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ABSTRACT OF THE DISSERTATION 
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by 
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Professor Scott Pratt Johnson, Chair 

 

How do learners make sense of their intricately structured visual and auditory environments? 

One important learning mechanism available to both infants and adults is the ability to detect 

statistical structure within visual and auditory inputs. Despite the scope of this “statistical 

learning” (SL) ability and the large literature that now surrounds it, the processes underlying SL, 

and how those processes may differ across modalities and change across development, remain 

unclear. 

 The goal of this dissertation was to clarify these mechanistic questions. Paper 1 reviews 

previous work on visual and auditory SL across development, highlighting the debate concerning 

the domain-generality of SL. Paper 2 investigates the domain-generality of infants’ SL by 

employing a visual SL task comparable to previous auditory SL tasks. Findings from four 

experiments with 8-month-olds suggest that visual SL is constrained compared to auditory SL in 

infancy. Individual differences in visual SL performances were unrelated to visual short-term 
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memory performances, but were related to overall cognitive ability. These findings suggest that 

visual SL ability is important for, and constrained by, early cognitive development. 

 Papers 3 and 4 examine the representations that result from visual SL. I evaluate the 

ability of two major classes of SL models – statistical models and chunking models - to correctly 

predict adults’ and infants’ performances on visual SL tasks. Across five experiments, adults and 

8-month-old infants discriminated between high- and low-probability visual sequences, 

providing strong evidence of SL. Critically, adults represented pairs of items embedded within 

larger sequences, but did not represent so-called “illusory sequences.” These results support the 

competitive chunking model of Servan-Schreiber and Anderson (1990), and suggest that adults 

represented visual sequences in terms of hierarchical levels of chunks. In contrast, 8-month-olds 

did not show evidence of representing embedded or illusory sequences, suggesting that infants 

represented visual sequences in terms of only the highest level of chunks. Together, these studies 

not only suggest that the representations that result from visual SL are best captured by chunking 

models, but also that the type of chunking learners engage in may change between infancy and 

adulthood. 
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SIGNIFICANCE OF THE PRESENT RESEARCH 
 
 A central question of cognitive science and developmental psychology concerns how 

learners make sense of their intricately structured visual and auditory environments. Of particular 

interest to developmental psychologists is how infants acquire so much information so quickly 

and seemingly effortlessly in the first years after birth. One important learning mechanism 

available to infants as well as adults is the ability to detect statistical relations among elements in 

a sensory array. This “statistical learning” ability was first demonstrated with linguistic 

information (Saffran, Aslin, & Newport, 1996a; Saffran, Newport, & Aslin, 1996b), but has 

since been found to operate across a variety of domains and modalities (e.g., Fiser & Aslin, 

2001, 2002; Saffran, Johnson, Aslin, & Newport, 1999). Yet despite the scope of statistical 

learning and the large literature that now surrounds it, the processes underlying statistical 

learning remain unclear (Frank, Goldwater, Griffiths, & Tenenbaum, 2010). Moreover, it is 

unclear whether all forms of statistical learning reported across domains and across development 

rely on the same underlying processes, as might be implied by the fact that all are referred to by 

the same term “statistical learning” (Thiessen, Kronstein, & Hufnagle, 2013). 

 The goal of this dissertation is to clarify this mechanistic question. My strategy is to 

employ a single method (a sequential visual statistical learning task) to extend previous research 

on visual statistical learning in both infants and adults and to investigate the fit of statistical 

learning models to human performance. The organization of this dissertation is as follows. I first 

review previous work on auditory and visual statistical learning across development, highlighting 

the debate concerning the domain-generality of statistical learning and the need for statistical 

learning research that employs comparable tasks across domains (Paper 1). Next, I investigate 

the domain-generality of infants’ statistical learning by employing a visual statistical learning 
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task comparable to that used to examine auditory statistical learning (Paper 2). Specifically, I 

examine: (1) whether infants can acquire via visual statistical learning the same complexity of 

statistical structures that infants acquire via auditory statistical learning, and (2) constraints on 

infants’ visual statistical learning. Finally, I investigate the representations learners store during 

visual statistical learning by evaluating the ability of two major classes of statistical learning 

models – statistical models and chunking models - to correctly predict adults’ (Paper 3) and 

infants’ (Paper 4) performances on visual statistical learning tasks.  

 My approach is innovative in its use of (1) a single method of investigating statistical 

learning that is suitable for participants ranging from less than 2 months of age to adults, and (2) 

multiple measures of learning. Moreover, there are six contributions of this work: (1) it reviews 

statistical learning research across domains and across development, (2) it introduces a variety of 

new human statistical learning data, (3) it suggests important differences in infants’ learning of 

visual, compared to auditory, statistical structures, (4) it identifies potential constraints on 

infants’ visual statistical learning ability, (5) it suggests that both infants’ and adults’ visual 

statistical learning performances are best captured by chunking models, and (6) it identifies 

differences in the types of chunking infant and adult learners engage in.  
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Abstract 

 
Much research in the past two decades has documented infants’ and adults' ability to extract 

statistical regularities from auditory input. Importantly, recent research has extended these 

findings to the visual domain, demonstrating learners' sensitivity to statistical patterns within 

visual arrays and sequences of shapes. In this review we discuss both auditory and visual 

statistical learning to elucidate both the generality of and constraints on statistical learning. The 

review first outlines the major findings of the statistical learning literature with infants, followed 

by discussion of statistical learning across domains, modalities, and development. The second 

part of this review considers constraints on statistical learning. The discussion focuses on two 

categories of constraint: constraints on the types of input over which statistical learning operates 

and constraints based on the state of the learner. The review concludes with a discussion of 

possible mechanisms underlying statistical learning. 
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 Statistical Learning Across Development: Flexible yet Constrained 

 To survive, an organism must be capable of organizing and interpreting the constant 

stream of sensory input it receives. Research in the last two decades has revealed powerful 

statistical learning abilities in infants and adults, including the developing capacity to extract 

statistical regularities from a variety of auditory inputs including artificial and natural language 

(e.g. Saffran, Aslin, & Newport, 1996a; Saffran, Newport, & Aslin, 1996b; Pelucchi, Hay, & 

Saffran, 2009) and non-linguistic auditory stimuli (Saffran, Johnson, Aslin, & Newport, 1999). 

An independent line of research has extended these findings to the visual domain, demonstrating 

infants’ and adults’ sensitivity to statistical patterns within visual arrays and sequences of shapes 

(e.g. Bulf, Johnson, & Valenza, 2011; Fiser & Aslin, 2001, 2002a, 2002b; Kirkham, Slemmer, 

Richardson, & Johnson, 2007; Kirkham, Slemmer, & Johnson, 2002).  

 The current review discusses auditory and visual statistical learning to elucidate both its 

generality and its constraints. We first outline the major findings of the statistical learning 

literature with infants, followed by discussion of statistical learning across domains, modalities, 

and development. The second part of this review considers constraints on statistical learning. The 

discussion focuses on two categories of constraint: constraints on the types of input over which 

statistical learning operates, and constraints based on the state of the learner. The review 

concludes with a discussion of possible mechanisms underlying statistical learning. 

Auditory Statistical Learning 

Artificial Language 

 Given the richness and complexity of a natural language, how is it that infants acquire 

vocabulary and structure so rapidly, and seemingly effortlessly, in their first years after birth? 

For example, one challenge facing young language-learners is the fact that speakers do not mark 
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word boundaries with pauses, and listeners must rely on other information to accomplish this 

task. Early in the “cognitive revolution,” researchers hypothesized that the statistical structure of 

language might be important for word segmentation (Harris, 1955; Hayes & Clark, 1970). For 

instance, Hayes and Clark (1970) tested adults’ ability to segment “words” from a continuous 

stream of speech analogs in which the only cue to word boundaries was the distribution of the 

phonemes. Adult participants successfully segmented words, suggesting sensitivity to statistical 

information in speech. However, Hayes and Clark did not specify a mechanism to account for 

this result.  

 Building upon these findings, Saffran and colleagues (Saffran et al., 1996a, 1996b) 

proposed a mechanism for statistical word segmentation: transitional probability (TP) detection. 

In their experiments, adults, first-graders, and 8-month-olds were presented with a continuous 

stream of speech from an artificial language in which word boundaries were indicated by 

differing TPs between syllables within words (high TPs) and across word boundaries (low TPs). 

After brief exposure to this language, listeners in all three age groups were able to distinguish 

between high TP syllable sequences (“words”) and low TP sequences (“part-words”). Thus, both 

infant and adults learners appeared sensitive to the TP information contained in the speech 

stream, suggesting that statistical learning via sensitivity to TPs is a possible mechanism 

contributing to language acquisition. 

 Although such early studies in infant statistical learning conceptualized statistical 

learning as sensitivity to a particular conditional relation, transitional probability, more recent 

research highlights a variety of other conditional statistics (e.g., mutual information) that could 

be used to distinguish words from foil items. This point is discussed in greater detail in a 

subsequent section, however we mention it briefly here to point out that, although several studies 
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are described in terms of differing TPs, it remains unclear which conditional relations 

participants rely upon to segment sequences. 

 One limitation to the design of the aforementioned studies was that frequency 

information covaried with conditional probability statistics. That is, high TP words occurred 

more frequently than low TP part-words in the learning (familiarization) phase of the 

experiment, and it remained unclear whether participants distinguished syllable sequences based 

on differences in conditional relations or simply differential frequencies of occurrence during 

learning. To address this issue, Aslin, Saffran, and Newport (1998) conducted a “frequency-

balanced” version of their original study, with words and part-words appearing equally 

frequently, such that only sensitivity to conditional relations could be used to distinguish the two 

types of sequences. Aslin et al. found that 8-month-old infants were still able to distinguish high 

and low TP sequences. This result suggests that infants can track conditional probability 

information independent of co-occurrence frequency and use this information to determine word 

boundaries. Taken together, this work demonstrated the potential for statistical learning to 

support early language acquisition. 

 The possibility that statistical learning is a primary mechanism underlying early language 

acquisition raises the question of the age at which statistical learning is functional in young 

infants. Teinonen, Fellman, Näätänen, Alku, and Huotilainen (2009) examined statistical 

learning in sleeping newborns by presenting a continuous stream of 3-syllable words in an 

artificial language similar to that employed by Saffran et al. (1996a), in which the only cues to 

word boundaries were the conditional relations or frequencies of co-occurrence between 

syllables. Using electroencephalography, they measured newborns’ event-related potential (ERP) 

negativities to the first, second, and third syllables in the words. Teinonen et al. (2009) found a 
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significant difference between the ERP negativity to the first and third syllables, indicating that 

the neonatal brain is sensitive to word boundaries marked by conditional relations and reacts 

differently during word onset compared to word offset. This research demonstrates, therefore, 

that statistical learning is functional even in newborn infants, and perhaps contributes to 

language acquisition even prior to birth.  

 For statistical learning to be a primary mechanism underpinning infants’ early language 

acquisition, however, it must be able to scale up to the demands of more complex natural 

language (Johnson & Tyler, 2010). The aforementioned studies employed artificial speech 

composed entirely of bisyllabic words or entirely of trisyllabic words. Natural language, in 

contrast, consists of much more varied word types. To simulate more natural language learning, 

Johnson and Tyler (2010) investigated infants’ ability to segment an artificial language 

composed of both bi- and trisyllabic words. Interestingly, neither 5.5- nor 8-month-old infants 

were able to segment this language, suggesting that certain characteristics of natural language, 

such as varied word length, may make segmentation more difficult compared to segmentation of 

artificial languages.  

 Other research, however, suggests that some characteristics of natural language may help 

to make statistical word segmentation possible. For instance, Thiessen, Hill and Saffran (2005) 

found that 7-month-olds were able to segment an artificial language containing words of varying 

length when the language was produced with infant- but not adult-directed prosody. As an 

artificial language becomes more complex (here, by consisting of words of mixed, as opposed to 

uniform, length), therefore, other natural speech cues such as exaggerated prosody may be 

needed to facilitate statistical word segmentation.  

 Indeed, conditional probabilities have never been posited as the sole cue to word 
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segmentation in natural language. Instead, researchers have suggested that initial sensitivity to 

conditional probabilities may facilitate language acquisition by bootstrapping sensitivity to other 

linguistic cues. For instance, in English, lexical stress serves as a cue to word boundaries as a 

majority of English words are stressed on their first syllable (Thiessen & Saffran, 2003). 

Statistical segmentation mechanisms may facilitate sensitivity to stress cues by providing infants 

with an inventory of words from which they can discover the dominant stress pattern of their 

native language (Swingley, 2005; Thiessen & Saffran, 2003, 2007). 

 In the next section, we discuss research that provides even stronger support for the 

possibility that statistical learning contributes to language acquisition by examining infants' 

statistical learning in natural language. 

Natural Language 

 The aforementioned research focused on statistical learning in the context of synthesized 

artificial languages. More recent research has examined more natural language learning contexts, 

such as sequences of grammatically correct and semantically meaningful sentences in natural 

speech. Pelucchi, Hay, and Saffran (2009) examined 8-month-olds’ ability to extract statistical 

regularities from an unfamiliar natural language (Italian for English-learning infants). Infants 

were presented with a constant stream of fluent infant-directed Italian speech for approximately 

two minutes. After this brief exposure, infants provided evidence of discrimination between 

high- and low-TP bisyllabic words. Importantly, both types of words had occurred equally 

frequently in the speech stream, indicating that infants were using conditional probability 

information, not simply frequency information, in discriminating between words.  

 The Pelucchi et al. (2009) results imply that infants discriminated likely from unlikely 

sound sequences in natural language, but they leave open the critical question of how learners 
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represent extracted statistical information. Saffran (2001) took an important step in addressing 

this question by asking whether English-learning infants treat segmented syllable sequences as 

candidate English words or simply as highly probable sound sequences. In this experiment, 8-

month-old infants were familiarized to a continuous stream of artificial speech composed of 

nonsense words similar to those used in Saffran et al. (1996a).  Following familiarization to the 

stimuli, infants participated in a post-familiarization test. This test compared infants’ listening 

time to speech in which words and part-words were embedded in either simple English (e.g. “I 

like my tubido”) or matched nonsense (e.g. “zy fike ny tubido”) frames. If infants treated the 

outputs of statistical learning simply as highly probable sound sequences, both the English and 

nonsense frame conditions should have elicited similar listening preferences. However, if infants 

treated the outputs of statistical learning as candidate English words, then they should have 

shown differential listening preferences when those units were embedded in English versus 

nonsense frames. Saffran found that infants exposed to English frames listened significantly 

longer to words in this English context than to part-words, and that this difference in listening 

preference for words versus part-words did not extend to the nonsense frame condition. These 

results suggest that the statistical learning mechanisms underlying word segmentation do 

generate word-like units and raises the question of whether these units are available to support 

other aspects of language acquisition, such as mapping words to meaning. 

 Establishing a link between sound and meaning is an essential aspect of language 

acquisition, particularly for young language learners. Graf Estes, Evans, Alibali, and Saffran 

(2007) investigated the connection between statistical word segmentation and object-label 

learning in 17-month-olds. Infants were presented with 2.5 minutes of fluent speech composed of 

bisyllabic nonsense words where the only cues to word boundaries were the conditional relations 
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between syllables. Immediately following this segmentation task, infants were habituated to two 

object-label combinations, presented one at a time. For each combination, infants heard a 

bisyllabic sound sequence from the segmentation task while viewing a 3D object on a computer 

screen. For half the infants, the bisyllabic sound sequences were words from the segmentation 

task, and for the other half, the sound sequences were non-words (Experiment 1) or part-words 

(Experiment 2). Following habituation to these two object-label pairings, infants were presented 

with two types of test trials. “Same” test trials presented the same object-label combinations 

from the habituation phase. “Switch” test trials switched the labels for the two objects such that 

the label for object 1 was played while the infant viewed object 2. Longer looking on switch 

trials would suggest that infants were sensitive to the change in word-object pairings and was 

therefore taken as evidence of acquisition of the object-label associations. Graf Estes et al. found 

that only infants exposed to words from the segmentation task as object labels looked longer on 

switch compared to same test trials. This indicates that by 17 months of age, infants may be able 

to map newly segmented sound sequences (“words”) to novel objects as linguistic labels, but are 

unable to do so with non-words or part-words. These results support the claim that statistically 

segmented sound sequences are word-like and suggest that the output of auditory statistical 

learning is represented linguistically. 

 Recent work has also found associations between statistical learning abilities and natural 

language processing (Conway, Bauerschmidt, Huang, & Pisoni, 2010; Misyak & Christiansen, 

2012). For instance, Misyak and Christiansen (2012) found that even after controlling for 

measures of short-term and working memory, vocabulary, reading experience, cognitive 

motivation, and fluid intelligence, performance on statistical learning tasks was the key predictor 

of comprehension of natural language sentences. Such findings suggest that statistical learning 



 13 

may be relevant to language learning not only because extracted statistical information may be 

represented linguistically, but also because statistical and language learning might overlap in 

their underlying mechanisms (Christiansen, Conway, & Onnis, 2007; Misyak & Christiansen, 

2012; see also work on cross-situational statistical learning, e.g., Smith & Yu, 2008). 

Non-linguistic Stimuli 

 Demonstrations that conditional probability information extracted from auditory input is 

represented linguistically (Graf Estes et al., 2007; Saffran, 2001) and that learners form 

associations between auditory statistical learning and language learning (Conway et al., 2010; 

Misyak & Christiansen, 2012) raise the question whether statistical learning is language-specific, 

or whether it also operates over non-linguistic stimuli. In the auditory domain, Saffran, Johnson, 

Aslin, and Newport (1999) found that both infants and adults appeared to detect statistical 

regularities in nonlinguistic sequences of “tone-words.” The procedure and stimuli used were 

modeled directly after those used in Saffran et al.’s (1996a, 1996b) studies employing speech, 

allowing for a direct comparison of participants’ performance with tones and syllables. Both 

adults and infants performed with similar accuracy in discriminating words from part-words, 

regardless of whether these units were instantiated in syllables or tones. These findings suggest 

that statistical structure can be extracted from auditory input regardless of the domain in which it 

is presented (syllables or tones), and raise the possibility that statistical learning might also 

function over input from other modalities. 

Visual Statistical Learning 

 Investigating infants’ and adults’ extraction of statistical structure in visual input 

addresses the question of domain generality by asking whether or not statistical learning is 

limited to auditory input. 
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Infants 

 Kirkham, Slemmer, and Johnson (2002) examined infants’ detection of statistical 

regularities from sequentially presented visual information. Two-, 5- and 8-month-old infants 

were habituated to a continuous stream of six looming colored shapes presented one at a time 

with no breaks or pauses between shapes. The six shapes were organized into three pairs that 

were presented in random order such that the boundaries between pairs were defined by TPs 

(TP=1.0 within pairs, TP=0.33 between pairs). Following habituation, infants viewed six test 

displays alternating between the familiar habituation sequence and a novel sequence composed 

of the same six shapes from habituation presented in random order. Infants at all three ages 

exhibited a significant novelty preference, suggesting that the infants were sensitive to statistical 

regularities that defined the visual shape sequences. This was the first published experiment to 

demonstrate not only infants’ sensitivity to statistically defined structure in visual sequences, but 

also to suggest that statistical learning is a domain general learning process, capable of 

identifying statistical structure across modalities. 

