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We present 28 multiple sulfur isotope measurements of seawater sulfate (δ34SSO4 and �33SSO4 ) from
the modern ocean over a range of water depths and sites along the eastern margin of the Pacific
Ocean. The average measured δ34SSO4 is 21.24� (±0.88�,2σ ) with a calculated �33SSO4 of +0.050�
(±0.014�,2σ ). With these values, we use a box-model to place constraints on the gross fraction of
pyrite burial in modern sediments. This model presents an improvement on previous estimates of the
global pyrite burial flux because it does not rely on the assumed value of δ34Spyrite, which is poorly
constrained, but instead uses new information about the relationship between δ34S and δ33S in global
marine sulfate. Our calculations indicate that the pyrite burial flux from the modern ocean is between
10% and 45% of the total sulfur lost from the oceans, with a more probable range between 20% and 35%.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Sulfate is the second most abundant anion in the oceans and
has a residence time of 10–20 million years, which far exceeds
the mixing time of the ocean (Paytan et al., 2004). As a result, the
concentration of sulfate, 28 mM, and its sulfur isotope composition
should not vary among or within ocean basins. Sulfate is supplied
to the ocean through rivers and removed during pyrite and evap-
orite mineral deposition and during hydrothermal alteration of the
ocean crust (Kaplan, 1983; Krouse, 1980). Sulfate is respired dur-
ing dissimilatory sulfate reduction by sulfate reducing microbes in
anoxic sediments (Jørgensen, 1982). The sulfide produced during
this sulfate reduction can either be buried as pyrite and enter the
geologic record or be returned to the marine sulfate pool via abi-
otic or biotic sulfide oxidation.

The δ34S of modern ocean sulfate is spatially homogeneous,
and its value reflects the sources and sinks of sulfate to the
ocean; the δ34S of marine sulfate is particularly sensitive to the
δ34S of river input, the δ34S associated with pyrite burial, and
the flux of the buried pyrite sink (Berner and Canfield, 1989;
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Garrels and Lerman, 1981, 1984). The δ34S of river input reflects
the minerals being weathered, and is typically thought to be be-
tween 5 and 15� (Canfield, 2004, 2013; Holser et al., 1988;
Kurtz et al., 2003). The traditional accepted value for the δ34S of
marine sulfate is 20.3�, with a typical uncertainty of ±0.8� (2σ )
(from the reproducibility of the international marine sulfate stan-
dard, IAEA NBS127). Rees (1978) later demonstrated that there is
a slight bias towards lower δ34S values when sulfur isotopes are
measured via combustion to sulfur dioxide and redefined the sea-
water value closer to 20.6�. This δ34S of marine sulfate is elevated
over the δ34S of the global river input because of the preferential
burial of 32S rich pyrite in marine sediments.

The sulfur isotopic composition of pyrite is controlled by sul-
fate reducing microorganisms as well as organisms that metab-
olize sulfur compounds at oxidation states intermediate between
sulfide and sulfate. A wide phylogenetic range of microorgan-
isms have been studied both in situ and in the laboratory setting
to assess their sulfur isotope partitioning (Canfield et al., 2010;
Chambers and Trudinger, 1979; Johnston et al., 2005, 2007; Kaplan
and Rittenberg, 1964; Leavitt et al., 2013; Sim et al., 2011; Zerkle
et al., 2009). These studies have shown that the sulfur isotope
fractionation varies as a function of the metabolic make-up of
the microbial community and the growth conditions (e.g. pressure,
temperature, organic carbon availability, sulfate concentrations and
under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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type of electron donors). A wide range of sulfur isotope fractiona-
tion can result from microbial sulfate reduction by even a single
species of bacteria (Leavitt et al., 2013; Sim et al., 2011), and
large sulfur isotope fractionations have also been recorded in nat-
ural populations of sulfate reducers (Canfield et al., 2010). When a
range of metabolisms cohabitate in natural environments, the re-
sult is a mix of δ34S signatures that often offset one another. As a
result, pyrite grains can display large local variability in δ34S, with
a range of up to 35� reported from pyrite grains within a single
sediment sample (Kohn et al., 1998). It is therefore difficult to de-
fine a global average value for δ34Spyr from direct measurements.
The δ34S of marine pyrite is often taken to be between 15� and
−50� (Strauss, 1997).

