same as above]

To Chris Perdue, my outlaw and one of the most lovable, giving people I know.

To Kristen Perdue, my outlaw who cares more for her friends than anyone I’ve met.

To Chez Bob, my precious child, may you serve snacks with a smile for years to come

This dissertation is dedicated to my mom, and to my dad, whose immense contributions to my

life defy summarization. I could never have done this without your unwavering support, attention,

and love all these years.

Thank you, everyone.

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . vi

List of Figures . ix

Acknowledgements . x

Vita . xi

Abstract of the Dissertation . xii

Introduction . 1

Chapter 1 CT-Wasm: Type-Driven Secure Cryptography for the Web Ecosystem . . 4
1.1 Introduction . 5
1.2 Background . 8

1.2.1 Constant-time Programming Paradigm 8
1.2.2 WebAssembly . 11

1.3 Constant-Time WebAssembly, an overview 12
1.4 CT-Wasm Semantics . 15

1.4.1 Instances . 19
1.4.2 Typing and Value Types 19
1.4.3 Structured Control Flow 20
1.4.4 Memory . 21
1.4.5 Trust and Declassification 22

1.5 Formal Model . 23
1.5.1 Soundness . 24
1.5.2 Security Properties . 25
1.5.3 Public Indistinguishability 25
1.5.4 Action Indistinguishability 27
1.5.5 Self-isomorphism . 30
1.5.6 Bisimilarity . 31
1.5.7 Non-interference . 32
1.5.8 Constant-time . 32
1.5.9 Observations as Quotient Types 33

1.6 Implementation . 34
1.6.1 CT-Wasm Implementations 34
1.6.2 Verified Type Checker . 36
1.6.3 CT-Wasm Developer Tools 37

vi

1.6.4 Evaluation . 40
1.7 Related work . 46
1.8 Future Work . 48
1.9 Conclusion . 49

Chapter 2 Scooter & Sidecar: A Domain-Specific Approach to Writing Secure Database
Migrations . 51
2.1 Introduction . 52
2.2 Motivation and Overview . 55

2.2.1 Unsafe Migrations . 56
2.2.2 Safe Migrations with Scooter and Sidecar 59

2.3 Design . 63
2.3.1 Declaring Policies . 64
2.3.2 Migrations . 66
2.3.3 The Scooter ORM . 70

2.4 Verifying Policy Updates in SMT 72
2.5 Evaluation . 77

2.5.1 Scooter Language Expressiveness 78
2.5.2 Detecting Unsafe Migrations 80
2.5.3 Sidecar Verification Speed 81
2.5.4 ORM Performance Overhead 81

2.6 Discussion and Limitations . 82
2.6.1 Expressiveness . 82
2.6.2 Data Migrations . 83
2.6.3 Transactions . 84
2.6.4 Surprising Semantics . 84

2.7 Related Work . 86

Chapter 3 Towards a Verified Range Analysis for JavaScript JITs 89
3.1 Introduction . 89
3.2 Overview . 92

3.2.1 Range Analysis in JITs . 93
3.2.2 From Range Analysis Bugs to Browser Exploits 94
3.2.3 Why Range Analysis is Hard to Get Right 96
3.2.4 Using VeRA to Express Range Analysis 97
3.2.5 Using VeRA to Verify Range Analysis 97

3.3 VeRA C++ . 99
3.4 Translating VeRA C++ to SMT . 100

3.4.1 Challenges in Compiling C++ to SMT 100
3.4.2 Overcoming Challenges with an IR 101

3.5 Verification . 103
3.5.1 Semantic Meaning of Predicate Facts 105
3.5.2 Using VeRA to Express Predicates 108

vii

3.6 Implementation and Evaluation . 109
3.6.1 Proofs . 110
3.6.2 Verified Routines in the Browser 115
3.6.3 PrimaVeRA . 119

3.7 Discussion, Limitations and Future Work 122
3.8 Related Work . 123
3.9 Conclusion . 127
3.10 Acknowledgements . 128

Conclusion . 129

Bibliography . 130

viii

LIST OF FIGURES

Figure 1.1: Declassification in TweetNaCl . 14
Figure 1.2: CT-Wasm abstract syntax as an extension of the grammar given by [133]. . 15
Figure 1.3: CT-Wasm typing rules as an extension of the typing rules given by [133]. . 16
Figure 1.3: CT-Wasm typing rules (cont.) . 17
Figure 1.4: Selected CT-Wasm semantic definitions 18
Figure 1.5: Definition of ∼c. 26
Figure 1.6: Example of CT-Wasm action annotations and equivalence. 27
Figure 1.7: CT-Wasm validation performance . 43
Figure 1.8: Runtime performance of handwritten crypto primitives. 44
Figure 1.9: dudect measurements for various cryptographic algorithms. 45

Figure 2.1: Chitter users model and policy in (simplified) Scooter. 56
Figure 2.2: Sidecar workflow . 59
Figure 2.3: Scooter expression syntax . 63
Figure 2.4: Simple user profile and principal declaration in Scooter. 65
Figure 2.5: Scooter & Sidecar case studies . 78
Figure 2.6: Scooter ORM performance . 82

Figure 3.1: Parts of Firefox’s range object . 95
Figure 3.2: Firefox’s range analysis logic for the right shift operator. 95
Figure 3.3: Simplified VeRA implementation of the right shift operator. 95
Figure 3.4: C++ constructs that VeRA supports . 99
Figure 3.5: VeRA IR operations . 101
Figure 3.6: The definition of the predicate inRange(R,v) 105
Figure 3.7: Well-formedness for a Firefox range. 106
Figure 3.8: VeRA verification performance . 112
Figure 3.9: Page load latency of popular and unpopular websites. 117
Figure 3.10: PrimaVeRA verifies the correctness of routines that VeRA is incapable of. . 120

ix

ACKNOWLEDGEMENTS

First off, I’d like to thank my advisor Deian Stefan for his advice, for his technical

contributions, and for his friendship. I couldn’t imagine making it through a PhD with anyone

else. A huge thank you to my coauthors, specifically to Fraser Brown and Conrad Watt who, in

addition to producing amazing work, have proven to be fantastic individuals all around. Thank

you to the CSE department, faculty and staff, who have worked tirelessly in support of students.

Lastly, I would like to thank the Student-Workers Union and the Student Researcher Union, who

continue to fight the good fight for fair wages and a safe workplace for all students.

Chapter 1, in part, is a reprint of the material as it appears in Proceedings of the 46th

ACM SIGPLAN Symposium on Principles of Programming Languages (POPL) Conrad Watt,

John Renner, Natalie Popescu, Sunjay Cauligi, Deian Stefan. ACM, 2019. The dissertation author

was a primary investigator and author of this paper.

Chapter 2, in part, is a reprint of the material as it appears in Proceedings of the 42nd ACM

SIGPLAN International Conference on Programming Language Design and Implementation

(PLDI) John Renner, Alex Sanchez-Stern, Fraser Brown, Sorin Lerner, Deian Stefan. ACM, 2020.

The dissertation author was a primary investigator and author of this paper.

Chapter 3, in part, is a reprint of the material as it appears in Proceedings of the 41st ACM

SIGPLAN International Conference on Programming Language Design and Implementation

(PLDI) Fraser Brown, John Renner, Andres Noetzli, Sorin Lerner, Hovav Schacham, Deian

Stefan. ACM, 2020. The dissertation author was a primary investigator and author of this paper.

x

VITA

2017 Bachelor of Science, Software Engineering, magna cum laude
Rochester Institute of Technology

2017-2022 Research Assistant, Computer Science
University of California San Diego

2022 Doctor of Philosophy, Computer Science
University of California San Diego

PUBLICATIONS

“Constant-time WebAssembly.” John Renner, Sunjay Cauligi, Deian Stefan. Principles of Secure
Compilation (PriSC), January 2019.

“CT-Wasm: Type-Driven Secure Cryptography for the Web Ecosystem.” Conrad Watt, John
Renner, Natalie Popescu, Sunjay Cauligi, Deian Stefan. , January 2019.

“Foundations for Parallel Information Flow Control Runtime Systems.” Marco Vassena, Gary
Soeller, Peter Amidon, Matthew Chan, John Renner, Deian Stefan Principles of Security and
Trust (POST), January 2019.

“Position Paper: Progressive Memory Safety for WebAssembly.” Craig Disselkoen, John Renner,
Conrad Watt, Tal Garfinkel, Amit Levy, and Deian Stefan Proceedings of the 8th International
Workshop on Hardware and Architectural Support for Security and Privacy, June 2019.

“FaCT: A DSL for Timing-Sensitive Computation.” Conrad Watt, John Renner, Natalie Popescu,
Sunjay Cauligi, Deian Stefan. 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), June 2019.

“Towards a Verified Range Analysis for Javascript JITs.” Fraser Brown, John Renner, Andres
Noetzli, Sorin Lerner, Hovav Schacham, Deian Stefan. Proceedings of the 41st ACM SIGPLAN
International Conference on Programming Language Design and Implementation (PLDI), June
2020.

“Scooter & Sidecar: A Domain-Specific Approach to Writing Secure Database Migrations.” John
Renner, Alex Sanchez-Stern, Fraser Brown, Sorin Lerner, Deian Stefan. Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and Implementation
(PLDI), June 2021

xi

ABSTRACT OF THE DISSERTATION

Language Techniques for Automated Verifiction of Web Security

by

John Renner

Doctor of Philosophy in Computer Science

University of California San Diego, 2022

Professor Deian Stefan, Chair

Web applications are often responsible for sensitive user data, but are exceedingly difficult

to secure. On the backend, they lack effective tools to prevent data leakage, meanwhile bugs

in the browser can compromise otherwise secure code. While developers have improved this

situation by employing informal bugfinding techniques such as fuzzing, new bugs are commonly

discovered and exploited in the wild. Formal verification tools promise to stem the tide of bugs,

but they are difficult to use in practice; theorem provers are cumbersome while general-purpose

automated verifiers fail to scale to real-world programs. Domain-specific languages (DSLs) allow

us to make automated verification tractable by “baking in” a particular verification problem to the

language semantics. In this dissertation we introduce three such DSLs designed to automatically

xii

provide security guarantees for web applications:

1. CT-Wasm, an extension to the WebAssembly type system which provides formally guaran-

teed protection against timing side-channel attacks.

2. Scooter, a domain-specific language which prevents server-side data leakage in database-

backed applications.

3. VeRA, a subset of C++ which verifies the correctness of range analysis in Firefox.

xiii

Introduction

Today’s internet users are caught in the middle of an ever-escalating arms race between

hackers trying to their steal data, and the application developers trying to protect them. Modern

browsers rely immense test suites and extensive fuzzing to find and prevent bugs before they can be

exploited[238, 182], yet actively exploited vulnerabilities are found with shocking regularity[284].

Meanwhile, web application developers lack the tools and infrastructure to prevent even simple

data leakage[231, 142]. It is clear that despite the great success of the tools available today, users

are still at significant risk. If we want to ensure the security of users on the internet, we need

stronger guarantees than those provided by randomized testing—we need guarantees rooted in

formal methods. Unfortunately, today’s formal verification techniques are limited in two key ways.

Tools like interactive theorem provers are too costly—it takes even proof engineering experts

years to verify serious systems [288, 106, 154]. And, automated verifications tools struggle

with large codebases [76]. We need techniques that can be adopted by developers building web

browsers and web application.

Our thesis is that domain-specific languages, whose semantics are crafted specifically to

aid an automated verifier, can bridge this gap. While this approach is unsuitable for verification

in general, it can make verification of specific security properties tractable. The contributions of

this dissertation are the identification of three such security properties, and for each, a DSL which

allows that property to be reliably verified:

1

Chapter 1: Constant-time cryptography with CT-Wasm If the execution time of a crypto-

graphic routine varies with respect to a secret input, such as a private key, then it is vulnerable

to timing attacks which can extract that secret [156] (even over the network[77] or between

VMs [220]). A program lacking this vulnerability is referred to as constant-time. While an auto-

mated verifier for this property exists [33], it does not scale to client-side web apps—it operates

on LLVM bytecode and its performance would prohibitively impact page loads. This chapter

introduces Constant-time WebAssembly (CT-Wasm) which extends WebAssembly with a set of

types and operations for handling secret data. These extensions constitute an embedded DSL

which allows for verification of the constant-time property as a side-effect of WebAssembly’s

existing, linear-time typechecking algorithm.

Chapter 2: Backend leakage prevention with Scooter Applications that handle user data

have policies that describe which users can access what data (e.g. “Only my friends can see my

birthday”). This means that they are inherently tied to an underlying data schema. As applications

evolve, the schema often changes, requiring corresponding policy updates. Subtle mistakes in

policy updates, can result in unintentionally granting broader access to data[158]. This chapter

prevents Scooter, a DSL for expressing schemas, policies, and updates to both, along with Sidecar,

a verifier which ensures that no update unintentionally expands access to data. Scooter makes

it possible for developers to build server-side web apps that are not only secure by construction

but evolve securely. We evaluate Scooter and Sidecar against several existing applications and

show that the policy preservation property can be verified in sub-second time. Unlike CT-Wasm,

Scooter compromises decidability in favor of enhanced expressiveness (see Section 2.6.1); despite

this, verification times below 100 milliseconds for all inputs.

Chapter 3: Correct range analysis with VeRA JavaScript is a memory safe language, and

thus requires bounds checks on all array accesses. These checks can slow down execution, so

modern JavaScript engines attempt to elide them whenever possible. This elision is powered by

2

an information-gathering pass called range analysis which tracks the range of possible values

for all numbers; if the range of values falls entirely within bounds, the bounds check can be

eliminated. Mistakes in range analysis can lead out of bounds accesses, a very useful vulnerability

for attackers to exploit. This chapter introduces VeRA, a tool that verifies the correctness of range

analysis in Firefox, by lowering a subset of C++ to SMT. VeRA is able to verify the correctness

of several range analysis routines, and successfully found a bug in Firefox, but times out when

verifying several critical routines.

Because VeRA needed to operate on existing code, the DSL (a subset of C++) is very

expressive and does little to aid the underlying verifier. In response to this realization, we

reimplement VeRA using a generic automated verification language backed by Corral [163]. We

call this reimplementation “PrimaVera” and find that we can verify even more routines, with the

help of a more powerful backend.

3

Chapter 1

CT-Wasm: Type-Driven Secure

Cryptography for the Web Ecosystem

A significant amount of both client and server-side cryptography is implemented in JavaScript.

Despite widespread concerns about its security, no other language has been able to match the

convenience that comes from its ubiquitous support on the “web ecosystem”—the wide variety of

technologies that collectively underpins the modern World Wide Web. With the introduction of

the new WebAssembly bytecode language (Wasm) into the web ecosystem, we have a unique

opportunity to advance a principled alternative to existing JavaScript cryptography use cases

which does not compromise this convenience.

We present Constant-Time WebAssembly (CT-Wasm), a type-driven, strict extension to

WebAssembly which facilitates the verifiably secure implementation of cryptographic algorithms.

CT-Wasm’s type system ensures that code written in CT-Wasm is both information flow secure

and resistant to timing side channel attacks; like base Wasm, these guarantees are verifiable in

linear time. Building on an existing Wasm mechanization, we mechanize the full CT-Wasm

specification, prove soundness of the extended type system, implement a verified type checker,

and give several proofs of the language’s security properties.

4

We provide two implementations of CT-Wasm: an OCaml reference interpreter and

a native implementation for Node.js and Chromium that extends Google’s V8 engine. We

also implement a CT-Wasm to Wasm rewrite tool that allows developers to reap the benefits

of CT-Wasm’s type system today, while developing cryptographic algorithms for base Wasm

environments. We evaluate the language, our implementations, and supporting tools by porting

several cryptographic primitives—Salsa20, SHA-256, and TEA—and the full TweetNaCl library.

We find that CT-Wasm is fast, expressive, and generates code that we experimentally measure to

be constant-time.

1.1 Introduction

When implementing a cryptographic algorithm, functional correctness alone is not suf-

ficient. It is also important to ensure properties about information flow that take into account

the existence of side channels—ways in which information can be leaked as side-effects of the

computation process. For example, the duration of the computation itself can be a side channel,

since an attacker could compare different executions to infer which program paths were exercised,

and work backwards to determine information about secret keys and messages.

Writing code that does not leak information via side channels is daunting even with

complete control over the execution environment, but in recent years an even more challenging en-

vironment has emerged—that of in-browser cryptography—the implementation of cryptographic

algorithms in a user’s browser using JavaScript. Modern JavaScript runtimes are extremely

complex software systems, incorporating just-in-time (JIT) compilation and garbage collection

(GC) techniques that almost inherently expose timing side-channels [199, 197, 259]. Even worse,

much of the JavaScript cryptography used in the wild is implemented by “unskilled cryptogra-

phers” [237] who do not account for even the most basic timing side channels. It is dangerous

enough that unsecure, in-browser cryptography has become commonplace on the web, but the

5

overwhelming popularity of JavaScript as a development language across all platforms [95] has

driven adoption of JavaScript cryptography on the server-side as well. With multiple JavaScript

crypto libraries served by the NPM package manager alone having multiple-millions of weekly

downloads [249, 84, 146, 92]), many of the issues noted above are also exposed server-side.

To fundamentally address the state of crypto in the web ecosystem, a solution must

simultaneously compete with the apparent convenience of JavaScript crypto for developers while

having better security characteristics. Modifying complex, ever-evolving JavaScript engines to

protect JavaScript code from leakage via timing channels would be a labyrinthine task. Luckily,

this is not necessary: all major browsers recently added support for WebAssembly (Wasm) [271,

133].

Wasm is a low-level bytecode language. This alone provides a firmer foundation for

cryptography than JavaScript: Wasm’s close-to-the-metal instructions give us more confidence

in its timing characteristics than JavaScript’s unpredictable optimizations. WebAssembly also

distinguishes itself through its strong, static type system, and principled design. Specifically,

Wasm has a formal small-step semantics [133]; well-typed Wasm programs enjoy standard

progress and preservation properties [275], which have even been mechanically verified [267].

These formal foundations are a crucial first step towards developing in-browser crypto with

guarantees of security.

In this chapter, we go further, extending Wasm to become a verifiably secure cryptographic

language. We augment Wasm’s type system and semantics with cryptographically meaningful

types to produce Constant-Time WebAssembly (CT-Wasm). At the type level, CT-Wasm allows

developers to distinguish secret data (e.g., keys and messages) from public data. This allows us to

impose secure information flow [226] and constant-time programming disciplines [50, 208] on

code that handles secret data and ensure that well-typed CT-Wasm code cannot leak such data,

even via timing side channels.

CT-Wasm brings together the convenience of in-browser JavaScript crypto with the

6

security of a low-level, formally specified language. CT-Wasm allows application developers

to incorporate third-party cryptographic libraries of their choosing, much as they do today with

JavaScript. But, unlike JavaScript, CT-Wasm ensures that these libraries cannot leak secrets by

construction—a property we guarantee via a fully mechanized proof.

CT-Wasm’s type system draws from previous assembly language type systems that enforce

constant-time [50]. Our system, however, is explicitly designed for the in-browser crypto use

case and is thus distinguished in two key ways. First, like Wasm, we ensure that type checking

is blisteringly fast, executing as a single linear pass. Second, our type system makes trust

relationships explicit: CT-Wasm only allows code explicitly marked as “trusted” to declassify

data, bypassing the security restrictions on secret data otherwise imposed by our type system.

Contributions. In sum, this chapter presents several contributions:

• CT-Wasm: a new low-level bytecode language that extends Wasm with cryptographically

meaningful types to enable secure, in-browser crypto.

• A fully mechanized formal model of the type system and operational semantics of CT-

Wasm, together with a full proof of soundness, a verified type checker, and proofs of several

security properties, not least the constant-time property (see Section 1.2.1).

• Two implementations of CT-Wasm: we extend the W3C specification reference implemen-

tation and the real-world implementation of Wasm in V8.

• Implementations, in CT-Wasm, of several important cryptographic algorithms, including

the TweetNaCl crypto library [63]. We experimentally evaluate our implementation work

with respect to correctness, performance, and security.

• Support tools that allow developers to (1) leverage the CT-Wasm verifier to implement

secure crypto code that will run on existing base Wasm implementations, in the style of the

7

TypeScript compiler [180], and (2) semi-automatically infer CT-Wasm annotations for base

Wasm implementations.

Open Source. All source and data are available under an open source license at [268].

Paper Organization. We first review WebAssembly and the constant-time programming

paradigm (Section 1.2) and give a brief overview of CT-Wasm (Section 3.2). In Section 1.4

we describe the CT-Wasm language and its semantics. Our mechanized model and formal security

guarantees are detailed in Section 1.5. We describe our implementations, supporting tools, and

evaluation in Sections 1.6. We review related work in Section 3.8. Finally we discuss future work

in Section 1.8 and conclude.

1.2 Background

In this section we give a brief overview of the constant-time programming paradigm

and the WebAssembly bytecode language. We then proceed to an overview of Constant-Time

WebAssembly.

1.2.1 Constant-time Programming Paradigm

Naive implementations of cryptographic algorithms often leak information—the very

information they are designed to protect—via timing side channels. Kocher [156], for example,

shows how a textbook implementation of RSA can be abused by an attacker to leak secret key bits.

Similar key-recovery attacks were later demonstrated on real implementations (e.g., RSA [77]

and AES [56, 198]). As a result, crypto-engineering best practices have shifted to mitigate such

timing vulnerabilities. Many modern cryptographic algorithms are even designed with such

concerns from the start [61, 57, 59].

The prevailing approach for protecting crypto implementations against timing attacks is

to ensure that the code runs in “constant time”. An implementation is said to be constant-time if

8

its execution time is not dependent on sensitive data, referred to as secret values (e.g., secret keys

or messages). Constant-time implementations ensure that an attacker observing their execution

behaviors cannot deduce any secret values. Though the precise capabilities of attackers vary—

e.g., an attacker co-located with a victim has more capabilities than a remote attacker—most

secure crypto implementations follow a conservative constant-time programming paradigm that

altogether avoids variable-time operations, control flow, and memory access patterns that depend

on secrets [94, 208].

Verifying the constant-time property (or detecting lack thereof) for a given implementation

is considered one of the most important verification problems in cryptography [33, 32, 69, 31, 288,

73, 81, 106]. To facilitate formal reasoning, these works typically represent this constant-time

property using a leakage model [74] over a small-step semantics for a given language. A leakage

model is a map from program state/action to an observation, an abstract representation of an

attacker’s knowledge. For each construct of the language, the leakage model encodes what

information is revealed (to an attacker) by its execution. For example, the leakage model for

branching operations such as if or while leaks all values associated with the branch condition, to

represent that an attacker may use timing knowledge to reason about which branch was taken [33].

Proving that a given program enjoys the constant-time property can then be abstracted as a proof

that the leakage accumulated over the course of the program’s execution is invariant with respect

to the values of secret inputs.

In general, the leakage model of a system must encompass the behavior of hardware

and compiler optimizations across all different platforms. For example, for C, operators such as

division and modulus, on some architectures, are compiled to instruction sequences that have

value-dependent timing. A conservative leakage model must accordingly encode these operators

as leaking the values of their operands [33]. While there is unavoidably a disconnect between

the abstraction of a leakage model and the actions of real-world compilers and architectures,

implementations that have such formal models have proven useful in practice. For example, the

9

HACL* library [288] has been adopted by Firefox [64], while Fiat [106] has been adopted by

Chrome.

Unfortunately, much of this work does not translate well to the web platform. Defining

a leakage model for JavaScript is extremely difficult. JavaScript has many complex language

features that contribute to this difficulty—from prototypes, proxies, to setters and getters [104].

Even if we restrict ourselves to well-behaving subsets of JavaScript (e.g., asm.js [138] or defensive

JavaScript [65]), the leakage model must capture the behavior of JavaScript runtimes—and their

multiple just-in-time compilers and garbage collectors.

Despite these theoretical shortcomings, JavaScript crypto libraries remain overwhelm-

ingly popular [196, 155, 84, 92, 146, 249], even in the presence of native libraries which were

intended to curb their use in the web ecosystem [135]. Unfortunately, these competing solutions

proved inadequate. Native crypto libraries differ wildly across platforms. For example the Web

Crypto [135] and the Node.js crypto [194] APIs (available to browser and server-side JavaScript

respectively) barely overlap, undercutting a major motivation for using JavaScript in the first

place—its cross-platform nature. They are also unnecessarily complex (e.g., the Web Crypto API,

like OpenSSL, is “the space shuttle of crypto libraries” [121]) when compared to state-of-the-art

libraries like NaCl [62]. And, worst of all, none of these native libraries implement modern

cryptographic algorithms such as the Poly1305 Message Authentication Code [57], a default

in modern crypto libraries [62]). As we argue in this chapter, WebAssembly can address these

shortcomings, in addition to those of JavaScript. Because of its low-level nature, we can sensi-

bly relate existing work on assembly language leakage models to Wasm and provide a formal,

principled approach to reasoning about constant-time crypto code. This gives us an excellent

foundation on which to build CT-Wasm. Moreover, we will show that Poly1305, among many

other cryptographic algorithms, can be securely implemented in CT-Wasm. We next give an

overview of Wasm and describe our extensions to the language.

10

1.2.2 WebAssembly

WebAssembly is a low-level bytecode language newly implemented by all major browsers.

The stack-machine language is designed to allow developers to efficiently and safely execute

native code in the browser, without having to resort to browser-specific solutions (e.g., Native

Client [280]) or subsets of JavaScript (e.g., asm.js [138]). Hence, while Wasm shares some

similarities with low-level, assembly languages, many Wasm design choices diverge from tradition.

We review three key design features relevant to writing secure crypto code: Wasm’s module

system, type system, and structured programming paradigm. We refer the reader to [133] for an

excellent, in-depth overview of Wasm.

Module system. WebAssembly code is organized into modules. Each module contains a set

of definitions: functions, global variables, a linear memory, and a table of functions. Modules

are instantiated by the embedding environment—namely JavaScript—which can invoke Wasm

functions exported by the module, manipulate the module’s memory, etc. At the same time,

the embedding environment must also provide definitions (e.g., from other Wasm modules) for

functions the module declared as imports.

In a similar way to Safe Haskell [257], we extend Wasm’s module system to further allow

developers to specify if a particular import is trusted or untrusted. In combination with our other

type system extensions, this allows developers to safely delineate the boundary between their

own code and third-party, untrusted code.

Strong type system. WebAssembly has a strong, static type system and an unambiguous formal

small-step semantics [133]. Together, these ensure that well-typed WebAssembly programs are

“safe”, i.e., they satisfy progress and preservation [275, 267]. This is especially important when

executing Wasm code in the browser—bytecode can be downloaded from arbitrary, potentially

untrustworthy parties. Hence, before instantiating a module, Wasm engines validate (type check)

the module to ensure safety. We extend the type system to enable developers to explicitly annotate

secret data and extend the type checker to ensure that secrets are not leaked (directly or indirectly).

11

Structured programming paradigm. WebAssembly further differs from traditional assembly

languages in providing structured control flow constructs instead of simple (direct/indirect) jump

instructions. Specifically, Wasm provides high-level control flow constructs for branching (e.g.,

if-else blocks) and looping (e.g., loop construct with the br if conditional branch). The structured

control flow approach has many benefits. For example, it ensures that Wasm code can be validated

and compiled in a single pass [133]. This provides a strong foundation for our extension: we

can enforce a constant-time leakage model via type checking, in a single pass, instead of a more

complex static analysis [50].

These design features position WebAssembly as an especially good language to extend

with a light-weight information flow type system that can automatically impose the constant-time

discipline on crypto code [261, 226, 50]. In the next section, we give an overview of our extension:

CT-Wasm.

1.3 Constant-Time WebAssembly, an overview

We extend Wasm to enable developers to implement cryptographic algorithms that are

verifiably constant-time. Our extension, Constant-Time WebAssembly, is rooted in three main

design principles. First, CT-Wasm should allow developers to explicitly specify the sensitivity

of data and automatically ensure that code handling secret data cannot leak the data. To this

end, we extend the Wasm language with new secret values (e.g., secret 32-bit integers typed s32)

and secret memories. We also extend the type system of Wasm to ensure that such secret data

cannot be leaked either directly (e.g., by writing secret values to public memory) or indirectly

(e.g., via control flow and memory access patterns), by imposing secure information flow and

constant-time disciplines on code that handles secrets (see Section 1.4). We are careful to design

CT-Wasm as a strict syntactic and semantic superset of Wasm—all existing Wasm code is valid

CT-Wasm—although no security benefits are guaranteed without additional secrecy annotations.

12

Second, since Wasm and most crypto algorithms are designed with performance in mind,

CT-Wasm must not incur significant overhead, either from validation or execution. This is

especially true for the web use case. Overall page load time is considered one of—if not the—key

website performance metric [243, 188], so requiring the web client to conduct expensive analyses

of loaded code before execution would be infeasible. Our type-driven approach addresses this

design goal—imposing almost no runtime overhead. CT-Wasm only inserts dynamic checks

for indirect function calls via call indirect; much like Wasm itself, this ensures that types are

preserved even for code that relies on dynamic dispatch. In contrast to previous type checking

algorithms for constant-time low-level code [50, 33], CT-Wasm leverages Wasm’s structured

control flow and strongly-typed design to implement an efficient type checking algorithm—in a

single pass, we can verify if a piece of crypto code is information flow secure and constant-time

(see Section 1.5.2). We implement this type checker in the V8 engine and as a standalone verified

tool. Our standalone type checker can be used by crypto engineers during development to ensure

their code is constant-time, even when “compiled” to legacy Wasm engines without our security

annotations (see Section 1.6.3).

Third, CT-Wasm should be flexible enough to implement real-world crypto algorithms.

To enforce constant-time programming, our type system is more restrictive than more traditional

information flow control type systems (e.g., JIF’s [186, 184] or FlowCaml’s [209]). For example,

we do not allow allow branching (e.g., via br if or loop) on secret data or secret-depended

memory instructions (loads and stores). These restrictions, however, are no more onerous

than what developers already impose upon themselves [94, 208]: our type checker effectively

ensures that untrusted code respects these (previously) self-imposed limitations. CT-Wasm

does, however, provide an escape hatch that allows developers to bypass our strict requirements:

explicit declassification with a new declassify instruction, which can be used to downgrade the

sensitivity of data from secret to public. This is especially useful when developers encrypt data

and thus no longer need the type system to protect it or, as Figure 1.1 shows, to reveal (and,

13

(func $nacl secretbox open
...
(call $crypto onetimeauth verify)
(i32.declassify)
(i32.const 0)
(if (i32.eq) (then

...
(call $crypto stream xor)
(return (i32.const 0))))

(return (i32.const -1)))

Figure 1.1: Verified decryption in TweetNaCl relies on a declassification to terminate early (if
verification fails).

by choice, explicitly leak) the success or failure of a verification algorithm. CT-Wasm allows

these use cases, but makes them explicit in the code. To ensure declassification is not abused,

our type system restricts the use of declassify to functions marked as trusted. This notion of

trust is transitively enforced across function and module boundaries: functions that call trusted

functions must themselves be marked trusted. This ensures that developers cannot accidentally

leak secret data without explicitly opting to trust such functions (e.g., when declaring module

imports). Equally important, by marking a function untrusted, developers give a swiftly verifiable

contract that its execution cannot leak secret data directly, indirectly via timing channels, or via

declassification.

Trust model. Our attacker model is largely standard. We assume an attacker that can (1) supply

and execute arbitrary untrusted CT-Wasm functions on secret data and (2) observe the runtime

behavior of this code, according to the leakage model we define in Section 1.5. Since CT-Wasm

does not run in isolation, we assume that the JavaScript embedding environment and all trusted

CT-Wasm functions are correct and cannot be abused by the attacker to leak sensitive data. Under

this model, CT-Wasm guarantees that the attacker will not learn any secrets. In practice, these

guarantees allow application developers to execute untrusted, third-party crypto libraries (e.g.,

from content distribution networks or package managers such as NPM) without fear that leakage

14

(immediates) imm ::= nat
(secrecy types) sec ::= secret | public

(trust types) tr ::= trusted | untrusted

(packed types) pt ::= i8 | i16 | i32

(value types) t ::= i32′ sec | i64′ sec | f32 | f64

(function types) ft ::= t∗ → t∗

(global types) gt ::= mut? t

unopiN ::= clz | ctz | popcnt

unopfN ::= neg | abs | ceil | floor |
trunc | nearest | sqrt

binopiN ::= add | sub | mul | div sx |
rem sx | and | or | xor |
shl | shr sx | rotl | rotr

binopfN ::= add | sub | mul | div |
min | max | copysign

testopiN ::= eqz

relopiN ::= eq | ne | lt sx | gt sx |
le sx | ge sx

relopfN ::= eq | ne | lt | gt | le | ge

cvtop ::= convert | reinterpret |
classify | declassify

sx ::= s | u

(constants) k ::= . . .