 The Kirkham et al. (2002) study was also the first to investigate the developmental time-

course of visual statistical learning during the first year after birth. Kirkham et al. found no 

significant differences in novelty preferences between age groups. This lack of observed 

development, combined with the finding that statistical structures could be detected after only a 

few minutes of exposure, suggests visual statistical learning may be functional at or soon after 

the onset of visual experience. Bulf, Johnson, and Valenza (2011) explored this possibility by 

investigating whether infants are capable of extracting statistical regularities from visual 

sequences at birth. Bulf et al. employed a habituation design similar to that used by Kirkham et 

al. (2002), presenting newborn infants (mean age 38 hours) with continuous sequences of either 
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four or six looming shapes following a statistically defined structure. Newborns provided 

evidence of detecting the structure of the shape sequences, though only in sequences composed 

of four, not six, shapes. Thus, statistical learning appears to be functional at birth, operating over 

both auditory (Teinonen et al., 2009) and visual input (Bulf et al., 2011), but is constrained, an 

issue we discuss in greater detail in a subsequent section. 

 The method of testing employed by Kirkham et al. (2002) and Bulf et al. (2011) 

demonstrated that infants can discriminate between structured and random sequences. However, 

it did not indicate what statistical or structural features allowed infants to make this 

discrimination. Rather than computing conditional statistics, as has been found in studies of 

auditory statistical learning, infants could have been responding to a variety of other features, 

such as frequency of shape co-occurrence, which co-varied with conditional probability 

information. Determining which features infants are sensitive to is important for understanding 

the extent and utility of statistical learning as detection of different statistical features allow 

varying degrees of associative learning and inference. For instance, co-occurrence statistics 

inform the observer of the likelihood of two events occurring together, but leave the observer 

uncertain of the likelihood of an event occurring given that the other has taken place. In contrast, 

conditional probability statistics serve to reduce uncertainty by measuring the predictive power 

of one event with respect to another. Reducing uncertainty contributes to efficient coding of 

sensory information and is thought to be essential for associative learning (see Fiser and Aslin, 

2002b). Thus, a learning mechanism that allows detection of conditional probability statistics 

would support more effective learning, including the prediction of the likelihood of future events 

relative to co-occurrence frequency. 

  Fiser and Aslin (2002a) examined whether infants were sensitive to conditional 
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probability statistics in visual input in addition to co-occurrence frequency. They habituated 9-

month-olds to looming multi-element scenes, then tested infants’ preference for various element 

pairs that had occurred in the scenes. The researchers found that infants preferred not only 

element pairs that co-occurred more frequently as embedded elements in scenes, but also pairs 

that had higher conditional probability (viz., predictability) between elements in the pair. Thus, 

infants were sensitive to the statistical coherence of the elements within visual scenes in addition 

to co-occurrence frequency. In sum, this research demonstrates infants’ sensitivity to conditional 

relations in both auditory and visual input, suggesting that statistical learning is a domain-general 

process. In the next section, we outline research with adults that provides even stronger support 

for this idea by examining statistical learning of more complex visual stimuli and the 

generalizability of statistical learning across contexts.  

Adults 

 Although research with infants has begun to demonstrate the robustness of statistical 

learning for detecting statistical structure in visual scenes and sequences, the complexity of the 

visual structures examined in infant studies are rather simplistic compared to those examined in 

studies with adults. For example, research with adults has examined learners’ sensitivity to first- 

as well as higher-order statistics, and has employed more complex multi-element scenes and 

sequences than those used with infants to examine the flexibility of the representations learners 

extract from such input. 

 Fiser and Aslin (2001) explored the range of first- and higher-order statistics that adults 

compute during passive viewing of visual scenes. Participants viewed a total of twelve shapes, 

which were divided into six base pairs. Three of these pairs appeared at a time in various 

positions within either a 3 X 3 or 5 X 5 grid “scene.” The relations between any two shapes in a 
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scene could be described in terms of co-occurrence and conditional probabilities. Each base pair 

appeared in half of the scenes, such that the probability of co-occurrence of the two shapes in 

each of the six base pairs was 0.5. Because the two objects composing each base pair always 

occurred together within a scene, shapes within base pairs had a conditional probability of 1.0. 

Fiser and Aslin found that adults detected first-order statistics (single-shape frequency) as well as 

several higher-order statistics from the scenes. Specifically, participants detected absolute shape-

position relations within the grid and shape-pair arrangements independent of grid position. Most 

importantly, even when the probabilities of co-occurrence of some base pairs and non-base pairs 

were equated, adults were still able to distinguish the familiar base pairs based solely on their 

(higher) conditional probabilities. 

 The finding that adults are capable of implicitly extracting higher order statistics from 

static spatially presented visual stimuli led Fiser and Aslin (2002b) to probe this ability further 

with temporally presented stimuli. In this experiment, adult participants viewed twelve shapes 

organized into four temporal triplets, such that after the first element of the triplet appeared on 

the screen, the second and then the third elements of the triplet always followed. There were no 

pauses or breaks between successive shapes such that the triplet structure could only be learned 

via temporal-order statistics among pairs or triplets of shapes. Just as with spatially presented 

visual stimuli, participants became sensitive to first-order as well as higher-order statistics in the 

temporal shape sequences. Participants retained the frequency of individual shapes and 

distinguished sequences of shapes presented during familiarization from both novel sequences of 

familiar shapes and sequences of shapes seen during familiarization but presented less 

frequently. Interestingly, when frequency information and co-occurrence probabilities were 

equated, adults were still able to distinguish shape sequences based on differing conditional 
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probabilities.  

 These demonstrations of visual statistical learning with both temporally and spatially 

presented input raises the question of how such information is represented and whether such 

representations might generalize to new contexts. Turk-Browne and Scholl (2009) demonstrated 

that learning of statistical regularities in temporal shape sequences (finding shape “triplets” in a 

continuous stream of shapes) was expressed in static spatial configurations of these same shape 

triplets. Similarly, learning of statistically defined spatial configurations (base pairs, as in Fiser & 

Aslin, 2001) facilitated detection performance in temporal streams (Turk-Browne & Scholl, 

2009). Thus, visual statistical learning in adults appears to produce flexible representations that 

can be generalized to new situations. Such transferability is likely important for visual statistical 

learning to be practical in ever-changing real-world visual environments. 

Constraints on Statistical Learning 

 The generalizability of statistical learning across tasks and domains raises the important 

question of whether and what constraints may exist on statistical learning. If one considers the 

infinite number of possible statistical relations that could be computed at each level of 

representation, it becomes clear that for statistical learning to be feasible, it must be constrained. 

What are these constraints?  

Types of Input 

 It is unlikely that all statistical regularities are learned equally well, given the infinite 

number of possible statistics that could be extracted from the environment. Rather, research 

suggests that statistical learning mechanisms preferentially track statistical regularities in the 

types of input that occur most frequently in the natural environment (Conway & Christiansen, 

2009; Emberson, Conway, & Christiansen, 2011; Newport & Aslin, 2004).  
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 Spatial versus sequential input. Intuitively, there seem to be structured differences in 

the organization of auditory and visual information in the natural environment. For instance, 

auditory information is conveyed temporally whereas visual information is arrayed spatially. 

Moreover, each sensory modality seems to process particular aspects of environmental input. For 

instance, a brief snapshot is typically enough time to recognize a complex visual scene whereas 

at least several seconds are needed to recognize a voice or melody (Conway & Christiansen, 

2009). These intuitions are supported by studies of perception and memory suggesting that 

spatial information weighs most prominently in visual cognition, whereas temporal information 

weighs most prominently in audition (see Conway & Christiansen, 2009 for a discussion). Such 

modality differences raise the question of whether statistical learning processes might be 

constrained to preferentially track statistics in input that accords with the auditory-temporal, 

visual-spatial structure of the environment.  

 Conway and colleagues (Conway & Christiansen, 2005, 2009; Emberson et al., 2011) 

examined how modality differences may constrain implicit statistical learning. For example, 

Conway and Christiansen (2009) investigated whether vision and audition exhibited different 

constraints on statistical learning of spatially and temporally structured information. Conway and 

Christiansen compared learning of one statistically defined structure presented in three different 

formats: auditory information presented temporally (pure tones of various frequencies presented 

one at a time through headphones), visual information presented temporally (different colored 

squares presented one at a time in the center of screen), and visual information presented 

spatially (the same colored squares presented simultaneously left to right in a horizontal row 

across the center of the screen). The task was an artificial grammar learning (AGL) task in which 

adult learners were presented with a set of training sequences that adhered to a specific rule-
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governed finite state grammar.  After the learning task, learners were presented with a test on 

classifying novel sequences as being either legal (generated by the same rules as the training 

sequences) or illegal. The results demonstrated that participants in the visual-spatial condition 

classified test sequences with a similar degree of accuracy as participants in the auditory 

condition.  However, participants in the visual-temporal condition were significantly less 

accurate in their classifications compared to those in the auditory condition. This ability to 

acquire the structure of spatially arrayed visual input as well as temporally structured auditory, 

but not visual, input suggests that adults’ statistical learning may be constrained to preferentially 

track statistics in inputs that accord with the auditory-temporal, visual-spatial structure of the 

environment.  

 Presentation rate. Of course, human learners, including young infants, provide evidence 

of detecting statistical patterns in sequential visual input under some circumstances (e.g. Bulf et 

al., 2011; Fiser & Aslin, 2002b; Kirkham et al., 2002). A recent study by Emberson et al. (2011) 

helped to reconcile these seemingly contradictory findings by investigating the mediating role of 

presentation timing in statistical learning of auditory and visual information. Their results 

suggest that there is an interaction of presentation format (spatial versus sequential) and 

presentation timing in constraining statistical learning across modalities. 

 Emberson et al. (2011) compared visual and auditory statistical learning in an interleaved 

familiarization design. Adult learners were presented with a visual stream of abstract shapes 

organized into triplets that was interleaved pseudo-randomly with an auditory stream of 

monosyllabic nonsense words also organized into triplets. Participants were randomly assigned 

to either attend to the visual stream or the auditory stream, and given a cover task (detecting 

repeat elements in only that stream) to ensure that attention was allocated to the appropriate 
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stream. Following familiarization, participants were tested on learning in each modality. During 

test trials, participants judged which of two sequences seemed more familiar: a triplet from 

familiarization or a foil sequence that did not adhere to the triplet structure. Importantly, this 

study compared effects of variation in presentation rate. In the “fast” condition, elements were 

presented for 225 ms with an ISI of 150 ms, resulting in an SOA of 375 ms. In the “slow” 

condition, elements were presented with an SOA of 750 ms. 

 Emberson et al. (2011) found that performance in the unattended modality did not differ 

from chance in any condition. At the fast presentation rate, the statistical relations between 

adjacent elements were only learned in the attended auditory stream. At the slow presentation 

rate, the opposite effect occurred: only the relations between adjacent elements in the attended 

visual stream were learned. Emberson et al. posited that visual statistical learning improved with 

the slower rate of presentation because it was less temporally demanding on the visual system. In 

contrast, auditory statistical learning was impaired at the slower presentation rate because of 

weaker perceptual grouping cues. That is, when sequential elements were separated by longer 

intervals, they were less likely to form a single perceptual unit or stream, hindering the detection 

of statistical information in the stream. Taken together, these results document complex 

constraints on statistical learning that accord with the structure of the natural environment, with 

relatively rapid presentation of temporal information critical for auditory statistical learning, and 

either static spatial information or relatively slowly presented temporal information critical for 

visual statistical learning. 

 Natural language: types of non-adjacent regularities. This interaction of presentation 

format and timing in statistical learning illustrates one way in which constraints on the types of 

information over which statistical learning operates may reflect environmental structure. Some 
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researchers have additionally argued that constraints on learning not only reflect, but also help to 

explain, structural aspects of the environment, such as those found in natural languages (e.g., 

Christiansen & Chater, 2008). For example, a wide range of adjacent regularities appear 

throughout natural languages, but the types of non-adjacent regularities languages exhibit are 

quite constrained.  

 Newport and Aslin (2004) investigated the intriguing possibility that constraints on the 

types of non-adjacent statistical computations that learners perform may match and even drive 

observed constraints on non-adjacent regularities in natural languages. For example, it is 

common for natural languages to contain non-adjacent regularities relating elements of one kind 

while skipping over intervening elements of a different kind. In Hebrew and Arabic, word stems 

are formed out of phonemic segments of one kind (consonants), while intervening segments are 

of another kind (vowels). In contrast, it is uncommon for natural languages to contain non-

adjacent regularities in which intervening items are of the same kind as that in which the non-

adjacent regularities occur. Newport and Aslin examined adults’ detection of conditional 

relations among non-adjacent elements that did and did not adhere to this natural language 

structure: non-adjacent consonants (with one unrelated intervening vocalic segment), non-

adjacent vowels (with one unrelated intervening consonantal segment), and non-adjacent 

syllables (with one intervening syllable that was unrelated). In accord with the structure of 

natural languages, adults seemed to be unable to track the relations between non-adjacent 

syllables, where the intervening element was of the same kind (a syllable). Even when the 

patterns were quite simple and participants were given extensive exposure to the patterns (in one 

case over 10 days of repeated exposures), participants remained unable to track relations between 

non-adjacent syllables. In contrast, adults readily learned the relations between non-adjacent 
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consonants and vowels, where the intervening element was a different kind from that in which 

the non-adjacent regularities occurred. These findings suggest that constraints on statistical 

learning may help to explain the universal aspects of these patterns in natural languages. Similar 

to Conway and colleagues’ results (Conway & Christiansen, 2009; Emberson et al., 2011), these 

findings also demonstrate that human learners preferentially track statistical information only in 

particular types of environmental input. Such findings highlight the importance of considering 

statistical learning in its broader environmental context, including the nature of the input to 

which the learner is exposed, as well as the cognitive, developmental, and attentional state of the 

learner.  

The State of the Learner 

 Human learners are characterized by perceptual biases and cognitive constraints. 

Appreciating the influences of learners’ biases and developmental state on statistical learning is 

necessary for a complete understanding of the extent and limits of this domain-general learning 

process across development.  

 Spatiotemporal biases and perceptual similarity. Consideration of learners’ perceptual 

biases is especially important for understanding constraints on visual statistical learning, as such 

biases have been shown to influence the types of statistics learners extract from visual scenes 

(Fiser, Scholl, & Aslin, 2007). One general perceptual bias exhibited by infants and adults is the 

bias to perceive objects as moving along specific trajectories given certain visual and/or auditory 

cues (e.g. Sekuler & Sekuler, 1999; Shimojo, Watanabe & Scheier, 2001). When observing two 

identical objects moving toward each other, coinciding, then moving away from each other, two 

interpretations are possible: (1) the two objects streamed past one another (streaming), or (2), the 

two objects bounced off of one another (bouncing). Various perceptual features such as the 
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acceleration of the objects (Fiser, et al., 2007; Sekuler & Sekuler, 1999) or the presence of a 

sound at the time of coincidence (Sekuler, Sekuler, & Lau, 1997; Watanabe & Shimojo, 2001) 

bias observers toward one of these two interpretations.  

 Fiser et al. (2007) investigated whether this perceptual bias to perceive objects as moving 

along specific trajectories affected the types of statistics adult learners computed from visual 

events. Participants observed a single object move behind an occluder and then saw two objects 

emerge from behind the occluder simultaneously. One object emerged from the occluder 

following the same trajectory as the first object. The second object emerged from the occluder at 

a 90° angle to the original trajectory. Thus, presentations could be interpreted two different ways: 

(1) as an object streaming behind the occluder on a straight trajectory, or (2) as an object 

bouncing off of a surface behind the occluder and reemerging on the same side that it originated.  

 To examine whether perceived motion trajectories would bias statistical learning, Fiser et 

al. (2007) manipulated the acceleration of the objects to bias observers toward one of these two 

percepts. Objects moving at constant speed produced a streaming percept whereas decelerating-

accelerating objects produced a bouncing percept.  If visual statistical learning mechanisms 

compute all available temporal co-occurrences of shape pairs, then learners should acquire 

transitions from the first shape to each of the two later shapes equally well, regardless of whether 

observers were biased toward streaming or bouncing percepts. However, this is not what Fiser et 

al. found. Rather, adults preferentially learned the associations consistent with the perceptual 

bias of streaming or bouncing they had during familiarization. Thus, this perceptual bias 

constrained statistical learning to shape pairs consistent with that bias. 

 The influence of perceptual biases on statistical computations is not limited to statistics in 

visual scenes. Similar to spatiotemporal biases, Gestalt principles of perception have been shown 
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to constrain the detection of statistical relations in both auditory and visual input (Baker, Olson 

& Behrmann, 2004; Creel, Newport & Aslin, 2004; Emberson et al., 2011; Newport & Aslin, 

2004). For example, Creel et al. (2004) demonstrated that Gestalt principles of element similarity 

interact with temporal adjacency in determining what kinds of auditory statistical regularities are 

learned. In this experiment, adult participants were presented with two interleaved streams of 

tone triplets such that participants heard the first tone of the first triplet stream, followed by the 

first tone of the second triplet stream, then the second tone of the first stream, then the second 

tone of the second stream, and so on (Creel et al., 2004). The result of this interleaving was that 

triplets could only be detected via sensitivity to non-adjacent conditional relations. 

 Interestingly, adults showed no learning of the tone triplets, only sensitivity to the less 

reliable relations between adjacent elements in the stream. However, when Creel et al. (2004) 

included perceptual grouping cues, by presenting the two interleaved streams in differing pitch 

ranges or timbres, adults became sensitive to the conditional relations between the similar, yet 

temporally non-adjacent, elements. This finding suggests that Gestalt principles of similarity 

interact with temporal adjacency in constraining statistical learning.  

 Availability of cognitive resources. Thus far, our discussion has highlighted similarities 

in infants’ and adults’ sensitivities to statistical information. Researchers hold differing views, 

however, on how implicit statistical learning abilities may change across development (e.g., 

Janacsek, Fiser, & Nemeth, 2012; Thomas, Hunt, Vizueta, Sommer, Durston, Yang, & Worden, 

2004) or remain constant across development (e.g., Reber, 1993; Vinter & Perruchet, 2000).  

 In some studies reporting developmental differences, older individuals show better 

learning than younger individuals (e.g., Maybery, Taylor & O’ Brien-Malone, 1995). Consistent 

with this possibility, infants provide evidence for tracking increasingly complex statistical 
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regularities in visual sequences with age:  2- 5- and 8-month-old infants distinguished structured 

from random sequences composed of six looming shapes (Kirkham et al., 2002), but newborn 

infants seemed to distinguish structured from random structure in sequences containing four, but 

not six, items (Bulf et al., 2011). 

 In other cases, however, younger individuals outperform older individuals (e.g., Janacsek 

et al., 2012; Jost, Conway, Purdy & Hendricks, 2011). Jost et al. (2011) compared the time 

course of children’s and adults’ implicit learning by examining participants’ ERPs during a 

visual statistical learning task. Participants observed a series of stimuli presented one at a time on 

a screen and pressed a button whenever the target stimulus appeared, which was predicted at 

different levels of probability by the stimuli immediately preceding the target. Jost et al. found 

that children exhibited learning-related ERP components earlier in the study than adults, 

suggesting that children required less exposure to the patterns to detect the statistical structure.  

 To explain differences in statistical learning ability across development, researchers have 

appealed to domain-general, maturational constraints on perception and memory. Bulf et al. 

(2011) suggested that newborns’ limited attentional and working memory capacities may inhibit 

statistical learning efficiency. Interestingly, researchers have posited a similar explanation to 

account for findings that children outperforming adults. In this case, however, researchers have 

offered the paradoxical idea that maturational constraints on perception and memory confer a 

computational advantage for some types of learning (e.g., Elman, 1993; Newport, 1988, 1990). 

