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ABSTRACT

If event history data are recorded in discrete intervals of time, errors are introduced when
the data are converted from the unit in which they were recorded, such as date, to another
unit such as age or duration. The problem is illustrated by the inconsistent age at marriage
schedules published by two recent U.S. censuses. This paper develops a general method for
treating problems of this type using cubic spline interpolation. The method is used to adjust
U.S. age at marriage schedules, explaining a substantial part of the discrepancy in the 1960
and 1970 censuses.

KEY WORDS: cubic spline interpolation; event histories; age at marriage; U.S. census;

Introduction

Event histories in census and survey data must usually be recorded in discrete intervals
of time. This simple fact can cause much confusion and vexation to users of such data.
Consider data on individual histories of some event such as marriage, first birth, or labor
force entry for some set of respondents sﬁrveyed on a particular date. Data for individuals
could be recorded using the age of the respondent at the event, the date at which the
event occurred, or the duration of time between the event and some other event such as
birth or the survey itself. Given the exact survey date and the respondent’s exact date of
birth, any one of these three variables (age, date, or duration) determines the other two
through simple identities. The choice of the variable in which to record the event may
therefore appear to be arbitrary, or may be influenced by a priori beliefs that one variable is
more accurately reported than the others.! The problem is that when any one of the three
‘potential indicators is recorded using some discrete unit of time, such as months, quarters,
or years, it becomes impossible to exactly recover the values of the other two indicators,
even in units of the same length as those used for the variable recorded. As demonstrated
below, the possible values of the two unrecorded variables which are consistent with the
value of the one recorded variable always lie in an interval twice as long as the length of
the time unit used to record the original variable, and must inevitably lead to ambiguity
regarding the correct value for some observations.

This problem is usually dealt with in published data sources by ad hoc methods. Some-
times, as in the application to marriage histories we discuss below, the problem is exacer-
bated by the fact that different data sets relating to the same or similar events use different
methods. In this paper, we propose a general method for treating discrete observations of
event histories by using the available discrete data to fit a continuous cubic spline func-
tion. These continuous distributions can easily be integrated over desired intervals when

one wants to reconstitute discrete information in any desired form. This method also allows

1 Evidence that birth dates tend to be more accurately reported than ages, for example, motivated the
U.S. census to change in 1960 from recording respondents’ ages to recording respondents’ dates of
birth.




one to recover an estimate of the underlying continuous distribution of timing of histori-
cal events from data sources that have been compiled using different ad hoc methods, thus
restoring comparability.

The problem of inaccuracies resulting from the use of discrete time in the recording of
event histories is a common one in demography. The demographic handbook of Shryock and
Siegel (1975) provides several examples and offers some simple solutions. Spline interpolation
is also well known to statistical demographers. The technique is briefly discussed by Shryock
and Siegel (1975) and is outlined in detail by McNeil et al. (1977). No previous work,
to our knowledge, has exploited the application of spline interpolation to the problem of
reconstructing event histories recorded in some time unit other than the unit desired by the
researcher. As will be demonstrated below, our technique makes it possible to use cubic
spline interpolation even when the observed data are known to be inaccurate. By explicitly
modeling the systematic sources of error in the data we are able to extend standard spline
interpolation through correctly measured data points to the case in which the observed data
are known to be incorrect.

Age at Marriage in the U.S. Censuses

The general problem is illustrated by an example that arose in some of our recent
research. We wanted to study the distribution of age at first marriage of men and women
by year of birth. The U.S. censuses of 1960 and 1970 both publish tables for males and
females reporting the joint distribution of age at first marriage and age at census.? Since
the information collected in both censuses is retrospective, each provides information on the
marriage experience of cohorts born as early as 70 years before the census. Our plan was to
use information from the earlier census to determine the first marriage rates of cohorts that
had few survivors by the time of the later census and to use the later census for marriage
rates that depend on weddings that took place after 1960. For some cohorts and ages we
would have two independent estimates of marriage rates, one from each census.

Before we could confidently use the data from either census, and certainly before we
could graft together results taken from the two sources, we had to investigate the consistency
of the two different census reports. When both censuses report estimates of a first marriage
rate for the same cohort and age, the two estimates should be almost the same. As it
turns out, this is conspicuously not the case. Table 1 shows the marriage rates implied by

2 The tables appear in the Age at Marriage subject reports for both years. See Table 2, U.S. Census
Bureau, 1966: 26-37, and Table 2, U.S. Census Bureau, 1973: 29-76.

3 Differential mortality by age at marriage, due perhaps to the correlation between income and age at
marriage, will introduce some discrepancies, but some simple calculations indicate that this is unlikely
to be a major factor in the cases analyzed here. Other possible sources of discrepancy between the
two censuses include immigration between the censuses, differential underenumeration by age, and
reporting and recall bias leading to systematic changes in a cohort’s reported marriage history from
one census to the next. Sampling error may introduce some discrepancies (the published tables on age
at marriage are based on 5 percent samples from the census), but are unlikely to create the kind of
systematic discrepancies we consider here.




the 1960 and 1970 census for ages 16 through 34 for white females born in 1914 and 1924.4
Columns 2 and 5 show the first marriage probabilities implied by the 1960 census for the

1924 and 1914 birth cohorts, while columns 3 and 6 show the probabilities implied by the
1970 census for the same cohorts.®

Columns 4 and 7 indicate the discrepancy between the two censuses by the ratio of the
1970 probabilities to the 1960 probabilities. Column 8 shows the average of these ratios
for the entire series of cohorts with overlapping data, 1910-1924. The table shows that for
women born between 1910 and 1924, the first marriage rates in the late teens as estimated
from the 1970 census are on the order of 5 to 15 per cent smaller than the rates estimated
for the same cohorts based on the 1960 census. At the same time, the estimates of first
marriage rates for women in their middle and late twenties based on the 1970 census are 3
to 15 percent higher than the rates estimated from the 1960 census.

To see the importance of these differences, imagine that a researcher was interested in
the relative frequency of teen-age marriages in the 1960’s as compared to the 1950%. If he
looked at the 1970 census data for women born in, say, 1950, he would find that about 35%
‘of these women married between their 15th and 20th birthdays. Suppose that he found
some earlier research based on the 1960 census that reported the marriage rates for this
age-group. He would find that about 49% of the women born in 1940 married between their
15th and 20th birthday. But the researcher would have been seriously misled. While it is
true that there was a very large decrease in the rate of teen-age marriages over this period,
there is reason to suspect that almost half of the apparent change is a statistical illusion due
to a change in the census bureau’s conventions for reporting data. This becomes apparent
when we observe that the 1970 census also reports on the marital history of the 1940 cohort.
According to the 1970 census report, about 43% of women born in 1940 married between
their 15th and 20th birthday rather than 49% as reported for the same cohort by the 1960
census.

