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RESEARCH ARTICLE Role of Gut Microbiota, Gut-Brain and Gut Liver Axes in

Physiological Regulation of Inflammation, Energy Balance, and Metabolism
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Piccolo BD, Graham JL, Stanhope KL, Nookaew I, Mercer KE,
Chintapalli SV, Wankhade UD, Shankar K, Havel PJ, Adams SH.
Diabetes-associated alterations in the cecal microbiome and metabo-
lome are independent of diet or environment in the UC Davis Type 2
Diabetes Mellitus Rat model. Am J Physiol Endocrinol Metab 315:
E961–E972, 2018. First published July 17, 2018; doi:10.1152/
ajpendo.00203.2018.—The composition of the gut microbiome is
altered in obesity and type 2 diabetes; however, it is not known
whether these alterations are mediated by dietary factors or related to
declines in metabolic health. To address this, cecal contents were
collected from age-matched, chow-fed male University of California,
Davis Type 2 Diabetes Mellitus (UCD-T2DM) rats before the onset of
diabetes (prediabetic PD; n � 15), 2 wk recently diabetic (RD; n �
10), 3 mo (D3M; n � 11), and 6 mo (D6M; n � 8) postonset of
diabetes. Bacterial species and functional gene counts were assessed
by shotgun metagenomic sequencing of bacterial DNA in cecal
contents, while metabolites were identified by gas chromatography-
quadrupole time-off-flight-mass spectrometry. Metagenomic analysis
showed a shift from Firmicutes species in early stages of diabetes
(PD � RD) toward an enrichment of Bacteroidetes species in later
stages of diabetes (D3M � D6M). In total, 45 bacterial species
discriminated early and late stages of diabetes with 25 of these
belonging to either Bacteroides or Prevotella genera. Furthermore, 61
bacterial gene clusters discriminated early and later stages of diabetes
with elevations of enzymes related to stress response (e.g., glutathione
and glutaredoxin) and amino acid, carbohydrate, and bacterial cell
wall metabolism. Twenty-five cecal metabolites discriminated early
vs. late stages of diabetes, with the largest differences observed in
abundances of dehydroabietic acid and phosphate. Alterations in the
gut microbiota and cecal metabolome track diabetes progression in
UCD-T2DM rats when controlling for diet, age, and housing envi-
ronment. Results suggest that diabetes-specific host signals impact the
ecology and end product metabolites of the gut microbiome when diet
is held constant.

diabetes; metabolomics; metagenomics; microbiota

INTRODUCTION

Case control studies in humans and in animals models have
repeatedly shown differing compositions of gut microbial pop-
ulations between obese or insulin-resistant groups compared
with metabolically healthy controls (3, 26, 31, 36, 38, 39, 52,
61). However, differentiating between the direct effects of diet
and dietary components vs. changes in host metabolic health
(e.g., glucose homeostasis, insulin resistance, or overt diabetes)
on microbial ecology has not been systematically investigated.
Studies in rodent models of diabetes, including ob/ob mice and
Zucker diabetic fatty rats, have identified differences in the gut
microbiota between mutant and wild-type animals fed similar
diets (24, 25, 50, 61). Although these models control for diet
type, the insulin resistance and diabetes phenotype in these
animals are driven through defects in leptin production or
leptin signaling, which are extremely rare in the pathogenesis
of obesity and type 2 diabetes mellitus (T2DM) in humans. A
recent study by Carmody et al. (15) reported that diet-related
alterations of the gut microbiota overwhelmed genetic effects
in several outbred mice strains, including several (e.g., ob/ob
and NOD2�/�) used to investigate microbial mechanisms
affecting insulin resistance and type 2 diabetes. While the
importance of dietary components on the composition, func-
tion, and metabolic end products of the gut microbiota should
not be minimized, diet-independent alterations of the gut mi-
crobiota have been previously reported. For example, mice
lacking Toll-like receptor 5 (TLR5) have a disparate micro-
biome and are more susceptible to impairments in glucose
homeostasis compared with their wild-type counterpart under
similar feeding regimens (16, 63).

Fecal microbiota transplantation studies in which obeso-
genic phenotypes have been transmitted into germ-free recip-
ients have confirmed that the gut microbiota is an additional
modulating factor in the development of obesity, insulin resis-
tance, and T2DM (2, 56, 61). A key feature of this dysbiosis is
the disruption of gastrointestinal epithelial barrier function and
increased gut permeability (17, 28, 46). Indeed, several inves-
tigators have demonstrated that high-fat feeding promotes
metabolic endotoxemia, which is characterized by the presence
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of systemic low-grade inflammation induced by very low
circulating concentrations of lipopolysaccharides and other
bacterial cell wall components that traverse the gastrointestinal
tract (11–13). While the underlying cause of increased gut
permeability is not currently known, it is becoming increas-
ingly clear that bacterial metabolic end products are a key
regulator of this process in addition to host metabolism. Short-
chain fatty acids and indoles (bacterial catabolic products of
tryptophan) have both been shown to be protective of intestinal
barrier integrity, whereas hydrogen sulfide and p-cresol have
been associated with increased gut permeability (4). Recently,
Byndloss et al. (8) proposed a model of host-microbe cross
talk where commensal obligate anaerobic bacteria are main-
tained by colonic surface hypoxia via butyrate activation of
epithelial peroxisome proliferator-activated receptor-� and
colonic regulatory T cells. Disruption of this homeostasis
resulted in decreased epithelial hypoxia, expansion of fac-
ultative anaerobes, and increased epithelial inflammation.
Although Byndloss and Baümler (7) were investigating
known pathogen expansion (Escherichia and Salmonella
spp.), their model provides a clear mechanistic foundation
for host-microbe synergistic cross talk and its influence on
host health outcomes (10).