In particular, Newport’s (1990) “Less is More” hypothesis assumes that children’s abilities to 

perceive and store complex stimuli is reduced compared to those of adults, and suggests that 

such limitations give children an advantage for tasks requiring componential analysis because 
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children are better able to identify and process component parts. Adults, in contrast, attempt to 

perceive and store stimulus relations of greater complexity. 

 Suggestions that maturational constraints on perception and memory can both hurt and 

help performance in tasks requiring componential analysis appear contradictory. However, most 

empirical support for Newport’s “Less is More” hypothesis (1990; e.g., Kersten & Earles, 2001) 

comes from child and adult populations, leaving open the possibility that very early increases in 

infants’ relatively limited perception and memory abilities may be positively related to statistical 

learning ability. To our knowledge, however, Bulf et al.’s (2011) hypothesis that limited 

cognitive resources limit newborns’ statistical learning performance has not yet been confirmed 

independently. Visual working memory performance increases roughly linearly across the first 

postnatal year (Diamond, 1985; see Bell & Morasch, 2007 for a review), and a number of other 

early developments could, in principle, be responsible for changes in statistical learning (e.g., 

different spatiotemporal biases due to changes in perceptual acuity). An important avenue for 

future research will be to investigate these possibilities, beginning by examining the relation 

between the development of infant working memory ability and statistical learning ability. 

 In addition to maturational constraints on perception and memory, the allocation of 

attentional resources may also play a role in constraining statistical learning. Although some 

researchers have argued that statistical learning is an “automatic” (i.e., implicit, rapid) process 

(e.g. Saffran, Newport, Aslin, Tunick, & Barrueco, 1997), other researchers have found reason to 

suggest that statistical learning both is and is not automatic (e.g. Turk-Browne, Junge, & Scholl, 

2005). It is automatic in that statistical computations seem to be carried out without conscious 

intent and often without awareness that any structure was learned (e.g. Meulemans, Van der 

Linden, & Perruchet, 1998; Saffran et al., 1997; Turk-Browne et al., 2005). However, statistical 
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learning is not automatic in that it operates better over attended versus unattended input (e.g. 

Emberson et al., 2011; Toro, Sinnett & Soto-Faraco, 2005; Turk-Browne, et al., 2005). For 

instance, when two interleaved streams of shapes are presented to observers in two different 

colors, and participants are instructed to attend to only one color, only the statistical relations in 

the attended color are learned (Turk-Browne, et al., 2005). This attentional constraint on 

statistical learning appears to be one of its most general limitations, likely constraining detection 

of statistical regularities regardless of input domain or modality (e.g. Emberson et al., 2011). 

 Prior experience. In addition to maturational changes in cognitive resources, such as 

working memory capacity and attention, another important aspect of development is learning 

from experience interacting with the environment. Expectations about the structure of the 

environment undergo rapid changes in the first years after birth due to experiences interacting 

with the world (e.g. Adolph, Eppler, & Gibson, 1993; Campos, Bertenthal, & Kermoian, 1992). 

Such changes in learners’ expectations about the structure of their environment may have the 

potential to influence statistical learning processes (Thiessen, 2010). For example, years of 

experience with language may provide adults with strong expectations that words and objects 

relate to one another (e.g., Namy & Waxman, 1998).  

 Thiessen (2010) investigated how such expectations influence adults’ statistical learning 

of word-object associations.  Adults were presented with paired audio-visual information in 

which word boundaries as well as word-object associations were statistically defined. 

Participants tracked both of these statistical relations simultaneously, and word segmentation 

benefited from the addition of word-object associations. When adults were presented with tonal 

rather than linguistic stimuli, however, they did not benefit from the regular relations between 

tone words and objects. Thiessen suggested that experience with language may predispose adults 
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to expect words and objects to relate to one other, such that they are sensitive to these 

associations in linguistic input, but not in tonal input. This hypothesis leads to the prediction that 

young infants may not benefit from word-object relations even with linguistic input, because 

they may not yet have built up the expectation that words relate to objects (e.g. Werker et al., 

1998). This is precisely what Thiessen found; similar to adults in the tonal condition, 8-month-

old infants’ ability to segment words did not benefit from the presence of word-object relations, 

regardless of whether linguistic or nonlinguistic input was used.  

 Thiessen’s (2010) findings demonstrate the role of prior experience and learners’ 

expectations in facilitating computation of previously ignored statistics. Other research, however, 

indicates that prior experience can impede statistical computations. For example, Gebhart, Aslin 

and Newport (2009a) presented adult learners with auditory sequences of trisyllabic nonsense 

words defined by the TPs between syllables. When the researchers altered the organization of the 

nonsense words mid-way through the familiarization stream, participants only learned the first of 

the two structures. Participants detected words in both structures only when exposure to the 

second structure was tripled in duration, or when the transition between structures was explicitly 

marked. Thus, successful extraction of the statistical regularities in one auditory structure 

inhibited learning of a subsequent auditory structure.  

Mechanisms Underlying Statistical Learning 

 How is it that statistical learning can be so constrained while still adapting flexibility to 

input across domains and modalities? The reason for both flexibility and constraints on statistical 

learning is likely because the environment contains both variance and invariance; organisms 

need a way to flexibly adapt and generalize to different contexts while simultaneously honing in 

on the types of structures that are most consistent and informative in the environment. What is 
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less clear are the mechanisms by which statistical learning occurs and how these mechanisms are 

configured to allow for both flexibility and constraints. 

 We began this review by introducing statistical learning as sensitivity to transitional 

probabilities (TPs), and this view was predominant in the early days of infant statistical learning 

research that focused predominantly on word segmentation. However, there is now a wealth of 

data on infants’ and adults’ statistical learning across domains, and this calls for a broader view 

of statistical learning (e.g., Frank et al., 2010; Graf Estes et al., 2007; Maye, Werker, & Gerken, 

2002; Saffran, 2001; Smith & Yu, 2008; Thiessen & Saffran, 2003). For example, consider 

Saffran’s (2001) and Graf Estes et al.’s (2007) findings that the output of statistical learning is 

entire word-like units, not simply highly probable sound sequences. A mechanism that only 

tracks probabilistic relations between elements cannot fully account for such a finding (see 

Thiessen, Kronstein, & Hufnagle, in press). Moreover, even in segmentation tasks, models 

designed to track transitional probabilities do not always accord well with human performance 

(see Frank et al., 2010).  

 A variety of alternate models of statistical learning have been proposed that do not rely 

on explicitly computed statistics. It is not yet clear which type of model produces the most valid 

account of human learning processes across tasks (Frank et al, 2010). A complete review of all 

such models is beyond the scope of this review; instead, we briefly describe one well-known 

model, PARSER (Perruchet & Vinter, 1998), to illustrate that there are multiple possible 

mechanisms to account for statistical learning data.  

 PARSER (Perruchet & Vinter, 1998) is a type of “chunking” model that produces the 

same segmentation results as Saffran et al. (1996a, 1996b) by implementing basic laws of 

attention, memory, and associative learning, rather than by computing statistics such as 
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transitional probabilities. PARSER is modeled on the principle that perception guides internal 

representation. Briefly, units that are perceived within one attentional focus are “chunked” into a 

new representational unit. The fate of these new representations depends on fundamental 

principles of memory:  Internal representations of chunks that are repeated are progressively 

strengthened, and representations of chunks that are not repeated are forgotten (Perruchet & 

Vinter, 1998). Applied to Saffran et al.’s (1996a, 1996b) segmentation task, PARSER would first 

randomly segment the speech stream into small chunks. Because chunks have a greater chance of 

being repeated if they are part of the same word than if they span a word boundary, internal 

representations of words or parts of words will be stronger in memory than representations of 

non-words and chunks spanning word boundaries. Thus, PARSER can account for Saffran et 

al.’s (1996a, 1996b) findings of participants’ greater sense of familiarity for words than non-

words or part-words.  

 As noted, several models of statistical learning employing quite different mechanisms 

have been proposed to account for the various findings of the statistical learning literature, but no 

model has yet been proposed that can account well for human performance across statistical 

learning tasks (Thiessen et al., in press). In particular, what is lacking are models that achieve 

sensitivity to other statistical relations in addition to conditional relations, such as the central 

tendency of a set of elements (distributional statistical learning; e.g., Maye, Werker, & Gerken, 

2002), as well as models that account for human’s learning and generalization based upon 

similarity across items extracted from the input (e.g. Thiessen & Saffran, 2003). Thiessen et al. 

(in press) argued that mechanisms designed only to account for the extraction of units, such as 

segmenting words from a speech stream, cannot account for these other forms of statistical 

learning. 
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 Thiessen et al. (in press) proposed a framework that attempts to account for these various 

forms of statistical learning by combining processes of extraction with processes of comparison 

across extracted segments in an iterative model whereby the discovery of new structures via 

comparison serves to educate the extraction processes. To illustrate this idea, consider the 

finding that when syllable stress and statistical cues indicated different word boundaries in a 

speech stream, 7-month-olds segmented based on statistical cues, whereas 9-month-olds 

segmented based on stress cues (Thiessen & Saffran, 2003). Models that are only designed to 

account for segmentation cannot explain these findings without positing additional changing 

constraints on the learner or on the statistical learning mechanism itself. In contrast, Thiessen et 

al.’s (in press) framework accounts for such findings without necessitating new or changing 

constraints; according to this framework, such findings demonstrate initial segmentation based 

on conditional statistics followed by comparison across segmented words, allowing the discovery 

of patterns of stress cues in English words, which in turn inform the process of segmentation in 

the future.   

 Although Thiessen et al.’s (in press) framework has not yet been implemented into a 

working computational model, such a framework pushes the field forward by offering a 

mechanism that accounts for developmental differences in statistical learning. Moreover, this 

framework is also helpful for thinking about the origins of the constraints on and flexibility of 

statistical learning. That is, the framework is based on general processes of attention, memory, 

and comparison that likely govern extraction and generalization across domains. Furthermore, 

this framework describes a way in which learners may use a constrained, limited-capacity 

mechanism to flexibly adapt to different characteristics of the input over time.  

 



 33 

Conclusion 

 Statistical learning is a means of uncovering structure in complex environmental input. It 

operates in both auditory and visual domains, and encodes multiple types of statistics 

simultaneously. Constraints on statistical learning serve to reduce the number of possible 

associations available, making statistical learning tractable.  

 A comprehensive model of statistical learning across domains has not yet been reported 

in the literature, but much progress has been made in uncovering the origins of both the 

flexibility of and constraints on statistical learning. Specifically, flexibility may be the result of 

mechanisms built upon domain-general processes, such as attention, memory, and perception, 

rather than domain- or modality-specific processes. Flexibility may be built into the system as a 

product of learners’ ability to discover new structures via comparison, and use those new 

structures to influence further extraction (Thiessen et al., in press). Constraints on statistical 

learning are driven by a variety of factors: limited attention, perception, and memory capacity, as 

well as maturational increases in these domain-general processes; learned biases and 

expectations about the structure of the environment; and ways in which statistical tendencies in 

language have been shaped to fit the human brain, rather than vice versa.  

 Thus, while research has revealed numerous influences on the various constraints on 

statistical learning, the principal contribution to flexibility in statistical learning appears to be its 

domain-general nature. Nevertheless, the domain-generality of statistical learning mechanisms 

has been hotly debated. Some researchers interpret demonstrations of statistical learning across 

domains and modalities as evidence of a single, domain-general statistical learning mechanism 

(e.g. Kirkham et al., 2002), but others contend that statistical learning cannot be domain general 

due to observed modality-specific constraints (Conway & Christiansen, 2005, 2009; Emberson et 
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al., 2011). Specifically, they cite findings such as the auditory-temporal, visual-spatial distinction 

as evidence for separate statistical learning mechanisms for each modality (Conway & 

Christiansen, 2009). One limitation of this line of reasoning, however, is that constraints 

differentially affecting statistical learning of different types of input within modalities (e.g. 

Endress 2010; Thiessen, 2010) would necessitate multiple statistical learning mechanisms within 

modalities as well as across modalities. Thus, the domain-general view seems to be the most 

parsimonious account of the data. However, evidence supporting a domain general account of 

statistical learning does not exclude the possibility of multiple domain- or modality-specific 

statistical learning subsystems. Further research is needed to determine which of these views 

provides the most complete account of statistical learning. Research examining statistical 

learning performance using comparable tasks across domains and modalities, as well as research 

comparing the ability of modality-specific and domain-general computational models to fit such 

human data, may be particularly informative. 

 Moreover, future research should continue to investigate the type of flexibility in 

statistical learning documented by Turk-Browne and Scholl (2009), who demonstrated flexibility 

in the transferability of the representations that emerged from adults’ visual statistical learning. 

Further research should pursue similar lines of research employing other tasks and input types to 

investigate the generalizability of such findings across modalities. A final important avenue for 

future research will be to continue working towards developing a comprehensive model that can 

accommodate the various forms of statistical learning (sensitivity to conditional relations, 

distributional statistics) across domains as well as developmental changes in such learning. 

Longitudinal research and research that makes within-subjects comparisons across tasks may be 

particularly useful in this endeavor.  
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Abstract 

Research has demonstrated infants’ ability to detect statistical relations among auditory and 

visual inputs. It remains unclear, however, how auditory and visual statistical learning (SL) 

ability compare in infancy. Four experiments with 71 8-month-olds examined the limits of 

infants’ visual SL (VSL) ability. In contrast to previous auditory findings, infants were not 

sensitive to transitional probability statistics in visual triplet sequences (Experiments 1-2), 

though infants discriminated random from structured visual sequences (Experiment 3). 

Additionally, individual differences in VSL performances related to cognitive ability, but not 

visual short-term memory (Experiment 4). Detecting transitional probabilities in visual 

sequences appears challenging for infants. Nevertheless, individual differences in VSL may be 

meaningful in terms of both VSL ability and early cognitive development more broadly. 
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Modality Constraints on Statistical Learning in Infancy 
 

Every day, learners encounter an abundance of complex auditory and visual information. 

How is it that learners transform these sensory inputs into mental representations? One step in 

this process likely involves detecting statistical regularities within the input. Research has 

demonstrated powerful statistical learning (SL) abilities in adult and infant learners, including 

the ability to extract statistical relations between auditory inputs such as syllables in a sequence 

(e.g., Pelucchi, Hay, & Saffran, 2009b; Saffran, Aslin, & Newport, 1996a; Saffran, Newport, & 

Aslin, 1996b; Thiessen, Hill, & Saffran, 2005) and between visual inputs such as spatially or 

temporally presented shape patterns (e.g., Bulf, Johnson, & Valenza, 2011; Fiser & Aslin, 2001, 

2002a,b; Kirkham, Slemmer, & Johnson, 2002; Kirkham, Slemmer, Richardson, & Johnson, 

2007; Marcovitch & Lewkowicz, 2009; Slone & Johnson, 2015). In adults, input modality (e.g., 

visual, auditory) can affect the extent to which statistical regularities are learned (Conway & 

Christiansen, 2005, 2009; Emberson, Conway, & Christiansen, 2011; Saffran, 2002). Moreover, 

a number of studies suggest that SL performance is superior for auditory compared to visual 

information in adults (Conway & Christiansen, 2005, 2009; Robinson & Sloutsky, 2007). While 

these studies suggest that SL is not an amodal, abstract learning mechanism, it remains unclear 

how auditory and visual SL ability compare in infancy. Given that SL ability has been posited to 

underlie cognitive skills ranging from infants’ language acquisition to apprehension of event 

structure (e.g., Bates & Elman, 1996; Roseberry, Richie, Hirsh-Pasek, Golinkoff, & Shipley, 

2011), understanding the limits/extent of SL ability across modalities in infancy is critical.  

 A number of studies have demonstrated infants’ SL ability using auditory (e.g., Saffran, 

Johnson, Aslin & Newport, 1999) or visual (e.g., Fiser & Aslin, 2002b; Kirkham et al., 2002) 

stimuli. This has led some researchers to argue that infants’ SL is domain-general, operating 



 46 

similarly across perceptual modalities (Kirkham et al., 2002). However, infant auditory SL 

(ASL) and visual SL (VSL) studies have examined different statistical structures and tested 

statistical learning differently, making it difficult to compare learning outcomes across 

modalities. For instance, ASL studies typically employ more complex statistical structures and 

more rigorous test comparisons than VSL studies. The present series of experiments was 

therefore designed to address two related questions: (1) Can infants acquire via VSL the same 

complexity of statistical structures that infants acquire via ASL? (2) What factors might 

constrain VSL in infancy?  

Infants’ Auditory Statistical Learning 

 SL was first proposed as a mechanism to facilitate language learning. In a seminal study, 

Saffran et al. (1996a) showed that infants could use transitional probability statistics to discover 

word boundaries in fluent speech. Transitional probability (TP) is defined as the probability of 

event Y given event X, and is a measure of the strength with which X predicts Y. Saffran et al. 

hypothesized that learners could track TPs between adjacent syllables, using peaks in TP to 

group syllables into words, and dips in TP to identify breaks between words.  

 To test this hypothesis, Saffran et al. (1996) constructed an artificial speech stream by 

pseudo-randomly concatenating four three-syllable “words.” There were no breaks or pauses 

between words such that the speech stream could only be segmented into its component words 

by tracking differences in TPs between syllables. After 2 minutes of exposure to this speech 

stream, 8-month-olds were presented with 12 test trials. Each test trial consisted of one 3-syllable 

sequence, presented repeatedly with 500ms pauses between repetitions, until the infant 

disengaged attention. Half of the test trials presented a word from the speech stream (high TP 

between syllables), and the other half of test trials presented a syllable sequence that had spanned 
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word boundaries – a “part-word” (lower TP between syllables). Infants listened significantly 

longer to part-words than to words, demonstrating sensitivity to the statistical structure of the 

input, and suggesting SL as a possible mechanism contributing to language acquisition. 

 The nearly two decades following this landmark study have yielded an abundance of 

research on infant SL with a variety of auditory inputs. By 8 months of age, infants are sensitive 

to TPs between items in artificial languages (e.g., Aslin, Saffran, & Newport, 1998), unfamiliar 

natural languages (e.g., Pelucchi, Hay, & Saffran, 2009b), and non-linguistic auditory sequences 

(Saffran et al., 1999). Moreover, infants can track multiple levels of statistical structure 

simultaneously (Saffran & Wilson, 2003), and treat the output of SL as actual linguistic items 

(Saffran, 2001), mapping them as labels for objects (e.g., Graf Estes, Evans, Alibali, & Saffran, 

2007). 

Infants’ Visual Statistical Learning 

 Infants’ ability to detect a variety of statistical regularities from both linguistic and non-

linguistic auditory materials after only brief exposure prompted researchers to begin examining 

the modality-specificity of SL. These investigations have primarily focused on infants’ 

acquisition of visual sequence structures (cf. Fiser & Aslin, 2002b).  

 Kirkham et al. (2002) were the first to examine infants’ SL of visual sequences. Infants 

viewed a continuous stream of six colored shapes, organized into three pairs but presented one at 

a time, on a computer monitor. Similar to the Saffran et al. (1996a) auditory sequences, the 

visual sequence was created by pseudo-randomly concatenating shape pairs such that pair 

boundaries were marked solely by differing TPs within units (1.0 TP) and between units (.33 

TP). After habituating to this sequence, infants saw six test trials, each a continuous sequence of 

shapes. In half of the test trials the sequence followed the pair structure of the habituation 
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sequence. The other half of test trials presented a randomly ordered sequence of the same six 

shapes.. Infants at 2, 5, and 8 months looked longer to the random sequence than to the familiar 

habituation sequence. The authors interpreted this result as evidence of a domain-general SL 

mechanism, unconstrained by modality.  