A clue to the source of these discrepancies can be found in a difference in the way that
the two censuses converted reported data into published tables. In both the 1960 and 1970
censuses, people were asked the quarter and year they were born and the quarter and year
in which they were first married. From these data the Census Burean constructed tables

4 The census report of age at census is actually based on respondents’ date of birth, reported in quarters.
Age is calculated as the difference between the quarter of the census and the quarter of birth, with
fractions dropped (see U.S. Census Bureau, 1963: x-xii). It should be pointed out, that the year of
birth cohorts so defined are actually for years running from April 1 to March 31 rather than for regular
calendar years. To avoid inessential complications, we state some of our later examples as if the year
of birth were measured in calendar years.

5 For example, the .077 probability of marrying at age 17 in Column 2 is derived by dividing 89,475
white women reported as age 35 with age at first marriage 17 in the 1960 table on age at marriage
(U.S. Census Bureau, 1966, Table 2, pp. 32-33) by 1,156,770 total white women age 35 re.ported in
U.S. Census Bureau (1963), Table 157, p. 1-358. The .069 probability of maxyying at age 17 in column
3 is derived by dividing 79,558 white women age 45 with age at marriage 17 in the 1970 census age at
marriage table by 1,146,697 total white women age 45 in the same table (U.S. Census Bureau, 1973,

Table 2, p. 59).




Table 1
Age-Specific First Marriage Rates Implied by 1960 and 1970 U.S. Censuses
White Female Cohorts, 1914, 1924, and Average 1910-1924

1924 Birth Cohort 1914 Birth Cohort Average
1970/1960
Age at 1960 1970 1970/1960 1960 1970 1970/1960 Ratio
Marriage  Census Census  Ratio Census Census  Ratio 1910-1924
(1) 2 3 (4) (5)  (6) (7 (8)
16 0.047 0.040 0.851 0.038 0.035 0.921 0.861
17 0.077 0.069 0.896 0.055 0.051 0.927 0.891
18 0.100 0.093 0.930 0.076  0.069 0.908 0.943
19 0.094 0.090 0.957 0.088 0.084 0.955 0.962
20 0.101 0.097 0.960 0.090 0.089 0.989 0.967
21 0.126  0.123 0.976 0.089 0.087 0.978 0.971
22 0.103 0.107 1.039 0.082 0.080 0.976 1.004
23 0.071 0.075 1.056 0.067 0.066 0.985 1.010
24 0.048 0.051 1.063 0.058 0.056 0.966 1.017
25 0.034 0.039 1.147 0.053 0.053 1.000 1.032
26 0.025 0.026 1.040 0.046 0.045 0.978 1.019
27 0.019 0.019 1.000 0.034 0.034 1.000 1.034
28 0.014 0.015 1.071 0.023 0.022 0.957 1.037
29 0.012 0.011 0.917 0.015 0.016 1.067 1.036
30 0.009 0.009 1.000 0.015 0.014 0.933 1.044
31 0.007 0.008 1.143 0.016 0.017 1.063 1.071
32 0.006 0.006 1.000 0.014 0.014 1.000 1.048
33 0.005 0.005 1.000 0.011 0.011 1.000 1.035
34 0.004 0.004 1.000 0.008 0.008 1.000 1.044

Note: The 1924 birth cohort refers to persons aged 35 and 45 at the time of the 1960 and
1970 censuses respectively, i.e. those born April 1, 1924 to March 31, 1925. The
1914 birth cohort refers to persons aged 45 and 55 in the 1960 and 1970 censuses
respectively, i.e. those born April 1, 1914 to March 31, 1915.

Source: Numerators for 1960 taken from U.S. Bureau of the Census (1966), Table 2;
Denominators (total number in birth cohort at time of census) for 1960 taken from
U.S. Bureau of the Census (1963), Table 157. Numerators and denominators for
1970 taken from U.S. Bureau of the Census (1973), Table 2.




reporting “age at marriage” by “age at census.” If, for example, a woman reported that she
was born in the second quarter of 1930 and first married in the fourth quarter of 1958, then
either census would correctly identify her as having been born in 1930 and as having first
married when she was 28 years old. But what about someone who was born in the second
quarter of 1930 and married in the second quarter of 19587 If her birthday was in May,
1930 and she married in April, 1958 then she was 27 when she married, but if she was born
in April, 1930 and married in May, 1958 then she was 28. Whether she was 27 or 28 years
old at the time of her wedding depends on which comes earlier in the quarter, her birthday
or her wedding day. The census bureau did not have this information and had to allocate
persons born in the same quarter of the year to one of the two adjacent age cells according
to some more or less arbitrary procedure.

The census bureau made this allocation in a different way in 1970 than it did in 1960.
The 1960 census report dealt with the problem of people whose wedding days and birthdays
occurred in the same quarter by assuming that half of them were married before their
birthdays and half after.® The 1970 census report, on the other hand, constructs its tables
of the age distribution of marriage based on the assumption that all of the people whose
wedding date and birthday are in the same quarter were married after their birthdays. The
published data from the two censuses, therefore, provide two sets of tables, calculated by
different methods, purporting to show the joint distribution of “age at census” and “age
of marriage.” Looking at the same cohort in the two censuses, we have two alternative
estimates of the proportion of the cohort that married at each age. Even abstracting from
other potential sources of bias in these estimates, we will show below that neither of the
methods used to construct the tables can generate the correct schedule of age at marriage for
cohorts. But we will show that it is possible essentially to undo the ad hoc methods used in
the construction of the census tables and to use these tables to find interpolated continuous-
time estimates of the age distribution of first marriage for each cohort. The method that

we use has applications to many similar problems, some of which will be described at the
conclusion of the paper.

The General Problem of Event Histories in Discrete Time

Suppose that your have data on individual histories of some event %, such as marriage,
first birth, or labor force entry, for the population alive at some census or survey date.
Denote the exact date of event i as D}, the exact age at which that event occurred as A7,
the exact length of time between event i and event j as T;, and the exact length of time
between event ¢ and the survey date as T%.” Individual data on event i could be recorded
using either age, date, or duration. Given the survey date D} and the respondent’s exact

5 More Pprecisely,
before their birthdays

5




date of birth D}, any one of these three variables determines the other two through simple
identities. When any one of the three potential indicators is recorded using some discrete
unit of time, however, it becomes impossible to exactly recover the values of the other two
indicators, even in units of the same length as those used for the variable recorded.