The other primary control on the δ34S of marine sulfate is the
flux of pyrite burial, which is often considered as the proportion
of the total sulfur flux from the oceans (Garrels and Lerman, 1981;
Halevy et al., 2012; Holser et al., 1988). This proportional pyrite
burial flux varies with the availability of suitable environments
for sulfate reduction, favored by anoxia either in the water col-
umn or in shallow organic-rich sediments, and the rate of ac-
tive iron delivery (to precipitate the sulfide as pyrite). Assum-
ing a δ34S of river input and average δ34S of pyrite buried, the
δ34S of marine sulfate has been used to place constraints on this
proportional pyrite burial flux over time. Canfield (2004) argued
that nearly all sulfur was buried as pyrite in the Precambrian
and that the proportional fraction of pyrite burial dropped sig-
nificantly during the Palaeozoic to around 30% today. A number
of other studies have also suggested that the present-day pro-
portional pyrite burial flux is close to 30–40% of the total sul-
fur lost from the oceans (Berner, 1989, 1987; Canfield, 2004;
Kampschulte and Strauss, 2004; Kump and Garrels, 1986; Ono et
al., 2006), with the rest of the sulfur leaving the oceans as evap-
orite minerals or in hydrothermal systems. Recently, Halevy et al.
(2012) suggested that the net evaporite burial flux is lower than
the estimates used in some of these models, and arrived at sig-
nificantly higher Phanerozoic proportional net pyrite burial fluxes
(70–90%). These authors suggested that the δ34S of modern river
input is elevated in its δ34S due to contributions from rapidly re-
cycled evaporites, and that when this ‘gross flux’ of evaporites is
removed, the δ34S of river input is lower and thus the propor-
tional net pyrite burial flux must be much higher. Canfield (2013)
has since shown that the δ34S of Phanerozoic coal can be used to
constrain the δ34S of riverine input, and suggests that river input
remained elevated throughout the Phanerozoic, indicating that the
effect of these rapidly recycled evaporites has been present over
the last 500 million years. The δ34S of marine sulfate reflects the
integrated riverine flux from both the rapidly recycled evaporites
as well as the longer tectonically controlled weathering of ancient
evaporites, pyrite and magmatic sulfide.

Inclusion of minor sulfur isotope ratios (e.g. 33S/32S) may place
additional constraints on the fraction of sulfur buried as pyrite
(Ono et al., 2006) and also on biological reactions that parti-
tion, or separate, isotopes as a function of their mass (Johnston
et al., 2005, 2006, 2008; Leavitt et al., 2013; C. Li et al., 2010;
X. Li et al., 2010; Sim et al., 2011; Wu et al., 2010; Zerkle et al.,
2009). If all sulfur isotope fractionation followed the same mass
law, then the amount of 33S in the modern ocean could be directly
calculated from the relative amount of 34S versus 32S, and so no
new information would be gained by measuring the less abun-
dant sulfur isotopes. However, there are unique mass laws that
control different mass dependent processes, and these can be iden-
tified using high-precision measurements of both major and minor
sulfur isotopes. Deviations from expected mass dependence are re-
ported using �33S (Farquhar et al., 2000; Hulston and Thode, 1965;
Ono et al., 2006), which is defined as:
�33S = δ33S − 1000

[(
1 + δ34S

1000

)0.515

− 1

]
(1)

where the reference mass dependence law has been assigned
an exponent of 0.515. Small shifts from the theoretical equilib-
rium value of 0.515 occur in different metabolic pathways, and
can generate small non-zero �33S values on the order of a few
tenths of a permil during purely mass-dependent biological pro-
cesses. These deviations result from intracellular branching re-
actions with back-and-forth exchange of sulfur between multi-
ple reservoirs (Farquhar et al., 2003, 2007; Johnston et al., 2005;
Ono et al., 2006). These small variations in the exponent of Eq. (1)
that are provided by the analysis of both δ33S and δ34S can be
used to trace microbial processes in the sulfur cycle. Although
the δ34S of modern marine sulfate is well constrained, δ33S has
seldom been measured alongside δ34S. Some δ33S data has been
reported for standard materials that derive from seawater sul-
fate, IAEA-S2 and NBS-127 (Ono et al., 2006; Peters et al., 2010;
Wu et al., 2010), as well as for several seawater samples from sites
close to both Bermuda and Hawaii (Ono et al., 2012).