To better understand the relationship between host metabolic
health and microbial ecology, we utilized the Univeristy of
California, Davis Type 2 Diabetes Mellitus (UCD-T2DM) Rat
model to investigate the compositional and genetic changes in
the gut microbiome, as well as the cecal metabolome, at
different periods of diabetes progression. We have previously
utilized this model to investigate how the diabetes phenotype
impacts the systemic metabolome (54). The UCD-T2DM rat is
an optimal model to investigate diabetes-related alterations in
the gut microbiome for several reasons: 1) male and female rats
spontaneously develop polygenic adult-onset obesity and insu-
lin resistance under standard chow conditions while fully
maintaining leptin signaling (18); therefore, a diabetic pheno-
type that closely models the progression of T2DM in humans
transpires without dietary manipulation; 2) using an inbred rat
strain minimizes much of the potential variability in the gut
microbiome due to genetic differences; 3) all animals have
been bred and maintained in the same vivarium at UCD for
�12 yr, potentially reducing environmental differences known
to affect the gut microbiome; and 4) rats within disparate stages
of T2DM can be studied within a similar age range. Thus
removing several potential modulators of the gut microbiome
(e.g., diet, strain, sex, age, and environment) allows us to
identify specific taxonomic, genetic, and intracecal metabolic
alterations associated with the decline in metabolic control
associated with diabetes progression. We hypothesized that the
deterioration of the host’s metabolic homeostasis would di-
rectly contribute to a significant alteration of the gut micro-
biome and associated outcomes such as altered bacterial me-
tabolism. To our knowledge, this is the first study to determine
these parameters in the periods spanning prediabetes, early
diabetes, and later stage established diabetes.

MATERIAL AND METHODS

Animals. All animal studies were approved by the UCD Institu-
tional Animal Care and Use Committee. In-depth details of the
UCD-T2DM rat lineage and breeding strategy have been previously
published (18). Briefly, the UCD-T2DM rat was created by crossing

obese Sprague-Dawley rats (Charles River Laboratories, Wilmington,
MA) prone to adult-onset obesity and insulin resistance with Zucker
diabetic fatty lean rats (ZDF-lean; Charles River Laboratories) ho-
mozygous wild-type (�/�) at the leptin receptor locus. The resulting
phenotype of the UCD-T2DM rat includes a polygenic origin of
obesity, an inherited �-cell defect, and retention of functional leptin
signaling (18). Lean Sprague-Dawley (LSD) rats (Harlan Laborato-
ries, Indianapolis, IN) were also included in the studies as healthy
nondiabetic control animals.

Experimental design. The UCD-T2DM and LSD colonies have
been maintained at the animal facility in the Department of Nutrition
at UCD for �12 yr. All animals were singly housed within the same
room in polycarbonate cages on a 14:10-h light-dark schedule. Cages
had Carefresh bedding, and the light cycle, temperature, and humidity
were consistent among all animals studied. All rats had ad libitum
access to standard chow (2018 Telkad Global; Harlan Laboratories).
Onset of diabetes in the UCD-T2DM rat was defined as nonfasted
blood glucose concentration �200 mg/dl over 2 consecutive weeks.
Nonfasting blood glucose concentrations were assessed with a glucose
meter (LifeScan One-Touch Ultra, Milpitas, CA) from a drop of blood
collected from the tail using a lancet (between ca. 1300 and 1600,
tested weekly). Male UCD-T2DM rats were selected for this study if
~180 days old and were prediabetic with blood sugar � 200 mg/dL
(PD; n � 15), were ~180 days old and met the criteria for diabetes
with “recent diabetes” (RD; ~2 wk postdiabetes onset; n � 10), or
were ~180 days old and 3 mo postonset of diabetes (D3M; n � 11).
An additional set of D3M rats was aged an extra 90 days to assess
long-term effects of uncontrolled diabetes (D6M; n � 8); therefore,
D6M rats were not age-matched to all other animals. Male LSD rats
(n � 12) were aged ~180 days before being selected for this study.
Median age of rats at euthanization were as follows: LSD: 184 days;
PD: 182 days; RD: 183 days; D3M: 184 days; and D6M: 266.5 days.
We also used an “Early” and “Late” diabetes classifier, which con-
sisted of combining the PD and RD groups together as the Early group
and combining D3M and D6M together as the Late group. These
classifiers were based on our previous report that showed no differ-
ences in the plasma metabolome between PD and RD groups and no
differences between D3M and D6M groups (54). Rat specimens were
collected in years 2014 (n: LSD � 5; PD � 6; D3M � 6; and D6M �
5) and 2016 (n: LSD � 7; PD � 9; RD � 10; D3M � 5; and D6M � 2).

Cecal samples. After a ~13-h fast, rats used were given a 200
mg/kg ip dose of pentobarbital sodium to render them unconscious,
and then exsanguinated via cardiac puncture between ca. 0800 and
1100. Cecal tissue was immediately removed after exsanguination and
blotted dry. A hole was punched into the cecum tissue, and a cecal
content sample was collected into a sterile 1.5-ml microcentrifuge
tube by squeezing the contents into the tube. Cecal contents were
immediately placed in a �80°C freezer until analysis.

Metagenomic sequencing. Bacterial DNA was isolated from cecal
contents (0.1–0.3 g) using the DNeasy PowerSoil HTP 96 Kit (Qia-
gen, Germantown, MD). The isolation followed the instructions pro-
vided by the manufacturer. Amplification of the V4 variable region of
the 16S rRNA gene (50 ng) using 515F/806R forward and reverse
primers was conducted by polymerase chain reaction (33). Pooled
amplicons were then paired-end sequenced (2 	 250 bp) with ~30%
PhiX DNA using an Illumina Miseq (5). The Quantitative Insight into
Microbial Ecology (QIIME) pipeline was utilized for operational
taxonomic unit (OTU) clustering and taxonomic identification of
amplicon sequences (14). A similarity threshold of 97% was used to
cluster amplicon sequences followed by taxonomic annotation of
OTUs using the Greengenes 16S rRNA database with a confidence
threshold of 80%. Microbial sequencing data provided as sequence
counts. There was a single sample from the D6M group (K2501) that
sequenced poorly, resulting in very few sequencing reads for that
sample. After the defective sample was removed, the median sample
depth was 45,662 reads. In total, 50,533 OTUs (2,496,494 total reads)
were identified, which was highly skewed toward low abundant
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OTUs. Therefore, we filtered low abundant OTUs if �6% of all
samples had �5 sequence counts. We used a low prevalence criteria
to ensure the lowest sized group (D6M) had at least 50% coverage of
OTUs before filtering OTUs. This resulted in 1,752 OTUs (2,195,413
sequence reads) that were used for statistical analysis.