  More recent investigations of infants’ VSL employed stimuli and methods similar to 

those of Kirkham et al. (2002): habituation sequences consisting of continuous streams of six or 

fewer shapes organized into pairs (Bulf et al., 2011; Kirkham, et al. 2007; Marcovitch & 

Lewkowicz, 2009; Slone & Johnson, 2015), and post-habituation test sequences consisting of 

ordered sequences of shape pairs versus randomly-ordered sequences (Bulf et al., 2011; Kirkham 

et al., 2007). These studies demonstrated infants’ initial capacity for detecting statistical 

regularities (at some level) in the visual modality, but it remains unclear from these experiments 

whether infants can acquire via VSL the same complexity of statistical structures that infants 

acquire via ASL. 

Comparing ASL and VSL Tasks for Infants   

 Infant ASL and VSL studies differ in at least two crucial ways. First, ASL studies 

typically employ more complex stimuli than VSL studies. For instance, whereas ASL studies 

often examine sequences of 10 to 12 items organized into triplets (e.g., Saffran et al., 1996a) or a 

combination of pairs and triplets (e.g., Thiessen et al., 2005), VSL studies typically use 

sequences of six or fewer items organized into pairs (Bulf et al., 2011; Kirkham et al., 2002, 

2007; Marcovitch & Lewkowicz, 2009; Slone & Johnson, 2015). Second ASL studies typically 

test infants’ ability to discriminate high- from low-probability test items, such that sensitivity to 

specific statistical regularities such as TP can be determined (e.g., Saffran, Aslin, & Newport, 

1996; Thiessen et al., 2005; Saffran et al., 1999). In contrast, VSL studies typically examine 
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whether infants can discriminate a familiarized structured shape sequence from a randomly-

ordered sequence (Bulf et al., 2011; Kirkham et al., 2002, 2007) and as such cannot specify 

exactly what statistical information infants tracked during learning trials (see Slone & Johnson, 

2015 for a discussion). Adding to this concern, a recent study demonstrated spontaneous 

preferences for random versus structured shape sequences in 5-month-olds (Addyman & 

Mareschal, 2013) suggesting that preferences for the random test sequence in VSL studies may 

not in fact have resulted from SL. 

The Current Study  

 The present series of experiments was therefore designed to address two related 

questions: (1) can infants acquire via VSL the same complexity of statistical structures that 

infants acquire via ASL? and (2) what factors might constrain VSL in infancy? We presented 

infants with sequences composed of triplets of items rather than pairs of items, and examined 

whether infants showed evidence of VSL when required to discriminate high- from low-TP test 

items (Experiments 1-2), or whether infants only show evidence of learning when asked to 

discriminate random from structured sequences (Experiment 3). Experiment 4 addressed the 

second question by examining the role of several factors – visual short-term memory, and verbal 

and nonverbal cognitive ability – in constraining infants’ VSL.  

Experiment 1 

 To examine whether infants can acquire via VSL the same complexity of statistical 

structures that infants acquire via ASL, Experiment 1 employed a method of testing VSL that 

presented familiarization and test stimuli similar in complexity to those described by Saffran et 

al. (1996a). Specifically, 12 shapes organized into four triplets served as the training stimulus, 



 50 

followed by test sequences designed to examine infants’ ability to discriminate high-TP shape 

sequences from low-TP shape sequences.  

 Half the infants participated in a “3-1-2” condition in which they were tested for 

sensitivity to TPs in 1-2-3 (a triplet from the learning sequence) versus 3-1-2 (the last item of one 

triplet followed by the first two items of a different triplet) test sequences (cf. Saffran et al., 

1996a). Successful discrimination of these test sequences requires that infants note differences in 

TPs between items at the beginnings of test units – the low-TP transition from an item 3 to an 

item 1, compared to the high-TP transition from an item 1 to an item 2. In this respect, infants are 

tested for attention to primacy. The other half of infants participated in a “2-3-1” condition in 

which they were tested for attention to recency. We included this second test condition because 

VSL studies with adults have yielded conflicting results as to whether learners show differential 

sensitivity to statistical information at the beginning (a primacy effect) versus the end (a recency 

effect) of sequences (e.g., Conway & Christiansen, 2005, 2009; Fiser & Aslin, 2002a). Infants in 

the 2-3-1 condition were tested for sensitivity to TPs in 1-2-3 versus 2-3-1 (the last two items of 

one triplet followed by the first item of a different triplet) test sequences. Successful 

discrimination of these test sequences requires that infants note differences in TPs between items 

at the ends of test units. Examining performance on both 3-1-2 and 2-3-1 test sequences ensured 

detection of VSL even if infants preferentially tracked statistical regularities at only the 

beginning or the end of triplets. Moreover, comparison of 3-1-2 and 2-3-1 performances allowed 

us to examine possible recency or primacy effects in infants’ VSL.  

Method 

 Participants. Thirty-two healthy full-term 8-month-olds were tested using an infant-

controlled habituation technique. Participants were assigned to participate in either a 3-1-2 (N = 
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16; 9 females; M age 8 months 2 days, range = 7;14 to 8;18) or 2-3-1 (N = 16; 11 females; M age 

7 months 24 days, range = 7;15 to 8;0) test condition. Data from an additional 12 infants were 

excluded from the final sample due to failure to habituate (n = 8), fussiness (n = 3), or 

experimenter error (n = 1). Infants were recruited by letter and telephone from hospital records 

and given a small gift (a toy or baby t-shirt) for their participation.  

 Apparatus and stimuli. A Dell Optiplex 755 computer and 61.5-cm color monitor were 

used to present stimuli and collect looking time data. The computer calculated the habituation 

criterion online for each infant, and changed displays after the habituation criterion was met. The 

primary experimenter observed the infant via a video feed from a camera placed directly below 

the monitor and coded looking time behavior online by pressing and releasing a preset keyboard 

key. The experimenter was unaware of the stimulus sequence viewed by the infant. Each 

habituation and test sequence was presented until the infant visually fixated away from the 

monitor for over 2 s or until 90 s of looking had accumulated. Prior to the first habituation trial 

and prior to every subsequent trial an attention-getter was shown to attract infants’ gaze back to 

the screen, whereupon the next trial was started immediately.  

 Stimuli consisted of twelve colored shapes (blue square, brown hourglass, cyan banner, 

green plus, magenta arrow, olive star, orange diamond, pink rainbow, purple octagon, red circle, 

white heart, yellow triangle) presented one at a time for 750 ms each. Shapes loomed from 1.5 to 

5.5 cm in height (about 1.43°-5.25°) in the center of the screen against a black background. The 

habituation sequence consisted of a continuous sequence of four shape triplets, randomly 

selected for each infant (e.g. triplet 1: olive star, orange diamond, blue square; triplet 2: brown 

hourglass, red circle, white heart; triplet 3: green plus, magenta arrow, yellow triangle; triplet 4: 

cyan banner, purple octagon, pink rainbow; Figure 2-1A). Triplets could not repeat and there 
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were no breaks or delays between shapes or triplets such that the only cues to sequence structure 

were inter-stimulus TPs (1.0 within triplets, .33 between triplets) and co-occurrence frequencies 

(8.33% within triplets, 2.78% between triplets). 

 Procedure. Infants sat on a caretakers’ lap approximately 60 cm from the computer 

monitor. Caretakers were instructed not to interact with the infant or attend to the monitor. The 

habituation sequence was presented until infants exhibited habituation of looking or until 12 

trials elapsed. The habituation criterion was met when looking time to a block of four trials 

reduced below 50% of the infant’s looking time to the first four trials.  

 Following habituation, infants were presented with three repetitions of two unique test 

trials in alternation, for a total of six test trials. Each test trial consisted of a repetition of three 

shapes separated by a 750 ms pause to mark unit boundaries. Half of the infants (N = 16) saw 

repetitions of familiar and 3-1-2 test sequences, and the other half saw repetitions of familiar and 

2-3-1 test sequences. The familiar sequence was a triplet from habituation (TP = 1.0 and co-

occurrence frequency = 8.33% between the first and second shapes and between the second and 

third shapes; Figure 2-1B), whereas the 3-1-2 and 2-3-1 “part-sequences” spanned a triplet 

boundary (3-1-2: the third shape of a habituation triplet, followed by the first two shapes of a 

different habituation triplet such that the TP and co-occurrence frequency between the first and 

second shapes of this test sequence were .33 and 2.78% during habituation; 2-3-1: the second 

and third members of a habituation triplet, followed by the first member of a different 

habituation triplet such that the TP and co-occurrence frequency between the second and third 

shapes of this test sequence were .33 and 2.78% during habituation; Figure 2-1C-D). Which test 

trial infants viewed first was randomized.  
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 The only difference between the 3-1-2 and 2-3-1 part-sequences was whether the low-TP 

shape pair appeared in a sequence-initial or -final position. The only differences between the 

familiar and part-sequence test displays were the TPs between and co-occurrence frequencies of 

the shapes; this ensured that any looking time difference to the two types of test trials would 

necessarily be related to the statistical nature of the sequences. If infants segment the habituation 

sequence on the basis of statistical relations between shapes, they should discriminate between 

the familiar and part-sequence test displays. If infants preferentially track statistical regularities 

in sequence-initial or sequence-final positions, they should show differential discrimination 

between the familiar and part-sequence test displays in the 3-1-2 and 2-3-1 conditions.  

 

Figure 2-1. Habituation and test stimuli used in Experiment 1. Sample (A) habituation sequence, 
(B) familiar test sequence, (C) 3-1-2 test sequence, and (D) 2-3-1 test sequence. The heart is 
shown in black here but was white in the experiment. 
 

Results  

 To examine infants’ ability to discriminate the test sequences, we calculated each infant’s 

novelty preference score: the proportion of total looking time on test trials that was directed to 
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the part-sequence test display. An independent-sample t test (this and all subsequent t tests were 

two-tailed) revealed that infants’ mean novelty preference was not significantly different in the 

3-1-2 (M = .508, SD = .092) and 2-3-1 (M = .485, SD = .123) conditions: t(30) = 0.60, p = .551; 

therefore, we combined the data from both test conditions for subsequent analyses. As can be 

seen in Figure 2-2, infants’ novelty preference was not significantly different from chance, where 

chance equals .50. Only 16 of the 32 infants showed a novelty preference score greater than .50 

(one-sample Wilcoxon signed-rank test: Z = 0.21, p = .837), and infants’ mean novelty 

preference (M = .496, SD = .108) was not significantly different from chance: t(31) = 0.20, p = 

.842). 

  

Figure 2-2. Individual infants’ post-habituation novelty preference scores in Experiments 1-4. 
The habituation sequence consisted of either 12 shapes (Experiment 1) or 9 shapes (Experiments 
2-4) organized in triplets. Test trials in Experiments 1, 2, and 4 contrasted a 1-2-3 triplet from 
habituation with a lower-TP part-triplet (both 2-3-1 and 3-1-2 part-triplets in Experiment 1; only 
3-1-2 part-triplets in Experiments 2 and 4). Test trials in Experiment 3 contrasted the continuous, 
structured habituation sequence with a psuedo-randomly ordered sequence of the same shapes. 
Data are plotted separately for the 2-3-1 and 3-1-2 conditions of Experiment 1. Only Experiment 
3 shows overall performance significantly different from chance. 
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Discussion 

 Experiment 1 was designed to examine whether infants’ can acquire via VSL the same 

complexity of statistical structures that infants acquire via ASL. In contrast with previous 

findings of 8-month-olds’ successful discrimination between familiar and part-sequences in ASL 

studies (e.g., Saffran et al., 1996a), the 8-month-olds in Experiment 1 did not show evidence of 

discriminating similar visual test sequences in both the 3-1-2 and 2-3-1 conditions. From these 

null results we are not able to draw conclusions about possible recency or primacy effects in 

infants’ VSL, but infants’ failure to show evidence of sensitivity to the statistical structure of the 

habituation sequence across both conditions suggests that the task presented a considerable 

challenge to infants, at least given the visual stimuli employed here.  

 It is unclear from Experiment 1 what was the cause of infants’ failure to detect the 

statistical structure of the visual sequence. Studies demonstrating adults’ facility at extracting TP 

information from visual sequences (e.g., Fiser & Aslin, 2002a) imply that learners must become 

capable of detecting statistical regularities in visual sequences at some point during development. 

Previous research suggests that one factor limiting infants’ sensitivity to the statistical structure 

of visually-presented information is the number of items employed (e.g., Bulf et al., 2011; 

Téglás, Ibanez-Lillo, Costa, & Bonatti, 2015). This may be due to limitations in infants’ visual 

attention and/or visual short-term memory. Thus, Experiment 2 was designed to test the 

possibility that reducing the complexity of the sequences, by decreasing the number of shapes 

used from 12 to 9, would enhance infants’ VSL performance. Because infants performed 

similarly in the 3-1-2 and 2-3-1 conditions of Experiment 1, only a 3-1-2 condition was included 

in Experiment 2. 

  



 56 

Experiment 2 

Method 

 Participants. Sixteen healthy full-term 8-month-olds (7 females; M age 8 months 4 days, 

range = 7;17 to 8;15) were recruited as in Experiment 1. Data from an additional seven infants 

were excluded from the final sample due to fussiness (n = 4) or failure to habituate (n = 3).  

 Apparatus, stimuli, and procedure. The apparatus, stimuli, and procedure were 

identical to those of the 3-1-2 condition of Experiment 1, except only 9 (rather than 12) shapes 

were used. The habituation sequence therefore consisted of three pseudo-randomly ordered shape 

triplets (e.g. triplet 1: orange diamond, white heart, green plus; triplet 2: red circle, blue square, 

brown hourglass; triplet 3: yellow triangle, magenta arrow, olive star). As in Experiment 1, 

triplets could not repeat such that, in Experiment 2, TPs between shapes spanning triplet 

boundaries were .50 (rather than .33 as in Experiment 1). If infants are sensitive to the statistical 

structure of the habituation sequence, they should discriminate between the familiar and 3-1-2 

test sequences. 

Results and Discussion 

 Experiment 2 was designed to test the hypothesis that the complexity of the stimuli in 

Experiment 1 (i.e., the number of shapes) inhibited infants’ VSL performance. However, similar 

to Experiment 1, infants’ novelty preference in Experiment 2 was not significantly different from 

chance (see Figure 2-2). Only 7 of the 16 infants showed a novelty preference greater than .50 

(one-sample Wilcoxon signed-rank test, Z = 1.19, p = .234), and infants’ mean novelty 

preference (M = .450, SD = .155) was not significantly different from chance: t(15) = 1.30, p = 

.215. Thus, it does not appear that the reduction in the number of shapes from 12 to 9 had a 

significant effect on infants’ VSL performances. 
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 Together, the results of Experiments 1 and 2 suggest that detection of TP and/or co-

occurrence frequency information in a visual shape stream is a difficult task for 8-month-olds. 

Yet previous research has asserted that by 8 months of age infants exhibit robust VSL ability, 

citing infants’ ability to distinguish structured from random visual shape sequences (Kirkham et 

al., 2002). As mentioned previously, however, it is not clear from the Kirkham et al. method 

whether discrimination was a demonstration of SL, as performance was based on discriminating 

structured from random sequences – a task that infants can accomplish even without prior 

habituation to the shape stream (see Addyman & Mareschal, 2013).  

 Experiment 3 was designed to examine whether, with the stimuli employed in 

Experiment 2 in which infants show no evidence of sensitivity to TPs and/or co-occurrence 

frequencies, infants are still able to distinguish the structured habituation sequence from a 

random sequence. Positive evidence would suggest that infants may be sensitive to statistical 

differences between structured sequences and random sequences; however, this would also 

suggest that discrimination was not based on sensitivity to TPs and/or co-occurrence frequency 

information (based on the null results of Experiment 2), as it is in the auditory modality.  

Experiment 3 

Method 

 Participants. Sixteen healthy full-term 8-month-olds (7 females; M age 8 months 3 days, 

range = 7;19 to 8;22) were recruited as in Experiments 1 and 2. Data from an additional seven 

infants were excluded from the final sample due to fussiness (n = 3), parental interference (n = 

2), sleepiness (n = 1), or failure to habituate (n = 1). 

 Apparatus, stimuli, and procedure. The apparatus, stimuli, and habituation procedure 

were identical to those of Experiment 2. The test procedure was modeled after Kirkham et al. 
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(2002). Infants viewed six test displays alternating between the familiar habituation shape stream 

and a novel stream produced by pseudo-randomly ordering the same nine habituation shapes; the 

single constraint on stimulus order in the random stream was that there were never two identical 

stimuli in a row. Thus, the familiar and random test streams could potentially be distinguished on 

the basis of a number of statistical differences (see Slone & Johnson, 2015). Both the familiar 

and random test streams were continuous, with no breaks or delays between shapes or triplets 

(Figure 2-3). Which test trial infants viewed first was randomized.  

 

Figure 2-3. Test stimuli used in Experiment 3. The heart is shown in black here but was white in 
the experiment. (A) Sample familiar test sequence. (B) Sample random test sequence. 
 

Results and Discussion 

 In contrast to Experiments 1 and 2, infants’ novelty preference in Experiment 3 was 

significantly different from chance (see Figure 2-2). Twelve of the 16 infants showed a novelty 

preference greater than .50 (one-sample Wilcoxon signed-rank test, Z = 2.22, p < .05), and 

infants’ mean novelty preference (M = .546, SD = .080) was significantly greater than chance: 

t(15) = 2.29, p < .05). Moreover, an independent-sample t test revealed that infants’ mean 

novelty preference in Experiment 3 was significantly greater than infants’ mean novelty 

preference in Experiment 2: t(30) = 2.21, p < .05. 

 Experiment 3 was designed to examine whether infants could discriminate the structured 

habituation sequence of Experiment 2 from a random sequence composed of the same nine 
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shapes. Although 8-month-olds showed no evidence of sensitivity to TPs or co-occurrence 

frequencies after habituation in Experiment 2, the 8-month-olds in Experiment 3 were able to 

distinguish the habituation sequence from a random sequence. These findings suggest that 

performance on the discrimination task in Experiment 3 did  not depend on sensitivity to TPs or 

co-occurrence frequencies.  

 Together, the present series of studies suggests that detecting and responding to 

differences in TPs and co-occurrence frequencies in triplet-based visual sequences is particularly 

challenging for 8-month-olds. It is unclear why this is the case, especially given multiple 

demonstrations of infants’ sensitivity to TPs in auditory tasks employing very similar methods. 

One possibility is that the testing methods used in ASL tasks (familiarization and head-turn) are 

incommensurate with the testing methods used in VSL tasks (visual habituation). However, 

visual habituation has been shown to be an effective measure of learning in thousands of studies 

with infants. Therefore, in Experiment 4, we investigate the alternate possibility that, unlike what 

has been previously suggested, VSL is limited compared to ASL in infancy. If this is the case, it 

is important to understand the factors that may be constraining infants’ VSL performance.  

 One hypothesis proposed to explain infants’ difficulty with VSL is that constraints in 

cognitive processing ability, particularly visual short-term memory (VSTM), may be a limiting 

factor (Bulf et al., 2011). Although no published studies have yet empirically investigated this 

possibility, the hypothesis makes intuitive sense: It is rare to find a real-world situation in which 

the visual system is required to process rapidly presented sequential information; however, the 

auditory system processes such information daily (e.g., speech). Thus, unlike the auditory 

system, the visual system is not designed to encode and retrieve rapid sequential information, 
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possibly constraining visual sequence learning (Conway & Christiansen, 2009; Emberson et al., 

2011).  

 Experiment 4 was designed to investigate this possibility by examining the relation 

between infants’ VSTM and VSL performances. In addition, infants in Experiment 4 also 

participated in a general developmental assessment, the Mullen Scales of Early Learning 

(MSEL; Mullen, 1995) to probe the relation between VSL and cognitive development more 

generally. Including the MSEL also allowed us to examine whether potential relations between 

VSL and VSTM performances remained significant after controlling for infants’ overall 

cognitive ability. 