Sulfate reducing bacteria, sulfur disproportionating bacteria and
sulfide oxidizing bacteria have all been assessed for their associ-
ated multiple sulfur isotope fractionations (Farquhar et al., 2003;
Johnston et al., 2005, 2007; Zerkle et al., 2009). The minor isotope
relationship describing the metabolism-specific effects or mass law
is often expressed as 33λ. This term defines the slope a line in
δ34S–δ33S space and is defined as:

33λpyr-SW = [ln(1 + δ33Spyr
1000 ) − ln(1 + δ33Ssw

1000 )]
[ln(1 + δ34Spyr

1000 ) − ln(1 + δ34Ssw
1000 )]

(2)

The 33λ values measured for modern microbial communities range
from 0.508 to 0.514 for sulfate reduction, with higher values de-
scribing oxidative metabolisms. Much work is needed to define the
full range of fractionations and 33λ that are possible during sulfur
transformations, such as thermochemical sulfate reduction and in-
organic sulfur oxidation. However, the values for sulfate reduction
capture the geological average for all published sulfide data, sug-
gesting that sulfate reducers are the primary sulfur isotope frac-
tionation mechanism within the sulfur cycle (Johnston, 2011).

In this study we have measured both δ34S and δ33S in sulfate in
modern seawater from sites at various locations and depths on the
eastern margin of the Pacific Ocean, which we use to calculate the
�33S of marine sulfate. We use the average δ34S and δ33S of sul-
fate to build a box model to explore the range of possible δ34S and
δ33S values associated with pyrite burial in modern marine sedi-
ments and then compare these with published pyrite sulfur isotope
data. This is a methodologically different approach than has been
taken previously. Constraints on 33λ and the multiple sulfur iso-
tope composition of riverine sulfur input are used to quantify the
proportional flux of buried pyrite in modern ocean sediments.

2. Methods

Seawater samples were collected during two separate cruises
to the eastern margin of the Pacific Ocean (Fig. 1). Samples from
off the coast of Peru were collected in October–November 2005
through the Woods Hole Oceanographic Institute. These samples
were collected between 0 and 3000 m depth, using Niskin bottles
and then transferred into 60 mL HDPE bottles. The bottles were
rinsed three times with sample prior to filling and stored frozen at
−20 ◦C until analysis. Samples from off the coast of southern Cal-
ifornia were collected in June 2007. These samples were collected
between 0 and 1000 m water depth using rosette mounted 10 L
PVC Niskin Bottles in the San Clemente Basin. All samples were
syringe filtered and stored without acid prior to isotope analyses.
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Fig. 1. Sampling locations along the eastern margin of the Pacific Ocean.

Barite was precipitated from seawater sulfate using an excess of
Barium Chloride. Samples of barite were reduced to H2S gas by re-
action with Thode reduction solution (Thode et al., 1961), heated
to just below the boiling point and bubbled with nitrogen gas. The
H2S carried in nitrogen was then precipitated as silver sulfide us-
ing a silver nitrate trapping solution. Silver sulfide was aged for
one week in the dark, washed with rinses of Milli-Q water and
ammonium hydroxide, and then dried in an 80 ◦C oven. Approxi-
mately 2–4 mg of silver sulfide were weighed into an aluminum
foil packet that was then placed in a nickel reaction vessel for flu-
orination. Fluorination was undertaken at 250 ◦C with 10 times
excess fluorine gas to produce SF6 gas, which was purified be-
fore being measured on a dual-inlet MAT 253 isotope ratio mass
spectrometer. The method has been described in detail by Hu et
al. (2003), Rumble et al. (1993) and Ono et al. (2006). All �33S
presented here are normalized to a composition for the interna-
tional standard (IAEA S1) relative to V-CDT, of δ34S = −0.30� and
�33S = 0.107�.

3. Results

Sulfur isotope data are presented for sulfate from the modern
open ocean from 28 samples from the eastern margin of the Pa-
cific basin in Table 1. The δ34S measures between 20.17� and
22.10�, with an average of 21.24�. We have taken our aver-
age δ34S of 21.24�, measured using the SF6 technique, as the
accepted seawater value in this study. The �33S values for mea-
sured sulfate samples is positive, ranging from 0.033� to 0.064�,
with an average of 0.050�. This value is consistent with previous
data reported for sulfate derived from oceanic sulfate – reported
via analyses of NBS-127 and IAEA-S2 – (e.g., Ono et al., 2006;
Peters et al., 2010; Wu et al., 2010) as well as for independently
collected seawater samples (Ono et al., 2012). Note that the values
of Peters et al. (2010) and Wu et al. (2010) are reported assuming
Table 1
The δ33S, δ34S and �33S measured for sulfate from the open ocean, from a range of
sites around the eastern margin of the Pacific Ocean.