To model the problem formally, suppose we make an arbitrary choice of unit of time,
such as months, quarters, or years. We can express the exact date, age, and time elapsed
for some event ¢ as the sum of the number of completed units of time plus the fractional
remainder. We adopt the notation

D: =D; 4+ d;
Al =Aita
T = Tij + 4,

where D}, A}, and T}; represent the exact date, age, and duration measured in continuous
time, D;, A;, and T;; are integers representing the number of completed units of time, and
0 < (di,aisti;) < 1 represent the fractional remainders. The survey records either D;, A,
or T;., the truncated value of one of the three possible indicators. Suppose the researcher’s
problem is that the survey records the truncated date of the event, D;, and the truncated
date of birth, Ds, and the researcher is interested in the age of the respondent at the event,
A;. This is exactly analogous to the issue facing the researchers constructing the age at
marriage tables from the U.S. Census based on census questions on the date of marriage
and date of births.

Consider a person who experienced event i at exact age AT = A; + a;. Given date of
birth D} = Dy + ds, the exact date of event i is D! = Dy + dy + Ai + a;. The truncated
date of the event will be

Dy + A if a;+dp<1
= (1)

Dy+A;+1 if a;+dp>1

Given the data, a possible estimate of the truncated age at the event is A; = D; - D,.
This is the estimate used without adjustment for the construction of the published age at
marriage tables from the 1970 U.S. census. We see immediately from (1) that

. A; if a;i+dy<1
A= , (2)
Ai+1 if a+dy>1
where A; is the true truncated age at the event.

I A. — D.
f we calculate A; = D; — Dy, what exact ages at the event A¥ would be consistent with
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our observed A;? We adopt an indicator function §(a; + dp) such that

5 0 if a;+dy <1
)1 i ai+dy>1

If § = 1, then the estimator A; will assign an incorrect integer age at marriage. From
(2), the relationship between the exact age at event ¢ and the estimated age at event i is
Al = A,- +a; -6, where the values of both § and a; are unknown to the researcher. Although
6 and a; are not independent, any value of a; is in principle consistent with § equal to either
zero or one. The fact that certain values of a; are more likely to produce a particular value
of 6 will be exploited below, but for now we note that we cannot rule out any combinations
of the two a priori. Since § € [0,1] and a; € [0,1), we see that a; — 8 € [-1,1), and therefore

Ar €A —1,A; +1). (3)

From (3) we see the fundamental problem created by changing the unit of analysis
of an event. No matter how accurate the responses or how complete the data, we must
inevitably introduce error into our data if we change from the date of an event to the age
of the respondent when the event occurred. The range of the possible ages consistent with
a given recorded date will always be twice as long as the length of the interval in which
the date was recorded. More importantly, a portion of the ages assigned by the estimator
A; must be incorrect. As an example, a woman with recorded year of marriage 1957 and
recorded year of birth 1940 could in principle have married at any age between her 16th
birthday and the day before her 18th birthday, given the possible values for the dates of the
two events. Assigning all such women an age at marriage of 17 will inevitably assign some
women too high an age at marriage.

Hope for a solution to this problem lies in the fact that all the combinations of dates
which cause an individual to be assigned to one of the two categories in (2) are not equally
likely. The probability that A; erroneously assigns age A; + 1 is the probability that § = 1,
i.e. the probability that a; + dy, > 1. If we assume that persons with integer date of birth
D, and integer event date D; were born uniformly over the period [Dy + 0, Dp + 1), then
conditional on some a;, the probability that a; + d, > 1 is the probability that a; is greater
than 1 — dp, where dj is a random variable with uniform distribution over (0,1). Given dp
is uniform,

P[6=0] =P[a,~+db< 1]= 1—aq;

(4)
P[(S = 1] =P[a; +dy > 1] = a;.

From (4), we see that conditional on exact event age A; + a;, integer event date D;, and
integer date of birth Dj, the probability that A; incorrectly assigns age A; + 1 goes to one
as a; goes to one, and goes to zero as a; goes to zero. Persons who experience the event
exactly on their birthday will always be assigned the correct integer age. The probability

7




of being assigned an integer age that is one unit too high increases linearly as the length of
time between the date of the last birthday and the date of the event increases.

It is clear that any discrete age group A; will be assigned to some persons whose actual
age group at the event was A; but also to some persons whose actual age group at the
event was A; — 1. Once aware of this problem, the researcher’s task is to minimize the
number of persons assigned incorrect ages. Denote the unconditional probability that event
i occurred at age A;+a; as f(A;+a;). Given a particular estimate A,- = fi,-, the conditional
probability that the actual age at the event was some given value in the range of possibilities
(fi,- —1,A;: + 1) is the unconditional probability that the event occured at that age times
the probability that the individual was assigned A; given the age at the event:

PlA} = Ai + ai|4di] = f(Ai+ @) P[6 = 0]a;]

P[A: = /L‘ +a; — llj,’] = f(fi, +a; — 1) . P[6 = lla,‘], (5)

Using the conditional probabilites of incorrect assignments in (4), the probability that the
event occurred over some range (A~.~ —1,A -1+ a;) is given by

a; -
P[A} € (Ai, Ai + ai)|Ai] = / f(4; + a)(1 — a) da. (6)
0
and analogously,
. - _ a; _
P[A7 € (Ai— 1, Ai — 1+ a)|Ai] = / f(A; = 1+ a)a da, (7)
0

If we were to assume that the event was equally likely between ages A; — 1 and A; + 1, this
result implies that we can calculate the exact proportion of all of those with estimated ages

at the event A; = A; who experienced the event over any portion of the range (/i,- -1, A+ 1).
If the event occurs with probability 7« uniformly over the range, then

P[A? € (fit - l’fii -1+ ai)l‘ii] - T 0‘1-' a da f’_?_ (8)
PlA; = Aj] r[folada-kfol(l——a)da] 2

So, for example, setting a; = 1, the proportion of those for whom A; = A; who experienced
the event between A; — 1 and A; (i.e. the proportion incorrectly assigned by fi,) is equal
to 1/2. Under this assumption of uniform rates, then, if we want to reassign individuals
who are assigned incorrect ages at marriage by the estimator A;, we should simply allocate
half of those assigned A; to A; and half of them to A; — 1. This is, in a sense, the intuitive
solution to the problem. It appears in some form in a number of handbooks on demographic
techniques (e.g. Shryock and Siegel, 1971), and roughly corresponds to the method used
by the Census Bureau in constructing the published age at marriage tables for 1960. The
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tables for 1970 were constructed using no correction for misallocation at all.