Experiment 4 

Method  

 Infants participated in three tasks, an infant-controlled habituation task identical to 

Experiment 2 to test infants’ VSL, a ‘one-shot’ VSTM task designed by Oakes, Baumgartner, 

Barrett, Messenger, and Luck (2013), and the MSEL (Mullen, 1995). 

 Participants. Twenty-three healthy full-term 8-month-olds (8 females; M age 7 months 

29 days, range = 7;0 to 8;18) were recruited as in Experiments 1-3. Data from an additional 17 

infants were excluded from the final sample due to failure to habituate (n = 8), fussiness (n = 6), 

experimenter error (n = 2), or premature birth (n = 1).  

 Apparatus and stimuli. The apparatus and stimuli for the VSL task were identical to 

those of Experiment 2. For the VSTM task, an Eyelink 1000 eye tracker (SR Research) with a 

55.9-cm color monitor displayed stimuli and collected eye-tracking data. A PC computer running 

Experiment Builder software controlled stimulus presentation and sent markers stored with eye 

tracker data, allowing us to coordinate infants’ eye movements with the stimuli. The eye-tracking 
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system recorded point-of-gaze (POG) coordinates (spatial resolution within 1.0° visual angle) at 

500 Hz. 

 Each VSTM trial consisted of a sample array of two 9° x 9° colored squares centered 8° 

from the center of the monitor and presented on a gray background. The two colors were selected 

at random from a set of 8 colors: black, blue, brown, cyan, green, gold, pink, and purple. These 

colors were different from those of the VSL task to reduce the possibility of carry-over effects. 

After 500 ms, the two squares disappeared for 300 ms. Two squares then reappeared in the same 

locations, but the color of one square had changed to one of the remaining six colors. This test 

array remained visible for 1500 ms until the trial ended (Figure 2-4). The experimental script 

randomly selected the colors of the two squares in the sample array, determined whether the 

changing stimulus appeared on the left or right, and randomly selected the color for the changed 

square from the remaining six colors; the only constraint was that the changing stimulus could 

not be on the same side of the screen more than three times in a row. Each infant received a 

different order of stimuli, randomly determined within the constraints of the experimental design. 

Each trial lasted approximately 2300 ms.  

Procedure. All infants participated in the VSL task first. The procedure for the VSL task 

was identical to that of Experiment 2. Infants then took a 5-mintue break while the experimenter 

set up for the VSTM task. Interpreting VSL performance depended on completion of the entire 

task (as the critical “test” trials came at the very end of the task), whereas it was not critical (or 

expected) that infants would complete all 90 VSTM trials. Thus, infants completed the VSL task 

first to ensure that, if an infant became fussy and could not complete the VSTM task, we still had 

usable data from both tasks.  
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Figure 2-4. Sample sequence of events in the visual short-term memory task. 
 

 During the VSTM task, infants again sat on a caregivers’ lap approximately 60 cm from 

the eye-tracking monitor. POG was calibrated using Experiment Builder software. A series of 

small expanding and contracting circular stimuli accompanied by sounds were presented to 

attract infants’ attention to five locations that formed a crosshairs shape on the screen (bottom 

center, center, top center, center left, and center right). After the best possible calibration was 

obtained, caretakers were again instructed not to interact with their infant or attend to the 

monitor. An attention-getter was then presented to attract infants’ attention to the center of the 

screen. A trained observer not visible to the infant viewed the infant’s face on a television, fed by 

a signal from a video camera situated below the monitor presenting the stimulus. Each VSTM 

trial began when the experimenter pressed a key indicating that the infant was looking at the 

attention getter. The experimental session continued until the infant became fussy or stopped 

looking at the monitor, or until 90 VSTM trials had elapsed. Infants completed an average of 70 

VSTM trials (SD = 20) and provided usable eye-tracking data on an average of 62 trials (SD = 

20).  
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 All infants then completed the MSEL last because pilot data suggested that this was the 

task during which infants were least likely to become fussy. The MSEL was administered in the 

standardized format, with infants sitting in a caregiver’s lap at a table for the VR and FM tasks, 

and sitting on the floor for the RL tasks. The number of infants contributing useable data on each 

of the VSL, VSTM, and MSEL tasks is listed in Table 2-1.  

 Coding. For the VSTM task, two Areas of Interest (AOIs) were defined that 

corresponded to the test array’s changed and unchanged colored squares. AOIs were centered on 

the locations of the two squares and were 11° by 11° to allow for 1° of imprecision in the eye-

tracker’s localization of infants’ POG. The number and duration of fixations that fell within these 

AOIs were calculated for each infant using SR Research’s velocity-based algorithms. If, during 

the test array, an infant fixated the changed color reliably more than the unchanged color, we had 

strong evidence that they formed a VSTM representation of at least one item from the sample 

array. To calculate each infant’s preference for the changed color, we divided duration of looking 

within the AOI for the changed item by the duration of looking within both AOIs combined, for 

each trial. This change preference score was .50 (chance) if an infant looked equally to the 

changed and unchanged items, and was >.50 if an infant preferred the changed item. We 

calculated mean change preference score across trials both for individual infants and for infants 

as a group. 

 From the MSEL we obtained data on five subscales: Expressive Language (EL), 

Receptive Language (RL), Visual Reception (VR), Fine Motor (FM), and Gross Motor (GM). 

From these measures, standard scores for overall cognitive ability, non-verbal cognitive ability 

(NVCOG), and verbal cognitive ability (VCOG) were calculated for each infant and used for 

analysis. Based on prior literature, VCOG was calculated using the average of the EL and RL 
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Table 2-1 

Descriptive Statistics for the VSL, VSTM, and MSEL tasks in Experiment 4 

Task: Dependent Variable N Mean (SD) Range 

VSL: Novelty Preference 23 .490 (.094) .285-.635 

VSTM: Change Preference 22 .555 (.060) .416-.651 

MSEL: Receptive Language (RL) 16 53.1 (8.4) 38-62 

MSEL: Expressive Language (EL) 16 59.4 (10.2) 31-69 

MSEL: Visual Reception (VR) 16 53.4 (5.4) 44-61 

MSEL: Fine Motor (FM) 16 52.9 (8.8) 38-68 

MSEL: Nonverbal Cognitive Ability (NVCOG) 16 53.2 (5.0) 41.0-64.5 

MSEL: Verbal Cognitive Ability (VCOG) 16 56.3 (5.3) 46.5-63.5 

MSEL: Overall Cognitive Ability  16 54.7 (3.3) 49.75-61.25 

 
 
subscale T scores, and NVCOG was calculated using the average of the VR and FM subscale T 

scores (Jeste et al., 2014). Overall cognitive ability was calculated by averaging the T scores of 

the EL, RL, VR, and FM subscales. 

Results 

 VSL. Twenty-three 8-month-olds completed the VSL task. Similar to Experiment 2, 

infants’ novelty preference in Experiment 4 was not significantly different from chance (see 

Figure 2-2). Only 10 of the 23 infants showed a novelty preference greater than .50 (one-sample 

Wilcoxon signed-rank test, Z = 0.41, p = .681), and infants’ mean novelty preference (see Table 

2-1) was not significantly different from chance: t(22) = 0.50, p = .621. Thus, as a group, infants 

did not show evidence of successful VSL. 
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 VSTM. Twenty-three 8-month-olds completed the VSTM task; however, to reduce the 

likelihood of including colorblind infants in our sample, we excluded from the analyses reported 

here one infant whose maternal familial colorblindness history put him at significant risk of 

colorblindness.   

 Infants looked significantly longer to the changed color relative to the unchanged color 

during test arrays. Eighteen of the 22 infants had a change preference score >.50, which was 

significantly different from chance (one-sample Wilcoxon signed-rank test, Z = 3.20, p = .001). 

Moreover, as a group, infants’ mean change preference was significantly different from chance, 

t(21) = 4.25, p < .001, where chance equals 0.50 (see Table 2-1). These results suggest that, both 

individually and as a group, infants formed VSTM representations of at least one item from the 

sample arrays and maintained these representations across the 300 ms delays between the sample 

and test arrays. 

 MSEL. Sixteen 8-month-olds completed the MSEL. Averages and standard deviations 

for MSEL subscales and standard scores are shown in Table 2-1.  

 Relations between measures. Experiment 4 was designed to investigate possible factors 

constraining VSL performance. Although infants did not show evidence of VSL as a group, there 

was considerable variability in infants’ novelty preference scores (see Table 2-1). Thus, we 

examined whether individual differences in VSL performance were related to individual 

differences in VSTM and MSEL measures. Significant positive correlations between VSL and 

VSTM and/or MSEL measures would suggest that these factors may be constraining VSL 

performance at this age.  

 VSL and VSTM. We first examined the correlation between infants’ VSL and VSTM 

performances. We hypothesized that VSTM may be a critical factor supporting infants’ VSL, 
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such that we would find a significant positive relation between VSL and VSTM. Contrary to our 

predictions, however, VSL and VSTM were not significantly correlated: r = -.243, p = .276.  

 VSL and MSEL. Next, we examined the relation between VSL and infants’ overall 

cognitive ability, NVCOG, and VCOG, as measured by the MSEL. We hypothesized that 

cognitive ability might relate to and possibly inform differential VSL performance. Given the 

data from Experiments 1-3 suggesting that infants may not acquire via VSL the triplet structures 

that can be acquired via ASL, we were interested in whether VSL performance would be 

differentially related to VCOG versus NVCOG. That is, if differential VSL and ASL 

performances in infancy are due to modality constraints on SL, we hypothesized that we may 

find differential relations between VSL and VCOG versus NVCOG (Jeste et al., 2014). If, in 

contrast, SL is not modality specific, we hypothesized that we may find significant relations 

between VSL and overall cognitive ability, and similar relations between VSL and VCOG versus 

NVCOG. When analyzing the relations between VSL performances and MSEL measures, we 

controlled for infants’ age in months. This was done to control for the facts that (1) the ages of 

the participants in Experiment 4 ranged from 7 months 0 days to 8 months 18 days, and (2) 

MSEL standard scores are computed using different norms for 7-month-old (operationalized as 7 

months 0 days to 7 months 30 days) versus 8-month-old (operationalized as 8 months 0 days to 8 

months 30 days) infants (Mullen, 1995). 

 As can be seen in Figure 2-5, VSL novelty preference was positively correlated with all 

three VCOG, NVCOG, and overall cognitive ability. Only the relation between novelty 

preference and overall cognitive ability was statistically significant, controlling for age: novelty 

preference and cognitive ability, r = .535, p < .05; novelty preference and VCOG, r = .338, p = 

.237; novelty preference and NVCOG, r = .334, p = .243. The relations between VSL and these  



 67 

 

Figure 2-5. Individual infants’ overall cognitive ability, verbal cognitive ability (VCOG), and 
nonverbal cognitive ability (NVCOG) MSEL scores, plotted against infants’ VSL novelty 
preference in Experiment 4. 
 

three MSEL measures were not significantly different from one another: Hotelling’s ts(13) < 

1.04, ps > .319. 

 VSL, VSTM, and MSEL. A secondary purpose for including the MSEL in Experiment 4 

was to examine potential relations between VSL and VSTM, controlling for infants’ overall 

cognitive ability. However, when controlling only for overall cognitive ability, or for both 

overall cognitive ability and age, the relation between VSL and VSTM remained non-significant: 

rs < -.233, ps > .424. 
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Discussion  

 Experiment 4 was designed to investigate possible factors constraining VSL performance 

in infancy by having infants participate in a VSTM task and the MSEL, in addition to the VSL 

task from Experiment 2. Similar to Experiment 2, after habituating to a continuous sequence of 

shapes organized into triplets, infants did not discriminate between high- and low-probability 

shape sequences, suggesting that infants as a group were not sensitive to the statistical structure 

of the habituation sequence. We also examined whether individual differences in novelty 

preference were related to individual differences in VSTM and MSEL measures. Specifically, we 

hypothesized that VSTM may be a critical factor supporting infants’ VSL, such that we would 

find a significant positive relation between VSL and VSTM. Infants showed evidence of 

successful VSTM for colored shapes, both individually and as a group, however contrary to our 

predictions, VSTM and VSL performances were not significantly correlated.  

 The lack of a significant relation between measures of VSL and VSTM suggests that 

VSTM may not be a primary factor constraining VSL in infancy. Though some degree of VSTM 

must be necessary for VSL ability, it could be that by 8 months of age infants have sufficient 

VSTM ability such that VSTM performance is no longer the primary factor limiting VSL 

performance. That the 8-month-olds in Experiment 4 exhibited strong evidence of VSTM both 

individually and as a group seems to support this possibility.  

 It is also possible, however, that VSTM may be an important factor constraining infants’ 

VSL performance, but that the VSTM task employed in Experiment 4 did not allow us to detect 

this relation. For instance, it is possible that we did not detect a relation between VSL and VSTM 

performances simply due to infants’ overall strong VSTM performance and the accompanying 

dearth of individual differences in VSTM compared to VSL performances (see Table 2-1). 
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Alternatively, the VSTM task may have been a weak proxy for its intended construct. We used 

the Oakes et al. (2013) ‘one-shot’ VSTM task because the memory demands the task imposes on 

infants appear highly similar to those imposed by the VSL task – namely, representing colored 

shapes in memory for brief periods of time and constantly encoding new memories as new 

shapes are presented. However, there may be important memory demands in the VSL task that 

were not required by the VSTM task, such as encoding the shapes in addition to the colors of 

items, binding representations of items presented over time together in memory, or retaining the 

specific sequences of items. Future research could examine whether, with a more difficult or 

targeted VSTM task that may yield more meaningful individual differences in performance, a 

relation is found between VSTM and VSL performances. 

 In addition to examining the role of VSTM, we also hypothesized that cognitive ability 

might relate to and possibly inform differential VSL performance. Specifically, we hypothesized 

that VSL performance might either (1) be differentially related to VCOG versus NVCOG, 

supporting the domain specificity of SL ability in infancy, or (2) be related to overall cognitive 

ability and show similar relations to both VCOG and NVCOG, supporting the domain generality 

of VSL.  

 Our findings aligned with our second hypothesis: VSL novelty preference was positively 

correlated with all three VCOG, NVCOG, and overall cognitive ability, though only the 

correlation with overall cognitive ability was significant (controlling for age). These findings 

accord with previous research showing associations between visual perceptual learning ability 

and both concurrent and later cognitive skills (e.g., Colombo, Richman, Shaddy, Maikranz, & 

Blaga, 2004; Rose, Feldman, & Jankowski, 2009; Shafo, Conway, Field, & Houston, 2012; 

Thompson, Fagan, & Fulker, 1991). That VSL was not differentially related to VCOG versus 



 70 

NVCOG suggests that the processes underlying VSL ability may be similar to those underlying 

both verbal and nonverbal cognitive ability, suggesting that VSL performance may reflect 

domain general learning processes in early cognitive development. These results are limited by 

the correlational nature of Experiment 4, and by the relatively low number of participants that 

completed all three tasks. Nonetheless, the relations among measures reported here suggest that 

individual differences in VSL performance may be meaningful in terms of both VSL ability in 

particular and early cognitive development more broadly.  

General Discussion 

 The present series of experiments was designed to address two related questions. First, 

we asked whether infants acquire via VSL the same complexity of statistical structures that 

infants acquire via ASL. Specifically, we employed a triplet sequence with which 8-month-olds 

successfully detect statistical relations among aurally presented items, and asked: Do infants 

detect similar statistical relations when the triplet structure is instantiated in a visual shape 

sequence? Second, we examined possible factors constraining VSL in infancy. Specifically, we 

asked: Does infants’ VSL performance correlate with concurrent visual short-term memory 

and/or general cognitive ability? 

 Altogether, the present series of experiments suggests that, although 8-month-olds are 

able to distinguish triplet-structured from random visual sequences, detecting and responding to 

differences in TPs in triplet-based visual sequences is particularly challenging. The difference in 

infants’ performance on the random versus structured test (Experiment 3) compared to the high- 

versus low-TP tests (Experiments 1, 2, and 4) is important for understanding the extent and 

utility of VSL in infancy. Although discriminating structured from random sequences may 

involve sensitivity to some statistical information in the sequences, this discrimination does not 
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appear to result from sensitivity to conditional relations between items. Conditional relations are 

particularly informative statistics because they reflect the predictive power of one event with 

respect to another, and therefore may be critical not only for associative learning, but also for 

inference (Fiser & Aslin, 2002a; Krogh, Vlach, & Johnson, 2013). Insensitivity to conditional 

relations between visual items at an age at which infants show sensitivity to these relations 

between auditory items suggests that the information that can be learned via VSL may be limited 

compared to what can be learned via ASL. 

 Experiment 4 examined the possibility that VSTM ability may constrain VSL at 8 months 

of age. Infants exhibited strong evidence of VSTM for colored shapes, both individually and as a 

group, however no relation was found between VSTM and VSL performances, suggesting that 

VSTM is not the primary factor constraining 8-month-olds’ VSL ability.  

 An alternate possibility is that VSL and ASL abilities may be subserved by different 

mechanisms in infancy. This possibility is consistent with domain- and modality-specific views 

of SL (e.g., Conway & Christiansen, 2006). We examined possible differences in the relation 

between VSL and verbal versus non-verbal cognitive abilities in Experiment 4, to examine the 

domain generality versus specificity of VSL. VSL was positively correlated with both verbal and 

nonverbal cognitive abilities, suggesting that the processes underlying VSL are common to both 

of these domains. Nevertheless, at 8 months of age, the verbal cognitive abilities measured by the 

MSEL are arguably proto-linguistic abilities. It is possible that, if verbal cognition were tested at 

an older age at which measures of verbal cognition were more dependent on infants’ language 

production, the association between VSL and verbal cognition may differ from what was 

observed in the present study. Recent findings of relations between visual implicit learning and 

language ability in both adults (Conway, Bauernschmidt, Huang, & Pisoni, 2010) and infants 
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(Ellis, Gonzalez, & Deák 2014; Shafto, Conway, Field, & Houston, 2012), however, suggest that 

the present findings are not simply a reflection of the MSEL verbal subscales assessing proto-

linguistic abilities at 8 months of age.  

 Other possible explanations of infants’ limited VSL performance compared to what has 

been demonstrated previously with ASL tasks relate to the stimuli employed in these different 

tasks. The stimuli used in the present VSL task differ from typical ASL stimuli in at least three 

ways that could affect infants’ SL performances: (1) accord with the dominant presentation 

format outside the laboratory, (2) presentation rate, and (3) familiarity to infants. First, research 

suggests that SL operates optimally over the types of input that occur most frequently in the 

environment (see Krogh et al., 2013 for a review). In learners’ everyday environments, auditory 

information is conveyed temporally whereas visual information is primarily conveyed spatially. 

Research by Conway and Christiansen (2009) suggests that adults learned an artificial grammar 

presented in the auditory or visual modalities equally well when auditory input was presented 

temporally and visual input was presented spatially. Adults learned the grammar significantly 

less well when visual input was presented temporally. Thus, it is possible that infants performed 

poorly in the present VSL task because shapes were presented sequentially rather than spatially. 