(instructions) e ::= unreachable | nop | drop | select sec |
block ft e∗ end | loop ft e∗ end |
if ft e∗ else e∗ end | t.const k |
br imm | br if imm | br table imm+ |
return | call imm | call indirect (tr, ft) |
get local imm | set local imm |
tee local imm | get global imm |
set global imm |
t.load (pt sx)? a o | t.store pt? a o |
memory.size | memory.grow |
t.unopt | t.binopt | t.testopt |
t.relopt | t.cvtop t sx?

(functions) func ::= ex∗ func (tr, ft) local t∗ e∗ |
ex∗ func (tr, ft) imp

(globals) glob ::= ex∗ global gt e∗ | ex∗ global gt imp
(tables) tab ::= ex∗ table n imm∗ | ex∗ table n imp
(memories) mem ::= ex∗ memory n sec |

ex∗ memory n sec imp
(imports) imp ::= import “name” “name”
(exports) ex ::= export “name”
(modules) mod ::= module func∗ glob∗ tab? mem?

sec (iN′ sec) ≜ sec iN ::= iN′ public

sec fN ≜ public sN ::= iN′ secret

Figure 1.2: CT-Wasm abstract syntax as an extension of the grammar given by [133].

will occur.

1.4 CT-Wasm Semantics

We specify CT-Wasm primarily as an extension of WebAssembly’s syntax and type system,

with only minor extensions to its dynamic semantics. Our new secrecy and trust annotations are

designed to track the flow of secret values through the program and restrict their usage to ensure

both secure information flow and constant-time security. We give the CT-Wasm extended syntax

in Figure 2.3, the core type system in Figure 1.3, and an illustrative selection of the runtime

15

(contexts) C ::=
{ trust tr, func (tr, ft)∗, global gt∗, table n?,

memory (n,sec)?, local t∗, label (t∗)∗, return (t∗)?

}

tr ≻tr tr′ ≜ (tr = tr′)∨ (tr = trusted∧ tr′ = untrusted)

C ⊢ t.const c : ε → t C ⊢ t.unop : t → t C ⊢ t.binop : t t → t

sec t = sec
C ⊢ t.testop : t → (i32′ sec)

sec t = sec
C ⊢ t.relop : t t → (i32′ sec)

t1 ̸= t2 sx? = ε ⇔ (t1 = in′1 sec∧ t2 = in′2 sec∧|t1|< |t2|)∨ (t1 = fn∧ t2 = fn′)
C ⊢ t1.convert t2 sx? : t2 → t1

t1 ̸= t2 |t1|= |t2| sec t1 = sec t2
C ⊢ t1.reinterpret t2 : t2 → t1

(t1 = in′ secret∧ t2 = in′ public)
C ⊢ t1.classify t2 : t2 → t1

Ctrust = trusted (t1 = in′ public∧ t2 = in′ secret)
C ⊢ t1.declassify t2 : t2 → t1

C ⊢ unreachable : t∗1 → t∗2 C ⊢ nop : ε → ε C ⊢ drop : t → ε

sec = secret −→ sec t = secret
C ⊢ select sec : t t (i32′ sec)→ t

ft = tn
1 → tm

2 C, label(tm
2) ⊢ e∗ : ft

C ⊢ block ft e∗ end : ft
ft = tn

1 → tm
2 C, label(tn

1) ⊢ e∗ : ft
C ⊢ loop ft e∗ end : ft

ft = tn
1 → tm

2 C, label(tm
2) ⊢ e∗1 : ft C, label(tm

2) ⊢ e∗2 : ft
C ⊢ if ft e∗1 else e∗2 end : tn

1 i32 → tm
2

Creturn = t∗

C ⊢ return : t∗1 t∗ → t∗2

Figure 1.3: CT-Wasm typing rules as an extension of the typing rules given by [133].

16

Clabel(i) = t∗

C ⊢ br i : t∗1 t∗ → t∗2

Clabel(i) = t∗

C ⊢ br if i : t∗ i32 → t∗
(Clabel(i) = t∗)+

C ⊢ br table i+ : t∗1 t∗ i32 → t∗2

Ctrust = tr Cfunc(i) = (tr′, ft) tr ≻tr tr′

C ⊢ call i : ft
ft = t∗1 → t∗2 Ctrust = tr tr ≻tr tr′ Ctable = n

C ⊢ call indirect (tr′, ft) : t∗1 i32 → t∗2

Clocal(i) = t
C ⊢ get local i : ε → t

Clocal(i) = t
C ⊢ set local i : t → ε

Clocal(i) = t
C ⊢ tee local i : t → t

Cglobal(i) = mut? t
C ⊢ get global i : ε → t

Cglobal(i) = mut t
C ⊢ set global i : t → ε

Cmemory = (n,sec) sec t = sec 2a ≤ (|tp|<)?|t| (tp sz)? = ε∨ t = im′ sec
C ⊢ t.load (tp sz)? a o : i32 → t

Cmemory = (n,sec) sec t = sec 2a ≤ (|tp|<)?|t| tp? = ε∨ t = im′ sec
C ⊢ t.store tp? a o : i32 t → ε

Cmemory = (n,sec)
C ⊢ memory.size : ε → i32

Cmemory = (n,sec)
C ⊢ memory.grow : i32 → i32

C ⊢ ε : ε → ε

C ⊢ e∗1 : t∗1 → t∗2 C ⊢ e2 : t∗2 → t∗3
C ⊢ e∗1 e2 : t∗1 → t∗3

C ⊢ e∗ : t∗1 → t∗2
C ⊢ e∗ : t∗ t∗1 → t∗ t∗2

Figure 1.3: CT-Wasm typing rules (cont.)

17

(values) v ::= t.const k
(store index) a ::= imm
(module instances) inst ::= {func i a∗, global i a∗, table i a?, mem i a?}
(function closures) cl ::= {instance ind a, type (tr, ft), code func} | {type (tr, ft),host ...}
(memory instances) mi ::= byte∗

(store) s ::= {inst inst∗, func cl∗, global (mut? v)∗, table cl∗, mem (sec,mi)∗}

(administrative instructions) e ::= . . . | trap | callcl cl | labeln{e∗} e∗ end | localn{i;v∗} e∗ end

(configurations) c ::= s;v∗;e∗

s;vs; (sN.const k) t2.declassify t1 ;i s;vs; (iN.const k)
s;vs; (iN.const k) t2.classify t1 ;i s;vs; (sN.const k)

s;vs; v1 v2 ((i32′ sec).const 0) select sec′ ;i s;vs;v2

s;vs; v1 v2 ((i32′ sec).const k+1) select sec′ ;i s;vs;v1

s;vs; (i32.const k) call indirect (tr, ft) ;i s;vs;callcl cl
if table i ((inst s)!i) = a
and ((table i)!a)!k = cl
and type cl = (tr, ft)

(∗)

s;vs; (i32.const k) call indirect (tr, ft) ;i s;vs; trap otherwise

(∗)
callcl cl represents a function closure about to be entered as a local context. It is used
to define a unifying dynamic semantics for the various forms of function call in Wasm,
and its semantics is unchanged from [133].

Figure 1.4: Selected CT-Wasm semantic definitions, extended from [133]. Since the vast
majority of the reduction rules are unchanged, we give only a few examples here.

18

reduction rules in Figure 1.4.

We now consider aspects of the base WebAssembly specification, and describe how they

are extended to form Constant-Time WebAssembly.

1.4.1 Instances

WebAssembly’s typing and runtime execution are defined with respect to a module

instance. An instance is a representation of the global state accessible to a WebAssembly

configuration (program) from link-time onwards. In Figure 1.3, the typing context C abstracts

the current instance. In Figure 1.4, the small-step runtime reduction relation is indexed by the

current instance i.

Instances are effectively a collection of indexes into the store, which keeps track of all

global state potentially shared between different configurations.1 If an element of the WebAssem-

bly store (e.g., another module’s memory or function) is not indexed by the current instance, the

executing WebAssembly code is, by construction, prevented from accessing it.

1.4.2 Typing and Value Types

Wasm is a stack-based language. Its primitive operations produce and consume a fixed

number of value types. Wasm’s type system assigns each operation a type of the form t∗ → t ′∗,

describing (intuitively) that the operation requires a stack of values of type t∗ to execute, and will

produce a stack of values of type t ′∗ upon completion. The type of a Wasm code section (a list of

operations) is the composition of these types, with a given operation potentially consuming the

results of previous operations.

Base Wasm has four value types: i32, i64, f32, and f64, representing 32 and 64 bit integer

1In [133], all instances are held as a list in the store, with evaluation rules parameterized by an index into this list.
The “live” specification recently changed this so that evaluation rules are directly parameterized by an instance [269].
We give our semantics as an extension of the original paper definition, although the transformation is ultimately
trivial, so we will often refer to the current instance index as the “current instance”.

19

and floating point values, respectively. To allow developers to distinguish between public and

secret data, we introduce new value types which denote secret values. Formally, we first define

secrecy annotations, sec, which can take two possible values: secret or public. We then extend the

integer value types so that they are parameterized by this annotation. For syntactic convenience,

we define the existing i32 and i64 WebAssembly type annotations as denoting public (integer)

values, with new annotations s32 and s64 representing secret (integer) values. Floating point

types are always considered public, since most floating point operations are variable-time and

vulnerable to timing attacks [35, 157, 36].

As shown in Figure 1.3, all CT-Wasm instructions (except declassify) preserve the

secrecy of data. We do not introduce any subtyping or polymorphism of secrecy for existing

Wasm operations over integer values; pure WebAssembly seeks to avoid polymorphism in its type

system wherever practical, a paradigm we continue to emulate. Instead, we make any necessary

conversions explicit in the syntax of CT-Wasm. For example, the existing i32.add instruction of

Wasm is interpreted as operating over purely public integers, while a new s32.add instruction is

added for secret integers. We introduce an explicit classify operation which relabels a public

integer value as a secret. This allows us to use public values wherever secret values are required;

this is safe, and makes such a use explicit in the representation of the program.

Together with the control flow and memory access restrictions described below, our

type system guarantees an information flow property: ensuring that, except through declassify,

public computations can never depend on secret values. We give a mechanized proof of this in

Section 1.5.2.

1.4.3 Structured Control Flow

Our type system enforces a constant-time discipline on secret values. This means that

we do not allow secret values to be used as conditionals in control flow instructions, such as

call indirect, br if, br table, or if; only public values can be used as conditionals. This is an

20

onerous restriction, but it is one that cryptography implementers habitually inflict on themselves

in pursuit of security. Indeed, it is described as best-practice in cryptography implementation style

guides [94], and as discussed throughout this chapter, many theoretical works on constant-time

model such operations as unavoidably leaking the value of the conditional to the attacker.

Our type system does, however, allow for a limited form of secret conditionals with

the select instruction. This instruction takes three operands and returns the first or second

depending on the third, condition operand. Since secrecy of the conditional can be checked

statically by the type system, secrecy annotations have no effect on the dynamic semantics of

Figure 1.4. Importantly, select can do this without branching: conditional move instructions

allow select to be implemented using a single, constant-time hardware instruction [147] and, for

processors without such instructions a multi-instruction arithmetic solution exists [94]. In either

case, to preserve the constant-time property if the conditional is secret, both arguments to select

must be fully evaluated. This is the case in the Wasm abstract machine, but real engines must

ensure that they respect this when implementing optimizations. We extend the select instruction

with a secrecy annotation; a select secret instruction preserves constant-time (permitting secret

conditionals), but may permit fewer optimizations.

1.4.4 Memory

Though secret value types allow us to track the secrecy of stack values, this is not enough.

Wasm also features linear memories, which can also be used to store and load values. We thus

annotate each linear memory with sec. Our type system ensures that public (resp. secret) values

can only be stored in memories annotated public (resp. secret). Dually, it ensures that loads from

memory annotated sec can only produce sec values. To ensure that accessing memory does not

leak any information [198, 77], our type system also require that all memory indices to load and

store be public. These restrictions preserve our information flow requirements in the presence of

arbitrary memory operations.

21

Our coarse-grained approach to annotating memory is not without trade offs. Since

Wasm only allows one memory per module, to store both public and secret data in memory, a

developer must create a second module and import accessor functions for that module’s memory.

A simple micro benchmark implementing this pattern reveals a 30% slowdown for the memory

operations. In practice, this is not a huge concern. Once base Wasm gains support for multiple

memories [270], a module in CT-Wasm could have both public and secret memories; we choose

not to implement our own solution now so as to maintain forwards compatibility with the proposed

Wasm extension. Moreover, as we find in our evaluation (Section 1.6.4), many crypto algorithms

don’t require both secret and public memory in practice.

A yet more sophisticated and fine-grained design would annotate individual memory

cells. We eschew this design largely because it would demand a more complex (and thus slower)

type-checking algorithm (e.g., to ensure that a memory access at a dynamic offset is indeed of the

correct sensitivity).

1.4.5 Trust and Declassification

As previously mentioned, it is sometimes necessary for CT-Wasm to allow developers to

bypass the above restrictions and cast secret values to public. For example, when implementing

an encryption algorithm, there is a point where we transfer trust away from information flow

security to the computational hardness of cryptography. At this point, the secret data can be

declassified to public (e.g., to be “leaked” to the outside world).

As a dual to classify we provide the declassify instruction, which transfers a secret

value to its equivalent public one. Both classify and declassify exist purely to make explicit

any changes in security status; as Figure 1.4 shows, these instructions do not imply any runtime

cost. These security casting operations (and our annotations, in general) do, however, slightly

increase the size of the bytecode when dealing with secret values (purely public computations are

unaffected), but the simplicity and explicit nature of the security annotations are a worthwhile

22

trade-off. We give experimental bytecode results for our CT-Wasm cryptographic implementations

in Section 1.6.4.

To restrict the use of declassify, as Figure 1.3 shows, we extend function types with

a trust annotation that specifies whether or not the function is trusted or untrusted. In turn,

CT-Wasm ensures that only trusted functions may use declassify and escape the restrictions (and

guarantees) of the CT-Wasm type system. For untrusted functions, any occurrence of declassify

is an error. Moreover, trust is transitive: an untrusted function is not permitted to call a trusted

function.

We enforce these restrictions in the typing rules for call and call indirect. But, per the

original WebAssembly specification, the call indirect instruction must be additionally guarded by

a runtime type check to ensure type safety. Thus we extend this runtime type check to additionally

check that security annotations are respected. This is the only place in the semantics where our

security annotations have any effect on runtime behavior.

Put together, our security restrictions allow CT-Wasm to communicate strong guarantees

through its types. In an untrusted function, where declassify is disallowed, it is impossible for a

secret value to be directly or indirectly used in a way that can reveal its value. Thus, sensitive

information such as private keys can be passed into unknown, web-delivered functions, and so

long as the function can be validated as untrusted, CT-Wasm guarantees that it will not be leaked

by the action of the function. We next describe our mechanization effort, which includes a proof

of this property (see Section 1.5.8).

1.5 Formal Model

We provide a fully mechanized model of the CT-Wasm language, together with several

mechanized proofs of important properties, including a full proof of soundness of the extended

type system, together with proofs of several strong security properties relating to information

23

flow and constant-time. We build on top of a previous Isabelle model of WebAssembly [267],

extending it with typing rules incorporating our secret types, annotations for trusted and untrusted

functions, and the semantics of classification and declassification. At a rough count, we inherit

˜8,600 lines of non-comment, non-whitespace Isabelle code from the existing mechanization,

with our extensions to the semantics and soundness proofs representing ˜1,700 lines of alterations

and insertions. Our new security proofs come to ˜4,100 lines.

1.5.1 Soundness

We extend the original mechanized soundness proof of the model to our enhanced type

system. For the most part, this amounted to a fairly mechanical transformation of the existing

proof script. While we re-prove both the standard preservation and progress soundness properties,

we will not illustrate the progress property in detail here, since its proof remains almost unchanged

from the existing work, while the preservation property is relevant to our subsequent security

proofs, and required non-trivial changes for the cases relating to function calls. Both proofs

proceed by induction over the definition of the typing relation.

WebAssembly’s top level type soundness properties are expressed using an extended

typing rule given over configurations together with an instance, as a representation of the We-

bAssembly runtime state. Broadly, a configuration c = s; vs; es is given a result type of the form

ts if its operation stack, es, can be given a stack type of the form []→ ts under a typing context

C which abstracts the instance, the store s, and local variables vs. This judgement is written as

⊢i c : ts.

We further extend this so that configurations, formerly typed by ts, the result type of

their stack, are additionally typed according to the level of trust required for their execution;

configuration types now take the form (tr, ts). For example, a configuration containing the

privileged declassify operation will have “trusted” as the trust component of its type. The

preservation property now certifies that trust is preserved by reduction along with the type of

24

the configuration’s stack. As a consequence, a configuration that is initially typed as untrusted

is proven to remain typeable as untrusted across its entire execution, and will never introduce a

privileged instruction at any intermediate stage of reduction.

Theorem 1.5.1.1 (preservation).

Given a configuration c, if ⊢i c : (tr, ts) and c a;i c′, then ⊢i c′ : (tr, ts).

1.5.2 Security Properties

We provide fully mechanized proofs, in Isabelle, that our type system guarantees several

related language-level security properties for all untrusted code. These proofs, as well as the

full definition of the leakage model, are available in [268]. We show that CT-Wasm’s type

system guarantees several security properties, including non-interference and constant-time. We

conclude by showing that a well-typed untrusted CT-Wasm program is guaranteed to satisfy our

constant-time property, the property which was the motivation for the type system’s design.

Provided definitions, lemmas, and theorems are directly named according to their appear-

ances in the mechanization, for easy reference.

1.5.3 Public Indistinguishability

We define an indistinguishability relation between WebAssembly configurations, given

by ∼c. Intuitively, (public) indistinguishability holds between two configurations if they differ

only in the values of their secret state. That is, the values and types of their public state must be

equal, as must the types of their secret state. Formally, we define ∼c over configurations in terms

of indistinguishability relations for each of their components. These definitions can be found in

Figure 1.5. This relation is required for the expression of the constant-time property, and mirrors

the equivalence relation used for the same purpose by [50] between program states. We prove

that typeability of a WebAssembly configuration is invariant with respect to ∼c.

25

t1.const k1 ∼v t2.const k2 ≜ t1 = t2 ∧ (k1 = k2 ∨ sec t1 = sec t2 = secret)

e1 ∼e e2 ≜



(ea ∼v eb) if
e1 = t1.const k1

e2 = t2.const k2

(ea ∼e eb)
n if

e1 = block ft ea
n end

e2 = block ft eb
n end

or
e1 = loop ft ea

n end

e2 = loop ft eb
n end

(ea ∼e eb)
n

∧ (ec ∼e ed)
m if

e1 = if ft ea
n else ec

m end

e2 = if ft eb
n else ed

m end
or

e1 = labeln{ea
n} ec

m end

e2 = labeln{eb
n} ed

m end

(va ∼v vb)
n

∧ (ea ∼e eb)
m if

e1 = localn{i;va
n} ea

m end

e2 = localn{i;vb
n} eb

m end

e1 = e2 otherwise



inst1∗,
func1

∗,

(mut1,glob1)
∗,

table1
?,

(sec1,mem1)
?


∼s



inst2∗,
func2

∗,

(mut2,glob2)
∗,

table2
?,

(sec2,mem2)
?


≜

(inst1 = inst2)∗

∧ (func1 = func2)
∗

∧ (mut1 = mut2 ∧glob1 ∼v glob2)
∗

∧ (table1 = table2)
?

∧

(
(size mem1 = size mem2 ∧ sec1 = sec2 = secret)

∨ (mem1 = mem2 ∧ sec1 = sec2 = public)

)?

s1;v1
∗;e1

∗ ∼c s2;v2
∗;e2

∗ ≜ (s1 ∼s s2)∧ (v1 ∼v v2)
∗∧ (e1 ∼e e2)

∗

Figure 1.5: Definition of ∼c.

26

s;vs; (s32.const k1) (s32.const k2) s32.binop a;i s;vs; (s32.const (k1 binop k2))

with a ≜ binop action(binop,(s32.const k1),(s32.const k2))

s;vs; vn
1 callcl cl a;i s′;vs′; vm

2 (∗)

with cl ≜ {type (tr, tn
1 → tm

2),host ...}
a ≜ host action(s,vn

1,s
′,vm

1 ,cl)

a1 ∼a a2 ≜



op1 = op2 if
a1 = binop action(op1,v1,v2)
a2 = binop action(op2,v

′
1,v

′
2)

and is safe binop(op1)

s1 ∼s s2

∧ (v1 ∼v v2)
n

∧ s′1 ∼s s′2
∧ (v1′ ∼v v2′)

m

∧ cl1 = cl2

if
a1 = host action(s1,vn

1,s
′,vm

1′ ,cl1)
a2 = host action(s2,vn

2,s
′
2,v

m
2′ ,cl2)

and trust(cl1) = untrusted

...

a1 = a2 otherwise

(∗)
The full axiomatic description of host function behavior is not reproduced here. Full
details can be found in [267], or in our mechanization.

Figure 1.6: Example of CT-Wasm action annotations and equivalence.

Lemma 1.5.3.1 (equivp config indistinguishable).

∼c is an equivalence relation.

Lemma 1.5.3.2 (config indistinguishable imp config typing).

If ⊢i c : (tr, ts), then for all c′ such that c ∼c c′, ⊢i c′ : (tr, ts).

1.5.4 Action Indistinguishability

The constant-time property is most naturally expressed as an equivalence of observations,

which are abstractions of an attacker’s knowledge defined with respect to the leakage model

of the system. We adopt a leakage model which extends the leakiest model depicted by [33],

accounting for leakage of branch conditions, memory access patterns, and the operand sizes

27

of unsafe binary operations, namely division and modulus. In addition, we must express our

trust in the host environment that WebAssembly is embedded within. A host function marked

as untrusted will leak all public state it has access to when called, but never any secret state. In

reality, the host environment is the web browser’s JavaScript engine, and user-defined JavaScript

is treated as trusted, so this corresponds to trusting that the engine’s provided built-in functions are

not malicious or compromised, and obey the properties guaranteed by the untrusted annotation.

We augment the WebAssembly reduction relation with state-parameterized actions, as

c a;i c′, effectively defining a labelled transition system. Traditionally, a constant-time proof

in the style of [50] would define its leakage model as a function from either action or state to

a set of observations. However, it is instead convenient for us to adopt a novel representation

of the leakage model as an equivalence relation, given by ∼a, between actions, denoting action

indistinguishability. Intuitively, if two actions are defined as being equivalent by ∼a, this

implies that they are indistinguishable to an attacker. This definition is inspired by the low

view equivalence relations seen in formal treatments of information flow [226], which are used

to embody an attacker’s view of a system. An illustration of our definitions can be found in

Figure 1.6.

This approach is helpful because the behavior of the CT-Wasm host environment, as inher-

ited from Wasm, is specified entirely axiomatically, and may leak a wide variety of differently-

typed state, making a set-based definition of leakage unwieldy. For completeness, we sketch a

more traditional leakage model as a supplement in the mechanization, although this leakage model

does not capture the full range of observations induced by the leakage of the host environment,

because, as mentioned, such a definition would be overly complicated when we have a simpler

alternative.

Having chosen our equivalence-based representation of the leakage model, observations

become instances of a quotient type formed with respect to ∼a. This notion will be made precise

in Section 1.5.9.

28

Lemma 1.5.4.1 (equivp action indistinguishable).

∼a is an equivalence relation.

This representation allows us to define a configuration being constant-time as a property

of trace equivalence with respect to ∼a. However, one final issue must be ironed out. Taking

informal definitions of “trace” and “observation” for illustrative purposes, the standard statement

of the constant-time property for a WebAssembly configuration could naı̈vely read as follows:

Definition (sketch) 1.5.4.2 (naı̈ve constant-time).

A configuration-instance pair (c,i) is constant-time iff for all c′ such that c ∼c c′, the trace of (c, i)

and the trace of (c′, i) induce the same observations.

Unfortunately, WebAssembly is not a completely deterministic language, and so this

standard definition does not apply, as a configuration cannot be uniquely associated with a trace.

There are two ways we can address this. First, we can alter the semantics of WebAssembly to

make it deterministic. But, despite WebAssembly’s non-determinism being highly trivial in most

respects, one of our goals is for CT-Wasm to be a strict extension to WebAssembly’s existing

semantics. Instead, we choose to generalize the standard definition of constant-time so that

it can be applied to non-deterministic programs, in an analogous way to known possibilistic

generalizations of security properties such as non-interference [111, 174]. A formal statement

and proofs related to this generalized definition will follow in Section 1.5.8.

Definition (sketch) 1.5.4.3 (non-deterministic constant-time).

A configuration-instance pair (c,i) is constant-time iff, for all c′ such that c ∼c c′, the set of traces

of (c, i) and the set of traces of (c′, i) induce the same observations.

This generalization implicitly introduces the assumption that, where more than one choice

of reduction is available, the probability of a particular single step being chosen is not dependent

on any secret state. For WebAssembly, we have very good reason to expect that this is the

29

case, because, as previously mentioned, WebAssembly’s non-determinism is highly trivial—also

as a deliberate design decision. The only relevant non-determinism which exists in the model

is the non-determinism of the grow memory instruction, non-determinism of exception (trap)

propagation, and non-determinism of the host environment. For grow memory, our type system

forces all inputs and outputs of the operation to be public, and our leakage model specifies that

the length of the memory is leaked by the operation. For exception propagation, WebAssembly’s

non-determinism in this aspect is purely an artifact of the formal specification’s nature as a

small-step semantics, and the definition of its evaluation contexts. In a real implementation, when

an exception occurs, execution halts immediately. For the host, we simply trust that the user’s

web browser is correctly implemented and, when making non-deterministic choices, respects

secret and untrusted annotations, with respect to our leakage model.

1.5.5 Self-isomorphism

We initially prove a security property for arbitrary untrusted sections of code which is

a single-step analogy to the self-isomorphism property [207], which, stepwise comparing the

executions of all program configurations with observably equivalent state, forbids observable

differences not just in the state, but in the program counter. This single-step property is very

strong, and is the key to proving all of the future properties given in this section. The proof

proceeds by induction over the definition of the reduction relation.

Lemma 1.5.5.1 (config indistinguishable imp reduce).

If ⊢i c : (untrusted, ts) for some ts, then for all c′ such that c ∼c c′, if c a;i ca then there exists c′a

and a′ such that c′ a′;i c′a and ca ∼c c′a and a ∼a a′.

From the definition of ∼c, we know that ca and c′a contain the same instructions, modulo

the values of secretly typed constants.

30

1.5.6 Bisimilarity

We now define our notion of bisimilarity. We prove that programs that vary only in their

secret inputs are bisimilar to each-other while performing ∼a-equivalent actions in lockstep.

This property is sometimes known as the strong security property [227]. Configurations in

WebAssembly always reduce with respect to an instance, so we define bisimulation in terms of

configurations together with their instances.

Definition 1.5.6.1 (config bisimulation).

config bisimulation R ≜

∀((c, i),(c′, i′)) ∈ R.

(∀ca, a. c a;i ca −→ ∃c′a, a′. c′ a′;i′ c′a ∧a ∼a a′∧ (ca, i),(c′a, i
′) ∈ R)∧

(∀c′a, a′. c′ a′;i′ c′a −→ ∃ca, a. c a;i ca ∧a ∼a a′∧ (ca, i),(c′a, i
′) ∈ R)

Definition 1.5.6.2 (config bisimilar).

config bisimilar ≜
⋃

{ R | config bisimulation R }

We prove that the set of pairs of well-typed, publicly indistinguishable configurations

forms a bisimulation. From this and our definition of bisimilarity, we immediately have our

version of the strong security property.

Definition 1.5.6.3 (typed indistinguishable pairs).

typed indistinguishable pairs ≜ { ((c, i),(c′, i)) | ⊢i c : (untrusted, ts)∧ c ∼c c′ }

Lemma 1.5.6.4 (config bisimulation typed indistinguishable pairs).

config bisimulation typed indistinguishable pairs

Theorem 1.5.6.5 (config indistinguishable imp config bisimilar).

If ⊢i c : (untrusted, ts) for some ts, then for all c′ such that c∼c c′, ((c, i),(c′, i))∈ config bisimilar..

31

1.5.7 Non-interference

We define a reflexive, transitive version of our reduction relation, given as c as;
∗
i cas,

annotated by an ordered list of actions. We can then prove the following property as a transitive

generalization of our initial lemma, capturing the classic non-interference property. This is a strict

information flow input-output property which encodes that publicly indistinguishable programs

must have publicly indistinguishable outputs.

Lemma 1.5.7.1 (config indistinguishable trace noninterference).

If ⊢i c : (untrusted, ts) for some ts, then for all c′ such that c ∼c c′, if c as;
∗
i cas then there exists

c′as and as′ such that c′ as′;
∗
i c′as and cas ∼c c′as and as pairwise ∼a with as′.

1.5.8 Constant-time

We now formally discuss the constant-time property we originally sketched (Section

1.5.4.3). We define, coinductively, the set of possible traces for a configuration with respect

to an instance. In Isabelle, the trace is represented by the type action llist, the codatatype for

a potentially infinite list of actions. Equivalence between traces is then given as corecursive

pairwise comparison by ∼a, written as llist all2 ∼a in Isabelle. We lift equivalence between

traces to equivalence between sets of traces in the standard way. This is already defined as a

specialization of Isabelle’s built-in rel set predicate.

Definition 1.5.8.1 (config is trace).

∄ca. c a;i ca −→ config is trace (c, i) []

c a;i ca ∧ config is trace (ca, i) as −→ config is trace (c, i) (a :: as)

Definition 1.5.8.2 (config trace set).

config trace set (c, i)≜ { as | config is trace (c, i) as }

Definition 1.5.8.3 (rel set).

rel set R A B ≜ (∀x ∈ A. ∃y ∈ B. R x y)∧ (∀y ∈ B. ∃x ∈ A. R x y)

32

Definition 1.5.8.4 (trace set equiv).

trace set equiv ≜ rel set (llist all2 ∼a)

From the above, we can now formally define our constant-time property. We establish

CT-Wasm’s titular theorem: all typed untrusted configurations are constant-time.

Definition 1.5.8.5 (constant time traces).

constant time traces (c, i)≜

∀c′. c ∼c c′ −→ trace set equiv (config trace set (c, i)) (config trace set (c′, i))

Theorem 1.5.8.6 (config untrusted constant time traces).

If ⊢i c : (untrusted, ts) for some ts, then (c,i) is constant-time.

1.5.9 Observations as Quotient Types

The definition above gives the constant-time property in terms of an equivalence between

trace sets, where the abstract observations of existing literature on the constant-time property

are left implicit in the definition of ∼a. We now discuss how observations can be re-introduced

as objects into our formalism, allowing us to adopt the standard definition of the constant-time

property as equality between sets of observations.

We observe that, as ∼a is an equivalence relation, we may use it to define a quotient

type [140]. Quotient types are the type-theoretic analogy to quotient sets, where elements are

partitioned into equivalence classes. Isabelle allows us to define and reason about quotient types,

and to verify that particular functions over the underlying type may be lifted to the quotient type

and remain well-defined [143]. This amounts to a proof that the function has the same value for

each member of an equivalence class abstracted by the quotient type.

We can define the type of observations as the quotient type formed from the underlying

type action llist with the equivalence relation being llist all2 ∼a. Since ∼a defines our leakage

model, this observation type precisely characterizes the information that the model allows an

33

attacker to observe during execution. We can then (trivially) lift the previous configuration trace

set definition to observations, and give our alternative definition of the constant-time property.