This simple solution will be unsatisfactory if the probability of the event is not uniform
over the interval (4; — 1,4; 4+ 1). It may lead to significant biases, for example, if the
probability of the event rises or falls rapidly with age (or, analogously, with duration) over
some interval. We thus propose a powerful and quite general solution to the problem which
allows the probability of the event to vary with age, and furthermore, solves for the exact
age profile simultaneously. The technique can be demonstrated by considering the problem
of the inconsistent age at marriage schedules based on the 1960 and 1970 censuses.

A Diagrammatic Explanation of Two Different Census Methods

In order to recover the actual age-at-marriage schedules from the published census
tables, our goal is to “undo” the different accounting procedures used in the 1960 and 1970
tables. To see how to do this, we first look in detail at how the two methods apply to a
specific case, women born in a particular year, who marry before their 18th birthday.

Figure 1 presents a hypothetical frequency distribution of age at first marriage which
reflects the fact that the marriage rate increases rapidly between ages 16 and 18. The census
bureau knows only the quarter in which each woman was born and the quarter in which she
married. Women who marry before age 17 3/4 must necessarily have married in an earlier
quarter than the quarter in which their 18th birthdays occurred. In Figure 1, these women
are represented in the area S. The method used by either census will correctly record such
women as having married before their 18th birthday. Similarly, women who marry after age
18 1/4 will have married in a later quarter than that in which their 18th birthday occurred
and will be recorded by either method as not having married before age 18.

The difficulty arises when we consider women who married between ages 17 3/4 and 18
1/4. Consider the following four different histories of birth and marriage for women married
between these ages.

Woman A was born in April, 1940 and married at age 17 years and 10 months. This
means that she must have married in February, 1958. Since February and April are in
different quarters, either census method will correctly ascertain that she married before her
18th birthday.

Woman B was born in June, 1940 and married at age 17 years and 10 months. She
must have been married in April, 1958. Since April and June are in the same quarter, there
is insufficient information available to determine whether she was married before or after
her 18th birthday.

Woman C was born in April 1940 and married at the age of 18 years and 2 months.
She must have been married in June, 1958. Since April and June are in the same quarter,
there is again insufficient information to determine whether she married before or after her
18th birthday.

Woman D was born in June 1940 and married at the age of 18 years and 2 months.

9




She must have been married in August, 1958. She would therefore have her wedding day
in a different quarter from her birthday and would accordingly be correctly determined by
either census method to have married after her 18th birthday.

Insert Figure 1 about here.

How many of the women who marry at age 17 years and 10 months will, like Woman A,
have their birthdays in a different quarter from their weddings? A bit of reflection should
convince you that it will be those who are born in the last month of any quarter. If the
birth rate were constant during each quarter, then this proportion would be 1/3. More
generally, with a constant birth rate during each quarter, the probability will be 1 —¢/3 that
a woman who marries ¢ < 3 months before her 18th birthday will have her wedding day
and her birthday in different quarters. The probability is t/3 that for her these dates fall in
the same quarter. The area A in Figure 1 represents the proportion of women in the cohort
who, like Woman A, are married at an age between 17 3/4 and 18 and whose wedding days
fall in a different quarter from their 18th birthdays. The area B represents the proportion
of women, who, like woman B, are married at an age between 17 3/4 and 18, and whose
wedding days are in the same quarter as their birthdays.

By similar reasoning, we see that the proportion of women who marry ¢ months after
their 18th birthdays and whose birthdays and wedding days are in the same quarter will be
1-—t/3. The area C in Figure 1 represents the proportion of women in the cohort who, like
Woman C, fall into this group. Finally, the area D represents the proportion of women who,
~ like Woman D, marry at an age between 18 and 18 1/4 but whose birthdays and wedding
days are in different quarters.

The 1970 census method treats all women whose weddjng days fall in the same quarter
as their birthdays as having married after their birthdays. This means that the figures
published in the 1970 census for women in cohort ¢, married before age 18 correspond to
the sum of the areas in § and A in Figure 1. The “true” proportion, however, corresponds
to the combined areas in §, A, and B. Thus the 1970 procedure incorrectly excludes the
proportion corresponding to the area B from its estimate of persons married before age 18.
If marriage probabilities were constant between ages 17 and 18, this area would represent
1/8 of the total marriages between 17 and 18, implying that the 1970 accounting procedure
would incorrectly assign 1/8 of the women marrying at 17 to age 18. As can be seen in the
figure, the area will be still larger if the probability of marriage rises between age 17 and 18,
with the exact amount of the error depending on the slope of the age-at-marriage schedule.

From what we know about the way in which the 1970 method distorts the cumulative
age distribution of marriage by age, it is quite easy to see the way in which it distorts the
frequency distribution by age. In particular, as we have shown, about 1/8 of the women
who marry at age 18 are counted as marrying at age 19 and about 1/8 of the women who
marry at age 17 are counted as having married at age 18. But the number of women who
marry at age 18 is much higher than the number who marry at 17, so that the net effect
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of the distortion is an underestimate of the number who marry at age 18. More generally,
we can expect the 1970 method to understate the actual marriage rate at ages where the
marriage rate is increasing with age, and to overstate the marriage rate at ages where the
marriage rate declines with age.

We can also use Figure 1 to illustrate the effect of the 1960 procedure. The 1960 census
counts half of the women whose 18th birthdays and wedding days fall in the same quarter
as having married before their 18th birthday. This corresponds to the area in S plus the
area in A plus half the combined area of B and C. The “true” proportion corresponds to
the sum of the areas in A and B. The error in the 1960 procedure is, therefore, half of
the difference between the area in C' and the area in B. This number can be expected to
be positive at ages where marriage rates are accelerating and negative at ages when they
are decreasing with age. Therefore we would expect the 1960 census procedure to slightly
overstate the cumulative proportions of the population married by age for young ages and
to slightly understate this proportion for older ages. A systematic direction of bias in the
distribution of marriages by single year of age is less clearcut for the 1960 procedure than
for the 1970 procedure and is likely at any rate to be small.