DNA extractions from 16S rRNA analysis were used for metag-
enomic shotgun sequencing as described above. Genomic DNA (0.5
ng) was utilized for generation of sequencing libraries using Nextera
XT reagents including dual indexes following manufacturer’s proto-
cols. Libraries were quantitated using Qubit dsDNA reagents and
pooled and sequenced using a NextSeq 500 high output reagents (150
bp paired reads). Resulting reads were analyzed using MEGAN
Community Edition software (27), which performs taxonomic binning
by assigning reads to nodes in the National Center for Biotechnology
Information (NCBI) taxonomy. The DIAMOND (6) program is used
for the ultrafast alignment of reads against NCBI-nr, and Meganizer
performs both taxonomic and functional analysis. Clustering of genes
with similar functional roles was performed in MEGAN using the
SEED classification system (49). Briefly, SEED clusters genes into a
rooted tree, where nodes represent “subsystems” of allied roles that
make up a metabolic pathway, a complex, or a class of proteins (45).
Gene annotations mapped to eukaryotes were removed from subse-
quent analyses. Sample number K2501 was found to have insufficient
sequencing depth and was removed from the analysis. The median
sample depth for metagenomic sequencing was 2.3 Gbp. Species and
functional gene clusters were removed if �6% of samples had �190.5
sequence reads (0.5 	 the median of the minimum nonzero counts of
each gene cluster). As described above, the low prevalence cutoff was
to ensure adequate coverage within the lowest sized group.

All sequencing data are publicly available at the NCBI Sequence
Read Archive at https://www.ncbi.nlm.nih.gov/sra (Accession No.
SRP140861).

Metabolomics. Frozen cecal contents (~35 mg) were analyzed by
the West Coast Metabolomics Center at UCD for metabolomics
assessment of metabolites associated with primary metabolism using
gas chromatography-time-off-flight-mass spectrometry (GC-TOF-
MS). Details of this assay have been previous published (21). Briefly,
frozen cecal contents were pulverized by bead beating and then
extracted with degassed acetonitrile:isopropanol:water (3:3:2; vol/vol/
vol) at �20°C. Samples were centrifuged, decanted, and then dried. A
set of 13 fatty acid methyl esters was added as an internal control
followed by derivatization with methoxyamine hydrochloride in pyri-
dine (10 
l) and 90 
l N-methyl-N-(trimethylsilyl)-trifluoroacet-
amide. Samples were then assessed by GC-TOF-MS. Raw spectra
data were processed by ChromaTOF for spectral deconvolution and
peak detection. Apex masses were imported to the West Coast
Metabolomics Center BinBase database for peak annotation by
matching mass spectrum information and retention index against
spectra from the Fiehn laboratory mass spectral library (1,200 in-
house standards) and the NIST05 commercial library. Metabolites
were reported if present in �25% of all samples, and true peak
detection must occur in at least 50% of a given condition (58). Peaks
that were not structurally matched to known metabolite databases
were considered as “unknown” metabolites and assigned with a
BinBase numerical identifier. All metabolites were normalized by the
sum of known metabolite intensities and reported as quantifier ion
peak heights.

Statistical analysis. All statistical analyses were conducted in the R
Statistical Language (v 3.4.1). Group differences in �-diversity mea-
surements were assessed with Kruskal-Wallis tests with post hoc
analysis by Dunn’s test. �-diversity was assessed with Bray-Curtis
dissimilarities and visualized with principal coordinate analysis
(PCoA) and tested with permutational multivariate ANOVA with 500
permutations on log-shifted data. Group differences in individual taxa
were determined with negative binomial Wald test from the DESeq2
Bioconductor package (40). Differentially abundant taxa were con-
sidered significant at false discovery rate �0.1. Sequencing data were

not rarified (42). All other tests were considered significant at P �
0.05 unless otherwise noted. Partial least squares-discriminant analy-
sis (PLS-DA) was used to identify discriminant features in metag-
enomic taxonomy (species level) and functional genetic (SEED Sub-
system Level 2) and metabolomics data using the pls package (44).
Data used in PLS-DA models were split sample-wise (stratified by
experimental groups) into training (2/3 of data) and test (1/3 or data)
sets. Training data were used for PLS-DA model development and
feature selection. Test data were only utilized to determine PLS-DA
model prediction accuracy. Before modeling, the metagenomic se-
quencing data had zeros imputed with a Bayesian-multiplicative
treatment (41) and then normalized by centered log transformations.
Metabolomics data were normalized by unit variance transformations.
Feature selection was implemented by bootstrapping variable impor-
tance in projection (VIP). A cutoff of VIP �1 has previously been
noted as an acceptable threshold to identify important features dis-
criminating PLS-DA classifiers (64); however, others have suggested
that this criterion is likely not fixed (43). Thus we calculated the
adjusted bootstrap percentile confidence intervals (1,000 bootstrap
replicates) for each VIP calculation and then identified discriminant
features as features with a lower bound bootstrapped confidence
interval (VIPbootCI) �1. Principal component analysis was used re-
duce the dimensionality of metabolomics data. Correlations were
assessed with Spearman’s rank order correlations.

RESULTS

PD and RD UCD-T2DM rat groups had significantly greater
total body weight compared with age-matched LSD rats; how-
ever, total body weights of D3M and D6M groups were
significantly lower compared with PD and RD groups (Fig. 1).
In-depth metabolic characterization of the UCD-T2DM rat
model has been previously described (18), and we have de-
scribed similar weight declines in D3M and D6M rat groups
attributed to the catabolic state associated with uncontrolled
insulinopenic disease (54).