Sample number δ33S δ34S �33S

1 11.22 21.81 0.046
2 10.39 20.17 0.052
3 10.96 21.29 0.045
4 11.01 21.38 0.052
5 10.94 21.26 0.045
6 10.92 21.21 0.051
7 11.09 21.53 0.058
8 10.84 21.04 0.060
9 10.93 21.22 0.057

10 10.87 21.11 0.047
11 11.13 21.62 0.053
12 10.83 21.02 0.054
13 11.12 21.58 0.064
14 11.35 22.05 0.053
15 10.86 21.12 0.033
16 11.04 21.45 0.044
17 11.19 21.73 0.055
18 11.37 22.10 0.044
19 10.53 20.46 0.045
20 10.86 21.08 0.055
21 10.53 20.42 0.061
22 11.00 21.37 0.050
23 10.92 21.20 0.054
24 10.84 21.06 0.050
25 10.82 21.00 0.054
26 10.85 21.10 0.039
27 11.01 21.39 0.052
28 10.83 21.06 0.036

Average 10.94 21.24 0.050
Standard deviation 0.22 0.44 0.007

IAEA S-1 has a different value, but when renormalized, match the
measured value within uncertainty.

The standard deviation of the 28 seawater sulfate samples re-
ported here is ±0.88 and ±0.014 (2σ ) for δ34S and �33S. This
error is large for δ34S and comparable for �33S to the long-term
reproducibility for analyses of laboratory reference silver sulfide,
±0.20 and ±0.016 (2σ ) for δ34S and �33S, measured at the Uni-
versity of Maryland. The larger uncertainty for δ34S most likely
reflects analytical issues associated with conversion of sulfate to
silver sulfide using the Thode solution, as errors for laboratory ref-
erence silver sulfide only account for uncertainty associated with
the fluorination process.

4. Model of the modern marine sulfur cycle

We used a steady-state isotope box model for the sulfur cycle
in the modern ocean, using a range of accepted estimates of the
input and output fluxes and their respective isotopic compositions
(Table 2, Fig. 2) (Berner, 1987; Canfield, 2004; Garrels and Lerman,
1981; Holser et al., 1988; Ono et al., 2006). The model equations
are derived from a standard one-box model for the ocean, whereby
the change in the concentration and isotope composition of sulfate
(which is zero at steady state) is a function of the sources and
sinks of sulfate to the ocean and their respective isotope composi-
tions. We invert this to solve for the sulfur isotope composition of
pyrite. The governing model equations are:

δ34
pyr = δ34

sw − ε34Ssw-pyr

= δ34
sw −

[( −1

Fpyr

)
· [Frivδ

34
riv − Fpyrδ

34
sw

− Fevapδ34
sw − Fhydδ34

sw

]]
(3)
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Table 2
Fluxes and multiple sulfur isotope compositions of the sources and sinks in our model of the modern sulfur cycle. Values in bold against a grey background have been
measured, and values in white against a black background are calculated from the model. Values in italics are the result of constraints imposed on the model from the
literature (e.g. δ34Sriv between 0� and 16� (Berner and Canfield, 1989; Canfield, 2013; Garrels and Lerman, 1981), and 33λ of between 0.508 and 0.514 (Johnston, 2011)).
Other values result from assumptions we make about the modern marine sulfur cycle, as discussed in Section 4.

Flux δ34S
(�)

δ33S
(�)

�33S
(�)

Seawater 21.24 10.94 0.050

Input 3E + 12 mol yr−1 δ34S must be between 0–16�
Evaporites 20–80% of input flux 21.24 10.94 0.050
Sedimentary sulfide 10–30% of input flux −39.56 −20.43 0.144
Volcanic sulfide 10–70% of input flux 2 1.04 0.013

Output = input (mass steady state) = input (isotopic steady state)
Evaporites 10–80% of burial flux 21.24 10.94 0.050
Hydrothermal 10–80% of burial flux 21.24 10.94 0.050
Pyrite 10–45% of burial flux −69: −27 −35: −14 0.09: 0.60

Fig. 2. Schematic diagrams of the input and output fluxes of sulfur to the modern ocean used to model the 33S and 34S cycles.
δ33
pyr = δ33

sw − ε33Ssw-pyr

= δ33
sw −

[( −1

Fpyr

)
· [Frivδ

33
riv − Fpyrδ

33
sw

− Fevapδ33
sw − Fhydδ33

sw

]]
(4)

Here F refers to flux of 32S (in Mol yr−1) of rivers (riv), pyrite
burial (pyr), evaporite burial (evap), and hydrothermal burial (hyd).
The δ in Eqs. (3) and (4) refer to the δ34S (Eq. (3)) and δ33S
(Eq. (4)) isotope composition of the various fluxes. The ε in Eqs. (3)
and (4) refers to the difference in δ values between seawater and
pyrite.