It is interesting to notice that the qualitative pattern of discrepancies between the 1960
and 1970 estimates of the distribution of marriages by single years of age reported in Table
1 is exactly what would be predicted by our discussion. The marriage rates for either cohort
as reported by the 1970 census are lower for younger women and higher for older women
than the 1960 rates. "

Correcting the 1960 and 1970 Data

Our method is simply this. We assume that the true cumulative density distribution
is piecewise cubic and twice differentiable. For each of the two census years 1960 and 1970,
we can use the reported age distributions together with information about how these figures
were constructed to determine the parameters of the unique piecewise cubic c.d.f. that is
consistent with the reported data. Therefore we find that no permanent damage has been
done by the census bureau’s ad hoc methods for either year. Even though the census bureau
used different methods in the two years and even though both methods can give misleading
results, we are able to use both kinds of data to construct consistent and conceptually
appropriate estimates of the underlying continuous distribution of age at first marriage by
date of birth. The mathematical details of this approach are reported in Appendix A.2.

This procedure is known in numerical analysis as “cubic spline interpolation.” (Johnson
and Reiss, 1982.) It would be possible to pursue our general strategy while making different
assumptions about the functional form of the true distribution. For example, an alternative
to interpolation would be to estimate a continuous distribution by a low order polynomial
that does not have to pass through all of the observations. This might be appropriate if
there were reason to think that there was substantial measurement error in the observed
frequencies of marriage. In the case of census data collected from very large samples, it
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seems reasonable that sampling errors can be neglected. This will lead us to an interpola-
tion procedure rather than least squares estimation, although we will take account of the
systematic errors built into the data.

Of course there are infinitely many different continuous curves which could be drawn
through a finite set of points. In order to select a unique curve, we must impose some
criteria of simplicity that limits the number of free parameters of the curve to the number
of observed points. One possible approach would be to fit a polynomial of sufficiently
high degree through the observed points. This has the serious disadvantage that fitted

- polynomials of high degree can display very large oscillations between adjacent points, as
demonstrated in Johnson and Riess (1982:237-238).

Rather than use cubic splines one could interpolate the cumulative distribution with
piecewise polynomials of either higher or lower degree. We are primarily interested in the
properties of the frequency distribution of marriage. If the cumulative density function of age
at first marriage is a cubic spline then the frequency distribution will be piecewise quadratic
and will be everywhere continuously differentiable. Lower order polynomial approximations
would lack this smoothness. Higher order polynomials through the data could be determined
by a requirement of continuity of derivatives of higher degree. But adding more smoothness
in this way would have very little effect on the values taken by the frequency distribution
of age of first marriage.

The properties of cubic splines and procedures for fitting them through observed data
points are outlined in Appendix A.1. Cubic spline interpolation procedures have convenient
matrix representations, and are straightforward to apply. ‘Our problem differs from the
standard applications of cubic spline interpolation, however, since the data points we are
given by the two censuses are known to be systematically incorrect. We want to recover
an original distribution from a set of points which are all erroneous measures of actual
points on the distribution. We are able to proceed because, following the logic of the
previous section, we can express the observed incorrect data as relatively simple functions
of the true underlying distribution. Appendix A.2 provides a detailed presentation of the
relationship between the true and observed data under the assumption that the true data
can be expressed as a cubic spline. As shown in Appendix A.2, once the erroneous observed
data have been expressed as a function of the correct data, it is simply matter of inverting
the relationship to recover the actual distribution. The system has a straightforward matrix
representation, and is easily operationalized using matrix operations on a microcomputer.®

Results

The published age-at-marriage tables for 1960 and 1970 both provide data on age at
marriage from age 16 to 34 for single year cohorts born between 1910 and 1924.° We have

8 The Gauss matrix programming language turned out to be particularly suitable for this endeavor. A
copy of the Gauss routine that we wrote for this purpose is available from the authors on request.

9 The binding constraint is that the 1960 table only gives single year age at marriage up to age 34.
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applied our cubic spline adjustment procedure to both sets of data for 1910 to 1924 white
female birth cohorts. As explained in detail in Appendix A.2, the adjustments differ for
the two sets of data because of the different accounting procedures used to generate the
1960 and 1970 published tables. Table 2 summarizes the results of our procedure. Columns
2 through 7 show our estimated age-specific marriage probabilities for the 1924 and 1914
cohorts and the ratios of the 1970 and 1960 estimates. The table can be directly compared
with the published data reported in Table 1. Column 8 shows the average of the ratios of
the 1970 and 1960 estimates for all of the 1910-1924 female cohorts.

Figure 2 compares the original published data and the cubic spline estimates graphically
by plotting column 8 of Tables 1 and 2. The figure shows the average for all of the 1910-
1924 cohorts of the discrepancy in the 1970 and 1960 marriage probabilities, where the
discrepancy is given by the ratio of the 1970 estimate to the 1960 estimate. Qur procedure
greatly improves the consistency of the two series, by eliminating about half the observed
discrepancy. As shown in Figure 2, the cubic spline adjustments make their most noticeable
improvements at ages 16 and 17, ages where the rapid increase in the probability of marriage
should cause the 1970 accounting procedure to most underestimate the proportions marrying
at young ages. It would be nice to be able to explain the entire difference between the 1960
and 1970 census estimates. While it is easy to think of additional sources of difference
between the series, we have not so far been able to convincingly explain the remaining
difference.

Insert Figure 2 about here.

Figure 3 shows the results when the same procedures are applied to census data for
white males for the same cohorts. The solid line in Figure 3 indicates that the discrepancies
in the male age at marriage data for 1960 and 1970 have a similar pattern to the discrepancies
in the female data shown in the solid line in Figure 2, with the male data showing somewhat
larger inconsistencies, especially at the youngest ages. The dashed line in Figure 3 shows
that our 1960 and 1970 estimates after applying our cubic spline interpolation procedure are
generally more consistent than the original series, with the most noticeable improvements
again occurring at the youngest ages.

Insert Figure 3 about here.