Composition of cecal microbiome is altered in later stages of
diabetes progression relative to early stages. We initially
utilized 16S rRNA amplicon sequencing data to identify
whether there were large compositional differences in the cecal
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Fig. 1. Total body weights (g) of adult male lean Sprague-Dawley (LSD) and
University of California, Davis Type 2 Diabetes Mellitus (UCD-T2DM) rats.
Rats include LSD (n � 12), UCD-T2DM rats before onset of diabetes (PD;
n � 15) or 2 wk (RD; n � 10), 3 mo (D3M; n � 11), and 6 mo (D6M; n �
7) postonset of diabetes. Rats within LSD, PD, RD, and D3M groups were age
matched (~180 days old), while rats within D6M group are technically D3M
rats aged an additional 90 days. Points in plots are individual rats and are
jittered for clarity. Statistical difference assessed by Kruskal-Wallis test fol-
lowed by Dunn’s test. Boxes without a common letter differ. All boxplots were
constructed using default settings in the R graphics::boxplot() function.
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microbiota during the progression of diabetes. PCoA visual-
ization of Bray-Curtis Dissimilarities of OTUs found distinct
separation of LSD rats from UCD-T2DM rats along PC1 with
no visible discrimination within the UCD-T2DM rat groups in
the two-dimensional plot (Fig. 2A). This discrimination was
found to be statistically significant by permutational multivar-
iate ANOVA (P � 0.05). It is important to note that the LSD
group is genetically distinct from the UCD-T2DM rat model
and numerous studies have shown significant variation in the
gut microbiome among rodent strains (15, 20, 34, 51). There-
fore, we excluded LSD rats and reassessed the PCoA with only
UCD-T2DM rats. Dropping the LSD rats revealed that RD and
PD groups clustered together, but separate from D3M and
D6M groups, which clustered together (Fig. 2B). The discrim-
ination of UCD-T2DM in early stages of diabetes from those in
later stages of diabetes was found along PC1 of the PCoA (Fig.
2B). Next, we overlaid the year each sample was collected on
the same PCoA shown in Fig. 2B and found that the variance
explaining year of collection was also explained along PC1
(Fig. 2C). This suggests that there was a batch effect by
collection year and this effect overlaps with the variance
associated with early and late stages of diabetes. As described
in the methods, RD rats (indicated with “x” in Fig. 2C) were
only assessed in the 2016 cohort, which is likely driving this
observation. Thus techniques commonly used to correct for
batch effects (29) were not effective at minimizing the variance
associated with year of collection in �-diversity analyses.

Taxonomic distribution in shotgun metagenomic sequencing
confirms 16S rRNA sequencing data at phylum level. The
positive findings in the 16S rRNA amplicon sequencing data
suggest that later stage established diabetes contributes to
compositional differences in the cecal microbiome in the UCD-
T2DM rat; however, 16S rRNA amplicon sequencing data do
not provide species level coverage nor provide information
related to the genetic capacity of the bacterial ecosystem.
Therefore, we further assessed the cecal microbiome with
shotgun metagenomics to give us species level depth in the gut
microbiome.

The phylum distribution of shotgun metagenomic reads
showed similar patterns when compared with the 16S rRNA
sequencing reads, i.e., Firmicutes, Bacteroidetes, and Proteo-
bacteria made up the majority of reads while Verrucomicrobia
was more proliferative in LSD rats and showed similar trends
in several UCD-T2DM rats (Fig. 3A). There were several
additional lower abundant phyla identified in the shotgun
metagenomic data not identified in the 16S rRNA data; how-
ever, these phyla consisted of 1–2% of total reads. Similar to
the 16S rRNA amplicon sequencing data, PCoA of metag-
enomic species counts showed a significant (P � 0.05) sepa-
ration of early and late stages of UCD-T2DM rats along the
first PC (Fig. 3B). Variance associated with year of collection
was also apparent along PC1 of the PCoA (P � 0.05), sug-
gesting a significant batch effect across different platforms
(Fig. 3C).

Cecal microbiome and metabolome are altered by early and
late stages of diabetes in the UCD-T2DM rats, independent of
diet. We then utilized PLS-DA to predict whether bacteria
species in the cecal content can predict stages of diabetes
progression in the UCD-T2DM rat. First, we developed
PLS-DA models predicting all four UCD-T2DM groups and
found that this model correctly predicted �31% of group
classifiers in the test data (Table 1), suggesting that bacterial
species could not fully distinguish the deterioration of meta-
bolic health when four groups were considered together. We
further used PLS-DA to assess whether the bacterial genetic
data could predict all four UCD-T2DM groups, and although
the overall prediction accuracy of test samples was greater than
the taxonomy PLS-DA model, it only managed to correctly
classify �62% of held out samples (Table 1). As the bacterial
genetic data from the shotgun metagenomic sequencing cannot
determine the presence of DNA translation or actual metabolic
activities of the microbe populations, we coupled the sequenc-
ing data with untargeted metabolomics to predict enzymatic
function in the cecal environment. Again, using PLS-DA for all
four classification groups, we found similar results to the
metagenomic genetic PLS-DA model with �62% classifica-
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Fig. 2. Operational taxonomic unit level discrimination of adult male lean Sprague-Dawley (LSD) and University of California, Davis Type 2 Diabetes Mellitus
(UCD-T2DM) rats by 16S rRNA amplicon sequencing. Principal coordinate analysis (PCoA) samples plot of Bray-Curtis dissimilarity measurements (A) of LSD
rats (n � 12, pink lines) and UCD-T2DM rats groups: before onset of diabetes (PD; n � 15; dark green lines) or 2 wk (RD; n � 10; light green lines), 3 mo
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tion accuracy of test data (Table 1). Together, these results
suggest that the cecal microbiome and metabolome cannot
capture acute changes in the progression of diabetes in the
UCD-T2DM rat when all four groups are included in the
analysis.

