
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Gadgets and Gaussians in Lattice-Based Cryptography

Permalink
https://escholarship.org/uc/item/8b40w7r8

Author
Genise, Nicholas James

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8b40w7r8
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Gadgets and Gaussians in Lattice-Based Cryptography

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Electrical Engineering (Communication Theory and Systems)

by

Nicholas James Genise

Committee in charge:

Professor Daniele Micciancio, Chair
Professor Young-Han Kim, Co-Chair
Professor Mihir Bellare
Professor Massimo Franceschetti
Professor Shachar Lovett
Professor Alon Orlitsky

2019

Copyright

Nicholas James Genise, 2019

All rights reserved.

The Dissertation of Nicholas James Genise is approved and is acceptable in

quality and form for publication on microfilm and electronically:

Co-Chair

Chair

University of California San Diego

2019

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . viii

Acknowledgements . ix

Vita . xi

Abstract of the Dissertation . xii

Chapter 1 Introduction . 1
1.1 Motivation . 1
1.2 Results . 2
1.3 Outline . 4

Chapter 2 Preliminaries . 5
2.1 Linear Algebra . 5
2.2 Lattices . 7
2.3 Discrete and Subgaussians . 8
2.4 Gadgets . 10

Chapter 3 Discrete Gaussian Sampling on Algebraic and Gadget Lattices 12
3.1 Introduction . 12
3.2 Background . 15

3.2.1 Gaussians and Lattices . 16
3.2.2 Cyclotomic Fields . 18

3.3 Sampling G-lattices . 20
3.3.1 Instantiation . 24
3.3.2 The Algorithm . 27
3.3.3 Implementation and Comparison . 32

3.4 Perturbation Sampling in Cyclotomic Rings . 33
3.4.1 Discrete Perturbation Algorithm for Power of Two Cyclotomics 34
3.4.2 General Cyclotomic Rings . 42

Chapter 4 The Lattice Gadget Toolkit . 45
4.1 Introduction . 45
4.2 Background . 50

4.2.1 Subgaussian Random Variables . 50
4.2.2 q-ary Lattices . 52

iv

4.3 Gadget Matrices . 54
4.4 Subgaussian Nearest Plane . 56
4.5 Subgaussian Gadget Decomposition . 58

4.5.1 Power-of-Base Case . 59
4.5.2 Arbitrary Modulus, Arbitrary Base . 61

4.6 Gadget Decoding . 64
4.7 Gadgets for the CRT Representation . 67

4.7.1 Decoding the CRT Gadget . 70
4.8 Toolkit Implementation and Its Application . 71

4.8.1 Software Implementation . 71
4.8.2 Optimized Variant of Key-Policy Attribute-Based Encryption 72

4.9 Experimental Results . 75
4.9.1 Subgaussian Gadget Decomposition . 76
4.9.2 Key-Policy Attribute-Based Encryption . 79

Chapter 5 Subgaussian Analysis for Lattice Trapdoors . 81
5.1 Introduction . 81
5.2 A Concentration Bound on Subgaussian Matrices with Exact Constants 81

5.2.1 Useful Lemmas . 82
5.2.2 A Berstein-type Bound . 84
5.2.3 Proof of Theorem 5.2.1 . 87
5.2.4 Experiments . 89
5.2.5 Applications . 91

Bibliography . 93

v

LIST OF FIGURES

Figure 3.1. A sampling algorithm for G-lattices when the modulus q is a perfect power
of the base b. The algorithm is implicitly parameterized by a base b and
dimension k. 21

Figure 3.2. Any scalar with an index out of range is 0, i.e. c−1 = z−1 = zk = 0. SAM-
PLEZt(σ ,c,σmax) is a discrete gaussian over Z exactly or approximately
with centers in [0,1) and a fixed truncated support Z∩ [c− t ·σmax,c+ t ·
σmax] (t is the tail-cut parameter). We denote x−bxc as bxe[0,1). 28

Figure 3.3. Measured clock cycles with q = {4.1 ·103,1.22 ·105,1.68 ·107,8.38 ·107,
4.30 ·109,9 ·1018} and s = 100 averaged over 100,000 runs. The clock cy-
cles for the last three moduli are {19.4,31.9,73.9} for GPV and {5.5,7.5,
13.1} for SAMPLEG with pre-computation. 32

Figure 3.4. Sampling algorithm SAMPLEPZ for integer perturbations where T = φn(T̃)
is a compact trapdoor over a power of two cyclotomic ring. Note, T̃i is a
row vector over Rn for each i ∈ {0,1}. The scalar z = (α−2− s−2)−1. 36

Figure 4.1. Pseudocode for the parallel algorithms given in Theorem 4.7.1. We let
g−1

i (·) denote either the subgaussian decomposition algorithm given in
Section 4.5 or a discrete Gaussian sampler. 69

Figure 4.2. Runtime baseline of subgaussian sampling rate for native uniformly random
integers (w.r.t a 60-bit modulus). When b = 2r, the modulo reduction in
digit decomposition is performed by simple bit shifting. When b is arbitrary,
the slower hardware modulo operation is used. 76

Figure 4.3. Comparison of sampling rates for CRT and multiprecision (MP) variants of
subgaussian gadget decomposition for ring elements with 4096 coefficients
and 60-bit CRT moduli at r = dlog2 be = 20. 77

Figure 4.4. Noise growth for GSW-type multiplication in the ring-based KP-ABE
variant (k = 180, n = 1024, b = 2). The base in the exponentiation is (mn)β ,
where m = k+2 = 182 and β describes the rate of noise growth. The slope
of the linear interpolation is β log2(mn). 78

Figure 5.1. Data from 50 random matrices of dimension m = 6144×n = 512 for each
distribution X . The third column is the expected singular value using each
distribution’s calculated CX : 1, 1/2π , and 1/4π for discrete/continuous
gaussians, U {−1,1}, and P respectively. 89

vi

Figure 5.2. Here X = {−1,1}. For each n = 50,100,200,500,1000, the experiment
sampled N = 50 random n by 32n matrices and averaged their largest
singular value. The measured constant CX approached 1/2π from below
as n increased (.92/2π, .96/2π, .97/2π, .99/2π, .99/2π). 91

Figure 5.3. The change in concrete security of the underlying SIS problem in MP12
when the trapdoor is drawn from Pm×n. We give the smallest BKZ block
size k achieving the δ needed to find a vector of length s

√
m in (a subspace

of) the lattice Λ⊥q (A). 92

vii

LIST OF TABLES

Table 3.1. Running time and storage of the (G-sampling) algorithm. G-Sampling
running times are scaled by a factor n to take into account that each sample
requires n independent calls to the underlying G-sampling operation. 13

Table 4.1. Comparison of performance results for our KP-ABE variant (in bold) vs. the
implementation in [39] (in parentheses). EVALCT* = EVALPK + EVALCT
corresponds to the scenario when the policy evaluation of public keys and
ciphertexts is done at the same time. 79

viii

ACKNOWLEDGEMENTS

I start by thanking those who helped me during my time at UCSD. They are not listed

in an order of contribution, but are split into those who offered academic advice and those

who offered personal advice. Of course, no partition is perfect and many of the academics

gave great guidance in general matters while friends and family often gave great guidance in

academic-related matters.

I am grateful for my advisor, Daniele Micciancio, for his guidance, motivation, high

expectations, and for showing me how to perform research. He took me on as a student from a

department other than his own, multiple years in the PhD program, and with no background in

his research area. From everything to sending me to the DARPA Safeware PI meeting (twice) to

consistent clear communications (even in times of academic chaos), Daniele exceeded his duties

as an adivsor.

I am grateful for the many professors at UCSD and the University of Michigan for

showing me the beautiful areas of cryptography, coding and information theory, and mathematics

in general. Further, I would like to thank the professors who gave me their guidance and honesty.

These include, but are not limited to, Mihir Bellare, Young-Han Kim, Ken Zeger, Shachar Lovett,

Massimo Franceschetti, Alex Vardy, Paul Siegel, Laura Balzano, Volker Elling, Kevin Xu, David

Winter, Demostheis Teneketzis, and Achilleas Anastasopoulos.

I am grateful for the researchers and my fellow interns at Visa Research, where I interned

during the summer of 2018 mentored by Yilei Chen and Pratyay Mukherjee. My experience at

Visa was the “shot in the arm” I needed at the time. I learned so much more about cryptography

than I thought possible during a summer internship. Everything from the (nearly daily) research

meetings with Yilei and Pratyay to our large group lunches, I deeply enjoyed my time at Visa.

I am grateful for the many friendships I have gained during my time at UCSD. The

number of graduate students who have impacted me are too many to list. Though, of particular

importance to my time at UCSD were Srinjoy Das, Geoffrey Ganzberger, Michael Klug, and

Sankeerth Rao.

ix

I would like to thank my family for the constant support during the challenging times of

the PhD. My mother and father always encouraged me to do well, and from them is where I first

learned the importance of high expectations for oneself. Further, my older brother, Ben, often

gave me a perspective I was missing when mulling over import decisions.

Lastly, I would like to thank my wonderful girlfriend Haley Richins for her unconditional

support. Her constant encouragement helped push me forward in challenging times.

Chapter 2 of this dissertation is reprinted as it appears (with minor modifications) from the

publication “Faster Gaussian Sampling for Trapdoor Lattices with Arbitrary Modulus,” presented

by this dissertation’s author at EUROCRYPT 2018 and is joint work with Daniele Micciancio.

Chapter 3 of this dissertation is reprinted as it appears (with minor modifications) from

the publication “Building an Efficient Lattice Gadget Toolkit: Subgaussian Sampling and More,”

presented by this dissertation’s author at EUROCRYPT 2019 and is joint work with Daniele

Micciancio, and Yuriy Polyakov.

x

VITA

2013 Bachelor of Science and Engineering, Electrical Engineering, University of Michi-
gan, Ann Arbor

2016 Master of Science, Electrical Engineering, University of California, San Diego

2019 Doctor of Philosophy in Electrical Engineering, University of California, San
Diego

FIELDS OF STUDY

Major Field: Electrical Engineering (Communication Theory and Systems).

xi

ABSTRACT OF THE DISSERTATION

Gadgets and Gaussians in Lattice-Based Cryptography

by

Nicholas James Genise

Doctor of Philosophy in Electrical Engineering (Communication Theory and Systems)

University of California San Diego, 2019

Professor Daniele Micciancio, Chair
Professor Young-Han Kim, Co-Chair

This dissertation explores optimal algorithms employed in lattice-based cryptographic

schemes. Chapter 3 focuses on optimizing discrete gaussian sampling on “gadget” and algebraic

lattices. These gaussian sampling algorithms are used in lattice-cryptography’s most efficient

trapdoor mechanism for the SIS and LWE problems: “MP12” trapdoors. However, this trapdoor

mechanism was previously not optimized and inefficient (or not proven to be statistically correct)

for structured lattices (ring-SIS/LWE), lattice-cryptography’s most efficient form, where the

modulus is often a prime. The algorithms in this chapter achieve optimality in this regime and

have (already) resulted in a drastic efficiency improvement in independent implementations.

xii

Chapter 4 digs deeper into the gadget lattice’s associated algorithms. Specifically, we

explore efficiently sampling a simple subgaussian distribution on gadget lattices, and we optimize

LWE decoding on gadget lattices. These subgaussian sampling algorithms correspond to a

randomized bit-decomposition needed in lattice-based schemes with homomorphic properties

like fully homomorphic encryption (FHE). Next, we introduce a general class of “Chinese

Remainder Theorem” (CRT) gadgets. These gadgets allow advanced lattice-based schemes to

avoid multi-precision arithmetic when the applications modulus is larger than 64 bits.

The algorithms presented in the first two chapters improve the efficiency of many lattice-

based cryptosystems: digital signature schemes, identity-based encryption schemes, as well as

more advanced schemes like fully-homomorphic encryption and attribute-based encryption.

In the final chapter, we take a closer look at the random matrices used in trapdoor lattices.

First, we revisit the constants in the concentration bounds of subgaussian random matrices. Then,

we provide experimental evidence for a simple heuristic regarding the singular values of matrices

with entries drawn from commonly used distributions in cryptography. Though the proofs in this

chapter are dense, cryptographers need a strong understanding of the singular values of these

matrices since their maximum singular value determines the concrete security of the trapdoor

scheme’s underlying SIS problem.

xiii

Chapter 1

Introduction

1.1 Motivation

A fundamental consequence of Shor’s algorithm [78] is the inevitable insecurity of

today’s number-theoretic cryptography if large-scale quantum computers are built. An entire

subfield of cryptography, which this dissertation lies, is dedicated to the advancement of efficient

cryptosystems that are secure even when the adversary is in possession of a quantum computer

(known as post-quantum cryptography). To date, lattice-based cryptography is the strongest

post-quantum candidate. A lattice is a group of periodic points in Euclidean space. Though

lattices were first used in cryptography to break cryptosystems [58], Ajtai [4] and Regev’s [75]

breakthroughs, respectively named the short integer solution problem (SIS) and the learning with

errors problem (LWE), demonstrated cryptographic building blocks from lattice problems which

admit proofs of average-case hardness from worst-case hardness assumptions. These proofs are

seemingly unique to lattices. In short, they provide strong evidence one can pick keys in certain

lattice-based schemes at random without worry.

Besides security against quantum attacks, another strength of lattices is the many ad-

vanced cryptosystems one can build from lattice assumptions, like SIS, LWE, and NTRU [56].

For a number of powerful cryptographic primitives, the only known constructions are based on

lattices. These schemes include fully homomorphic encryption [77, 44, 26, 25, 29, 28, 47] (where

a server can compute on encrypted data without the decryption key), and homomorphic digital

1

signatures [18, 50] (a secure method for verifying an experiment was honestly computed from a

public data set). In addition, lattices yield advanced constructions like identity-based encryption

(a user’s public key is simply their name/identity) [46], as well as fine-grained access schemes

like attribute-based encryption (ABE) [19] and constraint-hiding constrained pseudorandom

functions [21, 33] (schemes where a user’s key allows decryption of subsets of the encrypted

data), all of which are believed to be secure against quantum threats.

Today, there is a great effort to introduce specialized algorithms specifically aimed

at improving practical implementations [45, 22]. These specialized algorithms are mostly

used in advanced lattice-based schemes like fully homomorphic encryption and attribute-based

encryption. However, they often serve as building blocks used in simpler schemes like digital

signatures or identity-based encryption.

This dissertation improves the efficiency of many of these schemes through optimizing

the underlying lattice algorithms in the state-of-the-art lattice trapdoor procedures [66], as well as

optimizing the gadget-related algorithms at the heart of nearly all of lattice-based cryptography’s

schemes with advanced, homomorphic properties.

1.2 Results

Our first contribution is the optimization of trapdoor discrete gaussian sampler for the

SIS trapdoors of [66] for an arbitrary modulus q. Previously, the discrete gaussian sampling

algorithm for SIS trapdoors was only optimized when the modulus was a power of two, q = 2k.

This is undesirable, for advanced primitives can only be efficiently implemented in the ring

setting [64], where the modulus is large (polynomial-sized) prime or the product primes with

each prime around 64 bits. Specifically for this contribution, we are concerned with sampling

the gadget lattice, or “G-lattice,” which is, more or less, a bit-decomposition lattice with ideal

decoding properties that depends on the modulus q. The gadget sampler employs a novel idea:

factor the G-lattice’s basis into sparse, triangular matrices, sample a discrete gaussian on the first

2

matrix’s lattice, then use the second matrix as an efficient linear transformation.

Our next contribution is giving an efficient perturbation sampling algorithm [72] special-

ized over the ring setting [64]. This algorithm is an FFT-like [36] algorithm which computes

the FFO [41] matrix factorization on-the-fly resulting in less memory consumption than the

algorithm [41] which can be adapted to a discrete gaussian sampler. Further, we prove the

statistical correctness of our algorithm. This latter fact is crucial for applications, since the theo-

retical breakthrough of using discrete gaussian sampling in lattice trapdoors is that the preimages

statistically hide the trapdoor [46]. Our statistical analysis uses a new convolution theorem via

the Schur-complement decomposition of the lattice basis [80]. This analysis is represented in

Theorem 3.4.1. It avoids the technicalities of the standard discrete gaussian convolution theorem

[72] and is well-suited for our recursive algorithm. These contributions are given in-detail in

Chapter 3 and are published in [42].

Our next contribution is the optimization of gadget-lattice algorithms [66, 11]. These

include randomized bit-decompositions (subgaussian sampling) [10] and LWE decoding [66].

Both of these algorithms use the sparse matrix factorization from Chapter 3. The subgaussian

sampling algorithm follows the same algorithmic blueprint as the discrete gaussian sampler

introduced earlier in this dissertation: sample and map via the sparse matrices in the basis’

factorization. The distribution sampled is a simple randomized rounding version of Babai’s

nearest plane algorithm [13] where we round to the nearest plane with probability according to

the target’s distance from the plane.

In addition, we introduce a general set of gadgets specifically tailored for the Chinese

Remainder Theorem (CRT) setting. Specifically, the CRT setting is when a modulus is chosen

so homomorphic computations can be performed over the CRT isomorphism, in-parallel. This

allows implementations of advanced lattice-based schemes to keep arithmetic under the native

64 bits native in modern machines, hence avoiding multi-precision numbers, when the modulus

has primes factors all under 64 bits. This trick can be used further in the ring setting by factoring

the primes over the underlying ring of integers in the scheme [45]. These CRT gadget matrices

3

allow for parallel computations in gaussian sampling (using the algorithms from Chapter 3),

subgaussian sampling, and LWE decoding (the latter two algorithms are introduced in Chapter 4).

These CRT algorithms are crucial for the practical efficiency of lattice-based schemes since one

can merely increase the modulus (more memory and parallelism) while keeping efficient 64-bit

arithmetic. We implement our algorithms in the PALISADE library [73], an open source lattice

cryptography library. We demonstrate the practical impact of our algorithms by showing a nearly

300x speedup in an attribute-based encryption scheme’s ciphertext evaluation times [19]. These

contributions (gadget algorithms) are published in [43].

The last contribution is an in-depth analysis of the subgaussian matrices used in lattice-

based trapdoors [11, 66]. The underlying system parameters of many lattice-based schemes

depend on the trapdoor matrix’s largest singular value. Unfortunately, the state-of-the-art in sub-

gaussian analysis [79] has unknown constants floating around in its singular value concentration

bounds. This unknown constant directly affects the concrete security of the scheme since the

hardness of the underlying SIS problem scales with this singular value. Our contributions here

are two-fold: first to prove a concentration bound with exact constants, then we experimentally

evaluate the constants appearing in the commonly used distributions in lattice-based schemes.

These are presented in Chapter 5.

1.3 Outline

The next chapter covers basic definitions used throughout the dissertation. Then, Chap-

ter 3 includes the discrete gaussian sampling algorithms: gadget and perturbation sampling. Next,

we present the lattice gadget toolkit in Chapter 4. This includes the subgaussian sampling and

LWE decoding algorithms as well as the general class of CRT gadgets. Lastly, our subgaussian

matrix analysis is presented in Chapter 5.

4

Chapter 2

Preliminaries

2.1 Linear Algebra

The (forward) Gram-Schmidt orthogonalization of an ordered set of linearly independent

vectors B = {b1, . . . ,bk} is B̃ = {b̃1, . . . , b̃k} where each b̃i is the component of bi orthogonal

to span(b1, . . . ,bi−1) (and the backward GSO is defined as b†
i = bi ⊥ span(bi+1, . . . ,bn)). An

anti-cylic matrix is an n×n matrix of the form



a0 −an−1 . . . −a1

a1 a0 . . . −a2

...
...

an−1 an−2 . . . a0


.

For any two (symmetric) matrices Σ,Γ ∈ Rn×n, we write Σ� Γ if xT (Σ−Γ)x≥ 0 for all

(nonzero) vectors x ∈ Rn, and Σ � Γ if xT (Σ−Γ)x > 0. It is easy to check that � is a partial

order relation. Relations � and ≺ are defined symmetrically. When one of the two matrices

Γ = sI is scalar, we simply write Σ� s or Σ� s. A symmetric matrix Σ ∈Rn×n is called positive

definite if Σ� 0, and positive semidefinite if Σ� 0. Equivalently, Σ is positive semidefinite if

and only if it can be written as Σ = BBT for some (square) matrix B, called a square root of Σ

and denoted B =
√

Σ. (Notice that any Σ � 0 has infinitely many square roots B =
√

Σ.) Σ is

positive definite if and only if its square root B is a square non-singular matrix. When B is upper

5

(resp. lower) triangular, the factorization Σ = BBT is called the upper (resp. lower) triangular

Cholesky decomposition of Σ. The Cholesky decomposition of any positive definite Σ ∈ Rn×n

can be computed with O(n3) floating point arithmetic operations. For any scalar s, Σ� s if and

only if all eigenvalues of Σ are strictly greater than s. In particular, positive definite matrices are

nonsingular.

For any n×n matrix S and non-empty index sets I,J ⊆ {1, . . . ,n}, we write S[I,J] for

the |I|× |J| matrix obtained by selecting the elements at positions (i, j) ∈ I× J from S. When

I = J, we write S[I] as a shorthand for S[I, I]. For any nonsingular matrix S ∈ Rn×n and index

partition I∪ Ī = {1, . . . ,n}, I∩ Ī = /0, the I× I matrix

S/I = S[I]−S[I, Ī] ·S[Ī]−1 ·S[Ī, I]

is called the Schur complement of S[Ī], often denoted by S/S[Ī] = S/I. In particular, if S = A B

BT D

 then the Schur complement of A is the matrix S/A = D−BT A−1B. For any index set

I, a symmetric matrix S is positive definite if and only if both S[I] and its Schur’s complement

S/S[I] are positive definite.

Let Σ =

 A B

BT D

� 0. We can factor Σ in terms of a principal submatrix, say D, and its

Schur complement, Σ/D = A−BD−1BT , as follows:

Σ =

I BD−1

0 I


Σ/D 0

0 D


 I 0

D−1BT I

 .
The next two theorems regarding the spectra of principal submatrices and Schur comple-

ments of positive definite matrices are used in the analysis of our algebraic discrete Gaussian

sampling algorithms. In both theorems, λi is the ith (in non-increasing order, with multiplicity)

eigenvalue of a symmetric matrix.

6

Theorem 2.1.1 (Cauchy) For any symmetric matrix S ∈ Rn×n, I ⊆ {1, . . . ,n} and 1≤ i≤ |I|

λi(S)≥ λi(S[I])≥ λi+n−|I|(S).

Theorem 2.1.2 ([80, Corollary 2.3]) For any positive definite Σ ∈ Rn×n, I ⊆ {1, . . . ,n} and

1≤ i≤ |I|

λi(Σ)≥ λi(Σ/I)≥ λi+n−|I|(Σ).

In other words, the eigenvalues of principal submatrices and Schur complements of a positive

definite matrix are bounded from below and above by the smallest and largest eigenvalues of the

original matrix.

Theorem 2.1.3 (Geršgorin) Let M be an n×n matrix with complex entries. For each row i, let

ri be the sum of its non-diagonal entries’ magnitudes: ri = ∑ j 6=i |M(i, j)|. Then, the eigenvalues

of M are all in ⋃
i

{z ∈ C : |z−M(i, i)| ≤ ri}.

2.2 Lattices

A lattice is a discrete subgroup of Rn. Equivalently, a lattice Λ can be represented as

the set of all integer combinations of a basis B = [b1, · · · ,bk] ∈ Zn×k, Λ = {∑k
1 zibi : zi ∈ Z}=

L (B). Notice that any permutation of basis vectors is another lattice basis. In fact, any matrix

U ∈ GL(k,Z) gives a new basis B′ = BU. Hence, any lattice k > 1 has infinitely many basis

matrices. We only consider full-rank lattices (k = n). A lattice is an integer lattice if it is a

subgroup of Zn. The dual lattice of Λ, denoted as Λ∗, is the set Λ∗ = {z ∈ Rn : 〈z,Λ〉 ⊆ Z}.