With the isotopic composition of the modern ocean (21.24�
and 0.050�), these equations can be used to calculate a field of
possible values for the average δ34S–�33S of pyrite being buried
today (Table 2 and Fig. 3). The validity of this treatment hinges on
three key assumptions:

1) that removal of sulfur in hydrothermal systems and evaporite
basins is quantitative,

2) the value of average global δ34S and �33S of the riverine sul-
fate input, and

3) that the sulfur cycle is presently in a numerical steady state.
In hydrothermal systems, ridge flank fluids frequently have sul-
fate concentrations much lower than seawater, indicating a net
loss of sulfur during fluid flow through the crust. However, the
cycling of sulfur in hydrothermal systems is complex (Hansen
and Wallmann, 2003), with addition of sulfur from igneous sul-
fide minerals and removal of sulfur through the formation of an-
hydrite, sulfate reduction and alteration of the ocean crust (Alt
et al., 2012). Mass balance of sulfur isotopes at hydrothermal
vents suggests that the majority of sulfur in hydrothermal fluid
is mantle derived with very small fraction from seawater sul-
fate. Anhydrite precipitated at high temperatures may be released
back into seawater as the crust cools and moves away from the
ridge, meaning this process may not act as a significant long-
term net sink for sulfur (Alt, 1995). Where temperatures are too
low for hydrothermal anhydrite formation, sulphate may primar-
ily be lost through sulfate reduction and subsequent pyrite pre-
cipitation. The sulfur isotope fractionation during sulfate reduc-
tion in the subseafloor may be quite large (Shanks et al., 1981;
Shanks and Seyfried, 1987), however this sink would be included
in our model, which reflects global pyrite formation regardless of
the sediment or rock type. Therefore the net flux of sulfur that is
lost (or gained) from (or to) the ocean in hydrothermal systems
is not well constrained, but is considered small compared with the
loss through evaporite or pyrite formation (Alt et al., 2013). We as-
sume that any sulfur isotope fractionation that occurs during net
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Fig. 3. Calculated range of possible δ34S and �33S for the modern pyrite sink for a range of riverine δ34S and �33S and a varying pyrite burial flux (grey box) and measured
δ34S and �33S data for sulfate in the modern open ocean (black diamonds). Modern pyrite data from Johnston et al. (2008) is plotted for comparison (open diamonds).
Also shown are the accepted δ34S and �33S values for the three mineralogical sources that combine to produce the average weathered riverine sulfur input (grey squares),
and the mixing curves for two component mixing of each of these sources (dashed lines). The small grey circles are the result of mixing all three riverine source areas in
combinations that produce a δ34Sriv between 0 and 16�.
removal of sulfate at hydrothermal vents is small, and that the bulk
sink can be considered quantitative.

Evaporite formation is likely a major pathway for sulfur re-
moval from the ocean over geological timescales. During evap-
orite formation, sulfate is removed as gypsum, CaSO4∗2H2O. In
the modern ocean, sulfate (28 mM) is in excess relative to cal-
cium (10 mM), but other sulfate salts likely make up the dif-
ference during quantitative evaporation (Spencer, 2000). However,
removal rates of evaporite minerals are not time-steady, and are
dependent on the global availability of sites suitable for seawa-
ter evaporation, such as partially enclosed basins, the availabil-
ity of which is often controlled tectonically. Our flux is therefore
time-integrated for the past 20 Myr (the approximate residence
time of sulfur in the ocean). A large fraction of the evaporite flux
is likely to be made up of recently deposited and rapidly recy-
cled evaporites, as discussed in the introduction (Halevy et al.,
2012). Sulfur isotope fractionation during evaporite formation has
been shown to be minimal, up to +2.4� (Raab and Spiro, 1991;
Thode et al., 1961). Although no measurements exist for �33S par-
titioning during evaporite formation, we know of no pathway for
significant deviations from the equilibrium sulfur isotope fraction-
ation to occur during this abiotic process, and thus assume both
δ34S and �33S of evaporites is equivalent to seawater.

We have tested the sensitivity of our model to these assump-
tions by altering the �33S value associated with the hydrothermal
and evaporite sink between 0.025 and 0.075 (around the initial
value of 0.050 = SW). This does not affect the resulting pyrite
burial flux solutions by more than three percent. The model is
therefore not particularly sensitive to this assumption, and both
removal fluxes have been assigned an isotope composition equal
to the isotope composition of the ocean (δ34SSW and δ33SSW).