Based on our observation that microbiota patterns appeared
to discriminate early and late diabetes (Figs. 2B and 3B), and
our previous finding that the plasma metabolome in this model
distinguishes early and late stages of disease (54), we next
modeled the microbiome and metabolomics data using Early
and Late classifiers: e.g., combinations of PD and RD groups
(Early) and D3M and D6M groups (Late). This resulted in at
least 85% overall prediction accuracy in test samples across all
analytical platforms (Table 2). We also developed PLS-DA
models predicting the year of collection as unsupervised meth-
ods showed evidence that collection year contributed to a
significant portion of the overall variance in the microbial data
(Fig. 3C). Overall prediction accuracy of these models ranged
between 69 and 77% in held out samples, which were lower
than the two-class PLS-DA models predicting Early/Late clas-
sifiers (Table 2). Overall, the results strongly suggest a batch
effect in samples collected in 2014 and 2016.

Prevotella and Bacteroides spp. are enriched in later stages
of diabetes in the UCD-T2DM rat. We next used a conserva-
tive filtering approach to identify features that contributed to
the discrimination of Early and Late stages of diabetes in the
UCD-T2DM rat. First, we identified bacterial species with a
VIPbootCI �1 in PLS-DA models predicting Early/Late and
collection year classifiers, and then, we filtered bacterial spe-
cies that met this criterion in both models and then selected
those that still remained as discriminators of the Early/Late
PLS-DA model (Supplementary Table 1; Supplemental Mate-
rial for this article is available online at the Journal website). A
total of 45 bacterial species met these filtering criteria, and all
belonged to Bacteroidetes and Firmicutes phyla (Fig. 4). All
selected Firmicutes species were lower in later stages of
diabetes (except Clostridium sp. CAG:964), and all Bacte-
roidetes species were greater in later stages of diabetes with
the exception of Prevotella scopos (Fig. 4). Bacteroides and
Prevotella spp. accounted for � 55% of all selected bacte-
rial species, with P. sp. MA2016, P. bergensis, P. maculosa,
P. sp. CAG:592, P. sp. BP1-148, P. albensis, P. sp. Kh1p2,
P. sp. KHD1, B. plebeius, B. nordii, and B. timonensis

Firmicutes Bacteroidetes Proteobacteria Verrucomicrobia Cyanobacteria
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Fig. 3. Comparison of 16S rRNA amplicon sequencing and shotgun metagenomic taxonomy data from cecal contents of lean Sprague-Dawley (LSD) and
University of California, Davis Type 2 Diabetes Mellitus (UCD-T2DM) rats. A: stacked bar charts of the phylum level percent relative abundances among LSD
and UCD-T2DM rats. Individual rats are represented column-wise between both plots. Phyla detected by technologies are represented by a single color in both
graphs. Only phylum found with a mean %relative abundance �0.05% were included in shotgun metagenome color legend. B: principal coordinate analysis
(PCoA) of Bray Curtis dissimilarities of species level taxonomy data from shotgun metagenome assessment. Samples plot overlaid with UCD-T2DM rats groups:
before onset of diabetes (PD; n � 15; dark green lines) or 2 wk (RD; n � 12; light green lines), 3 mo (D3M; n � 11; dark blue lines), and 6 mo (D6M; n �
8; light blue lines) postonset of diabetes. C:UCD-T2DM rats overlaid by collection year: 2014 (orange lines), 2016 (purple lines). Symbols at the end of colored
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having eight times greater abundances in late stages of
diabetes relative to early stages.

Bacterial gene clusters associated with amino acid, carbo-
hydrates, vitamin, cell wall metabolism, and stress response
were enriched in later stages of diabetes in the UCD-T2DM
rat. We used the same filtering approach as described above for
PLS-DA models fit with bacterial genetic data (Supplemental
Table 2) and identified 61 gene clusters that discriminated
Early and Late classifiers, with the majority of these elevated in
later stages of diabetes relative to earlier stages (Fig. 5).
Enriched SEED Level 1 subpathways included gene clusters
associated with amino acid, carbohydrate, cofactor/vitamin,
cell wall metabolism, and stress response (Fig. 5). Other than
a single carbohydrate-based gene cluster (Citrate Metabolism
KE2), all gene clusters within these groups were elevated in
later stages of diabetes.

Phosphate, vitamin E, and lipid metabolism indexes are
elevated in cecal contents at later stages of diabetes and
correlate to enrichment of select Bacteroidetes species in
UCD-T2DM rats. Again, using the same filtering approach
described above for metabolomics data (Supplemental Table
3), 25 cecal content metabolites discriminated UCD-T2DM

rats classified by Early and Late stages of diabetes. Cecal
content abundances of dehydroabietic acid, cholesterol, arachi-
donic acid, hexuronic acid, lysine, N-acetylornithine, butyro-
lactam, and several unknown metabolites were reduced in later
stages of diabetes relative to early stages (Fig. 6A), while
phosphate, inositol-4-monophosphate, �-tocopherol, arachidic
acid, and stearic acid were greater in later stages of diabetes
compared with early stages (Fig. 6A).

Unsupervised principal component analysis was utilized to
reduce the discriminant metabolomics data into a single vari-
able that captured variance associated with discrimination of
early and late stages of diabetes (44.1% explained variance
along PC1; Fig. 6B). This component was then correlated
among diabetes-altered bacterial species and gene clusters.
PC1 negatively correlated with species within the Bacte-
roidetes phylum and positively correlated to species in the
Firmicutes phylum, suggesting the shift to Bacteroidetes spe-
cies was concurrent with elevations in phosphate, inositol-3-
phosphate, �-tocopherol, arachidic acid, and stearic acid (Fig.
6C). PC1 also had primarily negative correlations with gene
subsystems, with the strongest correlations among bacterial
osmoregulation, terminal cytochrome oxidases, cell envelope
metabolism, phosphotransferases, urease subunits, and urea
decomposition, and CBSS-452863.6-peg.1046 (Fig. 6D).