Given a basis B for Λ, its dual basis is B−t which is also a basis for Λ∗. We will consider direct

sums of lattices, Λ = Λ1⊕·· ·⊕Λl and their dual lattices Λ∗ = Λ∗1⊕·· ·⊕Λ∗l . The number λi(Λ)

is the radius of the smallest ball containing i linearly independent lattice vectors.

7

Given a basis B = [b1, · · · ,bn] for a lattice Λ, its (forward) Gram-Schmidt orthogonal-

ization (GSO) is the set of vectors B̃ = [b̃1, · · · , b̃n] where b̃i is the component of bi orthogonal

to span(b1, · · · ,bi−1). The GSO is not another basis for the lattice in-general, but it gives us a

tiling of Rn given by Rn = ∪x∈Λ(x+P1/2(B̃)) where P1/2(B̃) := B̃ · (−1/2,1/2]n. Note that

the GSO depends on the order of the vectors given. We define the reverse order GSO analogously.

The algorithms presented in this dissertation will all be instantiations of Babai’s greedy decoding

algorithm known as the nearest plane algorithm [13].

Theorem 2.2.1 There is an algorithm which given B, B̃, t ∈ Rn returns the unique lattice point

in t+P1/2(B∗) in time O(n2) and memory O(n3)1.

2.3 Discrete and Subgaussians

Let A⊂ Rn be a discrete set, and let the (spherical) Gaussian function with width s and

center c ∈ Rn be ρs,c(x) = exp(−π‖x− c‖2/s2). Let ρs,c(A) = ∑y∈A ρs,c(y). The smoothing

parameter of a lattice [67] for some ε > 0, is dentoted as ηε(Λ), and it is defined as the minimum

s > 0 such that ρ(s ·Λ∗) ≤ 1+ ε . When s = 1 and c = 0, we denote this as ρ(·). Then, the

discrete Gaussian distribution has probability ρs,c(x)/ρs,c(A) for each x ∈ A. This distribution is

denoted as DA,s,c. Polynomial time discrete Gausisan sampling algorithms for general lattices

and their cosets, with width above the GSO length of the input basis (times a small factor,

ω(
√

logn) or O(
√

logn)), are given in [46, 27].

Subgaussian distributions

Subgaussian distributions are those on R which have tails dominated by gaussians [79].

An equivalent formulation is through a distribution’s moment generating function, and the

definition below is most-commonly used throughout lattice-based cryptography [66, 65].

1This assumes the GSO has entries each described in O(n) bits, but often we use floating point numbers in
implementations.

8

Definition 2.3.1 A random variable X over the reals is subgaussian with parameter s > 0 if for

all t ∈ R, it holds

E[e2πtX]≤ eπs2t2
.

From here we can derive the gaussian concentration bound.

Corollary 2.3.1 A subgaussian random variable, X, with parameter s > 0 satisfies

Pr{|X | ≥ t} ≤ 2exp(−πt2/s2)

for all t > 0.

Proof: Let δ ∈ R be arbitrary. Then,

Pr{X ≥ t}= Pr{exp(2πδX)≥ exp(2πδ t)} ≤ exp(−2πδ t) ·E[exp(2πδX)]

≤ exp(−2πδ t +πδ
2s2).

This is minimized at δ = t/s2, so we have

Pr{X ≥ t} ≤ exp(−πt2/s2).

The symmetric case, X ≤−t, is analogous and the proof is completed by a union bound. �

A random vector x over Rn is subgaussian with parameter α > 0 if 〈x,u〉 is subgaussian

with parameter α for all unit vectors u. If each coefficient of a random vector is subgaussian

with parameter α conditioned on the previous coefficients taking any values, then the vector is

subgaussian with parameter α .

Lemma 2.3.1 Let x be a discrete random vector over Rn such that each coordinate xi is subgaus-

sian with parameter αi given the previous coordinates take any values. Then, x is a subgaussian

vector with parameter maxi{αi}.

9

Proof: We expand the moment generating function:

E[exp(2πt 〈x,u〉)] = ∑
χ

Pr{x = (χ1, · · · ,χn)}exp(2πt 〈χ,u〉)

≤ exp(πt2
∑

i
α

2
i u2

i)

≤ exp(πt2 max
i

αi
2‖u‖2).

�

2.4 Gadgets

A gadget lattice is described by a matrix G ∈ Zn×nk
q and the lattice itself, often called

the “G-lattice,” is the set Λ⊥q (G) = {x ∈ Znk : Gx = 0 mod q}. All gadget matrices, G, in this

dissertation have the same block-diagonal form: G := In⊗ gt for some gt . This allows us to

focus on the smaller lattice Λ⊥q (gt) since

Λ
⊥
q (G) = Λ

⊥
q (g

t)⊕·· ·⊕Λ
⊥
q (g

t), n times.

The most common gadget is the power-of-b gadget gt := (1,b,b2, · · · ,bk−1) where k := dlogb qe.

This lattice has a simple basis

Bq =



b q0

−1 b q1

−1
. . . b qk−2

−1 qk−1


where (q0, . . . ,qk−1) = [q]kb = q is the base-b representation of the modulus q. We cheat when

q = bk and say q = (0, · · · ,0,b). Notice that for a fixed b,k, all gadget lattices have the same

10

k−1-dimensional sublattice generated by the basis’ first k−1 columns. Despite these lattices

being almost the same, this last dimension, defined by q, has a significant impact on the efficiency

of Babai’s nearest plane algorithm [13] on Λ⊥q (gt). This is because the reverse GSO of Bq is

dense whenever q 6= bk.

11

Chapter 3

Discrete Gaussian Sampling on Algebraic
and Gadget Lattices

3.1 Introduction

We present improved algorithms for gaussian preimage sampling using the lattice trap-

doors of [66], called “MP12 trapdoors” throughout this dissertation. For simplicity, we view the

trapdoor scheme through the lens of a hash-and-sign digital signature scheme [46]. The scheme’s

verification key is an SIS matrix A ∈ Zn×m
q (short and fat since m≥ n logq) and the signing key

is a randomly chosen matrix with small entries T. Signing is done by hashing a message with a

random salt H(m||r) = u ∈ Zn
q, and using the trapdoor to return a short, gaussian vector x ∈ Zm

satisfying1

Ax mod q = u & ‖x‖2 = “short”≤ β .

MP12 trapdoor sampling consist of two discrete gaussian sampling steps:

1. online discrete gaussian sampling on message-dependent shift of a public gadget lattice,

and

2. an offline perturbation sampling which only depends on the trapdoor T.

1We hide the trapdoor and gadget in A by sampling A,T together as A = [A′|G−A′T] mod q where A′ is a
truly random matrix. A is close to statistically random by the left-over hash lemma. Now, we can sign a message by
sampling a perturbation p and sampling a short y satisfying Gy = u−Ap mod q. The final signature is x := p+Ty.

12

Table 3.1. Running time and storage of the (G-sampling) algorithm. G-Sampling running times
are scaled by a factor n to take into account that each sample requires n independent calls to the
underlying G-sampling operation.

MP12 MP12 This work
modulus q 2k any any
G-Sampling precomp. — O(log3 q) —
G-Sampling space O(logq) O(log2 q) O(logq)
G-Sampling time O(n logq) O(n log2 q) O(n logq)

Optimizing the online stage is most crucial for applications since we can always precompute and

store perturbations (whereas there are qn different possible signatures u).

Contribution

We present a new algorithm for the online sampling stage capable of handling any

modulus q (including the large prime moduli required in the ring setting) while achieving the

same level of performance of the specialized discrete gaussian algorithm of [66] for a power-of-

two modulus q = 2k. This improves the running time of [66] for arbitrary modulus from cubic

log3 q (or quadratic log2 q, using precomputation and a substantial amount of storage) to just

linear in logq and with minimal storage requirements. These G-sampling improvements are

summarized in Table 3.1.

The second contribution of this chapter is an optimized discrete gaussian sampling on

structured lattices, or equivalently an efficient algorithm to sample the integer lattice with a

structure covariance. The covariances in MP12’s ring-SIS/LWE perturbations have blocks

corresponding to polynomial multiplication over a finite-dimensional polynomial ring, R =

Z[x]/(xn +1). A similar algorithm can be adapted from Ducas and Prest [41], though without a

proof of statistical correctness. Further, the algorithm presented here is more memory efficient

(linear space consumption versus quasi-linear space) than the adapting from Ducas and Prest’s

algorithm [41]. We emphasize that the proof of statistical correctness is critical for applications

since the preimages provided by MP12 cannot leak information about the trapdoor. Otherwise,

13

the attacks of Nguyen and Regev could recover the trapdoor [69].

Technical details

The main idea behind our efficient gaussian sampling algorithm is quite simple. Surpris-

ingly, the commonly used basis of the (power-of-b) gadget lattice, denoted Bq, has a factorization

allowing us to efficiently sample a different lattice:

Bq = BD.

Both B and D are sparse and triangular, so we can sample a discrete gaussian on the G-lattice by

1. sampling a discrete gaussian on the lattice generated by D,

2. and apply B as a linear transformation.

The matrix D has entries in [0,1], so we can sample a narrow discrete gaussian on the lattice

generated by D, and the matrix B has small entries, so the width of the distribution is not

increased by much when we use B as a linear transformation. This also applies when q = bk

since D = Ik when q = bk, but the algorithm of Micciancio and Peikert [66] is much simpler

in this case. Further, we add a perturbation, like Peikert’s algorithm [72], to get a spherical

sample. We have this perturbation step not for security but for efficiency in generating the offline

perturbations.

Next, our algebraic perturbation algorithm follows the simple recursive structure of

fast-Fourier transform [36]. That is, we view the n-dimensional ring R = Z[x]/(xn +1) as a two

dimensional module over the smaller n/2-dimensional ring. Algorithmically, this is done to a

change of basis corresponding to the Schur complement [80] and a convolution [72].

The actual steps are quite technical. Though, we needed to prove a new convolution

theorem suited more towards these Schur complement convolutions. We emphasize that a

proof of statistical correctness is crucial for applications, since we need to trapdoor samples to

statistically hide the trapdoor [46].

14

In addition, we sketch how one would compute the perturbations in the canonical embed-

ding for non-power-of-two cyclotomic rings. The algorithm is much simpler in the canonical

embedding due to its diagonal structure of multiplication matrices.

3.2 Background

We denote the complex numbers as C, the real numbers as R, the rational numbers as

Q, and the integers as Z. A number is denoted by a lower case letter, z ∈ Z for example. We

denote the conjugate of a complex number y as y∗. When q is a positive integer, logq is short for

its rounded up logarithm in base two, dlog2 qe. A floating point number with mantissa length m

representing x ∈R is denoted as x̄. The index set of the first n natural numbers is [n] = {1, . . . ,n}.

Vectors are denoted by bold lower case letters, v, and are in column form (vt is a row vector)

unless stated otherwise. The inner product of two vectors is 〈x,y〉= xty. We denote matrices

with bold upper case letters B or with upper case Greek letters (for positive-definite matrices).

The transpose of a matrix is Bt . The entry of B in row i and column j is denoted Bi, j. Unless

otherwise stated, the norm of a vector is the `2 norm. The norm of a matrix ‖B‖= maxi ‖bi‖ is

the maximum norm of its column vectors. Given two probability distributions over a countable

domain D, the statistical distance between them is ∆SD(X ,Y) = 1
2 ∑ω∈D |X(ω)−Y (ω)|. In order

to avoid tracing irrelevant terms in our statistical distance computations, we define ε̂ = ε +O(ε2).

We denote a random variable x sampled from a distribution D as x← D . A random

variable distributed as D is denoted x ∼ D . We denote an algorithm A with oracle access to

another algorithm B (distribution D) as A B (A D).

The max-log, or ML, distance between two distributions was recently introduced by [68]

in order to prove tighter bounds for concrete security. The ML distance between two discrete

distributions over the same support, S, as

∆ML(P,Q) = max
x∈S
| lnQ(x)− lnP(x)|.

15

Let P,Q be distributions over a countable domain again and let S be the support of P .

The Rényi divergence of order infinity of Q from P is

R∞(P||Q) = max
x∈S

P(x)
Q(x)

.

Rényi divergence is used in [14] to yield a tighter security analysis than one using statistical

distance.

3.2.1 Gaussians and Lattices

A lattice Λ ⊂ Rn is a discrete subgroup of Rn. Specifically, a lattice of rank k is the

integer span L (B) = {z1b1 + · · ·+ zkbk | zi ∈ Z} of a basis B = {b1, . . . ,bk} ⊂ Rn (k ≤ n).

There are infinitely many bases for a given lattice since right-multiplying a basis by a unimodular

transformation gives another basis. The dual lattice of Λ, denoted by Λ∗, is the lattice {x ∈

span(Λ)| 〈x,Λ〉 ⊆ Z}. It is easy to see that B−t is a basis for L (B)∗ for a full rank lattice (n = k).

The n-dimensional gaussian function ρ : Rn→ (0,1] is defined as ρ(x) := exp(−π‖x‖2).

Applying an invertible linear transformation B to the gaussian function yields

ρB(x) = ρ(B−1x) = exp(−π ·xt
Σ
−1x)

with Σ = BBt � 0. For any c ∈ span(B) = span(Σ), we also define the shifted gaussian function

(centered at c) as ρ√
Σ,c(x)= ρ√

Σ
(x−c). Normalizing the function ρB,c(x) by the measure of ρB,c

over the span of B gives the continuous gaussian distribution with covariance Σ/(2π), denoted

by D√
Σ,c. Let S ⊂ Rn be any discrete set in Rn, then we define ρ√

Σ
(S) := ∑s∈S ρ√

Σ
(s). The

discrete gaussian distribution over a lattice Λ, denoted by D
Λ,
√

Σ,c, is defined by restricting the

support of the distribution to Λ. Specifically, a sample y←D
Λ,
√

Σ,c has probability mass function

ρ√
Σ,c(x)/ρ√

Σ,c(Λ) for all x ∈ Λ. Discrete gaussians on lattice cosets Λ+ c, for c ∈ span(Λ), are

defined similarly setting Pr{y← D
Λ+c,

√
Σ,p} = ρ√

Σ,p(y)/ρ√
Σ,p(Λ+ c) for all y ∈ Λ+ c. For

16

brevity we let D
Λ+c,

√
Σ,p(y) := Pr{y← D

Λ+c,
√

Σ,p}.

For a lattice Λ and any (typically small) positive ε > 0, the smoothing parameter ηε(Λ)

[67] is the smallest s > 0 such that ρ(s ·Λ∗)≤ 1+ε . A one-dimensional discrete gaussian with a

tail-cut, t, is a discrete gaussian DZ,c,s restricted to a support of Z∩ [c− t · s,c+ t · s]. We denote

this truncated discrete gaussian as Dt
Z,c,s. In order to use the ML distance in Section 3.3, we

will restrict all tail-cut discrete gaussians to a universal support of Z∩ [c− t · smax,c+ t · smax] for

some smax.

Lemma 3.2.1 ([46, Lemma 4.2]) For any ε > 0, any s≥ ηε(Z), and any t > 0,

Pr
x←DZ,s,c

[|x− c| ≥ t · s]≤ 2e−πt2
· 1+ ε

1− ε
.

More generally, for any positive definite matrix Σ and lattice Λ ⊂ span(Σ), we write
√

Σ ≥ ηε(Λ), or Σ � η2
ε (Λ), if ρ(

√
Σ

t ·Λ∗) ≤ 1+ ε . The reader is referred to [67, 46, 72] for

additional background on the smoothing parameter.

Here we recall two bounds and a discrete gaussian convolution theorem to be used later.

Lemma 3.2.2 ([46, Lemma 3.1]) Let Λ⊂ Rn be a lattice with basis B, and let ε > 0. Then,

ηε(Λ)≤ ‖B̃‖
√

log(2n(1+1/ε))/π.

Lemma 3.2.3 ([72, Lemma 2.5]) For any full rank n-dimensional lattice Λ, vector c ∈ Rn, real

ε ∈ (0,1), and positive definite Σ� η2
ε (Λ),

ρ√
Σ
(Λ+ c) ∈

[
1− ε

1+ ε
,1
]
·ρ√

Σ
(Λ).

Theorem 3.2.1 ([72, Theorem 3.1]) For any vectors c1,c2 ∈ Rn, lattices Λ1,Λ2 ⊂ Rn, and

positive definite matrices Σ1,Σ2 � 0, Σ = Σ1 +Σ2 � 0, Σ
−1
3 = Σ

−1
1 +Σ

−1
2 � 0, if

√
Σ1 � ηε(Λ1)

17

and
√

Σ3 � ηε(Λ2) for some 0 < ε ≤ 1/2, then the distribution

X = {x | p← D
Λ2+c2,

√
Σ2
,x← D

Λ1+c1,
√

Σ1,p}

is within statistical distance ∆(X ,Y)≤ 8ε from the discrete gaussian Y = D
Λ1+c1,

√
Σ
.

Below we have the correctness theorem for the standard, randomized version of Babai’s

nearest plane algorithm. The term statistically close is the standard cryptographic notion of

negligible statistical distance2. We emphasize that the algorithm reduces to sampling DZ,s,c.

Theorem 3.2.2 ([46, Theorem 4.1]) Given a full-rank lattice basis B ∈ Rn×n, a parameter

s≥‖B̃‖ω(
√

logn), and a center c∈Rn, there is an O(n2)-time, with a O(n3)-time preprocessing,

probabilistic algorithm whose output is statistically close to DL (B),s,c.

3.2.2 Cyclotomic Fields

Let n be a positive integer. The n-th cyclotomic field over Q is the number field Kn =

Q[x]/(Φn(x)) ∼= Q(ζ) where ζ is an n-th primitive root of unity and Φn(x) is the minimal

polynomial of ζ over Q. The nth cyclotomic ring is On = Z[x]/(Φn(x)). Let ϕ(n) be Euler’s

totient function. Kn is a ϕ(n)-dimensional Q-vector space, and we can view Kn as a subset of

C by viewing ζ as a complex primitive n-th root of unity.

Multiplication by a fixed element f , g 7→ f · g, is a linear transformation on Kn as a

Q-vector space. We will often view field elements as ϕ(n)-dimensional rational vectors via the

coefficient embedding. This is defined by f (x) = ∑
ϕ(n)−1
i=0 fixi 7→ (f0, · · · , fϕ(n)−1)

t mapping a

field element to its vector of coefficients under the power basis {1,x, · · · ,xϕ(n)−1} (or equivalently

{1,ζ , · · · ,ζ ϕ(n)−1}). We can represent a field element as the matrix in Qϕ(n)×ϕ(n) representing

the linear transformation by its multiplication in the coefficient embedding. This matrix is called

2Precisely, a function f : N→ R≥0 is negligible if for every c > 1 there exists an N such that for all n > N,
f (n)< n−c.

18

a field element’s coefficient multiplication matrix. When n is a power of two, an element’s

coefficient multiplication matrix is anti-cyclic.

An isomorphism from the field F to the field K is a bijection θ : F → K such that

θ(f g) = θ(f)θ(g), and θ(f + g) = θ(f) + θ(g) for all f ,g ∈ F . An automorphism is an

isomorphism from a field to itself. For example, if we view the cyclotomic field Kn as a subset

of the complex numbers, then the conjugation map f (ζ) 7→ f (ζ)∗ = f (ζ ∗) is an automorphism

and can be computed in linear time O(n). In power-of-two cyclotomic fields, the conjugation of

a field element corresponds to the matrix transpose of an element’s anti-cyclic multiplication

matrix.

Another embedding is the canonical embedding which maps an element f ∈Kn to the

vector of evaluations of f , as a polynomial, at each root of Φn(x). When n is a power of two,

the linear transformation between the coefficient embedding and the canonical embedding is a

scaled isometry.

Let n be a power of two, then the field K2n is a two-dimensional Kn-vector space as see

by splitting a polynomial f (x) ∈K2n into f (x) = f0(x2)+ x · f1(x2) for fi ∈Kn. Now, we can

view the linear transformation given by multiplication by some f ∈K2n as a linear transformation

over Kn⊕Kn ∼= K2n. Let φ2n : K2n→Qn×n be the injective ring homomorphism from the field

to an element’s anti-cyclic matrix. Then, we have the following relationship where P below

is a simple re-indexing matrix known as a stride permutation (increasing evens followed by

increasing odds in {0,1, . . . ,n−1}),

Pφn(f)Pt =

φn/2(f0) φn/2(x · f1)

φn/2(f1) φn/2(f0)

 .

19

3.3 Sampling G-lattices

For any positive integers b≥ 2, k ≥ 1 and non-negative integer u < bk, we write [u]kb for

the base-b expansion of u, i.e., the unique vector (u0, . . . ,uk−1) with entries 0≤ ui < b such that

u = ∑i uibi. Typically, b = 2 and [u]k2 is just the k-digits binary representation of u, but larger

values of b may be used to obtain interesting efficiency trade-offs. Throughout this section,

we consider the values of b and k as fixed, and all definitions and algorithms are implicitly

parameterized by them.

In this section we study the so-called G-lattice sampling problem, i.e., the problem of

sampling the discrete Gaussian distribution on a lattice coset

Λ
⊥
u (g

t) = {z ∈ Zk : gtz = u mod q}

where q ≤ bk, u ∈ Zq, k = dlogb qe, and g = (1,b, . . . ,bk−1). G-lattice sampling is used in

many lattice schemes employing a trapdoor. Both schemes with polynomial modulus, like IBE

[24, 17, 3, 2], group signatures [62, 70, 63, 51], and others (double authentication preventing

and predicate authentication preventing signatures, constraint-hiding PRFs) [20, 33, 34], and

schemes with super-polynomial modulus [31, 32, 48, 23, 60, 50, 1] (ABE, watermarking, etc.),

use G-lattice sampling.

An efficient algorithm to solve this problem is given in [66] for the special case when

q = bk is a power of the base b. The algorithm, shown in Figure 3.1, is simple. This algorithm

reduces the problem of sampling the k-dimensional lattice coset Λ⊥u (gt) for u ∈ Zq to the much

simpler problem of sampling the one-dimensional lattice cosets u+bZ for u∈Zb. The simplicity

of the algorithm is due to the fact that, when q = bk is an exact power of b, the lattice Λ⊥(gt) has

20

Algorithm 2: SampleG when q = bk.
Input: (q = bk,s = b ·ω(

√
logn),u)

Output: x∼ D
Λ⊥u (gt),s.

1 for i = 0, · · · ,k−1 do
2 xi← DbZ+u,s.
3 u := (u− xi)/b ∈ Z.
4 return x = (x0, · · · ,xk−1).

Figure 3.1. A sampling algorithm for G-lattices when the modulus q is a perfect power of the
base b. The algorithm is implicitly parameterized by a base b and dimension k.

a special basis

Bbk =



b

−1 b

−1 . . .
. . . b

−1 b


which is sparse, triangular, and with small integer entries. (In particular, its Gram-Schmidt

orthogonalization B̃bk = bI is a scalar matrix.) As a result, the general lattice sampling algorithm

of [61, 46] (which typically requires O(k3)-time preprocessing, and O(k2) storage and online

running time) can be specialized to the much simpler algorithm in Figure 3.1 that runs in linear

time O(k), with minimal memory requirements and no preprocessing at all.

We give a specialized algorithm to solve the same sampling problem when q < bk is an

arbitrary modulus. This is needed in many cryptographic applications where the modulus q is

typically a prime. As already observed in [66] the lattice Λ⊥(gt) still has a fairly simple and

21

sparse basis matrix

Bq =



b q0

−1 b q1

−1
. . . b qk−2

−1 qk−1


where (q0, . . . ,qk−1) = [q]kb = q is the base-b representation of the modulus q. This basis still has

good geometric properties, as all vectors in its (left-to-right) Gram-Schmidt orthogonalization

have length at most O(b). So, it can be used with the algorithm of [61, 46] to generate good-

quality gaussian samples on the lattice cosets with small standard deviation. However, since the

basis is no longer triangular, its Gram-Schmidt orthogonalization is not sparse anymore, and

the algorithm of [61, 46] can no longer be optimized to run in linear time as in Figure 3.1. In

applications where q = nO(1) is polynomial in the security parameter n, the matrix dimension

k = O(logn) is relatively small, and the general sampling algorithm (with O(k2) storage and

running time) can still be used with an acceptable (albeit significant) performance degradation.