Definition 1.5.9.1 (observation).

observation ≜ action llist / (llist all2 ∼a)

Lemma 1.5.9.2 (config obs set).

The lifting of the function config trace set from the type ((config × inst) → (action llist) set) to

the type ((config × inst) → observation set) is well-defined.

Definition 1.5.9.3 (constant time).

constant time (c, i)≜ ∀c′. c ∼c c′ −→ config obs set (c, i) = config obs set (c′, i)

We additionally give weaker versions of all of the results in 1.5.8 and 1.5.9 using a stronger

definition of config is trace that is inductive rather than coinductive in [268].

1.6 Implementation

In this section we describe our CT-Wasm implementations and supporting tools. We

also describe our evaluation of the CT-Wasm language design and implementation, using several

cryptographic algorithms as case studies. All materials referenced here are available in [268].

1.6.1 CT-Wasm Implementations

We provide two CT-Wasm implementations: a reference implementation and a native

implementation for V8 as used in both Node.js and the Chromium browser. We describe these

below.

34

Reference implementation

We extend the Wasm reference interpreter [272] to implement the full CT-Wasm semantics.

Beyond providing an easily understandable implementation of the spec, the reference interpreter

serves two roles. First, it provides an easy to understand implementation of the CT-Wasm specifica-

tion in a high-level language (OCaml), when compared to, say, the optimized V8 implementation.

Moreover, the interpreter (unlike V8) operates on both bytecode and text-format CT-Wasm code.

We found this especially useful for testing handwritten CT-Wasm crypto implementations and our

V8 implementation of CT-Wasm. Second, the reference Wasm implementation also serves as the

basis for a series of tools. In particular, we reuse the parsers, typed data structures, and testing

infrastructure (among other parts) to build and test our supporting tools and verified type checker.

V8 implementation

WebAssembly in both Node.js and Chromium is implemented in the V8 JavaScript

engine. V8 parses Wasm bytecode, validates it, and directly compiles the bytecode to a low-

level “Sea of Nodes” [89] representation (also used by the JavaScript just-in-time compiler),

which is then compiled to native code. We extend V8 (version 6.5.254.40) to add support for

CT-Wasm. We modify the Wasm front-end to parse our extended bytecode and validate our new

types. We modify the back-end to generate code for our new instructions. While the parser

modifications are straightforward, our validator fundamentally changes the representation of types.

V8 assumes a one-to-one correspondence between the (Sea of Nodes) machine representation of

types and Wasm types. This allows V8 to simply use type aliases instead of tracking Wasm types

separately. Since s32 and s64 have the same machine representation as i32 and i64, respectively,

our implementation cannot do this. Our CT-Wasm implementation, instead, tracks types explicitly

and converts CT-Wasm types to their machine representation when generating code; since our

approach is largely type-driven, the code generation for CT-Wasm is otherwise identical to that

of Wasm. By inspecting the generated assembly code, we observed that V8 does not compile

35

the select instruction to constant-time assembly. We therefore implement a separate instruction

selection for secret select so that the generated code is in constant-time.

CT-Wasm represents each instruction over secrets as a two-byte sequence—the first byte

indicates if the operation is over a secret, the second indicates the actual instruction. We take this

approach because the existing, single-byte instruction space is not large enough to account for all

(public and secret) CT-Wasm instructions; introducing polymorphism is overly intrusive to the

specification and V8 implementation. Importantly, this representation is backwards compatible:

all public operations are encoded in a single byte, as per the Wasm spec. Indeed, all our

modifications to the V8 engine preserve backwards compatibility—CT-Wasm is a strict superset

of Wasm, and thus our changes do not affect the parsing, validation or code generation of legacy

Wasm code.

1.6.2 Verified Type Checker

We provide a formally verified type checker for CT-Wasm stacks, and integrate it with

our extension of the OCaml reference implementation. This type checker does not provide the

informative error messages of its unverified equivalent, so we include it as an optional command-

line switch which toggles its use during the validation phase of CT-Wasm execution. We validate

this type checker against our conformance tests, and our crypto implementations.

The type checker is extended from the original given by [267], however major modifica-

tions needed to be made to the original constraint system and proofs. The original type checker

introduced an enhanced type system with polymorphic symbols; the type of an element of the

stack during type checking could either be entirely unconstrained (polymorphic), or an exact value

type. We must add an additional case to the constraint system in order to produce a sound and

complete algorithm; it is possible for an element of the stack to have a type that is unconstrained

in its representation, but must be guaranteed to be secret. This means that in addition to the

original TAny and TSome constraint types, we must introduce the additional TSecret type, and

36

extend all previous lemmas, and the soundness and completeness proofs, for this case.

1.6.3 CT-Wasm Developer Tools

We provide two tools that make it easier for developers to use CT-Wasm: ct2wasm, allows

developers to use CT-Wasm as a development language that compiles to existing, legacy Wasm

runtimes; wasm2ct, on the other hand, helps developers rewrite existing Wasm code to CT-Wasm.

We describe these below.

ct2wasm

Constant-Time WebAssembly is carefully designed to not only enforce security guarantees

purely by the static restrictions of the type system, but also be a strict syntactic and semantic

superset of WebAssembly. These facts together mean that CT-Wasm can be used as a principled

development language for cryptographic algorithms, with the final implementation distributed

as base WebAssembly with the crypto-specific annotations removed. In this use-case, CT-

Wasm functions as a security-oriented analogy to TypeScript [180]. TypeScript is a form of

statically typed JavaScript, designed to facilitate a work-flow where a developer can complete

their implementation work while enjoying the benefits of the type system, before transpiling the

annotated code to base JavaScript for distribution to end users. Similarly, CT-Wasm facilitates a

work-flow where cryptography implementers can locally implement their algorithms in Constant-

Time WebAssembly in order to take advantage of the information flow checks and guarantees

built into our type system, before distributing the final module as base WebAssembly.

We implement a tool, ct2wasm, analogous to the TypeScript compiler, for transpiling

CT-Wasm code to bare Wasm. This tool first runs the CT-Wasm type checking algorithm, then

strips security annotations from the code and removes the explicit coercions between secret and

public values. Moreover, all secret select operations are rewritten to an equivalent constant-time

sequence of bitwise operations, since, as previously mentioned in Section 1.6.1, the select

37

instruction is not always compiled as constant-time. Like the TypeScript compiler [179], ct2wasm

does not guarantee the total preservation of all CT-Wasm semantics and language properties after

translation, especially in the presence of other bare Wasm code not originally generated and type

checked by our tool. However, we can offer some qualified guarantees even after translation.

With the exception of the call indirect instruction, the runtime behaviors of CT-Wasm

instructions are not affected by their security annotations, as these are used only by the type system.

The call indirect instruction exists to facilitate a dynamic function dispatch system emulating

the behavior of higher order code, a pattern which is, to the best of our knowledge, non-existent

in serious cryptographic implementations. Aside from this, bare WebAssembly interfacing with

the generated code may violate some assumptions of the Constant-Time WebAssembly type

system. For example, if the original code imports an untrusted function, it assumes that any secret

parameters to that function will not be leaked. However at link-time, the type-erased code could

have its import satisfied by a bare WebAssembly function which does not respect the untrusted

contract.

ct2wasm detects these situations, and warns the developer wherever the translation may

not be entirely semantics-preserving. We aim for a sound overapproximation, so that a lack of

warnings can give confidence to the implementer that the translation was robust, but nevertheless

one that is realistic enough that many CT-Wasm cryptographic implementations can be transpiled

without warnings (see Section 1.6.4).

By default, ct2wasm assumes that the host itself is a trusted environment. This matches

the assumptions made throughout the paper. The tool offers an additional paranoid mode,

which warns the developer about every way the module falls short of total encapsulation. These

conditions are likely to be too strict for many real-world cryptographic implementations designed

to be used in a JavaScript environment—the conditions imply that the host is not allowed direct

access to the buffer where the encrypted message is stored. But, as Wasm becomes more

ubiquitous, this mode could provide additional guarantees to self-contained Wasm applications

38

(e.g., the Nebulet micro-kernel [189]) that do not rely on a JavaScript host to execute.

wasm2ct

CT-Wasm is a useful low-level language for implementing cryptographic algorithms from

the start, much like qhasm [60] and Jasmin [31]. But, unlike qhasm and Jasmin, WebAssembly is

not a domain-specific language and developers may already have crypto Wasm implementations.

To make it easier for developers to port such Wasm implementations to CT-Wasm, we provide a

prototype tool, wasm2ct, that semi-automatically rewrites Wasm code to CT-Wasm.

At its core, wasm2ct implements an inference algorithm that determines the security

labels of local variables, functions, and globals.2 Our inference algorithm is conservative and

initially assumes that every value is secret. It then iteratively traverses functions and, when

assumptions are invalidated, relabels values (and the operations on those values) to public as

necessary. For example, when encountering a br if instruction, wasm2ct relabels the operand

to public and traverses the function AST backwards to similarly relabel any of the values the

operands it depends on. For safety, our tool does not automatically insert any declassification

instructions. Instead, the developer must insert such instructions explicitly when the label of a

value cannot be unified.

Beyond manually inserting declassify instructions, wasm2ct also requires developers to

manually resolve the sensitivity of certain memory operations. wasm2ct does not (yet) reason

about memories that have mixed sensitivity data: statically determining whether a memory load

at a dynamic index is public in the presence of secret memory writes is difficult. Hence, wasm2ct

assumes that all memory is secret—it does not create a separate module to automatically partition

the public and secret parts. In such cases, the developer must resolve the type errors manually—a

task we found to be relatively easy given domain knowledge of the algorithm. We leave the

2wasm2ct operates at semantic level to allow non-local, cross-function inference, but also supports a syntactic
mode which rewrites Wasm text format’s S-expressions. We found both to be useful: the former in porting TEA and
Salsa20 without manual intervention, the latter in semi-automatically porting the TweetNaCl library.

39

development of a more sophisticated tool (e.g., based on symbolic execution [42]) that can

precisely reason about memory—at least for crypto implementations—to future work.

1.6.4 Evaluation

We evaluate the design and implementation of CT-Wasm by answering the following

questions:

1. Can CT-Wasm be used to express real-world crypto algorithms securely?

2. What is the overhead of CT-Wasm?

3. Does CT-Wasm (and ct2wasm) produce code that runs in constant-time?

To answer these questions, we manually implement three cryptographic algorithms in CT-Wasm:

the Salsa20 stream cipher [61], the SHA-256 hash function [192], and the TEA block ci-

pher [273].3 Following [50], we chose these three algorithms because they are designed to

be constant-time and should be directly expressible in CT-Wasm. Our implementations are

straightforward ports of their corresponding C reference implementations [58, 90, 273]. For both

Salsa20 and TEA, we label keys and messages as secret; for SHA-256, like [50], we treat the

input message as secret.

Beyond these manual implementations, we also port an existing Wasm implementation

of the TweetNaCl library [63, 244]. This library implements the full NaCl API [62], which

exposes 32 functions. Internally, these functions are implemented using the XSalsa20, SHA-512,

Poly1305, and X25519 cryptographic primitives. For this library, we use the wasm2ct tool to

semi-automatically label values; most inputs are secret, represented as (public) “pointers” into

the secret memory.

3TEA and several variants of the block cipher are vulnerable and should not be used in practice [153, 141, 139].
We only implement TEA to evaluate our language as a measure of comparison with [50].

40

We also use ct2wasm to strip labels and produce fully unannotated versions all our CT-

Wasm algorithms. We run ct2wasm with paranoid mode off, since this corresponds to our

current security model. ct2wasm reported no warnings for any of the ports, i.e., no parts of the

translations were flagged as endangering the preservation of semantics, given our previously

stated assumptions.

To ensure that our ports are correct, we test our implementations against JavaScript

counterparts. For Salsa20 and SHA-256, we test our ports against existing JavaScript libraries,

handling 4KB and 8KB inputs [149, 78]. For TEA, we implement the algorithm in JavaScript and

test both our CT-Wasm and JavaScript implementations against the C reference implementation,

handling 8 byte inputs [273]. Finally, for TweetNaCl, we use the Wasm library’s test suite [244].

Experimental setup. We run all our tests and benchmarks on a 24-core, 2.1GHz Intel Xeon 8160

machine with 1TB of RAM, running Arch Linux (kernel 4.16.13). We use Node.js version 9.4.0

and Chromium version 65.0.3325.125, both using V8 version 6.5.254.40, for all measurements.

Unless otherwise noted, our reported measurements are for Node.js. For each manually-ported

crypto primitive we run the benchmark for 10,000 iterations, Salsa20 and SHA-256 processing

4KB and 8KB input messages, TEA processing 8B blocks. For TweetNaCl, we use the library’s

existing benchmarking infrastructure to run each function for 100 iterations, since they process

huge input messages (approximately 23MB). We report the median of these benchmarks.

Expressiveness

With declassify, CT-Wasm can trivially express any cryptographic algorithm, even if

inputs are annotated as secret, at the cost of security. We thus evaluate the expressiveness of the

untrusted subset of CT-Wasm that does not rely on declassify. In particular, we are interested

in understanding to what degree real-world crypto algorithms can be implemented as untrusted

code and, when this is not possible, if the use of declassify is sparse and easy to audit.

We find that all crypto primitives—TEA, Salsa20, XSalsa20, SHA-256, SHA-512,

41

Poly1305, and X25519—can be implemented as untrusted code. This is not very surprising

since the algorithms are designed to be implemented in constant-time. Our port of Poly1305

did, however, require some refactoring to be fully untrusted. Specifically, we refactor an internal

function (poly1305 blocks) to take a public value as a function argument instead of a reference

to a public memory cell (since our memory is secret).

The TweetNaCl library requires a single declassify instruction, in the crypto secretbox

API—the API that implements secret-key authenticated encryption. As shown in Figure 1.1, we

use declassify in the decryption function (crypto secretbox open) to return early if the ciphertext

fails verification; this leak is benign, as the attacker already knows that any modifications to the

ciphertext will fail verification [62]. A naı̈ve port of TweetNaCl (e.g., as automatically generated

by wasm2ct) would also require declassification in the crypto sign open API. This function

operates on public data—it performs public-key verification, but relies on helper functions that

are used by other APIs that compute on secrets. Since CT-Wasm does not support polymorphism

over secrets, the results of these functions would need to be declassified. Trading-off bytecode

size for security, we instead refactor this API to a separate untrusted module and copy these

helper functions to compute on public data.

Overhead

Using our TweetNaCl and our manually ported cryptographic algorithms, we measure

the overhead of CT-Wasm on three dimensions—bytecode size, validation time, and execution

time. Our extended instruction set imposes a modest overhead in bytecode size due to our

new annotations but imposes no overhead on non-cryptographic Wasm code. We also find that

CT-Wasm does not meaningfully affect validation or runtime performance.

Bytecode size. Since CT-Wasm represents instructions over secrets as a two-byte sequence, an

annotated CT-Wasm program will be as large or larger than its unannotated counterpart. For the

TweetNaCl library, the unannotated, original Wasm compiles to 21,662 bytes; the bytecode size

42

CT-Wasm Node Vanilla Node

CT-Wasm Wasm ct2wasm Wasm ct2wasm

Salsa20 0.013 0.011 0.019 0.011 0.010
SHA-256 0.014 0.012 0.013 0.012 0.012
TEA 0.004 0.003 0.004 0.003 0.004
TweetNaCl 0.272 0.141 0.237 0.133 0.222

Figure 1.7: Median validation time (ms) of our ported crypto primitives and TweetNaCl library.
We report the performance of our CT-Wasm port, the original Wasm implementation, and the
ct2wasm stripped version for our modified Node.js runtime and an unmodified, vanilla Node.

of our semi-automatically annotated CT-Wasm version—including functions in the signing API

that must be duplicated with public and secret versions—is 40,050 bytes, an overhead of roughly

85%. For our hand-annotated implementations of Salsa20, SHA256, and TEA, we measure

the mean overhead to be 15%. The additional overhead for TweetNaCl is directly from the

code duplication—the overhead of an earlier implementation that used declassify was roughly

18%—an overhead that can be reduced with techniques such as label polymorphism [186].

Validation. We measure the performance of the CT-Wasm type checker when validating both

annotated and unannotated (via ct2wasm) code and compare its performance with an unmodified

validator. Figure 1.7 summarizes our measurements. We find that our baseline validator is 14%

slower than an unmodified validator, a slowdown we attribute to our representation of CT-Wasm

types (see Section 1.6.1). Moving from unannotated code to annotated code incurs a cost of 20%.

This is directly from the larger binary—validation in V8 is implemented as a linear walk over

the bytecode. Note that though these relative slowdowns seem high, the absolute slowdowns are

sub-millisecond, only occur once in the lifetime of the program, and thus have no meaningful

impact on applications.

43

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

Salsa20 encrypting 4KB

cy
cl

es
/b

yt
e

 5

 10

 15

 20

 25

 30

 35

SHA-256 hashing 4KB

 50

 100

 150

 200

 250

 300

 350

 400

TEA encrypting 8 bytes

CT-Wasm
Wasm

JavaScript

Figure 1.8: Runtime performance of handwritten crypto primitives.

Runtime. As with validation, we measure the impact of both our modified engine and of CT-

Wasm annotations on runtime performance. We compare our results with reference JavaScript

implementations in the case of Salsa20, SHA-256, and TEA; we compare our results with the

reference TweetNaCl Wasm implementation. For both Node.js and Chromium we find that our

modifications to the runtimes do not impact performance and that CT-Wasm generated code

is on par with Wasm code—the mean performance overhead is less than 1%. We find our

TweetNaCl implementation to be as fast as the original Wasm implementation for all the NaCl

functions. Figure 1.8 compares our manual ports with JavaScript implementations: Wasm and

CT-Wasm are comparable and faster than JavaScript for both Salsa20 and SHA-256. The TEA

JavaScript implementation is faster than the Wasm counterparts; we believe this is because the

JavaScript implementation can be more easily optimized than Wasm code that requires crossing

the JavaScript-Wasm boundary.

Security

To empirically evaluate the security of our implementations, we run a modified version

of dudect [219]. The dudect tool runs a target program multiple times on different input classes,

collects timing information and performs statistical analysis on the timing data to distinguish the

distributions of the input classes. We modify dudect to more easily use it within our existing

JavaScript infrastructure. Specifically, we modify the tool to read timing information from a file

and not measure program execution times itself. This allows us to record time stamps before and

44

after running a crypto algorithm, and ignore the effects of JavaScript engine boot up time, Wasm

validation, etc.

We run our modified version of dudect on the CT-Wasm and ct2wasm versions of Salsa20,

SHA-256, TEA, and TweetNaCl’s secretbox API. Following the methodology in [219], we

measure the timing of an all-zero key versus randomly generated keys (or messages, in the

case of SHA-256). All other inputs are zeroed out. We take 45 million measurements, each

measurement running 10 iterations of the respective algorithm. For algorithms that can take

an arbitrary message size, we use messages of 64 bytes in length. dudect compares the timing

distributions of the two input classes using the Welch’s t-test, with a cutoff of |t|> 10 to disprove

the null hypothesis that the two distributions are the same. As seen in Figure 1.9a, our CT-Wasm

and ct2wasm implementations for the TweetNaCl secretbox code have |t| values well below the

threshold of 10; this is the case for all our other algorithms as well.

 2
 4
 6
 8

 10
 12

1×107 2×107 3×107 4×107

|t|
 s

ta
ti

st
ic

of Measurements

CT-Wasm
Wasm, stripped

(a) TweetNaCl secretbox implementation, CT-Wasm
and ct2wasm

 50
 100
 150
 200
 250
 300

1×107 2×107 3×107 4×107

|t|
 s

ta
ti

st
ic

of Measurements

(b) Salsa20 CT-Wasm implementation, broken
JavaScript harness

Figure 1.9: dudect measurements for various cryptographic algorithms.

Beyond ensuring that our CT-Wasm implementations are constant-time, running dudect

revealed the subtlety of using JavaScript for crypto. In an early implementation of the Salsa20

JavaScript harness, we stored keys as arrays of 32-bit integers instead of typed byte arrays

before invoking the CT-Wasm algorithm. As seen in Figure 1.9b, this version of the harness was

decidedly not constant-time. We believe that time variability is due to JavaScript transparently

45

boxing/unboxing larger integer values (e.g., those of the randomly generated keys), but leaving

smaller integer values alone (e.g., those of the all-zero key).

We also discovered a second interesting case while measuring the SHA-256 JavaScript

implementation: calling the hash update function once per iteration, instead of 10, caused the

timing distributions to diverge wildly, with |t|-statistics well over 300. Placing the function

call inside a loop, even for just a single iteration, caused the distributions to become aligned

again, with |t|-statistics back under the threshold of 10. We did not observe this behavior for

the CT-Wasm SHA-256 implementation and hypothesize that this time variability was due to

JavaScript function inlining. We leave investigation of JavaScript timing variabilities and their

impact to future work.

1.7 Related work

An initial high-level design for CT-Wasm, which this work entirely supersedes, has been

previously described [216].

Low-level crypto DSLs. Bernstein’s qhasm [60] is an assembly-level language used to implement

many cryptographic routines, including the core algorithms of the NaCl library. However, the

burden is still on the developer to write constant-time code, as qhasm has no notion of non-

interference. CAO [46] and Cryptol [113] are higher-level DSLs for crypto implementations, but

do not have verified non-interference guarantees.

Vale [73] and Jasmin [31] are structured assembly languages targeting high-performance

cryptography, and have verification systems to prove freedom from side-channels in addition

to functional correctness. Vale and Jasmin both target native machine assembly, and rely upon

the Dafny verification system [164]. Vale uses a flow-sensitive type system to enforce non-

interference, while Jasmin makes assertions over a constructed product program with each

compilation. This work does not consider functional correctness in CT-Wasm, and uses a very

46

simple type system to enforce non-interference. This approach scales better in the context of a

user’s browser quickly verifying a downloaded script for use in a web application.

High-level crypto DSLs. The HACL* [288] cryptographic library is written in constrained

subsets of the F* verification language that can be compiled to C. Like CT-Wasm, HACL*

provides strong non-interference guarantees. Unlike CT-Wasm, though, the proof burden is on the

developer and does not come for free, i.e., it is not enforced by the type system directly. Though it

currently compiles to C, the HACL* authors are also targeting Wasm as a compilation target [210].

FaCT [81] is a high-level language that compiles to LLVM which it then verifies with ct-verif [33].

CAO [46, 45] and Cryptol [113] are high-level DSLs for crypto implementations, but do not

have verified non-interference guarantees. All these efforts are complementary to our low-level

approach.

Leakage models. Our leakage model derives much of its legitimacy from existing work on

the side-channel characteristics of low-level languages, both practical [219, 94] and theoreti-

cal [33, 50, 69]. We aim to express our top level security information flow and constant-time

properties in a way that is familiar to readers of these works. Where our work differs from the

above works on constant-time is in our representation of observations. We draw inspiration

from the equivalence relation-based formalizations described by [226] for timing sensitive non-

interference, which treats the number of semantic steps as its observation of a program execution.

This is fundamentally related, and sometimes even given as synonymous, to the constant-time

condition [50].

Our type system—which facilitates the non-interference result—can be characterized

as a specialization of the Volpano-Irvine-Smith security type system [261]. Our equivalence

relation-based observations are similar to the abstractions used by [51, 52]. To the best of our

knowledge, our proof work is the first to use quotient types to connect such a low view equivalence

representation of an attacker’s observational power [226] to a proof of a leakage model-based

constant-time property.

47

The literature on non-interference above is split as to whether traces and their associated

properties are expressed inductively or coinductively. We give both interpretations, with the

coinductive definition additionally capturing an observation equivalence guarantee between

publicly indistinguishable non-terminating programs, encoding that even if a program does not

terminate, timing side-channels from visible intermediate side-effects will not leak secret values.

[207] give a coinductive treatment of the non-interference property, but for an idealized language,

and do not connect it to the constant-time property.

1.8 Future Work

We have described two approaches to using CT-Wasm, either as a native implementation or

a “development language” for base Wasm. As an intermediate between these two, CT-Wasm can

be “implemented” in existing engines by poly-filling the WebAssembly API to validate CT-Wasm

code and rewrite it to Wasm. Doing this efficiently is, unfortunately, not as simple as compiling

ct2wasm to JavaScript or WebAssembly—to avoid pauses due to validation, ct2wasm must be

implemented efficiently (e.g., at the very least as a streaming validator).

CT-Wasm takes a conservative approach to trust and secrecy polymorphism in order to

ensure design consistency with Wasm. Even given this direction, there is possible space for

relaxation, especially regarding call indirect and higher-order code.

While we have experimentally validated that our cryptography implementations do not

show input-dependent timing characteristics, the V8 WebAssembly implementation is still rela-

tively new. Future implementations may implement aggressive optimizations that could interfere

with our guarantees. A principled investigation of the possible implications of heuristically

triggered JIT optimizations on the timing characteristics of WebAssembly would allow us to

maintain our guarantees in the presence of more aggressive compiler behaviours.

We foresee CT-Wasm to be useful not only as a development language but also as target

48

language for higher-level crypto languages. Since some of these language (e.g., HACL* [288]

and FaCT [81]) are already starting to target WebAssembly, it would be fruitful extending these

projects to target CT-Wasm as a secure target language instead. At the same time, extending

wasm2ct to (fully) automatically infer security annotations from base Wasm would potentially

prove yet more useful—this would allow developers to compile C/C++ libraries such as lib-

sodium [102] to Wasm (e.g., with Emscripten [282]) and use wasm2ct to ensure they are secure.

1.9 Conclusion

We have presented the design and implementation of Constant-Time WebAssembly,

a low-level bytecode language that extends WebAssembly to allow developers to implement

verifiably secure crypto algorithms. CT-Wasm is fast, flexible enough to implement real-world

crypto libraries, and both mechanically verified and experimentally measured to produce constant-

time code. Inspired by TypeScript, CT-Wasm is designed to be usable today, as a development

language for existing, base Wasm environments. Both as a native and development language, CT-

Wasm provides a principled direction for improving the quality and auditability of web platform

cryptography libraries while maintaining the convenience that has made JavaScript successful.

Acknowledgments

We thank the anonymous POPL and POPL AEC reviewers for their suggestions and

insightful comments. We thank Andreas Rossberg and Peter Sewell for their support during this

work. We thank Dan Gohman for insightful discussions. Conrad Watt is supported by an EPSRC

Doctoral Training award, the Semantic Foundations for Interactive Programs EPSRC program

grant (EP/N02706X/1), and the REMS: Rigorous Engineering for Mainstream Systems EPSRC

program grant (EP/K008528/1). This work was supported in part by a gift from Cisco and by the

49

CONIX Research Center, one of six centers in JUMP, a Semiconductor Research Corporation

(SRC) program sponsored by DARPA.

Chapter 1, in part, is a reprint of the material as it appears in Proceedings of the 46th

ACM SIGPLAN Symposium on Principles of Programming Languages (POPL) Conrad Watt,

John Renner, Natalie Popescu, Sunjay Cauligi, Deian Stefan. ACM, 2019. The dissertation author

was a primary investigator and author of this paper.

50

Chapter 2

Scooter & Sidecar: A Domain-Specific

Approach to Writing Secure Database

Migrations

Web applications often handle large amounts of sensitive user data. Modern secure web frame-

works protect this data by (1) using declarative languages to specify security policies alongside

database schemas and (2) automatically enforcing these policies at runtime. Unfortunately, these

frameworks do not handle the very common situation in which the schemas or the policies need

to evolve over time—and updates to schemas and policies need to be performed in a carefully

coordinated way. Mistakes during schema or policy migrations can unintentionally leak sensitive

data or introduce privilege escalation bugs. In this work, we present a domain-specific language

(Scooter) for expressing schema and policy migrations, and an associated SMT-based verifier

(Sidecar) which ensures that migrations are secure as the application evolves. We describe the

design of Scooter and Sidecar and show that our framework can be used to express realistic

schemas, policies, and migrations, without giving up on runtime or verification performance.

51

2.1 Introduction

Protecting user data in modern database-driven Web applications is hard: web developers

must ensure that their application code correctly safeguards user data with every request. Unfor-

tunately, popular Web frameworks don’t help developers get this right because they don’t account

for security policy. They rely on developers to implement ad-hoc security mechanisms—to

properly sprinkle just the right if statements throughout their code. When developers inevitably

fail, their applications expose sensitive user data—from credentials [145] to COVID-19 test

results [231] to user data from previously hacked databases [142].

Model-policy-view-controller (MPVC) frameworks (e.g., Lifty [205], Jacqueline [276],

LWeb [203], and Hails [119, 118]) promise to address this problem by making data-access

policies first class. MPVC frameworks allow developers to specify access-control policies on data

alongside their schemas—the code describing the data model and interfaces used to access data—

often using a declarative domain-specific language (DSL). For example, when defining the schema

for user profiles, developers might specify a policy like “only the user can modify their profile

and only they and their friends can see their email address.” MPVC frameworks enforce such

policies automatically, for example, when controllers—the code handling user requests—access

the data model. This reduces the amount of code developers need to get right [118, 203]: instead

of correctly implementing thousands of checks, they simply need to write correct, declarative

policy code.

Reality, though, is more complicated than traditional MPVC frameworks suggest. Both

models and policies constantly evolve through migrations. And unsafe schema or policy migra-

tions can have devastating consequences—from leaking sensitive data to privilege escalation

attacks.

Schema migrations modify and extend data models. When performing schema migrations,

developers must (1) correctly reconcile their changes to the schema with changes to the application

52

code (e.g., the controllers that interface with the new data modes and the view code that renders

the data to, say, HTML or JSON) and (2) ensure that their changes are secure and do not violate

the policy used to safeguard existing data. This is hard because migrations are typically written

in low-level, error-prone database interfaces—most often, directly in SQL—rather than the

high-level object relational mappers (ORMs) used in application code [265, 266]. And even

if developers manage to write correct migrations (e.g., using synthesis to automatically update

the application code according to the new schema [266]), they still need to ensure that their

migrations abide by the policy. In practice this is manual and error prone [100, 150]: migration

tools are not aware of policies, so developers must manually ensure their code abides by the

policy, with no room for error—unsafe migrations (e.g., copying sensitive data to public locations)

often do not break application functionality and thus go unnoticed until it’s too late (e.g., the

sensitive data is leaked).

Policy migrations can also introduce security vulnerabilities when extending or modifying

data-access policies. Existing frameworks make no guarantees about a new policy’s relationship

to the old policy, which can result in users gaining access to sensitive or critical data that

would otherwise have stayed safe. Such leaks were common enough in Hails (e.g., in the Task

management app [232]) that the authors modified their policy DSL with a new keyword that

(tried to) make it clear when a field policy was updated to be publicly accessible [118]. This isn’t

unique to Hails or MPVC frameworks, though: it happens in traditional MVC frameworks, too.

For example, the authors of the Ghost blogging platform unintentionally allowed contributors

to edit blog posts [116], and they introduced this bug in a patch itself designed to fix a bug in

their policy code [117]. Likewise, a refactor of HotCRP’s policy code [159] inadvertently granted

unauthenticated users administrator rights [158].

We address unsafe migrations via three contributions.

53

1. The Scooter Domain-Specific Language Our first contribution is a new domain-specific

language, Scooter, that allows developers to (1) declaratively specify data models and security

policies on these models; and (2) write imperative schema and policy migrations, which update

the data models and policies. Today, developers use wildly different languages for these tasks

(e.g., ORM for describing the data model, custom DSL for policy specification, and SQL for

schema migrations) and, as discussed above, ensuring that changes to models and policies are

safe is a manual, error-prone task. By unifying specification and migration, Scooter makes it

easier for developers to write safe migrations.

2. The Sidecar Verifier Our second contribution is a static tool, Sidecar, which verifies the

safety of migrations written in Scooter. At its core, Sidecar relies on an automated procedure that

determines whether one policy is as strict or stricter than another. To verify a data migration, we

use a static abstract analysis to track the flow of information across the migration and use this

procedure to verify that the policy used to safeguard migrated data is at least as restricting as the

policies on the sources of that data. Similarly, to verify a policy migration, we use the automated

procedure to compare the new policy against the old. We designed Scooter and Sidecar together to

ensure that verification is fully automatic and fast. Moreover, when verification fails, we designed

Sidecar to generate a counterexample to help developers understand and debug policy violations.