The modern riverine sulfur flux is often assigned a δ34S of
+8�, but the true composition of globally averaged riverine sul-
fate remains enigmatic (Canfield, 2004, 2013; Holser et al., 1988;
Kurtz et al., 2003). We therefore use our model to explore the
range of δ34S and �33S (and thus δ33S) of riverine input. There are
three isotopically distinct mineralogical sources for riverine sulfur:
evaporite minerals, sedimentary sulfide (e.g. pyrite), and volcanic
sulfide. The average sulfur isotope composition of weathered evap-
orite minerals reflects that of its seawater source at the time of
precipitation. It has been suggested that as much as half the mod-
ern riverine sulfate flux comes from weathering of recently de-
posited evaporites (Halevy et al., 2012), leaving this flux with a
sulfate isotopic composition closer to the modern ocean (Paytan
et al., 1998). Sulfur isotope analyses of coal over the Phanero-
zoic suggest that rivers have been similarly elevated towards sea-
water values for the last 500 million years (Canfield, 2013). We
use this presumption and set the sulfur isotope composition of
the evaporite end-member for weathering at 21.24� (δ34S) and
0.050� (�33S). We assign sedimentary sulfides a negative δ34S of
−39.56�, and a higher �33S of 0.142�, values that reflect the
average composition of pyrite buried in the ocean over the recent
past (values are from pyrite formed in normal marine and euxinic
modern environments, reported by Johnston et al., 2008). Igneous
sulfide is taken to have a δ34S of +2�, and �33S of 0.013, ap-
proximating the bulk Earth. The oxidative weathering of volcanic
sulfide is thought to have a similar sulfur isotope composition
to igneous sulfides (Canfield, 2004; Garrels and Lerman, 1984;
Halevy et al., 2012). Given these isotopic end-members for pos-
sible sources of riverine sulfate, we calculate the range of possible
δ34S and �33S of rivers resulting from a range of different pro-
portional contributions, with the one constraint being that each
of the three sources made up a minimum of 10% of the total flux
(Fig. 3 and Table 2). This results in a wide range of possible δ34Sriv.
We further limit the possible combination of riverine sources to
only allow weathering scenarios that produce a δ34Sriv between
0� and +16�, around the ‘accepted’ value of 8�, and inclusive
of the range of reported δ34Sriv in the literature. This results in a
range of δ34S of river inputs that have an independent, but asso-
ciated, �33S value, which is used to calculate the relative 33S flux
into the ocean.

For each combination of possible δ34S and δ33S values of river-
ine sulfur input, we calculate the δ34S and δ33S of pyrite burial
across a range of possible pyrite burial fluxes. We varied the rel-
ative proportion of the total flux that is removed through each of
the three defined sinks from 90% pyrite burial to 5% pyrite burial,
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with the remaining sink split between hydrothermal and evapor-
ite burial, which we have assumed to be isotopically equivalent to
one another and to seawater. We use the calculated δ34S and δ33S
of pyrite burial to calculate a �33S value for pyrite burial using
Eq. (1). This multiple sulfur isotope composition of pyrite yields
information about the isotope partitioning during sulfate reduction
and a corresponding 33λ value for sulfate reduction.

This provides us with a range of potential sulfur isotopic com-
positions for pyrite buried in the modern ocean, which we further
constrain by neglecting those that are associated with 33λ values
for sulfate reduction outside of the expected range for biological
processes: 0.508 and 0.514 (Johnston, 2011). These endmember
values for 33λ come from experimental work on pure cultures, de-
scribed in Section 1. In natural environments, the complexity of
the sedimentary sulfur cycle may introduce sulfur isotope frac-
tionations that are unlike those observed in pure culture. The
range of sulfur isotope fractionation during microbial sulfate re-
duction measured in pure culture and in natural environments
were thought to be significantly different, but more recent work
has closed this gap (Canfield et al., 2010; Leavitt et al., 2013;
Sim et al., 2011). Further work is needed to develop a thorough
diagenetic model that includes minor sulfur isotopes before we
can account for possible effects of advection, diffusion and reox-
idation on the 33λ in the natural environment. In the absence
of comprehensive measurements from natural environments, ex-
perimental limits on 33λ should provide reasonable boundaries
for processes in modern marine sediments. Our model also relies
on the assumption that sulfate reduction is the dominant pro-
cess in modern ocean sediments (Leavitt et al., 2013), although
other processes such as abiotic sulfate reduction, microbial sul-
fur disproportionation and sulfide oxidation may make a minor
contribution to resulting overall sulfur isotope fractionations. How-
ever, it is unlikely that including these processes would result in
33λ outside the stated range of 0.508–0.514 (Johnston et al., 2006;
C. Li et al., 2010; X. Li et al., 2010; Zerkle et al., 2010). This as-
sumption is supported by geological compilations that show the
net multiple sulfur isotope signal for modern pyrite is close to the
range produced by sulfate reducing microbes. The calculations for
the sulfur isotope composition of pyrite are given in Table 2. These
calculated pyrite sulfur isotope compositions are plotted alongside
our measured δ34S and �33S in Fig. 3. We define fractional pyrite
burial as:

fpyr = Fpyr/Friv (5)

Only fpyr solutions between 8.5% and 44% satisfy mass and isotope
steady state as well as our assumptions about riverine δ34S and the
biological constraints on 33λ. Additionally, we define a more likely
range of constraints on fpyr, using new data to constrain δ34Sriv
to between 3 and 8� (Canfield, 2013), and 33λ endmembers that
fall close to the mean of all measurements of 33λ in biological
cultures (0.5125–0.5135). We repeat our calculations using these
tighter constraints, and this gives more likely fpyr solutions of be-
tween 22% and 36% (Fig. 4). These solutions are consistent with
previous work that considered 33S, giving fpyr solutions between
17 and 26% (Ono et al., 2006).

5. Discussion

Our study presents new data that constrains the multiple sulfur
isotope composition of modern marine sulfate. Although several
past studies have measured δ34S of modern marine sulfate and es-
tablished that it is broadly homogeneous throughout the ocean,
there is less data for �33SSO4 . The �33S value we have measured is
homogeneous within error and of the magnitude anticipated given
fractionation during sulfur cycling in modern microbial communi-
ties. Ono et al. (2012) presented six measurements of δ34S and
�33S from Hawaii and Bermuda at various depths, and noted their
average values of 21.3� and 0.050� respectively, consistent with
values presented here.

δ34S and �33S measurements made on sedimentary pyrite from
a range of modern environments show a large spread of sulfur
isotope compositions (shown on Fig. 3) (Johnston et al., 2008), re-
flecting the many variables that control sulfur isotope fractionation
during sulfide, and therefore pyrite production. By comparing δ34S
and �33S measured on modern pyrite with the δ34S and �33S pre-
dicted from our model, it may be possible to better constrain the
sulfur isotope fractionation associated with pyrite burial today. The
intersection between these data for modern pyrite and our calcu-
lations suggests that the composition of globally averaged buried
pyrite is approximately – 35 ± 5� (δ34S) and 0.145 ± 0.025�
(�33S). Calculated �33S values show the closest overlap with mea-
sured data when pyrite burial fluxes are higher, between 30% and
45%. Our calculated sulfur isotope composition of marine pyrite is
more 34S-depleted than estimated by Wu et al. (2010), in part be-
cause they infer a lower �33S and less negative δ34S composition
for weathered pyrite than that used in our riverine input model. In
addition, there may be a slight bias towards more positive δ34S in
the Wu et al. (2010) sulfide data compilation, which will improve
as more data is collected. However, there is a good match between
the two studies, given the uncertainties involved and the different
methods employed.

Past studies that have quantified the global pyrite burial
flux using δ34S measurements alone yield estimates for fpyr in
the modern ocean from 10% to 90% of the total riverine input
(Canfield, 2004; Canfield and Farquhar, 2009; Halevy et al., 2012;
Kampschulte and Strauss, 2004). We suggest here that fpyr be-
tween around 10% and 45% is consistent with our measured ocean
δ33S values, and that a narrower range of endmembers for the δ34S
of riverine input (3–8�) and lambda values produced during sul-
fate reduction (0.5125–0.5135), results in a ‘more likely’ fpyr of
between around 20% and 35% (Fig. 4). The fractional pyrite burial
flux depends critically on the sulfur isotopic composition of river
input: the larger the contribution from the weathering of evapor-
ites, the lower the fractional pyrite burial to maintain the same
sulfur isotope composition of the ocean. For example, our model
suggests that if evaporites contribute 80% of the global total sul-
fur delivery to rivers then pyrite burial could be as low as 10% of
the marine sulfur sink in steady state. Thus deconvolving the river
flux into its various components becomes critical for evaluating
the relative fluxes in the sulfur cycle.