However, for larger q this becomes prohibitive in practice. Moreover, even for small q, it would

be nice to have an optimal sampling algorithm with O(k) running time, linear in the matrix

dimension, as for the exact power case. Here we give such an algorithm, based on the convolution

methods of [72], but specialized with a number of concrete technical choices that result in a

simple and fast implementation, comparable to the specialized algorithm of [66] for the exact

power case.

The reader may notice that the alternating columns of Bq, b1,b3, . . . and b2,b4, . . . , are

pair-wise orthogonal. Let us call these sets B1 and B2, respectively. Then, another basis for

Λ⊥(gt) is (B1,B2,q) and this might suggest that the GSO of this basis is sparse. Unfortunately,

this leads to a GSO of (B1,B∗2,q
∗) where B∗2 is a dense, upper triangular block. Let b be the

i− th vector in B2. Then, there are 2+ i−1 non-orthogonal vectors to b preceding it in B1 and

22

B∗2, filling in the upper portion of b̃.

Overview

The idea is the following. Instead of sampling Λ⊥u (gt) directly, we express the lattice

basis Bq = TD as the image (under a linear transformation T) of some other matrix D with

simple (sparse, triangular) structure. Next, we sample the discrete gaussian distribution (say,

with variance σ2) on an appropriate coset of L (D). Finally, we map the result back to the

original lattice applying the linear transformation T to it. Notice that, even if L (D) is sampled

according to a spherical gaussian distribution, the resulting distribution is no longer spherical.

Rather, it follows an ellipsoidal gaussian distribution with (scaled) covariance σ2TTt . This

problem is solved using the convolution method of [72], i.e., initially adding a perturbation with

complementary covariance s2I−σ2TTt to the target, so that the final output has covariance

σ2TTt +(s2I−σ2TTt) = s2I. In summary, at a high level, the algorithm performs (at least

implicitly) the following steps:

1. Compute the covariance matrix Σ1 = TTt and an upper bound r on the spectral norm of

TTt

2. Compute the complementary covariance matrix Σ2 = r2I−Σ1

3. Sample p←D
Λ1,σ

√
Σ2

, from some convenient lattice Λ1 using the Cholesky decomposition

of Σ2

4. Compute the preimage c = T−1(u−p)

5. Sample z← DL (D),−c,σ

6. Output u+Tz

The technical challenge is to find appropriate matrices T and D that lead to an efficient

implementation of all the steps. In particular, we would like T to be a simple matrix (say,

23

sparse, triangular, and with small integer entries) so that T has small spectral norm, and both

linear transformations T and T−1 can be computed efficiently. The matrix D (which is uniquely

determined by B and T) should also be sparse and triangular, so that the discrete gaussian

distribution on the cosets of L (D) can be efficiently sampled. Finally (and this is the trickiest

part in obtaining an efficient instantiation) the complementary covariance matrix Σ2 = r2I−Σ1

should also have a simple Cholesky decoposition Σ2 = LLt where L is triangular, sparse and

with small entries, so that perturbations can be generated efficiently. Ideally, all matrices should

also have a simple, regular structure, so that they do not need to be stored explicitly, and can be

computed on the fly with minimal overhead.

In the next subsection we provide an instantiation that satisfies all of these properties.

Next, in Subsection 3.3.2 we describe the specialized sampling algorithm resulting from the

instantiation, and analyze its correctness and efficiency properties.

3.3.1 Instantiation

In this subsection, we describe a specific choice of linear transformations and matrix

decompositions that satisfies all our desiderata, and results in an efficient instantiation of the

convolution sampling algorithm on G-lattices.

A tempting idea may be to map the lattice basis Bq to the basis Bbk , and then use the

efficient sampling algorithm from Figure 3.1. However, this does not quite work because it

results in a pretty bad transformation T which has both poor geometrical properties and a dense

matrix representation. It turns out that a good choice for a linear transformation T is given

precisely by the matrix T = Bbk describing the basis when q is a power of b. We remark that T

is used as a linear transformation, rather than a lattice basis. So, the fact that it equals Bbk does

not seem to carry any special geometric meaning, it just works! In particular, what we do here

24

should not be confused with mapping Bq to Bbk . The resulting factorization is

Bq =



2 q0

−1 2 q1

−1
. . . 2 qk−2

−1 qk−1


=



2

−1 2

−1 . . .
. . . 2

−1 2





1 d0

1 d1

.

1 dk−2

dk−1


= BbkD

where the entries of the last column of D are defined by the recurrence di =
di−1+qi

b with initial

condition d−1 = 0. Notice that all the di are in the range [0,1), and bi+1 ·di is always an integer.

In some sense, sampling from L (D) is even easier than sampling from L (Bbk) because the

first k− 1 columns of D are orthogonal and the corresponding coordinates can be sampled

independently in parallel. (This should be contrasted with the sequential algorithm in Figure 3.1.)

We now look at the geometry and algorithmic complexity of generating perturbations.

The covariance matrix of T = Bbk is given by

Σ1 = BbkBt
bk =



b2 −b

−b (b2 +1) −b
.

−b (b2 +1) −b

−b (b2 +1)


.

The next step is to find an upper bound r2 on the spectral norm of Σ2, and compute the Cholesky

decomposition LLt of the complementary covariance matrix Σ2 = r2I−Σ1. By the Gershgorin

circle theorem, all eigenvalues of Σ1 are in the range (b± 1)2. So, we may set r = b+ 1.

Numerical computations also suggest that this choice of r is optimal, in the sense that the spectral

norm of Σ1 approaches b+1 as k tends to infinity. The Cholesky decomposition is customarily

defined by taking L to be a lower triangular matrix. However, for sampling purposes, an upper

25

triangular L works just as well. It turns out that using an upper triangular L in the decomposition

process leads to a much simpler solution, where all (squared) entries have a simple, closed

form expression, and can be easily computed on-line without requiring any preprocessing

computation or storage. (By contrast, numerical computations suggest that the standard Cholesky

decomposition with lower triangular L is far less regular, and even precomputing it requires

exponentially higher precision arithmetic than our upper triangular solution.) So, we let L be an

upper triangular matrix, and set r = b+1.

For any r, the perturbation’s covariance matrix Σ2 = r2I−Σ1 has Cholesky decomposition

Σ2 = L ·Lt where L is the sparse upper triangular matrix defined by the following equations:

L =



l0 h1

l1 h2

.

hk−1

lk−1


where

l2
0 +h2

1 = r2−b2

l2
i +h2

i+1 = r2− (b2 +1) (i = 1, . . . ,k−2)

l2
k−1 = r2− (b2 +1)

lihi = b (i = 1, . . . ,k−1)

It can be easily verified that these equations have the following simple closed form solution:

r = b+1, l2
0 = b

(
1+

1
k

)
+1, l2

i = b
(

1+
1

k− i

)
, h2

i+1 = b
(

1− 1
k− i

)
(3.1)

We observe that also the inverse transformation B−1
bk has a simple, closed-form solution: the ith

column of B−1
bk equals (0, · · · ,0, 1

b , . . . ,(
1
b)

k−i). Notice that this matrix is not sparse, as it has

O(k2) nonzero entries. However, there is no need to store it and the associated transformation

can still be computed in linear time by solving the sparse triangular system Tx = b by back-

substitution.

26

3.3.2 The Algorithm

The sampling algorithm, SAMPLEG, is shown in Figure 3.2. It takes as input a modulus

q, an integer variance s, a coset u of Λ⊥(gt), and outputs a sample statistically close to D
Λ⊥u (gt),s.

SAMPLEG relies on subroutines PERTURB and SAMPLED where PERTURB(σ) returns a pertur-

bation, p, statistically close to DL (Σ2),σ ·
√

Σ2
, and SAMPLED(σ ,c) returns a sample z such that

Dz is statistically close to DL (D),−c,σ .

Both PERTURB and SAMPLED are instantiations of the randomized nearest plane algo-

rithm [61, 46]. Consequently, both algorithms rely on a subroutine SAMPLEZt(σ ,c,σmax) which

returns a sample statistically close to one-dimensional discrete gaussian with it a tail-cut t, Dt
Z,σ ,c

over the fixed support of Z∩ [c− t ·σmax,c+ t ·σmax]. We fix the support of all one dimensional

discrete gaussians for compatibility with ML distance. In addition, we only feed SAMPLEZ

centers c ∈ [0,1) since we can always shift by an integer.

Storage

The scalars ci in SAMPLEG, representing c = B−1
bk (u−p), and di in SAMPLED, repre-

senting the last column of D, are rational numbers of the form x/bi for a small integer x and

i ∈ [k]. The numbers li,hi are positive numbers of magnitude less than
√

2b+1.

A naive implementation of the algorithms store floating point numbers ci, di, hi, and li

for a total storage of 4k floating point numbers. However, this can be adapted to constant time

storage since they are determined by simple recurrence relations (ci, di) or simple formulas (hi,

li).

Time Complexity

Assuming constant time sampling for SAMPLEZ and scalar arithmetic, SAMPLEG runs

in time O(k). Now let us consider all operations: there are 6k integer additions/subtractions,

3k+2 integer multiplications, 3(k+1) floating point divisions, 2k floating point multiplications,

and 2k floating point additions. The analysis below shows we can use double precision floating

point numbers for most applications.

27

Algorithm 3: SampleG
Input: (s = b ·ω(

√
logn),u =

[u]kb,q = [q]kb
Output: x∼ D

Λ⊥u (gt),s.
1 σ := s/(b+1).
2 p← PERTURB(σ).
3 for i = 0, · · · ,k−1 do
4 ci := (ci−1 +ui− pi)/b.
5 z← SAMPLED(σ ,c).
6 for i = 0, · · · ,k−2 do
7 ti :=

b · zi− zi−1 +qi · zk−1 +ui.
8 tk−1 :=

qk−1 · zk−1− zk−2 +uk−1.
9 return t.

Algorithm 4: Perturb
Input: σ

Output: p∼ DL (Σ2),Σ2

1 β := 0.
2 for i = 0, · · · ,k−1 do
3 ci := β/li, and σi := σ/li.
4 zi← bcic+ SAM-

PLEZt(σi,bcie[0,1),s).
5 β :=−zihi.
6 p0 := (2b+1)z0 +bz1.
7 for i = 1, · · · ,k−1 do
8 pi := b(zi−1 +2zi + zi+1).
9 return p.

Algorithm 5: SampleD
Input: (σ ,c).
Output: z ∈ Zk : Dz∼ DL (D),−c,σ .

1 zk−1← b−ck−1/dk−1c.
2 zk−1← zk−1+ SAMPLEZt(σ/dk−1,b−ck−1/dk−1e[0,1),s).
3 c := c− zk−1d.
4 for i ∈ {0, · · · ,k−2} do
5 zi← b−cic+ SAMPLEZt(σ ,b−cie[0,1),s).
6 return z.

Figure 3.2. Any scalar with an index out of range is 0, i.e. c−1 = z−1 = zk = 0. SAM-
PLEZt(σ ,c,σmax) is a discrete gaussian over Z exactly or approximately with centers in [0,1)
and a fixed truncated support Z∩ [c− t ·σmax,c+ t ·σmax] (t is the tail-cut parameter). We denote
x−bxc as bxe[0,1).

28

Statistical Analysis and Floating Point Precision

We now perform a statistical analysis on SAMPLEG with a perfect one-dimensional

sampler (and no tail-bound), then with a tail-bounded imperfect sampler in terms of ML distance.

This allows us to measure loss in concrete security. We direct the reader to [68, Section 3] for

more details on the ML distance and a complete concrete security analysis.

The following lemma is needed in order to make sense of the “Σ3 condition” in Theorem

3.2.1.

Lemma 3.3.1 Let Σ3 be defined by Σ
−1
3 = (b+1)2

s2 [Σ−1
1 +[(b+1)2I−Σ]−1], then its eigenvalues

are Θ(s2/b). Moreover, if λi is the i−th eigenvalue of Σ1, then the i−th eigenvalue of Σ3 is

(s/[b+1])2 · λi[(b+1)2−λi]
(b+1)2 .

Proof: Let Σ1 = QtDQ be its diagonalization. Then, Σ
−1
1 = QtD−1Q and the rest follows

from algebraic manipulations of the individual eigenvalues along with the Gershgorin circle

theorem on Σ1. �

Let Cε,k =
√

log(2k(1+1/ε))/π . Now we can easily bound s from below. We need

the following three conditions for s: s ≥ (b+1)ηε(D),
√

Σ3 ≥ ηε(Σ2), and s ≥ (b+1)ηε(L).

The middle condition determines s with a lower bound of s≥
√

2b · (2b+1) ·Cε,k (the last two

conditions both have s = Ω(b1.5 ·Cε,k)).

Corollary 3.3.1 Fix 0 < ε ≤ 1/2 and let s≥
√

2b · (2b+1) ·Cε,k. Then, SAMPLEG returns a

perturbation within a statistical distance Θ(kε̂) from D
Λ⊥u (gt),s for any q< bk when PERTURB and

SAMPLED use a perfect one-dimensional sampler, SAMPLEZ. In addition, the Rényi divergence

of order infinity of D
Λ⊥u (gt),s from SAMPLEG with a perfect one-dimensional sampler is less than

or equal to 1+Θ(kε̂).

The statistical distance bound of Θ(kε̂) results in about a loss of log logq bits in security

if ε = 2−κ for a security parameter κ by [68, Lemma 3.1]. (The multiplicative factor of k comes

from the randomized nearest plane algorithm’s analysis: see [46, Theorem 4.1].)

29

Next, we turn to the ML distance for a tighter analysis on the bits of security lost in using

SAMPLEG with an imperfect one-dimensional sampler. Since the centers, c, and variances, s,

given to SAMPLEZ are computed from two or three floating point computations, we assume both

c̄ and s̄ are within a relative error of 2−m of c and s.

Proposition 3.3.1 Fix an ε > 0 and let s≥ (b+1) ·ηε(Z). For any one-dimensional sampler

SAMPLEZt(σ̄ , c̄,s) that takes as inputs approximated centers c̄ ∈ [0,1) and variances σ̄ ∈

[s/(b+1),s ·b/(b+1)] represented as floating point numbers with mantissa length m,

∆ML(SAMPLEGDt
Z,σ ,c,SAMPLEGSAMPLEZt(σ̄ ,c̄))≤

2k[O(b2t22−m)+max
σ̄ ,c̄

∆ML(SAMPLEZt(σ̄ , c̄,s),Dt
Z,σ̄ ,c̄)].

Before we begin the proof, we note that dk−1 = q/bk ∈ [1/b,1] since k = dlogb qe.

This implies that every variance fed to SAMPLEZ is in the range [s/(b+ 1),s · b/(b+ 1)] ⊆

[s/(b+1),s]. We restrict all truncated one-dimensional discrete gaussians to Z∩ [c− t ·s,c+ t ·s]

since it is unclear when Z∩ [c− t ·σ ,c+ t ·σ] = Z∩ [c− t · σ̄ ,c+ t · σ̄] when using floating point

variances σ̄ . The ML distance is undefined when these two sets are not equal.

Proof: First, we use the triangle inequality on ML distance in order to pair together terms

for an easier analysis.

∆ML(SAMPLEGDt
Z,σ ,c ,SAMPLEGSAMPLEZt(σ̄ ,c̄,s))≤

∆ML(SAMPLEGDt
Z,σ ,c ,SAMPLEGDt

Z,σ̄ ,c)+∆ML(SAMPLEGDt
Z,σ̄ ,c,SAMPLEGDt

Z,σ̄ ,c̄)+

∆ML(SAMPLEGDt
Z,σ̄ ,c̄ ,SAMPLEGSAMPLEZt(σ̄ ,c̄,s)).

Next, we use the data processing inequality on ML distance where we treat SAMPLEG as

a function of 2k correlated samples from a one-dimensional discrete gaussian sampler. From

[Lemma 3.2, MW17], we get the following inequality:

30

∆ML(SAMPLEGDt
Z,σ ,c ,SAMPLEGSAMPLEZt(σ̄ ,c̄,s))≤

2k ·maxσi,ci[∆ML(Dt
Z,σ1,c1

,Dt
Z,σ̄1,c1

)+∆ML(Dt
Z,σ̄2,c2

,Dt
Z,σ̄2,c̄2

)+

∆ML(Dt
Z,σ̄3,c̄3

,SAMPLEZt(σ̄3, c̄3,s))].

The maximum is taken over all ci ∈ [0,1) and σi ∈ [s/(b+ 1),s · b/(b+ 1)]. Let Zt =

Z∩ [c− t · s,c+ t · s]. We bound maxσ1,c1 ∆ML(Dt
Z,σ1,c1

,Dt
Z,σ̄1,c1

) as follows:

max
σ1,c1

∆ML(Dt
Z,σ1,c1

,Dt
Z,σ̄1,c1

) = max
σ1,c1,x∈Zt

| lnDt
Z,σ1,c1

(x)− lnDt
Z,σ̄1,c1

(x)|

= max
σ1,c1,x∈Zt

∣∣∣∣π(x− c)2
[

1
σ2

1
− 1

σ̄2
1

]
+ ln

ρσ̄1,c1(Z)
ρσ1,c1(Z)

∣∣∣∣ .
Since σ1, σ̄1 ≥ ηε(Z), we can approximate ρσ1,c(Z) ∈ [(1− ε)2,(1+ ε)2] ·σ and ρσ̄1,c(Z) ∈

[(1−ε)2,(1+ε)2] · σ̄ . Using the bound on the relative error of σ̄1 (σ̄1 ∈ [1−2−m,1+2−m] ·σ1),

we can bound the expression with a simplified form below.

max
σ1,c1

∆ML(Dt
Z,σ1,c1

,Dt
Z,σ̄1,c1

)≤

max
σ1

∣∣∣∣π t2s2

σ2
1
·

σ̄2
1 −σ2

1
σ2

1
+2ε̂ + ˆ2−m

∣∣∣∣≤
πt2(b+1)2(2−m+1 +2−2m)+ ε̂ + ˆ2−m.

The proof for ∆ML(Dt
Z,σ̄2,c2

,Dt
Z,σ̄2,c̄2

) is nearly identical except we get a term linear in t, yielding

a bound of O(t ·2−m). �

Assuming a cryptosystem using a perfect sampler for D
Λ⊥u (gt),s has κ bits of security,

we can combine the results of Corollary 3.3.1, Proposition 3.3.1, and [68, Lemma 3.3] to

conclude that swapping D
Λ⊥u (gt),s with SAMPLEG yields about κ − 2log(tb2)− 3loglogq− 5

bits of security when m = κ/2, ∆ML(SAMPLEZt(s̄, c̄),Dt
Z,s̄,c̄) < 2−κ/2, and ε = 2−κ .

31

Figure 3.3. Measured clock cycles with q = {4.1 ·103,1.22 ·105,1.68 ·107,8.38 ·107,
4.30 ·109,9 ·1018} and s = 100 averaged over 100,000 runs. The clock cycles for the last three
moduli are {19.4,31.9,73.9} for GPV and {5.5,7.5, 13.1} for SAMPLEG with pre-computation.

3.3.3 Implementation and Comparison

In this subsection, we compare simple implementations of both SAMPLEG and the

generic randomized nearest plane algorithm [46, Section 4] used in the G-lattice setting. The

implementations were carried out in C++ with double precision floating point numbers for

non-integers on an Intel i7-2600 3.4 GHz CPU. Clock cycles were measured with the “time.h”

library and the results are charted in Figure 2.3.

The one-dimensional sampler, SAMPLEZ, was an instantiation of a discrete version of

Karney’s sampler [59], which is a modified rejection sampler. The moduli q were chosen from

the common parameters subsection of [57, Section 4.2], in addition to an arbitrary 60-bit modulus.

Most practical schemes require no more than a 30-bit modulus [16] for lattice dimension (n)

up to 1024. More advanced schemes however, like ABE-encryption [19, 31], and predicate

encryption [49], require a super-polynomial modulus often 90 or more bits (assuming the circuits

in the ABE and predicate schemes are of log-depth).

For the generic, randomized nearest plane sampler, we pre-computed and stored the

32

Gram-Schmidt orthogonalization of the basis Bq and we only counted the clock cycles to run the

algorithm thereafter. We had two versions of SAMPLEG: the first was the algorithm as-is, and

the second would store pre-computed perturbations from PERTURB(σ), one for each G-lattice

sample. This version of SAMPLEG with pre-computation saved about a factor of two in clock

cycles.

3.4 Perturbation Sampling in Cyclotomic Rings

The lattice preimage sampling algorithm of [66] requires the generation of n(2+ logq)-

dimensional gaussian perturbation vectors p with covariance Σp = s2 · I−α2T ·Tt where T ∈

Z(2+logq)n×n logq is a matrix with small entries serving as a lattice trapdoor, α is a small constant

factor and s is an upper bound on the spectral norm of αT. In [66] this is accomplished using the

Cholesky factorization of Σp, which takes O(n logq)3 pre-computation and O(n logq)2 storage

and running time.

The trapdoor matrix T of [66] has some additional structure: Tt = [T̄t ,I] for some

T̄ ∈ Z2n×n logq. Moreover, when working with algebraic lattices, T̄ = φn(T̃) is the image (under

a ring embedding φn : Rn→ Zn×n) of some matrix T̃ ∈ R2×logq
n with entries in a ring Rn of rank

n. (Most commonly, Rn = O2n = Z[x]/(xn +1) is the ring of integers of the (2n)th cyclotomic

field K2n for n = 2k a power of two.) In [16] it is observed that, using the sparsity of Σp, the

preprocessing storage and on-line computation cost of noise perturbation reduce to O(n2 logq).3

This is a factor logq improvement over a generic implementation, but it is still quadratic in the

main security parameter n. This can be a significant improvement in practice, but the overall

cost of the algorithm remains substantial. When using generic trapdoors T̄ ∈ Z2n×n logq, there

is little hope to improve the running time below O(n2 logq), because just reading the matrix T̄

takes this much time. However, when using algebraic lattices, the trapdoor T̄ = φn(T̃) admits

a compact representation T̃ consisting of only 2n logq integers, so one may hope to reduce the

running time to linear or quasi-linear in n.
3Sparsity also reduces the preprocessing running time to O(logq ·n2 +n3) = O(n3), but still cubic in n.

33

In this section we give an alternative algorithm to generate integer perturbation vectors p

with covariance Σp when T̄ = φn(T̃). Our algorithm takes full advantage of the ring structure

of Rn, compactly representing Σp and all other matrices generated during the execution of

the algorithm as the image of matrices with entries in the ring Rn. In particular, similarly to

[40, 41], our algorithm has time and space complexity quasi-linear in n, but does not require any

preprocessing/storage. The algorithm can be expressed in a modular way as the combination of

three steps:

1. First, the problem of sampling a O(n logq)-dimensional integer vectors p with covariance

Σp is reduced to the problem of sampling a 2n-dimensional integer vector with covariance

expressed by a 2×2 matrix over Rn.

2. Next, the problem of sampling an integer vector with covariance in R2×2
n is reduced to

sampling two n-dimensional integer vectors, each with a covariance expressed by a single

ring element in Rn.

3. Finally, if n > 1, the sampling problem with covariance in Rn is reduced to sampling an

n-dimensional perturbation with covariance expressed by a 2×2 matrix over the smaller

ring Rn/2.

Iterating the last two steps logn times reduces the original problem to sampling in R1 = Z.

Details about each step are given in the next subsections. We remark that the algorithm is

described as a recursive procedure only for simplicity of presentation and analysis, and it can be

implemented just as easily using a simple nested loop, similarly to many FFT-like algorithms.