Extensions

The method developed here for recovering continuous event histories from census survey
data has broad applications. For example, an interesting footnote to the inconsistencies in
the age at marriage data provide by the 1960 and 1970 censuses is that the 1950 census
used still a different procedure. The 1950 census asked respondents their actual ages (rather
than year of birth) and the duration of their marriage in single years. An analysis similar
to that developed above demonstrates that women of any single year of age and single year
of marriage duration could have married at any time during a two year age period. An
attractive feature of the technique we have developed is that it is just as easily applied to
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Table 2
Age-Specific First Marriage Rates Implied by 1960 and 1970 U.S. Censuses
Adjusted Using Cubic Spline Procedure
White Female Cohorts, 1914, 1924, and Average 1910-1924

1924 Cohort 1914 Cohort Average
1970/1960
Age at 1960 1970 1970/1960 1960 1970  1970/1960 Ratio,
Marriage  Census Census  Ratio Census Census  Ratio 1910-1924

(1) @ @& (4) 6 (6 Q) ®

16 0.047 - 0.044 0.945 0.037 0.038 1.003 0.942
17 0.078 0.073 0.939 0.055 0.054 0.979 0.943
18 0.102 0.094 0.923 0.077 0.071 0.923 0.954
19 0.092 0.089 0.975 0.088 0.085 0.965 0.967
20 0.101  0.100 0.988 0.090 0.089 0.988 0.966
21 0.130 0.124 0.957 0.090 0.086 0.965 0.963
22 0.102 0.103 1.006 0.082 0.079 0.955 0.990
23 0.071 0.071 1.012 0.066 0.064 0.968 0.988
24 0.047 0.049 1.031 0.058 0.055 0.956 0.993
25 0.034 0.038 1.113 0.053 0.052 0.985 1.005
26 0.025 0.025 0.989 0.046 0.044 0.944 0.990
27 0.019 0.019 0.978 0.034 0.032 0.961 1.011
28 0.014 0.014 1.048 0.023 0.021 0.915 1.010
29 0.012 0.011 0.874 0.014 0.016 1.078 1.013
30 0.009 0.009 1.002 0.015 0.014 0.933 1.021
31 0.007 0.008 1.118 0.016 0.017 1.058 1.048
32 0.006 0.006 0.967 0.014 0.013 0.963 1.026
33 0.005 0.005 0.966 0.011 0.011 0.958 1.000
34 0.004 0.004 0.942 0.008 0.008 0.942 0.981

Note: The 1924 birth cohort refers to persons aged 35 and 45 at the time of the 1960 and
1970 censuses respectively, i.e. those born April 1, 1924 to March 31, 1925. The
1914 birth cohort refers to persons aged 45 and 55 in the 1960 and 1970 censuses
respectively, i.e. those born April 1, 1914 to March 31, 1915.

Source: Based on data reported in Table 1, adjusted for misallocation using cubic spline
procedure described in text.
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this 1950 problem, involving ages and durations, as it was to the 1960 and 1970 problems,
which were based on inference from dates.

Analogous problems are common in demographic data. The well known demographic
handbook of Shryock and Siegel (1971), for example, provides two simple examples. The
first involves interpreting survey data giving the number of children born in the previous
twelve month period to women in single year age groups (1971:696). The issue is how to
allocate the births according to age of mother at the time of birth. Once again note that
births in the previous year to twenty year old women will include on one extreme a birth the
day before the survey to a women just short of her twenty-first birthday and on the other
extreme a birth a full year prior to the survey to a woman who had just turned nineteen. The
Shryock and Siegel solution assumes uniform age-specific fertility rates, and is analogous to
the method used in the 1960 age at marriage tables. Our method can be easily applied to
the problem, making it possible to relax the unrealistic assumption that fertility rates are
constant from (for example) ages nineteen to twenty-one. Our cubic spline procedure will
generate a continuous fertility schedule with a functional form flexible enough to closely
approximate any empirical age pattern of fertility. To see why this problem falls into the
same general class of problems as our census data on age at marriage, think of the problem
as resulting from the fact that instead of women being asked the age at which their previous
birth occured, women are asked the number of years since their previous birth, with the
data recorded in single years of duration.

The second example we draw from Shryock and Siegel is a standard problem in esti-
mating mortality from two censuses (1971:696). We observe the number of 10-14 year olds
in the 1950 census and the number of 20-24 year olds in the 1960 census, and assuming
no migration want to estimate age-specific mortality rates for the ten year period. We can
think of our data as being the size of the 10-14 year old cohort in 1950 and the number who
died in the subsequent ten years. It is precisely analogous to the fertility problem above
once we recognize that we have data on “duration until death” in ten year intervals instead
of direct data on age at death. We note that those in the cohort who died during the period
may have died at any age between 10 and just short of age 25.

Shryock and Siegel again present a simple allocation based on an assumption of uniform
deaths between ages 10 and 25. This procedure incorporates the fact that deaths at age 15,
for example, are more likely to be included in the deaths to this cohort than are deaths at
age 10, since most of the cohort had already survived past age 10 at the time of the 1950
census. The procedure does not incorporate the actual shape of the underlying mortality
schedule, however, instead imposing the assumption of constant mortality between 10 and
25. While the assumption of constant mortality rates across a fifteen year age group might
be tolerable for this particular example, it will obviously be unreasonable at both younger
and older ages. More importantly, it is an unnecessary assumption given our more general
procedure. We can greatly improve on the Shryock and Siegel approach by expressing the
observed deaths as a function of the true continuous mortality schedule, assumed to be a
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cubic spline, and the probability of observing deaths conditional on the age at which they

occur.

While many other examples could be discussed, it is clear that our procedure has appli-
cations to virtually all types of event history data. An important feature of the procedure is
that it only assumes that the underlying continuous distribution of events can be represented
by a cubic spline function, a quite unrestrictive assumption which makes the procedure ap-
propriate for almost any problem. This makes it considerably more powerful than methods
which impose particular functional forms or model schedules, such as parametric age at
marriage schedules or model life tables. While our procedure is computationally more com-
plex than methods used by the 1960 and 1970 censuses and the simple graphical solutions
suggested by Shryock and Siegel, advances in microcomputing allow straightforward opera-
tionalization of our procedure and make it difficult to justify continued use of the restrictive
and often ad hoc procedures commonly found in treatments of event history data.
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Appendix

Al. On Cubic Spline Interpolation

This section presents a detailed discussion of cubic spline interpolation through exactly
observed data.l® We will then be able to demonstrate how cubic spline techniques can be

used to “recover” a smooth age distribution of marriage function from the data calculated
by the ad hoc methods of either the 1960 or 1970 U.S. census.

The name “cubic spline” comes from the fact that this procedure closely approximates
a technique that has long been used by draftsmen. A draftsman who wishes to plot a smooth
curve through a set of n 4+ 1 observations, (z;,y;) for ¢ = 0,...,n, will place a set of weights
on a thin elastic rod called a spline. The weights are placed in such a way that the rod

passes over each of the observed points. The draftsman then traces the curve formed by the
rod.