This deconvolution was recently done by Halevy et al. (2012),
who separated the riverine sulfur flux into sulfur sourced from
old rocks (ancient evaporites and sedimentary pyrites), and sul-
fur sourced from young evaporites with a sulfur isotope compo-
sition similar to modern seawater. Halevy et al. (2012) were able
to do this deconvolution using North American/Caribbean derived
macro-stratigraphic records, which record only long-term evapor-
ite burial. Halevy et al. (2012) suggested that the measurements
of modern riverine δ34S are artificially biased towards an evaporite
end member due to the weathering of recently deposited evap-
orites, which may contribute up to 50% of the riverine weathering
flux. This means that using the riverine δ34S of 5 to 15� biases all
models of the marine sulfur cycle towards lower fractional pyrite
burial fluxes, similar to our model results. We base our calculations
on the modern ocean sulfur isotope composition, which includes
the river flux comprised of both weathering of rapidly recycled
evaporites as well as weathering of ancient evaporites, sedimen-
tary sulfides, and volcanic sulfides. If we redo our calculations and
include a rapidly recycled evaporite flux of 50% of riverine input,
the resulting fpyr of 40–70% is more consistent with the Halevy et
al. (2012) range of 70–90%.
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Fig. 4. 33λ values that would be produced during sulfate reduction for a given riverine δ34S and �33S input across a range of fpyr . Riverine fluxes with a δ34S between 0
and 16� (black curves) intersect the upper and lower bounds for 33λ (black lines), constraining the plausible range of results to fpyr between 8.5% and 44% (light grey box).
The range of fpyr that could result from tighter constraints on δ34Sriv (grey curves) and 33λ (grey lines) are highlighted by the dark grey box, giving a range of 22% to 36%
for fpyr .
The consistency between our calculated pyrite burial flux and
previous work is particularly encouraging because our model uses
a variant of the approach used in other studies seeking to constrain
fpyr. The work described herein draws on constraints from isotopic
balance rather than on inferences about the fractionation asso-
ciated with sulfate reduction and pyrite formation, as was done
elsewhere (Ono et al., 2006; Wu et al., 2010). Our model does
still rely on some of the same assumptions that limited previous
models, such as the quantitative nature of the evaporite and hy-
drothermal sinks, and introduces the further assumption that these
sinks also have a zero �33S value. The main strength of our model
is that it is not directly reliant on the value of δ34Spyr, or the frac-
tionation associated with sulfate reduction and pyrite formation,
both of which are difficult to independently constrain. Although
this assumption is still necessary to model the riverine flux within
our model, the impact of the uncertainty is greatly reduced.

Pyrite burial is one of the major pathways by which sulfur is
lost from the oceans, and the magnitude of the flux will have a
governing effect on the pH of seawater, since sulfur is an important
component of the marine alkalinity budget (Morel et al., 1993).
The process of sulfide production through microbial sulfate reduc-
tion also accounts for around half of organic matter respiration in
marine sediments, and so is essential for balancing the organic car-
bon cycle (Jørgensen, 1982). Tighter constraints on the production
of pyrite in today’s ocean, provided by our model, are key to our
understanding of these important biogeochemical processes.

Because the reduction of sulfate and burial of sulfide leaves ox-
idized products in the surface environment, pyrite is considered a
major indirect source of oxygen to the atmosphere (Berner, 1987;
Canfield, 2005). It has been suggested that major fluctuations
in atmospheric oxygen, partially controlled by changes in pyrite
burial fluxes, may influence major evolutionary events such as
animal radiations and mass extinctions (Canfield et al., 2007;
Fike et al., 2006). Our new method, here applied to modern en-
vironments, could be the first step towards improving constraints
on the pyrite burial flux in deep time.

6. Conclusions

We report measurements of 32S, 33S and 34S for 28 sulfate
samples from a range of water depths along the eastern margin
of the Pacific Ocean. Using assumptions about the sulfur isotopic
composition of riverine sulfur from the mixing of three separate
reservoirs, we could constrain the range of sulfur isotopic composi-
tions expected for pyrite burial in the modern ocean. The inclusion
of 33S measurements alongside 34S and 32S allowed us to reduce
uncertainty in estimates of fluxes in the sulfur cycle by calculating
the exponent involved in sulfate reduction to sulfide (preserved as
pyrite) in modern marine sediments. We use assumptions about
riverine input, combined with new analyses of multiple sulfur iso-
topes in marine sulfate, to estimate that the pyrite burial flux in
the modern ocean is between around 10% and 45% of the total
sulfur burial flux, with a more likely range of between around 20%
and 35%.
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