3.4.1 Discrete Perturbation Algorithm for Power of Two Cyclotomics

In this subsection we present the perturbation algorithm algorithm which produces

n(2+ logq)-dimensional perturbations from a discrete gaussian on Zn(2+logq) in time Õ(n logq).

The entry point of the algorithm is the SAMPLEPZ procedure, which takes as input

two integer parameters n,q, matrices T̃ ∈ R2×logq
n , Σ2 ∈ R2×2

n , and three positive real numbers

34

s2,α2, z = (α−2− s−2)−1, and is expected to produce an n(2+ logq)-dimensional vector p with

(non-spherical) discrete gaussian distribution DZn(2+logq),
√

Σp
of covariance

Σp = s2 · I−α
2

φn(T̃)

I

 · [φn(T̃)t I
]

=

 Σ2 −α2φn(T̃)

−α2φn(T̃)t (s2−α2)I

 .
The algorithm calls two subroutines:

• SAMPLEZ(s2−α2) which samples a one-dimensional discrete gaussian variable of vari-

ance s2−α2 centered at 0, and can be implemented using any standard technique, and

• SAMPLE2Z(a,b,d), which, on input three ring elements a,b,d compactly describing a

positive definite matrix

Σ2 =

φn(a) φn(b)

φn(b)t φn(d)

 ,
is expected to sample a (2n)-dimensional vector p← DZ2n,

√
Σ2

.

In turn, SAMPLE2Z (also described in Figure 3.4) makes use of a procedure SAMPLEFZ(f)

which on input a ring element f with positive definite φn(f), returns a sample p← DZn,
√

φn(f).

35

Algorithm 6: SamplePz
Input: (n,q,s,α, T̃,Σ2,z).
Output: (p,q)∼ DZn(2+logq),Σp .

1 for i = 0, · · · ,n logq−1 do
2 qi← SAMPLEZ(s2−α2).
3 (c0,c1) :=− α2

s2−α2 T̃q.
4 c′(x) := c0(x2)+ x · c1(x2)).
5 p← SAMPLE2Z(a,b,d,c′).
6 return (p,q).

Algorithm 7: Sample2z
Input: (a,b,c,d).
Output: (q0,q1)∼ DZ2n,Σ2

.
1 Let c(x) = c0(x2)+ x · c1(x2).
2 q1← SAMPLEFZ(d,c1).
3 c0 := c0 +bd−1(q1− c1).
4 q0←

SAMPLEFZ(a−bd−1b∗,c0).
5 return (q0,q1).

Algorithm 8: SampleFz
Input: (f ,c).
Output: q∼ DZn,c,φn(f).

1 if dim(f) = 1 then
2 return SAMPLEZ(f ,c).
3 else
4 Let f (x) = f0(x2)+ x · f1(x2).
5 (q0,q1)← SAMPLE2Z(f0, f1, f0,c).
6 let q(x) = q0(x2)+ x ·q1(x2).
7 return q.

Figure 3.4. Sampling algorithm SAMPLEPZ for integer perturbations where T = φn(T̃) is a
compact trapdoor over a power of two cyclotomic ring. Note, T̃i is a row vector over Rn for each
i ∈ {0,1}. The scalar z = (α−2− s−2)−1.

36

Efficiency

Multiplications are done in the field Ki, for an element’s dimension i ∈ {1,2, . . . ,2n}, in

time Θ(i log i) by using the Chinese remainder transform (CRT) [65].

By treating scalar arithmetic as constant time, SAMPLEPZ has a time complexity of

Θ(n logn logq) because the transformation by T̃ is Θ(n logn logq) and SAMPLEFZ has complex-

ity Θ(n log2 n) (represented by the recurrence R(n) = 2R(n/2)+2logn/2+4.5n). The algorithm

requires 2n logq scalar storage for the trapdoor T̃.

Note, SAMPLEFZ is even more efficient, Θ(n logn), if one were to store the polyno-

mials in Ki in the canonical embedding (Fourier domain). One would change SAMPLEPZ to

give SAMPLE2Z the Fourier/canonical representations of a,b,d,c0,c1 and perform an inverse

CRT/FFT on p = (p0,p1). This allows us to use the FFT’s butterfly transformation to convert

to the Fourier representation of f (x) = f0(x2)+ x f1(x2) ∈K2n to the Fourier representation of

f0, f1 ∈Kn and multiplication/inversion is now linear time (we would only invert the non-zero

entries in the Fourier domain since this corresponds to pulling back to the field, inverting, then

pushing forward to the cyclic ring via the embedding given by the Chinese remainder theorem)

[41, Lemma 1]. (Moving from the canonical embedding to the FFT domain is linear time since

we place zeros for the non-primitive roots of unity [41, Section A.2].) This, however, does

not change the asymptotic time complexity of SAMPLEPZ since generating q in the canonical

embedding is now Θ(n logn logq).

Correctness

One would use Peikert’s convolution theorem, Theorem 3.2.1, in an initial attempt to

prove the correctness of the algorithms in Figure 3.4. However, this would only ensure the

correctness of the marginal distributions of p in SAMPLEPZ and q0 in SAMPLE2Z and not

their respective joint distributions, (p,q) and (q0,q1). Even if it were enough, tracking the Σ3

condition in Theorem 3.2.1 through the recursive calls of the algorithms above is tedious. Instead,

we derive a convolution lemma without a Σ3 condition for the joint distribution of our discrete

37

gaussian convolutions on the simple lattice Zn.

First, we show the gaussian function ρ√
Σ
(·) factors in a useful manner with respect to a

Schur complement decomposition.

Lemma 3.4.1 Let Σ =

A B

Bt D

� 0 be a positive definite with A ∈ Rn×n and D ∈ Rm×m and

Σ/D = A−BD−1Bt is D’s Schur complement, and let x1 ∈ Rn and x2 ∈ Rm be arbitrary.

Then, the gaussian function ρ√
Σ
(x) factors as ρ√

Σ/D(x1−BD−1x2) ·ρ√D(x2) = ρ√
Σ
(x) where

x = (x1,x2) ∈ Rn+m.

Proof:(Sketch) This is seen through defining the inverse of Σ in terms of Σ/D and writing

out ρ√
Σ
(x) in terms of Σ/D. The matrix factorization

Σ =

I BD−1

0 I


Σ/D 0

0 D


 I 0

D−1Bt I


yields the formula for Σ−1 needed to show the result. �

A consequence of the above lemma is that the gaussian sum ρ√
Σ
(Zn+m) expands in terms

of the gaussian functions ρ√D(·) and ρ√
Σ/D(·),

ρ√
Σ
(Zn+m) = ∑

y2∈Zm
ρ√D(y2) ·ρ√Σ/D(Z

n−BD−1y2).

We will use the following lemma for the correctness proof. It states that if a discrete

gaussian on the integer lattice is wide enough in its slimmest direction, then the lower dimensional

discrete gaussians with covariance shaped with principal submatrices of the original are wide

enough on their respective Zn′s.

Lemma 3.4.2 Let ε > 0, Σ � 0 be a positive definite matrix in Rn×n, and let I0 ⊂ [n] be an

arbitrary, non-empty subset. If Σ� η2
ε (Zn), then Σ[I0]� η2

ε (Z|I0|) and Σ/Ī0 � η2
ε (Zn−|I0|) for

any principal submatrix - Schur complement pair, (Σ[I0],Σ/Ī0), of Σ.

38

Proof: Note, a consequence of Σ� η2
ε (Zn) is that Σ’s minimum eigenvalue, λmin(Σ), is greater

than η2
ε (Zn). Let M := Σ[I0] ∈Rn0×n0 for n0 = |I0|. M is diagonalizable so let M = QtΛQ be its

diagonalization. Notice, we have the following inequality from the interlacing theorems which

imply λmin(M)≥ λmin(Σ),

xtMx = xtQt
ΛQx = yt

Λy = ∑
i∈[n0]

λiy2
i ≥ λmin(Σ)‖y‖2 = λmin(Σ)‖x‖2.

Next, we can bound the quantity ρ√M−1((Zn0)∗) = ρ√M−1(Zn0) by 1+ ε:

ρ√M−1(Zn0) = ∑
x∈Zn0

e−πxtMx ≤ ∑
x∈Zn0

e−πλmin(Σ)‖x‖2

≤ ∑
x∈Zn

e−πλmin(Σ)‖x‖2
≤ 1+ ε.

The jump from Zn0 to Zn comes from the relation Zn0 ⊂Zn. The proof for the Schur complement

is identical. �

Next, we state and prove our main convolution lemma.

Lemma 3.4.3 For any real 0 < ε ≤ 1/2, positive integers n,m, vector c = (c1,c2) ∈ Rn+m, and

positive definite matrix Σ =

A B

Bt D

� η2
ε (Zn+m), A∈Zn×n, B∈Zn×m, and D∈Zm×m (where

Σ/D = A−BD−1Bt is the Schur complement of D) the random process

• x2← DZm,
√

D,c2
.

• x1← DZn,
√

Σ/D,c1+BD−1(x2−c2)
.

produces a vector x = (x1,x2) ∈ Zn+m such that the Rényi divergence of order infinity of

DZn+m,
√

Σ,c from x is less than or equal to 1+4ε .

Proof:

39

First, we write out the probability and use Lemma 3.4.1 to simplify the numerator. Let

x′ = (x′1,x′2) below.

Pr[x1 = x′1,x2 = x′2] =
ρ√

Σ/D(x
′
1− c1−BD−1(x′2− c2)) ·ρ√D(x

′
2− c2)

ρ√
Σ/D(Z

n− c1−BD−1(x′2− c2)) ·ρ√D(Zm− c2)

=
ρ√

Σ
(x′− c)

ρ√
Σ/D(Z

n− c1−BD−1(x′2− c2)) ·ρ√D(Zm− c2)

Regarding the denominator, we use Lemma 3.4.2 to see that Σ/D� η2
ε (Zn) since Σ�

η2
ε (Zn+m). Now, we can use Lemma 3.2.3 for the first gaussian sum (dependent on x′2) in the

denominator to see,

Pr[x1 = x′1,x2 = x′2] ∈ α ·DZn+m,
√

Σ,c(x
′) ·
[(

1− ε

1+ ε

)
,1
]−1

where α =
ρ√

Σ
(Zn+m−c)

ρ√
Σ/D(Z

n)·ρ√D(Zm−c2)
.

Next, we show α ≈ 1. Using Lemma 3.4.1 we expand

ρ√
Σ
(Zn+m− c) = ∑

y2∈Zm
ρ√D(y2− c2) ·ρ√Σ/D(Z

n− c1−BD−1(y2− c2)).

The sum ρ√
Σ/D(Z

n−c1−BD−1(y2−c2)) is approximately ρ√
Σ/D(Z

n) because Σ/D�

η2
ε (Zn) as a consequence of Lemma 3.4.2 and Σ� η2

ε (Zn+m). In other words,

ρ√
Σ/D(Z

n− c1−BD−1(y2− c2)) ∈
[

1− ε

1+ ε
,1
]
·ρ√

Σ/D(Z
n)

and α ∈
[(1−ε

1+ε

)
,1
]
.

Finally, we have the approximation

Pr[x1 = x′1,x2 = x′2] ∈
[(

1− ε

1+ ε

)
,

(
1+ ε

1− ε

)]
·DZn+m,

√
Σ,c(x

′).

40

Given the restriction on ε ∈ (0,1/2], we have the relation we desire

Pr[x1 = x′1,x2 = x′2] ∈ [1−4ε,1+4ε] ·DZn+m,
√

Σ,c(x
′).

�

Next, we bound the Rényi divergence of order infinity between the output of SAMPLEPZ

and the desired distribution. We need to ensure each discrete gaussian convolution in the

algorithm is non-degenerate. We do not analyze the statistical loss from the floating point

computations. As shown in Lemma 3.4.3, we need Σ/D� η2
ε (Zn0) and D� η2

ε (Zn1) at each of

the n discrete gaussian convolutions. This is met through a simple condition on Σp as hinted to

in Lemma 3.4.2.

Theorem 3.4.1 Let 0 < ε ≤ 1/2. If Σp � η2
ε (Zn(2+logq)), then SAMPLEPZ returns a perturba-

tion with a Rényi divergence of order infinity R∞(DZn(2+logq),
√

Σp
||SAMPLEPZ)≤ 1+12nε̂.

Proof: Since each covariance given to SAMPLEFZ is a Schur complement or a principal

submatrix of a Schur complement of Σp, Lemma 3.4.2 and the interlacing theorems (Theo-

rem 2.1.1 and Theorem2.1.2) imply the conditions for Lemma 3.4.3 are met. As there are

n− 1 convolutions (inner nodes of a full binary tree of depth logn), a quick induction argu-

ment shows the probability distribution of the output of SAMPLEPZ is in the interval [(1−

4ε)3(n−1),(1+4ε)3(n−1)] ·DZn(2+logq),
√

Σp
(x). Then, we have R∞(DZn(2+logq),

√
Σp
||SAMPLEPZ)≤

(1+4ε)3(n−1) ≈ 1+12nε̂. �

For common parameters ε = 2−128 and n = 1024, we have 1− (1+4ε)3(n−1) ≈ 2−114.

In summary, this shows the FFT-like recurrence in perturbation sampling the integer

lattice with an algebraic covariance in power of two cyclotomic rings through repeated convolu-

tions. The relative simplicity of the power of two case relies on the fact that matrix transpose

corresponds to the conjugation field automorphism. Hermitian transpose corresponds to the

conjugation automorphism in the general cyclotomic case. Therefore, we would use the canonical

41

embedding for efficient perturbation sampling in general cyclotomic rings, which we shown in

the next subsction.

Storage and Efficiency

Recent results suggest double precision floating point numbers are enough to preserve

security in lattice-based cryptosystems for commonly used parameters [74, 14], but one can use

the lazy floating point techniques of [40] for SAMPLEZ and still yield a version of SAMPLEPZ

that has quasi-linear time complexity on average if longer floating point precision is needed.

This would involve tweaking SAMPLEFZ and SAMPLE2Z to record their path through the tree

of recursions and pass the path to SAMPLEZ. Then, SAMPLEZ could re-compute its center and

variance in high precision with access to previous samples and the trapdoor T̃.

SAMPLEFZ runs in time Õ(n), and SAMPLEPZ runs in time Õ(n logq) as a result. Storage

consists of storing the trapdoor T̃ which is 2n logq small integers (less than q, O(logn) bits each),

and the algorithm stores 4n floating point numbers for the input of SAMPLE2Z.

3.4.2 General Cyclotomic Rings

Here we sketch sampling methods for arbitrary cyclotomics. Both the techniques in the

previous subsection and the techniques of [40, 72] apply to this setting as well. Let n = ϕ(n′),

q be a positive integer, On′ = Z[x]/(Φn′(x)) be the n′-th cyclotomic ring with Kn′ as the n′-th

cyclotomic field over Q, and let T̃ ∈ O2×logq
n′ be a ring trapdoor matrix. Note, the ring On′ is

a lattice in the canonical embedding. Let rad(n′) be the product of all distinct prime divisors

of n′. Define the diagonal matrix of a field element, f ∈Kn′ , as Ψ(f)i,i = f (ζ i) where ζ is a

complex primitive n′-th root of unity and each i is a distinct element in the group of units modulo

n′, i ∈ Z∗n′ . This is the multiplication matrix of an element in the canonical embedding. Notice,

Ψ(f)† = Ψ(f ∗) since conjugation is an automorphism of all cyclotomic fields over Q. We apply

Ψ(·) element-wise to vectors and matrices over Kn′ .

42

Now, our goal is to efficiently sample the lattice D
O2+logq

n′ ,
√

Σp
where

Σp = s2I−α
2

Ψ(T̃)

I

[Ψ(T̃)† I

]

and Ψ(T̃)† is the Hermitian transpose of Ψ(T̃). Notice, the Hermitian transpose of an element’s

diagonal matrix results in the diagonal matrix of a different field element since complex conjuga-

tion is an automorphism of Kn′ . Sampling D
O2+logq

n′ ,
√

Σp
reduces to sampling discrete gaussians

over Z in nearly the same steps as the previous subsection with z = (α−2− s−2)−1:

1. Sampling p← D
O2+logq

n′ ,
√

Σp
reduces to sampling D

O2
n′ ,
√

Σ2×2
where

Σ2×2 = s2I− z ·Ψ(T̃)Ψ(T̃)† =

Ψ(a) Ψ(b)

Ψ(b∗) Ψ(d)


by first sampling p2← D

O logq
n′ ,
√

s2−α2 , updating the randomized center c := −α2

s2−α2 Ψ(T̃)p2,

then sampling p1← D
O2

n′ ,c,
√

Σ2×2
.

2. Sampling D
O2

n′ ,c,
√

Σ2×2
reduces to sampling D

On′ ,
√

Ψ(f) for a positive definite field element

f by sampling q2← D
On′ ,c2,

√
Ψ(d), then by updating the center c1 := c1 +Ψ(bd−1)(q2−

c2) and sampling q2← D
On′ ,c2,

√
Ψ(a−bd−1b∗).

Similar to how SAMPLEPZ must sample DZn logq,
√

s2−α2 , the first step above requires sampling the

discrete gaussian D
O logq

n′ ,
√

s2−α2 . This can be done in O(rad(n′)n′ logq) since spherical discrete

gaussians over the ring On′ can be sampled in time O(rad(n′)n′) [65].

By using the randomized nearest plane algorithm to sample discrete gaussians on On′

with diagonal covariances, sampling p statistically close to D
O2+logq

n′ ,
√

Σp
is O(rad(n′)n′ logq)+

Õ(n logq). Note, the randomized rounder of [40, 72] could be used to sample D
On′ ,
√

Ψ(f). We

conclude on observing that the above holds for any number field which has complex conjugation

43

as an automorphism, though might not be as efficient because the ring/lattice of interest may

have no sparse basis in the canonical embedding.

Acknowledgement

This is reprinted as it appears (with minor modifications) from the publication “Faster

Gaussian Sampling for Trapdoor Lattices with Arbitrary Modulus,” presented by this disserta-

tion’s author at EUROCRYPT 2018 [42] and is joint work with Daniele Micciancio.

44

Chapter 4

The Lattice Gadget Toolkit

4.1 Introduction

The second chapter builds on the first chapter by optimizing all algorithmic tasks on

power-of-b gadgets, as well as introducing an efficient class of gadgets geared towards the

Chinese Remainder Transformation/Representation (CRT) of Zq when q= q1q2 · · ·ql for coprime

qi. These CRT gadgets are used in many advanced lattice-based cryptosystems where the modulus

q is often much larger than the native 64 bits in most modern hardware. In other words, we can

pick each coprime factor qi as an integer just less than 64 bits and utilize the CRT isomorphism

Zq ∼= Zq1×Zq2×·· ·×Zql .

Gadgets

Gadgets in lattice-based cryptography are defined with the following two functions in-

mind. Both functions are parameterized by a matrix A ∈ Zn×m
q for m≥ n logq. The first is the

short-integer-solutions (SIS) [4] one-way function: fA(x) := Ax mod q where x is an integer

vector with l2 norm less than some parameter β . We usually set β so the function has collisions

(β =
√

m for x ∈ {0,±1}m). And, we denote SIS “inversion” as x← A−1(u) where u ∈ Zn
q is

given as an input and x is any short integer vector satisfying Ax mod q = u mod q. Note that

A−1(·) is not a matrix, nor is it a proper function inversion, but it can be randomized. In fact, the

gaussian sampling algorithm in the previous chapter is a discrete gaussian SIS inversion on a

45

fixed matrix G ∈ Zn×m
q . Next, we define the LWE function [75] as gA(s,e) := stA+ et mod q

where s ∈ Zn
q and e ∈ Zm has small entries. We will only care about parameter regimes where

the LWE function is invertible (injective).

Loosely, a gadget G∈Zn×m
q is any matrix such that the SIS and LWE functions are easy to

invert. The most commonly used gadgets are of the form G := In⊗gt where gt = (1,b, · · · ,bk−1)

and k = dlogb(q)e. The case b = 2 corresponds to a bit decomposition for a deterministic SIS

inversion, g−1(u) := x ∈ {0,1}k such that gtx mod q = u.

These gadgets first appeared in lattice-based trapdoors [4, 12] as well as second gener-

ation FHE schemes [28] in the form of a bit-decomposition. Micciancio and Peikert gave an

optimized lattice trapdoor scheme in [66] which reduces inverting the SIS and LWE functions

on a (pseudo)random A to inverting them on a fixed gadget G. Further, they were the first

to rigorously analyze the gadget lattice, or “G-lattice,” Λ⊥q (G) := {x ∈ Znk : Gx = 0 mod q}.

Alperin-Sheriff and Peikert [10] realized the potential for a simple, randomized bit-decomposition

as G−1(·). Note, here we are thinking of a much simpler subgaussian distribution than a discrete

gaussian preferably avoiding the use of floating point numbers (only achieved when q = bk in

[10]). Alperin-Sheriff and Peikert use subgaussian analysis [79] in order to rigorously analyze

these randomized bit-decompositions.

Recently there has been an effort to introduce gadgets more compatible with the CRT

representation of Zq [53, 22]. Traditional power-of-b gadgets require one to convert to the large

modulus Zq before computing G−1(·). The use of the large modulus here requires multi-precision

numbers, nullifying the benefits of the CRT representation. Let us denote these CRT-compatible

gadgets as gt
CRT or GCRT . The gadgets presented in [53, 22] were only applicable in the

specific setting where our modulus q has small prime factors, also known as a smooth modulus.

Restricting to smooth moduli is undesirable since implementations often use a modulus where

each coprime factor is a prime around 64 bits. Moduli with this form allow the use of the “double-

CRT” representation [45]. Of particular interest is performing a discrete gaussian or subgaussian

g−1
CRT (·) efficiently with only ever having to represent numbers in the CRT representation.

46

Contribution

Fix an integer n > 0 as our security parameter, an integer modulus q > 0, an integer

base 0 < b≤√q. Note that we can have b = q, but then our power-of-b gadget will be trivial

g = (1),G = In.

This chapter achieves the following on a power-of-b gadget G for any modulus q:

• compute a subgaussian g−1(·) with minimal distribution width, minimal randomness, and

in linear time and space O(k),

• decode the LWE function on gt in linear time O(k) while maximizing the error tolerance

‖e‖∞.

Previously, these tasks were only optimized when q = bk [66, 10].

Further, this chapter introduces a general set of CRT gadgets for a wide class of moduli

q = q1q2 · · ·ql that achieves the following:

• discrete gaussian and subgaussian inversion can be performed in linear time and in-parallel

with a distribution width independent of modulus’ factors all while keeping arithmetic in

the CRT representation,

• and perform LWE decoding in linear time in-parallel while keeping arithmetic in the CRT

representation.

Mathematically, this efficiency is due to the structure of the CRT gadget’s G-lattice:

Λ
⊥
q (g

t
CRT) = Λ

⊥
q (g

t
1)⊕Λ

⊥
q (g

t
2)⊕·· ·⊕Λ

⊥
q (g

t
l)

where each gt
i is a power-of-bi gadget chosen by the user with the requirement bi < qi. Therefore,

we can choose each bi = 2 in order to have a narrow distribution on the (CRT) G-lattice.

We note that this set of gadgets directly generalizes [22] since their gadgets correspond

to bi = qi, or gt
i = (1), and they generalize the gadgets of [53] in spirit1.

1The CRT gadgets of [53] correspond to a different isomorphism on Zq. The isomorphism in [53] is called the

47

Technical details

Our linear time and space subgaussian bit decomposition algorithm for power-of-b

gadgets gt follows the same algorithmic blueprint as our efficient discrete gaussian sampling

algorithm from the previous chapter. That is, we use the G-lattice’s sparse, triangular basis

factorization

Bq = BD

where Bq is a basis of the G-lattice Λ⊥q (g) = L (Bq) and B,D are sparse, triangular matrices.

Now our algorithm is analogous to the previous chapter’s solution:

1. sample a subgaussian distribution on the lattice generated on L (D),

2. and use B as a linear transformation.