3. Implementation and Evaluation Our third contribution is an implementation and evaluation

of the Scooter DSL and the Sidecar verifier. We implemented Scooter and Sidecar in Rust. For

migrations that pass the verifier, the Scooter compiler generates (1) a migration interpreter that

performs the verified-safe migration, (2) an authoritative specification containing the declarative

model and policy, and (3) a typed Rust ORM implementation for each model. The generated

ORM enforces policies automatically at run time and forces developers to update their application

code to account for schema changes “for free”, i.e., by generating the ORM we ensure that schema

changes manifest as type errors. We evaluate Scooter and Sidecar on seven case studies from the

54

MPVC literature, including a port of LWeb’s Build it Break it Fix it, as well as a Ruby-on-Rails

application used at UC San Diego for PhD Visit Day. We find that: (1) Scooter can express almost

all policies and migrations from these previous efforts; (2) Scooter’s ORM policy enforcement

imposes under 11% overhead, which is comparable to previous work [203, 118]; and (3) Sidecar

verifies most safe migrations in under a second, and for unsafe ones (e.g., the HotCRP migration

from [158]) it generates useful counterexamples.

Open Source All source code is available under an open source license at [217].

2.2 Motivation and Overview

In this section, we give a brief overview of how migrations—both traditional database

migrations and updates to policy code—can introduce security vulnerabilities and how Scooter

eliminates these vulnerabilities.

The Chitter MPVC Application We use a simple social media web application, Chitter, as

an example. Chitter allows users to post 42-character messages—peeps—on a public bulletin

board. Though peeps are public, the app also handles sensitive information about users, e.g.,

follower relationships, private messages, pronouns, email addresses, and passwords. The Chitter

developers are serious about protecting this data and use an MPVC framework to (1) separate the

model and policy code from the rest of the application (the views and controllers) and (2) enforce

the policy code automatically, at runtime. Figure 2.1 gives part of Chitter’s data model for user

profiles and its policy. The policy states that a user’s email address is only visible to that user and

Chitter administrators (who are, themselves, users); that the user’s pronouns are visible to the

user and the users they follow; and that the user and any admin can modify all but the isAdmin

field, which can only be modified by admins.

55

User
name: String
read: public
write: u -> [u] + User::Find({isAdmin: true})

email: String
read: u -> [u] + User::Find({isAdmin: true})
write: u -> [u] + User::Find({isAdmin: true})

pronouns: String
read: u -> [u] + u.followers
write: u -> [u] + User::Find({isAdmin: true})

isAdmin: Bool
read: u -> [u] + User::Find({isAdmin: true})
write: u -> User::Find({isAdmin: true})

followers: Set(User)
read: u -> [u] + u.followers
write u -> [u] + User::Find({isAdmin: true})

...

Figure 2.1: Chitter users model and policy in (simplified) Scooter.

2.2.1 Unsafe Migrations

Though using an MPVC framework helps the Chitter developers safeguard user data at

runtime, modifying and extending the model or policy code could undermine this effort.

Unsafe Schema Migrations. Extending model schemas can inadvertently leak data and allow

users to bypass data access policies. Consider, for example, changing the Chitter application by

extending the user model with a new public bio field. To do so, Chitter developers modify their

model:

User

...

+ bio: String

+ read: public

+ write: u -> [u] + User::Find({isAdmin: true})

...

56

They also write a migration—in SQL—that extends the underlying database to populate the new

bio field, in this case with the user’s name and pronouns:

ALTER TABLE user ADD bio STRING;

UPDATE user

SET bio = CONCAT("Hi! I'm ", user.name,

"(", user.pronouns, ").")

Since this migration isn’t constrained by a policy, it accidentally leaks sensitive data—the

pronouns—to all users.

Direct leaks like this are not the only concern, though. Migrations can modify data used

by policy code—and unintentionally introduce leaks or privilege escalation bugs, i.e., grant users

access to data they otherwise would not be able to access. For example, setting the isAdmin field

of a user allows that user to read and write other users’ profiles.

The problem is that schema migrations are decoupled from policy code—so developers

must implicitly and informally enforce their data access policy on each migration. Doing so for

Chitter is easy, but real-world migrations and policies are far more complicated.

Unsafe Policy Migrations. Changes to policy code can also introduce leaks and privilege

escalation bugs. Consider further extending the Chitter application with a new hierarchy of

administration: admins and moderators. Moderators, unlike admins, should only be allowed to

read (and edit) free-form data like names and bios, which could contain potentially inappropriate

content. To add support for moderators, the Chitter developers replace the boolean isAdmin field

with an integer, adminLevel—where 0 is used for normal (unprivileged) users, 1 for moderators,

and 2 for admins. They then update the model and policy in several steps.

They start by extending the user model with adminLevel:

User

...

57

+ adminLevel: Int

+ read: u -> [u] + User::Find({adminLevel: 2})

+ write: u -> User::Find({adminLevel: 2})

...

Then, they perform a schema migration to add the new field, setting the admin level according to

the old isAdmin field:

ALTER TABLE user ADD adminLevel INT;

UPDATE user

SET adminLevel = CASE WHEN isAdmin

THEN 2

ELSE 0

END;

Next, they update the policy code to use adminLevel instead of isAdmin and only then remove

isAdmin from the model and underlying database (via another migration).

The new policy is introduced as an edit to the old:

User

...

email: String

- read: u -> [u] + User::Find({isAdmin: true})

+ read: u -> [u] + User::Find({adminLevel: 2})

- write: u -> [u] + User::Find({isAdmin: true})

+ write: u -> [u] + User::Find({adminLevel: 2})

...

bio: String

- write: u -> [u] + User::Find({isAdmin: true})

58

Sidecar verifier Scooter compiler

DB

Rust ORM

migrations specification

spec gen

migration exec

ORM gen

OK!
FAIL!

Figure 2.2: Given a migration and data model and policy specification, Sidecar verifies the safety
of the migration. If the migration is unsafe, Sidecar produces a counterexample. Otherwise, the
Scooter compiler (1) updates the specification, (2) executes that migration against the database,
and (3) generates a type-safe policy-enforced Rust ORM, which appliations use to access
persistent data.

+ write: u -> [u] + User::Find({adminLevel >= 0})

...

Alas, this policy is overly permissive: instead of restricting the bio field writers to the user,

moderators, and admins, the new policy accidentally allows any user to write.

The problem is that policy migrations are decoupled from policy enforcement. Therefore,

the burden is on developers to ensure that migration code doesn’t sidestep the declared data

access policies. Unsurprisingly, developers get this wrong—and when they do, the error is silent.

Changes that inadvertently weaken policies persist until someone is lucky enough to notice

them [158] or loud enough exploiting them [250].

2.2.2 Safe Migrations with Scooter and Sidecar

With Scooter, developers don’t directly modify models and policies, nor do they write

schema migrations using low-level interfaces like SQL. Instead, they use Scooter for both tasks

59

(Figure 2.2). To start, developers implement a migration that generates the initial model and

policy specification; Figure 2.1 gives an example of a (simplified) specification generated by

Scooter.1 Then, all policy and schema migrations are relative to and update this specification

(and its underlying database representation). Let’s consider how the Chitter migrations would be

implemented using Scooter.

Preventing Unsafe Schema Migrations With Scooter, the Chitter developers extend the

original user model with bios by writing a migration script:

1 User::AddField(

2 bio : String {

3 read: public,

4 write: u -> [u] + User::Find({isAdmin:true})

5 }, u -> "I'm "+u.name+"("+u.pronouns+")");

This script extends the User model with a new string field bio and populates the bio according

to the anonymous function on line 5. Our Sidecar verifier, however, catches the leak before it’s

too late: Sidecar automatically infers that u.pronouns data ends up in u.bio and that the bio

policy is less restrictive than the pronouns policy. Scooter will only execute the migration after

the developers modify the update function to not use u.pronouns.

Preventing Unsafe Policy Migrations To extend Chitter with moderators, the Chitter develop-

ers, again, write a single script (instead of multiple scripts and file edits):

1 User::AddField(

2 adminLevel : I64 {

3 read: u -> [u] + User::Find({adminLevel:2}),

1As we describe in Section 2.3, Scooter is slightly more verbose. For example, developers need to specify who is
allowed to create and delete objects, and not just who is allowed to read and write fields.

60

4 write: u -> User::Find({adminLevel: 2})

5 }, u -> if u.isAdmin then 2 else 0);

6

7 User::UpdateFieldPolicy(email, {

8 read: u -> [u] + User::Find({adminLevel: 2}),

9 write: u -> [u] + User::Find({adminLevel: 2})

10 });

11 User::UpdateFieldWritePolicy(bio,

12 u -> [u] + User::Find({adminLevel >= 0}));

13

14 User::RemoveField(isAdmin);

This migration would add the new adminLevel field, update the email and bio policies accord-

ingly, and remove the old isAdmin field. Sidecar, however, catches the unsafe policy update

on lines 11–12, stops Scooter from executing the migration, and generates a counterexample

showing the policy violation:

Principal: User(0)

CAN NOW ACCESS:

User { id: User(1),

isAdmin: false,

adminLevel: 0,

bio: "",

... }

OTHER RECORDS:

User { id: User(0),

isAdmin: false,

adminLevel: 0,

61

... }

This, in effect, forces the Chitter developers to fix the unsafe policy. They could do this by

rewriting the policy to:

u -> [u] + User::Find({adminLevel: 2}),

This policy is safe—it is equivalent to the old one—but it’s not the intended policy. The intended

policy is more permissive: it should allow the user, admins, and moderators to edit bios.

Scooter allows developers to weaken policies but requires them to be explicit about the

change being more permissive:

User::WeakenFieldWritePolicy(bio,

u -> [u] + User::Find({adminLevel > 0}),

"Reason: allow moderators to update bios.");

Being explicit does not prevent developers from getting such migrations wrong (e.g., using >=

instead of >). It does, however, make it easier to audit migrations and narrow the focus of security

reviews.

Safe Migrations Workflow As Figure 2.2 shows, once Sidecar verifies the safety of a migration,

Scooter performs the actual database migration and updates the model specification to reflect

any model or policy changes. The model (and policy) specification is then used to generate a

Rust ORM library, which allows application code to retrieve and modify persisted objects using a

standard high-level typed interface (e.g., User::Find) that automatically enforces data-access

policies. Like previous work [203], generating ORM code from the DSL specification also forces

developers—via normal compiler type errors—to update the view and controller code to account

for schema changes. We describe Scooter in more detail next.

62

(variable) var ::= x0,x1, ..,xn
(datetime) datetime ::= now | d¡month¿-¡day¿-¡year¿-¡hour¿:¡minute¿:¡second¿
(constant) const ::= string, integer,float,datetime, true, false,public
(binary ops) binop ::= gencmp | op | numcmp

op ::= + | -
numcmp ::= < | <= | > | >=
gencmp ::= == | !=

(find operators) fop ::= : | ∋ | numcmp
(set literal) set ::= [e0, ..,en]
(functions) func ::= var -> e
(expressions) e ::= const | set | var | !e | (e binop e)

| (if e then e else e) | (match e as var in e else e) | None | Some(e)
| e.map(func) | e.flat map(func) | e.field
| Model::ById(e)
| Model::Find({field1 fop1 e1, . . . ,fieldn fopn en})

Figure 2.3: The syntax of value expressions shared between policies and migrations in Scooter.

2.3 Design

We built the Scooter languages according to three main design goals:

1. Unification. Right now, developers typically use different languages to manage their

databases (e.g., SQL) define their policies (e.g., Hails), and query the database (e.g.,

ORMs). Scooter aims to provide a unified semantics for migrations and policy specification

that mirrors popular ORM patterns.

2. Expressiveness. A unified language is only effective if it can express the union (or more!)

of what separate languages are able to. For example, the language must be able to express

both real-world policies and real application data models.

3. Verifiability. The verifier must catch safety violations statically, with informative and

actionable error messages.

Scooter maintains a single policy file, written in Scooterp, that contains the current schema

and all policies (unification). Users do not manually update this file or write Scooterp directly.

63

Instead, Scooter automatically updates the file when users write and run Scooterm migration

scripts—the scripts that make schema changes, manipulate data, and update new policies. Before

executing a migration, Scooter verifies that the migration’s changes are safe with respect to the

current policy (verifiability). This process is illustrated in Figure 2.2.

In this section, we elaborate on how Scooter fulfills our three design goals. First, we

explain how schemas and policies are expressed in Scooterp (§2.3.1). Then, we explain how

users express changes to the schema and policy through migrations in Scooterm—and how, as a

result, Scooter is able to statically prevent migration errors (§2.3.2). Finally, we describe how

users write applications using Scooter’s ORM (§2.3.3).

2.3.1 Declaring Policies

Scooter expresses both schemas and policies because they are inherently coupled; policies

guard access to the data defined in the schema and are themselves defined in terms of queries

against that same schema.

Schemas Scooter uses a standard ORM data model, defining schemas in terms of models

composed of typed fields. Figure 2.4 shows a policy file containing a simple User model with a

single name field of type String.

To express relational data, Scooter generates an implicit id field that acts as a unique

identifier for each instance—i.e., database row—in the model. This allows one model instance to

hold a reference to another (e.g., the bestFriend field in Figure 2.4 refers to the user id). The

id field is strongly typed—User::id is of type Id(User), allowing type-safe object lookups.

While ids are powerful enough to express any relational construct—one-to-one, one-to-

many, many-to-many—they cannot express all policies on their own (§2.6.3). Scooter’s Set type

allows users to express otherwise inexpressible policies and, moreover, makes it easy to express

simple one-to-many relations. For example, a User may have many emails (Set(String)).

64

@static-principal
Unauthenticated

@principal
User {
create: _ -> [Unauthenticated],
delete: none,

name: String {
read: public,
write: u -> [u.id]},

bestFriend: Id(User) {
read: u -> [u.id, u.bestFriend],
write: u -> [u.id]},

adminLevel: I64 {
read: public,
write: u -> User::Find({adminLevel: 2})

.map(u -> u.id)}}

Figure 2.4: Simple user profile and principal declaration in Scooter.

Principals and Policies In Scooter, applications operate on data through basic create, read,

update, and delete (CRUD) operations, where each operation is performed on behalf of a principal.

Policies define, for each operation, the set of principals allowed to perform that operation. For

example, Figure 2.4 states that all principals can read a User’s name.

What is a principal? In Scooter, many principals are simply database object ids. To

specify that a model’s id is a valid principal, Scooter annotates that model with @principal.

For example, the User in Figure 2.4 is a principal and is annotated as such. We call this kind of

principal a dynamic principal because its existence is tied to the state of the database.

Sometimes, though, it’s important to express policies in terms of application infrastructure

(as opposed to database objects). Scooter uses static principals for this purpose. For example,

Figure 2.4 declares an Unauthenticated static principal, which the application can use for oper-

ations not made on behalf of a logged-in user. The policy also states that the Unauthenticated

principal is the only one allowed to create Users; in other words, only users who are not logged

65

in are able to create new users. While the set of static principals varies by application, we find two

to be very common: an Unauthenticated principal and a Login principal that has read access

to all password data but is used sparingly.

Policy Functions Scooter expresses the relationship between operations and principals (e.g.,

Users and their ability to change their usernames) as a policy function from the target instance of

the operation (e.g., Users) to a set of principals allowed to perform that operation (e.g., change

usernames). For example, Figure 2.4 states that the policy for writing to User::name is u ->

[u.id]. Scooter uses square brackets to denote sets, so this function says: “for any user u, the

set of principals allowed to change its name contains only u.id”. The language contains two

convenience terms for common functions: public, which is a function that returns all principals,

and none, which is the same as -> [].

For any operation on a model m, the type of a policy function must be m→ Set(Principal).

Within the function, the policy is free to traverse instances and query the models to construct

its output set: Scooter policies use conditionals, mathematical operations, comparisons, and

comparison-based querying.

Policy functions are strongly typed expressions. This ensures that policies cannot crash

at runtime—they will always produce a set of principals—and simplifies the lowering of policy

expressions to SMT (for verification). The full type system for policies can be found in the

appendix of the original Scooter paper[218].

2.3.2 Migrations

Users update their policies and schema by writing migration scripts in Scooterm. Migration

scripts consist of a series of commands that modify the schema (e.g., add a field) and the

policy. Crucially, Scooterp and Scooterm share an underlying semantics, unlike traditional MPVC

frameworks where policies are expressed with models and migrations are expressed in raw SQL.

66

Differing semantics make migration safety verification hard, while unified semantics—as with

Scooterp and Scooterm—make verification easy.

Schema Changes. In Scooter, users can change schemas by creating and deleting models or by

creating or deleting fields of those models. Whenever users create a model or field, they must

include all read, write, create, and delete policies. Consider the following migration, which

extends the policy in Figure 2.4 with public posts called Peeps:

1 CreateModel(Peep {

2 create: public,

3 delete: p -> [p.author],

4

5 author: Id(User) {

6 read: public,

7 write: none,

8 },

9 });

10 Peep::AddField(body: String {

11 read: public,

12 write: p -> [p.author],},

13 p -> "Peep by " + User::ById(p.author).name);

This migration first creates a Peep model containing an author (lines 1–9), then adds a peep body

(lines 11–14). Line 14 specifies that all peeps receive a default body that states the author’s name.

This is required in Scooter: when developers add a field to a model, they must provide a function

that populates that field with an initial value.

Migrations can also remove fields and models as long as other policy functions do not

depend on them. For example, the following would fail, because the body policy above refers to

67

author:

Peep::RemoveField(author);

On the other hand, the following would work, because no policies (other than those within Peep)

depend on Peep:

DeleteModel(Peep);

Policy Changes. In addition to schema updates, Scooter migrations can express policy updates.

For example, a developer may want to update the create policy on Peep:

Peep::UpdatePolicy(create, p -> [p.author]);

This migration replaces the previous policy (public) with a new policy function that only allows

users to create a peep when they are the author; previously, anyone could create a peep with

any author. The UpdatePolicy command indicates the developer’s intent is to provide a policy

that is at least as strict as the old policy; the verifier will prove that this is true before Scooter

executes the migration. If developers need to weaken a policy, they can use WeakenPolicy, and

the verifier won’t check for strictness preservation. Finally, developers can also strengthen and

weaken field policies with UpdateFieldPolicy and WeakenFieldPolicy.

Principal Changes. Scooter migrations can also change the set of principals using AddPrincipal,

RemovePrincipal, AddStaticPrincipal, and RemoveStaticPrincipal, which have no ef-

68

fect on the underlying schema. The verifier will stop developers from removing any principal that

is used in policy functions.

Verifying Migrations Scooter verifies the safety of an entire migration before it executes

any part of it, which obviates rolling back migrations partway through because of errors. The

main challenge for verification is that the correctness of one migration command depends on

its predecessors. For example, consider the following migration, which creates a User model

and then adds a bestFriend field and a secret field that is shared between a user and their best

friend.

1

2 CreateModel(User {

3 create: public,

4 delete: u -> [u.id],

5 });

6 User::AddField(bestFriend: Id(User) {

7 read: public,

8 write: u -> [u.id],

9 }, u -> u.id);

10 User::AddField(secret: String {

11 read: u -> [u.id, u.bestFriend],

12 write: u -> [u.id],

13 }, _ -> "my_secret");

14

The User::AddField commands are only valid after the User model has been created (using

CreateModel on line 1). If lines 1–4 were omitted, Scooter would reject the migration because

of a missing User model. Likewise, the read policy for secret does not typecheck unless the

69

bestFriend field has already been added to User.

To address the fact that each migration command’s safety depends on prior commands,

Scooter maintains an in-memory representation of models models that it uses to typecheck and

verify each command. Once Scooter has verified a command, it records the command’s effect on

the set of models and continues on to verify the next command until the migration is complete or

it hits an error. Scooter does not actually manipulate data during this process, so in case of an

error, Scooter doesn’t need to rollback database state. When Scooter has verified the migration

completely, it executes the migration against the database and writes the in-memory policy to the

Scooterp file.

2.3.3 The Scooter ORM

Following a successful migration, the Scooter compiler generates an ORM implementation

in Rust for each model. The ORM enforces policies dynamically before performing database

queries. Like most ORMs, our ORM is agnostic to the underlying database system and relies on

a driver to communicate with an actual database; we implement and evaluate a MongoDB driver.

Since our ORM is largely standard, we only describe the Scooter-specific details.

Acting on Behalf of Principals Before querying an ORM model, developers must declare a

principal with which to perform the query. For example:

1 // set up the db connection

2 let db_conn = // ...

3 // declare the principal

4 let princ = db_conn.as_princ(Unauthenticated);

5 // query the database

6 let u = User::find_by_id(princ, some_user_id);

70

Web applications rarely require manual principal management, though: typically, middleware au-

tomatically selects a principal based on the signed-in user (e.g., instead of the Unauthenticated

principal on line 5).

Handling Overly Sensitive Fields Queries to the database return partial objects; the ORM

removes fields that the principal does not have read access to. In turn, developers must handle

fields whose values are missing due to policy enforcement. For example, in this code snippet,

they must account for a missing email field:

match u.email {

// principal has read permissions:

Some(email) => println!("Success");

// principal does not have read permissions:

None => println!("Failure");

}

This forces developers to explicitly consider permissions. In practice they need to do this already,

for example, when implementing views.

Handling Policy Failures When writing to the database, the ORM checks the relevant create

or update policies and returns an error if necessary. For example, in this snippet, the ORM

code accounts for an attempted edit that could fail because princ does not have the proper edit

permissions:

match edited_user.save(princ) {

Ok(_) => println!("Save successful")

Err(_) => println!("Save failed"),

}

71

These errors force developers to respond to both policy and database failures. In development

mode they can respond with the exact access violation; in production mode, they can simply

return an HTTP 403 Forbidden response.

2.4 Verifying Policy Updates in SMT

The core of our Sidecar verifier is centered around proving that one policy is at least as

strict as another, a property we call strictness. This strictness property not only allows Sidecar to

verify Update commands, but also allows it to prevent data leaks. In this this section, we first

formalize the strictness safety property and describe how Sidecar translates this property into SMT

formulas, allowing it to verify Update commands using an off-the-shelf SMT solver—specifically,

Z3 [99]. Finally, we show how Sidecar uses strictness to detect leaks.

Strictness Property Recall that a Scooter policy (for a given operation) is a function p that

takes an instance, i.e., an object, and returns the set of principals who are allowed to perform that

operation. Because policies can query the database, p must also take the database as a parameter.

Formally, it is safe to strengthen policy p1 to policy p2 iff the following strictness property holds:

∀db,∀i . p1(db, i)⊇ p2(db, i) (2.1)

That is, for all databases and for all instances (objects) in those databases, p2 must produce a

subset of the principals returned by p1.

For each migration of a policy from p1 to p2, Sidecar checks the migration’s safety by

translating this formula into an SMT query. Unfortunately, a direct translation of this formula

to SMT leads to many different problems, some related to performance and some related to

counterexample generation (which requires the solver to generate a full database). To sidestep

these issues, Sidecar translates policies into set-free SMT queries. We describe our translation to

72

SMT next.

Leakage Formula SMT solvers verify a property by proving that its negation is unsatisfiable.

When we negate the strictness property we get the core of our SMT query:

∃db, i, u. u ∈ p2(db, i)∧¬(u ∈ p1(db, i)) (2.2)

That is, there exists some database db, instance i, and principal u, such that u is permitted by

p2 and not by p1. While we can express this in SMT directly (using the theory of arrays [176]),

our translation eliminates sets and set comparison. First, it translates set fields to an equivalent

join-table representation. Next, Sidecar distributes the ∈ operator across all expressions, to

eliminate all remaining set-typed expressions and variables. We describe these next.

Translating Set Fields The Scooter language allows users to define fields that contain sets.

For example, a single user on a social media site may have many followers, which programmers

express in Scooter as follows:

User { ... friends: Set(Id(User)) { ... } }

Standard ORM practice translates the above into a join table. We adopt a similar approach—we

encode the user-friend relation explicitly by adding the following model of the relation:

UserFriends { from: Id(User) {...},

to: Id(User) {...} }

Using this encoding, friends field access can be translated into an appropriate query on the

UserFriends table. The Sidecar verifier performs this translation at the language level, before

translating to SMT. For example, it translates the expression user.friends into:

UserFriends::Find({from: u}).map(uf -> uf.to)

73

Translating Set Expressions Once set fields are removed, Sidecar rewrites the leakage con-

dition (2.2) into an equivalent formula without sets. Sidecar does this by distributing the

∈ operator across Scooter expressions. In most cases this is straightforward. For example,

u ∈ (e1 + e2); (u ∈ e1)∨ (u ∈ e2). The two exceptions are map, flat map, and Find.

When Sidecar distributes ∈ across map it introduces an existential:

u ∈ e1.map(x → e2); ∃v. v ∈ e1 ∧u = e2[v/x]

Similarly for flat map:

u ∈ e1.flat map(x → e2); ∃v. v ∈ e1 ∧u ∈ e2[v/x]

Because all instances used in policies are in the database, when translating u ∈ M::Find({...}),

we can simply check if u meets the criteria of the Find query:

u ∈ M::Find({ . . . fi opiei . . .});
∧

i

(u. fi opi ei)

This translation eliminates all remaining set expressions and variables from the leakage formula.

We give the complete definition of ;, as well as proofs of correctness and set elimination, in the

appendix of the original Scooter paper.

Translating Instances and IDs Sidecar translates instances to SMT by encoding each field

as a function, much like Nijjar et. al [191]. For example, Sidecar translates the declaration

email: String inside User into a function email : User→ String. So, u.email in Scooter

is translated to (email u) in SMT. Instances like u in our SMT encoding are uninterpreted

values (which can only be used as parameters to field functions like the email function above).

This encoding also allows us to easily encode id-uniqueness. In particular, instead of asserting

74

uniqueness as ∀o1,o2 . o1.id = o2.id ⇒ o1 = o2, we define an id function (which represents the

id field) to return the instance itself, i.e., we define (id i) to return i. This avoids expensive

quantifiers and reduces o1.id = o2.id to o1 = o2.

Translating Primitives In addition to Bool which is trivially represented in SMT, Scooter

supports integers (I64), doubles (F64), Option types, and DateTime. I64 and F64 are naturally

represented as bitvectors whose operations are encodable in first-order logic and are built-in to

Z3. We encode Options using SMT-LIB’s datatype declarations. DateTime requires special

handling. We encode DateTimes as UNIX timestamps (bitvectors in SMT). This allows Scooter

to use integer bitvector comparison to implement DateTime comparison. Sidecar models the

now() constructor as an unconstrained bitvector. When comparing two policies, Scooter assumes

they are invoked at the same time and thus uses the same unconstrained value for all occurrences

of now().

Detecting Data Leaks Sidecar uses the policy strictness check, combined with dataflow anal-

ysis, to detect data leaks. We say data leaks when, during migration, data flows from a more

restrictive field to a more permissive field. For example, this (leaky) migration moves data from

the private email field to a public bio:

CreateModel(User {

create: public,

delete: u -> [u.id],

email: String {

read: u -> [u.id],

write: u -> [u.id],

}

75

});

AddField(bio: String {

read: public,

write: u -> [u.id],

}, u -> u.email);

Before the migration, a user’s email was only visible to the user; afterwards, everyone can read

the email since it is used to initialize the bio field.

We detect leaks in two steps. First, we use a simple static dataflow analysis on the Scooter

language to detect which fields flow to which other fields during the migration. Second, for each

field f1 that flows to a field f2 we check that the policy for f2 is at least as strict as the policy for

f1.

Using Prior Definitions Sometimes the correctness of a policy migration relies on the schema

migrations that preceded it. To reiterate the example from Section 2.2.1:

User::AddField(

adminLevel : I64 {

read: _ -> User::Find({adminLevel: 2})

write: _ -> User::Find({adminLevel: 2})

}, u -> if u.isAdmin then 2 else 0);

User::UpdateFieldWritePolicy(bio,

u -> [u] + User::Find({adminLevel: 2}));

While Sidecar normally encodes fields as uninterpreted functions in SMT, in this example Sidecar

proves this migration safe by using a prior definition. Specifically, the initialization function

used for adminLevel defines the relationship between adminLevel and isAdmin—so Sidecar

knows that a user has an adminLevel of 2 if and only if isAdmin is true. Using prior definitions

is necessary for verifying certain migrations, but can also have surprising semantics (§2.6.4).

76

2.5 Evaluation

We evaluate our Scooter language, our Sidecar verifier, and our policy-enforcing Rust

ORM by answering the following questions:

1. Can the Scooter language express common policies and migrations (§2.5.1)?

2. Can Sidecar detect unsafe migrations? (§2.5.2)

3. Is the Sidecar verifier performant enough to use regularly (§2.5.3)?

4. Is the overhead of the generated ORM in line with existing policy enforcement techniques

(§2.5.4)?

To answer these questions we port case studies from existing policy frameworks to Scooter:

one from LWeb [203], three from Hails [119], one from Lifty [205], and one from UrFlow [86].

We use MPVC case studies because they contain explicit policies. None of these case studies

provide migrations, however, so we reconstruct them, when possible, from git histories. In

addition, we port a production Ruby on Rails application—and its migrations—to Scooter. Rails

does not provide a policy language, so we reverse engineer policies from the behavior of the

application.

Results Summary We find that Scooter is capable of expressing the vast majority of policies and

migrations showcased by existing frameworks—confirming that Scooter’s verification-oriented

design decisions don’t unduly limit the expressiveness of the language. We find that Sidecar can

detect unsafe migrations (and generate counterexamples) from real applications. Furthermore, we

find that verification with Sidecar takes less than a second to complete and that our ORM imposes

a runtime overhead (11%) comparable to the LWeb [203] and Hails [118] MPVC frameworks.

77

Project Framework # Models # Fields # Migr
Migr
LOC

Unique
Policies

Migration
Actions

BIBIFI LWeb 46 215 11 183 4 37/37
Visit Days Rails 4 19 10 139 7 21/21
GitStar Hails 3 8 1 11 7 6
LambdaChair Hails 4 8 1 38 5 2/2
Learn-by-Hacking Hails 3 13 5 63 7 22/23
Ur-Calendar UrFlow 2 8 1 52 6 1/1
Lifty Conference Lifty 6 26 1 175 10 1/1

Figure 2.5: A list of case studies, along with metrics. # Models is the number of models in
the final policy; # Fields is the number of fields on all models in the final policy; # Migr is the
number of migrations considered; Migr LOC is the total lines of code of migrations expressed
in Scooter; Unique Policies indicates the count of unique policy functions that were ported to
Scooter; Migration Actions indicates the ratio of migration actions that were expressible in
Scooter.

Experimental Setup We conduct all performance measurements on an Arch Linux (kernel

5.11.9) desktop with an Intel i7 6700K processor, 4 cores (8 hyperthreads) at 4GHz, and 16 GB

of RAM.

2.5.1 Scooter Language Expressiveness

To answer this question we port case studies from existing policy frameworks to Scooter

and discuss the capabilities and limitations of the language. For each case study, we report the

number of migrations, lines of migration code, the number of policies successfully ported, and

the number of migration actions used. Our results—reported in Figure 2.5—show that Scooter

is able to represent all policies and all but one migration. In the remainder of this section, we

discuss each case study and the process of porting them to Scooter.

Build it Break it Fix it We port the LWeb BIBIFI production web application designed to

manage and coordinate security programming contests [252]. The application allows adminis-

trators to create contests and posts related to those contest and manage the teams and scores of

contests, while regular users can log in and see the current contests and their team’s details. LWeb

78

developers write policies on fields of a record as disjunctions of static principals and (other) fields

of the record. BIBIFI uses automatic schema migrations to (1) remove fields or (2) add fields with

default values. Scooter is able to express all the BIBIFI data models, policies, and migrations.

Visit Day We port a production Ruby on Rails app designed to schedule meetings between

visiting prospective PhD students and faculty [215]. The application allows users to create

privileged accounts for scheduling meetings, as well as unprivileged accounts so that students

and faculty can view their schedules; users can reset their passwords and invite other users. We

port both the application and its ActiveRecord [112] migration scripts with no issues. There are

ten migrations, totaling 139 lines of code. The original hand-written policy is 25 lines of code,

but after all the migrations, it becomes an automatically generated 103-line policy file.