The cubic spline function that we seek will consist of n cubic functions, F;(.), where the
domain of Fj(.) is the closed interval from Z;~1 to z;. The parameters are chosen to satisfy
the following conditions: The function Fj(.) must pass through the two points, (zi-1,%i-1)
and (z;,¥:). Thatis,fori=1,...,n:

Fi(zi-1) = yim1
and

Fi(zi) =i - (A1)

The cubic pieces must fit together smoothly. That isforz=1,...,n — 1:

Fi(z:) = Fiya(2:) - (42)

and

F'(z;) = i'-'H(zi) . (A3)

These conditions constitute 4n — 2 equations. Since each of the cubic pieces has 4
parameters, we have 4n — 2 equations in 4n unknowns. In many applications, including
the one we have in mind, it is reasonable to complete the determination of the system by
assuming that the curve is linear at the end points, that is Fl'(zo) = Fl(zn) = 0. A cubic
spline with these end point assumptions is known as a “natural spline.”

In the class of twice continuously differentiable functions passing through these n points,
the natural spline has the smallest possible curvature over the interval, where the curvature

10 The discussion draws heavily on Johnson and Riess (1982).
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of a function F over a closed interval [a,}] is defined as the integral of the squared second
derivative of F over the interval. It turns out that the physical spline placed by the draftsmen
will shift so as to minimize the “strain energy” on itself which is proportional to the curvature
over the interval from zo to z,. Thus the equivalence to the draftsman’s procedure. In
addition to being the “simplest” smooth function fitting the data, the natural cubic spline
has the advantage that there is a well developed theory of error bounds.!!

To simplify notation, we present only the analysis for the case where z;; — z; = 1 for
all 7. The results can be readily extended to cases of non uniform intervals. It is convenient
to represent the cubic pieces of the spline, F;(.), running from z;_; to z; in the parametric
form

Fi(zioi +1) = (mi1(1 = t)° + mit®) /6 + te; + (1 — t)d; (A4)

for t between 0 and 1, where the m’s,the ¢’s, and the d’s are the parameters to be fit. The
parametric form that we have specified guarantees automatically that conditions (A3) are
satisfied. This can be verified by evaluating the expressions F{'(z;_1 +t)att =0and t = 1.
It is seen that F{'(z;) = Fj},(z:) = m; for i = 1,...,n — 1. The natural spline imposes
the additional assumption that mg = m, = 0. This condition, together with the Equations
(A1)-(A3) will be sufficient to determine all parameters.

Evaluating Equation 1 for ¢ = 0, and ¢t = 1, applying (A1), and rearranging terms, one
finds that forz=1,...,n

d,' = Yi-1 — m;_1/6 o (A5)

and
Ci =Y — m,-/6. (A6)

Equations (A5) and (A6) can then be used to eliminate the parameters c; and d; from (A4),
implying

Fi(mio1 +t) = (mi—(1 = 1) + mit®)/6 + t{y; — mi/6) + (1 — )(gi1 — mi=a/6). (A7)

Differentiating (A7) with respect to t, we have

Fi'(:l),'_l + t) = (—m;_l(l — t)2 + m;t2)/2 + Ay —- (m,- — m;_l)/6 (AS)

11 A detailed discussion of this and of other properties of the cubic spline can be found in Johnson and
Riess (1982).
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where Ay; = y; — yi—1. Condition (A2) requires that F!(z;; + 1) = Fl  (z;) for i =

1,...,n— 1. Calculating the appropriate derivatives and rcarranging terms, this condition
is equivalent to

mi—y +4m; + mipy = 6(A yiy1 — A yi) (AQ)
for ¢ = 1,...,n — 1. The system of linear equations in (A9) can be written as a matrix
expression

Qm =6(A; y + 2) (A10)

where the matrix @ is an (n — 1) by (n — 1) matrix with diagonal entries equal to 4, with
entries of 1 on its first superdiagonal and on its first subdiagonal and with zeros everywhere
else, where m, y, and z are n—1 dimensional column vectors with transposes (m1,...,mp-1),
(v1,-++,Yn-1), and (%0,0,...,0,y,), and where A, is the double-lag operator with —2 on its
diagonal, with 1’s on its first superdiagonal and first subdiagonal and with zeros everywhere
else. The matrix @ is nonsingular, so it is possible to solve for m by the matrix equation

m=6Q 1 (A; y+2). (A11)

Having solved for m, one can immediately solve for the ¢;’s and d;’s from Equations
(A5) and (A6). The cubic spline function is then fully determined.

A .2 Cubic Splines Consistent With the Census Reports

Our problem is a little more complicated than fitting cubic splines through actual ob-
servations because of the different forms in which the census data is reported. First consider
the 1970 census. In the construction of the 1970 age at marriage tables, all persons who mar-
ried in the same quarter of the year as that in which their birthdays occurred are implicitly
assumed to have married after their birthdays. The cumulative density function obtained by
adding the annual marriage figures reported in the 1970 census tables is, therefore, always
an underestimate. The persons who married before any age i but are not counted as having
done so by the 1970 census tables are those whose birthdays and wedding days fall in the
same quarter with their birthdays coming earlier in the quarter than their wedding days.

We can correct for this underestimate if we assume that for any cohort, the birthrate
is constant during each quarter (but might differ from quarter to quarter) and that the
probability of marrying at a given age is independent of the time of the year in which one is
born. Notice that all of the persons who are incorrectly excluded from the count of persons
having married at age ¢ will have married at ages in the interval from ¢ —1/4 to ¢. Of those
persons who marry at age i — 1 + ¢ where 3/4 <t < 1, only those whose birthdays fall
sufficiently late in the quarter in which they are born will have their wedding days in the
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same quarter as their birthdays. For example, someone who marries at age 17 years and 10
months will have her birthday and her wedding day in the same quarter only if her birthday
falls in the last month of the quarter in which she was born. Given our assumption of a
uniform birth rate over the year, the probability that someone is born in the last month of a
quarter is 1/3. Hence about 1/3 of the women who married at age 17 years and 10 months
are excluded from the 1970 census count of persons married before age 18. More generally,

of the persons who marry at age ¢ — 1 + ¢ where 3/4 < t < 1, the fraction 4¢ — 3 will be
incorrectly counted as having married after their ith birthdays.