The first step is done by performing a “bent-coin” randomized version of Babai’s nearest plane

algorithm [13]. We can sample a narrow distribution on L (D) since D has small entries. With

a careful use of arithmetic in this “bent-coin” nearest plane algorithm, we have an algorithm

which avoids floating point numbers, samples a subgaussian distribution exactly, has a trade-off

between randomness consumed and distribution width (more randomness needed for a tighter

distribution), and uses O(k) time and space.

Our linear time and space LWE decoding algorithm is merely an exercise in lattice duality.

The LWE decoding problem on gt can be seen as the problem of decoding on the lattice

Λq(gt) = {x ∈ Zk : ∃s ∈ Zq s.t. x = sgt mod q}= Zgt +qZk.

This lattice is a scaled version of the G-lattice’s dual

Λq(gt) = qΛ
⊥
q (g

t)∗

invariant factor decomposition.

48

since for any A ∈ Zn×m
q we have Λq(A) = qΛ⊥q (A)∗ (where L ∗ denotes the dual lattice of L).

Therefore, the sparse basis factorization of our favorite basis for Λ⊥q (gt)

Bq = BD

yields a triangular factorization for the dual

Λq(gt) = L (qB−t
q),B−t

q = B−tD−t .

Luckily, the simple structure of D yields an efficient Babai’s nearest plane decoding to L (qD−t).

Now the algorithmic blueprint should be clear:

1. given y = sgt + et apply Bt as a linear transformation,

2. then decode Bty to qL (D−t) in linear time.

The linear transformation B slightly increases the noise’s entry size, but this is overall a small

price to pay. The result is a linear time and space power-of-b gadget decoding algorithm with

error tolerance ‖e‖∞ ≤ q
2(b+1) .

Our family of CRT gadgets employ a simple algebraic trick: delegate the inverse CRT

transformation to the gadget. The CRT isomorphism ϕ : Zq → Zq1 ×Zq2 × ·· · ×Zql has a

simple form, ϕ(x) = (x mod q1, · · · ,x mod ql), but its inverse is a little more complicated. In

particular, it is of the form ϕ−1(x1, · · · ,xl) = ϕ−1(x) = 〈α,x〉 where α = (α1, · · · ,αl) is a vector

of integers with entries dependent on q’s factorization. Now, the CRT gadget is of the form

gt
CRT = (α1gt

1, · · ·αlgt
l).

A few algebraic manipulations reveal an ideal G-lattice structure:

Λ
⊥
q (g

t
CRT) = Λ

⊥
q (g

t
1)⊕Λ

⊥
q (g

t
2)⊕·· ·⊕Λ

⊥
q (g

t
l).

49

4.2 Background

We indicate numbers with lowercase letters, such as z ∈ Z, vectors as bold lowercase

letters, z ∈ Zn, and matrices as uppercase bold letters, M ∈ Rn×n. The default norm used is

the l2 norm of a vector unless stated otherwise, though we will often use the max, or l∞, norm.

For a real number r, denote drc as the deterministic rounding function to a nearest integer

of r. Rounding a real vector is applied analogously, entry-wise. Many computations will be

done over the integers modulo q, Zq. We view Zq through its balanced coset representatives in

(−q/2,q/2] unless stated otherwise. For a positive integer base b and a non-negative integer

u < bk, u’s b-ary decomposition is a vector [u]kb = (u0, · · · ,uk−1) ∈ {0, · · · ,b−1}k and satisfies

∑i biui = u. When b = 2, this is simply u’s binary decomposition. Recall the Chinese Remainder

Theorem for modular arithmetic. Let q be a positive integer with a prime factorization of

q = pe1
1 · · · p

el
l = q1 · · ·ql . Then by the Chinese Remainder Theorem (CRT), we have Zq ∼=

Zq1 ×·· ·×Zql . The isomorphism φ(·) is given by φ(a) = (a mod q1, · · · ,a mod ql) and its

inverse is φ−1(a1, · · · ,al) = ∑i(ai)q∗i q̂i where q∗i := q
qi

and q̂i := (q∗i)
−1 mod qi.

For a probability distribution χ , we denote e← χ to mean e is sampled from χ . When χ

is trivial (often over a number x), we will use e← x to be variable assignment as well.

4.2.1 Subgaussian Random Variables

A random variable X over R is subgaussian [65, 79] with parameter α > 0 if its (scaled)

moment generating function satisfies E[exp(2πtX)] ≤ exp(πα2t2) for all t ∈ R. Scaling a

subgaussian X by any c ∈R to c ·X yields a subgaussian random variable with parameter |c|α . If

X is subgaussian with parameter α , then its tails are dominated by a Gaussian parameterized by

α , Pr{|X | ≥ t} ≤ 2exp(−πt2/α2). Any B-bounded centered (E[X] = 0) random variable X is

subgaussian with parameter B
√

2π . When X is subgaussian with parameter α and Y conditioned

on X taking any value is subgaussian with parameter β , X +Y is subgaussian with parameter√
α2 +β 2. This property is called Pythagorean additivity. The proof of the following Lemma is

50

derived by expanding E[exp(2πt(X +Y))].

Lemma 4.2.1 Let X ,Y be discrete random variables over R such that X is subgaussian with

parameter α and Y conditioned on X taking any value is subgaussian with parameter β . Then,

X +Y is subgaussian with parameter
√

α2 +β 2.

Proof: Expanding the moment generating function gives the result:

E[exp(2πt(X +Y))] = ∑
z

∑
χ

Pr{Y = z−χ|X = χ}Pr{X = χ}exp(2πtz)

= ∑
χ

Pr{X = χ}exp(2πtχ)E[exp(2πtY)|X = χ]

≤ exp(πt2(α2 +β
2)).

�

A random vector x over Rn is subgaussian with parameter α > 0 if 〈x,u〉 is subgaussian

with parameter α for all unit vectors u. Using a similar calculation to the above, one can show

that if each coefficient of a random vector is subgaussian with parameter α conditioned on the

previous coefficients taking any values, then the vector is subgaussian with parameter α . The

slightly more general fact below is needed for our algorithms. Its proof is analogous to the proof

of Lemma 4.2.1.

Lemma 4.2.2 Let x be a discrete random vector over Rn such that each coordinate xi is subgaus-

sian with parameter αi given the previous coordinates take any values. Then, x is a subgaussian

vector with parameter maxi{αi}.

51

Proof: As before, we expand the moment generating function:

E[exp(2πt 〈x,u〉)] = ∑
χ

Pr{x = (χ1, · · · ,χn)}exp(2πt 〈χ,u〉)

≤ exp(πt2
∑

i
α

2
i u2

i)

≤ exp(πt2 max
i

αi
2‖u‖2).

The jump to the inequalities skips the straightforward calculations (nearly the same calculations

as in Lemma 4.2.1). �

We emphasize this fact, for without it one is left with an unnecessary
√

n term in the

subgaussian parameter of subgaussian vectors. Now, that the sum of independently generated

random vectors x and y subgaussian with parameters α and β is a subgaussian vector with

parameter
√

α2 +β 2 immediately follows.

A main algorithm presented in this chapter will rely on a linear transformation of a

discrete subgaussian vector.

Lemma 4.2.3 (Simplified [65, Corollary 2.3]) Let x be a subgaussian random vector with pa-

rameter α and let M be a linear transformation. Then, Mx is a subgaussian vector with

parameter αλmax(MMt)1/2 where λmax(·) is the largest eigenvalue.

4.2.2 q-ary Lattices

Throughout this chapter we will mostly be concerned with q-ary lattices. These are full-

rank integer lattices with q ·Zk as a sublattice. Fix an integer q > 0 to be used as a modulus and

let m > w > n. A matrix A ∈ Zn×m
q is primitive if AZm

q = Zn
q. Given an A ∈ Zn×m

q , we define the

following lattices: Λ⊥q (A) = {z ∈ Zm : Az = 0 mod q}, and Λq(A) = {v ∈ Zm : ∃ s ∈ Zn, vt =

stA mod q}. These lattices satisfy the following duality relation: Λ⊥q (A)∗ = q ·Λq(A). Further,

the cosets of Λ⊥q (A), Λ⊥u (A) := {z ∈ Zm : Az = u mod q}, are in bijection with Zn
q when A is

primitive. Let G be an arbitrary, primitive matrix over Zq. The following sampling problem,

52

defined on the integer cosets of Λ⊥q (G), is needed for many advanced lattice crypto-schemes.

Definition 4.2.1 For a primitive G ∈ Zn×w
q , the subgaussian decomposition problem with pa-

rameter α for G is to sample vectors x ∈ Zw subgaussian with parameter α such that u = Gx

mod q for arbitrary u given as input.

Another name for this problem is subgaussian sampling. A generic adaptation of Babai’s

algorithm (analyzed in Section 4.4, called the subgaussian nearest plane algorithm) is used in

[10] (AP14) to achieve subgaussian decomposition for a specific G. In general, this generic

algorithm runs in time O(k2), and uses space O(k3). Another, related problem is the discrete

Gaussian sampling problem.

Definition 4.2.2 For a primitive G ∈ Zn×w
q , the discrete Gaussian sampling problem with width

s for G is to sample vectors x ∈ Zw distributed as DZw,s conditioned on Gx mod q = u for

arbitrary u given as input.

Efficient solutions with small s for commonly used G’s are given in [66, 42]. Both of the

above sampling problems have polynomial time solutions using randomized versions of Babai’s

algorithm. In addition, we will consider decoding the q-ary code defined by G for an arbitrary,

primitive G.

Definition 4.2.3 For a primitive G ∈ Zn×w
q , the LWE decoding problem with tolerance δ on G

is to return s given stG+ et mod q for an error ‖e‖∞ < δ .

Specifically, we want to efficiently decode G while maximizing δ ∈ [0,q/2). An efficient

LWE decoding algorithm for a specific, commonly used G (b = 2 in the paragraph below) with

tolerance q/4 is provided in [66].

A G commonly used in lattice-based schemes is defined as follows. Fix an integer

b ∈ (1,q), known as the base, and let k = dlogb qe. The block-diagonal gadget matrix is

G = In⊗gt with blocks gt := (1,b, · · · ,bk−1). A common basis for Λ⊥q (gt) [42] Sq has a sparse,

triangular factorization Sq = SD [42] (restated in Section 4.5.2 in this chapter).

53

4.3 Gadget Matrices

In order to guide our search for gadget matrices with efficient inversion and sampling

algorithms, we give a simple general definition of gadget. The definition is modeled after

the properties required by the digit decomposition problem, perhaps the simplest and most

natural application of gadgets. But, as we will see, this simple characterization is enough to

guarantee (theoretical) solutions to all problems that arise in the application of gadgets in lattice

cryptography.

Definition 4.3.1 For any finite additive group A, an A-gadget of size w and quality β is a vector

g ∈ Aw such that any group element u ∈ A can be written as an integer combination u = ∑i gi · xi

where x = (x1, . . . ,xw) has norm at most ‖x‖ ≤ β .

We are primarily interested in gadgets for A=Zn
q, in which case the gadget is conveniently

represented as a matrix G ∈ Zn×w
q such that for any u ∈ Zn

q there is a vector x ∈ Zw of length

‖x‖≤ β such that Gx= u (mod q). We defined gadgets in terms of abstract groups to emphasize

that the dimension n and modulus q should be thought of as part of the problem specification

(typically mandated by the target application), while the w and β describe the size and quality of

the solution. In particular, for any given n and q, one may consider multiple gadgets achieving

different values of w and β . Naturally, smaller w and β are preferable, but as we will see there is

a natural tradeoff between these two values, and one may increase β in order to reduce w and

vice versa.

Before establishing a formal connection between the above definition and the notion of

gadget informally defined in previous work, we make some important observations.

• The matrix G is necessarily primitive, i.e., GZw
q = Zn

q. Moreover, any primitive matrix is a

Zn
q-gadget for a sufficiently large β = maxu min{‖x‖ : Gx = u (mod q)}.

• If g∈Zk is a Zq-gadget of quality β , then G = I⊗gt ∈Zn×w
q is a Zn

q-gadget of size w = kn

and quality
√

nβ .

54

• All definitions and constructions are easily adapted to ideal lattices (as used in the Ring-

SIS and Ring-LWE problems) simply by considering “structured gadgets” of the form

G⊗ [α1, . . . ,αn] where [α1, . . . ,αn] is an appropriate Z-basis of the underlying ring.

Based on the above observations, constructions may focus on the case n = 1, i.e., gadget

vectors g ∈ Zw
q , and then extend the solution to larger n (and possibly to the ring setting) using

general techniques. In fact, this is how larger gadgets are built in all applications we are aware

of. However, all the results in this section hold for arbitrary matrices, not necessarily with this

tensor structure. So, for the sake of generality, we use matrix notation.

In order to justify our abstract definition of gadget, we show that it guarantees all other

properties of gadgets used by lattice cryptography: it maps the gaussian distribution to an almost

uniform vector GDw
Z,s ≈ Zn

q (as needed by the trapdoor generation algorithm of [66]), and it

supports efficient algorithms to invert the LWE function gG(x,e), for discrete gaussian sampling

on f−1
G (u), and for subgassian decomposition with respect to G. All these properties are proved

by bounding the relevant parameters of the lattice Λ⊥q (G) defined by G.

Theorem 4.3.1 For any gadget matrix G∈Zn×w
q of quality β , the lattice L = Λ⊥q (G) has a basis

S with orthogonalized length ‖S̃‖ ≤ 2β +
√

w, successive minima λ1(L), . . . ,λw(L)≤ 2β +
√

w

and smoothing parameter η(L)≤ (2β +
√

w)ω(
√

logn).

Proof: We first bound the covering radius µ(L). Let x ∈ Rw be arbitrary, and let y = bxe

be a nearest point in Zw to x. There exists some integer vector z of norm at most β such that

Gz =−Gy mod q. Therefore, the vector y+z is in Λ⊥q (G) and is at distance at most β +
√

w/2

from x by two applications of the triangle inequality.

The other bounds immediately follow from general relations (satisfied by any lattice)

λw(L)≤ 2µ(L) and η(L)≤ λn(L)ω(
√

logn). Finally, any lattice has a basis with orthogonalized

length ‖S̃‖ ≤ λw(L). �

Note, the proof and theorem easily generalizes to any finite abelian group. Using

55

the bound on the smoothing parameter, and the short (orthogonalized) basis S ∈ Zw×w, we

immediately get the following applications.

Corollary 4.3.1 For any gadget matrix G ∈ Zn×w
q of quality β and s≥ (2β +

√
w)
√

ω(logn),

the distribution GDw
Z,s is statistically close to the uniform distribution over Zn

q. Moreover, there

are polynomial-time algorithms for the following problems:

• Discrete Gaussian Sampling for the function fG(x) = Gx (mod q) and input distribution

Dw
Z,s with s≥ (2β +

√
w)
√

ω(logn).

• Subgaussian Decomposition w.r.t G with parameter s≥ (2β +
√

w) ·
√

2π .

• LWE decoding of gG(s,e) for any s ∈ Zn
q and ‖e‖∞ ≤ q/2 · (2β +

√
w).

We remark that the general solutions provided by this corollary are of theoretical interest,

and not suitable for practice. They are provided here only as a general feasibility result, in order

to identify classes of good gadget matrices. The rest of the paper is dedicated to showing that by

carefully choosing the gadget vector g, one can obtain constructions and algorithms that are not

only theoretically efficient, but also easy to implement and extremely fast.

4.4 Subgaussian Nearest Plane

Now we describe the subgaussian nearest plane algorithm, SGNP(B, t), used in throughout

this chapter. It is a randomized version of Babai’s algorithm (Theorem 2.2.1), and it was first

used in a theoretical sense by Alperin-Sheriff and Peikert [10]. The algorithm takes as input a

target t ∈ Rn, a lattice basis B, and its GSO. It returns a lattice point x that is randomly chosen

so that x− t is a subgaussian vector. The subgaussian parameter, as we will see, is maxi ‖b̃i‖.

Let B∗k be the GSO of the basis Bk. As in the nearest plane algorithm, we partition the

lattice L (Bk) into parallel planes L (Bk) =
⋃

i∈Z(L (Bk−1)+ i ·bk), but here we randomly round

to the plane j or j−1, the planes between which the target lies, with a probability which depends

56

on the target’s distance from the nearest plane instead of directly rounding. In more detail, given

an input vector t, we perform the following: First project the target orthogonally onto the span of

b∗k and store the coefficient t←
〈
t,b∗k

〉
/‖b∗k‖2. If t ∈ Z, set c← t. Otherwise, pick c← btc+1

with probability t mod 1 and c← btc otherwise. Finally, return c ·bk +SGNP(Bk−1, t− c ·bk).

The following lemma is easily proved by induction through expanding the expectation and the

definition of the GSO.

Lemma 4.4.1 The expected value of SGNP(Bk, t) is t projected to span(Bk).

Proof: We prove this by induction on the dimension. For the base case, let the basis and target be

b, t ∈ R, respectively. Let p = t/b mod 1 (or equivalently t/b−bt/bc). Then the expectation of

SGNP(b, t) is

E[SGNP(b, t)] = b[bt/bc(1− p)+(bt/bc+1)p] = b(t/b) = t.

For the inductive step, we assume E[SGNP(Bk−1, t)] = spanBk−1
(t). The coefficient c’s

expectation is c′ :=
〈
t,b∗k

〉
/‖b∗k‖2 via the same computation as the base case. The law of iterated

expectation gives us

E[SGNP(Bk, t)] = c′bk +
k−1

∑
i=1

〈t− c′bk,b∗i 〉
‖b∗i ‖2 b∗i .

The result follows from the definition of the GSO. �

To see SGNP(Bk, t)− t is subgaussian, we view the space in the basis generated by B∗k .

Since the coefficients of the output vector in this basis are chosen independently and by the

definition of the GSO, SGNP(Bk, t)− t is a subgaussian vector with parameter maxi ‖b∗i ‖.

Lemma 4.4.2 SGNP(Bk, t)− t is a subgaussian vector with parameter maxi ‖b∗i ‖.

Proof: The result is seen through expressing SGNP(Bk, t)− t in the GSO basis B∗k . Each

coordinate ci (coefficient of b∗i) is subgaussian with parameter
√

2π and is independent of the

57

previous coordinates. As in Lemma 4.4.1’s proof, the result follows from the definition of the

GSO. �

4.5 Subgaussian Gadget Decomposition

In this section we present our main algorithms for the problem of subgaussian gad-

get decomposition using the gadget matrix G = In⊗ gt . Since this decomposition G−1(u) =

(g−1(ui))
n
i=1 can be computed one component at a time (even in-parallel!) we restrict our atten-

tion to efficiently computing the subgaussian function g−1 : Zq→ Zk in the one-dimensional

case, i.e., for n = 1.

The gadgets and algorithms in this section are parametrized by a “base” integer b, which

we consider as fixed throughout the section, but can be used to achieve different efficiency/quality

trade-offs. We distinguish two cases, depending on whether the modulus is a power q = bk of the

base b, or an arbitrary integer q< bk. In either case, no assumption is made about the factorization

of the modulus q. Later in this chapter we will extend the gadgets and algorithms from this section

to provide optimized treatment of large moduli with useful co-prime factorization q = ∏i qi,

where the input u ∈ Zq is given in CRT form (u mod q1, . . . ,u mod ql).

All algorithms in this section use the same gadget gt := (1,b, · · · ,bk−1), for k = dlogb qe,

but with different subgaussian decomposition procedures depending on the whether q is a power

of b. Notice that gt is a Zq-gadget of size k and quality β =
√

k(b/2).

The main result of this section is summarized in the following theorem2.

Theorem 4.5.1 For any integer base b > 1, integer modulus q > 1, k = dlogb qe and gadget

gt = [1,b, · · · ,bk−1], there is a subgaussian decomposition algorithm g−1 as follows:

• If q = bk, the algorithm runs in linear O(k) time (and space), uses log2 q random bits, and

achieves subgaussian parameter at most (b−1)
√

2π .
2This theorem is most relevant when q is a relatively small modulus (say q < 264), so that arithmetic operations

modulo q can be performed with unit cost. For larger moduli, the theorem will be used as a building block for a
more complex algorithm using RNS/CRT representation for the elements of Zq.

58

• If q 6= bk, the algorithm runs in linear O(k) time (and space), uses at most k log2 q random

bits, and achieves subgaussian parameter at most (b+1)
√

2π ,

Notice how the generic solution obtained by applying Theorem 4.3.1 to our gadget g

only implies a polynomial time inversion algorithm with subgaussian parameter (b+1) ·
√

2kπ ,

and quadratic O(k2) time complexity (after a cubic time O(k3) preprocessing). Depending on

implementation details, this generic solution would also require the use of high precision floating

point numbers3 and a substantial amount of randomness for high precision sampling. By contrast,

the solution described in Theorem 4.5.1 is much more efficient (linear time and space, with no

need for preprocessing) and also achieves a smaller subgaussian parameter by a factor of
√

k.

Moreover, our specialized algorithms use a relatively small (almost optimal) number of random

bits, and can be implemented without the need for high-precision floating-point arithmetic.

A proof of Theorem 4.5.1 is given by the algorithms presented and analyzed in the next

two subsections for the two separate cases q = bk and q < bk.

4.5.1 Power-of-Base Case

Here we consider the subgaussian decomposition problem for the gadget

g = (1,b, . . . ,bk−1)

when q = bk, and the input is given as a positive coset representative u ∈ {0,1, · · · ,q−1}. Con-

ceptually, our solution to this problem is just a specialized/optimized version of the randomized-

rounding variant of Babai’s nearest plane algorithm [13, 10]. The general algorithm uses the

Gram-Schmidt orthogonalization of a basis for the lattice Λ⊥q (gt) associated to the gadget g. The

optimization is based on the observation (from [66]) that for our gadget g and modulus q = bk,

3For a general integer basis B, the GSO can have numbers with denominators as large as ∏i ‖bi‖2.

59

the lattice Λ⊥q (gt) has a very simple basis S, and an even simpler GSO S̃:

S =



b

−1 . . .
. . . b

−1 b


, S̃ = b · I.

Using this special structure, there is no need to explicitly compute and store the GSO, and the

randomized-rounding nearest-plane algorithm can be implemented in linear time and space O(k).

The specialized algorithm is best illustrated when b = 2, in which case it computes a randomized

“bit” decomposition of u as follows:

1. For i = 0, · · · ,k−1:

(a) if u is even, then set xi← 0,

(b) if u is odd, then choose xi←{−1,+1} uniformly at random

Update u← (u− xi)/2.

2. Return x = (x0,x1, · · · ,xk−1).

This is essentially the same as the standard (deterministic) bit decomposition algorithm, except

that when the bit is 1, we use a random ±1 digit. Since ±1 have the same parity modulo 2, the

algorithm works as expected, with the only difference that now each digit is a zero-mean random

variable, and the final output is subgaussian with parameter
√

2π .

We can modify this algorithm to an arbitrary base b as follows. Let y := u mod b ∈

{0, · · · ,b− 1} for an input u ∈ Zq. Then, at each step, we pick the coset representative (of u

with respect to Zb) with expectation 0 from the set {y−b,y}. The resulting algorithm is given in

Figure 9. One can verify that this is the subgaussian nearest plane algorithm applied to the lattice

L (S) = Λ⊥q (gt), so the correctness of the algorithm is straightforward. Efficiency is also easily

60

Algorithm 9: g−1(u) for q = bk.
Input: u ∈ {0,1, · · · ,q−1}
Output: subgaussian x ∈ Λ⊥u (gt) with parameter (b−1)

√
2π

1 Let x← 0
2 for i← 0, · · · ,k−1 do
3 Let y← u mod b ∈ {0, · · · ,b−1}.
4 if y = 0 then
5 xi← 0.
6 else
7 with probability y/b, xi← y−b, and xi← y otherwise.
8 u← (u− xi)/b.
9 return x

analyzed by inspection. Notice that the algorithm is randomness efficient as it needs only one

random number in Zb for every interation, for a total of k · log2(b) = log2(q) random bits.