DISCUSSION

To our knowledge, the results herein are the first to com-
prehensively describe the cecal microbiome and metabolome

Table 1. Partial least squares-discriminant analysis model
performance for 4-class modela

Training Data Test Data

Factor Level
Latent

Variableb

Cross
validation
Accuracyc

Overall
Accuracyd Sensitivitye Specificitye

Metagenomics species
taxonomyf 1 54.5% 30.8%

PD 0.60 0.38
RD 0.00 1.0
D3M 0.33 0.60
D6M 0.00 1.0

Metagenomics functional
gene clustersf 4 57.4% 61.5%

PD 0.80 0.75
RD 0.67 1.0
D3M 0.33 0.80
D6M 0.50 0.91

Metabolomics: primary
metabolismf 9 66.1% 61.5%

PD 0.60 0.80
RD 1.0 1.0
D3M 0.33 0.80
D6M 0.5 0.82

aFour-class partial least squares-discriminant analysis (PLS-DA) model
includes classifiers for age-matched, male University of California, Davis Type
2 Diabetes Mellitus (UCD-T2DM) rats before the onset of diabetes (PD; n �
15), 2 wk postonset of diabetes (RD; n � 10), 3 mo postonset of diabetes
(D3M; n � 11), and 6 mo postonset of diabetes (D6M; n � 7). Data were split
into training and test sets (67%:33%). Training and test splits were stratified by
classifiers (i.e., distribution of within groups were equal in test and training
sets). Models were preprocessed and fit with training data only. Test data were
used only for class prediction. bLatent variable associated with highest overall
6-fold cross validation prediction accuracy. cPrediction accuracy from 6-fold
cross validation. dPrediction classification accuracy of test data (n � 13) using
the number of latent variables with highest classification accuracy from cross
validation results in training set. eSensitivity and specificity calculated for each
group by comparing each group against all remaining levels in test set, i.e., one
level vs. all remaining samples. fCount data from metagenomics analysis were
normalized by centered log transformations before modeling. Metabolomics
quantifier ion peak height data were log transformed and scaled to unit
variance before modeling.

Table 2. Partial least squares-discriminant analysis model
performance for 2-class modela

Training Data Test Data

Model
Latent

variableb

Cross
validation
accuracyc

Overall
accuracyd Sensitivitye Specificitye

Metagenomics species
taxonomyf

Early/Late 2 87.2% 84.6% 0.88 0.80
Collection 2 89.7% 76.9% 0.57 1.0

Metagenomics functional
gene clustersf

Early/Late 2 76.9% 84.6% 0.88 0.80
Collection 6 89.2% 69.2% 0.57 0.83

Metabolomics: primary
metabolismf

Early/Late 4 83.6% 84.6% 0.88 0.80
Collection 9 80.8% 76.9% 0.57 1.0

aTwo-class partial least squares-discriminant analysis (PLS-DA) model
includes classifiers for age-matched, male University of California, Davis Type
2 Diabetes Mellitus (UCD-T2DM) rats in early stages of diabetes (n � 25;
combining rats sampled before diabetes onset and 2 wk postonset of diabetes)
and later stages of diabetes (n � 18; combining rats sampled 3 mo and 6 mo
postonset of diabetes). Training and test splits were stratified by classifiers (i.e.,
distribution of within groups were equal in test and training sets). Models were
preprocessed and fit with training data only. Test data were used only for class
prediction. bLatent variable associated with highest overall 6-fold cross vali-
dation prediction accuracy. cAverage prediction classification accuracy of
out-of-bag samples from 6-fold cross validation. dAverage prediction classifi-
cation accuracy of test data (n � 13) using the number of latent variables with
highest classification accuracy from cross validation results in training set.
eSensitivity and specificity calculated for each group by comparing each group
against all remaining levels in test set, i.e., 1 level vs. all remaining samples.
fCount data from metagenomics analysis were normalized by centered log
transformations before modeling. Metabolomics quantifier ion peak height data
were log transformed and scaled to unit variance before modeling.
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between Early and Late stages of diabetes progression in UCD-T2DM rat.
Heatmaps represent the median values of scaled relative abundances. Discrim-
inant features determined as follows: Separate partial least squares-discrimi-
nant analysis (PLS-DA) models were fit for Early and Late stages of diabetes
and year of collection classifiers. Lower bounds of adjusted bootstrap percen-
tile confidence intervals of variable importance in projection calculations
(VIPbootCI) were assessed both models. Featured variables were selected if
VIPbootCI �1 in Early vs. Late PLS-DA and VIPbootCI �1 in collection year
model. UCD-T2DM rats included rats before onset of diabetes (PD; n � 15)
or 2 wk (RD; n � 10), 3 mo (D3M; n � 11), and 6 mo (D6M; n � 7) postonset
of diabetes. Rats in PD and RD groups were classified as “Early” and D3M and
D6M were classified as “Late.” Classifiers for year of collection were Y14
(n � 17) and Y16 (n � 26).
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during the progression of a type 2 diabetes phenotype. We
found robust differences between UCD-T2DM rat groups that
can accurately discriminate later stages of diabetes compared
with early stages of the disease, across all analysis platforms.

The results indicate that severe loss of metabolic control, i.e.,
dysregulation associated with long-term uncontrolled diabetes,
alters the taxonomic and genetic composition of the cecal
microbiota and cecal metabolome, independent of diet, housing
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environment, sex, and age in the UCD-T2DM rat. Although
there is a large body of literature describing microbial differ-
ences between healthy rodent models and obese-diabetic/insu-
lin resistant models (1, 26, 39, 47, 61, 65), very little is known
about transition from the symbiotic relationship between the
host and gut microbes to potential dysbiosis that accompanies
deterioration of metabolic homeostasis in T2DM. It should be
emphasized again that the UCD-T2DM rats in this study
consumed the same diet at all stages of diabetes, unlike
diet-induced obesity models of obesity (22, 26, 47, 60). There-
fore, alterations in the cecal microbiome and metabolome are
likely influenced by host-mediated factors in this model. While
these factors remain unknown, gastrointestinal complications
of T2DM that could influence microbial populations include
alterations in gut motility, digestion, and absorption (35) and
chronic activation of the innate immune system (13). Notably,
our results suggest an upregulation of microbial genes associ-
ated with bacterial cell wall metabolism in later stages of
diabetes, including capsular polysaccharides and lipopolysac-
charides, which have previously been linked to obesity and
insulin resistance (11). Further studies are required to deter-
mine if these factors play a role in linking the T2DM pheno-
type to changes in the gut microbiome.