GitStar We port the GitStar [253] benchmark—a lightweight GitHub-like application—from

the Hails project [119]. We make one modification. Hails repositories have a reader field that

can be a set of user ids or a special public value; since Scooter does not include arbitrary sum

types, we instead encode this as two fields, a boolean is public and a set of user readers.

LambdaChair LambdaChair [254], a lightweight conference review system, is another Hails

benchmark. It features Program Committee (PC) users, as well as non-PC users, both of whom

can be paper authors. It also has a root principal that can edit any paper. The authors of

LambdaChair evolved the LambdaChair application over time: first, they created authors and

PC members, and then, through a migration, they added papers and permissions on those papers.

However, they did so in ad-hoc way, by changing the policy and the model by hand. Scooter is

able to express the LambdaChair migrations in thirty-eight lines of code, and Sidecar can quickly

verify those migrations for safety.

79

Learn-by-Hacking We port another Hails benchmark, Learn-by-Hacking [255], that lets users

incorporate code into tutorials, blog posts, and more. The original authors evolved Learn-by-

Hacking through five migrations (e.g., one adds tags (short categories) to associate with posts).

Using our DSL alone, we are unable to express one migration using Scooter—that adds a database

of existing tags—since this migration relies on querying and then dynamically creating objects.

As we further discuss in Section 2.6.2, this migration can be implemented using the Scooter

ORM.

UrFlow Calendar We port UrFlow Calendar [85], an application that allows users to manage a

calendar, from the UrFlow project [86] without any issues. Ur encodes policies very differently

from Scooter—as a SQL-based eDSL—but Scooter is still able to express this benchmark’s

policies despite the difference.

Lifty Conference We port Lifty Conference [256], another conference review system, from the

Lifty project [205]. This benchmark is different from the others because Lifty is not an ORM;

the benchmark operates on in-language values and types. The Lifty policies rely on a singleton

which we translated into a database object. Scooter is able to express all policies from the Lifty

benchmark.

2.5.2 Detecting Unsafe Migrations

Since none of the above case studies had unsafe schema or policy changes, we ensure that

Sidecar can detect unsafe changes by implementing several unsafe schema and policy changes.

First, our test suite contains multiple negative tests, including the unsafe Chitter application

migrations described in Section 3.2. Second, we model two unsafe migrations from two applica-

tions: (1) a refactor of HotCRP’s policy code that inadvertently granted unauthenticated users

administrator rights [159, 158]; and (2) a policy change in the Hails Task management app that

80

inadvertenly made projects readable to all users [232]. In all cases, Scooter sucesfully detects the

unsafe migrations and generates counterexamples.

2.5.3 Sidecar Verification Speed

We evaluate the performance of Sidecar by timing the migrations from all of the case

studies from Figure 2.5. The most expensive migration takes 88.8ms to verify; the fastest takes

10.3ms. Performing the safety checks on a given command, say AddField, takes 7.1–12.7ms.

2.5.4 ORM Performance Overhead

We measure the performance overhead of our ORM on two benchmarks—an end-to-end

macro-benchmark and a micro-benchmark.

Macro-Benchmark To understand the overhead our ORM imposes on real web applications,

we port two BIBI controller benchmarks from LWeb [203] and measure the policy enforcement

overhead on latency for each endpoint. Specifically, we port the /announcements route, which

fetches announcements and schedules, and the /profile route, which fetches the logged-in user’s

profile. We use Scooter with the Rocket web framework (version 0.4) and Handlebar template

system (version 1.1). To measure latency, we use the Apache benchmarking tool ab; we configure

ab to make 10,000 requests with 16 concurrent connections. We find that the overhead on mean

and tail latency, which we measure to be 4ms for both end points, is in the noise (< 0.1ms).

This is not surprising: BIBIFI policies only allow field accesses and static principals—and thus

checking whether a field can be accessed is answered by an equality check on already available

data. Unlike Scooter, the overhead of enforcement in LWeb for these endpoints is 2.41–19.01%;

this is likely because LWeb uses IFC, whereas Scooter only performs access-control checks at the

database boundary.

81

Task Create Post View Friend Posts

Unchecked 0.313 ms 13.8 ms
Hand checked 0.334 ms 14.9 ms
Scooter checked 0.331 ms 15.2 ms

Figure 2.6: The time taken for two application level tasks, in the three configurations: unchecked,
when manually checked, and when checked with our Rust ORM.

Micro-Benchmark Because BIBIFI’s policies are not representative of the more complex

policies supported by Scooter—policies that require database queries—we implement a micro-

benchmark around the Chitter policy from Section 3.2. Specifically, we measure the ORM

performance overhead by timing two different actions: (a) creating a Chitter post and (b) viewing

a list of friends’ posts. We do so in three configurations: (1) Unchecked: native database

bindings with no policy checks; (2) Hand checked: manually written policy checks; and (3)

Scooter checked: Scooter’s ORM enforcement. We measure each action 10,000 times in each

configuration and report the mean. As shown in Figure 2.6, our ORM is only slightly slower

than manually inserted checks. In real web applications, these overheads are hidden by network

latency and other application components.

2.6 Discussion and Limitations

Like all languages and verifiers both Scooter and Sidecar have limitations. We discuss

some of these next.

2.6.1 Expressiveness

Scooter tries to balance the need to express complex behavior with the need to be a reliable

tool. Though we originally designed Scooter strictness checking to be decidable, we added

language features—namely, set subtraction and cyclical models—which can be used to write

policies that the SMT solver may not be able to solve. These features are useful for expressing

82

certain data models and policies. For example set subtraction is necessary for expressing deny lists

(in an open-world system where we cannot enumerate all principals). Though these features could

cause Sidecar to time out (and thus require the developer to perform an unchecked migration),

our verifier did not time out on any of the case studies or our tests.

There are many opportunities for additions to Scooter that increase expressivity without

affecting decidability. For example, Scooter currently only support data types that can be used

in policies. We envision extending Scooter with common datatypes (e.g., binary blobs, JSON

objects, and geolocations) that cannot be referenced in polices—and thus Sidecar does not have

to reason about—but are useful for many applications. Similarly, we envision extending Scooter

with anonymous records that would, for example, allow developers to express projections of

database objects.

2.6.2 Data Migrations

Scooter does not support manipulating data in the database apart from the populating

function in AddField. For example, developers can’t create or edit objects in a migration script.

Real-world migrations sometimes need to do this, though—and indeed we encountered this when

porting Learn-by-Hacking to Scooter.

Verifying the safety of these operations is difficult because they can cause indirect leakage.

For example, in a social media site where only a user’s friends can see their email, a migration

that creates a new friendship between two users also leaks their emails. In contrast to the kind

of leakage Sidecar prevents, this leakage does not require sensitive data to flow to a permissive

output. Instead, it modifies a policy-relevant field such that the permissions represented by an

existing policy function are expanded.

Developers can work around this limitation by using the ORM to perform migrations at

the application level, as a series of database queries. This ensures that all database accesses are

protected by policies. In the rare case where developers need to elide policy enforcement, our

83

ORM, in debug mode, also allows developers to temporarily turn-off enforcement.

2.6.3 Transactions

Scooter has no transactional semantics; any sequence of read, write, create, and delete

actions must be valid at each step. This can create problems when multiple database mutations

must happen together.

For example, in the LambdaChair case study, papers have multiple authors, and these

authors (and only these authors) have permissions to add other authors. Without set fields, this

would require three models: Paper, User, and PaperAuthor which represents the join table

between them. When a user creates a paper, they need to create an instance of both Paper and

PaperAuthor. If they create the Paper first, they would not be an author and thus could not

add other authors. Conversely, if they try to create the join table entry first, there is no Paper to

reference. In this specific case, we sidestep the problem by making authors a set field. Creating

an instance with a set field is (to Scooter) a single action even though it maps to multiple database

actions. In this way, set fields allow a specific type of transaction.

It is unclear how (or if) Scooter and Sidecar’s approach to policy safety scales up to

arbitrary database transactions, where multiple operations can occur atomically. We consider this

future work.

2.6.4 Surprising Semantics

As described in Section 2.4, Sidecar tracks data equivalences during migrations. This

allows policy-relevant fields to change representation—like isAdmin becoming adminLevel—

and still pass verification. While this is a useful feature, it has subtle behavior that can produce

surprising results.

The first surprise is that a sequence of migrations can be valid when it is in one file

84

and invalid when it is split across two. Migration scripts are atomic, and thus Sidecar tracks

equivalences across migration commands within a script file. But because writing to the database

can invalidate equivalences, we do not track equivalences between scripts.

Which policies Sidecar considers equal, due to equivalences, may also be surprising.

Consider the migration from isAdmin to adminLevel from Section 3.2, where admins are given

adminLevel 2 and regular users are given adminLevel 0. Until isAdmin is removed from the

model, Sidecar will track the relationship between the two fields. In doing so, Sidecar will deduce

that:

u -> User::Find({isAdmin: true})

is equivalent to:

u -> User::Find({adminLevel: 2})

and, more surprisingly, also equivalent to:

u -> User::Find({adminLevel >= 1})

By tracking equivalence, Sidecar knows that—at the time of the migration—there are no users

with an adminLevel 1 and that all users with adminLevel 2 were admins.

This could have unintended effects. Until isAdmin is removed, for example, we can use

{adminLevel >= 1} instead of {adminLevel: 2} without Sidecar raising an alert—even if the

semantic meanings of the two policies differ: one includes moderators, the other does not. Since

equivalences let Sidecar succeed in many cases users expect it to and prevent them from relying

on unchecked policy relaxations, we think this is a worthwhile trade-off. Of course, developers

can turn equivalence tracking off; without them, Sidecar can still catch policy weakenings and

leaks due to data flows but cannot incorporate knowledge from earlier migration steps.

85

2.7 Related Work

There is a long and rich history of work on the topic of security for database-backed

application, and more broadly for general purpose applications. Broadly speaking our paper

distinguishes itself from prior work in this space by offering a specific kind of enforcement that

had not been previously explored: static verification of data migrations and policy migrations in

database-backed applications. We see our effort as complimentary to the existing literature on

secure database-backed applications. We now highlight the most closely related work in this area.

Dynamic Enforcement Dynamic enforcement of security policies is a well-explored idea,

including the seminal work on Execution Monitoring [229], hardware-level information-flow

tracking [245], language-based information-flow control [137, 246, 241], fine-grain discretionary

access-control for databases [91, 247, 177, 281] and new programming models that incorporate

dynamic enforcement [277, 41].

The dynamic approaches most closely related to our work are those developed for database-

backed web frameworks (e.g., Jacqueline [276], Hails [119, 118], LWeb [203], and IFDB [230]).

These frameworks allow the programmer to state policies separately from code, and the system

automatically enforces the policy dynamically. While some of these systems enforce policies in a

mandatory fashion (e.g., using IFC), Scooter only enforces access control policies at the ORM

level, and thus our security guarantees do not extend to leaky application code. Since the ORM

code is generated, though, Scooter could be extended to, say, generate ORM code that uses an

IFC system for enforcement. Since our core focus is on verifying migrations, which none of these

systems address, we see our work as largely tackling a complementary problem.

Static Enforcement Another approach is to enforce policies statically, before the program

runs. For example, there is a long line of work on static type systems that enforce fine-

grained policies (e.g., information flow control and fine-grain access control) in various lan-

86

guages [185, 171, 30, 75, 171, 30, 209, 79, 260, 129, 168, 224, 144, 225, 40, 205, 236]. The

static approach most closely related to our work is UrFlow [86], a tool for static analysis of

database-backed applications. UrFlow takes data policies specified as SQL queries, and statically

ensures that the application code adheres to those policies. The Scooter ORM enforces policies

dynamically and thus introduces runtime overheads that can be partially avoided with static

checking. Conversely, neither UrFlow nor these other systems account for ways in which the ap-

plications (and, specifically, underlying database schema and policies) might change. Extending

Scooter to systems like UrFlow that enforce policies statically is an interesting future direction.

Program Partitioning Yet another approach to security enforcement is to use some kind of

program partitioning, thus enforcing certain security properties by construction. For example, the

Diesel [107] web framework for writing database-backed applications restricts each module of the

application to use a database connection that can only access data in the corresponding database

module. While this prevents certain kinds of cross-module leaks, it does not directly prevent

secret leakage to an unprivileged user. Program partitioning can also be done automatically

to enforce a stated policy, as is done in the Swift [87] system and the Jit/split [283] compiler.

However, again, none of these approaches address data or policy migrations.

Schema Migration There is a long history of work on schema migration. The most commonly

explored topics include mechanisms for expressing schema mappings [211, 160], techniques for

automatically inferring schema mappings [181, 34, 120, 30, 266], and support for automatically

evolving and verifying queries and databases in the face of schema migration [97, 96, 265, 266].

None of this work addresses how security policies interact with migrations, which is the aim of

our work. We, conversely, don’t automatically update or verify the application code that uses the

Scooter ORM.

87

Acknowledgments

We thank the reviewers, and our shepherd Adam Chlipala for his in-depth and insightful

feedback on all aspects of the paper—and for finding a bug in one of our proofs. We thank Ranjit

Jhala for his always insightful guidance. This work was supported in part by gifts from Cisco;

by the NSF under Grant Numbers CCF-1918573, CCF-1955457, CNS-1514435, and CAREER

CNS-2048262; and by the CONIX Research Center, one of six centers in JUMP, a Semiconductor

Research Corporation (SRC) program sponsored by DARPA.

Chapter 2, in part, is a reprint of the material as it appears in Proceedings of the 42nd ACM

SIGPLAN International Conference on Programming Language Design and Implementation

(PLDI) John Renner, Alex Sanchez-Stern, Fraser Brown, Sorin Lerner, Deian Stefan. ACM, 2020.

The dissertation author was a primary investigator and author of this paper.

88

Chapter 3

Towards a Verified Range Analysis for

JavaScript JITs

We present VeRA, a system for verifying the range analysis pass in browser just-in-time (JIT)

compilers. Browser developers write range analysis routines in a subset of C++, and verification

developers write infrastructure to verify custom analysis properties. Then, VeRA automatically

verifies the range analysis routines, which browser developers can integrate directly into the

JIT. We use VeRA to translate and verify Firefox range analysis routines, and it detects a new,

confirmed bug that has existed in the browser for six years.

3.1 Introduction

On May 30, 2019, employees of the cryptocurrency startup Coinbase were targeted by

a phishing campaign that lured them to visit a Web page hosting attack code [175]. This code

exploited previously unknown bugs in Firefox to take over the victim’s machine; the first bug

arose from incorrect type deduction in the just-in-time (JIT) compiler component of Firefox’s

JavaScript engine [15].

89

In 2020, Google’s Threat Analysis Group identified websites, apparently aimed at people

“born in a certain geographic region” and “part of a certain ethnic group,” that would install a

malicious spyware implant on any iPhone used to visit them. Two bugs exploited in this campaign,

according to analysis by Google’s Project Zero [55, 127], were in the JIT component of Safari’s

JavaScript engine [43, 5].

The JavaScript JITs shipped in modern browsers are mature, sophisticated systems devel-

oped by compilers experts. Yet bugs in JIT compilers have emerged in recent months as the single

largest threat to Web platform security, and the most dangerous attack surface of Web-connected

devices.

Unlike other compilers, browser JITs are exposed to adversarial program input. Remote

attackers can craft JavaScript that will trigger JIT compiler bugs and break out of the sandbox

on victim users’ machines. These attacks are possible in spite of the fact that JavaScript is a

memory-safe language, because its safety and isolation guarantees only apply if they are correctly

maintained by JIT compilation.

This is easier said than done. Consider JavaScript arrays, which are maps from index

positions to values. These maps can be “sparse,” in the sense that indices can be missing in the

middle. Any out-of-bounds accesses must be checked to return the special value undefined.

Furthermore, values stored in an array can be of any type, so array elements must be tagged or

boxed. In a naı̈ve implementation, numerical kernel performance would be unacceptably slow.

JavaScript JITs speculatively optimize accesses to dense arrays and to arrays whose

elements are all the same type, with bailouts to a slow path should the array shape change. And

they perform range analysis on values that could be used as array indices to facilitate bounds-

check elimination. When range analysis confirms that the array indices are guaranteed to be

within a given range, the JIT compiler generates code that allocates the array sequentially in

memory and allows sequential access without any bounds checks.

These optimizations are crucial—but also risky. Failing to bail out of the speculative fast

90

path when an array’s shape changes leads to type confusion; incorrectly eliminating a bounds

check allows out-of-bounds memory accesses. Both bug types can be exploited for arbitrary code

execution [122].

The implications of JavaScript JIT bugs for security were recognized as early as 2011 [221];

attackers have turned to JIT bugs as other avenues for browser exploitation become more rare and

more difficult to exploit (see, e.g., [279]). Since late 2017, industrial security researchers have

uncovered a dozen or more bugs in the JIT compilers shipping with Chrome (e.g., [22, 23, 19]),

Firefox (e.g., [3, 18, 20, 15]), Safari (e.g., [43, 5, 16, 17, 21]), and Edge (e.g., [12, 13, 14]).

They have documented JIT compiler internals and developed generic techniques for exploiting

JIT compiler bugs for code execution in blog posts [263, 287, 67, 110, 239, 109, 223, 213], in

industrial security conference presentations [123, 258, 152, 222, 126, 108], and in industrial

journals such as Phrack [128]. And, as we noted above, JIT bugs are being weaponized against

real users.

In short, the status quo is untenable. The JIT’s adversarial setting means even obscure

bugs that no normal program would ever hit become exploitable attack vectors. To secure the

Web, it is necessary to build and deploy JIT compilers free of security bugs.

In this chapter, we explore, for the first time, the possibility of using compiler verification

to secure browser JavaScript JIT compilers. Verification proves that the compiler is correct using

formal methods that consider all possible corner cases.

There is, of course, much prior work on compiler verification (§3.8). But JavaScript

JITs are a new and challenging domain for verification. JavaScript is an unusual language with

complicated semantics; the ARMv8.3-A architecture revision even adds an instruction, FJCVTZS,

to support floating-point conversion with JavaScript semantics [1]. And because browser JITs are

supposed to improve the perceived runtime performance of Web programs, compilation time is a

cost. A JIT that is verified but slow will not be acceptable.

As a first step in this direction, we build a system, VeRA, for expressing and verifying

91

JavaScript JIT range analyses. VeRA supports a subset of C++ for expressing range analysis

routines, and a Satisfiability Modulo Theories [47] (SMT)-based verification tool that proves the

correctness of these analyses with respect to JavaScript semantics. Browser developers can write

their range analysis code using VeRA C++, prove it correct, and incorporate the verified code

directly into their browser.

Compared to prior work in compiler verification, VeRA distinguishes itself by handling

the details of a realistic range analysis: we use VeRA to express and verify the range analysis used

in practice by the Firefox browser. This requires handling many challenges: complicated corner

cases of JavaScript semantics; complex dataflow facts whose semantics are often disjunctive

predicates; and complex propagation rules for those dataflow facts. Our verification uncovered a

new Firefox range analysis bug and confirmed an old bug from a previous version of the browser.

We also find that our verified routines work correctly in Firefox—they pass all 140 thousand

Firefox JIT tests—and perform comparably to the original routines in both micro and macro

benchmarks.

This chapter, later revisits the original VeRA work by reimplimenting the range analysis

routines using a generic automated verification language, showing that VeRA’s results do not

particlarly benefit from a specialized solver. The reimplemenation includes two performance

optimization which allow for verification of routines that VeRA timed out on. Furthermore, we

demonstrate the limits of SMT-based verification of range analysis by showing that even naive

analysis of floating point addition times out after a week.

3.2 Overview

This section gives an overview of range analysis in JIT compilers and the ramifications of

range analysis bugs. Then, it walks through using VeRA to verify a piece of the Firefox JIT’s

range analysis logic.

92

3.2.1 Range Analysis in JITs

Range analysis is a dataflow analysis that compilers use to deduce the range—typically

upper and lower bounds—of values at different points in program execution. These range deduc-

tions, or value constraints, are then used by different optimization passes to generate efficient

code. For example, Firefox’s dead code elimination (DCE) pass eliminates blocks guarded by

contradictory constraints [6]:

if (x > 0)

if (x < 0) /* ... dead code... */

It also eliminates redundant checks—in the redundant check elimination (RCE) pass—when it

can prove that values are within a certain range [8]:

var uintArray = new Uint8Array(...); // buffer

function foo(value) {

if (value >= 0) { // always true; redundant check

return value;

} else { /* ... dead code ... */ }

}

for(let i = 0; i < uintArray.length; i++) {

foo(uintArray[idx]); // call foo with unsigned value

}

Here, the comparison in foo is always true—uintArray can only contain unsigned integers—and

thus can be eliminated (along with the else branch).

More significantly, Firefox relies on range analysis to move and eliminate internal Java-

Script array bounds checks [7]. Since JavaScript is a memory safe language, the compiler inserts

bounds checks around every array access. For instance, in the example above, the array indexing

operation uintArray[idx] internally performs a bounds check, which returns undefined if the

93

access is out of bounds, i.e., when idx < 0 or when idx >= uintArray.length. In practice,

this incurs overhead—real applications make heavy use of arrays—and JITs aggressively try to

eliminate bounds checks. In the example above, for instance, Firefox can prove that the array

accesses are in-bounds and eliminate all the internal bounds checks.

3.2.2 From Range Analysis Bugs to Browser Exploits

Bugs in the range analysis code can, at best, manifest as application correctness errors—

and at worst as memory safety vulnerabilities. For example, an incorrect range deduction can

cause the JIT to eliminate a bounds check, which can in turn allow an attacker to read and write

beyond JavaScript array bounds and hijack the control flow of the browser renderer process (e.g.,

using JIT-ROP techniques [235, 169]).

Until recently, TurboFan—the JIT compiler component of Chrome’s V8 JavaScript

engine—used to deduce that indexOf, when applied to a string, would return an integer in the

range [−1,String::kMaxLength−1], where String::kMaxLength is the longest allowed V8

JavaScript string (228 −16 characters). Unfortunately, the actual V8 implementation of indexOf

can return String::kMaxLength—one more than the range analysis deduced. As the following

example (from the original bug report [22]) shows, this bug allowed attacker-supplied JavaScript

to create a variable i that TurboFan deduced to be 0, but actually held an arbitrary value (in this

case, 100,000):

var i = 'A'.repeat(2**28 - 16).indexOf("", 2**28);

i += 16; // real value: i = 2**28, optimizer: i = 2**28-1

i >>= 28; // real value: i = 1, optimizer: i = 0

i *= 100000; // real value: i = 100000, optimizer: i = 0

Since TurboFan thought i was zero, it would eliminate all bounds checks on i—so attackers

could use i as an index into any array in order to access that array out-of-bounds.

94

class Range : public TempObject {
int32_t lower_;
int32_t upper_;
bool hasInt32LowerBound_;
bool hasInt32UpperBound_;
// possibly not a whole number
FractionalPartFlag canHaveFractionalPart_;
// possibly negative zero
NegativeZeroFlag canBeNegativeZero_;
// the maximum exponent needed to represent the number
// 0-1023, 1024 indicates inf, 65536 indicates NaN or inf
uint16_t exp_;

}

Figure 3.1: Parts of Firefox’s range object

Range* Range::rsh(TempAllocator& alloc, const Range* lhs, int32_t c) {
MOZ_ASSERT(lhs->isInt32());
int32_t shift = c & 0x1f;
return Range::NewInt32Range(alloc, lhs->lower() >> shift,
lhs->upper() >> shift);

}

Figure 3.2: Firefox’s range analysis logic for the right shift operator.

range rsh(range& lhs, int32_t c) {
int32_t shift = c & 0x1f;
return newInt32Range(lhs.lower >> shift,
lhs.upper >> shift);

}

Figure 3.3: Simplified VeRA implementation of the right shift operator.

95

3.2.3 Why Range Analysis is Hard to Get Right

The indexOf example is not the only case of an exploitable browser vulnerability intro-

duced by a buggy JavaScript range analysis. Similar bugs have been a problem in practice for all

major browsers. This is because JavaScript range analysis is hard to get right.

First, it requires reasoning about double-precision floating point numbers. To do so

correctly and efficiently, browsers can’t just implement ranges as lower-bound and upper-bound

pairs; instead, their range objects are necessarily complicated structures. Figure 3.1 shows

Firefox’s range object, which keeps track of, among other things, integer bounds, special values,

and whether the range includes non-integrals. Not only is the data structure itself complex, but

there are also subtle invariants that it must maintain.

Second, tracking special floating-point values like NaN, Infinity, -Infinity, and −0.0 is

error-prone. For example, until recently, Turbofan’s range analysis incorrectly deduced that

Math.expm1, the JavaScript builtin used to compute ex −1, must either return a number value

or NaN—it didn’t account for floating point negative zero. The browser’s implementation of

Math.expm1, applied to −0.0, correctly returned −0.0 [274, 23]—a mismatch that again allowed

an attacker to hijack the browser renderer’s control flow.

A constellation of other factors make writing range analysis routines even harder. For

example, JITs internally distinguish 32-bit integer values from double-precision floats. This is

crucial for performance.1 But this also means that the range analysis must correctly determine

whether an output can be within the range of possible 32-bit numbers—for the Firefox range

object, whether the fields hasInt32LowerBound and hasInt32UpperBound should be set. As

another example, since JIT speed directly affects users’ experience, the range analysis must be

fast—it must run just in time—and usefully precise—it must produce information useful enough

to assist other optimization passes (e.g., DCE, RCE, and bounds-check elimination (BCE)). To

1This makes it possible for the JIT to efficiently compile array lookups into a direct memory accesses (as opposed
to lookups in a hash map) [240]

96

this end, JIT developers implement range analysis in low-level languages like C++ and eschew

verbose, readable code for fast, terse code. They also explore the trade-offs between speed and

precision: Firefox, for example, tracks integer ranges precisely—by tracking lower bounds and

upper bounds—but approximates wider floating-point ranges by only tracking exponents (in

addition to tracking special values).

3.2.4 Using VeRA to Express Range Analysis

VeRA is a subset of C++ for writing verified range analysis routines. If browser developers

write their analysis logic in VeRA C++, they can compile it into automatic correctness proofs

for custom properties. We ported twenty-two Firefox routines to VeRA C++; Figure 3.2 shows

Firefox’s implementation of range analysis for the right shift operator, while Figure 3.3 shows the

VeRA version. To calculate the range of possible output values for >>, it masks constant c with

31, per JavaScript semantics [105]. Then, it shifts the left-hand operand’s lower and upper bound

by the masked constant. If rsh is given an lhs range of [10,100] and a c constant of 2, it will

return a range of [2, 25].

3.2.5 Using VeRA to Verify Range Analysis

VeRA also provides an internal DSL for expressing the semantic meaning of each com-

puted fact. Given a range analysis dataflow fact R, its semantic meaning is a predicate JRK over

values. For expository purposes, the following is a simplified semantic meaning for ranges over

32-bit integers:

JRK(v)≜ R.lower≤ v ≤ R.upper

The actual semantic meaning we use in practice (described in Section 3.5) is far more

complicated since it includes floating point numbers, special values, and implementation-specific

97

Firefox invariants.

Once the semantic meaning of range facts is defined, the verification condition can be

described as follows. We show the case for a binary operator op, but a similar approach can be

used for other kinds of operators. We use opra to denote the range analysis flow function for op

(where “ra” stands for “range analysis”). This flow function, implemented in a subset of C++,

takes two range objects and returns a resulting range object. Finally, we use opjs to denote the

JavaScript semantics of op.

The verification condition for op is defined as follows (where ranges R1, R2, and JavaScript

values v1, v2, are universally quantified):

JR1K(v1)∧ JR2K(v1)⇒ Jopra(R1,R2)K(opjs(v1,v2))

This condition states that the flow function for op “preserves” the semantic meaning of range

facts: if the semantic meaning of the incoming range facts holds on certain incoming values to

the operator, then the semantic meaning of the output range fact will hold on the value produced

by the JavaScript semantics of the operator on those values.

Let’s apply this definition to the rsh flow function from Figure 3.3. In this case op is >> ;

opra is rsh ; and opjs is >>js. While >> is a binary operator, the version of the operator described

in Figure 3.3 is the one where the second parameter is a constant, and so we only need to consider

range inputs for the first parameter. As result, we have the following verification condition (where

range R and JavaScript values v, n are universally quantified):

JRK(v)⇒ Jrsh(R,n)K(v >>js n)

Once a verification developer specifies the predicate JRK, VeRA automatically proves it

(using an SMT solver) for each range analysis function. The browser developer need only write

the flow functions using a familiar subset of C++; Figure 3.3 is an example of such a flow function.

98

Feature Syntax

Declarations

Classes class MyClass {}
Variables/Fields uint32 t x = 4;
Functions/Methods uint32 t f() {}

Statements

If/Else if (expr) {} else {}
Assignment a = b;
Void Call func(a, b);
Return return foo;

Expressions

Casting (uint16 t) expr
Member Access s->m;
Function Calls func(a,b)
Numeric Literals 1234, 0xffff, 47.0
Comparison ==, !=, >=, >, <=, <
Binary Ops +, -, *, /, &, |, ˆ, >>, <<
Unary Ops ˜, !, -

Figure 3.4: C++ constructs that VeRA supports

The above is intended to give a sense for how verification works in VeRA, but the details are

described in Section 3.5.

3.3 VeRA C++

In this section, we describe the programming language that browser developers use to

implement range analysis flow functions in VeRA. This language is called VeRA C++, and is a

subset of C++. As shown in Figure 3.4, various standard C++ features are not included in VeRA

C++, the most notable of which may be loops (including recursion). Looping would make the

verification much more complicated, because it would require determining loop invariants. In

practice, though, omitting looping constructs does not affect VeRA C++’s expressiveness, since

flow functions for realistic range analysis don’t rely on loops; for example, none of Firefox’s

analysis functions use loops. Note that even though there is no looping allowed inside a flow

99

function, iteration does occur in the dataflow analysis algorithm that finds a solution to the flow

functions: indeed, that algorithm applies flow functions repeatedly until reaching a fixed point.

To allow programmers to describe the data structures for their range analysis, VeRA

supports C++ classes. For example, the VeRA C++ code in Figure 3.3 uses a range class, which

is a modified version of the Range class from the Firefox codebase (Figure 3.1). Finally, since

VeRA C++ is a subset of C++, all VeRA C++ range analyses can be directly incorporated into the

Firefox codebase once they are automatically verified.

3.4 Translating VeRA C++ to SMT

Before we describe verification conditions (Section 3.5), we show how to translate VeRA

C++ programs to SMT. We describe the challenges with C++ to SMT translation, and then

describe how we address theses challenges; Section 3.7 explains why we choose this particular

approach.

3.4.1 Challenges in Compiling C++ to SMT

One challenge in compiling C++ to SMT is that the theories defined in SMT solvers [48]

provide clients with low-level operators like logical right shift, bitwise and, and assignment; they

do not provide high-level C++ control-flow constructs like branches and functions. Instead, the

compiler must build these constructs out of lower-level SMT primitives.

The next challenge when translating C++ to SMT is that the semantics of SMT types and

operators are different from their C++ counterparts. For example, translating the C++ right-shift

operator directly to the raw SMT right-shift operator would be incorrect because it does not take

into account the subtle interaction of sign bits and the difference between logical and arithmetic

shifts. Furthermore, VeRA verification uses the theory of fixed-sized bit-vectors, and bitvectors do

not come with a notion of sign; instead, for each operator (e.g., C++’s less-than operator), VeRA

100

Feature Operations

Cast (type)
Conditional Ternary ? :
C++ Comparison ==, !=, >=, >, <=, <
C++ Binary Ops +, -, *, /, &, |, ˆ, >>, <<
C++ Unary Ops ˜, !, -

Figure 3.5: VeRA IR operations

must choose a corresponding SMT operator (e.g., signed or unsigned comparison) depending on

the C++ typing context. Some C++ operators work on both integer and floating point types (e.g.,

+), but this is not the case in SMT. Thus, VeRA must also choose which version of the operator

(e.g., floating-point or bitvector addition) to select based on the operator’s input types.