We remark that a similar algorithm is analyzed in [9], though with a loose bound on

its subgaussian parameter (there is an unnecessary
√

k factor in their subgaussian analysis).

This section’s main contribution is how to generalize the algorithm to arbitrary modulus q, as

described in the next subsection.

4.5.2 Arbitrary Modulus, Arbitrary Base

Unfortunately, the (randomized) nearest plane algorithm Λ⊥q (gt) does not specialize well

when the modulus q is not a power of b. The reason is that, while we can still use the same

gadget g = (1,b, . . . ,bk−1), the corresponding lattice Λ⊥q (gt) has a slightly different basis Sq

whose GSO is not diagonal, and not sparse. Our solution uses a technique developed in [42] for

the discrete Gaussian sampling problem. Specifically, we use the fact that Sq admits a sparse,

61

triangular factorization

Sq =



b q0

−1
. . . b qk−2

−1 qk−1


=



b

−1 . . .
. . . b

−1 b





1 d0

.

1 dk−2

dk−1


= SD (4.1)

where (q0, · · · ,qk−1) are the (base b) digits of q, and the last column of D is defined by the

simple recurrence di =
di−1+qi

b with initial condition d−1 = 0. (Note that bi+1di = q mod bi+1 ∈

{0, · · · ,bi+1−1}.)

Then, on input u ∈ {0,1, · · · ,q−1}, we proceed as follows:

1. Compute an arbitrary element u ∈ Zk of the lattice coset Λ⊥u (gt), for example u =

(u,0, . . . ,0).

2. Map u to t = S−1u by solving a sparse system of linear equations St = u (mod q).

3. Pick a subgaussian sample from the lattice coset L (D)+ t.

4. Apply the (sparse) linear transformation S to the sample, to obtain a subgaussian sample

from Λ⊥u (gt).

Here the (randomized) nearest plane algorithm admits a simple and efficient specialization

because it is applied to a basis, D, which has a diagonal GSO. The linear transformations S−1

and S can also be computed in linear time because S is sparse and triangular. As a result, the

algorithm runs in linear time O(k) and does not require any pre-processing. Finally, we get an

output with subgaussian parameter (b+1)
√

2π since S has small spectral norm.

The actual algorithm is given in Algorithm 10. The algorithm directly implements the

outline given above, but it is specialized/optimized to avoid the explicit computation of the sparse

matrices S,D, and to use only integer numbers (avoids floating point numbers). Details about the

correctness and analysis of the algorithm are provided in the rest of this section.

62

Algorithm 10: g−1(u)
Input: u ∈ {0,1, · · · ,q−1}
Output: subgaussian x ∈ Λ⊥u (gt) with parameter (b+1)

√
2π

1 Let u← [u]kb, x,y← 0
2 x← 0,q = [q]kb.
3 set xk−1← 0 with probability (q−u)/q and xk−1←−1 otherwise.
4 for i = k−2, · · · ,0 do
5 u← u−ui+1bi+1,q← q−qi+1bi+1.
6 Let c←−(u+ xk−1q).
7 if c < 0 then
8 p← (c+bi+1), z←−1.
9 else

10 p← c, z← 0.
11 set xi← z+1 with probability p/bi+1 and xi← z otherwise.
12 for i ∈ {0, · · · ,k−2} do
13 yi← b · xi− xi−1 + xk−1 ·qi +ui.
14 yk−1←−xk−2 + xk−1 ·qk−1 +uk−1.
15 return y.

Lemma 4.5.1 The first loop of Algorithm 10 performs the subgaussian nearest plane algorithm

on the lattice generated by D around target t :=−S−1[u]kb.

Proof: Let d be the last column of D. The last entry of t is tk−1 = −u/bk and the

last entry of d is dk−1 = q/bk. Therefore, we are randomly rounding xk−1 around the center〈
t, d̃
〉
/‖d̃‖2 =−u/q ∈ (−1,0].

For the remainder of the loop, we note that t = −S−1 ·u has entries ti = −(∑i
j=0 u j ·

b j)/bi+1, represented by the recurrence relation ti = ti−1/b+ui/b, t0 =−u0/b. This matches

the recurrence relation for d, di = (∑i
j=0 q j ·b j)/bi+1 since d = S−1[q]kb, so we can compute the

remaining centers for the nearest plane algorithm by these recurrences. Specifically, we are

performing a randomized rounding around the centers ci = ti− xk−1di =−(∑i
l=0 ul ·bl + xk−1 ·

∑
i
j=0 q j · b j)/bi+1 ∈ (−1,1). These centers are stored as c in the pseudocode. The variable z

represents the two parallel planes (copies of L ([d1, · · · ,di−1]) shifted by integer multiples of di)

separated by d̃i. The lemma follows. �

63

By storing d = S−1[q]kb in-advance, one can change the code to sample the first k− 1

coordinates of x in-parallel since L (d0, · · · ,dk−2) = Zk−1⊕{0}. The proof of Theorem 4.5.1

follows below.

Proof: For the case q = bk, Algorithm 9 returns a subgaussian sample x ∈Λ⊥u (gt) with parameter

(b−1)
√

2π in time and space O(logb q) while consuming log2(q) of random bits by inspection,

and Lemma 4.2.2.

Alternatively, let q 6= bk. Now by Lemma 4.5.1, x after the first loop is so that Dx is the

output of subgaussian nearest plane algorithm on D centered around −S−1u. By Lemma 4.2.3,

Sqx+u is a subgaussian vector with parameter
√

λmax(S ·St)
√

2π , where λmax(S ·St) is the

maximum eigenvalue of S ·St . A routine calculation for S ·St’s entries and the Geršgorin Circle

Theorem (Theorem 2.1.3) imply λmax(S · St) ≤ (b+ 1)2. Since during each iteration in the

first loop we draw a random number in Zbi to represent p, the algorithm consumes exactly

log2 b(1+2+ · · ·+ k) = log2 b · (k2 + k)/2 random bits. �

4.6 Gadget Decoding

Here we discuss our main algorithm for the problem of LWE gadget decoding, defined in

this chapter’s introduction, on the gadget matrix G = In⊗gt with entries in Zq, for an arbitrary

modulus q. Given a vt = stG+ et ∈ Znk
q as input, we can break the vector into n components of

length k, then decode (in-parallel) each component with respect to gt . Therefore, we focus on

decoding gt as a gadget for Zq.

Our algorithm and its respective gadgets are parameterized by an integer “base” b. We

consider b as fixed in this section, though varying b for a fixed modulus q yields efficiency/quality

trade-offs for these gadgets. Later in this chapter, we present a CRT gadget that can be used to

efficiently decode an input given in CRT form.

Let k = dlogb qe and the gadget be gt = (1,b, · · · ,bk−1). The vector gt is a size k gadget

of quality (b/2)
√

k for Zq. The results in this section are summarized in the following theorem.

64

Theorem 4.6.1 For every modulus q, and gadget gt = (1,b, · · · ,bk−1), there is a time and space

O(k) algorithm decoding gt with tolerance q/2(b+1).

A proof of Theorem 4.6.1 is given by the algorithm presented in this section. Note,

Theorem 4.3.1 implies a polynomial time decoding algorithm for gt with error tolerance ‖e‖∞ ≤

q/2
√

k(b+1). Our decoding algorithm is more efficient and has a higher error tolerance by a

factor
√

k than the general gadgets decoding guarantee given by Theorem 4.3.1.

An optimized, linear time and space O(k), decoding algorithm is given in [66] for the

case q = bk. The reason for this algorithm’s efficiency is that the commonly used basis for

Λbk(gt) results in a linear time nearest plane algorithm. In more detail, a basis for Λbk(gt) in

this case is the triangular matrix Bbk = bk ·S−t , where S is the commonly used basis for Λ⊥bk(gt)

presented in the preliminaries, and this basis has a GSO of (q/b) · I.

However, the simple decoding idea presented in [66] fails when q 6= bk. Because Λq(gt)’s

commonly used basis has a dense GSO, Babai’s nearest plane algorithm takes time O(k2) and

space O(k3) when naively applied on Λ⊥q (gt).

Efficient Decoding Algorithm

The intuition for our algorithm is best initially viewed through the case when q = bk.

Given an input v, another way to decode the lattice Λbk(gt) is to use St as a linear transformation,

decode Stv to the lattice bk ·Zk with the nearest plane algorithm, then map the nearest point in

bk ·Zk back to Λbk(gt). This leads to a slightly stronger condition on the noise vector e since we

now need Ste ∈P1/2(q · I), which is satisfied if ‖e‖∞ < q/2(b+1). Though there is no need to

do this given the algorithm in [66], this is essentially what we will do in the case when q 6= bk.

Overview

The overview of our efficient decoding algorithm for an arbitrary modulus is as follows.

First recall the sparse, triangular factorization of Λ⊥q (gt)’s commonly used basis given in the

preliminaries, Sq = SD. The duality relation for q-ary lattices, Λq(gt) = q ·Λ⊥q (gt)∗, dictates that

a basis for Λq(gt) is q ·S−t
q = S−t(q ·D−t). Luckily, the matrix D−t is sparse with a diagonal

65

Algorithm 11: DECODEG(v,b,r[q]kb)
Input: v ∈ Zk, b, and q = [q]kb.
Output: s ∈ Zq where v = sgt + et as long as ‖e‖∞ < q/2(b+1).

1 for i← 0, · · · ,k−2 do
2 vi← bvi− vi+1.
3 vk−1← b · vk−1.
4 Let x← 0 and reg← 0.
5 for i← 0, · · · ,k−2 do
6 xi← dvi/qc and reg← reg/b+bk−1 ·qi.
7 vk−1← vk−1 + xi · reg.
8 xk−1← dvk−1/bkc.
9 Let s← xk−1 and reg← 0.

10 for i← k−2, · · · ,0 do
11 reg← b · reg+qi+1.
12 s← s+ xi · reg
13 return s mod q.

GSO, and P1/2(q · D̃−t)⊇P1/2(q · I) (meaning we can decode as long as ‖e‖∞ < q/2(b+1)).

Therefore, we can decode gt by the following.

1. Given v, first apply St as a linear transformation.

2. Then, decode the vector Stv to the lattice generated by qD−t using the nearest plane

algorithm.

Both steps can be computed in linear time and space, O(k), given the sparsity of S and qD−t ,

and qD−t’s diagonal GSO.

The pseudocode for our algorithm is shown in DECODEG. In short, the algorithm has

three components, where each is represented by a loop in the pseudocode. These components

are to first compute the linear transformation on the input v← Stv, then to run the nearest

plane algorithm on the lattice generated by q ·D−t , and finally to return s represented as the first

entry of the nearest lattice point in Λq(gt) modulo q. The proof of Theorem 4.6.1 follows from

Lemmas 4.6.1 and 4.6.2 below.

66

Lemma 4.6.1 The second loop in DECODEG is an instantiation of Babai’s nearest plane

algorithm on the lattice q ·D−t given target Stv, running in time and space O(k).

Proof: Recall the structure of D from the previous chapter, D = [M|d] where Mt =

[Ik−1|0] and d has entries di = (q mod bi+1)/bi+1, with q mod bi+1 ∈ {0,1, · · · ,bi+1− 1}.

Then, it follows that qD−t has a similar triangular, sparse structure. This is given by q ·D−t =qIk−1 0

ct bk

 and the vector c ∈ Zk−1 has entries ci = −bk−1−i · (q0 + bq1 + · · ·+ biqi) =

−bk−1−i · (q mod bi+1) ∈ [−q,0]. Further, the entries of c satisfy the recurrence relation −ci =

−(ci−1)
b +bk−1qi with the initial condition −c0 = bk−1q0. The variable reg in DECODEG stores

ci, and it is updated using the recurrence relation for c. The vector x in the pseudocode stores

the coefficients of the nearest lattice point expressed in the basis qD−t . The Lemma follows by

inspection. �

Lemma 4.6.2 The last loop in DECODEG computes s mod q in time and space O(k).

Proof: Represent the first row of B = S−tqD−t as h, and note 〈h,x〉 = s mod q. A

careful analysis of qD−t and S−t gives us an expression for h’s entries: hi = qi+1 +bqi+2 + · · ·+

bk−i−2qk−1 =
q−(q mod bi+1)

bi+1 for i ∈ {0,1, · · · ,k− 2} and hk−1 = 1. All but the last entry of h

satisfy the recurrence relation hi = qi+1 +b ·hi+1 for i ∈ {0, · · · ,k−2}, with an initial value of

qk−1 (which is not the actual value of h’s last entry). We use this recurrence relation to compute

h’s entries one at a time in the last loop, stored in the variable reg. The Lemma follows by

inspection. �

4.7 Gadgets for the CRT Representation

Many applications of lattice gadgets require a large modulus that, for secure and func-

tional sets of parameters, surpasses the native 64-bit integer arithmetic in a modern machine’s

hardware. One common method to circumvent the use of multi-precision numbers is to pick a

67

modulus of the form q = ∏qi with each qi less than 64 bits. Then, one can store an element

u ∈ Zq as its Chinese Remainder representation (CRT form4) as (u mod q1, · · · ,u mod ql) and

perform computations via the Chinese Remainder Theorem, utilizing the ring isomorphism

Zq ∼= Zq1 × ·· ·×Zql . Simple forms of the gadget matrix (e.g. power of two matrix) are not

compatible with this representation because the binary digits of a number cannot be easily recov-

ered from the CRT components without a costly reconstruction phase involving large numbers

modulo q.

In this section, we discuss a gadget for the CRT form. As usual, the gadget admits a

compact (implicit) representation, and does not need to be computed and stored explicitly. Most

importantly, the gadget allows us to use the algorithms in Sections 4.5 and 4.6 in order to perform

subgaussian decomposition, discrete Gaussian sampling, and LWE gadget decoding all given

input represented in CRT form. This has several theoretical and practical advantages: (1) the

algorithms can be directly used by efficient applications that already store their numbers in CRT

form, (2) our algorithms can be easily parallelized as they operate on each CRT component

independently, (3) all algorithms only require arithmetic on small numbers (at most maxi qi) even

if the modulus q = ∏i qi may be very big. (Efficient solutions to Discrete Gaussian Sampling

for the individual moduli qi, as needed by our CRT DGS algorithm, are given in [66, 42].) We

remark that a balanced, deterministic digit decomposition is provided in [38, 71], and an LWE

decoding algorithm for a CRT/RNS hybrid gadget for general rings is given in the library’s code5

(without an analysis). Our results are summarized in the following theorem. We emphasize the

analysis below assumes integer operations, including reductions modulo qi, are done in constant

time. This is because our algorithms are best implemented when each qi is less than 64 bits,

avoiding the use of multi-precision numbers.

Theorem 4.7.1 Let q have factorization q = ∏
l
i=1 qi into coprime factors {qi}, (bi)

l
i=1 be an

l-tuple of bases with bi < qi for all i, and let k = ∑ki where ki = dlogbi
qie. There exists a

4This is also known as the residue number system (RNS) in previous works.
5https://github.com/cpeikert/Lol/blob/master/lol/Crypto/Lol/Gadget.hs

68

Algorithm 12: Sampling in CRT
form.

Input: (u1, · · · ,ul)
Output: g−1

CRT (u1, · · · ,ul).
1 for i ∈ {1, · · · , l} do
2 xi← g−1

i (ui).
3 return x = (x1, · · · ,xl).

Algorithm 13: Decoding in CRT
form.

Input: vt = s ·gCRT + et mod q
Output: (s1, · · · ,sl).

1 Let v = (v1, · · · ,vl) for each
vi ∈ Zki

q .
2 for i ∈ {1, · · · , l} do
3 si← DECODECRT(vi)
4 return (s1, · · · ,sl).

Figure 4.1. Pseudocode for the parallel algorithms given in Theorem 4.7.1. We let g−1
i (·) denote

either the subgaussian decomposition algorithm given in Section 4.5 or a discrete Gaussian
sampler.

gadget, gt
CRT , for Zq of size k and quality maxi bi/2. Further, the gadget satisfies the following

properties:

• Subgaussian decomposition can be performed in-parallel with l processors, each using

time and space O(ki), consuming less than ki log2 qi random bits ((log2(qi) random bits if

qi = bki
i)) and with parameter at most (maxi(bi)+1)

√
2π .

• For any ε > 0, discrete Gaussian sampling can be performed in-parallel with l processors,

each in time and space O(ki) with width s ≥ O(b1.5
j)ηε(Zk j) for index j maximizing√

2b j(b j +1) ·ηε(Zk j).

• gt
CRT is decodable in-parallel with l processors in time and space O(ki) with tolerance

q/2(maxi(bi)+1).

As expected, each processor gets slightly more efficient whenever qi = bki
i . The algo-

rithms are represented in Figure 4.1.

The CRT Gadget

For each coprime factor qi, fix the base-bi gadget vector as gt
i := (1,bi, · · · ,bki−1

i) where

ki = dlogbi
(qi)e. Let k = ∑i ki, q∗i = q/qi, and q̂i = (q∗i)

−1 mod qi. Consider the gadget vector,

which we call the general CRT gadget, gt
CRT = (q∗1q̂1 ·gt

1, · · · ,q∗l q̂l ·gt
l) mod q ∈ Z1×k

q . This is

69

Algorithm 14: DECODECRT(vi,bi, t = [qi]
ki
bi
,q,q∗i)

Input: vi ∈ Zki , bi, q∗i , q, and t = [qi]
ki
bi

.
Output: s mod qi where v = sgt + et mod q as long as ‖e‖∞ < q/2(bi +1).

1 for j← 0, · · · ,ki−1 do
2 v j← b jv j− v j+1.
3 Let x← 0.
4 for j ∈ {0, · · · ,ki−2} do
5 x j← dv j/qc.
6 xk−1← d(vk−1−

〈
c,xk−2

0

〉
)/(q∗i bi

ki)c.
7 Let si← xk−1 and reg← 0.
8 for j← ki−2, · · · ,0 do
9 reg← b · reg+ t j+1 ·q∗i .

10 si← si + x j · reg
11 return si mod qi.

a generalization of the gadgets (or implicit in algorithms) used in [22, 53, 55, 15]. As before, the

gadget matrix is the block-diagonal matrix G := In⊗gt
CRT . Theorem 4.7.1 follows from the fact

Λ⊥q (gt
CRT) = Λ⊥q1

(gt
1)⊕·· ·⊕Λ⊥ql

(gt
l), Theorem 4.5.1, and Proposition 3.1 in [42]. The parallel

decoding algorithm is obtained by a slight adaptation to DECODEG presented in Section 4.6, and

is analyzed in the Section 4.7.1. We prove the direct sum decomposition of Λ⊥q (gt
CRT).

Proof: For the inclusion ⊇, let xi ∈ Λ⊥qi
(gt

i) be arbitrary with x = (x1, · · · ,xl) as their concatena-

tion. Then, 〈xi,gt
i〉= aqi ∈ qi ·Z and 〈x,gCRT 〉 mod q = ∑

l
i=1 q∗i q̂i 〈xi,gi〉 mod q = 0+ · · ·+0

mod q. We prove the converse by inducting on l, the number of q’s coprime factors. The base

case is routine. Now consider x = (x1, · · · ,xl) ∈ Λ⊥q (gt
CRT) with xi ∈ Λ⊥qi

(gt
i) for i = 0, · · · , l−1

and xl ∈ Zkl . By the inductive hypothesis, 〈x,gCRT 〉 mod q = q∗l q̂l ·
〈
xl,gt

l

〉
= 0 mod q. View-

ing this equation in Z and dividing both sides by q∗l implies q̂l · 〈xl,gl〉 mod ql = 0. Finally, we

conclude 〈xl,gl〉 mod ql = 0 since q̂l is a multiplicative unit in Zql . �

4.7.1 Decoding the CRT Gadget

Here we show how the efficient gadget decoding algorithm from Section 4.6 adapts

to the general CRT gadget described in Section 4.7. Recall the decomposition of gt’s lattice,

70

Λ⊥q (gt)=Λ⊥q1
(gt

1)⊕·· ·⊕Λ⊥ql
(gt

l) =L (Sq1)⊕·· ·⊕L (Sql). The duality relation for q-ary lattices

yields Λq(gt) = q · (Λ⊥q (gt))∗ = q ·
(⊕

i L (S−t
qi

D−t
qi
)
)
=
(⊕

i L (S−t
qi

q∗i · (qi ·D−t
qi
))
)
.

Now we have a clear way to decode the general CRT gadget. First, break the input into l

blocks, vt = sgt + et mod q = (vt
1, · · · ,vt

l) where vt
i = s ·q∗i q̂igt

i + et
i mod q. Then, we compute

the following. First, transform vi to St
qi

vi. Then, decode St
qi

vi to the lattice q∗i (qiD−t
qi
). Finally,

return s mod qi. The pseudocode is given as the algorithm DECODECRT. Another change is

that we store the vector c in memory. Recall, c has k−2 entries of the form c j =−bki−1− j
i (qi

mod b j
i). Note that the correctness condition of our algorithm is still ‖et‖∞ < q/2(maxi(bi)+1).

Decoding in CRT Form

Here we describe how DECODECRT can decode v = sg+e where the input is given in its

CRT representation. The ideas sketched here follow from [55]. The linear transformation v→ Stv

is easily computed given the CRT form of v. Really, we are only concerned with divisions and

integer rounding. In the second loop, note that x j ← dv j/qc = d∑l
o=1[(v mod qo) · (q̂o/qo)]c.

Next we consider the line xk−1← d(vk−1 +
〈

c,xk−2
0

〉
)/(q∗i bi

ki)c. First, note that vk−1/(b
ki
i q∗i) =

b−ki
i ·∑l

o=1(vk−1 mod qo) · q̂o(qi/qo). This should be a small number in nearly all practical

instantiations. Lastly, we note that we return s in CRT form, but we can alter the algorithm to

return s ∈ (−q/2,q/2] via a simple change. The s computed in the last loop is actually s ·q∗i q̂i.

So, we can remove the mod qi in the return statement and sum up the output from the l parallel

processors, ∑i(s ·q∗i q̂i) = s ·∑i(q∗i q̂i) = s ·1 mod q.

4.8 Toolkit Implementation and Its Application

4.8.1 Software Implementation

We implemented most of the algorithms presented in this work in PALISADE [73],

a modular open-source lattice cryptography library that includes ring-based implementations

of homomorphic encryption, proxy re-encryption, identity-based encryption, attribute-based

encryption, and other lattice schemes. More concretely, we added a new lattice gadget toolkit

71

module to PALISADE that implements the following algorithms:

• Subgaussian gadget decomposition (Algorithm 10) for arbitrary moduli and gadget bases.

• Efficient gadget in CRT representation, enabling both trapdoor sampling and subgaussian

gadget decomposition in the CRT representation.

• Subgaussian gadget decomposition for cyclotomic rings both in positional and CRT number

systems, which wraps around Algorithm 10.

The toolkit module complements/improves the lattice gadget algorithms previously added to

PALISADE, such as trapdoor sampling for cyclotomic rings proposed in [42] and implemented

in [52, 37]. The full lattice gadget capability will be included in the next major public release of

PALISADE.

4.8.2 Optimized Variant of Key-Policy Attribute-Based Encryption

We use the lattice gadget toolkit algorithms to build and implement a full RNS/CRT

variant of the short-secret Key-Policy Attribute-Based Encryption (KP-ABE) scheme originally

proposed in [19] and implemented for cyclotomic rings in [39]. The KP-ABE scheme is a

complex cryptographic primitive that can be used for attribute-based access control applications,

as well as a building block for audit log encryption, targeted broadcast encryption, predicate

encryption, functional encryption, and some forms of program obfuscation [19, 49].

Overview

ABE is a public key cryptography primitive that enables the decryption of a ciphertext by

a user only if a specific access policy (defined over ` attributes) is satisfied. In the key-policy

scenario, a message is encrypted using the attribute values as public keys, and a specific access

policy is typically defined afterwards. When the access policy becomes known, a secret key for

the policy is generated (using trapdoor sampling in our KP-ABE scheme), and the ciphertexts

72

and public keys are homomorphically evaluated over the policy circuit (using a GSW-type

homomorphic multiplication in our KP-ABE scheme).