Indeed, data from Kirkham et al. (2007) suggests that adding spatial information to a sequential 

VSL task may improve infants’ performance. The present series of experiments employed 

sequentially presented visual stimuli because (1) this is the presentation format employed by the 

majority of previous infant VSL studies, (2) we designed our task to be as similar as possible to 

the Saffran et al. (1996a) ASL task, and (3) the present study was designed to examine the limits 

of infants’ VSL ability. An intriguing question for future research is whether infants show 

successful VSL of triplet structures when stimuli are arrayed spatially.  
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 A second way in which our VSL stimuli differed from typical ASL stimuli is presentation 

rate. Auditory items in the Saffran et al. (1996a) study were presented at a rate of one syllable 

every 222 ms. In contrast, visual items in the present study were presented at a rate of one shape 

every 750 ms. Shapes were presented at this relatively slow rate because of the looming nature of 

the stimuli, which helped maintain infants’ visual engagement with the shape stream. However, 

as a consequence of this slower presentation rate, infants saw fewer visual stimuli and therefore 

received less statistical evidence during habituation in the present series of experiments (an 

average of 13 tokens of each triplet in Experiment 1, and 17 tokens of each triplet in experiments 

2 and 4) compared to familiarization in the Saffran, et al. study (45 tokens of each triplet). Thus, 

it is possible that infants in the present series of VSL experiments simply lacked sufficient 

statistical information to allow successful VSL performance.  

 A third way in which our VSL stimuli differed from typical ASL stimuli is in terms of 

familiarity to infants. ASL studies typically employ speech sounds, whereas the present VSL 

experiments employed geometric shapes. By 8 months of age, infants have likely had 

considerably more exposure to speech sounds than geometric shapes, making VSL stimuli less 

familiar than the typical ASL stimuli. Interestingly, recent studies report 7- to 9-month-olds’ 

sensitivity to TPs in visual event sequences involving human actors Roseberry et al. (2011) and 

cartoon-like characters (Stahl, Romberg, Roseberry, Golinkoff, & Hirsh-Pasek, 2014). These 

studies suggest that infants may indeed be capable of acquiring relatively complex statistical 

structures via VSL when stimuli are more familiar and possibly more engaging than those 

employed in the present series of experiments. It remains unclear whether infants’ performances 

in the Stahl et al. (2014) and Roseberry et al. (2011) studies were facilitated by the familiarity of 

the stimuli, by the complexity and attention-engaging nature of the stimuli, or both. Ongoing 



 74 

work in our lab is currently examining the contributions of these two factors to VSL 

performance, to better understand the factors that may facilitate VSL in infancy.  

 In sum, the present series of studies were designed to be as similar as possible to the 

Saffran et al. (1996a) ASL experiments, to examine whether infants can acquire via VSL 

structures similar to those acquired via ASL. In contrast to previous findings in the auditory 

modality, we found no evidence of infants’ sensitivity to TP statistics in visual triplet structures. 

It is possible that, had we employed visual stimuli other than sequences of shapes, we may have 

found evidence of successful VSL; however, the purpose of the present series of experiments 

was to examine the limits of and possible factors constraining VSL in infancy. Our results have 

important theoretical implications for SL ability across modalities in infancy and the mechanisms 

that may underlie SL performance. Future research should continue to examine both the limits of 

and the processes that facilitate SL in infancy.  
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Abstract 

Much research has documented learners’ ability to segment auditory and visual input into its 

component units. Two types of models have been designed to account for this phenomena: 

statistical models, in which learners represent statistical relations between elements, and 

chunking models, in which learners represent statistically coherent units of information. In a 

series of three experiments, we investigated how adults’ performance on a visual sequence-

learning task aligned with the predictions of these two types of models. Experiments 1 and 2 

examined learning of embedded items and Experiment 3 examined learning of illusory items. 

The pattern of results obtained was most consistent with the competitive chunking model of 

Servan-Schreiber and Anderson (1990). Implications for theories and models of statistical 

learning are discussed. 
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Statistical and Chunking Processes in Adults’ Visual Statistical Learning 

 The means by which humans acquire and represent knowledge is fundamental to 

cognitive science. One important mechanism shown to support learning across domains is 

learners’ ability to detect statistical associations among elements in a sensory array (e.g., Fiser & 

Aslin, 2001, 2002; Saffran, Newport, & Aslin, 1996a). Notably, this statistical learning (SL) 

ability has been demonstrated across the lifespan (e.g., Saffran, Aslin, & Newport, 1996b) and 

even across species (e.g., Toro & Trobalón, 2005). 

 Despite the scope of SL, the processes underlying SL remain unclear. Traditionally, SL 

has been conceptualized as sensitivity to statistical relations among elements. For instance, in 

their seminal studies of statistical word segmentation, Saffran et al. (1996a,b) exposed 

participants to a continuous stream of speech in an artificial language. After very limited 

exposure, participants showed evidence of segmenting the stream into its component words. 

Saffran et al. proposed that this ability might have resulted from computation of transitional 

probabilities (TPs) between syllables in the stream. Transitional probability (TP) is defined as the 

probability of event Y given event X, and is a measure of the strength with which X predicts Y. 

Saffran et al. hypothesized that learners could track TPs between adjacent syllables, using peaks 

in TP to group syllables into words, and dips in TP to identify breaks between words.  

 The view that SL occurs via computations has prevailed in literatures on auditory 

artificial language learning (e.g. Saffran et al., 1996a,b) and visual sequence (e.g., Fiser & Aslin, 

2002) and scene learning (e.g., Fiser & Aslin, 2001). Models instantiating such computational 

approaches to segmentation are typically SRNs (e.g., Elman, 1990), which learn and represent 

statistical relations between elements, but do not represent the units they segment.  

 Recently, there have been attempts to account for word segmentation with a different 
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type of model: chunking models (e.g., Frank, Goldwater, Griffiths, & Tenenbaum, 2010; Orbán, 

Fiser, Aslin, & Lengyel, 2008; Perruchet & Vinter, 1998), which propose that learners do 

represent the statistically coherent “chunks” of information from the input. Perruchet and 

Vinter’s (1998) PARSER model, for instance, assumes that elements perceived within one 

attentional focus are “chunked” into a new, larger representation. Representations of chunks 

presented repeatedly are strengthened in memory; chunks presented rarely are forgotten. Applied 

to Saffran et al.’s (1996a,b) task, PARSER claims that representations of chunks within words 

are strengthened (because they are repeated more frequently), while chunks spanning word 

boundaries are forgotten. Thus, chunking models like PARSER predict that segmentation 

operates according to very different means (representing units) than those proposed by statistical 

models (representing statistical relations, not units).  

 It is unclear which type of model best accords with how learners process and represent 

information. Recent studies have been designed to distinguish between these models by 

examining situations in which chunking and statistical models make contrasting predictions. 

These studies examine learning of (1) embedded items and (2) illusory items.  

 Embedded items are features that occur only within larger features (Fiser & Aslin, 2005). 

Statistical models assume learners represent statistical relations between all pairs of adjacent 

elements such that, as learners become familiar with a unit, distinguishing components 

embedded in that unit improves relative to random configurations of elements (see Giroux & 

Rey, 2009). Many chunking models, in contrast, assume that as learners become familiar with a 

unit, they become less able to distinguish components embedded in that unit from random 

configurations of elements (see Giroux & Rey, 2009). That is, representations of embedded items 

and their larger units compete in memory. Over time, memory for the unit gets strengthened 
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while competing representations of embedded items vanish. 

 These contrasting predictions concerning embedded items have been empirically tested 

with adults in auditory artificial language learning tasks (Giroux & Rey, 2009) and in visual 

scene learning tasks (Fiser & Aslin, 2005). Results from both studies align with the predictions 

of chunking models: while learners distinguish units (e.g., words) from random configurations of 

sounds or shapes, they are unable to distinguish embedded units from random configurations.  

 Illusory items are items that are never presented to participants, but have the same 

statistical structure as other items that are presented. For example, if tazepi, mizeru, and 

tanoru,are words presented in a speech stream, and TPs are .50 between syllables within these 

words (e.g., between ta and ze and between ze and ru), a statistically matched illusory word 

would be tazeru (Endress & Mehler, 2009). If learners only represent statistical relations 

between elements, words and illusory words should be indistinguishable. If learners chunk and 

represent entire words, however, they should fail to recognize illusory words. In an auditory 

artificial language learning task Endress and Mehler (2009) found that, while participants 

distinguished words from lower-TP “part-sequences,” they did not distinguish words from 

illusory words, suggesting that they represented statistical relations, rather than chunks. 

 Thus, studies of embedded and illusory items have yielded conflicting evidence regarding 

whether learners represent statistical relations or chunks. However, these studies employed 

widely varying methods, making it difficult to determine whether differences in performance 

across tasks were due to different underlying processes, or simply to methodological differences 

between studies.  

 The goal of the present series of experiments was to overcome this limitation and to 

extend previous work by investigating learning of both embedded (Experiments 1 and 2) and 
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illusory (Experiment 3) items in a visual sequence-learning (VSL) task. There are three main 

contributions of this work: (1) we contribute a variety of new human data about VSL under a 

range of experimental conditions; (2) we examine learning of both embedded and illusory items 

using highly comparable methods across tasks; and (3) we consider how the data fit with a 

variety of statistical and chunking models. 

Experiment 1 

Method 

 Participants. Thirty-six undergraduate students were recruited from Psychology classes 

at the University of California, Los Angeles. Participants were randomly assigned to participate 

in either a 10-minute (N = 18; 15 females; M age 20.2 years; range = 18.6 to 21.9) or 20-minute 

(N = 18; 14 females; M age 20.9 years; range = 18.5 to 29.1) familiarization condition. Data from 

an additional 16 participants were excluded from the final sample due to poor calibration or 

insufficient eye tracking data (n = 10), eye tracker failure (n = 1), or sleepiness (n = 5). All 

participants earned course credit for their participation. 

 Apparatus and stimuli. An Eyelink 1000 eye tracker with a 55.9-cm color monitor 

displayed stimuli and collected eye-tracking data. A PC computer running Experiment Builder 

software controlled stimulus presentation and sent markers stored with eye tracker data, allowing 

us to coordinate participants’ eye movements with the stimuli. The eye-tracking system recorded 

point-of-gaze (POG) coordinates (spatial resolution within 1.0° visual angle) at 500 Hz.  

 Stimuli were 10 colored shapes on a black background (Figure 3-1). Each shape loomed 

for 750 ms within one of 10 grid locations on the monitor. Shapes were randomly organized for 

each participant into four units: two triplets and two pairs (e.g. triplet 1: star, diamond, square; 

triplet 2: hourglass, circle, heart; pair 1: plus, arrow; pair 2: triangle, banner). For simplicity, the 
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Figure 3-1. Sample stimulus array used in Experiment 1. Only one shape appeared on the screen 
at a time. 
 

10 shapes will be referred to by the letters ABCDEFGHIJ, where ‘ABC’ and ‘DEF’ are the two 

triplets and ‘GH’ and ‘IJ’ are the two pairs. Shape-location pairings were randomized across 

participants, but consistent throughout the experiment for each participant.  

 The familiarization stimulus was a continuous sequence of pseudo-randomly ordered 

shape units. Units could not repeat and there were no breaks or delays between shapes or units 

such that TPs were 1.0 between shapes within units and .33 between shapes spanning unit 

boundaries. Test stimuli were 10, 2-shape sequences. Two sequences were pairs from the 

familiarization sequence (GH, IJ), two were embedded pairs (BC from ‘ABC’, EF from ‘DEF’), 

and six were part-sequences composed of the last shape of one unit and the first shape of a 

different unit (e.g., FA).  

 Procedure. Participants sat 60 cm from the computer monitor. POG was calibrated using 

Experiment Builder software. Participants viewed the familiarization sequence for either 10 (80 

repetitions of each unit presented) or 20 (160 repetitions of each unit) minutes, depending on 

their assigned condition. Participants were not given instructions other than to watch what 

appeared on the screen. 
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 Following familiarization, participants completed a brief training session to familiarize 

them with a two-alternative forced-choice (2AFC) task. The training session consisted of 4 trials 

and employed the same procedure as the test phase, except that letters were presented rather than 

shapes. The test phase consisted of 12, 2AFC trials. In each trial, participants viewed two 2-

shape sequences presented successively with a 750 ms pause between sequences. Participants 

were instructed to choose which was more familiar by clicking one of two corresponding mouse 

buttons. Half the test trials were “part vs. pair” trials that contrasted a part-sequence with a pair, 

and half were “part vs. embedded” trials that contrasted a part-sequence with an embedded pair. 

Part-sequences had no shapes in common with the pairs and embedded pairs against which they 

were contrasted. We presented test types in alternation, randomizing which we presented first 

and counterbalancing whether the part-sequence appeared first or second across trials. Table 3-1 

provides a full example of the test sequences. 

 
Table 3-1 
 
Sample test sequences contrasted in Experiment 1 

Part vs. Pair Contrasts Part vs. Embedded Contrasts 

Part-Sequence Pair Part-Sequence Embedded Pair 

FA GH FA BC 

JD GH JD BC 

FI GH FI BC 

CD IJ CD EF 

HA IJ HA EF 

CG IJ CG EF 

 

Results and Discussion 

 Saccade latencies. Saccade latencies during familiarization were analyzed to assess 
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implicit learning of sequence structure. Latencies were calculated as the time from shape onset 

until the initiation of the first eye movement that resulted in a fixation to that shape. Learning can 

be inferred if mean saccade latency to the first shapes of units – whose locations are not 

predictable from preceding shapes – are greater than mean saccade latency to the latter shapes of 

units (second shape of pairs, second and third shapes of triplets) – whose locations are 

predictable.  

 A 2 (familiarization duration: 10 vs. 20 mins.) x 2 (unit type: pair vs. triplet) x 2 (shape 

number: first vs. latter) repeated-measures ANOVA revealed only a main effect of shape 

number: F(1,34) = 15.25, p < .001, partial η2 = .31; see Figure 3-2A. Saccade latencies were 

significantly greater to the first shapes, relative to the latter shapes, of units, suggesting that 

participants were sensitive to the unit structure of the sequence in both familiarization conditions.  

 

 
 

Figure 3-2. Mean saccade latency to the first and latter shapes of units in Experiments 1 (A) and 
2 (B) by familiarization duration, and in Experiment 3 (C). Error bars represent standard error. 
 

 Button responses: Predictions. Both statistical and chunking models predict that 

successful VSL should be indicated by participants’ choosing pairs as more familiar than part-

sequences on part vs. pair trials. Statistical models also predict that participants should choose 
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(high TP) embedded pairs as more familiar than (low TP) part-sequences in part vs. embedded 

trials. In contrast, chunking models predict that participants may initially form chunks of all 2-

shape sequences, but that representations of pairs and triplets will be strengthened as 

familiarization increases, even as representations of part-sequences and embedded pairs within 

triplets are weakened due to competition with units. Thus, chunking models predict that 

participants should fail to distinguish between embedded pairs and part-sequences, particularly 

after the longer (20 minute) familiarization (see Giroux & Rey, 2009). 

 Button responses: Results. Mean percentage of pair selections on part vs. pair trials, and 

embedded pair selections on part vs. embedded trials, were computed for the two familiarization 

conditions (Figure 3-3A). A 2 (test type) x 2 (familiarization duration) ANOVA revealed only a 

main effect of test type (F[1,34] = 8.61, p < .01, partial η2 = .20). Participants chose pairs as 

more familiar than part-sequences more often then they chose embedded pairs as more familiar 

than part-sequences, regardless of familiarization condition. This finding may suggest that 

participants represented pairs more strongly than embedded pairs, as predicted by chunking 

models. Nevertheless, one-sample t-tests (this and all other t-tests reported were two-tailed) 

revealed that participants chose both pairs (t[35] = 9.21, p < .0001) and embedded pairs (t[35] = 

4.93, p < .0001) as more familiar than part-pairs significantly more often than chance (50%), as 

predicted by statistical models. 

 Together these results do not clearly support either statistical or chunking models. 

However, because pairs and embedded pairs were not directly contrasted, it is difficult to draw 

strong conclusions about whether or not these sequences were represented differently. 

Experiment 2 was designed to address this issue. Test trials in Experiment 2 contrasted pairs and 

part-sequences as in Experiment 1, but also directly contrasted embedded pairs and pairs. If  
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Figure 3-3. Mean percentage of button responses for the various test types in Experiments 1 (A) 
and 2 (B) by familiarization duration condition, and in Experiment 3 (C). Error bars represent 
standard error. The dashed line indicates chance performance. 
 

participants are equally familiar with pairs and embedded pairs, this suggests they primarily 

represent statistical relations between shapes. However, if participants choose pairs as more 

familiar than embedded pairs, this suggests participants represent some combination of both 

chunks and statistical relations (as embedded pairs were chosen as more familiar than part-

sequences in Experiment 1).  

Experiment 2 

Method  

 Participants. Thirty-six undergraduate students were recruited and randomly assigned to 

a 10-minute  (N = 18; 16 females; M age 20.6 years; range = 18.6 to 24.1) or 20-minute (N = 18; 

13 females; M age 20.3 years; range = 19.0 to 22.2) familiarization condition, as in Experiment 

1. Data from an additional 5 participants were excluded from the final sample due to sleepiness 

(n = 4) or failure to complete the experiment (n = 1). 

 Apparatus, stimuli, and procedure. The apparatus, stimuli, and procedure were 

identical to that of Experiment 1, with the following exceptions: (1) only two part-sequences  

 

10-min. familiarization 

20-min. familiarization 
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Table 3-2 
 
Sample test sequences contrasted in Experiment 2 

Part vs. Pair Contrasts Pair vs. Embedded Contrasts 

Part-Sequence Pair Pair Embedded Pair 

FA GH GH BC 

CD GH GH EF 

FA IJ IJ BC 

CD IJ IJ EF 

 

were used: FA and CD, and (2) the test phase consisted of only 8, 2AFC trials. Half were “part 

vs. pair” trials, and half were “pair vs. embedded” trials (Table 3-2).  

Results and Discussion 

 Saccade latencies. A 2 (familiarization duration) x 2 (unit type) x 2 (shape number) 

ANOVA revealed a main effect of shape number (F[1,34] = 9.63, p < .01, partial η2 = .22), and  

interaction of shape number and exposure duration (F[1,34] = 4.54, p < .05, partial η2 = .12); see 

Figure 3-2B. There were no other significant main effects or interactions. Post-hoc t-tests 

revealed that saccade latencies were significantly greater to the first shape of units in the 20-

minute (t[17] = 3.43, p < .01), but not in the 10-minute (t[17] = 0.75, p = .46)  familiarization 

condition. Saccade latencies to the first and latter shapes of units were not significantly different 

in the 10- and 20-minute conditions (ts[34] < 1.71, ps > .05).  

 These data suggest that participants were sensitive to the unit structure of the 

familiarization sequence after 20 minutes, but not 10 minutes, of exposure. It is unclear why this 

was the case, given that the familiarization phase was identical to that of Experiment 1, in which 

participants did show evidence of sensitivity to sequence structure after only 10 minutes. It could 

be that there was a ceiling effect among the participants in the 10-minute condition of 



 92 

Experiment 2. Previous research suggests that it typically takes a minimum of 150 ms for an 

adult to program an eye movement (Fischer, Biscaldi, & Gezeck, 1997). Participants may have 

already been near ceiling, with saccade latencies to the first shapes of units being only 169 ms on 

average (see Figure 3-2B), such that they were unable to show significantly reduced saccade 

latencies to the latter shapes. 

 Button responses. Figure 3-3B shows the mean percentage of pair selections on part vs. 

pair and pair vs. embedded trials. A 2 (test type) x 2 (familiarization duration) ANOVA revealed 

only a main effect of test type (F[1,34] = 10.53, p < .01, partial η2 = .23). Participants chose pairs 

as more familiar on significantly more trials when contrasted with part-sequences compared to 

when contrasted with embedded pairs, regardless of familiarization condition. Moreover, one-

sample t-tests revealed that participants chose pairs as more familiar than part-sequences 

significantly more often than chance (t[35] = 5.02, p < .0001), but did not choose pairs as more 

familiar than embedded pairs significantly more often than chance (t[35] = 0.68, p = .50). These 

findings suggest participants represented pairs and embedded pairs similarly, as predicted by the 

statistical approach. 