One final challenge is that the C++ standard includes undefined behavior—instruction

and operand combinations whose behavior is explicitly not prescribed by the standard [28]. For

example, the compiler is allowed to replace undefined “x / 0” with anything. In contrast, the

functions defined by the theory of bit-vectors are total functions, i.e. there is a well-defined result

for all inputs, and they are free from side effects. Thus, a translation from C++ to SMT should

not accidentally ascribe SMT’s well-definedness to C++.

3.4.2 Overcoming Challenges with an IR

Because of the differences between C++ and SMT, we create an Intermediate Represen-

tation (IR) that sits between the two languages. The compilation from C++ to IR takes care of

rewriting control flow constructs like branches, function calls, and return values. The translation

from IR to SMT takes care of the gap in semantics between the languages’ operators and types.

The IR consists of assignment statements in SSA form. The right-hand side of each

assignment is an expression tree. Each node in the tree is labeled by an IR operator, and has child

nodes that represent the operator’s parameters. Figure 3.5 outlines the operators in the IR.

101

Compiling C++ to IR We compile VeRA C++ into control-flow-free IR using a series of

transformations. The transformations must eliminate if statements, return statements, function

calls, and method calls, and must alter variable assignments to satisfy SSA (which the IR expects).

The transformation to SSA is standard. To handle control flow, VeRA re-writes if state-

ments into straight-line code using predicated execution. For example,

if (c) { x = 1; } else { x = 2; }

becomes:

x_1 = c ? 1 : x_0; x_2 = !c ? 2 : x_1;

VeRA handles function calls using inlining, which works well because VeRA C++ disal-

lows recursion. Thus, each call to a function gets its own set of assignments; calling “foo(1);

foo(2);” will generate two separate, versioned copies of foo. The rewrites for method calls,

return values, nested conditionals, and returns from within conditionals are all similar to the above

translations.

Compiling IR to SMT Compiling the IR to SMT requires some additional information to be

stored in the IR. In particular, each IR node will include the following three pieces of information

(in addition to an operator and children):

1. The SMT term generated for this IR node

2. The C++ type of this node (e.g., int32 or double), which is used to generate the correct

version of SMT operations

3. An “undef” bit, which indicates whether the node is the result of an operation with undefined

behavior. For example, in the statement x = 4 << -1, x’s undef bit would be set since a

left-shift by a negative value is undefined.

102

This information, computed during the translation from IR to SMT, is critical for generating SMT

terms that faithfully replicate the C++ semantics of the original VeRA C++ code.

We compile IR to SMT as follows. First, we translate assignment nodes into equality,

which is seamless because the IR is already in SSA form. Second, we translate the expression

tree that appears on the right-hand side of each assignment using a bottom-up traversal that

simultaneously computes the SMT term, the C++ type, and the “undef” bit (the three pieces of

information described above).

As an example, consider a comparison operator. If either argument is unsigned, the

compiler generates an unsigned SMT comparison; otherwise, it generates a signed one.

As another example, consider an IR left-shift a << b. If a is unsigned, the generated SMT

term is the logical left-shift of a by b; the result type is unsigned; and the undef bit is equal to

undef(a)∨undef(b)∨isNegative(b).

If a is signed, the generated SMT term is again the logical left-shift of a by b, and the

result type is unsigned. However, the “undef” bit is more complicated, because C++ 14 dictates

that a << b has undefined behavior if the shift operation discards any bits of a that were set. To

detect discarded bits in the 32-bit case, we perform the shift in 64-bits ((int64)a << (int64)b),

and then check if any of the high 32 bits of the result are set. If so, some bit was shifted off

the end of a, and the operation has undefined behavior. As a result, the “undef” bit is equal to:

undef(a)∨undef(b)∨isNegative(b)∨ (a <<64 b)[63 : 32] ̸= 032.

3.5 Verification

In this section, we describe how VeRA proves range analyses correct; dataflow analysis

“correctness” means that the facts concluded by the analysis are correct with respect to the

semantics of the program. For range analysis: if the analysis concludes that a certain variable is

in a range, the analysis is correct if the variable is actually within that range according to the

103

program’s semantics. Note that we only consider correctness of range analysis facts, not their

precision.

People typically prove dataflow analyses correct through abstract interpretation [93]. In

abstract interpretation, we start by setting up a connection between computed dataflow facts and

the semantics of the program. In our setting, we do so by defining, for each range fact R that

is computed about a variable, a semantic meaning—a predicate JRK over runtime values. This

predicate establishes the connection between the computed dataflow facts and the semantics of

the program: we say that a range fact R on a variable x is correct at a program point if, for all

possible values v that x can take at runtime, we have JRK(v).

The goal of our verification is to establish that the implemented range analysis is correct,

meaning that when the dataflow analysis algorithm terminates, all facts it has computed are

correct. In abstract interpretation, this is achieved by proving local preservation conditions on all

flow functions. These conditions can be shown to imply that the entire range dataflow analysis is

correct [93]. It is these local preservation conditions that we ask an SMT solver to prove.

Recall that we use opra to denote the range analysis flow function for an operator op

(which for simplicity we assume to be a binary operator). Recall also that we use opjs to denote

the JavaScript semantics of op. As mentioned in Section 3.2, we define the local preservation

condition for an operator op as:

JR1K(v1)∧ JR2K(v1)⇒ Jopra(R1,R2)K(opjs(v1,v2))

This condition states that the flow function for op “preserves” the semantic meaning of range

facts: if the incoming range facts are correct, then the propagated range fact is correct.

In this section, we first define the semantic meaning JRK of a given range fact R. Then, we

discuss how VeRA translates opjs to SMT (since Section 3.4 explains translation of opra), and

talk about how proofs work in practice.

104

inRange(R,v)≜

R.exp< e INF =⇒ ¬isInf(v) (R1)
∧R.exp ̸= e INF OR NAN =⇒ ¬isNaN(v) (R2)
∧¬R.canBeNegZero =⇒ v ̸=−0.0 (R3)
∧¬R.canHaveFraction =⇒ round(v) = v (R4)
∧R.hasInt32LowerBound =⇒ (isNaN(v)∨ v ≥ R.lower) (R5)
∧R.hasInt32UpperBound =⇒ (isNaN(v)∨ v ≤ R.upper) (R6)
∧R.exp≥ expOf(v) (R7)

Figure 3.6: The definition of the predicate inRange(R,v) that states whether a floating-point
number v is in range R.

3.5.1 Semantic Meaning of Predicate Facts

We split the semantic meaning JRK of a range fact R into two parts: (1) a predicate that

connects R to values and (2) a well-formedness invariant expressed solely on R. In particular:

JRK(v)≜ inRange(R,v)∧wellFormed(R)

The inRange predicate connects the range fact to values from JavaScript semantics. The wellFormed

predicate is more unique: it isn’t about a connection to semantic values, but instead about

implementation-specific Firefox invariants that are necessary for proving the flow functions

correct. We explain each piece of JRK in turn below.

The inRange predicate Figure 3.6 shows the inRange predicate, which we derived from

Firefox code and comments. An important point here is that this predicate is unusually complex—

far more complex than any of the semantic meanings used in prior automated verification efforts

for program analyses [166]. A typical meaning for a range analysis fact in prior work is:

inRange(R,v) ≜ R.lower≤ v ≤ R.upper

105

wellFormed(R)≜

R.lower≥ JS INT MIN∧R.lower≤ JS INT MAX (W1)
∧R.upper≥ JS INT MIN∧R.upper≤ JS INT MAX (W1)
∧¬R.hasInt32LowerBound =⇒ R.lower= JS INT MIN (W2)
∧¬R.hasInt32UpperBound =⇒ R.upper= JS INT MAX (W2)
∧R.canBeNegZero =⇒ contains(0,R)
∧(R.exp= e INF∨R.exp= e INF OR NAN∨R.exp≤ 1023) (W3)
∧(R.hasInt32LowerBound∧R.hasInt32UpperBound)

=⇒ R.exp= expOf(max(|R.lower|, |R.upper|))
∧R.hasInt32LowerBound =⇒ R.exp≥ expOf(R.lower) (W4)
∧R.hasInt32UpperBound =⇒ R.exp≥ expOf(R.upper) (W4)

Figure 3.7: Well-formedness for a Firefox range.

This predicate is simpler than our inRange because inRange must handle the complexities

of realistic range analysis for JavaScript (§3.2), i.e., tracking floating point numbers, since all

JavaScript values are double-precision floats.

Given a range fact R and a JavaScript value v, the predicate inRange(R,v) is true iff

the following conditions hold. First, if the exponent field of R is less than a special Firefox

value, e INF, v must not be infinite. Similarly, if R’s exponent is less than the special value

e INF OR NAN, v must not be NaN. If R’s canBeNegativeZero flag is not set, v should not be

-0.0; if R’s canHaveFractionalPart flag is not set, v should be a whole number. Finally, if R

has a lower bound (hasInt32LowerBound flag), v should be greater than or equal to that lower

bound (lower). The hasInt32LowerBound flag indicates whether a range contains numbers that

are smaller than thirty-two bit integers; it allows Firefox to internally use integers to represent

JavaScript numbers when possible.

The wellFormed predicate Figure 3.7 shows the wellFormed predicate, which is unusual

because it does not relate the range fact to semantic values. Instead, it simply imposes constraints

on the range fact itself; it is an invariant that Firefox flow functions depend on to be correct. We

derived this invariant from a set of long comments and a handful of invariant-checking functions

106

in the Firefox codebase.

All range facts should have canBeNegativeZero set only when zero is contained within

their range2, where contains is defined as follows for range R and value v:

contains(R,v)≜ v ≥ R.lower∧ v ≤ R.upper

Furthermore, exponents should either be in the range 0 to 1023, or should have the special value

e INF (1024) for infinity, or the special value e INF OR NAN (65535) for NaN or infinity. In

addition, the exponent should also be consistent with the lower and upper bound, if they exist.

Now, we walk through an example showing how Firefox routines break when invari-

ants are violated, focusing on the invariant relating hasInt32LowerBound with R.lower and

hasInt32UpperBound with R.upper. The Firefox implementation of range analysis requires

that if a range’s hasInt32LowerBound is unset, then its lower field equals JS INT MIN; sim-

ilarly, if its hasInt32UpperBound is unset, its upper field equals JS INT MAX. Consider the

following Firefox range analysis code for max, which calculates the new lower field and the new

hasInt32LowerBound flag in the returned range fact:

int32_t newLower = max(lhs->lower, rhs->lower)

bool newHasLower = lhs->hasInt32LowerBound || rhs->hasInt32LowerBound

Now consider two input ranges to the max function, R1 and R2, and assume the output range is R3.

If the Firefox invariant doesn’t hold, we can have ¬r1.hasInt32LowerBound and R1.lower=

1000, and R2.hasInt32LowerBound and R2.lower=−1000. This means that the above code

will set R3.hasInt32LowerBound to true, and R3.lower to 1000 (since the result lower bound

is the maximum of the input lower bounds).

Now consider two JavaScript values v1 in R1 and v2 in R2 (meaning that inRange(R1,v1)

and inRange(R2,v2) are both true). Let v1 be −∞ (since ¬R1.hasInt32LowerBound) and v2 be

2This is only an invariant on optimized ranges; unoptimized may have set flags even if their ranges don’t contain
zero.

107

-1000. Then, JavaScript semantics says that maxjs(v1,v2) is -1000, but -1000 is well below R3’s

lower bound of 1000.

However, once we add the wellFormed invariant, this problem is fixed: when hasInt32LowerBound

is not set, lower must be JS INT MIN, so R1.lower cannot be 1000. Now that R3’s lower bound

is JS INT MIN instead of 1000, it correctly captures maxjs(v1,v2) by including -1000. This ex-

ample shows that max’s range analysis relies on the invariant that lower is JS INT MIN when

hasInt32LowerBound is not set.

Other Verification Conditions We prove two additional properties of the Firefox range analysis:

we prove the correctness of the functions for combining range facts—union and intersection—

which the JIT uses within its larger range analysis loop. We will use union and intersection

to refer to Firefox’s union and intersection functions for range facts. Conceptually, given two

range facts R1 and R2, we want to show that union(R1,R2) is an overapproximation3 of the

mathematical union operation ∪ on the semantic values contained in R1 and the semantic values

contained in R2. We achieve this as follows. Given two well-formed ranges R1 and R2, we let

R3 = union(R1,R2). Then we want to show that for all JavaScript values v, we have:

inRange(R1,v)∨inRange(R2,v) =⇒ inRange(R3,v)

Similarly, for intersection we let R3 = intersect(R1,R2), and prove that:

inRange(R1,v)∧inRange(R2,v) =⇒ inRange(R3,v).

3.5.2 Using VeRA to Express Predicates

VeRA exposes an internal verification domain-specific language (DSL) embedded in

Haskell. Verification developers use the language to express verification infrastructure, including

verification conditions and the semantic meaning of range facts. The DSL exposes a number of

JavaScript operators—i.e., implementations of opjs—against which to verify range analysis func-

3And it is necessarily an overapproximation given how Firefox’s range analysis object is implemented: consider a
union of two ranges, one that can include fractions and one that can’t.

108

tions. If verification developers wish to verify new operations, it is straightforward to expose new

JavaScript routines in the VeRA internal DSL. To express predicates and verification conditions,

the DSL also exposes SMT directives. They allow verification developers to make assumptions,

call the SMT solver, and push and pop new incremental solver contexts.

In practice, proving the conjunction of wellFormed and inRange for each operator is

suboptimal: if any component of either predicate does not finish, the entire verification proof

does not finish. As a result, we prove individual conditions within each predicate separately;

Section 3.6 describes each condition that we prove and the time the proof takes to finish (or not).

Mechanically, to prove a given predicate part, we query an SMT solver with its negation—e.g.,

we check whether the operation can produce any values outside of the computed range. If the

formula is unsatisfiable, there are no such values and the range analysis routine is safe. If the

formula is satisfiable, the model provided by the solver is a concrete counterexample that captures

that input ranges and values for which the range analysis routine is unsafe.

3.6 Implementation and Evaluation

We implement VeRA—both the compiler for VeRA C++ and the internal verification

language—in 1384 lines of Haskell. Since the implementation details of the compiler are standard,

we only describe the details relevant to answering our evaluation questions. All our source code

and data sets are available at https://vera.programming.systems.

We evaluate VeRA by asking six questions:

Q1 Can VeRA prove Firefox range analysis routines correct?

Q2 Can VeRA proofs catch real correctness bugs?

Q3 Are the VeRA proofs correct?

Q4 Do the verified routines work correctly in Firefox?

109

https://vera.programming.systems

Q5 How do the verified routines perform in Firefox?

Q6 How hard is it to integrate verified routines into Firefox?

To answer these questions, we port 21 top-level Firefox range analysis flow functions to VeRA

C++, try to prove their correctness, and then re-integrate them into the browser. We are able to:

prove 137 separate facts about these routines; identify a new Firefox analysis bug; and correctly

detect an old analysis bug. A version of Firefox that uses our verified routines still performs

comparably to standard Firefox, and it still passes all (147,322) Firefox JavaScript tests.

3.6.1 Proofs

We choose to verify 19 Firefox flow functions because they are the complete set of

Firefox Range-type flow functions for JavaScript operators; we discuss this further in Section 3.7

(e.g., as a result, we don’t check division). In addition, we verify the union and intersect

functions, which are not JavaScript operators but instead Firefox-internal functions that combine

two different Range objects; this brings the total number of routines we attempt to verify to 21.

Verification of both union and intersect times out, but VeRA finds a bug in our port of an older,

broken version of intersect [9]. Finally, we port 25 helper functions called by each verified

function—i.e., every function except the optimize function (§3.7). Figure 3.8 summarizes our

results.

All operators followed by asterisks in the table (e.g., rsh) are only valid for 32-bit ranges.4

Thus, for each bitwise operator, we only prove (1) the simple predicate from Section 3.2 and (2)

the absence of undefined behavior in the result range’s upper and lower bounds. We don’t worry

about wellFormed for these operations, either; none of them alter the floating-point-specific

fields of the range.

4This is an internal Firefox invariant: each one of these functions starts with an assertion that its operands ranges
only include 32-bit numbers.

110

For floating-point operators (e.g., add), we separately prove each condition in the inRange

predicate and the wellFormed predicate with two exceptions: since we do not call optimize on

our result ranges, we only verify the wellFormed conditions that apply to non-optimized ranges

(i.e., our output ranges are correct but may not have the tightest possible bounds). Figure 3.8

goes into more detail about which columns correspond to which conditions in Figure 3.6 and

Figure 3.7.

Multiple proofs fail: ceil and broken intersect are both real bugs, while ursh and

ursh’ require extra invariants on the input ranges. We don’t amend them because their failure is

actually an interesting manifestation of a comment above both functions [26]:

// ursh's left operand is uint32, not int32, but for range

// analysis we currently approximate it as int32. We assume

// here that the range has already been adjusted...

In other words, over all possible inputs, ursh is not correct.

Our proof code, i.e., the code that automatically verifies each part of both the inRange

and wellFormed predicates, amounts to 804 lines of Haskell. We run all proofs on a virtual

machine (QEMU-KVM, Linux 5.3.11) running Arch Linux with 16 GB of memory and 4 vCPUs.

The processor is an AMD Ryzen Threadripper 2950X 16-Core with a base clock rate of 3.5GHz.

We use the Z3 SMT solver (4.8.6), which we call with custom Haskell bindings that extend the

haskell-z3 library [29], using a 20-minute timeout.

Can we prove Firefox range analysis routines correct? We successfully prove or refute 137

conditions out of a possible 159, for a success rate of ≈86%; the shortest proofs complete in under

a second, while the longest takes ≈ten minutes. The results suggest that R5.double, R6.double,

and W4 are particularly challenging to verify. R5.double and R6.double are more challenging

than their integer counterparts because they involve reasoning about floating-point values, which

is generally more expensive. W4 is challenging because it involves proving a relationship between

111

O
pe

ra
tio

n
R

1
R

2
R

3
R

4
R

5.
i3

2
R

5.
do

ub
le

R
6.

i3
2

R
6.

do
ub

le
R

7
W

1
W

2
W

3
W

4
U

nd
ef

ad
d

15
2

5
38

6
2

∞
2

∞
21

2
1

2
80

1
su

b
13

2
11

44
5

8
∞

5
∞

14
2

2
2

78
1

an
d∗

-
-

-
-

2
-

1
-

-
-

-
-

-
1

or
∗

-
-

-
-

2
-

2
-

-
-

-
-

-
1

xo
r∗

-
-

-
-

2
-

2
-

-
-

-
-

-
1

no
t∗

-
-

-
-

2
-

1
-

-
-

-
-

-
1

mu
l

92
65

22
36

2
∞

∞
∞

∞
94

4
4

4
∞

11
ls

h∗
-

-
-

-
1

-
1

-
-

-
-

-
-

1
rs

h∗
-

-
-

-
1

-
1

-
-

-
-

-
-

1
ur

sh
∗

-
-

-
-

X
-

X
-

-
-

-
-

-
1

ls
h’

∗
-

-
-

-
1

-
1

-
-

-
-

-
-

1
rs

h’
∗

-
-

-
-

1
-

1
-

-
-

-
-

-
1

ur
sh

’∗
-

-
-

-
X

-
X

-
-

-
-

-
-

1
ab

s
1

1
1

5
1

∞
1

22
4

1
1

1
4

∞
1

mi
n

2
20

2
2

5
22

4
2

∞
3

2
1

2
∞

1
ma

x
3

17
2

2
15

∞
2

∞
4

3
2

12
∞

1
fl

oo
r

4
2

1
5

1
14

6
1

9
54

1
1

5
∞

1
ce

il
∞

1
X

8
1

5
1

9
26

6
1

1
∞

∞
1

si
gn

1
1

1
1

1
2

1
2

1
1

1
1

2
1

Fi
gu

re
3.

8:
T

he
tim

e
it

ta
ke

s,
in

se
co

nd
s,

fo
r

V
eR

A
to

ve
ri

fy
pr

ed
ic

at
es

th
e

pr
ed

ic
at

e
fr

om
Se

ct
io

n
3.

5.
R

1-
7

co
rr

es
po

nd
to

th
e

lin
es

in
th

e
in

Ra
ng

e
pr

ed
ic

at
e,

w
hi

le
W

1-
4

co
rr

es
po

nd
to

lin
e

gr
ou

ps
on

e
th

ro
ug

h
fo

ur
in

we
ll

Fo
rm

ed
.B

ro
ad

ly
,R

1
m

ak
es

su
re

th
e

ro
ut

in
e

ha
nd

le
s

in
fin

iti
es

co
rr

ec
tly

,R
2

N
aN

s,
R

3
-0

.0
,R

4
fr

ac
tio

ns
,R

5s
lo

w
er

bo
un

ds
(o

ve
rb

ot
h

32
-b

it
in

te
ge

r
an

d
do

ub
le

va
lu

es
),

an
d

R
6s

up
pe

rb
ou

nd
s.

W
1

en
su

re
s

m
is

si
ng

up
pe

ra
nd

lo
w

er
bo

un
ds

im
pl

y
a

m
in

im
um

or
m

ax
im

um
va

lu
e

fo
rl

ow
er

an
d
up

pe
r;

W
2

en
su

re
s
lo

we
r

an
d
up

pe
r

ar
e

al
w

ay
s

va
lid

Ja
va

Sc
ri

pt
32

-b
it

nu
m

be
rs

;W
3

en
su

re
s

th
e

ra
ng

e’
s

ex
po

ne
nt

is
va

lid
,a

nd
W

4
en

su
re

s
th

e
ex

po
ne

nt
is

co
ns

is
te

nt
w

ith
th

e
up

pe
r

an
d

lo
w

er
bo

un
d.

Fi
na

lly
,U

nd
ef

sh
ow

s
th

e
tim

e
it

ta
ke

s
to

ve
ri

fy
th

at
th

e
ra

ng
e

co
m

pu
ta

tio
ns

fo
ru

pp
er

an
d
lo

we
r

ar
e

fr
ee

of
un

de
fin

ed
be

ha
vi

or
.

∞
in

di
ca

te
s

tim
eo

ut
,w

hi
le

X
in

di
ca

te
s

ve
ri

fic
at

io
n

fa
ilu

re
.

112

two properties of the range, both of which may be modified by the range analysis. Finally, R1

and W3 of Math.ceil may timeout because they involve bounding the size of an exponent, since

Math.ceil involves extracting the exponent from the absolute value of the range bounds.

There is hope, however. Though VeRA does not verify conditions for certain routines

(e.g., correctness of intersect), it is able to catch multiple bugs in broken versions of unverified

routines. For example, as we discuss later in this section, we port an older, broken version of

intersect to VeRA C++. VeRA is able to detect the bug in this version in 173 seconds, even

though the proof for the current version of intersect never finishes. VeRA also catches a number

of errors that we introduced while copying code over from Firefox; as we improved VeRA, it went

from being a custom DSL to a subset of C++, so porting was not always as easy as copy-pasting

browser code. For example, we switched an upper and lower bound in sub, which caused it to fail

the floating-point lower bounds check—even though this check never verifies in the fixed version

of sub. VeRA caught one other porting error in sub (use of the field canBeNegativeZero instead

of the function canBeZero), and at least two more in mul (switched lhs and rhs, and use of

canBeFiniteNonNegative in place of canBeFiniteNegative).

A new Firefox bug VeRA found a bug in Firefox’s range analysis for the Math.ceil opera-

tor [4], which rounds its input up to the nearest integer (e.g., the ceiling of 2.5 is three). The bug,

which follows, has existed since the routine’s introduction six years ago [2]:

Range* Range::ceil(TempAllocator& alloc, const Range* op) {

Range* copy = new (alloc) Range(*op);

if (copy->hasInt32Bounds())

copy->max_exponent_ = copy->exponentImpliedByInt32Bounds();

else if (copy->max_exponent_ < MaxFiniteExponent)

copy->max_exponent_++;

copy->canHaveFractionalPart_ = ExcludesFractionalParts;

copy->assertInvariants();

113

return copy;

}

The routine looks straightforward. Given an input range, it adjusts the range’s exponent upwards

by one—to account for upward rounding—and unsets the canHaveFractionalPart flag—since

the result is always a whole number.

The problem lies in what ceil doesn’t do: it never adjusts the input range’s canBeNegativeZero

flag. JavaScript semantics, though, dictate that Math.ceil(x) = -0 when x is between zero

and negative one. Therefore, given a range with lower and upper bound [-1, 0] and an unset

canBeNegativeZero flag, ceil will not correctly set the flag.

VeRA identifies the error after about three seconds, and provides the following (shortened)

counterexample:

result_range_canBeNegativeZero : 0

start_range_canBeNegativeZero : 0

start_range_lower : -128

start_range_upper : 0

start : -1.166614929399505e-301

It finds a start value, start, within the start_range of [-128, 0] with the canBeNegativeZero

flag unset. It notes that ceil of start is result, -0, but that the result range does not have the

canBeNegativeZero flag set.

After confirming the bug with Mozilla engineers, we tried to patch the bug and use VeRA

to verify the patch. VeRA rejected our first attempt—it was wrong—but approved the next one [4]:

copy->canBeNegativeZero_ = ((copy->lower_ > 0) || (copy->upper_ <= -1))

? copy->canBeNegativeZero_

: IncludesNegativeZero;

Now, the function sets the canBeNegativeZero flag to be true when the resulting range can be

includes values between negative one and zero.

114

An old Firefox bug To test VeRA further, we port a buggy version of Firefox’s intersect

operator, which takes the intersection of two ranges [10]. The buggy operator deduces that the

intersection of two ranges r1 ∩ r2 = /0 if the upper bound of r1 doesn’t overlap with the lower

bound of r2. This behavior is correct—unless both ranges contain NaN, in which case the result

range should include NaN, too. VeRA identifies the error after 173 seconds, and provides a counter

example showing an element in the two input ranges (NaN) that was not included in the output

range.

Are VeRA proofs correct? Verifiers can be as broken as the code they are intended to verify.

To guard against this possibility, we use Haskell’s QuickCheck [88] to automatically random-test

the semantics of (1) the operators in the VeRA IR and (2) the JavaScript operators that VeRA

uses for verification.5 For each JavaScript operator, we generate JavaScript code that performs

the operations, evaluates it with Node.js, and compares the result against that produced by our

SMT model. We use Node.js (version 10.1.0) because it uses the Chrome V8 JavaScript engine

and is thus likely to have different bugs from Firefox (and thus VeRA). Our C++ operator tests

are similar; we use Clang version 9.0.0. This checking proved useful—e.g., QuickCheck found a

bug in our implementation of the C++ floating-point abs operator. For further assurance, we also

cross-checked our JavaScript semantics against KJS [201].

3.6.2 Verified Routines in the Browser

We integrate our verified range analysis into Firefox 72.0a1 (commit 10c8c9240d). Our

versions of the Firefox range analysis functions amount to 621 lines of C++ code. In this section,

we describe the effort it took to retrofit Firefox and measure the performance of our modified

browser when compared with vanilla, unmodified Firefox.

5We use QuickCheck 2.13.2 on GHC 8.6.5 and configure it to test each operator on different types (e.g., integers
of varying widths) 1,000 times.

115

How hard is it to integrate VeRA code into Firefox? We retrofit Firefox in two steps. First,

we extend Firefox’s Range class with a verifedRange field—pointing our verified object—and

modify the class setters and getters to forward all accesses to the corresponding verifiedRange

fields. For example, we rewrite,

Range* Range::abs(TempAllocator& alloc, const Range* op) {

int32_t l = op->lower_;

int32_t u = op->upper_;

...

}

to:

Range* Range::abs(TempAllocator& alloc, const Range* op) {

int32_t l = op->verifiedRange.lower;

int32_t u = op->verifiedRange.upper;

...

}

Then, we replace individual function bodies with calls to our verified functions. For example, we

rewrite abs to:

Range* Range::abs(TempAllocator& alloc, const Range* op) {

auto vRange = verified::abs(op->verifiedRange);

return Range::fromVerifiedRange(alloc, vRange);

}

Our porting effort was surprisingly low: two engineers—neither of whom is a Firefox

core developer—integrated our VeRA C++ routines into Firefox over the course of two days. We

think this effort can be reduced even further: both steps are mechanical and can be automated to

only require human intervention when tests fail.

116

0 2 4

Median page load latency (sec)

google.com
yelp.com

eurosport.com
legacy.com
reddit.com

seatguru.com
twitch.tv

amazon.com
economist.com

espn.com
wowprogress.com

Vanilla
Veri�ed

Figure 3.9: Page load latency of popular and unpopular websites.

Do the verified routines work correctly? To test our ports, we run all of Firefox’s JavaScript

suites (using their mach build tool): the 7,364 JIT tests, 394 JSAPI tests (which use the Range

interface directly), and 139,564 general JavaScript tests. Though VeRA passes all of Firefox’s

tests now, it failed some tests along the way.

After altering Firefox to call VeRA routines whenever applicable, all but three of the JIT

tests passed; one timed out and two failed. This was because one of our ported functions did not

initialize every field of the range object; the function was only called by a range analysis routine

for a bitwise operator, so to verify it, we did not need to set the floating-point-specific range fields.

We also failed two of the JSAPI tests, both due to typos in our porting of intersect and sign

functions. The VeRA verification actually caught the sign bug, but due to a miscommunication

within the team, the fix didn’t make it into Firefox immediately. The bug in intersect caused it

to over-approximate the possibility of negative zeroes—but our verification specifically allows

over-approximation by design (§3.5).6 Once we fixed these bugs, all JIT and JSAPI tests passed,

and when we ran the other 139,564 Firefox JavaScript tests, all of those passed, too.

6Range combinations in Firefox are necessarily over-approximations.

117

How do the verified routines perform? We evaluate the performance impact of VeRA on

JavaScript execution and end-to-end page latency. We run all the performance benchmarks on an

Intel 8 core (i7-6700K machine with a base clock rate of 4.0GHz) machine running Arch Linux

with 64 GB of memory. We compare our browser against a vanilla, unmodified Firefox, and find

the impact of VeRA to be on par. This is not surprising: our C++ code is very similar to Firefox’s

original range analysis code.

To measure the performance of VeRA on JavaScript execution, we run the JetStream 2

benchmarking suite [38], created by the WebKit team. This benchmark subsumes the now-

deprecated SunSpider [39] benchmarking suite. JetStream 2 consists of 64 benchmarking tests

that measure representative JavaScript and WebAssembly workloads for both start-up times, code

execution, and “smoothness”.7 Each test reports a score, corresponding to how well the browser

performed. We present the JetStream 2 results, as run on 2019-11-22, in the appendix of the

original Scooter paper; the overall performance of our modified Firefox is on-par with unmodified

Firefox—our browser scored 75.688 while vanilla Firefox scored 77.206. JetStream 2 computes

this score by “taking the geometric mean over each individual benchmark’s score”. Our mean and

median scores are within 3.2% and 8.5%, respectively. The maximum difference in scores is in

52%, in the string-unpack-code-SP benchmark which stresses string manipulation. We think the

big differences are largely due to noise; running the string-unpack-code-SP benchmark outside

the browser (1,000 iterations in the js shell) we only observed a 0.48% difference.

We measure the impact of our verified code on end-to-end page latency by browsing a

representative sample of both popular and unpopular websites. In particular, we use the list of

11 sites curated by the Chrome team in their recent Chrome sandboxing work [214]. For each

site, we use Mozilla’s Talos benchmarking tool to measure the time it takes to render a page (i.e.,

the time to first paint [27]), taking the median of 50 runs (after a 5 run warm-up). Figure 3.9

presents our measurements. The median and average latencies of browsing these sites with our

7The WebAssembly pipeline in Firefox actually uses the JavaScript pipeline and thus VeRA in the verified
browser.

118

browser are within 5% of vanilla Firefox. The biggest slowdown is on reddit.com (18%), while

the biggest speedup is on economist.com (-9%); like [214], we attribute these bigger difference

to the inherently noise introduced by media content and the network. Overall, these results are

encouraging: VeRA does not impose overheads that are prohibitive to its adoption.

3.6.3 PrimaVeRA

Two years after the initial development of VeRA, we reimplement its range analysis

routines in an automated verification language based on corral[163]. We call this reimplementation

PrimaVeRA, and demonstrate two key findings:

1. PrimaVeRA can replicate and even improve on the results of VeRA using a generic auto-

mated verifier.