The short-secret KP-ABE scheme is a tuple of functions, namely Setup, Encrypt,

EvalPK, KeyGen, EvalCT, and Decrypt, whose definitions are:

• SETUP(1λ , `)→ {MPK, MSK}: Given a security parameter λ and the number of attributes

`, a trusted private key generator (PKG) generates a master public key MPK and a master

secret key MSK. MPK contains the ABE public parameters while MSK includes the trapdoor

that is used by PKG to generate secret keys for access policies.

• ENCRYPT(µ,x,MPK)→ C: Using MPK and attribute values x ∈ {0,1}`, sender encrypts

the message µ and outputs the ciphertext C.

• EVALPK(MPK,x, f)→ PK f : Homomorphically evaluate MPK over a policy (Boolean circuit)

f : {0,1}`→{0,1} to generate a public key PK f for the policy f .

• KEYGEN(MSK,MPK,PK f)→ SK f : Given MSK, MPK and policy-specific PK f , PKG generates

the secret key SK f corresponding to f . PKG sends SK f to the receiver that is authorized to

decrypt ciphertexts encrypted under f .

• EVALCT(C,x, f)→ C f : Homomorphically evaluate C over the policy f to generate the

ciphertext C f .

• DECRYPT(C f ,SK f)→ µ̄: Given the homomorphically computed ciphertext C f and cor-

responding secret key SK f , find µ̄ , which is the same as the original message µ if the

receiver has the secret key matching the policy f .

The most computationally expensive operations are EVALPK and EVALCT, which

homomorphically evaluate a circuit of depth dlog2 `e using the GSW homomorphic multiplication

approach. At each level of a Boolean circuit composed of NAND gates (which are used for

benchmark evaluation in [39]), the algorithms compute matrix products B2iG−1(−Bi) and

73

(
G−1(−Ci)

)t C2i for public keys and ciphertexts, respectively. Here, Bi ∈ R1×m
q , Ci ∈ Rm

q ,

Rq = Zq[x]/〈xn +1〉, and m = dlogb qe+ 2 (the latter corresponds to the Ring-LWE trapdoor

construction). Note that that the gadget G is extended in this case to m by adding two zero entries

to the decomposed digits.

The work [39] presents a CPU implementation of the ring variant of the KP-ABE

scheme along with an efficient GPU implementation for policy evaluation and encryption. The

CPU implementation was done for a binary gadget base and used the conversion from CRT to

the positional number system for digit decomposition both in trapdoor sampling and gadget

decomposition. To avoid the linear noise growth O(nm) in gadget decomposition, the authors

used a balanced digit decomposition, namely the binary non-adjacent form (NAF), that replaces

digits in (0,1) with a zero-centered representation in (-1,0,1). Although this approach allows one

to achieve a heuristic growth close to O(
√

nm) in the case of the KP-ABE scheme, the noise

properties depend on the randomness of the input, i.e., this approach is deterministic.

The CPU runtimes for policy evaluation and encryption operations in [39] were far from

practical (the CPU results only for ` up to 8 are presented), and hence the authors developed an

efficient GPU implementation for these operations.

For detailed algorithms of the KP-ABE scheme, the reader is referred to [39].

Our Optimizations

We present a full CRT/RNS ring variant of the KP-ABE scheme that leverages the

lattice gadget toolkit to significantly (by more than one order of magnitude) speed up the policy

evaluation operations. In particular, our implementation includes the following optimizations as

compared to [39]:

• The subgaussian gadget decomposition in CRT representation to minimize the noise

growth instead of the NAF decomposition with the conversion from CRT representation to

positional system. This provides a theoretical guarantee of the square-root noise growth.

To achieve the repeatability of randomized decomposition in EVALPK and EVALCT, we

74

use the same seed for the random operations in subgaussian gadget decomposition. The

seed is treated as part of the master public key.

• The CRT variant of trapdoor sampling using the gadget decomposition technique discussed

in this paper in contrast to the multiprecision digit decomposition in [39].

• The RNS/CRT scaling proposed in [54] for decryption in contrast to the multiprecision

scaling.

• Increased gadget base b (both in trapdoor and subgaussian gadget decomposition) instead

of the binary base.

Parameter Selection

As the correctness constraint in [39] was derived for the classical binary-base gadget

decomposition, we provide here a modified version incorporating the effect of a larger gadget

base for the case of subgaussian gadget decomposition:

q > 4C1sσ
√

mn
(
b
√

mn
)d
, (4.2)

where C1 = 128, s = C ·σ2(b+ 1) · (
√

n logb q+
√

2n+ 4.7), C = 1.8, σ ≈ 4.578, and d =

dlog2 `e. Here, C and C1 are empirical parameters chosen the same way as in [39].

The differences compared to [39] are the b factor in the exponentiation base (as the

digits vary between −b and b in subgaussian gadget decomposition) and a (b+1) factor in the

expression for s (contributed by Gaussian sampling; see [42, 37] for a more detailed discussion

of the Gaussian distribution parameter for arbitrary gadget bases).

4.9 Experimental Results

We ran the experiments in PALISADE version 1.2, which includes NTL version 10.5.0

and GMP version 6.1.2. The evaluation environment was a commodity desktop computer system

75

0 5 10 15 20 25 30
0

2

4

6

8

10

12

 b=2r

 arbitrary b

Sa
m

pl
in

g
ra

te
 (i

n
10

6 p
er

 s
ec

on
d)

log2 b

Figure 4.2. Runtime baseline of subgaussian sampling rate for native uniformly random integers
(w.r.t a 60-bit modulus). When b = 2r, the modulo reduction in digit decomposition is performed
by simple bit shifting. When b is arbitrary, the slower hardware modulo operation is used.

with an Intel Core i7-3770 CPU with 4 cores rated at 3.40GHz and 16GB of memory, running

Linux CentOS 7. The compiler was g++ (GCC) 5.3.1.

4.9.1 Subgaussian Gadget Decomposition

The experiments described in this section were all performed in the single-threaded

mode. The goal of these results is to provide the performance baselines for subgaussian gadget

decomposition, demonstrate the benefits of the efficient gadget in CRT representation, and

illustrate the effect of subgaussian sampling on the noise growth in GSW-type products.

Figure 4.2 shows the dependence of subgaussian gadget decomposition rate (per decom-

posed integer) on the gadget base for native (64-bit) integers. The results are shown both for a

power-of-two base, which supports fast modulo reduction by bit shifting, and an arbitrary base,

which requires a division-based modulo operation on x86 architectures. In our implementation,

the native arithmetic is a building block for performing operations in CRT representation for

76

0 100 200 300 400 500 600
1

10

100

1000 CRT (arbitrary b)
 CRT (b=2r)
 MP (arbitrary b)
 MP (b=2r)

Po
ly

no
m

ia
l s

am
pl

in
g

ra
te

 (p
er

 s
ec

on
d)

Bits in modulus

Figure 4.3. Comparison of sampling rates for CRT and multiprecision (MP) variants of subgaus-
sian gadget decomposition for ring elements with 4096 coefficients and 60-bit CRT moduli at
r = dlog2 be = 20.

integers that are larger than 60 bits, and, therefore, these results can be used to estimate the run-

times for larger CRT-represented integers. Figure 4.2 illustrates that the sampling rate increases

in a discrete manner as we raise the gadget base because the number of digits is determined

by d60/ log2 be. The runtime is dominated by the randomized operations (as the difference

between a power-of-two-base and arbitrary-base scenarios is relatively small), thus limiting the

advantages of choosing the faster power-of-two bases. This suggests that a CRT representation

in terms of powers of primes, where the primes are used as the residue bases, might be preferred

in some instances (where an efficient implemention of arithmetic over prime powers is available)

over power-of-two bases.

Figure 4.3 illustrates the benefits of using the efficient gadget in CRT representation

when working with cyclotomic rings. The conversion from CRT representation to the positional

system followed by digit decomposition w.r.t a large modulus slows down subgaussian gadget

decomposition rate by almost one order of magnitude. We also observe that the difference in

77

0 2 4 6 8 10
0

20

40

60

80

100

120

140

160

 Subgaussian
 Classical

N
oi

se
 le

ve
l (

in
 b

its
)

Depth

Equation y = a + b*x
Value Standard Error

Subgaussian
Intercept 3.65547 0.33142
Slope 8.70829 0.05341

Classical
Intercept -5.37852 0.63843
Slope 15.63138 0.10289

Figure 4.4. Noise growth for GSW-type multiplication in the ring-based KP-ABE variant (k =
180, n = 1024, b = 2). The base in the exponentiation is (mn)β , where m = k+2 = 182 and β

describes the rate of noise growth. The slope of the linear interpolation is β log2(mn).

performance between a power-of-two base and an arbitrary base is relatively small for both cases.

Figure 4.4 demonstrates the differences in the noise growth of GSW-type products using

the subgaussian and classical binary gadget decomposition methods. For this experiment, we

generated an error vector in Rm and iteratively multiplied it by G−1(Ui), where Ui is a vector of

uniformly random ring elements in Rm
q at level i. We applied the tree multiplication approach

(rather than a sequential evaluation in a right-associative manner, which reduces the noise when

dealing with a chained product of fresh encryptions in GSW [30, 10]) to emulate the noise

growth in evaluating a Boolean policy circuit in the KP-ABE scheme. We considered both the

cases when the same U was used at all levels (correlated ciphertexts) and different Ui at each

level. The results were approximately the same for both scenarios because the classical gadget

decomposition matrix is centered at 0.5 (see [39] for a more detailed discussion of the classical

gadget decomposition case).

Figure 4.4 suggests that the noise growth in the subgaussian gadget decomposition case

78

Table 4.1. Comparison of performance results for our KP-ABE variant (in bold) vs. the
implementation in [39] (in parentheses). EVALCT* = EVALPK + EVALCT corresponds to the
scenario when the policy evaluation of public keys and ciphertexts is done at the same time.

` k log2 n r KEYGEN ENCRYPT EVALCT* EVALPK DECRYPT RAM
[ms] [ms] [s] [s] [ms] [MB]

2 50 (44) 11 (11) 5 (1) 40 (126) 7 (33) 0.023 (0.44) 0.021 (0.42) 1.8 (3.0) 19 (58.5)
4 100 (52) 12 (12) 20 (1) 64 (143) 15 (57) 0.072 (1.76) 0.064 (1.68) 3.9 (3.5) 36.4 (86.3)
8 120 (60) 13 (13) 15 (1) 151 (317) 56 (222) 0.59 (10.8) 0.53 (10.4) 8.9 (7.7) 94.1 (255)

16 180 (70) 13 (13) 20 (1) 177 (419) 157 (1,483) 1.68 (429) 1.48 (427) 11.5 (18.1) 230 (2,867)
32 180 13 15 206 414 5.67 5.0 13.46 508
64 204 13 17 226 1,052 13.1 11.2 16.39 1,229

128 300 14 25 568 6,454 98.3 85.5 45.43 7,024

has a square-root dependence on mn (β ≈ 0.5) while the classical gadget decomposition approach

results in almost linear noise growth (β ≈ 0.9). Note that the intercept is lower for classical

gadget decomposition because the infinity norm of digits is 1 (only 0 or 1 are possible) vs. 2 in

the case of subgaussian decomposition (the allowed integer values are in the range from -2 to 2).

However, this advantage does not propagate to the second level of the circuit as the square-root

dependence of subgaussian gadget decomposition already plays a more dominant role here.

4.9.2 Key-Policy Attribute-Based Encryption

Table 4.1 shows the performance results for our implementation along with the corre-

sponding results for the implementation in [39]. The first three rows for the results in [39] were

obtained using native (64-bit) integer arithmetic and the last row used a multiprecision backend

in PALISADE based on NTL/GMP. The experiments were run for 4 threads on a commodity

desktop system, i.e., Intel Core i7-3770 CPU with 4 cores at 3.40GHz and 16GB of memory

running CentOS 7. Both variants were implemented in PALISADE v1.2.

To choose the ring dimension n for both implementations, we ran the LWE security

estimator6 (commit 560525) [6] to find the lowest security levels for the uSVP, decoding, and

dual attacks following the standard homomorphic encryption security recommendations [5]. We

selected the least value of the number of security bits λ for all 3 attacks on classical computers

6https://bitbucket.org/malb/lwe-estimator

79

based on the estimates for the BKZ sieve reduction cost model. All results are presented for at

least 128 bits of security.

Table 4.1 suggests there is a speed-up of 2.1x to 3.2x for key generation, where the lattice

trapdoor sampling subroutine is called. The speed-up for encryption is 3.8x to 9.5x, which is

mostly attributed to the use of a larger gadget base. The speed-ups for the main bottleneck

operations of homomorphic public key and ciphertext evaluation are in the range from 18x to

289x, which is a combined effect of subgaussian gadget decomposition in CRT and a larger

gadget base. The decryption runtimes are comparable, and already fast for both implementations.

The memory requirements for our optimized variant are 2.4x to 12.5x smaller.

Note that the performance of the KP-ABE variant in [39] dramatically degrades after

switching from the native arithmetic (when k≤ 60 bits) to the multiprecision backend (for gadget

decomposition), which is observed for `= 16 in Table 4.1. This implies the efficient gadgets in

CRT representation are critical for supporting deeper Boolean circuits with CPU systems.

We also profiled the contributions of subgaussian gadget decomposition and the number

theoretic transforms (NTT) of the digit-decomposed matrix (needed for matrix multiplication) to

the runtimes for homomorphic policy evaluation of ciphertexts (EVALCT*). The contribution

of subgaussian gadget decomposition was in the range from 15% to 22% w.r.t. the total homo-

morphic policy evaluation runtime. The contribution of the related NTTs was between 47% and

63%, suggesting that the latter is the main bottleneck of homomorphic circuit evaluation in our

KP-ABE variant.

Acknowledgement

This chapter is reprinted as it appears (with minor modifications) from the publication

“Building an Efficient Lattice Gadget Toolkit: Subgaussian Sampling and More,” presented by

this dissertation’s author at EUROCRYPT 2019 [43] and is joint work with Daniele Micciancio,

and Yuriy Polyakov.

80

Chapter 5

Subgaussian Analysis for Lattice Trap-
doors

5.1 Introduction

Anyone tasked with measuring the concrete security of a cryptographic scheme built

on the MP12 [66] lattice trapdoor, which relies on the short integer solution problem [4, 67],

needs to understand the concentration of the largest singular value of a distribution of random

matrices with subgaussian entries. Previously, the state of the art in concentration bounds for

these matrices’ singular values scaled with a mysterious constant value [79]. This is unsatisfying

for the cryptographer interested in estimating the costs of a scheme prior to implementation.

The contribution of this chapter is twofold: first to find the exact constants in these

singular values’ concentration bounds, then to find the actual singular values appearing in-

practice. Note, the provable bounds are for a broad class of random matrices and, as expected,

the bounds are not as tight as one sees in-practice on the set of commonly-used distributions.

5.2 A Concentration Bound on Subgaussian Matrices with
Exact Constants

In this section we prove the following theorem:

Theorem 5.2.1 Let A be an m×n random matrix whose rows ai are independent, zero-mean,

81

σ -isotropic, subgaussian random vectors with parameter s > 0. Then, for any t ≥ 0

σ
[√

m−C(s2/σ
2)
(√

n+ t
)]
≤ sn(A)≤ s1(A)≤ σ

[√
m+C(s2/σ

2)
(√

n+ t
)]

for C =
√

4e1+2/e ln9/
√

π and with probability at least 1−2e−t2
.

Note, the normalized matrix (1/σ)A has isotropic rows. We remark the proof is nearly identical

to [79] except here we pay special attention to the constants in the proof.

5.2.1 Useful Lemmas

We will need the following Fact.

Lemma 5.2.1 Let X be a subgaussian random variable with parameter s > 0, then

E[|X |k]1/k ≤ s
√

k
e−1/e

√
2π

= s ·O
(√

k
)

for all k > 0.

Proof: Since |X | is a non-negative random variable, we have

E[|X |k] =
∫

∞

0
Pr{|X |k > t}dt ≤ 2

∫
∞

0
exp(−πt2/k/s2)dt.

The inequality is by Fact 2.3.1. Next, we perform a change of variables. Let u := πt2/k/s2 so we

have the following:

E[|X |k]≤
(

s√
π

)k

k
∫

∞

0
exp(−u)uk/2−1du =

(
s√
π

)k

k ·Γ(k/2)1/k.

Now the bounds Γ(k/2)≤ (k/2)k/2 (from Stirling’s approximation) and k1/k ≤ e1/e (calculus)

for all k > 0 give us

E[|X |k]1/k ≤ s√
2π

e1/e
√

k.

82

Lemma 5.2.2 Let X be a positive random variable. Then, for all i, j ∈ Z+, we have

cov(X i,Y j) = E[X i+ j]−E[X i]E[X j]≥ 0.

Proof: Recall Jensen’s inequality: ϕ(E[Y])≤ E[ϕ(Y)] for all random variables Y and all convex

functions ϕ . This gives us

E[X i](i+ j)/i ≤ E[X i+ j], E[X j](i+ j)/ j ≤ E[X i+ j].

Let us raise the first inequality to the i/(i+ j)-th power and the second by j/(i+ j)-th power.

This gives us

E[X i]≤ E[X i+ j]i/(i+ j)

E[X j]≤ E[X i+ j] j/(i+ j)

and we multiply the two inequalities to get the result.

ε-Nets

An ε-net on the n-dimensional unit sphere, Sn−1 := {x ∈ Rn : ‖x‖2 = 1}, is a finite set

Nε ⊂ Sn−1 such that for all y ∈ Sn−1, there is a vector x in the net within a Euclidean distance

ε > 0 of y, ‖x−y‖ ≤ ε . We have the following fact on the size of an ε-net on the unit sphere

[79, Lemma 5.2].

Fact 5.2.2 For all ε > 0, there exists an ε-net Nε on the unit sphere Sn−1 such that

|Nε | ≤
(

2
ε
+1
)n

.

83

When A ∈ Rn×n is symmetric, we can estimate its norm from a net by the following

lemma [79, Lemma 5.4].

Lemma 5.2.3 Let A∈Rn×n be a symmetric matrix, Nε ⊂ Sn−1 be an ε-net on the n-dimensional

unit sphere for some ε ∈ (0,1). Then,

‖A‖= sup
y∈Sn−1

| 〈Ay,y〉 | ≤ 1
1−2ε

max
x∈Nε

| 〈Ax,x〉 |.

Approximate isometries and isotropy

A random vector over Rn is σ−isotropic if E[xxt] = σ2In. When σ = 1, we simply say

the random vector is isotropic. Let x be isotropic and y ∈ Rn be arbitrary, then E[〈x,y〉2] =

ytE[xxt]y = ‖y‖2
2.

Below is a lemma giving a condition which implies a matrix A ∈Rm×n is an approximate

isometry from Rn to Rm, measured by a small δ > 0 [79, Lemma 5.36].

Lemma 5.2.4 Let A ∈ Rm×n, δ > 0, α > 1, and ‖AtA− In‖ ≤ α max(δ ,δ 2). Then,

1−αδ ≤ sn(A)≤ s1(A)≤ 1+αδ .

5.2.2 A Berstein-type Bound

Here we prove two lemmas: a bound on (X2−E[X2])’s moment generating function for

a subgaussian X and a Berstein-type concentration lemma needed for the main theorem [76,

Lemma 1.12].

Lemma 5.2.5 Let X be a subgaussian random variable with parameter s > 0. Then, the random

variable Z := X2−E[X2] satisfies

E[e2πtZ]≤ eCB·πt2s4

for all |t| ≤ 1/(8e2/e+1s2) and CB = 32e4/e+2/π .

84

Proof: We start with simply expanding the moment generating function and applying Jensen’s

inequality, ϕ(E[X])≤ E[ϕ(X)] for any convex function ϕ(·).

E[exp(2πtZ)] = 1+ ∑
k≥2

(2πt)kE[(X2−E[X2])]k

k!

≤ 1+ ∑
k≥2

(2πt)kE[(X2−E[X2])k]

k!

≤ 1+ ∑
k≥2

2k−1(2πt)k ·2 ·E[X2k]

k!
.

The first inequality uses Jensen’s inequality, for the function φ(y) = yk with y≥ 0. The second

inequality is given by pairing 2k−1 terms of the form E[X2iX2 j]±E[X2i]E[X2 j], where i+ j = k,

and each term E[X2iX2 j]±E[X2i]E[X2 j] is less than 2E[X2k] by Lemma 5.2.2. Now, we can use

Lemma 5.2.1 to simplify.

= 1+ ∑
k≥2

(4πt)kE[X2k]

k!

≤ 1+ ∑
k≥2

(4πt)k(se1/e
√

2k/
√

2π)2k

k!

= 1+ ∑
k≥2

(4ts2e2/ek)k

k!
.

Next, we use the bound k!≥ (k/e)k to get

E[exp(2πtZ)]≤ 1+ ∑
k≥2

(4ts2e1+2/e)k

= 1+(4ts2e1+2/e)2
∑
k≥0

(4ts2e1+2/e)k.

85

And finally, we restrict t ∈ (0, 1
8s2e1+2/e) to get

E[exp(2πtZ)]≤ 1+2(4ts2e1+2/e)2

≤ exp(CB ·πt2s4)

for CB := 32e2+4/e/π (the last inequality uses 1+ x≤ ex for x≥ 0).

Lemma 5.2.6 Let {Xi}n
1 be iid subgaussian random variables with parameter s > 0, and let

X̄ :=
1
n ∑

i
(X2

i −E[X2
i]),

then for all t > 0, we have

Pr{|X̄ |> t} ≤ 2 · exp
(
− n

CB
·min

{
t2

s4 ,
t
s2

})

for CB := 32e2+4/e

π
.

Proof: We proceed with the usual exponential Markov inequality. Fix CB = 32e4/e+2/π as in the

previous lemma. Let δ ∈ (0,1/(8e2/e+1s2)] be arbitrary, Zi := X2
i −E[X2

i], and S = nX̄ = ∑i Zi.

Pr[S > nt] = Pr[exp(2πδS)> exp(2πδnt)]

≤ exp(−2πδnt) ·E[exp(2πδS)]

= exp(−2πδnt) ·∏
i
E[exp(2πδZi)]

≤ exp(−2πδnt +nCBπδ
2s4).

The first inequality is Markov’s, and the last inequality is from Lemma 5.2.5. Now we minimize

86

the exponent as a function of δ . This yields δ = t
CBs4 and in the case t

CBs4 ≤ 1
8e1+2/es2 , we have

Pr[X̄ > t]≤ exp
(
− n

CB

t2

s4

)

by substitution. If t
CBs4 >

1
8e1+2/es2 (equivalently, t > 4e1+2/es2

π
),

Pr[X̄ > t]≤ exp
(
−n
[

πt
4e1+2/es2

− 1
2

])

by substitution with δ = 1
8e1+2/es2 . The further restriction on t (t > 4e1+2/es2

π
or equivalently

tπ
8e1+2/es2 > 1/2) gives us πt

4e1+2/es2 − 1
2 is always at least πt

8e1+2/es2 , which in-turn is always at least

t
CBs2 . This proves the lemma.

5.2.3 Proof of Theorem 5.2.1

Proof: First, we will use a net on the unit sphere to approximate a fixed A’s singular

values, then we will use the Bernstein-like lemma from the previous subsection, Lemma 5.2.6,

for a concentration bound on A’s distribution. And finally, we will use a union bound over the

entire net.

Let, CB = 32e2+4/e

π
as in Lemma 5.2.6, C = 2

√
ln(9) ·CB = 8e1+2/e

√
ln9/
√

π , δ :=

C(
√

n/m+ t/
√

m), and ε := s2/σ2 ·max(δ ,δ 2). Notice that Lemma 5.2.1’s proof gives us

σ < s, or s/σ > 1.