 Overall, the results of Experiments 1 and 2 investigating adults’ representation of 

embedded pairs in visual sequences suggest that participants represented statistical relations 

between items rather than chunks, a finding that contrasts with previous studies of embedded 

items conducted with auditory sequences (Giroux & Rey, 2009) and visual scenes (Fiser & 

Aslin, 2005). This difference is all the more striking given that our VSL task was designed to be 

as similar as possible to Giroux and Rey’s auditory SL task.  

 It may be that learners represent both statistical relations and chunks (even proponents of 

the statistical approach argue that SL produces some kind of psychological units; e.g., Saffran, 
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2001), raising questions as to the relation between statistical and chunking processes (see 

Perruchet & Pacton, 2006). Another possibility, however, is that the assumption made by some 

chunking models – that higher-order chunks always compete with and replace lower-order 

chunks – may be incorrect. If learners were able under certain circumstances to maintain 

representations of various orders of chunks simultaneously, such as chunks and the smaller 

embedded chunks they contain, this might help to explain participants’ performance in 

Experiments 1 and 2.  

 Servan-Schreiber and Anderson’s (1990) ‘competitive chunking’ model proposes that (1) 

learners may be able to represent both lower-order chunks and the higher-order chunks that 

contain them, and (2) the familiarity of a sequence depends on the number of stored chunks 

needed to describe it. Thus, when participants viewed pairs and embedded pairs at test in 

Experiment 2, these sequences may have seemed equally familiar because pairs and embedded 

pairs were each represented by a single chunk, not because participants represented their 

underlying TPs. Similarly, when participants viewed part-sequences and embedded pairs in 

Experiment 1, embedded pairs may have seemed more familiar because they were represented by 

a single chunk whereas part-sequences were not, since their component shapes did not occur 

together consistently. The data from Experiments 1 and 2 cannot distinguish between these two 

interpretations – that learners represented statistical relations, or represented both embedded 

chunks and their larger (triplet) chunks.  

 Thus, Experiment 3 employed an illusory sequence design to: (1) examine how adults 

represent illusory visual sequences, and (2) distinguish between the statistical and competitive 

chunking explanations of Experiments 1 and 2. An illusory design can achieve this second aim 

because statistical and competitive chunking models make different predictions concerning the  
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fate of illusory items.  

Experiment 3 

Method 

 Participants. Eighteen undergraduate students (N = 18; 14 females; M age 19.6 years; 

range = 15.6 to 28.5) were recruited as in Experiments 1 and 2. Data from an additional 4 

participants were excluded from the final sample due to poor calibration (n = 1), eye tracker 

failure (n = 1), or sleepiness (n = 2).  

 Stimuli. Stimuli were nine colored shapes that each loomed within one of 9 grid 

locations. Shapes were organized into six triplets, with each shape appearing in two triplets. The 

familiarization stimulus was a continuous sequence of pseudo-randomly ordered triplets. Triplets 

could repeat such that TPs were .50 between shapes within triplets and .33 between shapes 

spanning triplet boundaries. Triplets were organized such that two illusory triplets were created 

that had the same TP structure as triplets, but were never presented during familiarization (Figure 

3-4). Hereafter, the nine shapes will be referred to by the letters ABCDEFGHI, where the six 

triplets are ABF, DBC, AEC, GHF, DHI, GEI, and the two illusory triplets are ABC and GHI. 

 

 

Figure 3-4. Sample triplets and illusory triplets used in Experiment. 3. Numbers above arrows 
indicate TPs between shapes.  
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Test stimuli were 10, 3-shape sequences. Six sequences were triplets, two were illusory triplets, 

and two were part-sequences composed of the last shape of one triplet and the first shape of a 

different triplet. 

 Apparatus and procedure. The apparatus and procedure were identical to Experiments 

1 and 2, with the following exceptions: (1) participants viewed the familiarization sequence for 

18 minutes  (80 repetitions of each triplet presented), and (2) half of the test trials were “triplet 

vs. part,” and half were “triplet vs. illusory” trials (Table 3-3).  

 
Table 3-3 
 
Sample test sequences contrasted in Experiment 3 

Triplet vs. Part Contrasts Triplet vs. Illusory Contrasts 

Triplet Part-Sequence Triplet Illusory Triplet 

ABF IAE ABF ABC 

DBC FDH DBC ABC 

AEC IAE AEC ABC 

GHF FDH GHF GHI 

DHI FDH DHI GHI 

GEI IAE GEI GHI 

 

Results and Discussion 

 Saccade latencies. Saccade latencies to the first and latter shapes of triplets were not 

significantly different: t[17] = 0.94, p = .36 (see Figure 3-2C). Thus, participants showed no 

oculomotor evidence of implicit learning of sequence structure. This was likely due to TPs 

between shapes within units being .50 in Experiment 3 (compared to 1.0 in Experiments 2 and 

3), such that the latter shapes of units were not completely predictable from the previous shape, 

even if the triplet structure had been learned.  



 96 

 Button responses: Predictions. Both statistical and chunking models predict that 

successful VSL should results in triplets being more familiar than part-sequences. Statistical 

models also predict that triplets and statistically matched illusory triplets should seem equally 

familiar, whereas chunking models predict that triplets should seem more familiar because they 

are represented by a single higher-order chunk (e.g., ‘ABF’), whereas illusory triplets are 

represented by two lower-order chunks (e.g., ‘AB’, ‘BC’; Servan-Schreiber & Anderson, 1990) 

or no chunks at all (e.g., Fiser & Aslin, 2005). Even if illusory triplets are represented by two 

lower-order chunks, illusory triplets should seem relatively unfamiliar simply because a greater 

number of stored chunks are needed to describe them (Servan-Schreiber & Anderson, 1990). 

 Button responses: Results. A paired- samples t-test revealed that the percentage of trials 

on which participants chose triplets as more familiar (see Figure 3-3C) did not differ 

significantly when triplets were contrasted with illusory triplets versus part-sequences (t[17] = 

0.24, p = .81). Moreover, one-sample t-tests revealed that participants chose triplets as more 

familiar than both part-sequences and illusory triplets significantly more often than chance: 

ts(17) > 2.81, ps < .02. These findings suggest that learners represent visual sequences in terms 

other than statistical relations between items, as predicted by chunking models. 

General Discussion 

 The present series of experiments investigated processes of VSL. Specifically, we 

examined whether adults represent sequences in terms of chunks or statistical relations. We used 

highly comparable methods to examine performance on embedded and illusory item tasks that, in 

previous research, have suggested different underlying mechanisms. 

 Participants in Experiments 1 and 2 provided evidence of representing embedded pairs, 

contrary to the predictions of typical chunking models (e.g., Orbán et al., 2008), but consistent 
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with both statistical and competitive chunking models. Experiment 3 examined participants’ 

endorsement of illusory items to distinguish between statistical and competitive chunking 

explanations. Participants distinguished triplets from statistically-matched illusory triplets, 

suggesting that they represented sequences in terms of chunks rather than statistics. Only the 

Servan-Schreiber and Anderson (1990) competitive chunking model is able to account for the 

data obtained across all three experiments.  

 Yet, the present data contrast with findings from previous studies of embedded (Fiser & 

Aslin, 2005; Giroux & Rey, 2009) and illusory (Endress & Mehler, 2009) items. This may mean 

that current models of SL are inadequate, as no single model can account for performance across 

tasks and domains. However, it is also possible that the representations resulting from SL are 

task-dependent such that representations vary depending on characteristics of the information to 

be learned. Adults may, for instance, represent units and their embedded chunks when the 

quantity of information or complexity of the task is relatively low (e.g., Experiments 1 and 2), 

but may represent only the highest order of chunks when a greater quantity or complexity of 

information puts additional demands on attention and memory systems (e.g., Fiser & Aslin, 

2005). Further research is needed to examine these possibilities.  

 Regardless, the present experiments have important implications for theories and models 

of SL. Studies of chunking have a long history in the implicit learning literature, but have only 

recently been introduced to statistical learning research (Perruchet & Pacton, 2006). The present 

data suggest that our understanding of SL will profit from researchers continuing to consider the 

role chunking, particularly competitive chunking, may play in SL.  
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Abstract 

Much research has documented infants’ sensitivity to statistical regularities in auditory and 

visual inputs, however the manner in which infants process and represent statistically defined 

information remains unclear. Two types of models have been proposed to account for this 

sensitivity: statistical models, which posit that learners represent statistical relations between 

elements in the input; and chunking models, which posit that learners represent statistically-

coherent units of information from the input. Here, we evaluated the fit of these two types of 

models to behavioral data that we obtained from 8-month-old infants across two visual sequence-

learning experiments. Experiments examined infants’ representations of two types of structures 

about which statistical and chunking models make contrasting predictions: illusory sequences 

(Experiment 1) and embedded sequences (Experiment 2). In both experiments, infants 

discriminated between high probability sequences and low probability part-sequences, providing 

strong evidence of learning. Critically, infants also discriminated between high probability 

sequences and statistically-matched sequences (illusory sequences in Experiment 1, embedded 

sequences in Experiment 2), suggesting that infants represented statistically coherent chunks of 

elements from familiarization, rather than statistical relations between individual items. 

Together, these studies not only contribute substantial new data on infants’ visual statistical 

learning ability, of which there is currently little, but also suggest that the representations that 

result from infants’ visual statistical learning are best captured by chunking models.  
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When learning goes beyond statistics: Infants represent visual sequences in terms of chunks 

 How do learners make sense of their intricately structured auditory and visual 

environments? Previous research suggests that both infants and adults are able to identify 

statistically coherent pieces of information contained within larger sequences presented both 

aurally and visually (see Krogh, Vlach, & Johnson, 2012 for a review). This “statistical learning” 

ability may facilitate learners’ detection of important types of environmental structure. For 

instance, statistical learning is thought to help learners identify words in continuous speech, 

facilitating language learning (e.g., Saffran, 2001), and help learners segment continuous motion 

into discrete events, facilitating visual learning and categorization (e.g., Stahl, Romberg, 

Roseberry, Golinkoff, & Hirsh-Pasek, 2014).  

 Despite the scope and potential importance of statistical learning ability, the specific 

processes underlying statistical learning remain unclear. Recent research has investigated how 

two types of models of the mechanisms underlying statistical learning – statistical and chunking 

models – account for adults’ statistical learning performances (see Thiessen, Kronstein, & 

Hufnagle, 2013 for a review). Although the data are not entirely conclusive, the extant data 

suggest that adults’ statistical learning is best accounted for by chunking models (cf. Endress & 

Mehler, 2009). It remains unknown, however, which type of model best accounts for infants’ 

statistical learning performances. This is an important issue to address, as statistical learning is 

posited to underlying much early learning, including language acquisition. Moreover, examining 

possible statistical and chunking processes in infants’ statistical learning allows investigation of 

the extent to which the mechanisms underlying statistical learning are similar for infants and 

adults. 
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Statistical and Chunking Models of Statistical Learning 

 Two primary types of models have been developed to account for human statistical 

learning performance: statistical (or “transition-finding”) models and chunking (or “clustering”) 

models (Thiessen et al., 203). These models differ primarily in the representations they store in 

memory. Statistical models are typically instantiated with simple recurrent networks (SRNs) 

(e.g., Elman, 1990). These networks calculate and represent in memory statistical relations 

between items. For instance, one statistical relation that models (and human learners) may 

represent is transitional probability (TP). Transitional probability (TP) is defined as the 

probability of event Y given event X, and is a measure of the strength with which X predicts Y. 

Representing such a statistic would not only inform the model of the likelihood of two items 

occurring together, but would also allow the model to predict individual items based on previous 

items in a sequence. In this way, statistical models become sensitive to statistically coherent units 

of information contained within a sequence. Statistical models do not represent these units in 

memory, however; rather, they represent statistical relations between items.  

 Chunking models, in contrast, do represent statistically coherent units of information in 

memory. The mechanisms by which chunking models acquire these representations differ across 

models. Some of the most common chunking models are Bayesian models (e.g., Goldwater, 

Griffiths, & Johnson, 2006, 2009; Orbán, Fiser, Aslin, & Lengyel, 2008) and PARSER 

(Perruchet & Vinter, 1998). Despite their varying learning processes, the representations that 

result from chunking models are discrete, statistically coherent, “chunks” of information. For 

instance, given some input, the Goldwater et al. (2009) Bayesian model formulates a set of 

hypotheses about the potential segmentations of the input, then assesses the likelihood of those 

segmentations. Of the segmentations that are consistent with the input, the segmentation with the 
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highest prior probability is the optimal solution, and the resulting segmented units are stored in 

memory. In contrast, PARSER (Perruchet & Vinter, 1998) implements basic laws of attention, 

memory, and associative learning. Items perceived within one attentional focus are “chunked” 

into a representational unit. Representations of units whose component items co-occur regularly 

will be progressively strengthened in memory, while representations of units whose component 

items do not co-occur regularly are forgotten.  

Examining Model Fit to Human Data 

 Recently, research has investigated how well statistical and chunking models fit human 

data (e.g., Endress & Mehler, 2009; Fiser & Aslin, 2005; Frank, Goldwater, Griffiths, & 

Tenenbaum, 2010; Giroux & Rey, 2009; Orbán et al., 2008; Slone & Johnson, 2015c). Many of 

these studies have examined the representations that adults store following auditory or visual 

statistical learning tasks, and whether these representations are best captured by statistical or 

chunking models. Such studies investigate representations of two types of items. The first type is 

illusory (or “phantom”) units – units that are never presented to participants, but have the same 

statistical structure as other units that are presented. For example, if tazepi, mizeru, and 

tanoru,are words presented in a speech stream, and TPs are .50 between syllables within these 

words (e.g., between ta and ze and between ze and ru), a statistically matched illusory word 

would be tazeru (Endress & Mehler, 2009). Statistical models predict that units and illusory units 

should be indistinguishable because they are statistically equivalent. Chunking models, in 

contrast, predict that learners should fail to recognize illusory units because learners should not 

have extracted a chunk matching an illusory word from the input.  

 The second type of item researchers have investigated is embedded units – sub-units that 

occur only within larger units (Fiser & Aslin, 2005). In terms of linguistic materials, an 
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embedded item could be a group of syllables that occurs within a word, but never occurs 

independently (e.g., “eleph”, as in “elephant”) (Thiessen et al., 2012). Statistical models predict 

that, because learners represent statistical relations between all pairs of adjacent elements, as 

learners become familiar with a unit, distinguishing components embedded in that unit should 

improve relative to random configurations of elements. Many chunking models, in contrast, 

predict that as learners become familiar with a unit, they should become less able to distinguish 

components embedded in that unit from random configurations of elements (see Giroux & Rey, 

2009). That is, representations of embedded units and their larger units compete in memory. 

Over time, economy of representation suggests that memory for units should be strengthened 

while competing representations of completely embedded units should weaken (Thiessen et al., 

2013). 

 Five studies have recently investigated adults’ representations of illusory and embedded 

units, and the ability of various models to account for this performance. Specifically, these 

studies have investigated adults’ representations of illusory units presented in auditory sequences 

(Endress & Mehler, 2009) and visual sequences (Slone & Johnson, 2015c), and embedded units 

presented in auditory sequences (Giroux & Rey, 2009), visual sequences (Slone & Johnson, 

2015c), and visual scenes (Fiser & Aslin, 2005; Orbán et al., 2008). Although the data are not 

entirely conclusive, the extant data suggests that adults’ representations of these auditory and 

visual stimuli are best accounted for by chunking models (cf. Endress & Mehler, 2009). 

 It remains unknown, however, which type of model best accounts for infants’ statistical 

learning performances. The two major types of chunking models (Bayesian models and PARSER) 

rely on assumptions about learners’ priors (e.g. Goldwater et al., 2006, 2009) and attention, 

memory, and associative learning (Perruchet & Vinter, 1998) – factors that likely change between 
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infancy and adulthood. Thus, it is not clear whether or not the processes underlying statistical 

learning are similar for infants and adults. Although some studies acknowledge that infants and 

adults process information differently, they nevertheless assume that because infants and adults 

perform similarly in statistical learning experiments, these groups process information similarly 

(e.g., Endress & Mehler, 2009). Different types of processing (e.g., tracking statistical relations vs. 

storing chunks), however, can lead to similar performances on many statistical learning tasks.  

 The current set of experiments investigated whether statistical or chunking models  

best account for infants’ statistical learning performances. Because most work comparing these 

models’ fits to adult statistical learning data has employed visual stimuli, we focused on infants’ 

visual statistical learning. Experiment 1 examined infants’ learning of illusory visual sequences, 

and Experiment 2 examined infants’ learning of embedded visual sequences. Both experiments 

asked: Are infants’ representations of visual sequences best predicted by statistical models or 

chunking models?  

Experiment 1 

 Participants. Sixteen healthy full-term 8-month-olds (13 females; M age 7 months 25 

days, range = 6;30 to 8;17) were tested using visual familiarization. Data from an additional four 

infants were excluded from the final sample due to fussiness. Infants were recruited by letter and 

telephone from hospital records and given a small gift (a toy or baby t-shirt) for their 

participation.  

 Apparatus and stimuli. An Eyelink 1000 eye tracker (SR Research) with a 55.9-cm 

color monitor displayed stimuli and collected eye-tracking data.1 A PC computer running  

                                                
1 Prior to familiarization, infants’ point-of-gaze was calibrated using Experiment Builder software. Eye tracking data 
were recorded at 500 Hz during familiarization and test, but are not reported here as data quality was poor due 
primarily to the length of the study and infants’ movement during familiarization. 
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Figure 4-1. Sample spatial array and shapes presented in Experiments 1 and 2. Only one shape 
appeared at a time during familiarization and test. 
 

Experiment Builder software controlled stimulus presentation and collected looking time data.  

 Stimuli consisted of a five-location spatial array and 5 colored shapes (Figure 4-1). 

Infants viewed a continuous sequence of shapes, presented one at a time for 750 ms each and 

looming from 1.5 to 5.5 cm in height (about 8.0°-10.0° visual angle) within one of the five 

locations on the eye-tracking monitor. The familiarization sequence consisted of a continuous 

sequence of repetitions of three units: two shape triplets (e.g., triplet 1: red circle, blue square, 

orange diamond; triplet 2: green plus, red circle, orange diamond), and one shape pair (e.g., blue 

square, yellow triangle). Units could repeat and there were no breaks or delays between units 

such that units were defined solely by distinctions in TPs. Because each shape could appear in 

more than one unit, TPs between shapes within units were either 1.0 or .50, and TPs between 

shapes spanning unit boundaries were .33 (Figure 4-2A).  

 Procedure. Infants sat on a caretakers’ lap approximately 60 cm from the monitor. 

Caretakers were instructed not to interact with the infant or attend to the monitor. During 

familiarization and test, a trained observer who was unaware of the stimulus sequence viewed by 

the infant, observed the infant via a video feed from a camera placed directly below the monitor  
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Figure 4-2. Sample (A) familiarization sequence and (B) test sequences presented in Experiment 
1. Numbers above shapes represent TPs during familiarization. Brackets below shapes indicate 
the unit structure of the familiarization sequence. 
 

and coded looking behavior online. Prior to familiarization, an attention-getter was presented to 

attract infants’ attention to the center of the monitor. Familiarization began when the 

experimenter pressed a keyboard key to indicate that the infant was looking at the monitor. When 

the infant visually fixated away from the monitor, the experimenter released the key, causing the 

familiarization sequence to pause. If the infant returned attention to the monitor within 2 s, the 

familiarization sequence resumed. Otherwise, an attention-getter was shown to attract infants’ 

gaze back to the monitor, whereupon the experimenter immediately resumed the familiarization 

sequence.  