2. Even naive range analysis routines for floating point arithmetic are out of reach for today’s

SMT solvers.

Rather than baking the verification routine directly into the solver, PrimaVeRA relies on

programmer-provided verification conditions declared with inline assert and assume statements.

For example, VeRA’s verification routine for absolute value is written in PrimaVeRA like so:

var r: Range;

var d: Double;

fn absSpec() {

assume wellFormed(r);

assume inRange(r, d);

let dOut = JS::abs(d);

let rOut = Range::abs(r);

assert wellFormed(rOut);

assert inRange(rOut, dOut)

}

119

Operation Time (s)

abs 667
ceil 3099
floor 2592

Figure 3.10: PrimaVeRA verifies the correctness of routines that VeRA is incapable of.

In PrimaVeRA, we do not divide the wellFormed and inRange into subproperties. This

more naturally matches the usage of debug asserts in the Firefox codebase, but does not allow

for partial results. A naive port of VeRA’s routines and verification conditions to PrimaVeRA,

results in timeouts for all routines which timed out in VeRA. However, now that the verification

conditions were expressed in PrimaVeRA code rather than embedded in the solver, we were able

to optimize the verification condition to successfully verify 3 more routines.

Optimizing the wellFormed predicate W4 makes use of an expOf(n) function which yields

⌊log2(|n|)⌋ for a signed integer, n. VeRA implements this function using popcnt, which is

difficult for the SMT solver to optimize. In PrimaVeRA, we implement expOf(n) using a chain

of 31 if-statements corresponding to the range of possible values for each return value. This

optimization allowed the abs routine to fully verify.

Optimizing the inRange predicate. R7 states that for a range to contain a double, the R.exp

must be greater than or equal to expOf(R). This means that any overapproximation of expOf(R)

that yields a larger value is sound, but possibly incomplete. We also know that R.exp is an

16-bit unsigned integer, meaning it could never be negative. Combined these facts mean that an

overapproximation of expOf(R) which yields 0 for all floating points with negative exponents,

is both sound and complete. VeRA, however, does not do any approximation; it implements a

precise version of expOf which accounts for subnormal floating points and supports floating

points with negative exponents. In PrimaVeRA, we implement this approximation, which allows

us to avoid special cases for subnormals and drastically shrinks the potential range of possible

120

values. Coincidentally, Firefox already implements this version of expOf in order to determine the

range for a floating point constant. With these optimizations, PrimaVeRA is capable of verifying 3

new ops (see Figure. 3.10). Alas, arithmetic binary operations such as add remain out of reach. To

investigate the feasibility of verifying range analysis over floating point addition, we implement a

simpler analysis using range objects with only optional 32-bit signed integer bounds:

fn add(lhs: Range, rhs: Range) -> Range {

let minSum = (lhs.min as Int64) + (rhs.min as Int64);

let maxSum = (lhs.max as Int64) + (rhs.max as Int64);

Range {

hasMin: lhs.hasMin && rhs.hasMin && minSum >= INT32_MIN,

hasMax: lhs.hasMax && rhs.hasMax && maxSum <= INT32_MAX,

min: minSum as Int32,

max: maxSum as Int32

}

}

fn inRange(r: Range, n: Double) {

if Double::is_nan(n) { return true; }

if r.has_min && n < r.min { return false; }

if r.has_max && n > r.max { return false; }

true

}

fn wellFormed(r: Range) {

r.min <= r.max

}

Our hypothesis was that removing all the floating point math, i.e. using a less-precise analysis,

the verification condition would be tractable, but the solver still timed out This indicates that

further verification of range analysis will require improvements to the underlying SMT solver, or

121

will require alternate techniques such as manual theorem proving.

3.7 Discussion, Limitations and Future Work

Why not existing proof tools? We started out building a DSL for range analysis verification,

and ended up building a compiler from both C++ and an internal verification language to SMT.

There are many existing tools that can translate programming languages into SMT [80, 212], and

they primarily operate on an existing compiler IR (e.g., LLVM IR) instead of defining their own

IR. Verifying JavaScript JIT optimization passes at the LLVM IR level is something to strive for in

the future, but using a small language is an easier start; to our knowledge, no LLVM-IR-level tool

supports JavaScript semantics, some don’t support C++ reliably [24], and the ones that do can get

lost in complex class object hierarchies—in IR, series of pointer offset calculations—and as a

consequence struggle to verify anything at all. Furthermore, using these tools requires integrating

them with (very complicated) browser build systems. We, on the other hand, don’t provide any

guarantees about the final machine code.

What we don’t verify We only verify range analysis routines for Firefox. Chrome’s range

analysis pass is tied to its type inference pass—different ranges correspond to different types (e.g.,

32-bit integers have a bound). We consider extending VeRA to other browsers future work.

Within Firefox, the range analysis functions that we verify all return the basic Firefox

Range object type. These functions contain local range analysis logic, and are called during

the range analysis computation for different MIR nodes, Firefox’s middle-level intermediate

representation of JavaScript programs. For example, the computeRange method for the MCeil

node (representing Math.ceil) simply wraps Range::ceil and thus reaps the benefits of our

verification effort. Many MIR nodes, however, do not correspond to a JavaScript-level constructs

(e..g, MSpectreMaskIndex is used to represent a masked array index) and we thus do not verify

them. We also do not verify the range analysis algorithm itself nor Firefox’s use of ranges in code

122

generation or other optimization passes (e.g., DCE or BCE). These are natural extensions to our

work. Similarly, since other JIT components (e.g., type inference) have been a source of security

vulnerabilities, we hope to address them as future work (e.g., by building on JIT type inference

foundations [131, 134]).

3.8 Related Work

VeRA lies at the intersection of work on compiler verification, JIT compilation, and

browser security.

Verifying optimizations using SMT Various prior systems have used DSLs combined with

SMT solvers to express and verify compiler optimization correctness: for example, Cobalt [165],

Rhodium [166], PEC [162] and Alive [172]. These systems mostly focus on proving correctness

of transformations, e.g., scalar optimizations in Cobalt and Rhodium, control flow rewrites in

PEC, and peephole optimizations in Alive. There has been much less work on using DSLs and

SMT solvers to prove the correctness of analyses, with the notable exception of the Rhodium

system [166]. While conceptually the techniques in VeRA are similar to Rhodium’s techniques for

analysis correctness, the analyses in Rhodium are relatively simple, with the semantic predicate

of facts often containing a single term. In contrast, VeRA demonstrates how to use DSLs and

SMT solvers to verify the correctness of analyses in a realistic setting: our work handles all the

corner cases of Firefox’s range analysis, which in turn includes a semantic predicate for the range

facts with 16 cases.

Another difference between our work and prior work is the type of constructs we support

(in VeRA C++). Alive supports pointers and arrays (with static, known sizes), while VeRA

does not support either construct—but neither system handles loops, since neither peephole

optimizations nor range analysis computations typically require them.

123

Compiler and analysis verification in a proof assistant Another approach to general compiler

verification is foundational verification. In foundational verification, the programmer writes the

compiler in a Proof Assistant, and then uses the proof assistant to interactively prove that the

compiler is correct. Examples of foundationally verified compilers include CompCert [167],

CompCertTSO [262], Compositional CompCert [242], and CakeML [161]. Examples of semantic

IR frameworks include the Vellvm system [285], which provides a formal semantics for LLVM

IR that others can use to verify IR optimizations/transformations.

In addition to entire compilers or IR frameworks, there has also been work on specific

analyses and optimizations that are foundationally verified. For example, Versaco [151] is a

foundationally verified static analyzer for CompCert; developers can use it to write their own

analyses that prove properties of analyzed programs. For specific optimizations, Zhao et al.

use Vellvm to verify a version of LLVM’s mem2reg transformation, which changes memory

references to register references [286, 25]. Mullen et al. use the Coq proof assistant to verify

peephole optimizations for the CompCert verified C compiler [167, 183]. Finally, Tatlock et al.

extend CompCert with a DSL for expressing optimizations [251]—combining the DSL approach

with foundational verification.

Because proofs in foundational verification are performed in full detail, foundational

verification provides the strongest possible correctness guarantees. However, these proofs often

require a significant amount of expert human guidance, making them very difficult to complete.

In contrast, VeRA allows browser developers to express their analysis in a subset of C++, and

then provides automated verification to the developer without any additional effort or verification

knowledge.

Verification of JIT compilation There has also been work specifically on verifying correctness

of JIT compilers, including work on verifying a non-optimizing JIT compiler [187], and work on

defining correctness criteria for trace-based JIT compilation [132]. There is also ongoing work on

124

verifying a JIT in Coq [49], which includes support for some optimizations, though it is not clear

which ones; similarly, there is ongoing work on verifying a JIT using symbolic execution [233].

None of this work focuses on the specific challenge that we are addressing, namely verifying the

complex analyses that drive optimizations in browser JITs.

Translation validation Another approach to compiler correctness is translation validation [228,

190, 204]: each time the compiler runs, a validator tries to prove that the transformed code behaves

the same as the original code. While translation validation can find compiler bugs, it does not

guarantee the absence of bugs, as VeRA attempts to. For translation validation to guarantee the

absence of bugs, it would have to do validation on production runs, which incurs compilation

overhead—not ideal for a JIT.

Recent work by Taneja et. al. goes further by proposing an algorithm for sound and

maximally precise dataflow facts like integer ranges (similar to this work) and known bits, among

others [248]. For a given code fragment, they (1) use their algorithm (implemented with an SMT

solver) to compute dataflow facts about that fragment and (2) compare those facts to the ones

LLVM has computed. This technique has identified several precision errors in LLVM’s analyses,

and adapting it to help developers design tighter ranges is interesting future work.

Verification and floating point numbers Other systems also handle the challenge of verifying

floating-point code. Recently, Boldo et al. formalize IEEE-754 semantics in Coq in order to

extend CompCert to support programs that use floating-point numbers [72]. More similar to

VeRA, Icing [53], which builds on the verified ML compiler CakeML [161], is a language for

writing “fast-math” optimizations. Multiple projects also extend the Alive system to support

peephole optimizations related to floating point numbers [178, 195]. Recently, Becker et al. use

the Daisy tool [98] to verify optimizations to floating-point computations—in programs, not in

compilers—that the Herbie [200] tool generates [54].

125

Testing compilers Beyond verification, there are other approaches to compiler correctness.

One is automatic testing, or “fuzzing,” which finds bugs but does not guarantee the absence of

errors. For example, the CSmith tool automatically generates useful—well-formed, undefined-

behavior-free—inputs for testing C compilers [278]. Dewey et al. present a system for fuzzing the

Rust compiler’s type checker [103]. Finally, there are fuzzers specific to JavaScript interpreters:

Fuzzilli [124, 125], and CodeAlchemist [136]. Fuzzilli has been remarkably effective at finding

bugs in JavaScript engines; its bug showcase lists two dozen security issues [11].

Verified JavaScript semantics There has been a significant effort to formalize (parts of) the

JavaScript language. Most of these efforts start with a simple core language and extend it with

unwieldy JavaScript features (e.g., eval, property descriptors, and with) [173, 206, 130, 114].

The JSCert JavaScript subset was even mechanized in Coq, from where they extracted a verified

correct interpreter [71, 70, 115]. KJS [201] provides a complete JavaScript semantics in the K

framework. Though we cross-check our semantics against KJS and JSCert’s (where possible),

this work is complimentary: they focus on verifying JavaScript semantics, we focus on the JITs

that should preserve these semantics.

Verification in the browser A verified browser kernel, Quark [148], demonstrates that verifica-

tion is possible in the browser setting. Though we’re a long way from a verified Firefox, browsers

are interested in verified software. For example, both Firefox and Chrome incorporated verified

cryptographic primitives into their TLS stacks [289, 288].

Safer browser JITs Another approach to JIT safety is to limit the damage of bugs, not prevent

them. NaClJIT sandboxes both the JIT compiler and the code it produces [37]. RockJIT applies a

control-flow integrity policy to the JIT compiler and the code it produces [193]. NoJITSu prevents

code-reuse and data-only attacks [202]. Browser vendors have also modified their JITs to reduce

the effectiveness of JIT spraying [170], a technique that allows attackers to introduce bytes of

126

their choice into pages marked executable in browser memory [68].

Large, real-world verification Finally, beyond what we have discussed so far, there are many

other large, real-world verification efforts. The Astrée static analyzer has verified safety properties

of Airbus software [101]; the miTLS project provides verified reference implementations of TLS

1.0, 1.1, and 1.2 [66]; Barbosa et. al. [44] give an overview of verification efforts for crypto code,

including discussion of an ongoing effort to formally verify the TLS 1.3 protocol. seL4 [154] is a

verified operating systems kernel; and various recent efforts have proved properties of systems

software like file systems [83, 82, 234] and in-kernel interpreters [264].

3.9 Conclusion

This chapter presents VeRA, a system for verifying the range analysis pass in browser

JITs. VeRA allows browser developers to write range analysis routines directly in the browser (in

a subset of C++) and provides a DSL that verification developers can use to encode verification

properties (e.g., range analysis invariants). VeRA automatically verifies these properties using

SMT.

We use VeRA to encode a semantics for Firefox’s range analysis, and then port 22 Firefox

analysis routines to VeRA C++ in order to verify them. The ported version of the browser performs

on-par with the original. Moreover, VeRA detects a bug that has existed in the browser for six

years—and verifies the Firefox patch we wrote to fix the bug.

We reimplement VeRA as PrimaVeRA in a generic verification language, and demonstrate

two optimizations which allow for full verification of 3 new range operations. Furthermore, we

demonstrate that existing SMT solvers struggle to verify a simple range analysis in the presence

of floating point arithmetic operators.

127

3.10 Acknowledgements

We thank the anonymous reviewers for their comments, and especially our shepherd John

Regehr for helping us think through both the content and presentation of this chapter. Thanks

to Dawson Engler for technical discussions about this work and other applications of these

techniques. Thanks to Riad S. Wahby for uploading our huge artifact (and more!), and to Ranjit

Jhala for early discussions. Finally, thanks to Chris Fallin, Nick Fitzgerald, Dan Gohman, Jan de

Mooij, Nicolas B. Pierron, and Luke Wagner at Firefox; we can’t imagine a more thoughtful and

responsive group of people. This work was supported in part by gifts from Cisco, Fastly, Google,

Mozilla, and Qualcomm; by the NSF under Grant Numbers CCF-1918573 and CNS-1514435;

and by the CONIX Research Center, one of six centers in JUMP, a Semiconductor Research

Corporation (SRC) program sponsored by DARPA.

Chapter 3, in part, is a reprint of the material as it appears in Proceedings of the 41st ACM

SIGPLAN International Conference on Programming Language Design and Implementation

(PLDI) Fraser Brown, John Renner, Andres Noetzli, Sorin Lerner, Hovav Schacham, Deian Stefan.

ACM, 2020. The dissertation author was a primary investigator and author of this paper.

128

Conclusion

Without formal verification, attackers will continue to find and exploit vulnerabilities in

web applications and in the browser. Existing tools are either too difficult (i.e. theorem provers)

or too unpredictable (i.e. generic automated verifiers). This dissertation shows that co-designing

languages and verifiers can result in powerful and reliable tools that help developers build secure

systems rooted in formal methods. We describe three such tools. CT-Wasm (chapter 1) enabls

submillisecond verification of constant-time crypto by encoding the constant time discipline into

a typesystem. Scooter (chapter 2) prevents data leakage by arming developers with a DSL for

specifying policies and database migrations and efficiently lowering these policies and migrations

to efficient SMT queries. Lastly, VeRA and PrimaVeRA (chapter 3) shows how highly expressive

DSLs can prove complex invariants such as correct range analysis, but struggle to predictably

terminate. Together, this work, shows that co-designing languages and verifiers is a promising

approach to making the web more secure.

129

Bibliography

[1] 18.23 FJCVTZS. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0801g/
hko1477562192868.html.

[2] Bug 1027510. https://bugzilla.mozilla.org/show bug.cgi?id=1027510.

[3] Bug 1493900. https://bugs.webkit.org/show bug.cgi?id=1493900.

[4] Bug 1595329. https://bugzilla.mozilla.org/show bug.cgi?id=1595329.

[5] Bug 185694. https://bugs.webkit.org/show bug.cgi?id=185694.

[6] Bug 765127. https://bugzilla.mozilla.org/show bug.cgi?id=765127.

[7] Bug 765128. https://bugzilla.mozilla.org/show bug.cgi?id=765128.

[8] Bug 943303. https://bugzilla.mozilla.org/show bug.cgi?id=943303.

[9] Bug 950438. https://bugzilla.mozilla.org/show bug.cgi?id=950438.

[10] Bug 950438. https://bugzilla.mozilla.org/show bug.cgi?id=950438.

[11] googleprojectzero/fuzzilli. https://github.com/googleprojectzero/fuzzilli.

[12] Issue 1390. https://bugs.chromium.org/p/project-zero/issues/detail?id=1390.

[13] Issue 1396. https://bugs.chromium.org/p/project-zero/issues/detail?id=1396.

[14] Issue 1530. https://bugs.chromium.org/p/project-zero/issues/detail?id=1530.

[15] Issue 1544386. https://bugzilla.mozilla.org/show bug.cgi?id=1544386.

[16] Issue 1669. https://bugs.chromium.org/p/project-zero/issues/detail?id=1699.

[17] Issue 1775. https://bugs.chromium.org/p/project-zero/issues/detail?id=1775.

[18] Issue 1791. https://bugs.chromium.org/p/project-zero/issues/detail?id=1791.

[19] Issue 1809. https://bugs.chromium.org/p/project-zero/issues/detail?id=1809.

130

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0801g/hko1477562192868.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0801g/hko1477562192868.html
https://bugzilla.mozilla.org/show_bug.cgi?id=1027510
https://bugs.webkit.org/show_bug.cgi?id=1493900
https://bugzilla.mozilla.org/show_bug.cgi?id=1595329
https://bugs.webkit.org/show_bug.cgi?id=185694
https://bugzilla.mozilla.org/show_bug.cgi?id=765127
https://bugzilla.mozilla.org/show_bug.cgi?id=765128
https://bugzilla.mozilla.org/show_bug.cgi?id=943303
https://bugzilla.mozilla.org/show_bug.cgi?id=950438
https://bugzilla.mozilla.org/show_bug.cgi?id=950438
https://github.com/googleprojectzero/fuzzilli
https://bugs.chromium.org/p/project-zero/issues/detail?id=1390
https://bugs.chromium.org/p/project-zero/issues/detail?id=1396
https://bugs.chromium.org/p/project-zero/issues/detail?id=1530
https://bugzilla.mozilla.org/show_bug.cgi?id=1544386
https://bugs.chromium.org/p/project-zero/issues/detail?id=1699
https://bugs.chromium.org/p/project-zero/issues/detail?id=1775
https://bugs.chromium.org/p/project-zero/issues/detail?id=1791
https://bugs.chromium.org/p/project-zero/issues/detail?id=1809

[20] Issue 1810. https://bugs.chromium.org/p/project-zero/issues/detail?id=1810.

[21] Issue 1876. https://bugs.chromium.org/p/project-zero/issues/detail?id=1876.

[22] Issue 762874. https://bugs.chromium.org/p/chromium/issues/detail?id=762874.

[23] Issue 880207. https://bugs.chromium.org/p/chromium/issues/detail?id=880207.

[24] Klee and C++ Analysis Target. https://github.com/klee/klee/issues/852.

[25] Promote Memory to Register. https://llvm.org/docs/Passes.html#mem2reg-promote-
memory-to-register.

[26] Range::ursh. https://searchfox.org/mozilla-central/source/js/src/jit/RangeAnalysis.cpp#
1026.

[27] Testengineering/performance/Talos/tests. https://wiki.mozilla.org/TestEngineering/
Performance/Talos/Tests.

[28] The C++ Standard. https://isocpp.org/std/the-standard.

[29] z3: Bindings for the Z3 Theorem Prover. https://hackage.haskell.org/package/z3.

[30] Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and Wang-Chiew Tan. Designing
and refining schema mappings via data examples. SIGMOD ’11, 2011.

[31] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire,
Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves Strub.
Jasmin: High-assurance and high-speed cryptography. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2017.

[32] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François Dupressoir. Verifiable
side-channel security of cryptographic implementations: Constant-time mee-cbc. In
Revised Selected Papers of the International Conference on Fast Software Encryption.
Springer-Verlag New York, Inc., 2016.

[33] Jose Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael
Emmi. Verifying constant-time implementations. In Proceedings of the USENIX Security
Symposium. USENIX Association, 2016.

[34] Yuan An, Alex Borgida, Renée Miller, and John Mylopoulos. A semantic approach to
discovering schema mapping expressions. ICDE’07, 05 2007.

[35] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner, and
Hovav Shacham. On subnormal floating point and abnormal timing. In Proceedings of the
IEEE Symposium on Security and Privacy. IEEE Computer Society, 2015.

131

https://bugs.chromium.org/p/project-zero/issues/detail?id=1810
https://bugs.chromium.org/p/project-zero/issues/detail?id=1876
https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/chromium/issues/detail?id=880207
https://github.com/klee/klee/issues/852
https://llvm.org/docs/Passes.html#mem2reg-promote-memory-to-register
https://llvm.org/docs/Passes.html#mem2reg-promote-memory-to-register
https://searchfox.org/mozilla-central/source/js/src/jit/RangeAnalysis.cpp#1026
https://searchfox.org/mozilla-central/source/js/src/jit/RangeAnalysis.cpp#1026
https://wiki.mozilla.org/TestEngineering/Performance/Talos/Tests
https://wiki.mozilla.org/TestEngineering/Performance/Talos/Tests
https://isocpp.org/std/the-standard
https://hackage.haskell.org/package/z3

[36] Marc Andrysco, Andres Nötzli, Fraser Brown, Ranjit Jhala, and Deian Stefan. Towards
verified, constant-time floating point operations. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2018.

[37] Jason Ansel, Petr Marchenko, Úlfar Erlingsson, Elijah Taylor, Brad Chen, Derek L. Schuff,
David Sehr, Cliff L. Biffle, and Bennet Yee. Language-Independent Sandboxing of Just-in-
Time Compilation and Self-Modifying Code. In PLDI, 2011.

[38] Apple. JetStream 2. https://browserbench.org/JetStream/.

[39] Apple. SunSpider 1.0.2 JavaScript Benchmark. https://webkit.org/perf/sunspider-1.0.2/
sunspider-1.0.2/driver.html.

[40] O. Arden and A. C. Myers. A calculus for flow-limited authorization. CSF’16, 2016.

[41] Thomas H. Austin, Jean Yang, Cormac Flanagan, and Armando Solar-Lezama. Faceted
execution of policy-agnostic programs. PLAS ’13, 2013.

[42] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and Irene
Finocchi. A survey of symbolic execution techniques. ACM Computing Surveys, 51(3),
2018.

[43] Saam Barati. Spread’s Effects are Modeled Incorrectly Both in AI and in Clobberize.
https://bugs.webkit.org/show bug.cgi?id=181867.

[44] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers, Kevin
Liao, and Bryan Parno. SoK: Computer-Aided Cryptography. Cryptology ePrint Archive,
Report 2019/1393, 2019. https://eprint.iacr.org/2019/1393.

[45] Manuel Barbosa, David Castro, and Paulo F. Silva. Compiling cao: From cryptographic
specifications to c implementations. In Martı́n Abadi and Steve Kremer, editors, Proceed-
ings of Principles of Security and Trust. Springer Berlin Heidelberg, 2014.

[46] Manuel Barbosa, Andrew Moss, Dan Page, Nuno F. Rodrigues, and Paulo F. Silva. Type
checking cryptography implementations. In Farhad Arbab and Marjan Sirjani, editors,
Fundamentals of Software Engineering. Springer Berlin Heidelberg, 2012.

[47] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.smt-lib.org.

[48] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version 2.0. In
Workshop on Satisfiability Modulo Theories, 2010.

[49] Aurèle Barrière, Sandrine Blazy, and David Pichardie. Towards Formally Verified Just-in-
Time Compilation. In CoqPL, 2020.

132

https://browserbench.org/JetStream/
https://webkit.org/perf/sunspider-1.0.2/sunspider-1.0.2/driver.html
https://webkit.org/perf/sunspider-1.0.2/sunspider-1.0.2/driver.html
https://bugs.webkit.org/show_bug.cgi?id=181867
https://eprint.iacr.org/2019/1393
www.smt-lib.org

[50] Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David Pichardie. System-
level non-interference for constant-time cryptography. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2014.

[51] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. Provably secure compilation
of side-channel countermeasures. Cryptology ePrint Archive, Report 2017/1233, 2017.
https://eprint.iacr.org/2017/1233.

[52] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. Secure compilation of side-
channel countermeasures: The case of cryptographic “constant-time”. In Proceedings of
the IEEE Computer Security Foundations Symposium. IEEE Computer Society, 2018.

[53] Heiko Becker, Eva Darulova, Magnus O. Myreen, and Zachary Tatlock. Icing: Supporting
Fast-Math Style Optimizations in a Verified Compiler. In CAV, 2019.

[54] Heiko Becker, Pavel Panchekha, Eva Darulova, and Zachary Tatlock. Combining Tools for
Optimization and Analysis of Floating-Point Computations. In International Symposium
on Formal Methods, 2018.

[55] Ian Beer. A Very Deep Dive into iOS Exploit Chains Found in the Wild. https:
//googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html, August
2019.

[56] Daniel J Bernstein. Cache-timing attacks on AES, 2005.

[57] Daniel J Bernstein. The Poly1305-AES message-authentication code. In Proceedings of
the International Workshop on Fast Software Encryption. Springer, 2005.

[58] Daniel J Bernstein. salsa20-ref.c, 2005.

[59] Daniel J Bernstein. Curve25519: new diffie-hellman speed records. In Proceedings of the
International Workshop on Public Key Cryptography. Springer, 2006.

[60] Daniel J Bernstein. Writing high-speed software, 2007.

[61] Daniel J Bernstein. The salsa20 family of stream ciphers. In New stream cipher designs.
Springer, 2008.

[62] Daniel J Bernstein, Tanja Lange, and Peter Schwabe. NaCl: Networking and cryptography
library, 2016.

[63] Daniel J Bernstein, Bernard Van Gastel, Wesley Janssen, Tanja Lange, Peter Schwabe,
and Sjaak Smetsers. TweetNaCl: A crypto library in 100 tweets. In Proceedings of
the International Conference on Cryptology and Information Security in Latin America.
Springer, 2014.

[64] Benjamin Beurdouche. Verified cryptography for Firefox 57, 2017.

133

https://eprint.iacr.org/2017/1233
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html

[65] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Sergio Maffeis. Defensive java-
script. In Foundations of Security Analysis and Design VII. Springer, 2014.

[66] Karthikeyan Bhargavan, Cedric Fournet, and Markulf Kohlweiss. mitls: Verifying Protocol
Implementations Against Real-World Attacks. IEEE Security & Privacy, 2016.

[67] Andrea Biondo. Exploiting the Math.expm1 typing bug in V8. https://abiondo.me/2019/
01/02/exploiting-math-expm1-v8, January 2019.

[68] Dionysus Blazakis. Interpreter exploitation. In WOOT, August 2010.

[69] Sandrine Blazy, David Pichardie, and Alix Trieu. Verifying constant-time implementations
by abstract interpretation. In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes,
editors, Proceedings of the European Symposium on Research in Computer Security.
Springer International Publishing, 2017.

[70] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio Maffeis,
Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. A Trusted Mechanised JavaScript
Specification. In POPL, 2014.

[71] Martin Bodin and Alan Schmitt. A Certified JavaScript Interpreter. In JFLA, 2013.

[72] Sylvie Boldo, Jacques-Henri Jourdan, Xavier Leroy, and Guillaume Melquiond. A
Formally-Verified C Compiler Supporting Floating-Point Arithmetic. In Symposium
on Computer Arithmetic, 2013.

[73] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino, Jacob R. Lorch,
Bryan Parno, Ashay Rane, Srinath Setty, and Laure Thompson. Vale: Verifying high-
performance cryptographic assembly code. In Proceedings of the USENIX Security
Symposium. USENIX Association, 2017.

[74] Michele Boreale. Quantifying information leakage in process calculi. Information and
Computation, 207(6), 2009.

[75] Niklas Broberg, Bart van Delft, and David Sands. Paragon–practical programming with
information flow control. Journal of Computer Security, 25, 2017.

[76] Fraser Brown, Deian Stefan, and Dawson Engler. Sys: A Static/Symbolic tool for finding
good bugs in good (browser) code. In 29th USENIX Security Symposium (USENIX Security
20), pages 199–216. USENIX Association, August 2020.

[77] David Brumley and Dan Boneh. Remote timing attacks are practical. Computer Networks,
48(5), 2005.

[78] Mykola Bubelich. Js-salsa20, 2017.

[79] Pablo Buiras, Dimitrios Vytiniotis, and Alejandro Russo. HLIO: Mixing static and dynamic
typing for information-flow control in haskell. ICFP’15, 2015.

134

https://abiondo.me/2019/01/02/exploiting-math-expm1-v8
https://abiondo.me/2019/01/02/exploiting-math-expm1-v8

[80] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. In OSDI, 2008.

[81] Sunjay Cauligi, Gary Soeller, Fraser Brown, Brian Johannesmeyer, Yunlu Huang, Ranjit
Jhala, and Deian Stefan. Fact: A flexible, constant-time programming language. In
Proceedings of the IEEE Cybersecurity Development Conference. IEEE, 2017.

[82] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay İleri, Adam Chlipala,
M Frans Kaashoek, and Nickolai Zeldovich. Verifying a High-Performance Crash-Safe
File System Using a Tree Specification. In SOSP, 2017.

[83] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M Frans Kaashoek, and
Nickolai Zeldovich. Using Crash Hoare Logic for Certifying the FSCQ File System. In
SOSP, 2015.

[84] Dmitry Chestnykh. TweetNaCl.js, 2016.

[85] Adam Chlipala. Ur/flow calendar source code.

[86] Adam Chlipala. Static checking of dynamically-varying security policies in database-
backed applications. OSDI’10, 2010.

[87] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng, and Xin
Zheng. Secure web applications via automatic partitioning. SOSP ’07, 2007.

[88] Koen Claessen and John Hughes. QuickCheck: A Lightweight Tool For Random Testing
of Haskell Programs. In ICFP, 2000.

[89] Cliff Click and Michael Paleczny. A simple graph-based intermediate representation. In
Proceedings of the ACM SIGPLAN Workshop on Intermediate Representations. ACM,
1995.

[90] Brad Conte. crypto-algorithms, 2012.

[91] Brian J Corcoran, Nikhil Swamy, and Michael Hicks. Cross-tier, label-based security
enforcement for web applications. SIGMOD ’09, 2009.

[92] Daniel Cousens. pbkdf2, 2014.

[93] Patrick Cousot and Radhia Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In POPL,
1977.

[94] Cryptography Coding Standard. Coding rules, 2016.

[95] Jerry Cuomo. Mobile app development, javascript everywhere and “the three amigos”.
White paper, IBM, 2013.

135

[96] Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. Automating the database
schema evolution process. The VLDB Journal, 22, 2013.

[97] Carlo A. Curino, Hyun J. Moon, and Carlo Zaniolo. Graceful database schema evolution:
The prism workbench. VLDB’08, 2008.

[98] Eva Darulova, Anastasiia Izycheva, Fariha Nasir, Fabian Ritter, Heiko Becker, and Robert
Bastian. Daisy - Framework for Analysis and Optimization of Numerical Programs (Tool
Paper). In TACAS, 2018.

[99] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
TACAS’08/ETAPS’08, 2008.

[100] Randall Degges. User migration: The definitive guide. https://developer.okta.com/blog/
2019/02/15/user-migration-the-definitive-guide, nov 2020.

[101] David Delmas and Jean Souyris. Astrée: from Research to Industry. In International Static
Analysis Symposium, 2007.

[102] Denis, Frank. libsodium, 2018.

[103] Kyle Dewey, Jared Roesch, and Ben Hardekopf. Fuzzing the Rust Typechecker using CLP.
In ASE, 2015.

[104] ECMA International. ECMAScript 2018 language specification, 2018.

[105] ECMA ECMAScript, European Computer Manufacturers Association, et al. Ecmascript
language specification, 2011.