Several species belonging to the Prevotella and Bacteroides
genera dominated the Bacteroidetes shift in later stages of
diabetes in the UCD-T2DM rat. Species from both genera
(Prevotella copri and Bacteroides vulgatus) have been associ-
ated with T2DM phenotypes in humans (38, 52), but these
particular species were not discriminant of diabetes progres-
sion in our rat model. Prevotella and Bacteroides spp. are
saccharolytic (32) and would likely flourish in a progressive
hyperphagic response to a carbohydrate rich chow diet ob-
served in UCD-T2DM rats (18); this may explain species-
specific differences in the bacterial shifts associated with the
diabetes phenotype. Several functional gene clusters associated
with oxidative stress (e.g., glutaredoxin, glutathione, and
periplasmic stress) and osmoregulation were increased in late
diabetes, hinting at a challenging intestinal environment coin-
cident with diabetes. Similar to our findings, bacterial upregu-
lation of genes associated with glutathione has been identified
with diabetes in humans (55). Functional gene clusters associ-
ated with capsular polysaccharides and lipopolysaccharides
were also greater in UCD-T2DM rats from later stages of
diabetes progression, which could suggest that these microbes
exacerbate intestinal inflammation and host immune response.
It has been shown that lipopolysaccharide derived from Bac-

teroides and Prevotella spp. can stimulate several cytokines in
vitro, but the responses are variable between species and are
lower compared with responses of other known pathogens like
Escherichia coli (62). Altogether, while speculative, the evi-
dence here alludes to a situation where worsening metabolic
health promotes the colonization of lower intestine bacteria
that exacerbate host inflammatory and immune responses in the
gut.

As noted above, the UCD-T2DM rat is hyperphagic com-
pared with control strains and increase their food consumption
as they progress through diabetes (18). By 3 mo postonset of
diabetes, the UCD-T2DM rat has lost half of its total body
weight despite a 30–40% increase in energy consumption (18,
19). This loss of energy has mainly been attributed to glucos-
uria and polyuria but could also be due to malabsorption
caused by gastrointestinal complications associated with
T2DM (35). In the latter case, the large intestine would be
presented with a high volume of undigested material, which
would likely radically alter the composition of the gut micro-
biome independent of alterations in host metabolism. In addi-
tion to the direct effects of excess nutrient availability, severe
polyuria would alter fluid absorption and retention in the large
intestine, further disrupting the environment of the lumen (e.g.,
alterations in luminal pH and osmolarity). Interestingly, bac-
terial genes associated with osmoregulation were altered with
diabetes progression in UCD-T2DM rats and were also signif-
icantly correlated to changes in the cecal content metabolome,
suggesting that changes in intestinal fluid dynamics are occur-
ring in this model. Still, investigations of hyperphagia and its
effect on the gut microbiome under wasting conditions have
not been assessed and future studies will be required to differ-
entiate the host-mediated effects of later stage established
diabetes from malabsorption issues related to hyperphagia.

To better understand how shifts in microbial populations
lead to changes in bacterial metabolism and molecular signal-
ing, we utilized untargeted metabolomics to identify a wide
range of cecal metabolites during diabetes progression. Several
metabolites were discriminant of diabetes progression and
correlated to bacterial gene clusters; however, only phosphate
and inositol-3-phosphate were directly related to differentially
abundant gene clusters related to phosphate metabolism (phos-
photransferase, phosphoenolpyruvate phosphomutase, and
DNA phosphorothioation). Although the present study design
cannot prove mechanistic links, it is known that alterations in
available phosphate or phosphate substrates can have profound
effects on bacterial energy and carbon metabolism in addition