 Familiarization continued until the full five-minute familiarization sequence (50 

presentations of each unit) had been seen. Following familiarization, infants were presented with 

two blocks of three unique test trials, for a total of six test trials (see Figure 4-2B). Trial order 
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within each block was randomized. Each test trial consisted of a repetition of three shapes, with a 

750 ms pause separating repetitions. Triplet test trials presented the triplet with .50 TPs between 

shapes during familiarization (e.g., red circle, blue square, orange diamond). Illusory triplet test 

trials presented a three-shape sequence that was never seen in its entirety during familiarization,  

but which had .50 TPs between adjacent shapes during familiarization (e.g., orange circle, blue 

square, yellow triangle). Thus, triplet and illusory triplets test sequences were equivalent in terms 

of TPs between adjacent shapes. Part-sequence test trials presented the last shape of a triplet 

followed by the pair from familiarization (e.g., orange diamond, blue square, yellow triangle), 

such that TP was .33 between the first two shapes and .50 between the latter two shapes. Thus, 

part-sequences had lower internal TPs compared to triplets and illusory triplets. An attention-

getter was presented prior to the first test trial, and every subsequent trial, to center infants’ gaze. 

Each test sequence was presented until the infant visually fixated away from the monitor for over 

2 s or until 90 s had elapsed. 

 Coding and predicted results. Mean durations of looking to each of the three test types 

(triplet, illusory triplet, part-sequence) were computed. Looking time measures capitalize on the 

tendency for infants’ general interest in a visual stimulus to decline upon repeated exposure over 

the familiarization period. When followed by presentation of test sequences that either bear 

resemblance to the original stimulus (i.e., triplet from familiarization), or differ along one or 

more dimensions (i.e., illusory triplet, part-sequence), significantly different durations of looking 

to these test types indicates discrimination between them, whereas equal durations of looking to 

the test types suggests no discrimination. The present study used a familiarization design, rather 

than an infant-controlled habituation design, to equate infants’ exposure to the familiarization 

stimulus prior to test. One limitation of using familiarization rather than habituation, however, is 
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that we cannot accurately predict a priori whether infants will exhibit a familiarity or a novelty 

preference as an index of learning (see Hunter & Ames, 1988). Thus, while we predicted 

discrimination between test types, we did not have a priori predictions about the directions of 

infants’ preferences.  

 Both statistical and chunking models predict that successful learning should be indicated 

by significantly different durations of looking on triplet (high TP) compared to part-sequence 

(lower TP) test trials. Statistical and chunking models differ, however, in their predictions about 

infants’ relative looking durations on illusory triplet test trials.  Statistical models predict that 

infants should show similar durations of looking to triplet and illusory triplet test sequences 

because these sequences had equivalent TPs between adjacent shapes during familiarization (TPs 

= .50). In contrast, chunking models predict that infants should show different durations of 

looking to triplet and illusory triplet test sequences. That is, chunking models posit that, with 

enough exposure, learners should represent the highest-level units most strongly in memory. 

Thus, illusory triplets should seem relatively novel to infants because these units were never 

presented in their entirety during learning.  

Results and Discussion 

 Preliminary analyses revealed that the distributions of infants’ looking times to the three 

test types were somewhat positively skewed (M skewness = 0.81, SD = 0.63) and not normally 

distributed (M kurtosis = 1.53, SD = 0.86). Thus, we calculated log transformations of each 

infants’ mean looking duration to each test type. These log-transformed measures were less 

skewed (M skewness = -0.19, SD = 0.23) and more normally distributed (M kurtosis = -0.95, SD 

= 0.05) than were infants’ raw looking times, and were therefore used for all further analyses 

(Figure 4-3 shows raw looking times for ease of interpretation).  
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Figure 4-3. Infants’ mean looking duration to each of the three test types in Experiment 1. 
  

 A repeated measures analysis of variance (ANOVA) revealed a main effect of test type: 

F(1,15)  = 12.53, p < .01, partial η2 = .455. Planned paired samples t-tests (this and all 

subsequent t-tests were two-tailed) revealed that infants looked significantly longer during triplet 

test trials, compared to both part and illusory triplet test trials: ts(16) > 2.69, ps < .02, ds > 0.66. 

Looking duration did not differ significantly on part and illusory triplet test trials: t(15) = 2.05, p 

= .06, d = 0.51 (Figure 4-3). 

 Infants were able to discriminate triplets from both part-sequences and illusory triplets. In 

contrast to the predictions of statistical models, infants did not represent the familiarization 

sequence primarily in terms of TPs between adjacent items. Rather, infants discriminated 

between test sequences containing equal TPs (that is, between triplets and illusory triplets), 

suggesting that infants represented the familiarization sequence in terms of extracted units, not 

statistical relations.  
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 The above interpretation prioritizes relations between adjacent items on account of data 

suggesting that non-adjacent relations are more difficult for learners to identify compared to 

adjacent relations (Newport & Aslin, 2004). It is possible, however, that a statistical model 

allowing for computation of non-adjacent relations could also account for the data from 

Experiment 1. For instance, both triplet and illusory triplet test sequences had .50 TPs between 

adjacent shapes during familiarization. Nevertheless, triplet test sequences also had .50 TP 

between non-adjacent shapes during familiarization (i.e., red circle predicted orange diamond 

appearing two items later with .50 accuracy), whereas illusory triplet test sequences had .00 TP 

between non-adjacent shapes during familiarization (i.e., red circle never predicted yellow 

triangle appearing two items later). Additionally, part-sequences had .33 TP between non-

adjacent shapes during familiarization (i.e., orange diamond predicted yellow triangle appearing 

two items later with .33 accuracy). It is possible, therefore, that infants’ discrimination between 

triplet test trials and both illusory and part-sequence test trials could have resulted from infants’ 

representing statistical relations between non-adjacent shapes (either independently or in addition  

to representing relations between adjacent shapes), rather than representing chunks.  

 Experiment 2 was designed to address this possibility by examining infants’ 

representations of embedded sequences. In contrast to illusory sequences, embedded sequences 

can consist of only two items, such that only adjacent relations can be used to distinguish 

embedded sequences from other test sequences. If infants discriminate such embedded pairs 

from statistically matched non-embedded pairs in Experiment 2, this is further evidence in favor 

of chunking, rather than statistical models. If, however, without added non-adjacent statistical 

cues, infants do not discriminate embedded pairs from statistically matched non-embedded pairs, 
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this suggests that performance in Experiment 1 may in fact have resulted from representations of 

non-adjacent statistical relations.  

Experiment 2 

Method 

 Participants. Eighteen healthy full-term 8-month-olds (5 females; M age 8 months 9 

days, range = 7;7 to 8;27) were recruited as in Experiment 1. Data from an additional 10 infants 

were excluded from the final sample due to fussiness (n = 6), parental interference (n = 2), 

failure to look at the monitor (n = 1), or excessive squirming (n = 1).  

 Apparatus and stimuli. The apparatus and stimuli were identical to those of Experiment 

1, except for the unit structure of the familiarization sequence. In Experiment 2, the 

familiarization sequence consisted of a continuous sequence of repetitions of two units: a shape 

triplet (e.g. yellow triangle, blue square, orange diamond), and a shape pair (e.g. green plus, red  

circle). Units could repeat and there were no breaks or delays between units such that units were 

defined solely by distinctions in TPs. Because each shape appeared in only one unit, TPs 

between shapes within units were 1.0, and TPs between shapes spanning unit boundaries were 

.50 (Figure 4-4A).  

 Procedure. The procedure was identical to that of Experiment 1, with two exceptions. 

First, because only two units were presented in Experiment 2 (compared to three units in 

Experiment 1), infants saw 80 presentations of each unit (compared to 50 in Experiment 1) 

during the five-minute familiarization. Second, different test types were presented (Figure 4-4B). 

Pair test trials presented the pair from familiarization (e.g., green plus, red circle; TP=1.0), 

embedded pair test trials presented the latter two shapes of the triplet from familiarization (e.g., 

blue square, orange diamond; TP=1.0), and part-sequence test trials presented the last shape of  
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Figure 4-4. Sample (A) familiarization sequence and (B) test sequences presented in Experiment 
2. Numbers above shapes represent TPs during familiarization. Brackets below shapes indicate 
the unit structure of the familiarization sequence. 
 

the triplet followed by the first shape of the pair from familiarization (e.g., orange diamond, 

green plus; TP=.50). Thus, pairs and embedded pairs had equal TPs between shapes, and higher 

TPs than part-sequences.  

 Predicted results. Both statistical and chunking models predict that successful learning 

should be indicated by significantly different durations of looking on pair (high TP) compared to 

part-sequence (lower TP) test trials. Statistical and chunking models differ, however, in their 

predictions about infants’ relative looking durations on embedded pair test trials. Statistical 

models predict that infants should show similar durations of looking to pair and embedded pair 

test sequences because these sequences had equivalent TPs between shapes during 

familiarization (TP=1.0). In contrast, chunking models posit that representations of embedded 

pairs compete with representations of their larger triplets in memory such that embedded pairs 

may be represented relatively weakly compared to pairs (which are not embedded and therefore 
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do not compete with encompassing representations), resulting in different durations of looking to 

pair versus embedded pair test sequences.  

Results and Discussion 

 Preliminary analyses revealed that the distributions of infants’ looking times to all three 

test types were positively skewed (M skewness = 2.27, SD = 0.46) and not normally distributed 

(M kurtosis = 5.79, SD = 2.63). Thus, as in Experiment 1, we calculated log transformations of 

each infants’ mean looking duration to each test type. These log-transformed measures were less 

skewed (M skewness = 0.44, SD = 0.28) and more normally distributed (M kurtosis = -0.37, SD 

= -0.37) than were infants’ raw looking times, and were therefore used for all further analyses 

(Figure 4-5 shows raw looking times for ease of interpretation).  

 A repeated measures analysis of variance (ANOVA) revealed a main effect of test type: 

F(1,17)  = 5.00, p < .05, partial η2 = .227. Planned paired samples t-tests (this and all subsequent 

t-tests were two-tailed) revealed that infants looked significantly longer during both part- 

 
Figure 4-5. Infants’ mean looking duration to each of the three test types in Experiment 2. 
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sequence and embedded test trials, compared to pair test trials: ts(17) > 2.17, ps < .05, ds > 0.51. 

Looking duration did not differ significantly on embedded compared to part-sequence test trials: 

t(17) = 0.44, p = .67, d = 0.10 (Figure 4-5). 

 Infants were able to discriminate pairs from both part-sequences and embedded pairs. In 

contrast to the predictions of statistical models, infants did not represent the familiarization 

sequence primarily in terms of TPs between adjacent items. Rather, infants discriminated 

between test pairs containing equal TPs (that is, between pairs and embedded pairs), suggesting 

that infants represented non-embedded sequences differently (and likely more strongly) than 

embedded sequences, supporting the predictions of chunking models. Moreover, infants’ ability 

to discriminate sequences with equivalent statistical relations between adjacent items and no 

additional non-adjacent statistical cues, suggests that performance in Experiment 1 may also 

have been due to infants’ representations of chunks from familiarization, rather than non-

adjacent statistical relations. 

General Discussion 

 Investigations of model fit to human data are a necessary part of the effort to characterize 

human learning (Frank et al., 2010). The present experiments examined infants’ learning of two 

types of structures about which statistical and chunking models make contrasting predictions: 

illusory items (Experiment 1) and embedded items (Experiment 2). In both experiments, infants 

discriminated between units (i.e. triplets in Experiment 1, pairs in Experiment 2) and part-

sequences, providing strong evidence of learning. Infants also discriminated units from 

statistically matched illusory triplets (Experiment 1) and embedded pairs (Experiment 2), 

suggesting that infants represented statistically coherent chunks from familiarization, rather than 

statistical relations between individual items. Together, these studies not only contribute 
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substantial new data on infants’ visual statistical learning ability, of which there is currently 

little, but also suggest that the representations that result from infants’ visual statistical learning 

are best captured by chunking models.  

 As mentioned previously, the present experiments used familiarization, rather than infant-

controlled habituation, to equate infants’ exposure to the familiarization stimulus prior to test. 

Exposure was equated within each experiment because chunking models typically assume that 

the relative representational strengths of smaller units (e.g., embedded units) compared to their 

larger encompassing units changes over time, due to assumptions of economy of representation 

and competition between representations (Thiessen et al., 2013). Using familiarization rather 

than infant controlled habituation therefore helped to ensure that infants had: (1) substantial 

exposure to the familiarization stimuli (i.e., five minutes is much longer than infants typically 

expose themselves to these types of stimuli in habituation studies), and (2) equal amounts of time 

to form representations of the familiarization stimuli.  

 Nevertheless, one limitation of using familiarization rather than habituation is that we 

cannot accurately predict a priori whether infants will exhibit familiarity or novelty preferences 

as indices of learning (see Hunter & Ames, 1988). In both experiments, infants discriminated 

units from part-sequences, indicating that they learned the structure of the familiarization 

sequence, however infants showed different directions of preference in Experiments 1 and 2. The 

preference for part-sequences in Experiment 2 follows the pattern of many infant statistical 

learning experiments (e.g., Aslin, Saffran, & Newport, 1998; Saffran, Aslin, & Newport, 1996; 

Slone & Johnson, 2015a; Thiessen, Hill, & Saffran, 2005, Experiment 2) and is typically 

interpreted as a novelty preference for sequences that were not as strongly represented during the 

learning phase. The preference for units (triplets) in Experiment 1 has also been demonstrated in 
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some infant statistical learning experiments (e.g., Fiser & Aslin, 2002; Graf Estes, 2012, 

Experiment 1; Thiessen et al., 2005, Experiment 1), and is consistent with the notion that 

direction of preference depends on the complexity of the task, with a greater tendency to find 

familiarity preferences as task complexity increases (Hunter and Ames, 1988). 

 Several differences between the familiarization sequences in Experiments 1 and 2 likely 

increased the relative complexity and difficulty of Experiment 1, resulting in infants’ familiarity 

preference in this study. First, the familiarization sequence consisted of three units (two triplets 

and one pair) in Experiment 1 but only two units (one triplet and one pair) in Experiment 2. 

Second, shapes could appear in more than one unit in Experiment 1. This resulted in lower TPs 

between shapes within units in Experiment 1 (.50 TPs) compared with Experiment 2 (1.0 TPs), 

as well as smaller differences in TPs between adjacent items within units and adjacent items 

within part-sequences in Experiment 1 (triplets: .50-.50 TPs; part-sequences: .33-.50 TPs; see 

Figure 2B) compared with Experiment 2 (pair: 1.0 TPs; part-sequences: .50 TPs; see Figure 4B). 

Additionally, although infants viewed the familiarization sequence for the same duration (5 

minutes) in both experiments, infants saw a greater number of presentations of each unit in 

Experiment 2 (80 presentations of each unit) compared to Experiment 1 (50 presentations of each 

unit). Greater exposure to each unit in Experiment 2 may have resulted in a novelty preference 

due to habituation, whereas less exposure to each unit in Experiment 1 may have led infants to 

look longer to sequences more reminiscent of the familiarization stimuli.  

Comparison to Previous Literature  

 The present experiments add to a growing body of literature suggesting that infants are 

able to detect statistically coherent sequences of information contained within larger visual 

sequences (e.g., Kirkham, Slemmer, & Johnson, 2002; Marcovitch & Lewkowicz, 2009; Slone & 
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Johnson, 2015a; Stahl et al., 2014). These studies have primarily examined infants’ detection of 

pairs of shapes within a continuous sequence of shapes. The present findings contrast with a 

recent study suggesting 8-month-olds’ inability to represent the structure of visual sequences 

composed of triplets (Slone & Johnson, 2015b). It is possible that increased exposure to the 

learning sequence in the present experiments compared to those of Slone and Johnson (2015b) 

facilitated infants’ learning. It is also possible that the present familiarization structures were 

better learned because they consisted of both pairs and triplets, rather than only triplets as in 

Slone and Johnson (2015b). If infants are better at detecting units consisting of two rather than 

three shapes, infants’ learning of the pairs in the present experiments may have facilitated 

infants’ detection of the triplets. Additionally, the present experiments also contained spatial cues 

to sequence structure, whereas the Slone and Johnson (2015b) experiments presented each shape 

in the same central location. Future research could examine which of these factors may have 

facilitated learning in the present experiments by varying the length of familiarization, whether 

infants are exposed to triplets only or both pairs and triplets, and the spatial locations of shapes. 

Regardless, however, the present findings suggest that infants are able to detect triplet structures 

in visual sequences, given the right stimuli (see also Stahl et al., 2014).   

 Experiments 1 and 2 are the first to examine infants’ representations of illusory and 

embedded items and whether statistical or chunking models best capture those representations. 

That infants’ performances align most closely with the predictions of chunking models is 

consistent with many previous findings with adults (Fiser & Aslin, 2005; Giroux & Rey, 2009; 

Slone & Johnson, 2015c). Infants’ failure to distinguish pairs from embedded pairs in 

Experiment 2, however, contrasts with the findings of Slone and Johnson (2015c, Experiment 2), 

in which adults failed to distinguish between visual pair sequences and embedded pair 
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sequences. The familiarization sequence used in the present study was highly similar to that of 

Slone and Johnson (2015c), except for the number of units employed (one triplet and one pair in 

the present study’s Experiment 2; two triplets and two pairs in Slone & Johnson, 2015c). 

Moreover, infants’ and adults’ different performances across these two studies cannot be 

attributed to the number of presentations of each unit (80 presentations in both studies). Slone & 

Johnson (2015c) interpreted their results as evidence that adults maintained representations of 

both lower-order embedded pairs as well as the larger triplets that contained them, as has been 

suggested by at least one chunking model (Servan-Schreiber & Anderson, 1990). If this 

interpretation is correct, the present findings could suggest that infants processed visual 

sequences differently from adults, representing only the highest order units, rather than also 

representing lower-order embedded units. Future research should investigate this possibility to 

examine whether there are in fact differences in the representations that infants and adults 

generate via statistical learning.  

 Future research should also examine the representations that infants acquire from 

statistical learning of auditory sequences, and whether these are best reflected by statistical or 

chunking models. Some findings from auditory statistical learning studies suggest that infants 

treat the representations resulting from statistical learning as actual linguistic items (Saffran, 

2001), mapping them as labels for objects (e.g., Graf Estes, Evans, Alibali, & Saffran, 2007). 

These findings seem to indicate that infants may represent units of information from auditory 

statistical learning tasks, rather than statistical relations between items, as suggested by chunking 

models. However, past research with adults, and recent research with infants, suggests that 

statistical learning may operate differently across modalities (e.g., Conway & Christiansen, 

2005; Emberson, Conway, & Christiansen, 2011; Saffran, 2002; Slone & Johnson, 2015b). 
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Examining infants’ representations of illusory and embedded auditory items could help to 

determine whether learners represent statistical information similarly across modalities in 

infancy. Moreover, auditory statistical learning methods may provide additional information 

about infants’ representations than can be generated with visual methods. Auditory sequences are 

typically presented more rapidly than visual sequences, and infants can listen to auditory 

sequences while moving about, making it is easier to expose infants to greater amounts of 

auditory compared to visual information. This may allow researchers to examine chunking 

models’ predictions about how the relative representational strengths of embedded and non-

embedded units changes with increased exposure. 
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