[106] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala. Simple
high-level code for cryptographic arithmetic – with proofs, without compromises. In
Proceedings of the IEEE Symposium on Security and Privacy, 2019.

[107] Adrienne Felt, Matthew Finifter, Joel Weinberger, and David Wagner. Diesel: Applying
privilege separation to database access. ASIACCS ’11, 2011.

[108] Jeremy Fetiveau. Attacking TurboFan. TyphoonCon, June 2019. https://doar-e.github.io/
presentations/typhooncon2019/AttackingTurboFan TyphoonCon 2019.pdf.

[109] Jeremy Fetiveau. Circumventing Chrome’s Hardening of Typer Bugs. https://doar-e.github.
io/blog/2019/05/09/circumventing-chromes-hardening-of-typer-bugs/, May 2019.

[110] Jeremy Fetiveau. Introduction to TurboFan. https://doar-e.github.io/blog/2019/01/28/
introduction-to-turbofan/, January 2019.

[111] Richard Forster. Non-Interference Properties for Nondeterministic Processes. PhD thesis,
University of Cambridge, 1999.

136

https://developer.okta.com/blog/2019/02/15/user-migration-the-definitive-guide
https://developer.okta.com/blog/2019/02/15/user-migration-the-definitive-guide
https://doar-e.github.io/presentations/typhooncon2019/AttackingTurboFan_TyphoonCon_2019.pdf
https://doar-e.github.io/presentations/typhooncon2019/AttackingTurboFan_TyphoonCon_2019.pdf
https://doar-e.github.io/blog/2019/05/09/circumventing-chromes-hardening-of-typer-bugs/
https://doar-e.github.io/blog/2019/05/09/circumventing-chromes-hardening-of-typer-bugs/
https://doar-e.github.io/blog/2019/01/28/introduction-to-turbofan/
https://doar-e.github.io/blog/2019/01/28/introduction-to-turbofan/

[112] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley Profes-
sional, 2002.

[113] Galois. Cryptol: The language of cryptography. https://cryptol.net/files/
ProgrammingCryptol.pdf, 2016.

[114] Philippa Gardner, Sergio Maffeis, and Gareth Smith. Towards a Program Logic for
JavaScript. In POPL, 2012.

[115] Philippa Gardner, Gareth Smith, Conrad Watt, and Thomas Wood. A Trusted Mechanised
Specification of JavaScript: One Year On. In CAV, 2015.

[116] Ghost. Contributor should not be allowed to edit a post when not being a primary author.
https://github.com/TryGhost/Ghost/issues/10238, dec 2018.

[117] Ghost. Fix access to the common article for multiple editors. https://github.com/TryGhost/
Ghost/issues/10214, nov 2018.

[118] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières, John Mitchell,
and Alejandro Russo. Hails: Protecting data privacy in untrusted web applications. Journal
of Computer Security, 25, 2017.

[119] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières, John C. Mitchell,
and Alejandro Russo. Hails: Protecting data privacy in untrusted web applications.
OSDI’12, 2012.

[120] Georg Gottlob and Pierre Senellart. Schema mapping discovery from data instances.
Journal of the ACM, 57, 2010.

[121] Matthew Green. The anatomy of a bad idea, 2012.

[122] Samuel Groß. The Art of Exploitation: Attacking JavaScript Engines: A Case Study of
JavaScriptCore and CVE-2016-4622. Phrack, October 2016. http://phrack.org/papers/
attacking javascript engines.html.

[123] Samuel Groß. Attacking Client-Side JIT Compilers. Black Hat, August 2018. https:
//saelo.github.io/presentations/blackhat us 18 attacking client side jit compilers.pdf.

[124] Samuel Groß. FuzzIL: Coverage guided fuzzing for JavaScript engines. Master’s thesis,
Karlsruhe Institute of Technology, 2018. https://saelo.github.io/papers/thesis.pdf.

[125] Samuel Groß. Fuzzilli: (Guided)-Fuzzing for JavaScript Engines. OffensiveCon 2019,
February 2019. https://saelo.github.io/presentations/offensivecon 19 fuzzilli.pdf.

[126] Samuel Groß. JIT Exploitation Tricks. 0x41Con 2019, May 2019. https://saelo.github.io/
presentations/41con 19 jit exploitation tricks.pdf.

137

https://cryptol.net/files/ProgrammingCryptol.pdf
https://cryptol.net/files/ProgrammingCryptol.pdf
https://github.com/TryGhost/Ghost/issues/10238
https://github.com/TryGhost/Ghost/issues/10214
https://github.com/TryGhost/Ghost/issues/10214
http://phrack.org/papers/attacking_javascript_engines.html
http://phrack.org/papers/attacking_javascript_engines.html
https://saelo.github.io/presentations/blackhat_us_18_attacking_client_side_jit_compilers.pdf
https://saelo.github.io/presentations/blackhat_us_18_attacking_client_side_jit_compilers.pdf
https://saelo.github.io/papers/thesis.pdf
https://saelo.github.io/presentations/offensivecon_19_fuzzilli.pdf
https://saelo.github.io/presentations/41con_19_jit_exploitation_tricks.pdf
https://saelo.github.io/presentations/41con_19_jit_exploitation_tricks.pdf

[127] Samuel Groß. JSC Exploits. https://googleprojectzero.blogspot.com/2019/08/jsc-exploits.
html, August 2019.

[128] Samuel Groß. The Art of Exploitation: Compile Your Own Type Confusions: Exploiting
Logic Bugs in JavaScript JIT Engines. Phrack, May 2019. http://phrack.org/papers/
jit exploitation.html.

[129] Marco Guarnieri, Musard Balliu, Daniel Schoepe, David Basin, and Andrei Sabelfeld.
Information-flow control for database-backed applications. EuroS&P’19, 2019.

[130] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The Essence of JavaScript. In
ECOOP, 2010.

[131] Shu-yu Guo and Jens Palsberg. The Essence of Compiling with Traces. In POPL, 2011.

[132] Shu-yu Guo and Jens Palsberg. The Essence of Compiling with Traces. In POPL, 2011.

[133] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the web up to speed
with webassembly. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, 2017.

[134] Brian Hackett and Shu-yu Guo. Fast and Precise Hybrid Type Inference for JavaScript. In
PLDI, 2012.

[135] Harry Halpin. The W3C web cryptography API: Design and issues. In Proceedings of the
International Workshop on Web APIs and RESTful design, 2014.

[136] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. CodeAlchemist: Semantics-Aware
Code Generation to Find Vulnerabilities in JavaScript Engines. In NDSS, 2019.

[137] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. JSFlow: Tracking
information flow in JavaScript and its APIs. SAC ’14, 2014.

[138] David Herman, Luke Wagner, and Alon Zakai. asm.js, 2014.

[139] Julio C Hernandez and Pedro Isasi. Finding efficient distinguishers for cryptographic
mappings, with an application to the block cipher tea. Computational Intelligence, 20(3),
2004.

[140] Peter V. Homeier. Quotient types. In Supplemental Proceedings of the International
Conference on Theorem Proving in Higher Order Logics. University of Edinburgh, 2001.

[141] Seokhie Hong, Deukjo Hong, Youngdai Ko, Donghoon Chang, Wonil Lee, and Sangjin Lee.
Differential cryptanalysis of tea and xtea. In Proceedings of the International Conference
on Information Security and Cryptology. Springer, 2003.

138

https://googleprojectzero.blogspot.com/2019/08/jsc-exploits.html
https://googleprojectzero.blogspot.com/2019/08/jsc-exploits.html
http://phrack.org/papers/jit_exploitation.html
http://phrack.org/papers/jit_exploitation.html

[142] Alicia Hope. Data breach index site leaks over 23,000 hacked databases exposing over 13
billion user records. https://www.cpomagazine.com/cyber-security/data-breach-index-site-
leaks-over-23000-hacked-databases-exposing-over-13-billion-user-records/, nov 2020.

[143] Brian Huffman and Ondřej Kunăar. Lifting and transfer: A modular design for quotients in
isabelle/hol. In Proceedings of the ACM SIGPLAN International Conference on Certified
Programs and Proofs. Springer-Verlag, 2013.

[144] J. Hughes. Generalising monads to arrows. Sci. Computer Programming, 37, 2000.

[145] Troy Hunt. Have i been pwned: Check if your email has been compromised in a data
breach. https://haveibeenpwned.com/, nov 2020.

[146] Fedor Indutny. Elliptic, 2014.

[147] Intel. Intel® 64 and IA-32 architectures software developer’s manual. Volume 2: Instruction
Set Reference, A-Z, 2016.

[148] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. Establishing Browser Security Guar-
antees Through Formal Shim Verification. In USENIX Security, 2012.

[149] Paul Johnston and Contributors. sha.js, 2017.

[150] Peter Jonsson. Automated testing of database schema migrations. Master’s thesis, KTH
Royal Institute of Technology, Sweden, 2003.

[151] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David
Pichardie. A Formally-Verified C Static Analyzer. In POPL, 2015.

[152] Bruno Keith. Attacking Edge through the JavaScript Compiler. OffensiveCon 2019, Febru-
ary 2019. https://github.com/bkth/Attacking-Edge-Through-the-JavaScript-Compiler.

[153] John Kelsey, Bruce Schneier, and David Wagner. Related-key cryptanalysis of 3-way,
biham-des, cast, des-x, newdes, rc2, and tea. In Proceedings of the International Confer-
ence on Information and Communications Security. Springer, 1997.

[154] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, et al.
seL4: Formal Verification of an OS Kernel. In SOSP, 2009.

[155] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. Automated verification
for secure messaging protocols and their implementations: A symbolic and computational
approach. In Proceedings of the IEEE European Symposium on Security and Privacy.
IEEE Computer Society, 2017.

[156] Paul Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In Proceedings of Advances in Cryptology. Springer, 1996.

139

https://www.cpomagazine.com/cyber-security/data-breach-index-site-leaks-over-23000-hacked-databases-exposing-over-13-billion-user-records/
https://www.cpomagazine.com/cyber-security/data-breach-index-site-leaks-over-23000-hacked-databases-exposing-over-13-billion-user-records/
https://haveibeenpwned.com/
https://github.com/bkth/Attacking-Edge-Through-the-JavaScript-Compiler

[157] David Kohlbrenner and Hovav Shacham. On the effectiveness of mitigations against
floating-point timing channels. In Proceedings of the USENIX Security Symposium.
USENIX Association, 2017.

[158] Eddie Kohler. Fix critical permissions error, jan 2014.

[159] Eddie Kohler. Minor refactor, jan 2014.

[160] Phokion G. Kolaitis. Schema mappings, data exchange, and metadata management. PODS
’05, 2005.

[161] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. CakeML: A
Verified Implementation of ML. In POPL, 2014.

[162] Sudipta Kundu, Zachary Tatlock, and Sorin Lerner. Proving Optimizations Correct Using
Parameterized Program Equivalence. In PLDI, 2009.

[163] Akash Lal, Shaz Qadeer, and Shuvendu K. Lahiri. A solver for reachability modulo
theories. In P. Madhusudan and Sanjit A. Seshia, editors, Computer Aided Verification,
pages 427–443, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[164] K Rustan M Leino. Dafny: An automatic program verifier for functional correctness.
In Proceedings of the International Conference on Logic for Programming Artificial
Intelligence and Reasoning. Springer, 2010.

[165] Sorin Lerner, Todd Millstein, and Craig Chambers. Automatically Proving the Correctness
of Compiler Optimizations. In PLDI, 2003.

[166] Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers. Automated Soundness
Proofs for Dataflow Analyses and Transformations via Local Rules. In POPL, 2005.

[167] Xavier Leroy. Formal Certification of a Compiler Back-end or: Programming a Compiler
with a Proof Assistant. In POPL, 2006.

[168] Peng Li and Steve Zdancewic. Encoding information flow in haskell. CSFW ’06, 2006.

[169] Wilson Lian, Hovav Shacham, and Stefan Savage. Too LeJIT to Quit: Extending JIT
Spraying to ARM. In NDSS, 2015.

[170] Wilson Lian, Hovav Shacham, and Stefan Savage. A Call to ARMs: Understanding the
Costs and Benefits of JIT Spraying Mitigations. In NDSS, 2017.

[171] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers. Fabric: a platform for
secure distributed computation and storage. SOSP’09, 2009.

[172] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. Provably Correct
Peephole Optimizations with Alive. In PLDI, 2015.

140

[173] Sergio Maffeis, John C. Mitchell, and Ankur Taly. An Operational Semantics for JavaScript.
In APLAS, 2008.

[174] Heiko Mantel. Possibilistic definitions of security - an assembly kit. In Proceedings of the
IEEE Workshop on Computer Security Foundations. IEEE Computer Society, 2000.

[175] Philip Martin. Responding to Firefox 0-days in the Wild. https://blog.coinbase.com/
responding-to-firefox-0-days-in-the-wild-d9c85a57f15b, August 2019.

[176] J. Mccarthy. Towards a mathematical science of computation. IFIP Congress, 1962.

[177] Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak Garg, and Peter Druschel. Qapla:
Policy compliance for database-backed systems. USENIX Security’17, 2017.

[178] David Menendez, Santosh Nagarakatte, and Aarti Gupta. Alive-FP: Automated Verification
of Floating Point Based Peephole Optimizations in LLVM. In International Static Analysis
Symposium, 2016.

[179] Microsoft. Type compatibility - typescript, 2018.

[180] Microsoft. Typescript, 2018.

[181] Renée Miller, Laura Haas, and Mauricio Hernández. Schema mapping as query discovery.
VLDB’00, 01 2000.

[182] Max Moroz and Kostya Serebryany. Guided in-process fuzzing of chrome components,
Aug 2016.

[183] Eric Mullen, Daryl Zuniga, Zachary Tatlock, and Dan Grossman. Verified Peephole
Optimizations for CompCert. In PLDI, 2016.

[184] Andrew C Myers. Jflow: Practical mostly-static information flow control. In Proceedings
of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
ACM, 1999.

[185] Andrew C. Myers. JFlow: Practical mostly-static information flow control. POPL’99,
1999.

[186] Andrew C Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and Nathaniel Nys-
trom. Jif: Java information flow. Software release. Located at http://www. cs. cornell.
edu/jif, 2005, 2001.

[187] Magnus O. Myreen. Verified Just-In-Time Compiler on x86. In POPL, 2010.

[188] Amos Ndegwa. What is page load time?, 2016.

[189] Nebulet. Lachlan sneff, 2018.

[190] George C. Necula. Translation Validation for an Optimizing Compiler. In PLDI, 2000.

141

https://blog.coinbase.com/responding-to-firefox-0-days-in-the-wild-d9c85a57f15b
https://blog.coinbase.com/responding-to-firefox-0-days-in-the-wild-d9c85a57f15b

[191] Jaideep Nijjar and Tevfik Bultan. Unbounded data model verification using smt solvers.
ASE’12, 2012.

[192] NIST. Secure hash standard. FIPS PUB 180-2, 2002.

[193] Ben Niu and Gang Tan. RockJIT: Securing Just-in-Time Compilation using Modular
Control-Flow Integrity. In CCS, 2014.

[194] Node.js Foundation. Node.js, 2018.

[195] Andres Nötzli and Fraser Brown. LifeJacket: Verifying Precise Floating-Point Optimiza-
tions in LLVM. In SOAP, 2016.

[196] Open Whisper Systems. Signal protocol library for JavaScript, 2016.

[197] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D. Keromytis.
The spy in the sandbox: Practical cache attacks in javascript and their implications. In
Proceedings of the ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2015.

[198] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures:
the case of AES. In Proceedings of the Cryptographers’ Track at the RSA Conference.
Springer, 2006.

[199] D. Page. A note on side-channels resulting from dynamic compilation. In Cryptology
ePrint Archive, 2006.

[200] Pavel Panchekha, Alex Sanchez-Stern, James R Wilcox, and Zachary Tatlock. Automati-
cally Improving Accuracy for Floating Point Expressions. In PLDI, 2015.

[201] Daejun Park, Andrei Stefănescu, and Grigore Roşu. KJS: A Complete Formal Semantics
of JavaScript. In PLDI, 2015.

[202] Taemin Park, Karel Dhondt, David Gens, Yeoul Na, Stijn Volckaert, and Michael Franz.
NOJITSU: Locking Down JavaScript Engines. 2020.

[203] James Parker, Niki Vazou, and Michael Hicks. LWeb: Information flow security for
multi-tier web applications. POPL’19, 2019.

[204] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation Validation. In TACAS, 1998.

[205] Nadia Polikarpova, Deian Stefan, Jean Yang, Shachar Itzhaky, Travis Hance, and Armando
Solar-Lezama. Liquid information flow control. In ICFP, 2020.

[206] Joe Gibbs Politz, Matthew J. Carroll, Benjamin S. Lerner, Justin Pombrio, and Shriram
Krishnamurthi. A Tested Semantics for Getters, Setters, and Eval in JavaScript. In DLS,
2012.

142

[207] Andrei Popescu, Johannes Hölzl, and Tobias Nipkow. Proving concurrent noninterference.
In Proceedings of the ACM SIGPLAN International Conference on Certified Programs and
Proofs. Springer-Verlag, 2012.

[208] Thomas Pornin. Why constant-time crypto?, 2017.

[209] François Pottier and Vincent Simonet. Information flow inference for ML. ACM Transac-
tions on Programming Languages and Systems, 25(1), 2003.

[210] Project Everest. Hacl*, a formally verified cryptographic library written in f*, 2018.

[211] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema
matching. The VLDB Journal, 10(4), 2001.

[212] Zvonimir Rakamarić and Michael Emmi. SMACK: Decoupling Source Language Details
from Verifier Implementations. In CAV, 2014.

[213] Vignesh S Rao. Writeup for CVE-2019-11707. https://blog.bi0s.in/2019/08/18/Pwn/
Browser-Exploitation/cve-2019-11707-writeup/, August 2019.

[214] Charles Reis, Alexander Moshchuk, and Nasko Oskov. Site Isolation: Process Separation
for Web Sites within the Browser. In USENIX Security, 2019.

[215] John Renner. Visit day source code.

[216] John Renner, Sunjay Cauligi, and Deian Stefan. Constant-time webassembly. In Principles
of Secure Compilation, 2018.

[217] John Renner and Alex Sanchez-Stern. Scooter and sidecar, 2021.

[218] John Renner, Alex Sanchez-Stern, Fraser Brown, Sorin Lerner, and Deian Stefan. Scooter &
sidecar: A domain-specific approach to writing secure database migrations. In Proceedings
of the 42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, PLDI 2021, page 710–724, New York, NY, USA, 2021. Association
for Computing Machinery.

[219] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede. Dude, is my code constant time?
In Proceedings of the Conference on Design, Automation and Test in Europe. European
Design and Automation Association, 2017.

[220] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you, get off of
my cloud: Exploring information leakage in third-party compute clouds. pages 199–212,
01 2009.

[221] Chris Rohlf and Yan Ivnitskiy. Attacking Clientside JIT Compilers. Black Hat, August
2011. https://media.blackhat.com/bh-us-11/Rohlf/BH US 11 RohlfIvnitskiy Attacking
Client Side JIT Compilers WP.pdf.

143

https://blog.bi0s.in/2019/08/18/Pwn/Browser-Exploitation/cve-2019-11707-writeup/
https://blog.bi0s.in/2019/08/18/Pwn/Browser-Exploitation/cve-2019-11707-writeup/
https://media.blackhat.com/bh-us-11/Rohlf/BH_US_11_RohlfIvnitskiy_Attacking_Client_Side_JIT_Compilers_WP.pdf
https://media.blackhat.com/bh-us-11/Rohlf/BH_US_11_RohlfIvnitskiy_Attacking_Client_Side_JIT_Compilers_WP.pdf

[222] Stephen Röttger. A Guided Tour through Chrome’s JavaScript Com-
piler. Zer0Con, April 2019. https://docs.google.com/presentation/d/
1DJcWByz11jLoQyNhmOvkZSrkgcVhllIlCHmal1tGzaw.

[223] Stephen Röttger. Trashing the Flow of Data. https://googleprojectzero.blogspot.com/2019/
05/trashing-flow-of-data.html, May 2019.

[224] Alejandro Russo. Functional pearl: Two can keep a secret, if one of them uses haskell.
ICFP’15, 2015.

[225] Alejandro Russo, Koen Claessen, and John Hughes. A library for light-weight information-
flow security in haskell. Haskell’08, 2008.

[226] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE Journal
on Selected Areas in Communications, 21(1), 2006.

[227] Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-threaded
programs. In Proceedings of the IEEE Workshop on Computer Security Foundations. IEEE
Computer Society, 2000.

[228] Hanan Samet. Automatically Proving the Correctness of Translations Involving Optimized
Code. PhD thesis, 1975.

[229] Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1), feb
2000.

[230] David Schultz and Barbara Liskov. Ifdb: decentralized information flow control for
databases. EuroSys’13, 2013.

[231] Alex Scroxton. Human error blamed in Welsh Covid-19 patient data leak.
https://www.computerweekly.com/news/252492123/Human-error-blamed-in-Welsh-
Covid-19-patient-data-leak, nov 2020.

[232] Amy Shen. Moved addUsers to policy module, jul 2013.

[233] Boris Shingarov. Formal Verification of JIT by Symbolic Execution. In VMIL, 2019.

[234] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang. Push-button Verifica-
tion of File Systems via Crash Refinement. In OSDI, 2016.

[235] Alexey Sintsov. JIT-Spray Attacks & Advanced Shellcode. HITBSecConf, 2010.

[236] E.G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh, D. Williams, and F.B. Schneider.
Logical attestation: an authorization architecture for trustworthy computing. SOSP’11,
2011.

[237] Ryan Sleevi. W3c web crypto api update. IETF 86, 2013.

144

https://docs.google.com/presentation/d/1DJcWByz11jLoQyNhmOvkZSrkgcVhllIlCHmal1tGzaw
https://docs.google.com/presentation/d/1DJcWByz11jLoQyNhmOvkZSrkgcVhllIlCHmal1tGzaw
https://googleprojectzero.blogspot.com/2019/05/trashing-flow-of-data.html
https://googleprojectzero.blogspot.com/2019/05/trashing-flow-of-data.html
https://www.computerweekly.com/news/252492123/Human-error-blamed-in-Welsh-Covid-19-patient-data-leak
https://www.computerweekly.com/news/252492123/Human-error-blamed-in-Welsh-Covid-19-patient-data-leak

[238] Tyson Smith, Jesse Schwartzentruber, and Sylvestre Ledru. Browser fuzzing at mozilla –
mozilla hacks - the web developer blog, Feb 2021.

[239] Axel Souchet. A Journey into IonMonkey: Root-Causing CVE-2019-9810. https://doar-e.
github.io/blog/2019/06/17/a-journey-into-ionmonkey-root-causing-cve-2019-9810/, June
2019.

[240] Vincent St-Amour and Shu-yu Guo. Optimization Coaching for JavaScript. In ECOOP,
2015.

[241] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. Flexible dynamic
information flow control in Haskell. Haskell’11, September 2011.

[242] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. Compositional
CompCert. In POPL, 2015.

[243] Dominik Strohmeier and Peter Dolanjski. Comparing browser page load time: An intro-
duction to methodology, 2017.

[244] Torsten Stüber. TweetNacl-WebAssembly, 2017.

[245] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure program execution
via dynamic information flow tracking. ASPLOS XI, 2004.

[246] Nikhil Swamy, Juan Chen, and Ravi Chugh. Enforcing stateful authorization and informa-
tion flow policies in Fine. ESOP’10, 2010.

[247] Nikhil Swamy, Brian J Corcoran, and Michael Hicks. Fable: A language for enforcing
user-defined security policies. SP’08, 2008.

[248] Jubi Taneja, Zhengyang Liu, and John Regehr. Testing Static Analyses for Precision and
Soundness. In CGO, 2020.

[249] Dominic Tarr. crypto-browserify, 2013.

[250] Ryan Tate. Apple’s worst security breach: 114,000 iPad owners exposed. https://gawker.
com/5559346/apples-worst-security-breach-114000-ipad-owners-exposed, jun 2010.

[251] Zachary Tatlock and Sorin Lerner. Bringing Extensibility to Verified Compilers. In PLDI,
2010.

[252] BIBIFI Team. Bibifi source code.

[253] Hails Team. Gitstar source code.

[254] Hails Team. Lambdachair source code.

[255] Hails Team. Learnbyhacking source code.

145

https://doar-e.github.io/blog/2019/06/17/a-journey-into-ionmonkey-root-causing-cve-2019-9810/
https://doar-e.github.io/blog/2019/06/17/a-journey-into-ionmonkey-root-causing-cve-2019-9810/
https://gawker.com/5559346/apples-worst-security-breach-114000-ipad-owners-exposed
https://gawker.com/5559346/apples-worst-security-breach-114000-ipad-owners-exposed

[256] Lifty Team. Lifty conference source code.

[257] David Terei, Simon Marlow, Simon Peyton Jones, and David Mazières. Safe Haskell. In
ACM SIGPLAN Notices, volume 47. ACM, 2012.

[258] Luca Todesco. A Few JSC Tales. Objective by the Sea, June 2019. http://iokit.racing/
jsctales.pdf.

[259] Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. The clock is still ticking: Timing
attacks in the modern web. In Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2015.

[260] Marco Vassena, Alejandro Russo, Pablo Buiras, and Lucas Waye. MAC: a verified static
information-flow control library. Journal of logical and algebraic methods in programming,
95, 2018.

[261] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type system for secure flow
analysis. Journal of Computer Security, 4(2-3), 1996.

[262] Jaroslav Ševčı́k, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and
Peter Sewell. CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency.
Journal of the ACM.

[263] Nan Wang. V8 exploit. http://eternalsakura13.com/2018/05/06/v8/, May 2018.

[264] Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chlipala, and Zachary Tatlock. Jitk: A
Trustworthy In-Kernel Interpreter Infrastructure. In OSDI, 2014.

[265] Yuepeng Wang, Isil Dillig, Shuvendu K Lahiri, and William R Cook. Verifying equivalence
of database-driven applications. POPL’17, 2017.

[266] Yuepeng Wang, Rushi Shah, Abby Criswell, Rong Pan, and Isil Dillig. Data migration
using datalog program synthesis. VLDB’20, 2020.

[267] Conrad Watt. Mechanising and verifying the webassembly specification. In Proceedings
of the ACM SIGPLAN International Conference on Certified Programs and Proofs. ACM,
2018.

[268] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian Stefan. CT-Wasm:
Type-driven secure cryptography for the web ecosystem, 2018.

[269] WebAssembly Community Group. Module instances, 2018.

[270] WebAssembly Community Group. reference-types, 2018.

[271] WebAssembly Community Group. Webassembly, 2018.

[272] WebAssembly Community Group. Webassembly, 2018.

146

http://iokit.racing/jsctales.pdf
http://iokit.racing/jsctales.pdf
http://eternalsakura13.com/2018/05/06/v8/

[273] David J. Wheeler and Roger M. Needham. TEA, a tiny encryption algorithm. In Lecture
Notes in Computer Science. Springer, 1994.

[274] Allen Wirfs-Brock. ECMAScript 2015 Language Specification – Math.expm1(x). https:
//www.ecma-international.org/ecma-262/6.0/#sec-math.expm1, 2015.

[275] A.K. Wright and M. Felleisen. A syntactic approach to type soundness. Information and
Computation, 115(1), 1994.

[276] Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama, Cormac Flanagan,
and Stephen Chong. Precise, dynamic information flow for database-backed applications.
PLDI’16, 2016.

[277] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language for automatically
enforcing privacy policies. POPL’12, 2012.

[278] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and Understanding Bugs
in C Compilers. In PLDI, 2011.

[279] Mark Vincent Yason. Understanding the Attack Surface and Attack Resilience of
Project Spartan’s (Edge) New EdgeHTML Rendering Engine. Black Hat, August
2015. https://www.blackhat.com/docs/us-15/materials/us-15-Yason-Understanding-
The-Attack-Surface-And-Attack-Resilience-Of-Project-Spartans-New-EdgeHTML-
Rendering-Engine-wp.pdf.

[280] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert Muth, Tavis Ormandy,
Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native client: A sandbox for portable,
untrusted x86 native code. In Proceedings of the IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2009.

[281] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. Improving applica-
tion security with data flow assertions. SOSP’09, 2009.

[282] Alon Zakai. Compiling to WebAssembly: It’s Happening!, 2015.

[283] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers. Secure
program partitioning. ACM Trans. Comput. Syst., 20(3), 2002.

[284] Google Project Zero. 0day ”in the wild”.

[285] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. Formalizing
the LLVM Intermediate Representation for Verified Program Transformations. In POPL,
2012.

[286] Jianzhou Zhao, Santosh Nagarakatte, Milo MK Martin, and Steve Zdancewic. Formal
Verification of SSA-Based Optimizations for LLVM. In PLDI, 2013.

147

https://www.ecma-international.org/ecma-262/6.0/#sec-math.expm1
https://www.ecma-international.org/ecma-262/6.0/#sec-math.expm1
https://www.blackhat.com/docs/us-15/materials/us-15-Yason-Understanding-The-Attack-Surface-And-Attack-Resilience-Of-Project-Spartans-New-EdgeHTML-Rendering-Engine-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Yason-Understanding-The-Attack-Surface-And-Attack-Resilience-Of-Project-Spartans-New-EdgeHTML-Rendering-Engine-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Yason-Understanding-The-Attack-Surface-And-Attack-Resilience-Of-Project-Spartans-New-EdgeHTML-Rendering-Engine-wp.pdf

[287] Qixun Zhao. Story1 Mom What Is Zero Multiplied By Infinity. https://blogs.projectmoon.
pw/2019/01/13/Story1-Mom-What-Is-Zero-Multiplied-By-Infinity, January 2019.

[288] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Benjamin
Beurdouche. HACL*: A verified modern cryptographic library. In Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security. ACM, 2017.

[289] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Benjamin
Beurdouche. HACL*: A Verified Modern Cryptographic Library. In CCS, 2017.

148

https://blogs.projectmoon.pw/2019/01/13/Story1-Mom-What-Is-Zero-Multiplied-By-Infinity
https://blogs.projectmoon.pw/2019/01/13/Story1-Mom-What-Is-Zero-Multiplied-By-Infinity

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	CT-Wasm: Type-Driven Secure Cryptography for the Web Ecosystem
	Introduction
	Background
	Constant-time Programming Paradigm
	WebAssembly

	Constant-Time WebAssembly, an overview
	CT-Wasm Semantics
	Instances
	Typing and Value Types
	Structured Control Flow
	Memory
	Trust and Declassification

	Formal Model
	Soundness
	Security Properties
	Public Indistinguishability
	Action Indistinguishability
	Self-isomorphism
	Bisimilarity
	Non-interference
	Constant-time
	Observations as Quotient Types

	Implementation
	CT-Wasm Implementations
	Verified Type Checker
	CT-Wasm Developer Tools
	Evaluation

	Related work
	Future Work
	Conclusion

	Scooter & Sidecar: A Domain-Specific Approach to Writing Secure Database Migrations
	Introduction
	Motivation and Overview
	Unsafe Migrations
	Safe Migrations with Scooter and Sidecar

	Design
	Declaring Policies
	Migrations
	The Scooter ORM

	Verifying Policy Updates in SMT
	Evaluation
	Scooter Language Expressiveness
	Detecting Unsafe Migrations
	Sidecar Verification Speed
	ORM Performance Overhead

	Discussion and Limitations
	Expressiveness
	Data Migrations
	Transactions
	Surprising Semantics

	Related Work

	Towards a Verified Range Analysis for JavaScript JITs
	Introduction
	Overview
	Range Analysis in JITs
	From Range Analysis Bugs to Browser Exploits
	Why Range Analysis is Hard to Get Right
	Using VeRA to Express Range Analysis
	Using VeRA to Verify Range Analysis

	VeRA C++
	Translating VeRA C++ to SMT
	Challenges in Compiling C++ to SMT
	Overcoming Challenges with an IR

	Verification
	Semantic Meaning of Predicate Facts
	Using VeRA to Express Predicates

	Implementation and Evaluation
	Proofs
	Verified Routines in the Browser
	PrimaVeRA

	Discussion, Limitations and Future Work
	Related Work
	Conclusion
	Acknowledgements

	Conclusion
	Bibliography