Step 1: approximation.

Here we will use a net along with Lemma 5.2.4, which allows us to reduce the proof to

showing ‖A′tA′− In‖ ≤ (s/σ)2 max(δ ,δ 2) where A′ := 1
σ ·
√

mA. Let N ⊂ Sn−1 be a 1/4-net on

the n-dimensional unit sphere. Lemma 5.2.3 tells us

‖ 1
mσ2 AtA− In‖ ≤ 2max

x∈N
|
〈
(

1
mσ2 AtA− In)x,x

〉
|= 2max

x∈N

∣∣∣∣ 1
mσ2‖Ax‖2

2−1
∣∣∣∣ .

87

Next, we show with high probability (over A’s rows), we have

max
x∈N

∣∣∣∣ 1
mσ2‖Ax‖2

2−1
∣∣∣∣≤ ε/2.

Step 2: concentration.

Here we use the Bernstein-type lemma, Lemma 5.2.6, to get a concentration bound on∣∣∣ 1
mσ2‖Ax‖2

2−1
∣∣∣ for a fixed x in the net. Express ‖Ax‖2

2 as a sum indexed by A’s rows:

‖Ax‖2
2 =

m

∑
i=1
〈ai,x〉2 .

Now we are concerned with the probability Pr
[∣∣∣ 1

mσ2 ∑〈ai,x〉2−1
∣∣∣≤ ε/2

]
, and we can use

Lemma 5.2.6 since E[〈ai,x〉2] = σ2 by the definition of isotropic. For simplicity, re-scale the

matrix to Ā := A/σ with rows āi. This matrix, Ā, has independent, centered, subgaussian rows

with parameter s/σ . Then, we have

Pr
[∣∣∣∣ 1

m ∑(〈āi,x〉2−1)
∣∣∣∣≤ ε/2

]
≤ 2exp

(
− m

CB
min

{
σ2ε

2s2 ,
σ4ε2

4s4

})
≤ 2exp

(
− m

4CB
min

{
max(δ ,δ 2),max(δ 2,δ 4)

})
≤ 2exp

(
− m

4CB
δ

2
)

from Lemma 5.2.61. (The min-max argument results in δ 2 in both cases δ < 1 and δ ≥ 1.)

Using the inequality (a+b)2 ≥ a2 +b2 for non-negative a,b gives us

Pr
[∣∣∣∣ 1

m ∑〈āi,x〉2−1
∣∣∣∣≤ ε/2

]
≤ 2exp(− ln(9)n− t2)

since C0 = 2
√

ln9 ·CB.

1We consider δ ≥ 1 and δ < 1 by using Lemma 5.2.6 in this step of the proof.

88

X s̄1 σ(
√

m+CX (s/σ)2√n) observed CX Sample Var
P 71.26 71.43 .99/4π .04
U {−1,1} 100.74 101.01 .99/2π .05
N (0,1) 100.71 101.01 .99 .043
DZ,
√

2π
100.77 101.01 .99 .06

X s̄n σ(
√

m−CX (s/σ)2√n) observed CX Sample Var
P 39.60 39.43 .99/4π .017
U {−1,1} 56.00 55.76 .99/2π .043
N (0,1) 55.92 55.76 .99 .036
DZ,
√

2π
56.00 55.76 .99 .037

Figure 5.1. Data from 50 random matrices of dimension m = 6144×n = 512 for each distri-
bution X . The third column is the expected singular value using each distribution’s calculated
CX : 1, 1/2π , and 1/4π for discrete/continuous gaussians, U {−1,1}, and P respectively.

Step 3: union bound.

Finally, we take a union bound over all x ∈ N and from fact 5.2.2 we have that |N| ≤ 9n.

This gives us

Pr[∃ x ∈ N :
1
m ∑〈āi,x〉2−1 > ε/2]≤ 9n ·2exp(− ln(9)n− t2)

= 2exp(−t2).

The proof is complete by Lemma 5.2.4.

5.2.4 Experiments

Here we present empirical data on the singular values of random matrices with inde-

pendent entries drawn from commonly-used distributions in lattice-based cryptography. These

distributions are the continuous gaussian, the discrete gaussian over Z, U {−1,1}, and the

distribution given by choosing 0 with probability 1/2 and ±1 each with probability 1/4, which

we denote as P . For each distribution, we sampled 50 m = 6144 by n = 512 random matrices

89

and measured their singular values, and assumed the singular values were approximately

s1 ≈ σ
(√

m+CX (s/σ)2√n
)

sn ≈ σ
(√

m−CX (s/σ)2√n
)

where CX is a small constant dependent on the distribution X . These results are given in

Figure 5.1.

Continuous and Discrete Gaussians

The continuous gaussian Dσ is subgaussian with parameter σ/
√

2π since2 E[e2πtX] =

eπt2σ2
where X ∼ Dσ . Further, the discrete gaussian DΛ,s is subgaussian with parameter s,

independent of the smoothing parameter of Λ, for any lattice Λ [66, Lemma 2.8]. Assuming that

the discrete gaussian is smooth, then one can expect the standard deviation of DZ,r to be close to

the standard deviation of the continuous gaussian it approximates, r/
√

2π . This implies the ratio

between the subgaussian parameter and the standard deviation of (discrete) gaussians is one or

nearly one. Under this assumption, we observed Cgaussian = 1.

Uniform over {−1,1}

Here σ = 1 and E[e2πtX] = cosh2πt ≤ e2π2t2
, or the subgaussian parameter is at most

2π . We observed CU {−1,1} = 1/2π in our experiment.

The Distribution P

By nearly the same steps as the previous distribution, P is subgaussian with parameter

2π and σ = 1/
√

2. Then, we observed a CP = 1/4π . We note that for all four distributions we

observed CX (s/σ)2 ≈ 1.

As a second experiment, we repeated the first experiment for a fixed X = U {−1,1}

but with varying dimensions. This experiment’s data for s1 is shown in Figure 5.2, graphed

2Dσ = N(0,σ/
√

2π) where N(0,σ) is the normal distribution with variance σ2.

90

Figure 5.2. Here X = {−1,1}. For each n = 50,100,200,500,1000, the experi-
ment sampled N = 50 random n by 32n matrices and averaged their largest singu-
lar value. The measured constant CX approached 1/2π from below as n increased
(.92/2π, .96/2π, .97/2π, .99/2π, .99/2π).

with the expected largest singular value. We remark that we saw the same behavior for all four

distributions when we varied the dimension.

5.2.5 Applications

Here we show how the updated singular value estimates from the previous subsection

impact concrete security of lattice trapdoor schemes. As an example, we use the [66] trapdoor

scheme with entries drawn independently from P . Since the singular values scale with σ =

1/
√

2, the concrete security of the underlying SIS problem increases. See Figure 5.3 for the

difference in a commonly-used parameter regime.

In order to estimate security, we followed [8, 7], in using sieving as the SVP oracle with

time complexity 2.292k+16.4 in the block size, k. BKZ is expected to return a vector of length

δ 2ndet1/2n for a lattice of dimension 2n (Minkowski’s theorem tells us a short enough lattice

vector exists when we only use 2n columns of A). Hence, we found the smallest block size

k achieving the needed δ corresponding to forging a signature, s
√

m√
q = δ 2n. Finally, we used

91

Parameters Original Updated
n 512 512
q 224 224

s 2881 2037
m 24804 24804
Bit Sec. 124 136
δ 1.0046 1.0043
k 324 364

Figure 5.3. The change in concrete security of the underlying SIS problem in MP12 when the
trapdoor is drawn from Pm×n. We give the smallest BKZ block size k achieving the δ needed to
find a vector of length s

√
m in (a subspace of) the lattice Λ⊥q (A).

the heuristic δ ≈ (k
2πe(πk)1/k)1/2(k−1) to determine the relationship between k and δ , and we

set the total time complexity of BKZ with block-size k, dimension 2n as 8 · (2n) · time(SVP) =

8 · (2n) ·2.292k+16.4 [35, 8].

92

Bibliography

[1] Shweta Agrawal. Stronger security for reusable garbled circuits, general definitions and
attacks. In CRYPTO 2017, pages 3–35, 2017.

[2] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard
model. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of Lecture Notes in
Computer Science, pages 553–572. Springer, 2010.

[3] Shweta Agrawal, Xavier Boyen, Vinod Vaikuntanathan, Panagiotis Voulgaris, and Hoeteck
Wee. Functional encryption for threshold functions (or fuzzy IBE) from lattices. In Marc
Fischlin, Johannes A. Buchmann, and Mark Manulis, editors, Public Key Cryptography -
PKC 2012 - 15th International Conference on Practice and Theory in Public Key Cryp-
tography, Darmstadt, Germany, May 21-23, 2012. Proceedings, volume 7293 of Lecture
Notes in Computer Science, pages 280–297. Springer, 2012.

[4] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In Gary L.
Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory
of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 99–108. ACM,
1996.

[5] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gor-
bunov, Jeffrey Hoffstein, Kristin Lauter, Satya Lokam, Daniele Micciancio, Dustin Moody,
Travis Morrison, Amit Sahai, and Vinod Vaikuntanathan. Homomorphic encryption se-
curity standard. Technical report, HomomorphicEncryption.org, Cambridge MA, March
2018.

[6] Martin Albrecht, Samuel Scott, and Rachel Player. On the concrete hardness of learning
with errors. Journal of Mathematical Cryptology, 9(3):169203, 10 2015.

[7] Martin R. Albrecht, Benjamin R. Curtis, Amit Deo, Alex Davidson, Rachel Player, Ea-
monn W. Postlethwaite, Fernando Virdia, and Thomas Wunderer. Estimate all the {LWE,
NTRU} schemes! In Security and Cryptography for Networks - 11th International Con-
ference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings, pages 351–367,
2018.

[8] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning
with errors. J. Mathematical Cryptology, 9(3):169–203, 2015.

93

[9] Jacob Alperin-Sheriff and Daniel Apon. Weak is better: Tightly secure short signatures
from weak prfs. IACR Cryptology ePrint Archive, 2017:563, 2017.

[10] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error. In
Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, volume 8616 of Lecture Notes
in Computer Science, pages 297–314. Springer, 2014.

[11] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. In
26th International Symposium on Theoretical Aspects of Computer Science, STACS 2009,
February 26-28, 2009, Freiburg, Germany, Proceedings, pages 75–86, 2009.

[12] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. Theory
Comput. Syst., 48(3):535–553, 2011.

[13] László Babai. On lovász’ lattice reduction and the nearest lattice point problem. Combina-
torica, 6(1):1–13, 1986.

[14] Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron Steinfeld. Improved
security proofs in lattice-based cryptography: Using the rényi divergence rather than the
statistical distance. In ASIACRYPT 2015, pages 3–24, 2015.

[15] Jean-Claude Bajard, Julien Eynard, M. Anwar Hasan, and Vincent Zucca. A full RNS
variant of FV like somewhat homomorphic encryption schemes. In Selected Areas in
Cryptography - SAC’16, volume 10532 of LNCS, pages 423–442, 2016.

[16] Rachid El Bansarkhani and Johannes A. Buchmann. Improvement and efficient implemen-
tation of a lattice-based signature scheme. In Selected Areas in Cryptography - SAC 2013,
pages 48–67.

[17] Rikke Bendlin, Sara Krehbiel, and Chris Peikert. How to share a lattice trapdoor: Threshold
protocols for signatures and (H)IBE. In Applied Cryptography and Network Security, ACNS
2013, pages 218–236.

[18] Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial func-
tions. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of Lecture Notes
in Computer Science, pages 149–168. Springer, 2011.

[19] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev,
Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic en-
cryption, arithmetic circuit ABE and compact garbled circuits. In Phong Q. Nguyen and
Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer
Science, pages 533–556. Springer, 2014.

[20] Dan Boneh, Sam Kim, and Valeria Nikolaenko. Lattice-based DAPS and generalizations:
Self-enforcement in signature schemes. In Applied Cryptography and Network Securitym
ACNS 2017, pages 457–477, 2017.

94

[21] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions privately.
In Public Key Cryptography (2), volume 10175 of Lecture Notes in Computer Science,
pages 494–524. Springer, 2017.

[22] Guillaume Bonnoron, Léo Ducas, and Max Fillinger. Large FHE gates from tensored
homomorphic accumulator. In AFRICACRYPT’18, volume 10831 of LNCS, pages 217–251,
2018.

[23] Xavier Boyen and Qinyi Li. Attribute-based encryption for finite automata from LWE. In
Man Ho Au and Atsuko Miyaji, editors, Provable Security, ProvSec 2015, volume 9451 of
Lecture Notes in Computer Science, pages 247–267. Springer, 2015.

[24] Xavier Boyen and Qinyi Li. Towards tightly secure lattice short signature and id-based
encryption. In ASIACRYPT 2016, pages 404–434, 2016.

[25] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical
gapsvp. In CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 868–886.
Springer, 2012.

[26] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In ITCS, pages 309–325. ACM, 2012.

[27] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classi-
cal hardness of learning with errors. In Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 575–584, 2013.

[28] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 97–106, 2011.

[29] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-lwe
and security for key dependent messages. In CRYPTO, volume 6841 of Lecture Notes in
Computer Science, pages 505–524. Springer, 2011.

[30] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In
Innovations in Theoretical Computer Science - ITCS’14, pages 1–12, 2014.

[31] Zvika Brakerski and Vinod Vaikuntanathan. Circuit-abe from LWE: unbounded attributes
and semi-adaptive security. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO
2016, volume 9816 of Lecture Notes in Computer Science, pages 363–384. Springer, 2016.

[32] Zvika Brakerski, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Obfuscating
conjunctions under entropic ring LWE. In Madhu Sudan, editor, Proceedings of the 2016
ACM Conference on Innovations in Theoretical Computer Science, pages 147–156. ACM,
2016.

[33] Ran Canetti and Yilei Chen. Constraint-hiding constrained prfs for nc1 from LWE. In
EUROCRYPT 2017, pages 446–476, 2017.

95

[34] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation branch-
ing programs: Proofs, attacks, and candidates. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II, volume
10992 of Lecture Notes in Computer Science, pages 577–607. Springer, 2018.

[35] Yuanmi Chen. Réduction de réseau et sécurité concréte du chiffrement complétement
homomorphe. PhD thesis, Paris 7, 2013.

[36] James W Cooley and John W Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of computation, 19(90):297–301, 1965.

[37] David Bruce Cousins, Giovanni Di Crescenzo, Kamil Doruk Gür, Kevin King, Yuriy
Polyakov, Kurt Rohloff, Gerard W. Ryan, and Erkay Savas. Implementing conjunction
obfuscation under entropic ring LWE. In Symposium on Security and Privacy - SSP’18,
pages 354–371, 2018.

[38] Eric Crockett and Chris Peikert. Λoλ : Functional lattice cryptography. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016, pages 993–1005. ACM, 2016.

[39] Wei Dai, Yarkin Doröz, Yuriy Polyakov, Kurt Rohloff, Hadi Sajjadpour, Erkay Savas, and
Berk Sunar. Implementation and evaluation of a lattice-based key-policy ABE scheme.
IEEE Trans. Information Forensics and Security, 13(5):1169–1184, 2018.

[40] Léo Ducas and Phong Q. Nguyen. Faster gaussian lattice sampling using lazy floating-point
arithmetic. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of
Lecture Notes in Computer Science, pages 415–432. Springer, 2012.

[41] Léo Ducas and Thomas Prest. Fast fourier orthogonalization. In Sergei A. Abramov,
Eugene V. Zima, and Xiao-Shan Gao, editors, Proceedings of the ACM on International
Symposium on Symbolic and Algebraic Computation, ISSAC 2016, pages 191–198. ACM,
2016.

[42] Nicholas Genise and Daniele Micciancio. Faster gaussian sampling for trapdoor lattices
with arbitrary modulus. In EUROCRYPT’18, volume 10820 of LNCS, pages 174–203,
2018.

[43] Nicholas Genise, Daniele Micciancio, and Yuriy Polyakov. Building an efficient lattice
gadget toolkit: Subgaussian sampling and more. In Advances in Cryptology - EUROCRYPT
2019 - 38th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II, pages
655–684, 2019.

[44] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 169–178. ACM, 2009.

96

[45] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES circuit.
In Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2012. Proceedings, pages 850–867, 2012.

[46] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Cynthia Dwork, editor, Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, pages 197–206. ACM, 2008.

[47] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, volume
8042 of Lecture Notes in Computer Science, pages 75–92. Springer, 2013.

[48] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption
for circuits. J. ACM, 62(6):45:1–45:33, 2015. Prelim. version in STOC 2013.

[49] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for
circuits from LWE. In Rosario Gennaro and Matthew Robshaw, editors, Advances in
Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 16-20, 2015, Proceedings, Part II, volume 9216 of Lecture Notes in Computer
Science, pages 503–523. Springer, 2015.

[50] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic
signatures from standard lattices. In Rocco A. Servedio and Ronitt Rubinfeld, editors,
Proceedings ACM on Symposium on Theory of Computing, STOC 2015, pages 469–477.
ACM, 2015.

[51] S. Dov Gordon, Jonathan Katz, and Vinod Vaikuntanathan. A group signature scheme from
lattice assumptions. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of Lecture
Notes in Computer Science, pages 395–412. Springer, 2010.

[52] Kamil Doruk Gur, Yuriy Polyakov, Kurt Rohloff, Gerard W. Ryan, and Erkay Savas.
Implementation and evaluation of improved gaussian sampling for lattice trapdoors. IACR
Cryptology ePrint Archive, 2017:285, 2017.

[53] Shai Halevi, Tzipora Halevi, Victor Shoup, and Noah Stephens-Davidowitz. Implementing
bp-obfuscation using graph-induced encoding. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, pages 783–798, 2017.

[54] Shai Halevi, Yuriy Polyakov, and Victor Shoup. An improved RNS variant of the BFV
homomorphic encryption scheme. IACR Cryptology ePrint Archive, 2018:117, 2018.

[55] Shai Halevi, Yuriy Polyakov, and Victor Shoup. An improved RNS variant of the BFV
homomorphic encryption scheme. In Mitsuru Matsui, editor, Topics in Cryptology - CT-RSA
2019 - The Cryptographers’ Track at the RSA Conference 2019, San Francisco, CA, USA,

97

March 4-8, 2019, Proceedings, volume 11405 of Lecture Notes in Computer Science, pages
83–105. Springer, 2019.

[56] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key
cryptosystem. In Joe Buhler, editor, Algorithmic Number Theory, Third International
Symposium, ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings, volume
1423 of Lecture Notes in Computer Science, pages 267–288. Springer, 1998.

[57] James Howe, Thomas Pöppelmann, Máire O’Neill, Elizabeth O’Sullivan, and Tim Güneysu.
Practical lattice-based digital signature schemes. ACM Trans. Embedded Comput. Syst.

[58] Antoine Joux and Jacques Stern. Lattice reduction: A toolbox for the cryptanalyst. J.
Cryptology, 11(3):161–185, 1998.

[59] Charles F. F. Karney. Sampling exactly from the normal distribution. ACM Trans. Math.
Softw., 42(1):3:1–3:14, January 2016.

[60] Sam Kim and David J. Wu. Watermarking cryptographic functionalities from standard
lattice assumptions. In CRYPTO 2017, pages 503–536, 2017.

[61] Philip N. Klein. Finding the closest lattice vector when it’s unusually close. In David B.
Shmoys, editor, Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pages
937–941. ACM/SIAM, 2000.

[62] Fabien Laguillaumie, Adeline Langlois, Benoı̂t Libert, and Damien Stehlé. Lattice-based
group signatures with logarithmic signature size. In Kazue Sako and Palash Sarkar, editors,
ASIACRYPT 2013, volume 8270 of Lecture Notes in Computer Science, pages 41–61.
Springer, 2013.

[63] Adeline Langlois, San Ling, Khoa Nguyen, and Huaxiong Wang. Lattice-based group
signature scheme with verifier-local revocation. In Hugo Krawczyk, editor, Public-Key
Cryptography - PKC 2014, volume 8383 of Lecture Notes in Computer Science, pages
345–361. Springer, 2014.

[64] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. J. ACM, 60(6):43, 2013.

[65] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-lwe cryptography.
In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of
Lecture Notes in Computer Science, pages 35–54. Springer, 2013.

[66] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK,
April 15-19, 2012. Proceedings, pages 700–718, 2012.

[67] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
gaussian measures. SIAM J. Comput., 37(1):267–302, 2007.

98

[68] Daniele Micciancio and Michael Walter. Gaussian sampling over the integers: Efficient,
generic, constant-time. In CRYPTO 2017, pages 455–485, 2017.

[69] Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of GGH and
NTRU signatures. J. Cryptology, 22(2):139–160, 2009.

[70] Phong Q. Nguyen, Jiang Zhang, and Zhenfeng Zhang. Simpler efficient group signatures
from lattices. In Jonathan Katz, editor, Public-Key Cryptography - PKC 2015 - 18th
IACR International Conference on Practice and Theory in Public-Key Cryptography,
Gaithersburg, MD, USA, March 30 - April 1, 2015, Proceedings, volume 9020 of Lecture
Notes in Computer Science, pages 401–426. Springer, 2015.

[71] Chris Peikert. personal communication.

[72] Chris Peikert. An efficient and parallel gaussian sampler for lattices. In Tal Rabin, editor,
Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 15-19, 2010. Proceedings, volume 6223 of Lecture Notes in
Computer Science, pages 80–97. Springer, 2010.

[73] Yuri Polyakov, Kurt Rohloff, and Gerard W. Ryan. PALISADE lattice cryptography library.
https://git.njit.edu/palisade/PALISADE, Accessed October 2018.

[74] Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced lattice-based signatures on
reconfigurable hardware. In Proceedings of the 16th International Workshop on Crypto-
graphic Hardware and Embedded Systems — CHES 2014 - Volume 8731, pages 353–370,
New York, NY, USA, 2014. Springer-Verlag New York, Inc.

[75] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Symposium on Theory of Computing - STOC’05, pages 84–93, 2005.

[76] Philippe Rigollet. 18.s997 high-dimensional statistics. License: Creative Commons BY-
NC-SA, Spring 2015. Massachusetts Institute of Technology: MIT OpenCourseWare,
https://ocw.mit.edu.

[77] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and privacy
homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

[78] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In
FOCS, pages 124–134. IEEE Computer Society, 1994.

[79] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. CoRR,
abs/1011.3027, 2010.

[80] Fuzhen Zhang. The Schur Complement and Its Applications, volume 4. Springer Science,
2006.

99

https://git.njit.edu/palisade/PALISADE

	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Motivation
	Results
	Outline

	Preliminaries
	Linear Algebra
	Lattices
	Discrete and Subgaussians
	Gadgets

	Discrete Gaussian Sampling on Algebraic and Gadget Lattices
	Introduction
	Background
	Gaussians and Lattices
	Cyclotomic Fields

	Sampling G-lattices
	Instantiation
	The Algorithm
	Implementation and Comparison

	Perturbation Sampling in Cyclotomic Rings
	Discrete Perturbation Algorithm for Power of Two Cyclotomics
	General Cyclotomic Rings

	The Lattice Gadget Toolkit
	Introduction
	Background
	Subgaussian Random Variables
	q-ary Lattices

	Gadget Matrices
	Subgaussian Nearest Plane
	Subgaussian Gadget Decomposition
	Power-of-Base Case
	Arbitrary Modulus, Arbitrary Base

	Gadget Decoding
	Gadgets for the CRT Representation
	Decoding the CRT Gadget

	Toolkit Implementation and Its Application
	Software Implementation
	Optimized Variant of Key-Policy Attribute-Based Encryption

	Experimental Results
	Subgaussian Gadget Decomposition
	Key-Policy Attribute-Based Encryption

	Subgaussian Analysis for Lattice Trapdoors
	Introduction
	A Concentration Bound on Subgaussian Matrices with Exact Constants
	Useful Lemmas
	A Berstein-type Bound
	Proof of Theorem 5.2.1
	Experiments
	Applications

	Bibliography