Referring back to Figure 1, let us denote the number of women in a given cohort who
fall into the regions corresponding to §, A, B, C, and D for age i, as ng(), na(%), np(%),
nc(t), and np(z). As we have argued, the cumulative age distribution of marriage reported
by the 1970 census understates the number of marriages before age ¢ by the amount np(?).
We can derive an exact expression for this area given the assumptions that the cumulative
marriage schedule is a cubic spline and that births are uniform within any given quarter.
Let us define e; to be the number of persons who married before age i and are counted by

the 1970 census as having married after age <. If the cumulative age distribution of marriage
is F(t), then

e; = nB(i) = ' F’(i -1+ t)(4t — 3) dt. (Al?)
3/4

Now if F is a cubic spline function, we can use the explicit form of F'(.). In particular, for
agesi— 1+t where0 <t <],

F(i-1+t)=(mi-1(1~- 1)® + mit)/6 + tei + (1 — t)d;. (A13)

Differentiating this expression and substituting into (A12) allows us to write

€; = 1 ((—m,'_.1(1 - t)2 + m,-t2)/2 + ¢ — d,’)(4t - 3) dt. (A14)
3/4

Calculating this integral, we find that

2 S T
€= 1536 " 1536

Finally, we can use Equations (A5) and (A6), to eliminate ¢; and d; from (A15). We
then have for ¢ = 1,...,n,

mi—y + (C,-—d) (A15)

49 31 ) (A16)
€ = 1536 m; + 1536mz—-1 + (yl yt—l)

The equations in (A16) imply the following matrix equation where e and y are the n — 1

vectors whose transposes are (61, .y€n~1) and (1,-- ©yYn—1)s
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e=Wm+(1/8)Ay (A17)

wh?re W is the n — 1 by n — 1 matrix with diagonal entries equal to 49/1535, with entries
on its first subdiagonal equal to 31/1536 and with zeros elsewhere, and where A is the

[13 » M 3 H
lag operator”, a matrix with 1’s on the diagonal, ~1’s on the first subdiagonal, and zeros
everywhere else.

. Denote the number of persons reported by the 1970 census to have married before age
¢ as 7j, with r representing the n — 1 vector whose transpose is (ry,..., Tn—1). The actual

marriage rates, y, are related to the numbers reported by the census according to the simple
vector equation

y=r+e. (A].S)

Substituting from (A17) into (A18), we have

y=r+Wm+ (1/8)A y. (A19)

But we can replace m in Equation (A19) by using Equation (A11). This gives us

y=1+6W(6Q7'(Az y+2))+(1/8)A y. (A20)

Collecting the terms involving y and rearranging, we have

I-Sy=r+6WQ 'z (A21)

where

S=wW(6Q 1A, + (1/8)4). (A22)

Finally, then we can solve for the “true” age distribution y by simple matrix inversion:

y=(I-8)Yr+W6Q'z). (A23)

We have already computed the entries in the two square matrices in (A23). The vector
r is known, since it is just the vector of cumulative marriage rates reported by the 1970
census. The vector z has zeros everywhere except possibly in its first and last entries which
are respectively, yo and y,. For our problem, we can without serious distortion assume that
yo = 0 and that y, is observed correctly as r,. Therefore, the actual work of solving for the
“true” cumulative age distribution of marriage for any cohort is simply a matter of a few

matrix operations.

21




We can calculate estimates of the age distribution of marriages based on the 1960 census
tables by using similar methods. Referring back to Figure 1, the cumulative distribution at
a given age implied by the 1960 tables erroneously omits half of the marriages in area B

and erroneously includes half of the marriage in area C. Where e! denotes the error in the
1960 census report, we have

e; = (np(i) — nc(i))/2 (A24)

We can write an integral expression for nc (%) and solve the integral explicitly in much

the same way as we did in Equations (A12)~(A16) where we solved for np(1). When this is
done, we find that

1/4

ne()= [ Fur(i+t) (1-4t)dt = — 31
0

1
To36 ™t T5gg ™+l ~ §(yi+1 -4)  (A25)

Let e* be the vector whose transpose is (e],...,e%_;) and let y* be the transpose of

(yf,...,yn) where yf is the true fraction of the population married by age i. Making
appropriate substitutions, we find that y* satisfies the matrix equation

e =W*m - (1/16)A, y* (A26)

where W* is an (n ~ 1) by (n — 1) matrix with the elements on its first superdiagonal equal
to —31/3072, elements on its first subdiagonal equal to 31/3072 and zeros elsewhere, and
where Ay, m, and y are defined as before. We can then proceed exactly as we did with the
1970 data to substitute for m and solve for y. We define

§* = W*(6Q 1A, — (1/16)As). (A27)

Let r* be the age distribution reported by the 1960 census, and let z* be a vector with zeros
except for its last entry, which is r},. Then in exact analogy to the derivation of (A23),

y* = -8+ WreQ'z"). (A28)

This completes our task of showing how to use cubic spline functions to estimate con-
tinuous cumulative distribution functions of age of marriage and to make the data reported
from the two different census methods comparable.

A.3 The piecewise linear case

If we were willing to assume that the density function of age of marriage were a step
function and hence the cumulative distribution function was piecewise linear, the compu-
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tations we made in the last section would be greatly simplified. The cumulative density
function of marriage rates as a function of age would then be just

F(i-14+1) = gio1 + t(yi — yiz1) (A29)
for all ages 7 and any ¢ between zero and 1.

The number of persons incorrectly excluded from the 1970 report of people married by
age i is still described by (A12) above. But in the piecewise linear case, the expression for
F' is much simpler, and we can replace (A14) by the following

1
@=Lﬁw—%nw—ma. (430)

When we perform this integration we find that

e; = 1/8 (yi — yi-1). (A31)

The counterpart of Equation (A19) is simply

y=r+1/8Ay (A32)

and so the corrected solution for y, corresponding to (A24) is just

y=(I-1/8A)7"r. (A33)
A similar simplification can be made for computing the 1960 corrections.
In this case, we find that the necessary correction is

* ]‘ *®
€; = —16A2 Y (A34)

t

and hence the corrected estimate for the cumulative age distribution function for marriages
based on the 1960 census data is

L

Ap)1r*.
Tl

y =+
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Figure 1.
Cumulative Proportion Married by Age and
Proportion Misallocated by 1960 and 1970 Censuses
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Figure 2.
Discrepancy in Estimated Proportion Marrying by Age.
Ratio of 1970 Estimate to 1960 Estimate.
Average for 1910-1924 White Female Cohorts.

1.1+
Original
Census
1.05+ Figures
1 7 ‘_\-
Adjusted
by Cubic
0BT Spline
0.9+
0.85+
0.8
075+
0'7 1 [ L : : [ l i 1 1 [ 1

16 i7 i8 {9 20 2 52 23 24 25 26 27 28 29 30 31 32 33 34
Age at First Marriage



1.05

0.954

0.9

0.85-

0.8

0.75+

Figure 3.
Discrepancy in Estimated Proportion Marrying by Age.
Ratio of 1970 Estimate to 1960 Estimate.
Average for 1910-1924 White Male Cohorts.
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