Fig. 6. Metabolomics differences in Early and Late stages of diabetes progression in cecal contents from and University of California, Davis Type 2 Diabetes
Mellitus (UCD-T2DM) rats. A: discriminant metabolites from untargeted metabolomics assessment of primary metabolism (gas chromatography-quadrupole
time-off-flight-mass spectrometry). Each point represents the log2-fold ratio of a selected metabolite between Early and Late stages of diabetes progression in
UCD-T2DM rat. Heatmaps represent the medians of scaled quantifier peak ion heights. Discriminant metabolites determined as follows: separate partial least
squares-discriminant analysis (PLS-DA) models were fit for Early and Late stages of diabetes and year of collection classifiers. Lower bounds of adjusted
bootstrap percentile confidence intervals of variable importance in projection calculations (VIPbootCI) were assessed both models. Featured variables were selected
if VIPbootCI �1 in Early vs. Late PLS-DA and VIPbootCI �1 in collection year model. UCD-T2DM rats included rats before onset of diabetes (PD; n � 15) or
2 wk (RD; n � 10), 3 mo (D3M; n � 11), and 6 mo (D6M; n � 7) postonset of diabetes. Rats in PD and RD groups were classified as “Early” and D3M and
D6M were classified as “Late.” Classifiers for year of collection were Y14 (n � 17) and Y16 (n � 26). B: scores plot (i.e., sample plot) of unsupervised principal
component analysis of discriminant metabolites selected in A. Colored lines in principal coordinate analysis (PCoA) plots extend from group medoids to the
PCoA scores that represent an individual rat. Ellipses are the SE of the point scores along principal component analysis of the 2 components. Metabolite loadings
are overlaid on top of scores plot. Boxplot on top of graph indicate groups differences of scores along principal component 1 (PC1). *Statistical differences
between groups, as assessed by Kruskal-Wallis test. Outliers in boxplots are displayed as a black dot extending from whisker(s). C and D: radial plots of
significant correlations (Spearman’s) among PC1 from B and featured bacterial species (top) and functional gene cluster (bottom). Radial circles indicate
Spearman’s rank correlation coefficient (rho) level. Orange lines extending from middle are positive rho coefficients and blue lines are negative rho coefficients.
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to facilitating environmental niches for opportunistic taxa (59).
While other metabolites may not directly relate to functional
pathways identified herein, they do provide new insight into
the changing intestinal environment as diabetes progresses.
Dehydroabietic acid, a diterpene found primarily in plants, was
lower in UCD-T2DM rats from later stages of diabetes. This
metabolite has previously been reported to reduce epididymal
white adipose tissue mRNA levels and circulating concentra-
tions of monocyte chemoattractant protein-1 and tumor necro-
sis factor-� when administered experimentally to obese dia-
betic KK-Ay mice (30). However, we did not detect this
compound in plasma using the same study paradigm in the
UCD-T2DM rat (54), which suggests that it is either poorly
absorbed or further metabolized by the host. Derivatives of
dehydroabietic acid have antibacterial and antifungal proper-
ties (57), which could help control gut colonization by patho-
genic bacteria in early stages of diabetes. �-Tocopherol (vita-
min E) was also increased in later stages of diabetes, suggest-
ing a potential difference in redox balance in the cecal
environment. Several bacterial gene clusters associated with
vitamin K were also enriched in later stages of diabetes,
suggesting that microbial and/or host fat-soluble vitamin me-
tabolism may be altered in the gut during the progression of
diabetes. The Fiehn chemical standard library does not cur-
rently include phylloquinone or menaquinone; thus we were
unable to confirm whether these metabolites are reflective of
alterations in bacterial gene expression. Still, bacterial metab-
olism of fat soluble vitamins during diabetes is not known and
may be significant to host vitamin status during the progression
of the disease.

Our untargeted metabolomics approach (GC-QTOF-MS)
identifies a wide range of metabolites associated with cellular
metabolism that includes but was not limited to mammalian
and bacterial sources. Thus, we detected a limited set of
xeno-metabolites (metabolites derived or modified from non-
host origin) including polyamines (spermidine, putrescine),
tryptophan catabolic products (indoles), phenols [e.g., 3-(4-
hydroxyphenyl)-propionic acid), and certain bile acids (e.g.,
deoxycholic acid). Many of these specific metabolites have
been shown to modify the luminal environment (e.g., pH and
osmolarity) and/or regulate intestinal epithelial energy metab-
olism, proliferation, and barrier integrity (4). Furthermore,
these xeno-metabolites may possess biological activity in pe-
ripheral tissues, which may have positive or deleterious effects
at these sites depending on a myriad of factors in the organism
(48). We did not observe major differences in these more well
characterized xeno-metabolites as a function of early and late
stages of diabetes in the UCD-T2DM rats even though we
would hypothesize that later stages of diabetes is characterized
by altered colonic epithelial metabolism and decreased barrier
function. Our inability to identify a diabetes-specific effect in
more well characterized xeno-metabolites may be due to our
conservative statistical methods combined with a potentially
low precision of these metabolites in an untargeted metabolo-
mics approach and/or absence of potentially discriminant me-
tabolites in the database used for metabolite identification. It
should be emphasized that untargeted metabolomics is limited
in its reliability of quantification due its inherent lack of
metabolite standards, which minimizes its comparability be-
tween studies (9). Thus results from this study should be

considered as discovery-based findings (hypothesis generating)
and needs to be verified in future studies.

We utilized the UCD-T2DM model to keep all external
inputs fixed and consistent. Furthermore, we used only used
age-matched male animals in a colony that has been in the
same facility and vivarium for �12 yr. Thus, 2 yr after our
initial collection, we opportunistically added an additional time
to study (RD) and increased the total sample size in other
groups. Several studies suggest that environment is the key
driver of the gut microbiota in rodent colonies. For example,
stable gut microbiome communities were observed in trans-
generational C57BL/6J mice regardless of ob genotype (39)
and between mothers and their transplanted offspring from
different genetic backgrounds (23). Thus we expected a rela-
tively stable microbiome in the UCD-T2DM colony; however,
we found a significant batch effect between the two collection
periods. Given the unbalanced study design between collection
years, we were unable to minimize the variance associated with
the time of collection with commonly used statistical ap-
proaches (37). Instead, we utilized a very conservative filtering
approach to determine specific bacterial and metabolite fea-
tures that discriminate diabetes progression despite the vari-
ability by year. Our results suggest that the gut microbiome is
not stable across UCD-T2DM rat generations, and this high-
lights that future studies in rodent models should take sampling
time into account when assessing the microbiome.

Our understanding of the complex relationship between the
gut microbiome and host metabolic health and regulation is
still evolving. Results from this study suggest that T2DM-
related alterations in the microbiome are not solely driven by
diet and the environment of the host but are likely an interac-
tion of internal and external factors that provide niches for
opportunistic bacteria that associate with metabolic dysregula-
tion in the host. Our descriptive assessment of the bacterial
composition and metagenome in the UCD-T2DM rat model
aligns with results from human studies, suggesting an oxidative
environment that promotes Prevotella and Bacteroides spp.
that have the potential to cause dysbiosis and inflammation in
the host. Alterations in the cecal metabolome correlate to
changes in bacterial gene clusters and could also influence
intestinal redox status and contribute to bacterial colonization.
Identifying and understanding diabetes-associated host signals
(e.g., metabolites, hormones, inflammation and immune regu-
lators) or intestinal alterations (e.g., immune cell infiltration,
mucin thickness, tissue morphology, motility) that shape the
gut microbial ecology present an exciting new frontier and
challenge.
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